

Agent-oriented Requirements Modeling

Liang Xiao
Supervisor: Dave Robertson

School of Informatics, University of Edinburgh
s0231274@sms.ed.ac.uk

September 6, 2003

Abstract

A standard way of describing requirements for system design is according to
function. One describes high level functions of the operation of the system
and decomposes these into lower level functions which perhaps overlap. For
complex systems the number of functions can be large and they may interact,
making it important to have a methodical way of describing the structure of
functions and their interactions.

Agent-Oriented Software Engineering methodology addresses complex
systems by three strategies: decomposition, abstraction, and organization.
This is a useful and effective way to solve problems because it gives one a
clear way to decompose the problem into agents. In addition, an agent-based
system is endowed with some degree of automation and self-adaptation in
that agents are autonomous entities and they are “intelligent” in some
aspects. This makes the system more flexible and robust.

In this paper, we demonstrate our belief that, agent technology, with its
virtue of domain knowledge capture capability and high-level abstraction for
interactions, can be applied to Requirements Engineering.

In Section1 of the paper we demonstrate how we are inspired to adopt
extended UML and XML for representing and encoding requirements
knowledge. We compare agent-oriented requirements modeling with
traditional descriptive functional-based requirements representation and
argue that the new modeling approach has some fundamental advantages. In
Section2 we introduce related work on agent-oriented Software Engineering,
Requirements Engineering and AUML, an integration of these techniques

http://www.informatics.ed.ac.uk/people/staff/Dave_Robertson.html
http://www.informatics.ed.ac.uk/

brings us distinctive features and benefits. In Section3, we give readers an
impression of what the new requirements look like and the steps to build
agent-oriented UML diagrams including identification of agents and their
interactions. Later on we discuss the detailed notation systems and apply the
agent-oriented approach to represent a portion from an existing Rail Track
requirements document in Section4. Then we introduce in Section5 our
specially designed agent-oriented UML CASE tool and illustrate how to do
requirements transformation in detail with this tool, in this section we also
introduce the tool’s integrated functionalities of automatic framework code
generation and architecture consistency validation. Finally we evaluate our
approach, make a conclusion and discuss open issues and possible further
work.

1 Introduction

The aim of this paper is to investigate a way to reconstruct a functional
description in an agent-oriented style, where the main components of the
description will be agent (not function) definitions and the main interactions
between definitions will be via message passing (these messages being
transfer of "conceptual" information as well as the more normal style of
agent messaging). We will apply this transformation to a part of an existing
document describing the Production Function of a national rail operator.
This document is large (over 250 pages) and adopts a uniform system of
function description throughout.

The original document is a collection of function statements and other static
knowledge, they are co-related and overlapped. This certainly does not give
us advantages of easy visual inspection, which means we may lack clear
recognition of the whole system structure. In addition, when part of the
document changes, it is not easy to guarantee that the whole system remains
consistent because it is very likely that changes to other parts of the
document are omitted.

The increasing use, high availability and familiarity of object-oriented
techniques and tools inspire our adoption of the graphically expressed
modeling standard UML (Unified Modeling Language) as a basic notation
with which to describe agents and their interactions.

As UML is an object-oriented modeling technique, and does not account for
high level functionalities belong to agents, it is not adequate if we simply
use the original UML notation. We propose to extend UML so that the
extended version can accommodate agent specific features.

We add a role element to the extended UML diagram, roles are played by
agents, and they are behaviors of agents. With the use of role, we extract the
functions from original requirements document, assign them to agents and
reflect in the diagram relationships between agents and roles, also
collaborations between roles.

We also add an agent interaction message element to the extended UML
diagram. There may be a sample message given in practice in the diagram. It
gives definition of message content format. Both agent/role definition and
message content definition are represented in XML.

We take the de facto standard document format XML for the representation
of communication messages between agents. We format these described
messages in the original document to the specified interaction content in
XML. We define the format structure which means we set rules to which
agents must conform when they communicate. Only messages that are
expressed according to this semantics are supposed to appear in
transmission between certain agents.

We will give details of how to do the XML translation in Section4 of the
paper.

Document Type Definition (DTD) and XML Schema are XML document
validation techniques, we may use them to guarantee that entities are
formatted to desired XML structure and they are in correct interrelated graph.
(This may be aided by the use of XLink/ XPointer)

The idea of this diagram-based requirements document construction is to let
agents to be represented as UML elements, which carry domain knowledge.
They interact with each other using messages, passed on from one agent to
another to exchange knowledge. Business behaviors are organized to roles
that are played by agents. Roles are also represented as UML elements in the
diagram. The system is in operation when messages are delivered among
agents and roles are played. Descriptive requirements are captured and
constituted to the definition and interrelationship of agents, roles and
messages.

Much of the important and crucial domain functional knowledge can be
captured in this way of requirements representation. Moreover, it helps
visual inspection and adds to higher accessibility to related entities in the
diagram which are not shown so explicit ly in the declarative document, and
it may also bring the benefits of more easily derivation of additional
knowledge and logical reasoning.

With this requirements description transformation, we argue the
development process can go more smoothly. On completion of the
agent-oriented UML diagram, the transition from requirements analysis
phase to design phase is fairly easy. The UML diagram can be extended to
an integrated diagram of both agents and classes when we start to design.
This is sensible because an agent-oriented Software System can be
developed from the agent-oriented requirements modeling (more discussion
following), this Software System in turn can be implemented with
object-oriented technology. Agents are higher level elements while classes
are lower level blocks. Agents may be subsystems or an organization of
classes; their interactions are main business flows in the system. We identify
agents and their interactions during the requirements capture phase, drawing
diagrams to reflect the relationships so that the design phase is only to figure
out detailed classes and other aspect of refining design. Combining agents
and classes together gives an integrated modeling approach using the UML a
major advantage.

Here is such an agent/class combined diagram from [1]:

Figure 1. An interaction pattern diagram describing the process type where a faculty
member requests a book from a department library such that the request is forwarded to
the central library because the requested book is not available at the department library

In the diagram, FacultyMember, DepLibrary and CentralLibrary are agents
while Book and BookCopy are classes. The consideration of what classes
are essential in agents and their relationships can be put in later design phase.
However this kind of diagram is certainly built on top of the agent-oriented
requirements diagram.

2 Background - Related Work

2.1 Agent & Agent Architecture

As stated in [2], the following definition of agent is useful:

An agent is an encapsulated computer system that is situated in some
environment, and that is capable of flexible, autonomous action in that
environment in order to meet its design objectives

The author N. R. Jennings also points out that, agents are: (i) clearly
identifiable problem solving entities with well-defined boundaries and
interfaces; (ii) situated (embedded) in a particular environment—they
receive inputs related to the state of their environment through sensors and
they act on the environment through effectors; (iii) designed to fulfi l a
specific purpose—they have particular objectives (goals) to achieve; (iv)
autonomous—they have control both over their internal state and over their
own behaviour; (v) capable of exhibiting flexible problem solving behaviour
in pursuit of their design objectives—they need to be both reactive (able to
respond in a timely fashion to changes that occur in their environment) and
proactive (able to opportunistically adopt new goals). Moreover, the agents
will need to interact with one another to achieve their individual objectives.
The interactions are conducted at the high-level (knowledge-level) agent
communication language [3]: in terms of which goals should be followed, at
what time, and by whom. Agents need to make context-dependent decisions
and initiate or respond to interactions that were not foreseen at design time.

As according to Mike Wooldridge [4], agents are intelligent and autonomous.
They perform communication acts in the furtherance of their intentions and
desires; negotiate each other to reach agreements just like human beings do.
Probably one of the best-known and most-implemented agent architectures
in the literature, the belief-desire-intention architecture, is intended to enable
an agent to make good decisions without any help. In this architecture [5],
“decision making is viewed as a process of practical reasoning of the kind
that we humans do every day: in order to decide what to do, an agent starts
by looking at the world and updating its beliefs about how the world is, and
on the basis of this, deciding what options are available to it. Having
determined a set of options, an agent must then fix upon some subset of
these possibilities, and commit to achieving them. Once an agent has
committed to an option, it becomes an intention, which focuses the agent's

future actions: it must typically develop some appropriate recipe or plan for
achieving the intention, and start executing this plan. But an agent cannot
blindly execute a plan, without ever stopping to consider how the world is -
from time to time, it must reconsider its intentions, by deliberating over them,
in order to determine whether a change of focus is necessary.”

2.2 Agent-Oriented Software Engineering

Agent-Oriented Software Engineering is being described as a new paradigm
[6] for the research field of Software Engineering.

Agent-oriented programming (AOP) can be seen as an extension of
object-oriented programming (OOP). In OOP the main entity is the object.
An object is a logical combination of data structures and their
corresponding methods (functions). Objects are successfully being used as
abstractions for passive entities in the real-world, and agents are regarded
as a possible successor of objects since they can improve the abstractions of
active entities [7].

Other advantages of agents over objects are: agents support structures for
representing mental components, i.e. beliefs and commitments; they support
high-level interaction (using agent-communication languages like FIPA ACL
and KQML) between agents as opposed to ad-hoc messages frequently used
between objects [6]. In addition, objects are controlled from the outside
(white box control), as opposed to agents that have autonomous behaviour
which can't be directly controllable from the outside (black box control). In
other words, agents have the right to say “no” [8].

GAIA, one of the first methodologies that have been specifically developed
for agent-based systems [9], is presented by Wooldridge, Jennings and
Kinny [10, 11] for agent-oriented analysis and design. Gaia is a general
methodology that supports both the micro-level (agent structure) and
macro-level (agent society and organization structure) of agent development.
Using Gaia, software designers can systematically develop an
implementation-ready design based on system requirements. The first step in
the Gaia analysis process is to find the roles in the system, and the second is
to model interactions between the roles found. In the Gaia design process,
the first step is to map roles into agent types, and then to create the right
number of agent instances of each type. The second step is to determine the
services model needed to fulfill a role in one or several agents, and the final
step is to create the acquaintance model for the representation of
communication between the agents.

Wood and DeLoach [12, 13] suggest the Multiagent Systems Engineering
Methodology (MaSE). MaSE is similar to Gaia with respect to generality
and the application domain supported, but in addition MaSE goes further
regarding support for automatic code creation through the MaSE tool. The
goal of MaSE is to lead the designer from the initial system specification to
the implemented agent system. The MaSE methodologies are divided into
seven sections (phases) in a logical pipeline: capturing goals, applying Use
Cases, refining roles, creating agent classes, constructing conversations,
assembling agent classes, system design.

Following the steps of either methodology we can build an agent-based
system, the key abstraction used in which is that of an agent. Such a system
potentially consists of multiple agents. They encapsulate both state and
behaviour, and communicate via message passing. An agent itself is a
rational decision making system, which enjoys the following properties:
autonomy, reactivity, pro-activeness, and social ability [14].
Although a wide range of well-known Software Engineering paradigms
have already been devised to deal with complexity in software including:
object-orientation, component-ware, design patterns and software
architectures, agent-oriented Software Engineering is emerging as a more
efficient and influential technique. Booch [15] identifies three tools to tackle
complexity in software: Decomposition, Abstraction and Organisation. In
fact they are available not only in object-oriented approach, but also in
agent-oriented approach. As these tools are more intuitively designed to
tackle complex problems, they become even more powerful.

In terms of complex software, complexity manifests itself as a large number
of sub-systems that have many interactions [16]. Given this state of affairs,
the role of Software Engineering is to provide models and techniques that
make it easier to handle this complexity [2]. In the other hand, agents are
modularised as components in terms of the objectives they achieve. This
philosophy to objective-achieving decompositions means that the individual
components of agents localise and encapsulate their own control. Thus,
entities have their own thread of control and they have control over their
own choices and actions. They are endowed with the ability to initiate and
respond to interactions in a flexible manner at run-time and, as a result, they
are able to satisfy the unpredictable necessity according to dynamic
situations caused by the system’s inherent complexity.

As active and autonomous components, agents intend to fulfil both their
individual and collective objectives, they can be viewed as intentional
systems whose behaviour can be predicted and explained in terms of
attitudes such as belief, desire, and intention [17], the behaviour of a
complex system is understood via the attribution of attitudes such as

believing and desiring. It is convenient shorthand for talking about complex
systems, which allows us to succinctly predict and explain their behaviour
without having to understand how they actually work. System complexity
can eventually be managed with greater ease by using the intentional stance
of agents as an abstraction tool [14].

In addition, individual agents or organisational groupings can be developed
in relative isolation and then added into the system in an incremental manner.
This ensures there is a smooth growth in functionality.

Agent-oriented approaches can significantly enhance our ability to model,
design and build complex (distributed) software systems [2].

Moreover, existing AI and Knowledge techniques can also help to build
agents, as they are intelligent and rational systems. Wamberto Vasconcelos,
David Robertson [18], etc. use formal methods and introduce a lifecycle for
models of large multi-agent systems.

2.3 Requirements Engineering

“Requirements engineering is the branch of software engineering concerned
with the real-world goals for, functions of, and constraints on software
systems. It is also concerned with the relationship of these factors to precise
specifications of software behavior, and to their evolution over time and
across software families.” [19]

According to Bashar Nuseibeh [20], Requirements Engineering (RE) is the
process of discovering the purpose which a Software System was intended
for, by identifying stakeholders and their needs, and documenting these in a
form that is amenable to analysis, communication, and subsequent
implementation. This process is inherent difficult because stakeholders
(including paying customers, users and developers) may be numerous and
distributed. Their goals may not be not explicit and difficult to articulate,
they may also be vary and conflict depending on their perspectives of the
environment in which they work and the tasks they wish to accomplish. [21]

Through an understanding of beliefs of stakeholders, RE specify a problem
to be solved, identify system boundaries, analyse properties of the
environment, and characterise the behaviours of the resulting software.

Core RE activities include:

· Eliciting requirements

Elicitation is to find out what problem needs to be solved, and hence
identify system boundaries. Identifying and agreeing a system’s boundaries
affects all subsequent elicitation efforts. The identification of stakeholders
and user classes, of goals and tasks, and of scenarios and use cases all
depend on how the boundaries are chosen.

· Modelling and analysing requirements

Modelling, the construction of abstract descriptions that are amenable to
interpretation is a fundamental activity in RE. There are several general
categories of RE modelling approaches:

Enterprise modelling is often used to capture the purpose of a system, by
describing the behaviour of the organisation in which that system will
operate.

Data modelling provides the opportunity to address issues like what
information is to be understood, manipulated and managed in RE, and how
to represent them.

Behavioural Modelling: Modelling requirements often involves modelling
the dynamic or functional behaviour of stakeholders and systems, both
existing and required.

Domain Modelling: A significant proportion of the RE process is about
developing domain descriptions [22]. A model of the domain provides an
abstract description of the world in which an envisioned system will operate.

Another important issue in requirements modelling is the modelling of
Non-Functional Requirements (NFRs); they tend to be properties of a
system as a whole, such as safety, security, reliability, and usability. They are
generally more difficult to express in a measurable way, but there is a
growing research interest in tackling them.

Modelling requirements provides the opportunity for analysing them.

· Communicating requirements

RE facilitates effective communication of requirements among different
stakeholders. The way in which requirements are documented plays an
important role in ensuring that they can be read, analysed, (re-)written, and

validated.

The focus of requirements documentation research is often on specification
languages and notations, with a variety of formal, semi-formal and informal
languages suggested. Different languages have been shown to have different
expressive and reasoning capabilities.

Natural language

· Extremely expressive and flexible
· Very poor at capturing the semantics of the model
· Better used for elicitation, and to annotate models for communication

Semi-formal notation

· Captures structure and some semantics
· Can perform (some) reasoning, consistency checking, animation, etc.
E.g.: diagrams, tables, structured English, etc.

Formal notation

· Very precise semantics, extensive reasoning possible
· Long way removed from the application domain
Requirements formalisms are geared towards cognitive considerations,
hence differ from most computer science formalisms.

· Agreeing requirements

As requirements are elicited and modelled, maintaining agreement with all
stakeholders can be a problem, especially where stakeholders have divergent
goals. Explicitly describing the requirements is a necessary precondition not
only for validating requirements, but also for resolving conflicts between
stakeholders.

Requirements negotiation attempts to resolve conflicts between stakeholders
without necessarily weakening satisfaction of each stakeholder’s goals.
Early approaches to requirements negotiation focused on modelling each
stakeholder’s contribution separately rather than trying to fit their
contributions into a single consistent model [23] and on the importance of
establishing common ground [24]. Boehm introduced the win-win approach
[25] in which the win conditions for each stakeholder are identified, and the
software process is managed and measured to ensure that all the win
conditions are satisfied, through negotiation among the stakeholders. There
are other such models to promote agreement with similar process: compare
functional requirements with one another, identify the most important goals

of each participant, and ensure these goals are met.

There are contextual issues, including contractual and procurement issues in
agreeing requirements. Requirements engineers are supposed to investigate
organisational and social context in which the new system will operate and,
interact with a variety of stakeholders, including potentially non-technical
customers, systems designers and developers before an agreement is
reached.

· Evolving requirements

Successful software systems always evolve as the environment in which
these systems operate changes and stakeholder requirements change. In
Software Engineering, it has been demonstrated that focusing change on
program code leads to a loss of structure and maintainability [26]. It is also
noted that requirements errors, such as misunderstood or omitted
requirements, are more expensive to fix later in the lifetime of project
lifecycles [27; 28]. Therefore managing change is a fundamental activity in
RE [29]. Changes to requirements documentation need to be managed
through configuration management, version control [30], and traceable links
in the documentation so that impact of changes and risk of the project can be
monitored and controlled.

RE is a multi-disciplinary activity, deploying a variety of techniques and
tools at different stages of development and for different kinds of application
domains. A variety of approaches have been suggested to manage and
integrate different RE activities and products. Jacskon uses problem frames
to structure different kinds of elementary and composite problems [31]. An
alternative approach to organising, selecting and tailoring multiple methods
is through the use of multiple perspectives or views of requirements [32; 33].
A viewpoint can be treated as an encapsulation of an individual technique,
with a defined notation, a set of actions that can be performed on that
notation, and a set of rules for consistency relationships with other
viewpoints.

RE is increasingly recognised as a critically important activity in Software
Engineering processes. Many delivered systems do not meet their
customers’ requirements due, at least partly, to ineffective RE. Effective RE
approaches will play a crucial role in the management of change in software
development, in making assessment of feasibility and associated risks of
projects that to be undertaken, in determining the success or failure of
projects, and in determining the quality of systems that are delivered.

2.4 Use Agents for Requirements Engineering

Agent-oriented approaches are becoming popular for requirements
modelling; they are introduced in Requirements Engineering (RE) mainly to
characterize active elements in the environment. Several such RE
frameworks are briefely reviewed in [34]: Composite Systems Design and
KAOS; Albert II; The F3 framework; The i* modelling framework. In i*, the
term agent is used to refer to the concrete, implementable variety, and
therefore whose identity is determined by physical and implementability
criteria. The author of the above paper argues that for an RE framework to
be truly agent-oriented, the identity and existence of an agent needs to be
determined within the RE level, based on RE criteria, not on implementation
level criteria. If agent identity and existence are pre-determined, the RE
process may not be benefitting much from having an agent construct. A
distinctive RE agent can serve as a powerful abstraction mechanism and a
concept of agent for RE that is ontologically distinct from those in design
and implementation is needed. This is the viewpoint we agree with.

Albert II supports the modelling of functional requirements in terms of a
collection of agents interacting in order to provide services necessary for an
organization, notion of agent is seen as a way of organizing the specification
so that behaviour pertaining to each agent is collected together. Similarly to
this approach, we start with the functional requirements specification,
identify logically separate agent components, and assign lists of actions they
can perform to them. Although the agent/role during requirements modelling
are simply turned into class/method during implementation (automatic code
generation) step, it is supposed that an agent/role refining design step is
essential between these two tasks, so that requirements analysis and
implementation are bridged by the design.

2.5 AUML

Agent UML specification has recently been defined by FIPA, a non-profit
organization aimed at producing standards for the interoperation of
heterogeneous software agents. FIPA AUML class diagrams extend UML
class diagrams to cover needs for agent design. In the context of agents and
multi-agent systems, FIPA AUML class diagrams describe the agents and
their architectures [35]. Their use of AUML introduces new notations for
representations and focuses on the process that various agents playing roles
hence a sequence of actions happen one after another thus accomplish a
certain task. According to the definition, agents are autonomous entities act
and react on its own right. Communication protocols between agents as well

as several kind of agent diagrams including Sequence Diagram, Interaction
Overview Diagram, Communication Diagram and Timing Diagram [36] are
defined to describe the intra-agent or inter-agent activities; levelling [37] is
used to express detailed interaction process. Their use of agents emphasizes
design issues and hence aids the development later on.

Agent-based UML in this project, although similarly designed in principal to
embrace agents with the traditional UML, is used to capture requirements
knowledge. An easy to understand notation system is used just like a
Collaboration Diagram from class diagram. The diagram focuses on agents,
roles and relationships where message passing is also a central component.
In the diagram, the architecture of internal structure is reflected and it is a
straightforward UML extension to support additional functionalities. We
only adopt the very basic concepts of: Agent, Role, Interaction and Message
from [38]. We also only concentrate on interactions between pairs of agents,
therefore the model is simplified and how data flows among components to
accomplish a goal is not taken into account. Fundamental system structure
will emerge after such a diagram is completed, thorough design will be
needed afterwards.

Relatively complicated notation systems are often used by FIPA to
accommodate the interactions between intelligent agents and give details of
how to accomplish the complex tasks while designing. More concepts,
notations and diagram views are designed to give exhaustive solutions for
agent-based system development. This project is not for that goal but
primarily for two main tasks, the requirements document transformation and
framework code generation. The comparatively simple concepts and
easy-to-understand notation system are intended to be intuitive; a specially
designed and user-friendly graphical CASE tool is implemented; stipulated
guidelines according to which agent-oriented UML diagrams are to be
constructed from original requirements are given, these are sufficient for our
specific purpose. There is a design gap between the two tasks described
above, which must be bridged by the human interventions: some additional
components and relationships are supposed to be added to the transformed
diagram manually through designers’ understanding, and then go on to
generate the right code. The combination of transforming requirements to
diagrams and transforming drawn diagram to framework code is a unique
feature. This whole process facilitates the agent-based development from the
beginning to the end.

3 Agent-oriented Requirements Modeling Diagram

The agent-oriented UML diagrams are used to document the architecture of
the system through a high level abstraction; it captures requirements
knowledge and organizes them to be accommodated by agents. Interrelated
agents interact with each other to exchange knowledge.

The following is a sample diagram discussed in this paper. It’s drawn for a
Train Running part of the Rail Track requirements document. We will give
details of it in Section4.

Figure 2. A sample agent-oriented requirements diagram, for a portion of Train Running
part of the Rail Track requirements document

<TimetableChange>
<ChangedID>
2003060001
</ChangedID>
<ChangedData>
<Destination>
Glasgow
</Destination>
</ChangedData>
</TimetableChange>

<RoleName>
AcceptTimetable
</RoleName>
<Description>
Handle a new timetable
</Description>
<Cause>
Receipt of a new timetable from
<AssociatedAgent>TrackAccess
Agent</AssociatedAgent>
</Cause>

<RoleName>
AcceptTimetableChange
</RoleName>
<Description>
Handle changes to the timetable
</Description>
<Cause>
Receipt of a revised timetable
from
<AssociatedAgent>TrackAccess
Agent</AssociatedAgent>
</Cause>

<TimetableDetail>
<ID>
2003060001
</ID>
<Time>
2003/Jun/1st 1:00 pm
</Time>
<Departure>
Edinburgh
</Departure>
<Destination>
London
</Destination>
</TimetableDetail><<play>>

<<associate>> <<associate>>

<<play>>

<RoleName>
AcceptLateAddition
</RoleName>
<Description>
Handle a late request for a train
journey
</Description>
<Cause>
Receipt of a request for a train
journey from
<AssociatedAgent>TrainOperator
Agent</AssociatedAgent>
</Cause>
<Effect>
Create a new train journey and
validate it with
<CollaboratedRoles>
ValidateTrainPlan
</CollaboratedRoles>
Distribute it to all interested
parties if acceptable
</Effect>

<<play>>

<<associate>>

<JourneyRequest>
<JourneyID>
200305230001
</JourneyID>
<TrainDetail>
virgine no.101
</TrainDetail>
<Location>
Edinburgh
Stirling
</Location>
<DesiredTiming>
2003/Jun/12th 1:00 pm
</DesiredTiming>
</JourneyRequest>

<RoleName>
AcceptLateAmendment
</RoleName>
<Description>
Handle customer requested
changes to a train journey
</Description>
<Cause>
Receipt of a request to change a
train journey from
<AssociatedAgent>TrainOperator
Agent</AssociatedAgent>
</Cause>
<Effect>
Validate it with
<CollaboratedRoles>
ValidateTrainPlan
</CollaboratedRoles>
create a new train journey version
if acceptable
</Effect>

<<play>>

<<associate>>

<JourneyChange>
<JourneyID>
200305230001
</JourneyID>
<ChangedData>
<Location>
Edinburgh
Dundee
</Location>
</ChangedData>
</JourneyChange>

<<collaborate>>
<<collaborate>>

<RoleName>
ValidateTrainPlan
</RoleName>
<Description>
Validate a train journey
</Description>
<Effect>
Check the compatibility of
train journey info with Rules
of the Route and Plan for
<CollaboratedRoles>
AcceptLateAddition
AcceptLateAmendment
</CollaboratedRoles>
</Effect>

interaction
message
definition

ExecutionManagerAgent

AcceptNewTrain()

TrackAccessAgent

TrainOperatorAgent

IncidentManagerAgent

RespondToIncident()

RouteManagerAgent

AcceptTimetable()
AcceptTimetableChange()
AcceptLateAddition()
AcceptLateAmendment()
AgreeContingencyPlans()
ValidateTrainPlan()

PlannedTrainJourney

InformTimetableInfo

InformJourneyInfo

ContingencyPlans

The diagram is somewhat similar to a class diagram and its design is really
stimulated by that. However it is higher level so we do not care about what
kind of classes we need in an agent, not to mention attributes. Nevertheless
agents (like classes); their relationships (like associations) and roles played
by agents (like methods of classes) are central part of the diagram.

We give below the process to build an agent-oriented UML diagram from
information derived from the original requirements:

1. Identify subsystems and delegate an agent for each. An agent is a
relatively independent unit and it should play a variety of related roles.
Consider consolidating agents if roles that they play are related. Consider
to split agents if one agent plays completely different roles.

2. Connect related agents, one agent may deliver requests and trigger
another agent to play a certain role. The interaction message between
them should be given in an XML content format definition so that the
process of producing messages by one agent, transmitting messages from
this one agent to another, and parsing the messages by the latter agent
could conform to a certain manner.

3. Identify roles each agent play, give agent and role definitions in XML.
Add <<play>> connections between roles and the agent which plays
them. There is surely a reference of each role an agent plays in the agent
box. Roles are identified through the function description from original
requirements document. XML definitions are given in Section3.

4. Parse <cause> tag in role definition XML, give <<associate>>
connections between roles and agents which cause they to be played.

5. Parse <effect> tag in role definition XML, give <<collaborate>>
connections between interrelated pairs of roles that one role is aided by
another to accomplish a certain goal.

After step 5 is finalized, it is optional to continue:

6. Validate the model: Eliminate whatever elements that are redundant
which may be caused by the duplicated information from original
document; Find chances to give connections that are not explicit in
original document but that are logically sensible, also try to consolidate
related information.

Additional Suggestion:

Do not incorporate detailed objects to agents now; this is to be addressed at
the later design phase along with issues at object level like reuse
optimization and inheritance.

Figure 3. Position of the agent diagram in Software Engineering process layers

4 Sample transformations

The original requirements document is more than 250 pages, expressed in
natural English language. The document defines the background and scope
of the problem domain. It describes what the system will do in three areas:
Train Running and Performance; Infrastructure Management; Performance
and Common Communication. Throughout this part of description, a
standard format is applied to depict system operations as Production
Function Tables like the one shown in Figure7. One table is used to define
one function. To one single function, the Identifier and Description of the
function, the Cause that invokes the function, the Assumptions that have to
be satisfied before this function is invoked, Information Used while invoke
this function, Output of this function after the invocation along with
Required Effect and other properties like Safety are given in its
corresponding Function Table. These account for a significant part of the
whole document. The requirements also provide Data Model and Dataflow
in and out among Functions.

We take a small part of the Rail Track requirements document and show the
transformation process in this section according to the steps listed in
Section3. Note some steps can be operated in consolidation or separation
and it is not necessary to strictly conform to the 5/6-step-transformation.

Requirements capture
Agent diagram

Design architecture
Class diagram

Implementation

1. There are three main areas under concern in the original Rail Track
Production Function requirements document. We focus on the first area:
Train Running and Performance. Each of three areas is sub-divided into
Business, Incident and Execution domains. So in the first step of
transformation we delegate three agents: RouteManagerAgent,
IncidentManagerAgent and ExecutionManagerAgent. We make most efforts
to illustrate RouteManagerAgent in this paper.

2. Establish agent elements structure in interconnection in a diagram

An agent represents a scope of knowledge in the view of requirements
capture; it can be a subsystem or a group of objects in the view of design
and an autonomous entity in the view of implementation.

Functions categorized in the original documents by domains are organized
to roles assigned to agents. We pick those primary functions of
RouteManagerAgent and list them as roles that it plays in the following very
basic agent diagram:

RouteManagerAgent

AcceptTimetable()
AcceptTimetableChange()
AcceptLateAddition()
AcceptLateAmendment()
AgreeContingencyPlans()
ValidateTrainPlan()

Figure 4. A single agent diagram

XML content of this agent:

<AgentName>RouteManagerAgent</AgentName>
<RolesGroup>
<Role>AcceptTimetable</Role>
<Role>AcceptTimetableChange</Role>
<Role>AcceptLateAddition</Role>
<Role>AcceptLateAmendment</Role>
<Role>AgreeContingencyPlans</Role>
<Role>ValidateTrainPlan</Role>
</RolesGroup>
<Collaborators>
IncidentManagerAgent
ExecutionManagerAgent
</Collaborators>

A good point of using XML can be seen here, we can easily extend the XML

structure to accommodate more knowledge the agent is aware of by simply
adding additional tags. In the above case, it is very convenient to redefine
agents by adding more <Role> tags to expand functionalities of agents to
adapt them to the mutable requirements.

As stated in the description of function RespondToIncident, the
IncidentManagerAgent handles perturbations to train journeys by playing
this role. In the “Information Used” block, it says contingency plans will be
used to make amended train journeys. Since contingency plans are produced
by RouteManagerAgent playing the role of AgreeContingencyPlans, we
have a clue that there is a connection between IncidentManagerAgent and
RouteManagerAgent so that contingency plans can be provided by the latter
agent to the former one.

RouteManagerAgent

AcceptTimetable()
AcceptTimetableChange()
AcceptLateAddition()
AcceptLateAmendment()
AgreeContingencyPlans()
ValidateTrainPlan()

ContingencyPlansIncidentManagerAgent

RespondToIncident()

Figure 5. Two agents with a connection between them

As it is hard to imagine how these plans are structured, we choose another
diagram to illustrate the XML format of interaction message content.

TrackAccessAgent

InformTimetableInfo

<TimetableDetail>
<ID>
2003060001
</ID>
<Time>
2003/Jun/1st 1:00 pm
</Time>
<Departure>
Edinburgh
</Departure>
<Destination>
London
</Destination>
</TimetableDetail>

RouteManagerAgent

AcceptTimetable()
AcceptTimetableChange()
AcceptLateAddition()
AcceptLateAmendment()
AgreeContingencyPlans()
ValidateTrainPlan()

Figure 6. Two agents with a message passing between them

RouteManagerAgent accepts timetables from TrackAccessAgent; timetable
structure may be organized in the way shown in the above diagram. It is
clear such message semantics is set at the beginning and should be
conformed since then. Corrupted messages can be found by XML parser
during validation check.

3. Establish role elements in the diagram and connect them to agents that
play these roles:

A role is played by an agent; it represents a capability of the agent. A role
captures a function description in the view of requirements capture; it can
be a method in the view of design.

These identified roles belong to RouteManagerAgent:
AcceptTimetable (),
AcceptTimetableChange (),
AcceptLateAddition (),
AcceptLateAmendment (),
AgreeContingencyPlans (),
ValidateTrainPlan ()

We establish graphical elements for these roles in the diagram and connect
each role with the agent which plays it.

Identify agents and roles they play are the core work for this agent-oriented
requirements representation transformation. We format role descriptions to
basically four main XML segments embedded by four key tags in the
following way.

We illustrate this with an example of role AcceptLateAddition. Before that
we give its original function description document.

Accept Late Addition

Description To handle a late request for a train journey.

Cause Receipt of a request for a train journey directly from a
Train operator or from the driver entering the production
function’s area. The request is provided in the form of a
combination of relevant train details, locations and
desired timings.

Assumption The crew is competent for the route requested.

Information
Used

Relevant locations.

Outputs A new train journey, to Train Operator and others.

Required
Effect

A new train journey is created from the request, and
validated (PF.TR.B-ValidateTrainPlan).
If the train journey is acceptable then it is distributed to
all interested parties; otherwise the request is rejected or
renegotiated.
Having been accepted, the new train journey is known to
the Production Function.
The train journey is made known outside the Production
Function (PF.CC.B-ProvideTrainPlan).

Frequency Currently 20-100 per day.

Timeliness -

Impact of
Unavailability

The unavailability of this function would render the
Production Function unable to respond at short notice to
customer requests for additional train paths.

Safety -

Comment -

Identifier PF.TR.B-AcceptLateAddition

Figure 7. Original function description document

Four XML tags for role document definition:

1). <RoleName> Tag: the name of the role, just taken from original
document. The same naming convention should be adopted in all role
documents and the same name should be applied throughout requirements
capture, design and implementation.

<RoleName>AcceptLateAddition</RoleName>

2). <Description> Tag: a short description for the role, it should capture its
main functionality, maybe a shorter and more concise version of the original
one.

<Description>Handle a late request for a train journey</Description>

3). <Cause> Tag: describes what causes the role to function. In most cases,
there is an <AssociatedAgent> tag inside this one, showing which external
agent requests this agent to play the role. These important pieces of
information may be given directly in the “Cause” block of the original
document description but it is also very likely to need human understanding
and reasoning.

<Cause>
Receipt of a request for a train journey from
<AssociatedAgent>TrainOperatorAgent</AssociatedAgent>
</Cause>

4). <Effect> Tag: describes what the effect is after the role is played. In
some cases, there are also <CollaboratedRoles> tags inside this one,
showing there are other roles that this role seeks help to accomplish a certain
task. By contrast, when there is no such tag, this role is capable to fulfill the
goal by itself. Some information in the “Required Effect” block of the
original document description is useful in the late design phase as it
describes the necessary processing details, which may be best viewed and
understood through object-level analysis.

<Effect>
Create a new train journey and validate it with
<CollaboratedRoles>ValidateTrainPlan</CollaboratedRoles>
Distribute it to all interested parties if acceptable
</Effect>

The complete XML document for role AcceptLateAddition:

<RoleName>AcceptLateAddition</RoleName>
<Description>Handle a late request for a train journey</Description>
<Cause>
Receipt of a request for a train journey from
<AssociatedAgent>TrainOperatorAgent</AssociatedAgent>
</Cause>
<Effect>
Create a new train journey and validate it with
<CollaboratedRoles>ValidateTrainPlan</CollaboratedRoles>
Distribute it to all interested parties if acceptable
</Effect>

The relationship diagram for role AcceptLateAddition and the agent
RouteManagerAgent which plays it:

RouteManagerAgent

AcceptTimetable()
AcceptTimetableChange()
AcceptLateAddition()
AcceptLateAmendment()
AgreeContingencyPlans()
ValidateTrainPlan()

<<play>><RoleName>
AcceptLateAddition
</RoleName>
<Description>
Handle a late request for a train
journey
</Description>
<Cause>
Receipt of a request for a train
journey from
<AssociatedAgent>TrainOperator
Agent</AssociatedAgent>
</Cause>
<Effect>
Create a new train journey and
validate it with
<CollaboratedRoles>
ValidateTrainPlan
</CollaboratedRoles>
Distribute it to all interested
parties if acceptable
</Effect>

Figure 8. A role is played by an agent

4/5. Establish association/collaboration relationships

As we can see clearly from the above XML format definition for role
AcceptLateAddition, TrainOperatorAgent embedded in the AssociatedAgent
tag is the agent that causes the role to function; and ValidateTrainPlan in the
CollaboratedRoles tag is the role it seeks help to accomplish its task. We add
a dotted line <<associate>> between role AcceptLateAddition and agent
TrainOperatorAgent to illustrate it is TrainOperatorAgent that causes role
AcceptLateAddition to play. We also add a dotted line <<collaborate>>
between role AcceptLateAddition and role ValidateTrainPlan to illustrate
that it is ValidateTrainPlan from which role AcceptLateAddition seeks help.

The following is a partial diagram to demonstrate the relationship between
these entities: (There ought to be a play connection between
RouteManagerAgent and ValidateTrainPlan which we simply ignore)

Figure 9. A more complex diagram with two agents, two roles and a message involved

RouteManagerAgent

AcceptTimetable()
AcceptTimetableChange()
AcceptLateAddition()
AcceptLateAmendment()
AgreeContingencyPlans()
ValidateTrainPlan()

<<play>><RoleName>
AcceptLateAddition
</RoleName>
<Description>
Handle a late request for a train
journey
</Description>
<Cause>
Receipt of a request for a train
journey from
<AssociatedAgent>TrainOperator
Agent</AssociatedAgent>
</Cause>
<Effect>
Create a new train journey and
validate it with
<CollaboratedRoles>
ValidateTrainPlan
</CollaboratedRoles>
Distribute it to all interested
parties if acceptable
</Effect>

<JourneyRequest>
<JourneyID>
200305230001
</JourneyID>
<TrainDetail>
virgine no.101
</TrainDetail>
<Location>
Edinburgh
Stirling
</Location>
<DesiredTiming>
2003/Jun/12th 1:00 pm
</DesiredTiming>
</JourneyRequest>

InformJourneyInfo

TrainOperatorAgent

<<associate>>

<RoleName>
ValidateTrainPlan
</RoleName>
<Description>
Validate a train journey
</Description>
<Effect>
Check the compatibility of
train journey info with Rules
of the Route and Plan for
<CollaboratedRoles>
AcceptLateAddition
AcceptLateAmendment
</CollaboratedRoles>
</Effect>

<<collaborate>>

When TrainOperatorAgent sends a certain format of JourneyRequest to
RouteManagerAgent, it causes the later agent to play its role
AcceptLateAddition, with the help of this role’s collaboration partner
ValidateTrainPlan it will finally accomplish certain goals.

6. Define interaction messages between agents

We can define semantic format for agent interaction messages; in this case,
RouteManagerAgent can only understand certain format of JourneyRequest
from TrainOperatorAgent. If the message it receives is not satisfactory, it
deduces that the message is corrupted and simply abandons it or requests a
replica from the source. The message is in XML so that it can parse and
extract desired pieces of information with ease.

Through the description in the “Cause” block from the original document,
we know the message transmitted from TrainOperatorAgent to
RouteManagerAgent is to be like this:

<JourneyRequest>
<JourneyID>
200305230001
</JourneyID>
<TrainDetail>
virgine no.101
</TrainDetail>
<Location>
Edinburgh
Stirling
</Location>
<DesiredTiming>
2003/Jun/12th 1:00 pm
</DesiredTiming>
</JourneyRequest>

Figure 10. A message element

The XML format message definition gives a specification for the structure
of potential objects transmitted between agents during design phase when
agent-level infrastructure diagram is detailed to object-level infrastructure
diagram.

5 Support Tool Development

In the previous section, we illustrate our ideas of the requirements
transformation with diagrams drawn by Rational Rose. However this tool
has no idea of “association” or “collaboration” relationships between agents
and roles, not to mention the element of interaction messages. However this
UML CASE tool does have the capability to capture the architecture of a
component system and show it in a desired style, so we are inspired to
develop a similar tool and add agent/role/message concepts to it to represent
requirements. The advantage of designing our own tool is that it will suit our
specially designated task of requirements representation. Furthermore, we
could enhance our tool to make it able to generate framework code from
drawn diagrams and possibly validate implemented system by checking
known relationships between components. The Software Engineering
process could be made much easier if we adopt the following proposed
procedure:

1. Understand original requirements document.
 (Described in Section4)
2. Figure out what agents and roles are needed; draw diagrams to

represent requirements in our tool; give their definitions in XML
according to their original descriptions. (Section4 & Section5.1)

3. Generate source code by the internal functionality of this tool.
 (Section5.1)
4. Implement the system from the automatically generated framework.
 (Section5.2)
5. Validate the complete implementation with the tool. (Section5.3)

5.1 A CASE Tool for Generating Source Code

In this section, we will apply our method to a tiny part of the Rail Track
document and give details of how to do this with our tool step by step. The
suggested steps conform to the agent-oriented requirements diagram
building process described in Page16. The diagram we finally get is the
counterpart of Figure9 drawn by Rational Rose.

http://www.rational.com/

Overview of the tool and the achieved diagram:

Step1: Define agents and the roles played by them.

1.1 Begin to create a new diagram:

1.2 Input an agent name ‘RouteManagerAgent’ and add roles
‘AcceptLateAddition’, ‘AcceptLateAmendment’ etc. that belong to it one by
one:

1.3 Delete undesired roles from the added roles list:

1.4 Build this agent:

1.5 The agent ‘RouteManagerAgent’ and its four roles are created in the
drawing panel, with a shadowed rectangle representing the agent,
round-corner-rectangles representing roles played by this agent. There is a
connection between the agent and each role it plays, with a filled circle at
the agent end and an unfilled circle at the role end:

1.6 Adjust agents and roles to the desired locations by dragging and
dropping. In this process, the selected component of role
‘AcceptLateAddition’ is highlighted in red:

1.7 Keep running the above processes until every agent and their roles are
added to the diagram. We simply add the agent ‘TrainOperatorAgent’
without roles in this step (we are not concerned about roles of this agent):

1.8 Remove agents if unnecessary:

Step2: Establish relationships between related agents, and then give the
definition of interaction messages between them.

2.1 Connect related agents. ‘RouteManagerAgent’ and ‘TrainOperatorAgent’
are related agents so we add a relationship between them:

2.2 A white thick line connecting related agents is drawn, with an arrow at
each end:

2.3 Specify the message to be defined (from which agent to which other,
only between related agents) and give the definition. The message passing
between the related agents of ‘RouteManagerAgent’ and
‘TrainOperatorAgent’ is to be defined in this case. The communicative act is
supposed to take place on the directed line between these two agents. For
sake of conciseness and generality, the message content is not included in
the diagram, but can be (re-)defined through “Define this message” button.

2.4 Give the definition in the text-edit area on left, save the message
definition. The XML definition of the message passing between
‘RouteManagerAgent’ and ‘TrainOperatorAgent’ is given below:

2.5 It is possible to choose comfortable foreground color for text and
background color for the text-edit area as above:

Step3: Establish association relationships between roles and agents which
cause them to be played, and collaboration relationships between
interrelated roles that one role is aided by others.

3.1 Specify an agent and a role of it to add a relationship. In this case there
are:
A. Two AssociatedAgent relationships:
A.1 Role ‘AcceptLateAddition’ from agent ‘RouteManagerAgent’ with
agent ‘TrainOperatorAgent’
A.2 Role ‘AcceptLateAmendment’ from agent ‘RouteManagerAgent’ with
agent ‘TrainOperatorAgent’
B. Two CollaboratedRoles relationships:
B.1 Role ‘AcceptLateAddition’ with role ‘ValidateTrainPlan’
B.2 Role ‘AcceptLateAmendment’ with role ‘ValidateTrainPlan’

To add relationship A.1 we choose agent ‘RouteManagerAgent’, then
choose role ‘AcceptLateAddition’ and finally click “Add a relationship to
this role”:

3.2 Once a role from an agent is selected, specify the relationship to be
added to this role. There are two categories of possible relationships:
AssociatedAgent and CollaboratedRoles. Each agent which relates to this
role’s host agent will be added to the first category list. Each role which
belongs to the same agent as this role does will be added to the second
category list. To establish A.1, we choose
“<AssociatedAgent>TrainOperatorAgent</AssociatedAgent>” from the
possible relationship list to make up an AssociatedAgent relationship:

3.3 Add each relationship that belongs to AssociatedAgent category and a
dashed purple line will be created connecting the role and its associated
agent. A.2 will be constructed in the same fashion in this step:

3.4 Add each relationship that belongs to CollaboratedRoles category and a
dashed golden line will be created connecting the role and its collaborated
agent. Similarly B.1 and B.2 can be made up:

3.5 An initial definition of each role has already been generated by the tool,
with the role name, its associated agents and collaborated roles given. In our
scenario, role ‘AcceptLateAddition’ from agent ‘RouteManagerAgent’ is
associated with the agent ‘TrainOperatorAgent’ and collaborated with the
role ‘ValidateTrainPlan’ correctly:

3.6 Complete this role definition and supplement the rest important
description from the original requirements and save it.

Once the diagram is finished, the requirements document transformation is
completed. We could generate the framework source code now or preferably
do so after a refining design step. It is for sure that the former transformation
and the later development, which starting from the framework code will be
successful only when we have understood the original document and it is
also true that we have to make efforts to the later implementation – not
everything could be generated automatically.

3.7 Use the Code Generation functionality to generate framework source
code from the diagram:

Here is the generated Java code for RouteManagerAgent, we focus on the
role AcceptLateAddition and ignore other code pieces.

// RouteManagerAgent.java

public class RouteManagerAgent

{

 /*

 * Handle a late request for a train journey

 */

 public AcceptLateAddition()

 {

 // please make a call to TrainOperatorAgent according to the following description:

 /*

 Receipt of a request for a train journey from

 <AssociatedAgent>

 TrainOperatorAgent

 </AssociatedAgent>

 */

 /****************/

 // please implement this method to achieve the following described goals:

 // please make sure to call the internal method ValidateTrainPlan to accomplish this

 /*

 Create a new train journey and validate it with

 <CollaboratedRoles>

 ValidateTrainPlan

 </CollaboratedRoles>

 Distribute it to all interested parties if acceptable

 */

 }

 public AcceptLateAmendment()

 {

 }

 public AgreeContingencyPlans()

 {

 }

 public ValidateTrainPlan()

 {

 }

}

The code generation algorithm is not complex, as readers can expect that
from the above generated code. First of all, we create a new directory called
“GeneratedJavaCode” under the running system directory; then we create a
Java file for each agent and name Java files after their corresponding agents,
RouteManagerAgent.java and TrainOperatorAgent.java will be created in
our case and each class is defined as public in their Java file in the first place;
after that, we allocate methods to these Java classes according to roles
allocated to agents, each role from an agent is defined as a public method in
a class at the beginning, <RoleName> content from the role definition is
used as the method name; finally, method comments, which guide
developers to implement the methods are given according to the rest of role
definition: <Description> content is used as a simple method usage
description comment, it is given just above the method declaration; <Cause>
content is used as a comment to instruct developers to invoke methods from
other classes (<AssociatedAgent>) to obtain some info; <Effect> content is
used as a comment to instruct developers what to do in the method, also
point out the possibility to call a set of internal methods
(<CollaboratedRoles>) from this same class. In this way, the role definition
is divided into four main parts and used for different goals in establishing
method declaration and comment body. Semantics from early captured
requirements are transferred to the implemented bits in this way and hence
the whole system framework is constructed ready for further development.

As we can see, with our notation system for requirements representation and
supporting tool, it is really easy to map from the encoded requirements

document to the basic architecture of Java implementation. XML Tags from
the agent-oriented UML diagram component definition play a crucial role in
this translation process as it captures most semantics relevant information in
the system, it acts as a bridge from requirements knowledge capture, design
to implementation.

5.2 Adapting Generated Source Code

It is very easy to adapt the above code to the more ideal code as the
following as indicated by the comments given along with the code:

// RouteManagerAgent.java

public class RouteManagerAgent

{

 public TrainOperatorAgent trainOperator;

 public TrainJourney acceptedTrainJourney;

 public RouteManagerAgent()

 {

 }

 /*

 * Handle a late request for a train journey

 */

 public boolean AcceptLateAddition()

 {

 /*

 * <Cause>Receipt of a request for a train journey from

 * <AssociatedAgent>TrainOperatorAgent</AssociatedAgent>

 * </Cause>

 */

 TrainJourney trainJourney = trainOperator.receiveJourneyInfo();

 /*

 * <Effect>Create a new train journey and validate it with

 * <CollaboratedRoles>ValidateTrainPlan</CollaboratedRoles>

 * Distribute it to all interested parties if acceptable

 * </Effect>

 */

 if(ValidateTrainPlan(trainJourney))

 {

 acceptedTrainJourney = trainJourney;

 return true;

 }

 else

 {

 return false;

 }

 }

 public void AcceptLateAmendment()

 {

 }

 public void AgreeContingencyPlans()

 {

 }

 public boolean ValidateTrainPlan(TrainJourney trainJourney)

 {

 // some checking functions go here.

 }

}

As to each message passed between agents like the following:

<JourneyRequest>

 <JourneyID>
 200305230001
 </JourneyID>

 <TrainDetail>
 virgine no.101
 </TrainDetail>

 <FromStation>
 Edinburgh

 </FromStation>

 <ToStation>
 London
 </ToStation>

 <DepartureTime>
 2003/Jun/12th 1:00 pm
 </DepartureTime>

</JourneyRequest>

They can be defined as XML streams and validated by XML parser.
Alternatively they can be defined as normal Java classes with attributes
extracted from XML tags and no methods, as the way we adopt practically:

// TrainJourney.java

import java.lang.*;

import java.sql.Timestamp;

public class TrainJourney

{

 int JourneyID;

 String TrainDetail;

 String FromStation;

 String ToStation;

 Timestamp DepartureTime;

 public TrainJourney(int journeyID, String trainDetail, String fromStation, String toStation,

Timestamp departureTime)

 {

 this.JourneyID = journeyID;

 this.TrainDetail = trainDetail;

 this.FromStation = fromStation;

 this.ToStation = toStation;

 this.DepartureTime = departureTime;

 }

}

Since the role AcceptLateAddition from the agent RouteManagerAgent has
TrainOperatorAgent as its AssociatedAgent, an instance of TrainJourney
will be passed to RouteManagerAgent by a call to TrainOperatorAgent:

 TrainJourney trainJourney = trainOperator.receiveJourneyInfo();

In this way, we relate agent classes and message classes; let objects of later
classes be passed to objects of former classes, so that agents are enabled to
use messages. Our requirements modeling methods guide designers not only
on the design of agent classes but also on message classes.

With our specially designed tool, we can save a drawn diagram and load a
previously saved one, make changes to it according to the changes to the
requirements and regenerate the code to conform to the new system
architecture.

5.3 Validating Adapted Code against the Original Model

In addition, with the aid of this tool, we may be able to check the
consistency validity of developers’ code by importing and analyzing them.
Since relationships between components are given in the diagram, the same
relationships are supposed to be reflected as we analyze the code.

We integrate the code analysis functionality with this tool to make sure the
correct relationships are established in the finally implemented code. With
“Import Source Code for Analysis” under File menu we create report files in
the tool running folder. If we generate the code immediately after the
diagram is drawn and leave the code untouched like those in Page 38-39, the
following is the created report:

**

This report is created on Sat Aug 09 12:12:31 BST 2003 with

Agent-based UML CASE tool - Author: Liang Xiao, University of Edinburgh

**

***** Start analyzing Source Code... *****

Reading RouteManagerAgent.java ...

Reading AcceptLateAddition from RouteManagerAgent.java ...

 !!! There is a problem with AcceptLateAddition. It is supposed to be associated with

TrainOperatorAgent !!!

 !!! There is a problem with AcceptLateAddition. It is supposed to be collaborated with

ValidateTrainPlan !!!

Reading AcceptLateAmendment from RouteManagerAgent.java ...

 !!! There is a problem with AcceptLateAmendment. It is supposed to be associated with

TrainOperatorAgent !!!

 !!! There is a problem with AcceptLateAmendment. It is supposed to be collaborated with

ValidateTrainPlan !!!

Reading AgreeContingencyPlans from RouteManagerAgent.java ...

 --- Relationships in AgreeContingencyPlans from RouteManagerAgent.java are OK! ---

Reading ValidateTrainPlan from RouteManagerAgent.java ...

 --- Relationships in ValidateTrainPlan from RouteManagerAgent.java are OK! ---

*** Start logging lost roles for RouteManagerAgent.java ***

 --- No lost roles for RouteManagerAgent.java ---

*** Finish logging lost roles for RouteManagerAgent.java ***

Reading TrainOperatorAgent.java ...

*** Start logging lost roles for TrainOperatorAgent.java ***

 --- No lost roles for TrainOperatorAgent.java ---

*** Finish logging lost roles for TrainOperatorAgent.java ***

*** Start logging lost agents ***

 --- No lost agents ---

*** Finish logging lost agents ***

***** Finish analyzing Source Code... *****

After a full implementation of the method AcceptLateAddition and the code
is like those in Page 40-41, we get the report like this:

**

This report is created on Sat Aug 09 12:37:50 BST 2003 with

Agent-based UML CASE tool - Author: Liang Xiao, University of Edinburgh

**

***** Start analyzing Source Code... *****

Reading RouteManagerAgent.java ...

Reading AcceptLateAddition from RouteManagerAgent.java ...

AcceptLateAddition is associated with TrainOperatorAgent correctly

AcceptLateAddition is collaborated with ValidateTrainPlan correctly

 --- Relationships in AcceptLateAddition from RouteManagerAgent.java are OK! ---

Reading AcceptLateAmendment from RouteManagerAgent.java ...

 !!! There is a problem with AcceptLateAmendment. It is supposed to be associated with

TrainOperatorAgent !!!

 !!! There is a problem with AcceptLateAmendment. It is supposed to be collaborated with

ValidateTrainPlan !!!

Reading AgreeContingencyPlans from RouteManagerAgent.java ...

 --- Relationships in AgreeContingencyPlans from RouteManagerAgent.java are OK! ---

Reading ValidateTrainPlan from RouteManagerAgent.java ...

 --- Relationships in ValidateTrainPlan from RouteManagerAgent.java are OK! ---

*** Start logging lost roles for RouteManagerAgent.java ***

 --- No lost roles for RouteManagerAgent.java ---

*** Finish logging lost roles for RouteManagerAgent.java ***

Reading TrainOperatorAgent.java ...

*** Start logging lost roles for TrainOperatorAgent.java ***

 --- No lost roles for TrainOperatorAgent.java ---

*** Finish logging lost roles for TrainOperatorAgent.java ***

*** Start logging lost agents ***

 --- No lost agents ---

*** Finish logging lost agents ***

***** Finish analyzing Source Code... *****

Our supporting tool validates code and makes reports in the following way:
Firstly the tool creates a new report file under the running system directory
with its name ending with a timestamp indicating the code analysis time.
Secondly, the tool reads each Java source file under a specified directory and
analyzes each class to see whether there exist in each of their method
expected references corresponding to role relationships established in the
modeled diagram. Any association or collaboration miss, that is, a reference
of a role/method’s associated agent/class instance or collaborated
role/method does not appear in its implemented body, will be reported as a
problem of the method. For example, assumed a role is associated with an
agent in the modeling diagram, an instance of that agent’s implemented

class is supposed to appear in the definition of this role’s implemented
method. If both of these relationships are correct, a proper relationship
establishment announcement will be made. As each method analysis is
finished, it goes to the next one, until every method of one class is analyzed,
then it goes to the next class. Those methods which have no counterpart
roles in the modeling diagram are ignored as they may be assisting functions
in classes. Those classes which have no counterpart agents in the modeling
diagram are also ignored as they may be assisting components in the system
and designed in system design phase. However, extra agent/role without
their corresponding class/method would cause fatal errors; this is what the
tool validates in the final step. Finally, each role of agents which is not
implemented as a method of classes will be reported and each agent which is
not implemented as a class will be reported, as the system will be
incomplete and does not work with the deficiency of them.

The relationships in AcceptLateAddition are analyzed as correct in the
above report once we associate this role with the agent TrainOperatorAgent
and collaborate it with the role ValidateTrainPlan. Therefore manually
implemented system architecture could be validated of consistency in the
final step to remind developers of any incompletely implemented portion
according to the requirements specification.

6 Evaluation of the Requirements Translation

Agent-oriented modelling can help design substantially, especially when the
designed Software System is complicated and distributed. Although the
requirements translation is not essential in case the system is not complex
enough, it can still act as a bridge to a design diagram. The translated
requirements do not include some domain knowledge. It can capture
Functional Requirements which set out services the system should provide;
but Non-Functional Requirements, which constrain the system being
developed or the development process are hard to be modelled. Apart from
this, most of the domain knowledge can be reflected and fit well in the
translated requirements; a function described in the table shown in Figure7
is matched perfectly well with a role element which is correlated with other
elements in the agent-oriented diagram, reflecting its function definition
semantics. The requirements translation brings us benefits in several
Software Engineering aspects. Currently there is no quantitative
experimental data that shows, on a standard set of software, the superiority
of this agent-oriented modelling approach over other alternative techniques.
In fact, such data does not exist even to generic agent-oriented Software
Engineering approaches. Hence arguments are qualitative in nature.

Original requirements is admittedly essential in any case, it is inevitably
elicited through such techniques like interview, questionnaire, prototyping,
ethnographic technique, etc. in the first place and act as a fundamental
documentation for the agent-oriented modelling. However this natural
language specification is not enough. As we have introduced in Section2.3,
the graphics-based diagram representation is capable to captures structure
and some semantics. It is another important viewpoint along with other
potential useful viewpoints like these towards modelling stakeholders’ goals
or scenarios that illustrate how goals are achieved. Multiple viewpoints can
provide us multiple perspectives views and complete recognition of the
requirements; they are complementary to one another. This semi-formal
specification language may also act as a bridge for representation format
transits from natural language to the future formal language.

Diagram notations can help communication among every participant in
terms of its visualization of the specification language and furthermore
makes the requirements measurable, development easier to control and
whole engineering progress risk reduced. Moreover, convenient and better
communicated requirements in turn accelerate the agreement of the final
version of the requirements and guarantee the accurate recognition of it.
There are many facts and cases like the following prove that whether
requirements can be agreed to could determine the fate of projects. This is
the reason we argue the adoption of the agent-oriented modelling.

Fact [39]:
Wastage on failed projects
 E.g. 1997 GAO report: $145 billion over 6 years

Re-work from defect removal
 E.g. Motorola: 60-80% of software budget (was) spent on re-work

Case:
Customer Database System [40]
In 1996 a US consumer group embarked on an 18-month, $1million project
to replace its customer database. The new system was delivered on time but
didn’t work as promised, handing routine transactions smoothly but tripping
over more complex ones.
Within three weeks the database was shot down, transactions were
processed by hand and a new team was brought in to rebuild the system.
Problems:
The design team was over-optimistic in agreeing to requirements.

In addition, as requirements evolve, the agent-oriented modelling assists the

locating of the changed bit of the requirements and reduces the occurrences
of the inconsistency made during the evolvement. There is evidence to prove
the above point, for example, when a system function (before translated into
a role) is proposed to be replaced by another one, there are at least two
issues have to be considered before the replacement is made (after the
translation): Whether the delivered request from which agent this role is
associated with can be satisfied by the new role, or alternatively whether it
is no longer necessary during the requirements evolving; Whether the role
which is collaborated with this role can accomplish the task with the aid of
the new role, or alternatively whether this task is no longer necessary during
the requirements evolving. In other words, the relationship established in the
diagram can be used to check the consistency of the new requirements and
hence help to establish the new diagram. In the other hand, we are likely to
omit such checks during the requirements amendment with descriptive
requirements representation as these relationships are more implicitly
expressed.

Agent-oriented modelling is quite useful for the management of changing
requirements during requirements evolution. As long as we are able to
identify the mutable requirements, we may delegate an agent or a group of
agents exclusively to deal with each one of these and package immutable
ones independently as stable agents. So we do not need to touch most of the
core functionalities when we make changes to the requirements. We achieve
greater efficiency as we have relatively fewer agents to trace and for version
control due to fewer agents are affected during the requirements evolution.
Alternatively, we may also delegate an agent manager in the whole system
or in each agent group assumed the system is divided into several groups,
making it act as a high level agent to propagate changes through messages
passing between it and other agents. In this way, requirements changes are
distributed through central manager agents. With either of the above two
approaches, requirements are more configurable and easier to manage; less
risk will be introduced and less harmful impact will be brought as
requirements are evolving.

Agent-oriented modelling is also beneficial in terms of prioritising
requirements. It will not cost us unnecessarily if vague and unimportant
parts of requirements are not to be processed in high priority. We can
delegate an agent with only one role to represent each of these portions, just
give the known functionalities to the definition of the roles and relate these
agents to outside world roughly. We can make rectification when we get
more clear recognition of the whole system requirements. In this case, an
agent may be developed into a group of agents; a single role in each agent
may be refined to different roles representing different functionalities;
internal relationships may also be established so that roles can be

collaborated with each other. In this way, we proceed in the absence of some
knowledge, and it will enable us to get fast and valuable feedback from the
early delivery, adjust our previous requirements and discover what we do
not know. By modelling requirements as agent-oriented UML diagrams, it is
convenient to abstract unclear part and identify them later; hence it is
especially useful for Incremental Development Processes.

This benefit becomes more apparent if we adopt the Twin Peaks Model [41]
proposed by Bashar Nuseibeh [20]. The idea is early understanding and
construction of the software architecture to provide a basis for discovering
further requirements and constraints. The author argues that start a Software
System from either requirements or architectures would invariably results in
a production of artificially frozen requirements documents for use in the
next step in the development life cycle or the creation of a system with
constrained architectures that restrict users and handicap developers by
resisting inevitable and desirable changes in requirements. Achieving a
separation of requirements and design is also often difficult, candidate
architectures can constrain designers from meeting particular requirements,
and the choice of requirements can influence the architecture that designers
select or develop. By providing an incremental development process, spiral
life-cycle model addresses many such drawbacks as developers repeatedly
evaluate changing project risks to manage unstable requirements. An even
finer-grain spiral life cycle may develop software architectures that are
stable, yet adaptable in the presence of changing requirements by
interleaving the development of requirements and its architecture
concurrently.

The Twin Peaks model is an adaptation of the spiral life-cycle model, it
addresses requirements specification and design issues simultaneously and
produces progressively more detailed requirements and design specifications,
as suggested in the following figure.

Figure 11. Twin Peaks model

We argue that with the integration of agent-oriented requirements approach
and agent-oriented architecture style our development will be more stable
and flexible while requirements are mutable. On completion of the
requirements modelling, an agent with its roles in requirements
representation can be developed into an agent or a group of agents as
autonomous software units providing services in design; a relationship
between agents in requirements is represented as a communication channel
through which these software units cooperate and pass messages to achieve
a certain goal in design; an internal relationship inside an agent in
requirements denotes that there is an internal invocation in such a software
unit in design. Since each agent in the architecture has a corresponding
agent in requirements, under the model of Twin Peak, as we use
agent-oriented requirements modelling and architecture style together, it
costs much less effort when we develop them concurrently, less risky when
requirements change occurs and more easy to maintain both of them. In
other words, requirements and design processes during the Software
Development are integrated seamlessly and their architecture fits each other.

By prioritising requirements, making as simple a design as possible,
delivering a running system with most essential agents and eventually
getting fast feedback we adopt the methodology of Kent Beck’s Extreme
Programming (XP). Twin Peaks also shares much in common with XP, such
as the goal of exploring implementation possibilities early and iteratively.
XP focuses on producing code— sometimes at the expense of the wider
picture of requirements and architecture, hence it is not scalable.
Agent-oriented requirements and design approaches together with the Twin
Peaks model are complementary to XP and solve XP’s lack of scalability in
that they are inherently iterative, supply blueprints of the system, achieve
modularity by the use of agents and enabled to adopt tested components
derived from well understood architecture, which can facilitate incremental
development of large-scale systems. As a result, we propose an overall
Software Development Process driven by the development of an
agent-oriented requirements document along with an agent-oriented design
architecture simultaneously under the Twin Peaks model and producing
code with the XP methodology, the process being iterative. The integration
of these techniques thus brings us enhanced traceability as the requirements
are linked to both design and implementation closely. Although the agent
referred in this paper is not the same as that referred by Michael Wooldridge
[5] and Nick Jennings [9], they are connected by this integration, and an
agent is understood in three ways as we consider it in the field of RE as a
unit to carry domain knowledge; in the field of design architecture as an
running software; in the field of implementation as a class. The aim of this
technique integration is to boost rapid Software Development with toleration

of changing requirements, brings high productivity, and help to accomplish a
high quality system within tight time and constraint budget.

7 Conclusion and Potential Improvement

By assigning logically related tasks to the component of agents and enable
agents, roles and messages passing between agents to carry requirements
knowledge we transform the descriptive requirements to the agent-oriented
UML diagram; requirements knowledge described in natural language is
captured and represented as UML components interconnected with each
other, along with their XML definitions constructed in the diagram. The
transformed document presents domain knowledge more visibly than the
traditional representation style and makes it easier for developers to grasp
the whole system structure. However it is not sufficient to be a thorough
requirements document on its own as some conceptual information are not
transformed, additional efforts have to be made to deal with complex work
flow process during the design phase and this can not be done without a
complete recognition of the original document, implicit knowledge have to
be extracted from it as a supplement; nevertheless, the translated document
can help requirements analysis and accelerate a fully understanding of it.

For example, according to the documentation of role AcceptLateAddition,
which is from the original requirements document and shown in Figure7,
the section “Outputs” describes as, after an invocation of this role, a new
train journey may be outputted to other parties, this entails us to invoke
some agents to update their knowledge; the same situation applies to
“Information Used”, we may have to request the latest information from
other parties which are not referred to in the original requirements so
explicitly. These semantics are hard to reflect in the transformed modeling
diagram but if ignored during design or implementation, fatal errors might
occur.

As a result, during the requirements transformation for a certain role, some
agents and roles may be involved in the whole process implicitly. We may
add to more concepts like “Organization” or “Goal” to tackle such problems
so that we may prevent omissions and incomplete modeling. We suppose an
Organization is a group of agents that form a subsystem to accomplish
certain goals; a Goal is a main responsibility of the system which may be
accomplished by a series of roles played one another. In this scheme, agents
are organized to control the work flow and achieve each goal; single tasks of
each role are not separated but integrated. In addition, implicit relationships
may also be established and extra communication channels discovered under

the direction of work flow. A goal-oriented diagram may supplement our
agent-role-relationship diagram to capture requirements from another
perspective. Dataflow in and out among components may probably be
integrated in this diagram to illustrate how a goal is accomplished. In this
way, our agent-oriented modeling will be more comprehensive and able to
represent the original requirements more precisely.

8 Open issues & Further work

Agents in this project are not granted intelligence so they are not able to
behave intelligently to exchange knowledge, adapt themselves to mutable
environments and control the system running process. Agents in many
research areas are supposed to do so. This is partly because we focus much
on the transformation of functions from original requirements to roles and
concern too little about the agents and how they cooperate to accomplish
goals in this project. I will continue this work during my PhD research on
S-PAD [42] Incremental Software Development. In that project, I will take
account of the design issue, on how to develop an architecture of
intelligent agents from agent-oriented requirements, how they come together
to plan the increments during the Incremental Development and how the
model can adapt itself to changes after each delivery in practice. In addition,
agent-oriented requirements are supposed to be extended to capture more
information that can not be modeled by a single agent-role-relationship
diagram presented in this paper. More concepts like “Organization” and
“Goal” which have already been pointed out in the previous section may be
introduced to establish another perspective viewpoint of requirements, new
notations and diagrams may be designed, more knowledge and state
information may be maintained by agents to enable them to make decisions
and cooperate with the external world.

There are some additional considerations about interaction message contents.
They may be changed requirements or other conceptual information, to
adapt agents/roles to represent updated UML diagrams, this in practice
might be done with the help of XMI [43]; an alternative way to do this
might be, as proposed, to delegate an agent manager in an organization of
agents, to deliver agent messages in XML streams, which may be extracted
from a portion of XML documents, or generated dynamically by the agent
manager. In this way, as some additional functionalit ies are required as the
new requirements reflect, some new roles which a suitable agent may play
can be exported by the agent manager to that agent through notification
messages formatted in XML streams. This solution reduces the overhead of
altering many agent definitions by assigning the responsibility to a single

manager agent.

Some open issues emerge from the propositions in the above statements: If
we have an agent manager in the agent-oriented requirements representation
system, there will be inevitably another distinct kind of conceptual message
which is to organize and update agent knowledge as requirements change.
Another kind of message semantics is needed in this situation. Will it bring
confusions if we accept both this conceptual message and the normal agent
interaction message in a single requirements diagram? Or alternatively we
can build on top of the basic diagram illustrated in this paper a higher-level
diagram to deal with those things like incoming new tasks or new subtasks
under an existing task assignment. The construction of this diagram is to
automate the adaptation of lower-level diagrams. To construct this
higher-level diagram we are to connect the agent manager to those mutable
agents and they communicate to make the requirements changes deployed in
automation. Which is the appropriate scheme to apply deserves further
research.

References:

[1] Gerd Wagner

The Agent–Object-Relationship metamodel: towards a unified view of
state and behavior
Information Systems 28 (2003) 475–504
http://www.elsevier.com/locate/infosys

[2] Nicholas R. Jennings
 Agent-Oriented Software Engineering
 Dept. Electronic Engineering, Queen Mary & Westfield College,
 University of London
 http://www.ecs.soton.ac.uk/~nrj/download-files/cairo.pdf

[3] A. Newell
 The Knowledge Level Artificial Intelligence 18 87-127

[4] Michael Wooldridge
 Department of Computer Science, University of Liverpool
 http://www.csc.liv.ac.uk/~mjw/

[5] Michael Wooldridge
 Department of Computer Science, University of Liverpool
 http://www.csc.liv.ac.uk/~mjw/research/

[6] Lind J.
 Issues in Agent-Oriented Software Engineering
 The First International Workshop on Agent-Oriented Software
 Engineering (AOSE-2000), 2000

[7] Amund Tveit
 A survey of Agent-Oriented Software Engineering
 Department of Computer and Information Science,
 Norwegian University of Science and Technology
 http://www.jfipa.org/publications/AgentOrientedSoftwareEngineering/

[8] Parunak H. V. D. and Odell J.
 Representing Social Structures in UML
 In Proc. of the fifth international conference on Autonomous Agents,
 Forthcoming, 2001

[9] Nick Jennings
 Dept of Electronics and Computer Science, University of Southampton
 http://www.ecs.soton.ac.uk/~nrj/abse.html

[10] Wooldridge M. J., Jennings N. R. and Kinny D.
 The Gaia methodology for agent-oriented analysis and design
 Autonomous Agents and Multi-Agent Systems, September 2000

[11] Wooldridge M. J., Jennings N. R. and Kinny D.
 A methodology for agent-oriented analysis and design
 In Proc. of the third international conference on Autonomous Agents
 Pages 69-76, 1999

[12] DeLoach S. A.
 Systems Engineering A Methodology and Language for Designing
 Agent Systems
 In Proc. of Agent Oriented Information Systems, pages 45-57, 1999

[13] Wood M. F. and DeLoach S. A.
 An Overview of the Multiagent Systems Engineering Methodology
 The First International Workshop on Agent-Oriented Software
 Engineering (AOSE-2000), 2000

[14] Michael Wooldridge
 Agent-Based Software Engineering
 Mitsubishi Electric Digital Library Group
 September 19, 1997
 http://www.csc.liv.ac.uk/~mjw/pubs/iee-se.pdf

[15] G. Booch
 Object-oriented analysis and design with applications
 Addison Wesley 1994

[16] H. A. Simon
 The sciences of the artificial
 MIT Press 1996

[17] A. S. Rao and M. Georgeff
 BDI Agents: from theory to practice
 In Proceedings of the First International Conference on Multi-Agent
 Systems (ICMAS-95), pages 312–319
 San Francisco, CA, June 1995

[18] W. Vasconcelos, D. Robertson, J. Agusti, C. Sierra, M. Wooldridge, S.
 Parsons, C. Walton, and J. Sabater
 A lifecycle for models of large multi-agent systems
 Division of Informatics, University of Edinburgh
 Department of Computer Science, University of Liverpool, etc
 http://www.csc.liv.ac.uk/~mjw/pubs/aose2001.pdf

[19] Zave, P.
 Classification of Research Efforts in Requirements Engineering
 ACM Computing Surveys, 1997, 29(4): 315-321

[20] Bashar Nuseibeh
 Computing Department, Faculty of Maths & Computing,
 The Open University
 http://mcs.open.ac.uk/ban25/

[21] Bashar Nuseibeh, Steve Easterbrook
 Requirements Engineering: A Roadmap
 Department of Computing, Imperial College
 Department of Computer Science, University of Toronto
 http://mcs.open.ac.uk/ban25/papers/sotar.re.pdf

[22] Jackson, M. & Zave, P.
 Domain Descriptions
 1st International Symposium on Requirements Engineering (RE'93)
 San Diego, USA, 4-6 January 1993, pp. 56-64

[23] Easterbrook, S. M.
 Resolving Conflicts Between Domain Descriptions with
 Computer-Supported Negotiation
 Knowledge Acquisition: An International Journal, 1991, 3: 255-289

[24] Robinson, W. N. & Volkov, S.
 Supporting the Negotiation Life-Cycle
 Communications of the ACM, 1998, 41(5): 95-102

[25] Boehm, B., Bose, P., Horowitz, E. & Lee, M. J.
 Requirements Negotiation and Renegotiation Aids: A Theory-W Based
 Spiral Approach
 17th International Conference on Software Engineering (ICSE-17)
 Seattle, USA, 23-30 April 1995, pp. 243-254

[26] Bennett, K. H. & Rajlich, V. T.
 Software Maintenance and Evolution
 In this volume, 2000

[27] Boehm, B. W.
 Software Engineering Economics
 Englewood Cliffs, NJ: Prentice-Hall

[28] Nakajo, T. & Kume, H.
 A Case History Analysis of Software Error Cause-Effect Relationships
 Transactions on Software Engineering, 1991, 17(8): 830-838

[29] Bohner, S. A. & Arnold, R. S. (Ed.).
 Software Change Impact Analysis
 IEEE Computer Society Press, 1996

[30] Estublier, J.
 Software Configuration Management: A Roadmap
 In this volume, 2000

[31] Jackson, M.
 Software Requirements and Specifications: A Lexicon of Practice,
 Principles and Prejudices
 Addison Wesley, 1995

[32] Darke, P. & Shanks, G.
 Stakeholder Viewpoints in Requirements Definition: A Framework for
 Understanding Viewpoint Development Approaches
 Requirements Engineering, 1996, 1(2): 88-105

[33] Finkelstein, A. & Sommerville, I.
 The Viewpoints FAQ: Editorial - Viewpoints in Requirements
 Engineering
 Software Engineering Journal, 1996, 11(1): 2-4

[34] Eric S. K. Yu
 Why Agent-Oriented Requirements Engineering
 Faculty of Information Studies, University of Toronto
 http://www.cs.toronto.edu/pub/eric/REFSQ97.html

[35] FOUNDATION FOR INTELLIGENT PHYSICAL AGENTS
 FIPA Modeling: Agent Class Diagrams
 http://www.auml.org/auml/documents/CD-03-04-24.doc

[36] FOUNDATION FOR INTELLIGENT PHYSICAL AGENTS
 FIPA Modeling: Interaction Diagrams Working Draft
 Version 2003-07-02
 http://www.auml.org/auml/documents/ID-03-07-02.pdf

[37] James Odell, H. Van Dyke Parunak, Bernhard Bauer
 Extending UML for Agents
 http://www.jamesodell.com/ExtendingUML.pdf

[38] Radovan Cervenka
 Modeling Notation Source
 MESSAGE (Methodology for Engineering Systems of Software
 Agents)
 Version: 03-03-12
 http://www.auml.org/auml/documents/MESSAGE.pdf

[39] Steve Easterbrook
 Requirements Engineering
 Introduction Seminar Notes
 Department of Computer Science
 University of Toronto
 http://www.cs.toronto.edu/~sme/CSC2106S/slides/01-intro.pdf

[40] Dave Robertson
 How Software Projects Fail
 Software Engineering with Objects and Components 2 module lecture
 note
 Division of Informatics, University of Edinburgh
 http://www.dai.ed.ac.uk/dai/teaching/msc/seoc2/slides/failures.ps.gz

[41] Bashar Nuseibeh
 Weaving Together Requirements and Architectures
 The Open University
 http://www.doc.ic.ac.uk/~ban/pubs/computer2001.pdf

[42] S-PAD (Software Planning for Agile Development)
 Software Engineering, School of Computer Science,
 Queen’s University Belfast
 http://www.cs.qub.ac.uk/~Des.Greer/research.html

[43] Stephen Cranefield, Martin Purvis

 Extending Agent Messaging to Enable OO Information Exchange
 Number 2000/07 April 2000 ISSN 1172-6024
 Department of Information Science, University of Otago
 http://www.otago.ac.nz/informationscience/pubs/publications.html

	Agent-oriented Requirements Modeling
	Abstract
	1 Introduction
	2 Background - Related Work
	2.1 Agent & Agent Architecture
	2.2 Agent-Oriented Software Engineering
	2.3 Requirements Engineering
	2.4 Use Agents for Requirements Engineering
	2.5 AUML

	3 Agent-oriented Requirements Modeling Diagram
	4 Sample transformations
	4.1 Identify main areas and delegate agents
	4.2 Establish agent elements
	4.3 Establish role elements
	4.4 & 4.5 Establish association/collaboration relationships
	4.6 Define interaction messages

	5 Support Tool Development
	5.1 A CASE Tool for Generating Source Code
	5.2 Adapting Generated Source Code
	5.3 Validating Adapted Code against the Original Model

	6 Evaluation of the Requirements Translation
	7 Conclusion and Potential Improvement
	8 Open issues & Further work
	References

