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Abstract

The huge cost involved in the deployment of a business process model often puts the

emphasis on simulations to detect the inconsistencies and flaws in the designed busi-

ness process models. The central components of business process models are the in-

teraction model and intraprocess model. The interaction model concentrates on the

communication aspects or the information exchange between the different processes

within a business process while the intraprocess model focuses on the information

flow within a business process. In practical design, the interaction model is more error

prone as it concerns several interacting processes communicating with each other and

be it automated or manual entity deployed for each of the interacting processes, the

chances of errors due to misunderstanding of the responsibility boundaries often creep

in. It is important to avoid conditions like live-lock and deadlock, so that processes

terminate in a timely fashion. The hurdles that are imposed on the progress of the pro-

cesses are the constraints which ought to be satisfied so that subsequent information

exchanges can take place for the process to eventually terminate. Faulty deployments

can also cause constraints to be bypassed which could cause considerable loss in terms

of business value. Hence it is important to verify the designed model with respect to

the satisfaction of the constraints. The aim of this project is to implement such a veri-

fication system which allows the determination of constraint satisfaction by simulating

the designed business process interaction model as agent interactions. End-to-end au-

tomation of the business process modelling, simulation and verification activities has

not been attempted in this project. Manual intervention has been used in various im-

portant phases and deficiencies in each of the activities which could pose a hindrance

to automation have been identified.
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Chapter 1

Introduction

The expansion and liberalisation of the international markets has resulted in the de-

layering and downsizing of organisations, with decentralised semi-autonomous busi-

ness units [22]. This has led to businesses being geographically and internationally

distributed. Added to this structural change of the organisations, the adoption of ide-

ologies like the Total Quality Management has shifted the traditional product driven

focus to customer driven focus with increased importance on the quality of service

delivered to the customer. This in turn has resulted in organisations focusing more on

the core business processes which cross departmental boundaries. ABusiness Process

is a collection of activities designed to produce a specific output for a particular cus-

tomer or market [29]1. Organisations are structured with respect to an overall business

objective creatingHorizontal organisationsand requiring management across organ-

isations [22]. Hence the design or redesign of any business process should address

the distributed nature of organisations which adds complexity to the design in terms

of the interactions and coordination involved among the different units to achieve the

common goal of the designed business process. Usually the cost factor involved with

the deployment of the designed business process is very high. Hence it is important to

ensure that the design is correct before deployment. One solution to this would be to

build conceptual models of the business process and use them for process diagnosis.

A business process evolves constantly as it is subject to changes. There are several fac-

1A few other jargons in the business realm - Business Process management and Workflow manage-
ment are defined in the appendix A with further elaboration of Business Process definition
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tors contributing to the initiation of a business process change. These include changes

in the regulation and policies, changes in business priorities, changes required because

of Business Process Re-engineering (BPR) and many more. The time to effect the

change should be as minimal as possible to retain the competitive edge which is a crit-

ical factor in achieving business success. A model driven approach to create, deploy

and manage business processes is one of the solutions to address the rapid process

change requirements. Business Models also aid analysis of the business processes to

identify areas of improvement.

1.1 Business Process Modelling

Process modelling which was initially used in the manufacturing sector of the industry

has gained patronage in the service sector also because of the similarity and repeti-

tiveness in the service tasks performed[6]. Business Modelling based on formal ap-

proaches provide the precision in the translation of design to implementation without

leaving any scope for the design to be interpreted differently if implemented by differ-

ent implementors. Also formal representations allow for better analysis of the designs

to identify the process improvements that can lead to increased efficiency, profitability

and effectiveness. Formal representation of the processes also forms the basis for fu-

ture automation of tasks which make up a business process.

Representative business process modelling methods are described in theHandbook of

Organisational Processes[31], Workflow Reference Model [14], Process Interchange

Format (PIF) [18], Process Specification Language [28], Integration DEFinition Lan-

guage (IDEF3) [16], Integration DEFinition Language (IDEF0) [1], Unified Model-

ing Language (UML) Activity diagram (extension) [27] Event Driven Process Chains

(EPC) [23] and Petri-Nets [32].[6]

The focus of many traditional workflow management systems are limited to process

design and enactment with little emphasis on diagnosis [3]. Bolstering the modelling

technique with the power of simulation can benefit the design activity to a great extent.

Simulation provides valuable insight into the strengths and weaknesses of design. It
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also assists in evaluating a process for predicted changes without actually changing the

business process in operation.

1.1.1 Business Process Models (BPM)

A model supporting business processes using methods, techniques and software to

design, control, enact and analyse operational processes involving humans, organisa-

tions, applications, documents and other sources of information is aBusiness Process

Model.[3]. Though the wordmodelis used commonly to mean a description of some-

thing, an elevated meaning of this is given in [15]. As per this we say A is a model of

B, if A and B share some important properties that we are interested in. The business

process model should thus reflect accurately the properties of the business process that

we attempt to model. For reasons mentioned earlier, BPMs should have formal foun-

dation. The BPM should also appeal to the business process designers which in most

cases are the managers, who are not concerned about the technicalities of formal repre-

sentation. This could be achieved by using a visual modelling technique underpinned

by a formal representation.

In one view, BPM can be categorised as theBusiness Modelsand theProcess Models

[5]. A business model is more abstract than the process model with prime focus on

what the system is to achieve while the process model is more realistic in describing

how. A business model is concerned with the value exchanges among the business

partners while the process model focuses on the operational and procedural aspects of

business communication. Thus the process model is adynamic model. In our work we

focus on the process models.

A business process typically comprises of sub processes and interact with other busi-

ness processes. Interaction between different processes forms a vital part of any busi-

ness. Business interactions can be either a one-to-one interaction or a multi-party inter-

action. Business interaction represents the external manifestation of internal business

processes [33]. Dependencies exists between the interactions and have to be executed

in a constrained manner. A process model allows us to model the permissible se-
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quences of business interactions and the constraints on the tasks that can be performed

as part of the interactions. Interaction logic is regulated by specific business rules. The

body of rules governing the information exchange shapes the interaction in accordance

with specific patterns. A business rule may specify acheckon the data relationship

or thevalue setfor a business entity or anaction that must be performed [15]. All of

these act as constraints on the interaction. A designed process model should therefore

be verified for the satisfaction of such constraints before live deployment.

1.2 Overview and chapter organisation

In this project we build a constraint verifier based on temporal logic that detects the

satisfaction of properties of designed process models and uses agent simulation. We

scope the project to address linear process interactions and temporal constraints. By

linear process interactions we mean that at any point of time only one of the interacting

process is active. As we focus on temporal constraints, we develop and use models to

represent the temporal relations used in business process definitions. To be able to cat-

egorise constraints in diverse modelling domains we usesafety, liveness, correctness,

deadlockandterminationproperties applicable to other standard models

The modelling of temporal dependencies is dependent on the time model. We iden-

tify a time model and the types of constraints that is to be supported by the verifier

in Chapter 2. We design a modelling language for describing the process interactions

and describe the verifiable properties inChapter 3. We simulate designed models with

a simulator described inChapter 4. In chapter 5we present the details of implementa-

tion of the verifier. Use of verifier for sample real-life scenarios is given inChapter 6.

In Chapter 7we summarise our conclusion and future directions.



Chapter 2

Identification of constraints

2.1 Introduction

In this chapter we describe our choice of technology and identify the types of con-

straints that we wish our target system to verify. Conceptual models like the BPM

are greatly influenced by the representation of time. A process embodies a temporally

sequential coordinated series of stages linked together as a cohesive unit. The domain

of BPM encompasses a variety of business vertical industries like the telecom, finance,

utilities etc.,. In order to facilitate precise specification of the constraints irrespective

of the field of study we choose logic. Since our emphasis is on the temporal aspects

of the process models and since standard logic takes no cognizance of time related

propositions we choose to use temporal logic.

2.1.1 Temporal Logic and models of time

We use temporal logic to specify the process model properties and to verify that these

properties are preserved by the designed model.Temporal logicis a type of logic that

is used for reasoning about properties changing with time. Most of the discussion that

we present in this section regarding the time models and temporal operators are de-

rived from Handbook of Logic in Artificial Intelligence and Logic Programming[9]

andSoftware Blueprints, Lightweight uses of logic in conceptual modelling[26]. The

6
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first need is to establish a temporal framework, a model of time itself and then to su-

perimpose on this a set of structures representing the various kinds of changes that can

occur in time. The structure we will superimpose on the time model is the business

process model. Broadly there are two types of time modelsindependent-time models

anddependent-time models. In an independent-timemodel, time exists independently

of any change. In thedependent-timemodel, time has no independent existence and is

defined entirely in terms of an antecedently given notion of change. There are different

structural models of time -linear (one future),branching(many possible futures)or

circular (infinitely branching),discrete or continuous(tense),bounded or unbounded

(finitely or infinitely stretching into past or future). In theforward branching time

model each point has a unique past but more than one future. The different futures

of a given point can be thought of as representing different possibilities. The pas-

sage of time involves narrowing down of possibilities as more and more of the ’fluid’

indeterminate future becomes crystallized into a fixed determinate past.[9]. Discrete

structures have built-in notion of duration, the duration of time fromt1 to t2 is simply

the number of instants between these two times. We choose to use simplistic model of

the passage of time which is linear and the time points are dependent on the events in

the superimposed process model.

There are two kinds of logic that have been used to express time-dependency of in-

formation : modal logic and first order logic.[11]. Modal logic approaches capture

naturally the relative position of formulae with respect to an implicit current time by

talking about past, present and future. On the other hand, first order logic (FOL) ap-

proaches naturally support absolute positions of formulae along the time line by mak-

ing time explicit. With temporal modality it is possible to reason with concepts like

eventuality and necessity.[26].

To be able to describe about time, the use of logic has been extended with temporal

operators or’logical connectives with temporal interpretation’[26]. We use a small

subset of the operators listed below for our work in this project.

• � read as’eventually’: �P asserts that P is true sometime in the future or at least

once in the future. This is a form of existential quantification over time. This is
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a unary operator.

• → read as’implies’. p→ q represents a conditional ifp thenq. This is a dyadic

operator.

• 2 read as’always’ : 2P asserts that P is true now and at all future times. This is

a form of universal quantification over time. This is a unary operator.

• © read as’next state’: © P asserts that P will be true at the next instant in time

after the initial time. This is a unary operator.

• Sread as’Since’ : qSpasserts thatq has been true since the timep was true. This

is a binary operator

• U read as’Until’ : qUp asserts thatq will be true until the time whenp will be

true. This too is a binary operator

In our work we will use the� and the→ operators to state and verify the satisfaction

of constraints.

2.1.2 Constraints

As per the IDEF9 method,a Constraint is a relationship that is maintained or en-

forced in a given context[20]. Relationshipis an abstract association or connection

that holds between two or more conceptual objects. A constraint is a special kind of

relationship that is restricted or compelled to exist under a given set of conditions. We

identify such constraints between business processes and in relation to time. A con-

straint is said tohold in a given context when the relationship is maintained in that

context. In order to verify whether a constraint holds for a process using modal tem-

poral logic, the intuitional points ofcurrent timereference would be at the start of the

process, while the process is in progress and after the process has ended. We choose to

represent the start of a process P as’start(P)’, end as’end(P)’ and constraint as’C’ . To

make a distinction between constraints at the different points of reference we denote

’Cp’ as the constraint before the start of a process calledPrior Start Constraint, ’Ci’

as the constraint within the process,In-Process Constraintand ’Cf ’ as the constraint
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at the end of the process,Process-end Constraint. The diagram below illustrates the

identified constraints with respect to a process P.

Cp

Ci
Cf

P

Constraints

The temporal logic representation for the patterns depicted above are :

[G1 ] Cp→ � start(P)

[G2 ] start(P)∧ Ci→ � end(P)

[G3 ] end(P)→ � Cf

Further we restrict our scope by making the assumptions given below

[A1 ] A process once started always terminates.

[A2 ] Once a process ends, the subsequent process (if any) will be executed.

[A3 ] A process is never instantaneous.

[A4 ] A constraint once satisfied remains true thereafter.

The corresponding logical representations are

[G4 ] start(P)→ � end(P)

[G5 ] end(P1)→ � start(P2)

[G6 ] start(P)→¬end(P)

[G7 ] satisfied(C)→ 2satisfied(C)

The statements with numbering[Gn] are used to denote the patterns that we intend to

include in our system. We will call this set as the’Included Pattern List’.
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2.2 Sufficiency of temporal constraints

In this section we check to see if the constraints that we chose by intuition for the�
operator are sufficient to express all the practical scenarios. First we give the rules for

well-formedness and then conduct the sufficiency test on the permutations of{start(P),

end(P), C,→, �} constituting different patterns.

2.2.1 Well-formed-formula

A well-formed-formula(wff) of sentential logic is any expression that accords with the

following rules. [4]

1 Atomic sentence- A sentence letter standing alone is a wff.

Definition : The sentence letters are the atomic sentences of the language of

sentential logic.

2 Negation- If φ is wff, then the expression¬ φ is also a wff.

Definition : A wff of this form is known as a Negation, and ¬φ is known as the

negation of φ.

3 Conjunction- If φ andψ are both wffs, then the expression (φ ∧ ψ ) is a wff.

Definition : A wff of this form is known as the Conjunction. φ and ψ are known

as the left and the right conjuncts respectively.

4 Disjunction- If φ andψ are both wffs, then the expression (φ ∨ ψ ) is a wff.

Definition : A wff of this form is known as a Disjunction. φ and ψ are the left

and the right disjuncts respectively.

5 Conditional- If φ andψ are both wffs, then the expression (φ→ ψ ) is a wff.

Definition : A wff of this form is known as the conditional. The wff φ is known

as the antecedent of the conditional . The wff ψ is known as the consequent.

6 Biconditional- If φ andψ are both wffs, then the expression (φ↔ ψ ) is a wff.

Definition : A wff of this form is known as the Biconditional. It is also some-

times known as an equivalence.
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7 Nothing else is a wff.(as per [4])

As for the temporal logic operators or connectives we include an additional rule

stated below.

8 No modal operators can appear before the ’→’ operator meaning the antecedent

of the conditional cannot have modal operators. We make this rule because we

want the evaluation of our temporal expressions to be anchored at a specific

instant of time

2.2.2 Test for sufficiency

In order to ascertain that we have accounted for all the possible valid combinations of

the chosen logical operators, we consider the different permutations of the five rep-

resentations�, →, start(P), end(P)andC with the logical connective ’and’ (∧). We

then eliminate those propositions which are syntactically malformed as per the rules

listed in section 2.2.1 and evaluate the need for inclusion of the remaining propositions

into our Included Pattern Listin section 2.1.2. The eliminated propositions are each

labelled [En] where ’n’ is an identifying integer while the included propositions are

labelled [Gn] and are in boldface. While evaluating we make use of the commutative

property of the conjunction connective to reduce the list of propositions to be evalu-

ated.

In the remainder of this section we present the discussion for those propositions which

are syntactically correct.

[E1] C∧ start(P)→ �end(P)

This proposition corresponds to the In-Process Ci constraint which is already included

in Included list of patterns.

[E2] C∧ end(P)→ �start(P)

The proposition that at the time of reference, if a constraint holds and the process

ends, then sometime in the future, the process will start is not sound. For any process,

the start of a process must precede its termination. Hence we eliminate the above
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proposition and also all the others which are syntactically correct but have end(P) and

�start(P). These are listed below.

C→ end(P)∧ �start(P)

end(P)→ C∧ �start(P)

end(P)∧ C→ �start(P)

Next we consider,

[E3] C→ start(P)∧ �end(P)

The above proposition is that if a constraint holds then it implies that a process starts

and will eventually end. We can derive a new pattern to indicate that if a constraint

holds then it marks the start of a process which will eventually end. However we can

restrict this to mark just the start of a process as we already have the pattern G4 which

indicates the eventual termination of a process once it has started. This would allow

us to represent constraints where we would like the process to begin with some initial

condition. It may not be necessary that the condition holds before the process could

begin. Let us call this as theStart-Pointconstraint Cs. There is a subtle difference

between the constraint Cs and the Cp constraint in G1. The Cp constraint does not

allow the process to start if it is not satisfied, while the Cs constraint does not put

such a restriction on the start of a process. If we check for the satisfaction of the

constraint at an instance just before the start of the process P, Cpmusthold while it is

not necesssary that the constraint Cs holds. Similarly the difference between the Cs

and the Ci constraint of G2 is that Ci allows a constraint to be satisfied after the process

has started and not necessarily at the start of the process. Ci is more lenient in allowing

the constraint to be satisfied over an interval of time corresponding to the interval

when the process is active and after the start of the process. The next question that

needs to be addressed with regard to the above proposition is whether we need such

a subtle distinction in the business process constraint specification? Probably yes.

Let us consider an example where we model the visa application and grant process.

Document verification is one of the sub-processes of the visa application process. The

requirement is that at the time of verification the bank account balance of the applicant

should have some minimum balance. We can represent the verification process with the
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Cs constraint on the minimum balance. One might argue that the verification process

itself can be elaborated in which case the minimum balance constraint can be specified

as a Ci constraint on the verification process. We feel that it is a matter of choice of

the modeler as to how he chooses to express the requirement. In order to allow the

stricter Cs specification we choose to add the following proposition to ourIncluded

list of patterns.

[G8] Cs→ start(P)

We now consider,

[E4] start(P)∧ end(P)→ �C

The above proposition can be derived from G3 and G4. Using G4 the start and end

of the process can be established. Further, comparing the above proposition with G3

helps us to recognize the fact that this proposition is just the G3 pattern with start of a

process also taken into consideration rather than just the end. Hence we feel that this is

redundant. More over, with both start and end at the point of reference this represents

an instantaneous process which we ignore by virtue of our assumption in [A3].

[E5] start(P)→ C∧ �end(P).

This gives a very lenient proposition that if we just know that a process has started then

we can imply that the condition holds and eventually the process will come to an end.

This proposition shifts the significance from the constraint to the process itself. This

would be useful in the cases where we would like to indirectly derive the satisfaction of

a constraint where it might be difficult to establish the constraint satisfaction directly.

For example, when modeling business processes from the domains such as defense

and health care which are bound by policies guarding the data privacy, it might not be

possible to check the validity of a constraint directly. In such cases we can resort to the

use of above proposition. Precaution should however be exercised in applying this type

of verification rule to appropriate business processes as it could otherwise incorrectly

indicate the satisfaction of the constraint. Since we already have the proposition G4 to

reason about the start implying the eventual termination of a process, we will include

the proposition in our list of patterns with just the start(P) and the constraint C, which

we will choose to call Cz. This is the dual of the Cs constraint in G8.



Chapter 2. Identification of constraints 14

[G9] start(P)→ Cz

Next we consider the proposition,

[E6] start(P)→ end(P)∧ �C

This proposition exemplifies an instantaneous process where the process starts and

ends at the same instant. If we choose not to consider the entire proposition but con-

sider only part of it with just the start of a process implying the eventual satisfaction of

a constraint, then the argument that we putforth to E5 can be used here as well, with

the difference being the time when the constraint holds is in the future rather than the

time at which the process starts. We include the following to our list of patterns as

After-Start Cv constraint.

[G10] start(P)→ �Cv

The last of the patterns with the logicalandoperator,

[E7] end(P)→ start(P)∧ �C

The interpretation of the above is that if we know that a process has ended then we can

derive the start of a process and the constraint being satisfied eventually. The above

proposition is also related to instantaneous processes. end(P)→ �C has occured in our

list as Process-end Cf constraint in G3.

We have encountered several occurrences of instantaneous processes in our above anal-

ysis. Hence we devote a small part of our discussion in summarising a few observations

of the instantaneous processes. An instantaneous process can be defined as a process

that takes no time for its execution. This, we feel is highly impractical especially in

the business process domain. We believe that any business process is characterized by

more than one activity and each activity takes ’some’ time for its completion. Since

we believe that every process takes some time, the start and end of a process cannot

happen at the same instant of time. If we know a process has ended then it must have
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started sometime in the past. It was this observation that prompted us to include the

assumption A3 about instantaneous processes that we presented in section 2.1.2.1

2.3 Constraint List

In this section we give the entire list of patterns that we aim to incorporate in our

constraint verifier. Here we include the initial list that was given in section 2.1.2 along

with the patterns that were uncovered in our sufficieny test in section 2.2.2.

2.3.1 Translation scheme

In order to be able to define the various constraints we use the following translation

scheme.

before(A,B) - A occurs before B.

holds(C,T) - Constraint C holds at time T.

holdsin(C,P) - C holds in process/process role P.

start(P,T) - Process P starts at time T.

end(P,T) - Process P ends at time T.

satisfied(X) - Constraint X was satisfied.

Cp(C,P) - C is the Prior-start constraint for the process P.

Ci(C,P) - C is the In-Process constraint for the process P.

Cf(C,P) - C is the Process-end constraint for the process P.

Cs(C,P) - C is the Start-Point constraint for the process P.

Cv(C,P) - C is the After-start constraint for the process P.

If a constraint ’holds’, it does not necessarily mean that the constraint was ’satisfied’.

In order to ’satisfy’ a constraint, in addition to ’holding’, the temporal ordering require-

ments for the constraint type should be satisfied. This is elaborated in the definition of

1We could use this to introduce a new pattern to express the restriction that a process should have
started before it can end. The following are the various forms of this statement.end(P)→¬(�start(P))
end(P)→ ←�start(P)
←� operator above symbolizessometime in the past notion.
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each of the constraints that is given in the next section. However we have left out the

definition of Cz constraint as it is the dual of Cs constraint.

2.3.2 Constraint definitions

Cp constraint : Also called Prior-Start constraint, this indicates that the constraint

should hold before the process for which it is specified has started.

satisfied(Cp(C,P))→ holds(C,T1)∧ start(P,T2)∧ before(T1,T2)

Ci constraint called an In-Process constraint, this requires the constraint to hold after

the process has started and before the process has ended.

satisfied(Ci(C,P))−→ holdsin(C,P).

holdsin(C,P)−→ holds(C,T1)∧ start(P,T2)∧ end(P,T3)

∧ before(T2,T1)∧ before(T1,T3).

Cf constraint : Also called Process-end constraint, this signifies that the constraint

will be satisfied sometime after the process has ended.

satisfied(Cf(C,P))→ holds(C,Tc)∧ end(P,Te)∧ before(Te,Tc).

Cs constraint Called the Start-Point constraint, the constraint should hold at the in-

stant when the process starts.

satisfied(Cs(C,P))→ holds(C,T1)∧ start(P,T2)∧ ¬(before(T1,T2)∧
before(T2,T1))

Cv Constraint : Also called After-start constraint, the satisfaction of this constraint

is dependent on the start of the process and the constraint should hold sometime

after the process has started.

satisfied(Cv(C,P))→ start(P,T1)∧ holds(C,T2)∧ before(T1,T2)



Chapter 3

Process Communication Model

Description Language - PCMDL

3.1 Introduction

In this chapter we introduce a diagrammatic language, PCMDL to model business pro-

cess interactions and to represent the constraints related to the model. We also define

the generic properties applicable to process models. The emphasis of PCMDL will

be on the inter-process interactions and not on the intra-process data flow. The lan-

guage caters for the most general behaviour modeling requirements of the business

process models. The language design is influenced byFundamental Business Process

Modeling Language(FBPML) and theUnified Modeling Language(UML) behaviour

representational diagram - the Interaction diagram. The rationale behind the choice of

the above languages as the basis is the need for the logical representational features of

FBPML and the temporal expressibility of the UML diagrams. Before we describe the

semantics of our PCMDL, we will briefly review the FBPML and the UML interac-

tion diagrams from the perspective of the features that we wish to inherit from these

languages.

17
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3.2 Fundamental Business Process Modeling Language

Fundamental Business Process Modeling Language (FBPML)[7] is a visual business

process modeling language that derives its design from IDEF[16], RAD[21] and PSL[28].[12].

It offers precise semantics for business processes in first order logic. FBPML is both

executable and formal. FBPML is executable in that the use of FBPML process com-

ponents can be interpreted using an execution mechanism.[7]. The formal approach

allows for automatic/intelligent analysis, verification, validation and simulation. It has

representations for timepoints, duration and lengths. It has a useful concept of ’Role’

which is described as a set of activities which carry out a set of responsibilities. A role

may be enacted by an individual, group of people, agents or software components[17].

However it does not make explicit the visual representation of information flow be-

tween the interacting processes and focuses on the definitions of activities.

3.3 Unified Modeling Language

UML has a rich collection of diagrams which help to express flexibly the structural

and behavioural aspects of a model. The description of behaviour involves two as-

pects 1)the structural description of the participants and 2)The description of the com-

munication patterns.[2] The communication pattern performed by instances playing

the roles to accomplish a specific purpose is called an interaction. UML provides

two forms of interaction diagrams namelyCollaboration diagramsandSequence dia-

grams. Though both of these diagrams represent the same information, they differ in

their emphasis on the aspects of interaction. A sequence diagram shows the explicit

sequence of communications while the collaboration diagram shows an interaction or-

ganized around the roles in the interaction and their relationships. As we are interested

in the information flow sequence we adopt a few features of the sequence diagrams. A

sequence diagram has two dimensions - time and role instance. It presents an interac-

tion as a set of messages between the interacting roles. It allows for the representation

of timing constraints using time expressions likesendTimeon message names. It has

the concept of lifeline which represents the existence of an instance at a particular

time. The lifeline may be split into two or more concurrent lifelines to show condi-
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tionals. Each separate split of the lifeline corresponds to a conditional branch in the

communication.

3.4 PCMDL

PCMDL is a simple language focusing mainly on the representational aspects of pro-

cess interactions. It incorporates the FBPML workflow notations and the sequence

diagram message flow representation. With the use of roles, it mandates responsibility

ownership for any activity carried out within a business process. Unassigned activities

are not allowed in PCMDL. This restriction is advantageous in preventing flaws in the

practical deployment of the BPM. The flow of messages is represented against a di-

mension of time, the other dimension being the process instances. Time is represented

along the vertical axis and proceeds down the axis. Use of name or label in the diagram

that begins with an uppercase letter indicates that it is a variable. There are 2 types of

notational elements, the basic elements and the connector elements.

3.4.1 Notations and semantics for basic PCMDL elements

START

[1] Business Process Start

END

[2] Business Process End

Message

[3] Message Flow

Process

[5] Process 

<<RCK>>

[6b] Reaction Constraint

<<PCK>>

[6a] Proaction Constraint

Label

[7] Continuation Marker

[4b] Process Termination

Event

[4a] Time Point

Figure 3.1: Basic PCMDL Elements

1:Business Process Startindicates the start of the business process being modeled.

This is different from the notation used to explicitly mark the start of an individ-

ual process. Any model will have one business process start and several process

start elements. This is the point where the user should start to read a particular

flow.
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2:Business Process EndThis notation is used mark the termination of the business

process.

3:Message flowis represented by a solid arrow from the lifeline of one process to the

lifeline of another process. The label on the arrow indicates the information that

is sent from the originator of the message to the receiver. The message label M

can have an optional element of iterator represented as [N]M where N represents

that the message M needs to be sent N times. N could be a numeral or a variable

which has been assigned a value earlier in the process.

4:Time point is the notation to mark particular point in time during the enactment

of a process model. In our domain of modeling it is generally used to mark

events and constraints. An event is a noteworthy occurrence which in our mod-

els will correspond to one of the following - send event, receive event, process

start event, process end event and knowledge acquisition event. A send event

and a receive event correspond to the two ends of a message interchange. The

process termination event is notated as a circle around the timepoint. A knowl-

edge acquisition event is linked diagrammatically to theKnowledgeelements to

indicate the information acquired by the process. Any event should always occur

within a process.

5: ProcessRepresented as a rectangular box with rounded corners, this is used to rep-

resent the process or a process role. The name of the process/process role is

written at the top right corner. Optionally the name can also indicate the pro-

cess instance. The dotted line at the center represents the lifeline of the process.

Within a process the flow should be traced along the lifeline. A variation of

this representation includes the graphical containment of a subprocess within

the main process. The roles are represented as the processes. If an instance of a

process changes roles during its lifetime, then the roles are represented graphi-

cally contained within the main process. Multiple instances are represented as a

shadow to the process rectangle or using the stereotype�MI�.

6: Knowledge is symbolized as a dotted rectangle with stereotypes�PCK� or�RCK�.

This is used to present the information that a process needs for the completion
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of its task but the means of acquiring the information itself is outside the do-

main of modeling. The information may be obtained from anexternalentity or

self-processing. An external entity is any process or enabler which is outside

the boundary of the business process being modeled. Self processing is the set

of activities that the process should perform internally to fulfill its responsibil-

ity. The stereotype�PCK� denotes that the information should be obtained

before a message send event and is related to the message sent immediately after

the knowledge acquisition.�RCK� indicates that the information should be

acquired on receipt of a message and is associated with the message received im-

mediately before the knowledge acquisition.�PCK� and�RCK� are called

the Proaction Constraintand theReaction Constraintrespectively and will be

explained in the context of agent simulation. Several knowledge acquisitions

can be combined using the logical connectives ’and’ and ’or’. The knowledge

acquisition denotes a constraint on the progress of the process.

7:Continuation Marker When required to break the flow of the model, a marker is

placed with unique label at point of discontinuation and an identical marker is

placed also at the point where we would like the flow to continue. This aids in

decomposed representation of complex models.

8:Constraint Any event can be explicitly marked to indicate a constraint on the pro-

cess flow. Annotation[C:Constraint Type, ProcessP]is used to represent any

constraint. TheConstraintTypecould beCp, Ci, Cf, Cs or Cv. TheProcessP

is the process on whichC constitutes a constraint. This is by default the pro-

cess/role in which the event takes place.

3.4.2 Notations and semantics for PCMDL connector elements

The connector elements are used to connect either processes or messages. The split

and join connectors when used with processes are used to split and join the process

lifelines. In the following section we give the informal semantics of the connectors.

C1 Sequenceis the most common connector which signifies an ordering on the basic

elements that it connects. For example, if the sequence connector is used to
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OR

C3b : OR−Join

OR

C3a : OR−Split

XOR

[Cond 1]

[Cond 2]

C2a :  XOR−Split

XOR
[Cond]

C2b : XOR−Join

AND

C4a : AND−Split C4b : AND−Join

AND

C1: Sequence

C5 : Synchronization bar

Figure 3.2: PCMDL Connector Elements

connect two processes then the process at the tail of the connector must have

completed before the process at the head of the connector can begin.

C2a XOR-Split is represented as an XOR gate with single input and several outputs.

This connector denotes the choice of only one of the outputs depending upon

which of the conditions for the outputs was satisfied. This is used to model the

usual if-then-else conditions and indicates an exclusive choice.

C2b XOR-Join indicates the selection of only one of the several input flows.

C3a OR-Split with one input and several outputs indicates multiple choice. One or

more than one of the outputs can be selected.

C3b OR-Join combines multiple input flows into a single flow. If OR-Join is used to

connect several input processes to an output process, completion of any one of

the input processes implies the start of the output process. There may be multiple

instantiations of the output process. This is used to represent the inclusive-or

conditions.
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C4a AND-Split splits a single input flow into multiple output flows without imposing

any execution order on the output flows. It however indicates that all the output

flows must be executed.

C4b AND-Join merges multiple flows into a single flow. It mandates the completion

of all the input flows before allowing the output flow.

C5 Synchronization bar This is used to represent the split of a flow into several par-

allel flows or to combine several parallel flows into a single flow. When this

is used to combine several parallel flows, it blocks the progress of tasks down-

stream until all the split flows merge.

The difference between the use of the synchronization bar and AND-split/join is that

the parallelism that is enforced by the synchronization bar is absent in the AND con-

nector. Junctions in FBPML correspond to PCMDL connectors. In addition to the

FBML ’and’, ’or’, ’start’ and’finish’ junctions, PCMDL has the XOR connector.

3.4.3 Formal representation of PCMDL

Our formal representation of the PCMDL revolves around roles and messages and is

based on the formal approach to collaboration in UML by GunnarÖvergaard [8]. We

adapt the approach to accomodate the notion of message sequences and connectors

rather than activities. An illustration of the elements presented in this section is given

in section 3.7 with respect to a loan scenario.

A PCMDL model M has roles and interactions denoted byM.RolesandM.Interaction.

Each role is identified by a sequence of messages. An instance of a process conforms

to a role if it has all the properties specified by the role i.e., if all the possible sequences

of messages an instance can perform includes the sequences required by the role.

If ’R’ denotes a role, the set of message sequences corresponding to the role R is given

by R.messageSequence. The set of all possible message sequences for an instance I

is given byI.messageSequences. Each message sequence is formally represented as
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msq(SequenceId,MessageSet). The MessageSet is an ordered set consisting of mes-

sages and connectors. The representations for the messages and connectors are given

later in this section.

An instance I is said to conform to a role R denoted asconform(I,R)

if ∀ ro ∈ R.messageSequence∃ io ∈ I.messageSequences

ro.SequenceId = io.SequenceId∧ ro v io

An interaction is defined by an ordered set of messages (M,≤ ), M is set of messages

and≤ is the partial ordering on M. Each message of the set M is a tuple given by

(sender,receiver,operation) and denoted by

message(name,sender,receiver,operation).

The messages specify the roles played by the sender and receiver processes. The oper-

ation in a message is formally represented as

op(opid,opname,arguments,eventList).

Each event in theeventlistis given byevent(eventId, eventType,eventDescription). The

eventTypecould be one of -process start,process end,send,receive or knowlegde acqui-

sition. Corresponding to the eventypes, the eventDescription could be start(process/role),

end(process/role) or knowledge acquisition events which act as the constraints : proac-

tion constraintpck(C)or a reaction constraintrck(C). Though we have two other types

of events namely thesendandreceive, these need not be explicitly stated in the oper-

ation eventlist as the message to which the operation belongs implicitly represents the

send and receive event. There is a temporal precedence on these event types. For any

message of a process P, the event precedence is given by,

start(P)< pck(C)< send< receive< rck(C)< end(P)

Similar to the representation of a role by a process instance during runtime, an instance

of a message is recognised as a stimulus.

A stimulus S is said to conform to a message M (denoted asconform(S,M))

if conform(S.sender,M.sender)∧
conform(S.receiver,M.receiver)∧

S.operation = M.operation
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A sequence of stimuli SS made ofS1,S2, ....Sn is said to conform to a message sequence

MS made up of messagesM1,M2, ....Mm

if n=m∧ ∀ j ∈ {1...m} conform(Sj ,M j )

We now link the roles and interactions by means of the sequence of stimuli exchanged

by the interacting role instances to that of the sequences which form a part of the

interaction run. Let us considerAS to denote a message sequence. Letstimuli(AS)

represent the set of stimuli exchanged by executing the message sequenceAS. Let

IS represent a set of interacting process instances and letintr(IS) represent the set

of sequences of messages that can be exchanged by the interacting process instances

IS. Let linearizations(M)be the set of all possible linearizations of a set of partially

ordered messages. A linearization is a run of the interaction preserving the partial

ordering defined on the set of messages which define an interaction. The set of process

instancesIS is said to conform to a model M if

conform(IS,M.Roles)and

∀int ∈M.Interaction∀ms∈ linearizations(int.message)

∃t ∈ intr(IS). ∃s∈ stimuli(t). ∃ssv s.

conforms(ss,ms)

Stated in simple terms, for all the runs, the sequence of stimuli exchanged by the in-

stances should conform to the role requirements and should be a part of the allowable

sequences described by the interaction.

The connectors which act as the process operators for sequential composition are rep-

resented by

conn(Name, type, inputList, outputList)

where the name uniquely identifies each connector in the PCMDL and the type could

beAND, OR ,XOR, Sequence. TheinputListandoutputListare constituted by the mes-

sage list that are the inputs and outputs to the connectors. It is to be noted that the

conditionsassociated with the XOR connector would be a part of the message event

constraints. The sequence connector can also be used to connect roles. Finally the
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Business Process Start and Business Process End elements are represented asbpm-

start(Process)andbpmend(Process)where theProcessin bpmstart indicates the pro-

cess that should be taken up for the initiation of the model execution. bpmend(Process)

indicates that the model execution terminates with the completion of theProcess. A

model can have more than one Business Process End elements in which case theP in

bpmend(P)will be identifier composed of process and message identifiers.

The structural associations between the various elements introduced above is depicted

in the diagram 3.3. Two types of relationshipsCompositionandDependencyare used

to express the associations. Composition, represented as a solid arrow, signifies that

an element at the head of the arrow is made up of elements at the tail of the arrow.

Dependency, represented as a dashed arrow indicates that an element at the tail of the

arrow depends on the element at the head of the arrow. Dependency indicates the

need for change in the dependent element, if the element on which it depends changes.

A Model is made up ofRolesand Interactions. A Role is a composition of several

MessageSequences, each made up of severalConnectorandMessageelements. An

interactionis made up of an ordered collection ofMessageelements. TheConnector

element depends on theMessageelements and theMessageelement in turn depends

on theOperation. An Operationdepends on theeventelement.

3.5 Formal definition of properties

Properties applicable to other standard models -safety, liveness ,correctness, deadlock

and terminationproperties can be specified to each of the business process models

that we develop. In this section we give the formal definition of the above mentioned

properties. Letsatisfied(C,R)represent the satisfaction of a condition C in run R.

With the aid of this definition and several others that were introduced in section 3.4.3,

we now define some properties that are suitable for verification of business process

models. The system we develop verfies all but the deadlock property as we consider

parallelization, where deadlock is more common, to be out of scope for our current

work.
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MessageSequence

Connector

Role Interaction

Model

Composition

Dependency

Message

Operation

Event

{ordered}

Figure 3.3: Structural relationship between the formal elements

Safety Property : If β represents some undesirable condition, a model is said to satisfy

the safety property with respect toβ, if in all the runs of the model, the conditionβ is

never satisfied.

safety(β)← ∀ int ∈M.Interaction.∀ run∈ linearizations(int).¬satisfied(β,run).

or

safety(β)← 2(¬satisfied(β))

Liveness Property: If α represents some desirable condition, a model is said to pos-

sess the liveness property in any run, if at some point in the run the desirable condition

is met.

Liveness(α)← ∀ t ∈M.Interaction. (run∈ linearizations(t)→ satisfied(α,run)).

or

Liveness(α)← �satisfied(α)

Deadlock Property : Deadlock indicates a situation in which two or more processes

wait for each other and are unable to proceed on their tasks as each is waiting for
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the other. For a process model, each process waiting for a message from the other

process before it can proceed with its part of the interaction exemplifies a deadlock. If

wait(P1,P2)represents that process P1 waits for process P2, then

Deadlock← wait(x,y). wait(y,x). x,y∈M.Roles

or

Deadlock← 2(wait(X,Y)→ wait(Y,X))

Correctness Property: Correctness property aims at meeting all the functional re-

quirements expected of the given model. It aims to achieve the goal for which the

model has been designed. By correctness property we consider the composition cor-

rectness described in [13], where the conjunction of all constraints is implied by the

conjunction of all the property specifications and the conjunction of all constraints

holds in the integrated behavioural model. Let us recall from section 3.4.1 that con-

straints are marked for a process or a role. IfM.Constraintsrepresents all the events

that are marked as constraints for a model, the correctness property in any run will be

satisfied if the constraints inM.Constraintsfor all the processes or roles invoked in the

run are satisfied. LetM.Constraints(r)give the defined constraints for the roler.

correctness← ∀ t ∈M.Interaction.∀ms∈ linearizations(t.messages).

∃ r ∈M.Roles .∀ C∈M.Constraints(r).ms∈ r.messageSequence→ satisfied(c)

or

correctness← ∀R∈M.Roles(∀c∈M.Constraints(R) (2(invoked(R)→ satisfied(c))))

Termination Property : Termination property requires the completion of an interac-

tion. All the roles associated with the messages of an interaction should be closed. The

closure of roles is explained in the context of agent simulation in section 4.2.2.

termination← ∀ t ∈M.Interaction.∀ms∈ linearizations(t.messages).

∃ r ∈M.Roles . ms∈ r.messageSequence→ closed(r).

or

termination← ∀R∈M.Roles (start(R)→ �end(R))
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3.6 PCMDL Model Execution

The execution of the model starts with the role indicated by thebpmstartelement. Exe-

cution of a role implies the execution of a complete message sequence associated with

the role. A role can be associated with more than one message sequences and one of

them should be executed completely to mark the completion of the role. Each time a

role is handed control or selected , the next unprocessed message or connector for the

role from the message sequence should be executed. Execution of a connector chooses

the next message to be processed. To execute a message would mean to execute the

different events for the sender role complying with the precedence order given in sec-

tion 3.4.3 and then to execute the different events for the receiver role. The execution

of a message switches the selected role from the sender role to the receiver role. After

execution of each message a check is made for completion of the selected role. The ex-

ecution proceeds until the role associated with thebpmendelement is completed. This

marks the completion of the model execution. Each time a message sequence is chosen

for execution, it should be checked against the sequences permitted by the interaction

for further execution. The flowchart for the model execution is given in figure 3.4.

3.7 Illustration

We show the usage of PCMDL in modeling the following loan request scenario from

Keith Mantell’s article. [19].

“On receiving the loan request, the requested amount is compared to an amount

(10000). If the requested amount is lower, then an Assessor service is called,

otherwise the Approver service is used. If the Assessor deems the request to be high

risk, it is also passed to the Approver. When either the Approver has completed or the

Assessor has accepted, the approval information is returned”

The first step is to pick out the processes/roles. The two main interacting processes

that need to be derived from the context of the above description arerequestorand

bank. The assessorand theapproverservices mentioned can be identified with the

roles that thebankprocess might be required to play during the course of the scenario
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Execute next unexecuted item
(message/connector) in the 
selected Role

Select Role/process For Execution

Execute Event

Execute operation

Execute Message

Role complete

bpmend(Role)

bpmstart(Role)

Execute Connector /select message

no

yes

End Model Execution

yes

Start Model Execution

no

Figure 3.4: Flow chart for PCMDL model execution
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execution.

Model = Loan Request

Model.Roles={requestor, bank, assessor,approver}

We now describe the scenario in terms of the messages exchanged by the roles that

we have identified. It should be noted that though we give the semantics of element

construction in the elaboration below, the user would be modeling using just the di-

grammatic notation and the information for the semantic representation is captured

from the details supplied while constructing the diagram. The PCMDL for the sce-

nario is given at the end of this section in figure 3.5.

Therequestorsends aloan requestspecifying the amount that he wishes to loan. The

knowledge of the loan amount is modelled as the proaction constraint (�PCK�) on

the loanrequest message. On receipt of the loanrequest, thebankprocesses the re-

quest in terms of determining therequestlevel. This constitutes an internal processing

by the bank and is represented as a knowledge acquisition event (�RCK�). The ele-

ments of representation for this message exchange is given below.

message(m1,requestor,bank,opm1)

op(opm1,requestloan,[Amount,R],[pck(loan(Amount)),rck(requestlevel(Amount,10000,Level))])

TheLevelestablished by therequestleveldetermines which of the two roles, namely

assessoror approverthat needs to be invoked. If theLevelis ’l’ then assessor is called

and if theLevelis ’h’ then approver is called. These act as the constraints on the role

transitions from bank to assessor or from bank to approver. The assessor role performs

assessrisk to obtain theRiskfactor for the requestor and the amount requested. Since

no explicit operations are performed for role transitions theopnameandarguments

component of the operations in the representation below are set to ’’. The start of the

subrole is indicated in the eventlist.

message(m3,bank,assessor,opm3)

op(opm3,, ,[pck(Level=l),start(assessor),rck(assessrisk(R,Amount,Risk))])

message(m4,bank,approver,opm4)
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op(opm4,, ,[pck(Level=h),start(approver)])

The choice of message m3 or m4 after the execution of m1 is effected by an XOR

connector.

conn(con1,XOR,[m1],[m3,m4])

If the Riskdetermined by theassessrisk is high-’h’ , the assessor invokes theApprover

else it calls on itself to process the request and set theResultto ’accept’. The choice

on the message flow is supported by an XOR connector.

message(m5,assessor,approver,opm5)

op(opm5,, ,[pck(Risk=h),start(approver)])

message(m6,assessor,assessor,opm6)

op(opm6,, ,[pck(Risk=l),rck(Result=accept)])

conn(con2,XOR,[m3],[m5,m6])

Theapproveris invoked either by thebankor by theassessor. An OR-Join is used to

combine the two approver invocation message flows. Upon invocation, the approver

calls on itself to process the request. This is indicated as a knowledge acquisition.

message(m7,approver,approver,opm7)

op(opm7,, ,[rck(processed(R,Amount)),end(approver)])

conn(con3,OR,[m4,m5],m7)

On completion of the roles ofassessorand/orapprover, the bank sends theloan response

to therequestor. The flows from the assessor and the approver is combined by the use

of an OR-Join.

conn(con4,OR,[m6,m7],[m2])

message(m2,bank,requestor,opm2)

op(opm2,loanresponse,[Amount,Result],)

As we now have all the messages that are needed to complete the model we de-

scribe the identified roles in terms of the message sequences.
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END

OR

START
<<RCK>>

request_level(Amount,10000,Level)

<<PCK>>
loan(Amount)

XOR

[Level = h][Level = l]

bank

XOR

[Risk=h]

OR

Result=accept
<<RCK>>

assessor

<<RCK>>
assess_risk(R,Amount,Risk)

[Risk=l]
approver

S

processed(R,Amount,Result)

loan_response(Amount,Result)

request_loan(Amount,R)

Requestor[R]

<<RCK>>

Figure 3.5: Scenario Loan Request

requestor = msq(seq1,{m1,m2})
bank=[msq(seq2,{m1,con1,assessor,con4,m2}),msq(seq3,{m1,con1,approver,con4,m2})]
assessor=[msq(seq4,{m3,con2,m5}),msq(seq5,{m3,con2,m6})]
approver=[msq(seq6,{m4,con3,m7}),msq(seq7,{m5,con3,m7})]

The Business Process Start and Business Process End for the scenario is associated

with therequestorrole.

BPMstart(requestor)

BPMend(requestor)

The interaction with the partially ordered messages is given by

Model.Interactions =

{m1,m2,m3,m4,m5,m6,m7 —(mi{i=1..7} < m2),(m3< m5,m6),(m4,m5< m7)}

The diagrammatic representation of the model is given in figure 3.5.
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To summarize, the steps we followed to construct the model are listed below.

Identify the roles.

Model the messages in terms of operations and events.

Connect the messages with connectors to form the information flow.

Describe the roles in terms of the message sequences.

Identify the Business Process Start and Business Process End.

Describe the Interaction in terms of messages and their partial orders.



Chapter 4

Agent Simulation

4.1 Introduction

In this chapter we describe the Lightweight Coordination Calculus (LCC) protocol that

forms the basis for the agent simulation that we use to simulate the interaction of busi-

ness processes. A business process can be visualised as a community of negotiating,

service providing agents. Each of the processes or roles will be enacted by an agent.

In this chapter we make use of the termagentrather than referring to the businesspro-

cessesas it makes it more appropriate to describe the protocol designed for agents. We

also succinctly describe the institution framework and give an illustration of describ-

ing a simple purchase scenario in LCC protocol. We then give an algorithm for the

derivation of the agent simulation protocol from the PCMDL.

4.2 LCC protocol

Although efforts such as DARPA Agent Markup Language for Semantic web services

(DAML-S), Agent Communication Language(ACL) and Knowledge Query and Ma-

nipulation Language(KQML) have aimed at standardising languages for description

of interfaces between components, these are in themselves, insufficient to coordinate

groups of disparate components in a way that allows substantial autonomy for individ-

ual agents while maintaining the basic rules of social interaction appropriate to partic-

35



Chapter 4. Agent Simulation 36

ular coordinated tasks [24]. Though policy languages appear to provide a solution to

coordination problems, they do not specify the interactions required between processes

to the fine level of granularity as required for the specification of constraints on agent

interaction. The electronic institution concept is identified as a possible solution.

Electronic institutions are based on the structure of human institutions and assist in

enforcing the norms on the autonomous agents. Roles are assigned to the agents which

act within the institution framework. The activities in an electronic institution are a

composition of multiple, distinct, possibly concurrent, dialogic activities, each one

involving different groups of agents playing different roles. For each activity, interac-

tions between agents are articulated through agent group meetings, which are called

scenes, that follow well-defined communication protocols [10]. Each scene is defined

as a set of conversation states, roles that participate in the scene, and connections which

specify the allowable transitions between scene states. Agent interactions are realised

by message exchanges. Agents navigate from scene to scene constrained by the rules

defining the relationships among scenes. Electronic institutions are characterised by

Performative StructuresandNormative Rules. The performative structure can be re-

garded as a network of scenes used to model the relationships between the scenes. It

constrains the intra-scene and inter-scene behaviour of participating agents. It is spec-

ified as a set of scenes (with initial scene and final scene), transitions, connections.

Transitionsare special types of scenes which express the possible paths of the agents

andconnectionslink the scenes with the transitions. Normative rules are used to ex-

press the commitments, obligations and rights of participating agents.

LCC is a process calculus for specifying social norms. It is intended as a practical,

executable specification language and can be supplied with a straightforward method

for constraining the behaviour of an individual agent in a collaboration [24]. LCC

not only allows for the specification of complex social norms but also overcomes the

centralised control requirement of the state based institution systems. As described

earlier, in a state based system, a set of state identifiers represent the stages in an in-

teraction. Agent interactions are modelled in terms of agents entering and leaving the
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states. LCC can also be used to address coordination problems where the behaviour of

the agents are constrained in terms of the message sequences that they are allowed to

send and receive.

4.2.1 LCC Syntax

The LCC interaction framework is shown in the figure below.

Figure from David Robertson’sA lightweight Coordination Calculus for Agent

Systems[24]

The interaction in LCC is achieved through message passing between the interact-

ing agent roles. The framework permits role changes so as to meet the social norms.

Constraints can be specified on the message send and receive events, and also on role

changes. The constraints associated with message passing can be identified with the

proaction and reaction constraints that we mentioned in PCMDL. In the case of con-

straint on message send event, the obligation in satisfying the constraint rests with the

agent sending the message. In the case of the constraint associated with the message

receive event, it is the receiver of the message that has to satisfy the constraint. The

Typein Agentdefinition can be used to describe the agent’s scene and role. This can

also be used to specify information to a group of agents and thereby to check the con-

straints on groups of agents in terms of constraints on individual agents. The initiation
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of the protocol is identified in terms of one of the clauses comprising the protocol. The

termination of the protocol is determined by the use ofprotocol closureelaborated in

the next section. The protocol progress is achieved by means of clause expansion by

each agent and scene/role change.

4.2.2 Clause Expansion

The protocol expansion in LCC corresponds to the application of therewrite rules(shown

in figure 4.1) to unpack the protocol components received by an agent. With unpack-

ing the agent gains the knowledge of its subsequent permitted moves. It then records

the new state of dialogue. LCC does not prescribe the communication infrastructure

for transmitting the message to the message exchange system. However it requires a

message to be composed of an interaction identifier I, message receiving agent iden-

tifier A, role R of receiving agent, Message Content M as per LCC syntax in section

4.2.1 and Protocol P for continuing the social interaction. The protocol P consists of a

set of clauses as per the LCC framework and a set of axioms K denoting the common

knowledge assumed during the social interaction.

On receiving a message, it is added to the set of messages currently under considera-

tion by the agent to give a message setMi . Depending on its current role, the next step

is determined by the selection of the appropriate clauseCi in the protocol P. Rewrite

rules in figure 4.1 are then applied to expandCi asCn producing output message set

On and remaining unprocessed messagesMn. The clauseCi in P is replaced withCn

to yield a modified protocolPn. The agent sends a copy ofPn along with any message

from message setOn. As the clause store, which the agent consults to choose the next

appropriate clauseCi , is carried with the protocol as the messages are sent, the interac-

tions between the agents are restricted to belinear. An interaction is said to belinear

if at any given time only one agent has the protocol or alters the state of the interaction.

The rewrite rules require the satisfaction of constraints associated with the messages

and role changes and, determination of clause closure. One of the methods to satisfy

the constraints specified with the clauses C in protocol is by using the common knowl-

edge K. A satisfiable instance of the clause C should be found in the common knowl-
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edge K. Although the protocol supports the use of sophisticated constraint solvers, we

have not used this in our simulations. A clause of the protocol is said to be closed if it

has been covered or executed by the preceding message exchanges. The closure rules

are also listed in the figure 4.1. When all the clauses in the protocol definition have

been closed then the execution of the protocol terminates.

4.3 Simulator output

The simulation output gives the messages that were exchanged between the interacting

agents in the order in which they were exchanged and also points of closure of the

interacting agents and agent roles. The format of the output for the message M sent by

an agentAgent1in roleRole1to agentAgent2in roleRole2is given as

con(Agent1,e(Role1,M⇒ Role2))

or

con(Agent1,e(Role1, M⇒ Role2← C))

TheC above denotes the proaction constraint. The definition for roles is similar in

syntax to the definition of Agent in section 4.2.1.

The simulation output format for the message received by an agentAgent1in role

Role1from an agentAgent2in roleRole2is as below.

con(Agent1,e(Role1, M⇐ Role2))

or

con(Agent1,e(Role1,C← M⇐ Role2))

Whenever an agent changes roles, the transition is notated in the simulation output for

a role change fromRoleF to RoleT as

con(Agent,t(RoleF,RoleT))

or

con(Agent,t(RoleF,RoleT← C))

When a constraint is specified on the agent without involving a message send, then the

simulation output is
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The following ten rules define a single expansion of a clause. Full expansion of a clause is

achieved through exhaustive application of these rules. Rewrite 1 (below) expands a protocol

clause with headA and bodyB by expandingB to give a new body,E. The other nine rewrites

concern the operators in the clause body. A choice operator is expanded by expanding either

side, provided the other is not already closed (rewrites 2 and 3). A sequence operator is ex-

panded by expanding the first term of the sequence or, if that is closed, expanding the next

term (rewrites 4 and 5). A parallel operator expands on both sides (rewrite 6). A message

matching an element of the current set of received messages,Mi , expands to a closed message

if the constraint,C, attached to that message is satisfied (rewrite 7). A message sent out ex-

pands similarly (rewrite 8). A null event can be closed if the constraint associated with it can

be satisfied (rewrite 9). An agent role can be expanded by finding a clause in the protocol with

a head matching that role and bodyB - the role being expanded with that body (rewrite 10).

A :: B
Mi ,Mo,P ,O−−−−−−→ A :: E i f B

Mi ,Mo,P ,O−−−−−−→ E

A1 or A2
Mi ,Mo,P ,O−−−−−−→ E i f ¬closed(A2) ∧A1

Mi ,Mo,P ,O−−−−−−→ E

A1 or A2
Mi ,Mo,P ,O−−−−−−→ E i f ¬closed(A1) ∧A2

Mi ,Mo,P ,O−−−−−−→ E

A1 then A2
Mi ,Mo,P ,O−−−−−−→ E then A2 i f A1

Mi ,Mo,P ,O−−−−−−→ E

A1 then A2
Mi ,Mo,P ,O−−−−−−→ A1 then E i f closed(A1) ∧A2

Mi ,Mo,P ,O−−−−−−→ E

A1 par A2
Mi ,Mo,P ,O1∪O2−−−−−−−−−→ E1 par E2 i f A1

Mi ,Mn,P ,O1−−−−−−→ E1 ∧A2
Mn,Mo,P ,O2−−−−−−−→ E2

C ← M ⇐ A
Mi ,Mi−{M⇐ A},P , /0−−−−−−−−−−−−→ c(M ⇐ A) i f (M ⇐ A) ∈Mi ∧satis f y(C)

M ⇒ A ←C
Mi ,Mo,P ,{M⇒ A}−−−−−−−−−−→ c(M ⇒ A) i f satis f ied(C)

null ←C
Mi ,Mo,P , /0−−−−−−→ c(null) i f satis f ied(C)

a(R, I) ← C
Mi ,Mo,P , /0−−−−−−→ a(R, I) :: B i f clause(P ,a(R, I) :: B) ∧satis f ied(C)

A protocol term is decided to be closed, meaning that it has been covered by the preceding

interaction, as follows:

closed(c(X))

closed(A or B) ← closed(A) ∨ closed(B)

closed(A then B) ← closed(A) ∧ closed(B)

closed(A par B) ← closed(A) ∧ closed(B)

closed(X :: D) ← closed(D)

satis f ied(C) is true ifC can be solved from the agent’s current state of knowledge.

satis f y(C) is true if the agent’s state of knowledge can be made such thatC is satisfied.

clause(P ,X) is true if clauseX appears in the dialogue framework of protocolP , as defined in

Figure 4.2.1.

Figure 4.1: Rewrite rules for expansion of a protocol clause from [24]
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con(Agent,e(Role,C))

The closure of role or dialogue of an agent is given as

closed(Agent)

4.4 Illustration

In this section we illustrate the specification of a purchase scenario in terms of LCC.

The simple scenario is described below.

“A buyer wishes to buy a mercedes from a dealer called Drayton. He expresses his

desire to buy the car and gets to know of the availability and its price from Drayton.

Convinced of the price, he contracts Drayton to deliver the car to him.”

4.4.1 Protocol Specification

The unique identifiers for the buyer and the seller agent is represented in the protocol

as B and S respectively. The interaction initiation is by the agentbuyerwhich first

assumes the role of thepurchaserand thencontractor

a(buyer, B) ::=

a(purchaser(S,X,Price), B) then a(contractor(S,X,Price), B).

In the role of thepurchaser, the knowledge of the buyer that he needs to buy a

mercedes from drayton dealer is represented as

known(, obtain from(mercedes,drayton))

Thepurchaserconveys this belief to the supplier in the role of the vendor and receives

the vendor’s intention of wanting to sell.

a(purchaser(S,X,Price), B) ::=

want to buy(X)⇒ a(vendor(B,X,Price), S)← obtain from(X, S) then

want to sell(X,Price)⇐ a(vendor(B,X,Price), S).
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The supplier takes on the roles of thevendorand thecontractee.

a(supplier, S) ::=

a(vendor(B,X,Price), S) then a(contractee(B,X,Price), S).

The supplier in the role of the vendor, receives the message conveying the inten-

tion of the buyer in wanting to purchase a mercedes. The vendor needs to know the

availability of mercedes and its price before he can respond with his intention to sell

the mercedes. The knowledge of availability and the protocol specification for this part

of interaction is as shown below.

known(, available(mercedes,1999)).

a(vendor(B,X,Price), S) ::=

want to buy(X)⇐ a(purchaser(S,X,Price), B) then

want to sell(X,Price)⇒ a(purchaser(S,X,Price), B)← available(X, Price).

Having acquired the knowledge about the vendor’s intention to sell mercedes and

the price, the buyer takes on the role of acontractorto request for the delivery of the

mercedes and subsequently receives the confirmation of the delivery from the supplier.

a(contractor(S,X,Price), B) ::=

deliver(X)⇒ a(contractee(B,X,Price), S) then

delivered(X)⇐ a(contractee(B,X,Price), S).

The part of the protocol specification for the supplier agent in the role of the con-

tractee is given below.

a(contractee(B,X,Price), S) ::=

deliver(X)⇐ a(contractor(S,X,Price), B) then

delivered(X)⇒ a(contractor(S,X,Price), B).
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4.4.2 Simulation Output

In this subsection, we describe the flow of messages constituting the interaction for the

purchase scenario. Letb anddraytondenote the instantiations corresponding to the

identifiers B and S in the protocol definition. These roles are specified to the simula-

tor as a Prolog list[a(buyer,b),a(supplier,drayton)]. The simulation begins with role

transition of the buyer to that of the purchaser and the conditional message sent by the

purchaser.

con(a(buyer,b),t(a(buyer,b),a(purchaser(drayton,mercedes,1999),b))).

con(a(buyer,b),

e(a(purchaser(drayton,mercedes,1999),b),

want to buy(mercedes)⇒a(vendor(b,mercedes,1999),drayton)

←obtain from(mercedes,drayton))).

Subsequent to this the simulator focuses on the instance of the supplier which tran-

sitions to the role of thevendorto receive the message sent by the purchaser and sends

its response. This completes role of thevendorand supplier changes role fromvendor

to contractee.

con(a(supplier,drayton),t(a(supplier,drayton),a(vendor(b,mercedes,1999),drayton))).

con(a(supplier,drayton),

e(a(vendor(b,mercedes,1999),drayton),

want to buy(mercedes)⇐a(purchaser(drayton,mercedes,1999),b))).

con(a(supplier,drayton),

e(a(vendor(b,mercedes,1999),drayton),

want to sell(mercedes,1999)⇒a(purchaser(drayton,mercedes,1999),b)

← available(mercedes,1999))).

closed(a(vendor(b,mercedes,1999),drayton)).

con(a(supplier,drayton),t(a(supplier,drayton),a(contractee(b,mercedes,1999),drayton))).

Receipt of the availability of mercedes with its price constitutes the end ofpur-

chaserrole for the buyer which then changes to the role of thecontractorand requests
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for the delivery of mercedes to the supplier.

con(a(buyer,b),

e(a(purchaser(drayton,mercedes,1999),b),

want to sell(mercedes,1999)⇐a(vendor(b,mercedes,1999),drayton))).

closed(a(purchaser(drayton,mercedes,1999),b)).

con(a(buyer,b),t(a(buyer,b),a(contractor(drayton,mercedes,1999),b))).

con(a(buyer,b),

e(a(contractor(drayton,mercedes,1999),b),

deliver(mercedes)⇒a(contractee(b,mercedes,1999),drayton))).

Supplier Drayton in the role of the contractee acknowledges the delivery request

with a delivered message. This completes the role of the contractor as well as the sup-

plier.

con(a(supplier,drayton),

e(a(contractee(b,mercedes,1999),drayton),

deliver(mercedes)⇐a(contractor(drayton,mercedes,1999),b))).

con(a(supplier,drayton),

e(a(contractee(b,mercedes,1999),drayton),

delivered(mercedes)⇒a(contractor(drayton,mercedes,1999),b))).

closed(a(contractee(b,mercedes,1999),drayton)).

closed(a(supplier,drayton)).

As a consequence to the receipt of the delivered message, the contractor role ends

and this marks the completion of the buyer dialogue.

con(a(buyer,b),

e(a(contractor(drayton,mercedes,1999),b),

delivered(mercedes)⇐a(contractee(b,mercedes,1999),drayton))).

closed(a(contractor(drayton,mercedes,1999),b)).

closed(a(buyer,b)).
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4.5 Mapping PCMDL to protocol specification for the

simulator

In this section we describe as to how we translate the PCMDL entities to the LCC

framework. The agent protocol specification is in some respects similar to Prolog

predicates with a predicate head and a body. So we will use these concepts when de-

scribing LCC below.

For each role in the PCMDL model, represent the process or rolename as the head

of the agent dialogue definitiona(rolename,Instance). The Instancecan be any iden-

tifier like a prolog variable. If the role under consideration occurs as a subrole in the

PCMDL model, then this identifier should be the same as the parent or the enclosing

role. Each of the main processes should have a unique identifier. Any process or role

will have one starting lifeline which may later branch into several lifelines. To provide

a definition to the agent dialogue, follow the flow along the role starting lifeline, rep-

resent each PCMDL model element with the corresponding LCC framework element

until the process/role termination is encountered. The three possible elements are the

messages, connectors and the subroles. The role under consideration could be a sender

or receiver of the message and the message could be sent or received with or without

preconditions. The diagram 4.2 gives the translation that needs to be done for each of

the stated message-role associations. Each box in the diagram is a translation pattern

in which the upper half is the PCMDL segment and the lower half its LCC transla-

tion. The translation for the PCMDL connectors is straight forward. The OR-Join and

the OR-Split connectors map to the operator’or’ . The XOR-Split and the XOR-Join

also map to the’or’ connector with the difference being that the condition in XOR

should be added as the proaction or the reaction constraint to the message following

the connector. The default PCMDL sequence connector maps onto the operatorthen.

The AND-Join and the AND-Split are often translated to thethenoperator because

during protocol specification the order of execution left unspecified by the PCMDL

AND connector gets materialised to some implementor specified order. The synchro-

nisation bar is represented using thepar operator. We have not encountered the need
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  C
<<PCK>>

sender receiver
M

Clause in a(sender,Id)
M => a(receiver,I) <−− C

Clause in a(receiver,I) 
M <= a(sender,Id)

Clause in a(receiver,I)
C <−− M <= a(sender,Id)

Clause in a(sender,Id) 
M => a(receiver,I)

  C
<<RCK>>

M
sender receiver

Clause in a(receiver,I) 
M <= a(sender,Id)

M
sender receiver

Clause in a(sender,Id)
M => a(receiver,I)

Clause in a(receiver,I)
M <= a(sender,Id)

Clause in a(sender,Id) 
M => a(receiver,I)

M
sender receiver

Figure 4.2: PCMDL to LCC Translation for message interchange

for use of AND connector in our simulation examples and the synchronisation bar was

considered out of scope for this project. For theor andpar operators, the two related

operands must be enclosed in parentheses as in ((X)or(Y)), where X and Y may them-

selves be complex definitions composed of several connectors, roles and messages. If

the PCMDL connector does not have a message or another connector or role following

the connector under consideration,null is used as the second operand in the protocol

specification.

The representation for the subrole is probably the simplest translation of the stated ele-

ment types. The subrole name is specified asa(subrole,Instance)ora(subrole,Instance)←C

where C represents the precondition on the role change. If the PCMDL has loop con-

struct then, this gets translated to recursion in agent protocol definition.

The completed protocol specification for the role under consideration should appear

as agent dialogue definitiona(rolename,Instance)::=Definition. The above process is

repeated for each of the roles and the subroles in the PCMDL model. The values for

the knowledge elements (�PCK� or�RCK�) required for simulation are specified

asknown(InstanceId,KnowledgeValue)where the InstanceId is theInstancein agent
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a(rolename,Instance) that requires the KnowledgeValue. The agents representing the

main processes in the PCMDL (not as subroles) should be specified in the simulation

initiation list.

The following gives the algorithm for PCMDL to LCC protocol translation. We re-

fer to section 3.4.3 for the definitions of the PCMDL elements used in the algorithm.

Translate (X) adds X to the cumulative agent definition at the appropriate location

checking for duplicates and well-formedness as per LCC framework.

for each role r1 in PCMDL:

Translate(a(r1,Instance))

select a message sequence ms for r1

for each element x of ms:

if previous element of x is connector or x is a subrolename

skip x

else

Generate(x,r1,Instance)

if x is last element in ms

Translate(end dialogue)

else

Translate(then)

The algorithm for Generate(x,r1,I) is as follows

if x=message(Id,Sender,Receiver,Opid)

get op(Opid,Opname,Arguments,Eventlist)

if r1=Sender

if Opname is not blank

if no pck(C) in Eventlist

Translate(Opname(Arguments) ⇒ Receiver)



Chapter 4. Agent Simulation 48

if pck(C) in Eventlist

Translate(Opname(Arguments) ⇒ Receiver ← C)

if Opname=blank

if start(subrole sr) in Eventlist

Generate(sr,r1,I)

if pck(C) in Eventlist

Translate(null ← C)

else

Translate(null)

if r1=Receiver

if Opname is not blank

if no rck(C) in Eventlist

Translate(Opname(Arguments) ⇐ Sender)

if rck(C) in Eventlist

Translate(C ← Opname(Arguments) ⇐ Sender)

if Opname=blank

if rck(C) in Eventlist

Translate(null ← C)

else

Translate(null)

if x=conn(ConId,ConnType,IL,OL)

if ConnType is Join

Translate(Generate(m,r1,I))| m∈ OL)

if ConnType=XOR

Translate(((Generate(mi,r1,I))or(Generate(mj,r1,I)))|∀mi,mj∈ OL)

if ConnType=OR

Translate(((Generate(mi,r1,I))or(Generate(mj,r1,I)))|∀mi,mj∈ OL)

if ConnType=AND

Translate(Generate(mi,r1,I) then Generate(mj,r1,I)|mi∈ IL,mj∈ OL)
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else

Translate(Generate(mi,r1,I) then Generate(mj,r1,I)|mi∈ IL,mj∈ OL)

if x=subrole sr

get firstmessage m1 from a message sequence for sr where sender=r1

get op(Opid s,Opname s,Arguments s,Eventlist s) for m1

if pck(Cs) not in Eventlist s

Translate(a(sr,I))

else if pck(Cs) in Eventlist s

Translate(a(sr,I)←Cs

Application of the above algorithm to the loan scenario in section 3.7 results in the

following protocol specification.

a(requestor,R) ::=

requestloan(Amount,R)⇒ a(bank,B)← loan(Amount) then

loan response(Amount,Result)⇐ a(bank,B).

a(bank,B) ::=

requestlevel(Amount,10000,Level)← requestloan(Amount,R)⇒ a(requestor,R) then

((a(assessor(Amount,R,Result),B)← Level=l) or

(a(approver(Amount,R,Result),B)← Level=h)) then

loan response(Amount,Result)⇒ a(requestor,R).

a(assessor(A,R,Result),B) ::=

null← assessrisk(A,R,Risk) then

((a(approver(A,R,Result),B)← Risk=h) or

(null← Risk=l and Result=accept)).

a(approver(Amount,R,Result),B) ::=

null← processed(Amount,R,Result).
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4.5.1 Problems in general automated translation

A few inadequacies in the PCMDL which offer resistance to automatic generation of

LCC protocol specification from PCMDL and suggestions to address these deficiencies

are discussed in this section. We also put forth a few observations to assist in relating

the simulation entities to deployment entities.

The PCMDL does not accurately specify the parameters that are connected to the role

name, that is the parameters that are needed to be passed on to a role upon invocation.

This requires manual intervention to translate the PCMDL role to the LCC framework

agentType. This could be overcome by mandating the PCMDL modeller to specify

the process names as a(Rolename(RoleParameters),Instance). Also PCMDL does not

have accurate representation for the specifying how the value for the knowledge el-

ements (�PCK� or �RCK�) should be computed. This does not pose a major

problem to automating protocol generation as such because in most cases, the knowl-

edge constraints represent the internal processing knowledge which for the simulation

will be supplied by the user. However if an absolute need for accurate representation is

felt, the use of Object Constraint Language (OCL) is recommended. The path chosen

during a particular simulation run depends on the values specified for these knowledge

elements. There should be an enhanced mechanism to capture such values as inputs

to the model. In the case of PCMDL models with process self loops defined, the base

condition to terminate the recursion implementing the loop in the simulator cannot be

determined from the PCMDL model. Process self loops are the loops in which the

process invokes itself.

The need for specifying timeouts on constraints is very helpful in many model design

activities. As mentioned in [24] normal first order expressions should be used to con-

struct the timeouts or temporal prohibitions. For simulations of PCMDL models with

loop constructs, an agent with new identity is created for each iteration though in man-

ual deployments these may correspond to the same individual or role. The time span of

the activated role should be read as from the start of the agent role in the first iteration

to the time of termination of the agent role in last iteration.



Chapter 5

Implementation for Constraint Verifier

5.1 Introduction

In this chapter we describe the implementation details of the constraint verifier. Due to

the power and flexibility provided by the meta-interpreters, we opt to implement our

verifier as a meta-interpreter. Ameta-interpreter for a language is an interpreter for

the language written in the language itself[30]. Our meta-interpreter is developed in

Prolog. It depends on the model of time that acts as a foundation for superimposing

the simulation output of the process model.

5.2 Concepts of time model

The primitive units of representation of time can beinstantsor intervals. It is possibile

to construct intervals from instants and instants from intervals[9]. We build a meta-

interpreter based on interval time representation and use the instant-interval intercon-

version to our advantage as and when required. We take time interval to be composed

of several time instants. A time interval can hence be defined as an ordered pair (t1,t2)

such that t1<t2 and is composed of instants t given by{t|t1<t<t2}. In the verifier

that we build, when trying to reason about the time interval when a constraint holds,

we need to relate two intervals. The following thirteen irreducible interval-interval

relations ([Hamblin, 1969; Allen and Koomen,1983]) form the basis for our work [9].
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1 (t,u) isbefore (v,w) if u<v

2 (t,u)meets(v,w) if u=v

3 (t,u)overlaps(v,w) if t<v<u<w

4 (t,u)begins(v,w) if t=v and u<w

5 (t,u) falls within (v,w) if v<t and u<w

6 (t,u)finishes(v,w) if v<t and u=w

7 (t,u)equals(v,w) if t=v and u=w

The other six relations of the thirteen are just the converses of the first six. The bounds

constitute an important aspect in the definition of intervals. The output of the simula-

tion which we superimpose on the time model establishes the bounds for our system

which we call as thesystem upper boundandsystem lower boundin our ensuing elab-

oration.

5.3 Constraint language and Annotations

Our meta-interpreter uses annotations to represent the time intervals. The primary

annotation isinterval. A mundane example

lived(’ShivaramKaranth’) @ interval(1902,1997)

represents that Dr.K.Shivaram Karanth, a noted Indian writer lived during the period

1902-1997. A more relevant example relating to our process models would beac-

tive(process) @ interval(T1,T2)to denote the interval during which the process is ac-

tive. Though several other models of time, permit the use of a finer granularity in the

representation for timesT1 andT2, we restrict them to be integers as this suffices our

purpose to annotate the events in the process model. As mentioned earlier we use the

interval annotation to represent time instants as well. Using our earlier example of ac-

tive process, the representationactive(process) @ interval(t,t)indicates that a process

is active at some time instant t. The first order definition of a formula annotated with

interval is
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X @ interval(t1,t2)↔ ∀t (t ∈ interval(t1,t2)→ X @ interval(t,t)).

The other annotations that our interpreter supports areafterandbefore. after is used to

annotate atoms with semantics into the future from the current point of reference while

beforeis used for annotating atoms with past semantics. FormulaX @ after(Num,I)

represents thatX is true at an instant which isNumsteps after the end of intervalI. A

variation of theafter annotation,X @ after(I)gives the validity of X over an interval

with the lower bound as the end of intervalI and an interval upperbound determined

by the system upper bound. Similarly, formulaX @ before(Num,I)denotes thatX is

true at an instant,Numsteps before the start of intervalI. The variationX @ before(I)

gives the validity ofX over an interval with the system lower bound as its interval lower

bound and the beginning of the interval I as the resultant interval upperbound.

The language we develop for the constraint verifier is given below. In each of the

cases, the interval spans from the time instant the constraint holds to the system upper

bound. This is based on the assumption in section 2.1.2 that a constraint once satisfied

remains true thereafter.

ci(C,P) @ I : Constraint C holds within the process P.

cf(C,P) @ I : Constraint C holds after the end of the process P.

cp(C,P) @ I : Constraint holds before the start of the process P.

cs(C,P) @ I : Constraint holds at the start of the process P.

cv(C,P) @ I : Constraint holds sometime after the start of the process P.

the constraintC in each of the above cases can be represented using one of the struc-

tures below.

pck(C): To denote the proaction constraint.

rck(C) : To denote the reaction constraint.

ks(I,M): To denote the message send event.

kr(I,M): To denote a message receive event.

C : Just as a constraint.
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5.4 Preprocessor

The output of the simulator will be pre-processed to create a knowledgebase for use

with the interpreter of the constraint verifier. The pre-processor gathers the information

in the language of the interpreter described in section 5.3, along with annotations for

the time instants. The following are the different structures for the elements of the

knowledgebase.

start(A) @ I start of a process or a role at time I

end(A) @ I process or role is active over the interval I

ks(O,M) @ I message M sent to a process/role instance O at time I

pck(C) @ I proaction constraint C held at time I

kr(X,M) @ I receipt of message M sent by a process/role instance X at time I

rck(C) @ I reaction constraint C held at time I

The process or role notation will use the notation used in the simulator output while

the time I will be in terms ofinterval.

5.5 Constraint Specification

The specification of the constraints follows a format very similar to that of the agent

protocol specification. The basic format is shown in the figure 5.1. Property is an

C = ks (Y,M) | kr (Y,M) | C

I = after (I) | before (I) | I 

D = Term  | D & D | D  v D

Property = atom | Term

cons(Property) ::= Property_Definition

Property_Definition = W  |  W & W  |  W v W | W <−−− D

W = Ci (C,P) @ I  | Cp (C,P) @ I | Cf (C,P) @ I | Cs (C,P) @ I | Cv (C,P) @ I | role(Role,Instance) @ I | null | cons(Z)

Figure 5.1: Constraint specification format

identifier of the constraint that is specified to the verifier. PropertyDefinition is a

composition of several constraints of the form indicated above. The operator::= is
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overloaded to be used in LCC specification as well as constraint specification. Each

C in Cx(C,P) can be of the form ks(Y,M) or kr(Y,M) or just C. The ks(Y,M) format

is used to verify if a message M was sent to instance Y while kr(Y,M) is from the

receiver’s perspective to check if a message M sent by instance Y was received. The

proaction and the reaction constraints in the protocol specification are specified just as

constraints. role(IRole,Ins) @ I is used to check if the instance Ins was in role IRole in

the interval I. The constraint specification also allows dynamic specification with the

format dyn(X) and dyn((X←−Def)). The dynamic specification adds support for loop

constructs, conditional constraint specification and means to supply the verifier with

values for determining the satisfaction of constraints. Any verified property is satisfied

only if all the elements in its PropertyDefinition are satisfied. It is possible to verify

the order of constraint satisfaction by the use of annotations in section 5.3 as

Ci(C1,P1) @ I & Ci(C2,P2) @ after(I) to check if the constraintC1 on processP1 was

satisfied before satisfying the constraintC2 on processP2 or Ca @ I & Cb @ I to check

if both constraints Ca and Cb were satisfied within the interval I. If a constraint is

satisfied, then the interval of validity returned by the verifier will have its upper bound

as the system upper bound in accordance with our assumption A4 in section 2.1.2 that

a constraint once satisfied will continue to hold thereafter.

5.6 The Interpreter

The proof strategy used in the interpreter is from [26]. This is informally described

below

A given statement, P, follows from an argument A if any of rules 1 to 5 below apply,

attempting in the order given.

1. P is fact which is asserted in Argument A.

2. P is of the form P1∧ P2 and :

i P1 can be established from A and

ii P2 can be established from A.
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3. P is of the form P1∨ P2 and P1 can be established from A.

4. P is of the form P1∨ P2 and P2 can be established from A.

5. Argument A contains an expression P← C and its condition, C, can be established

from A

The formal proof strategy for the above listed informal strategy is given below.

A ` P denotes that a given statement ,P, follows from an argument A.

1. solve(À P)← P∈ A.

2. solve(À (P1∧ P2))← solve(A` P1)∧ solve(A` P2).

3. solve(À (P1∨ P2))← solve(A` P1).

4. solve(À (P1∨ P2))← solve(A` P2).

5. solve(À P)← (P← C)∈ A∧ solve(A` C).

Prolog implementation of the above rules supports the use of the annotations that

we defined earlier. The knowledgebase created from simulation output is carried as

one of the parameters in each of thesolveclauses of our meta-interpreter along with

the constraint specification. So thesolvepredicate has the structure

solve(knowledgebase,ConstraintDefinition, InputClause, OutputClause)

A goal of the form X @ I can be solved if there exists in the knowledgebase a fact X @

I or X @ I2 and, I and I2 can be combined using the interval-interval relation described

in section 5.2 to yield an interval common to I and I2 over which X holds.

solve(KB, ,X @ I, X @ Ic) :-

member(X @ I2,KB),

combine(I,I2,Ic),!.

A goal of the form A & B can be solved if both A and B hold, or if the goal is of

the form A v B and either A or B holds.

solve(KB,ConDef,A & B,A1 & B1):- !,
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solve(KB,ConDef,A,A1),

solve(KB,ConDef,B,B1).

solve(KB,ConDef,A v B,R):-

(solve(KB,ConDef,A,R);

solve(KB,ConDef,B,R)).

The other means of satisfying the goal X @ I would be with the use of a rule with a

the pre-condition in knowledgebase for a same or different interval and combining the

intervals to yield a common interval.

solve(KB,ConDef,X @ I1,X @ I):-

X @ I2 ⇐= Precondition,

solve(KB,ConDef,Precondition , Ip),

combine(I1,I2,I).

The interpreter also supports the use of rules which are valid irrespective of time

though this is not of much use in our case as we preprocess the simulator output to be

annotated with interval definition.

solve(KB,ConDef,X,X1):-

\+(X = @ I),

member(X ⇐= Precondition,KB),

solve(KB,ConDef,Precondition,X1).

At times it may be required to verify the negation as goal, hence we have

solve(KB,ConDef,not(X),not(X)):- \+ solve(KB,ConDef,X, ).

Two intervals can be combined if either or both of them are uninstantiated and can be

unified and normalised. If both the intervals are initialised, they are normalised and



Chapter 5. Implementation for Constraint Verifier 58

then a unifying interval is found.

combine(E1,E2,I):-

var(E1),

var(E2),

E1=E2,

I=E1.

combine(interval(T1,T2),E2,I):-

var(T1),var(T2),

normalise(E2,I2),

interval(T1,T2)=I2,

I=I2.

combine(E1,interval(T1,T2),I):-

var(T1),var(T2),

normalise(E1,I1),

interval(T1,T2)=I1,

I=I1.

combine(E1,E2,I):-

((var(E1),nonvar(E2));

(var(E2),nonvar(E1))),

E1=E2,

normalise(E1,I).

combine(E1,E2,I):-

nonvar(E1),nonvar(E2),normalise(E1,I1),normalise(E2,I2),

unify intervals(I1,I2,I).

The normalise process smoothens the time definitions used with non-primitive an-
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notations likeafterandbeforeto the primitiveinterval(t1,t2)structure.

normalise(N, interval(N,N)):- integer(N).

normalise(interval(T1,T2),interval(T1,T2)).

normalise(after(N,E),interval(F,F)):-

normalise(E,interval( ,T1)),

future(T1,N,F).

normalise(after(E),interval(T,N)):-

timelength(L),N=L,

normalise(E,interval( ,T)).

normalise(before(N,E),interval(G,G)):-

normalise(E,interval(T, )),

past(T,N,G).

normalise(before(E),interval(1,T)):-

normalise(E,interval(T, )).

In determining the time instant N units in the future we use the system upperbound

identified below astimelength(L).

future(X,N,X):-var(X),timelength(L),X=L.

future(T,N,F):-

integer(T),

F is T+N,

timelength(L),

F=<L.

Similarly for the determination of the past time interval, the system lower bound

which is always 1 in our case is used.
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past(1,N,1).

past(T,N,G):-

integer(T),

G is T-N,

G>0.

The interval unification in accordance with the interval-relations in section 5.2 is

implemented by the following functions taking into account the system bounds.

unify intervals(interval(T1,T2),interval(T3,T4),interval(T5,T6)):-

largest lb(T1,T3,T5),

smallest ub(T2,T4,T6),

t consistent(T5,T6).

largest lb(1,1,1).

largest lb(1,T,T):-integer(T).

largest lb(T,1,T):-integer(T).

largest lb(T1,T2,T1):-integer(T1),integer(T2),T1>=T2.

largest lb(T1,T2,T2):-integer(T1),integer(T2),T1<T2.

smallest ub(L,L,L):-timelength(N),N=L.

smallest ub(L,T,T):-integer(T),timelength(N),N=L.

smallest ub(T,L,T):-integer(T),timelength(N),N=L.

smallest ub(T1,T2,T1):-integer(T1),integer(T2),T1=<T2.

smallest ub(T1,T2,T2):-integer(T1),integer(T2),T1>T2.

The requirement for a definition to be that of an interval is checked using tconsistent.

t consistent(1,1).

t consistent(1,T):-integer(T).

t consistent(T,L):-integer(T),timelength(L).

t consistent(T1,T2):-integer(T1),integer(T2),T1=<T2.
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The following predicates are added to implement the constructs of constraint spec-

ification listed in section 5.5 to support looping and dynamic specification.

solve(KB,ConDef,cons(A),R):-

expand condef(cons(A),ConDef,Exp),!,

solve(KB,ConDef,Exp,R).

solve(KB,ConDef,X←−P,X1):-
solve(KB,ConDef,P,P1),

solve(KB,ConDef,X,X1).

solve(KB,ConDef,A, ):-

call direct(A),

A.

solve(KB,ConDef,null,null).

solve(KB,ConDef,X,C1):-

protocol member(dynamic spec, ConDef, dyn(X ←− C)),

solve(KB,ConDef,C,C1).

solve(KB,ConDef,X,X):-

protocol member(dynamic spec, ConDef, dyn(X)).

The expandcondef expands the constraint rule definition. while the protocolmember

checks for the dynamic definiton of a clause which is loaded as a part of the constraint

specification.

As our meta-interpreter incorporates a process of normalisation, reasoning in terms

of temporal intervals is limited in applicability as it assumes the normalisation to be

able to bind intervals to particular time points which cannot be guaranteed always [25].
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However since the simulation output establishes the required bounds in our system, this

method of reasoning suffices our purpose.

5.7 Verifier output

The output of the verifier simply responds ’holds’ or ’no’ depending on whether the

specified constraint was satisfied or not. If satisfied, the various variables used in the

constraint specification are instantited to appropriate values.

5.8 Illustration of constraint specification and verifica-

tion

In this section, we continue with the example of the loan scenario in 3.7 to show how

the constraint specification for the properties can be done. For brevity, we limit our

discussion to just the safety and liveness properties.

Safety Property :A probable safety property for the scenario could be to avoid

contradictory responses from being sent to the loan requester. The loan request should

either be accepted by the assessor or processed by the approver. It should never be the

case that the loan request has been processed separately by both assessor and approver.

From the PCMDL in section 3.7 for the scenario it can be gathered that the constraint

specification should check if the risk has been assessed low and the result has been set

to accept by the bank in the role of acceptor or the request is processed by the approver.

 (ci(Risk=l and Result=accept, a(assessor(A,R,Result),B)) @ I 
  v

 ci(processed(Amount,R,Result),a(approver(Amount,R,Result),B)) @ I )

ci(processed(Amount,R,Result),a(approver(Amount,R,Result),B)) @ I)).
&

(not(ci(Risk=l and Result=accept,a(assessor(A,R,Result),B)) @ I 
&

cons(safety) :: =

Liveness Property :Satisfaction of the liveness property requires that eventually a re-

sponse be sent to the requester. From the PCMDL, it is theloan responsemessage that
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should be sent by the bank to the requestor. We specify the constraint specification

from the perspective of the requestor.

cons(liveness) ::=

ci(kr(B,loan_response(Amount,Result)),a(requestor,R)) @ I 

&

role(bank,B) @  I.

The output of the constraint verifier gives the safety property to hold while the liveness

property fails. The failure of the liveness property is because the check for the role of

the sender of loanresponse message (that is the bank) does not exist when the message

was received by the requestor. This shows that the bank process has no means of

addressing the queries of the loan requestor once an initial response has been sent.

This indication could be taken as an input to modify the loan scenario model to cater

to queries arising from the dispatch of loan response.
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Evaluation and Discussion

6.1 Introduction

In this chapter we describe a few of the simulation processes that were used to eval-

uate the verifier. The domains used were supply chain management, software quality

management, tender process evaluation, university student enrolment process, univer-

sity student assignment submission process and telecom inventory procurement and

commissioning process. We describe only the first three and for each domain we give

the process description, PCMDL, protocol specification, constraint specification and

an evaluation of the verifier.

6.2 Supply chain management (SCM) - Order call off

6.2.1 Process Description

“When a customer recognises a need for a product the supply of which is covered by a

framework agreement with a particular supplier, the customer raises an order-calloff.

The supplier either confirms his acceptance or rejects the order. If the supplier cannot

meet all the order conditions, he sends a counter proposal with modified order

conditions. The customer either accepts the revised order or cancels the order.”

64
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6.2.2 PCMDL

<<PCK>>
framework_agreement(C,S)

and orderdetails(N,L,P)
XOR

<<RCK>>
processchange(N,R,K)

XOR
OR

order_call_off_change(N,R)

OR

OR

OR

supplier
customer

order_call_off(N,L,P)

accept(N)

process(N,L,P,O)
<<RCK>>

[O=a]

[O=r]

<<PCK>>
counter_proposal(N,R)

[K=r]

[K=a]
cancel_order_call_off(N,R)

accept(N,R)

reject(N)

START

END

SCM process model

6.2.3 Protocol Specification

The interaction in the scenario described requires two roles identified ascustomerand

supplier. The initiation of the interaction is by the agent in the role of thecustomer.

The customer agent is supplied an order number on its instantiation. The customer

knows the order details and having known the existence of a framework agreement

with a supplier, sends anorder call off message to the supplier. The supplier processes

the request and determines whether the order can be fulfilled or not and this processing

is indicated in the PCMDL as the reaction constraintprocess. The possibilities of the

supplier response to the request are indicated by theacceptandrejectmessages which

is determined by the outcome of theprocessbeinga or r respectively. Further theac-

ceptresponse may have a variation in which the supplier indicates the fulfilment of the

order request with a counter proposal wherein the order can be met with a slight change

in the requested order items. This is indicated by theorder call off changemessage

with a proaction constraintcounterproposal. The counter proposal is processed by the

customer which is indicated by the constraintprocesschange. This processing indicates
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to the customer whether to accept or cancel the order. Depending on the outcome of

processchangethe customer indicates its acceptance or rejection with theacceptor

cancelorder call off messages. The protocol specification from the perspective of the

customer agent is shown in the figure 6.1.

cancel_order_call_off(N,R) => a(supplier,S) <−− K=r))

(accept(N,R) => a(supplier,S) <−− K=a
or

then

then

((accept(N) <= a(supplier,S)

(processchange(N,R,K) <−− order_call_off_change((N.R) <= a(supplier,S)

null)

or

a(customer(N),C) ::=
<−−framework_agreement(C,S) and orderdetails(N,L,P)

or
reject(N) <= a(supplier,S)).

order_call_off(N,L,P) => a(supplier,S))

then

Figure 6.1: Protocol definition for Customer agent

The protocol specification from the perspective of the supplier agent is given in

the figure 6.2. As per the PCMDL, the processing of theorder call off message from

the customer is indicated as a reaction constraintprocessand the determination of the

counter proposal by the proaction constraintcounterproposal. Apart from the above

dialogue specification, the knowledge possessed by the agents also forms a part of the

protocol specification. This will be given in section 6.2.6.

6.2.4 Properties for verification

In this section we describe the generic safety, liveness, termination and correctness

properties in terms of the supply chain management domain. Heresatisfied (X)indi-

cates the satisfaction of a property X,send(X,R)indicates X was sent to R,receive(X,S)

indicates X was received from S.
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a(supplier,S) ::=
process(N,L,P,Outcome) <−− order_call_off(N,L,P) <= a(customer(N),C)
then
((accept(N) => a(customer(N),C) <−− Outcome=a

then
(accept(N,R)  <= a(customer(N),C) 

or
cancel_order_call_off(N,R)  <= a(customer(N),C)))

or
null)

or
reject(N) => a(customer(N),C) <−− Outcome=r).

then
order_call_off_change(N,R) => a(customer(N),C) <−− counter_proposal(N,R)

Figure 6.2: Protocol definition for Supplier agent

Termination : Both the customer and the supplier roles will eventually end.

satisfied(termination)←− �end(supplier)∧ �end(customer)

Safety : The customer never receives any contradictory responses from the vendor to

his order request.

satisfied(safety(customer))←− (send(order,supplier)

∧ ¬ (receive(response(accept),supplier)∧ receive(response(reject),supplier)))

Safety property stated in terms of the supplier would require the supplier not to send

contradictory responses to an order request.

satisfied(safety(supplier))←− (receive(order,customer)

∧ ¬(send(response(accept),customer)∧ send(response(reject),customer)))

Liveness: Having placed an order before a supplier under a framework agreement,

sometime in the future the customer gets an accept or reject response from the vendor.

satisfied(liveness)←− (send(order,supplier)→ �(receive(response(accept),supplier)

∨ receive(response(reject),supplier))
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Correctness: The correctness property for the customer would require it to check the

presence of a framework agreement with the supplier and place the order to the sup-

plier, evaluate the counter proposal (if any) and accept or reject the counter proposal.

satisfied(correctness(customer))←− exists(frameworkagreement(S))∧ supplier(S)∧
send(Order,S)∧ (receive(response(accept),S)∧ (((receive(changedorder(R)),S)∧

processchange(R,Result)∧ send(response(Result),S))∨ null) ∨
receive(response(reject),S))

The correctness property for the supplier would require it to check if it could meet

the order placed by a customer either directly or with a counter proposal and send his

response accordingly.

satisfied(correctness(supplier))←− receive(Order,C)∧ customer(C)∧
process(Order,R)∧ send(response(R),C)∧ ((counterproposal(Order,P)∧

send(changedorder(P),C)∧ receive(response(N),S))∨ null)

6.2.5 Constraint Specification

The constraint specification for the properties stated in section 6.2.4 is explained below.

To satisfy the termination property, the verifier checks for the completion of the roles

of the supplier and the customer agents.

cons(termination) ::= end(a(customer(N),C) @ _ & end(a(Supplier,S)) @ _.

The constraint specification for the safety property checks for satisfaction of safety

properties from the supplier as well as the customer perspectives. The supplier should

in no case send bothacceptandrejectmessages in response to theorder call off mes-

sage. Likewise the constraint verification on the customer checks for the reception of

the response messages. Verifying from both perspectives can be avoided if we assume

the channel to be lossless in the sense that a message sent will always be received by

the intended recipient. In the specification below, we also check if the sequences of

the messages sent are as per the requirements. For example, theacceptor thereject

messages should be sent only after theorder call off message has been received by the

supplier. The use ofafter annotation indicates this. We have used the after-start Cv
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constraint so that we are able to detect the satisfaction of the safety property even in

cases where the termination property is violated which cannot be done if In-Process Ci

constraint is used.

&
 cv(kr(C,order_call_off(N,L,P),a(supplier,s)) @ I 

not(cv(ks(C,accept(N)),a(supplier,S)) @ after(I) 

cv(ks(C,reject(N)),a(supplier,S)) @ after(I))
&

cons(safety(sup)) ::=

cons(safety) ::= cons(safety(sup)) & cons(safety(cus)).

&
cv(kr(S,reject(N)),a(customer(N),C)) @ after(I))

cons(safety(cus)) ::=

&
cv(ks(S,order_call_off(N,L,P)),a(customer(N),C)) @ I 

not(cv(kr(S,accept(N)),a(customer(N),C)) @ after(I)

.

The constraint specification for the liveness property checks for an eventual response

from the supplier.

(cv(kr(S,accept(N)),a(customer(N),C)) @ I 
v

&
cv(kr(S,reject(N)),a(customer(N),C)) @ I 

role(supplier,S) @ before(I) <−−−(agreements(A) & member(S,A)).

cons(liveness) ::=

In the specification above we also introduce a check for the supplier to be one among

the several suppliers with which the customer has agreements. This demonstrates the

use of dynamic constraint specification wherein we supply the verifier with the knowl-

edge of the list of suppliers with which the customer has agreements as

dyn(agreements([s,s1,s2,s3])).

The correctness property just reiterates through each step of the protocol to ensure

that the protocol was correctly followed. The constraint specification uses the stricter

In-Process Ci constraint as we want to check the satisfaction of the constraint within

a role. The specification given below lists the checks separately for the roles of the

customer and the supplier though these could be combined.
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&

&

&

v

&

&

cons(correctness(supplier)) ::=

ci(kr(C,order_call_off(N,L,P)),a(supplier,S)) @ I 

role(customer(N),C) @ I
&

ci(process(N,L,P,G),a(supplier,S)) @ I2 

(ci(ks(C,accept(N)),a(supplier,S)) @ after(I2) <−−− G=a

((ci(counter_proposal(N,R),a(supplier,S)) @ I3 

ci(ks(C,order_call_off_change(N,R)),a(supplier,S)) @ after(I3)

(ci(kr(C,accept(N,R)),a(supplier,S)) @ after(I3)

ci(kr(C,cancel_order_call_off(N,R)),a(supplier,S)) @ after(I3)))
v
null)

v
ci(ks(C,reject(N)),a(supplier,S)) @ after(I2) <−−−G=r.

((ci(kr(S,accept(N)),a(customer(N),C)) @ after(I) 

(ci(kr(S,order_call_off_change(N,R)),a(customer(N),C)) @ I3

ci(processchange(N,R,K),a(customer(N),C)) @ I4 

(ci(ks(S,accept(N,R)),a(customer(N),C)) @ after(I4) <−−−K=a

ci(ks(S,reject(N)),a(customer(N),C)) @ after(I4) <−−−K=r)

ci(kr(S,reject(N)),a(customer(N),C)) @ after(I)).

ci(framework_agreement(C,S) and orderdetails(N,L,P),a(customer(N),C)) @ _ 
&

ci(ks(S,order_call_off(N,L,P)),a(customer(N),C)) @ I 
&

null)

v

&

&

&

v

v

cons(correctness(customer)) ::=

cons(correctness) ::= cons(correctness(supplier))  & cons(correctness(customer)).

6.2.6 Evaluation and Discussion

The verifier is evaluated by subjecting it to several scenarios and checked to confirm

if it was able to successfully determine the satisfaction of the various constraints iden-

tified for the supply chain management scenario in the previous section. Different

scenarios can be simulated by just changing the knowledge possessed by the agents

to effect the choice of the path for the interaction. The knowledge possessed by the

agents for each scenario discussed is listed in figure 6.3. Each scenario is identified in

terms of an order number that is supplied to the customer agent which is responsible
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for initiating an interaction. The verification tests were done exhaustively for differ-

ent combinations of incorrect deployments for different scenario alternatives. In the

following discussion we give only a few of them for brevity and to demonstrate the

knowledge specification and faulty protocol specification for simulations. To begin the

simulation we need to instantiate the role of the customer and the supplier agents. This

is done by supplying the simulator a list[a(customer(sc4),c),a(supplier,s)]where sc4

is the order number supplied to the customer agent. All our scenarios are related to a

domain of supply chain management for a automobile spare parts and motor service

dealer. The first of our cases is a simple scenario where the customer places an order

knowledge common to all scenarios
known(c,(orderdetails(N,L,P) <−−− lineItem(N,L) and prodref(N,P))).
known(c,(processchange(N,R,K) <−−− processedchange(N,R,K))).
known(s,(process(N,L,P,Outcome) <−−−processed(N,Outcome))).
known(_,framework_agreement(c,s)).

Scenario 1 order number sc3
known(c,lineItem(sc3,[(mirrorcoat,100)])).
known(c,prodref(sc3,refp3)).
known(s,processed(sc3,a)).

Scenario 3 order number sc4

known(s,counter_proposal(sc4,[(pinkwheelguard,4)])).
known(c,lineItem(sc4,[(redwheelguard,4)])).
known(c,prodref(sc4,refp4)).
known(s,processed(sc4,a)).
known(c,processedchange(sc4,r)).

Scenario 2 order number sc1
known(s,counter_proposal(sc1,[(alphadec1011,1),(acfit,1),(steeringcover,2),(jack,10)]))
known(c,lineItem(sc1,[(sonydec1098,1),(acfit,1),(steeringcover,2),(jack,10)])).
known(c,prodref(sc1,refp1)).
known(s,processed(sc1,a)).
known(c,processedchange(sc1,R,a)).

Scenario 4 order number sc2
known(c,lineItem(sc2,[(footrug,50),(rearmirror,2000),(bumper,190),(jack,100)])).
known(c,prodref(sc2,refp2)).
known(s,processed(sc2,r)).

Figure 6.3: Agent Knowledge for supply chain management scenario

for a service of hundred scratch resistant mirror coats. The dealer is able to meet the
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demand and accepts the order. This corresponds to the order number sc3 in figure 6.3.

We have an implementation that is correct in the sense the implementation is as per the

design with the customer checking the framework agreement and sending the order to

the appropriate supplier. In response, the supplier sends correctly the accept response

without any contradictory responses. The output of the verifier correctly detected the

satisfaction of safety, termination, liveness and correctness property.

We then simulate a couple of faulty deployments of the model with the supplier ig-

noring the order request or responding with both the accept and the reject responses.

The faults are introduced in the agent protocol specification as in figure 6.4 for the

case where the supplier sends contradictory responses. For the later case, the knowl-

edge possessed by the supplier agent about theprocessoutcome is changed to anything

but a or r which causes it not to respond to the order request. In the first of the two

faulty deployments, we would expect the verifier to detect the violation of liveness,

termination and correctness property and also the satisfaction of the safety property.

The output of the verifier was in conformance to our expectations. As for the second

case too the verifier correctly detected the violation of the safety property and the sat-

isfaction of all other properties.

a(supplier,S) ::=
process(N,L,P,Outcome) <−− order_call_off(N,L,P) <= a(customer(N),C)
then
((accept(N) => a(customer(N),C) 

then
(accept(N,R)  <= a(customer(N),C) 

or
cancel_order_call_off(N,R)  <= a(customer(N),C)))

or
null)

then

then
order_call_off_change(N,R) => a(customer(N),C) <−− counter_proposal(N,R)

reject(N) => a(customer(N),C)).

Figure 6.4: Protocol definition for erroneous supplier agent

The next test case scenario requires the supplier to make a counter proposal which the

customer accepts. This corresponds to order number sc1 in figure 6.3. The customer
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order comprises of a sony stereo system among other things. The supplier does not

have the requested sony stereo system in stock. Apart from the requested sony stereo

system, the supplier is able to supply all the other items the customer has requested.

Hence the supplier makes a counter proposal offering to supply an alpha dec music

system instead of sony which the customer accepts. The correct deployment of the

scenario caused the verifier to correctly detect the satisfaction of the properties. As for

the faulty deployment of the scenario we consider the case where the customer does

not check for the existence of a framework agreement and tries to send the order to

some other supplier of its choice. For the simulation we have an instance for the cho-

sen supplier who interacts normally as a supplier with an agreement would. For fault

induction, the precondition or the proaction constraintframeworkagreement(C,S)is

removed from the dialogue corresponding to the customer agent in the protocol speci-

fication. The verifier was successful in correctly detecting the violation of the correct-

ness property and satisfaction of the others.

Next test scenario is similar to the previous one with the difference being that the

counter proposal made by the supplier is rejected by the customer. For better illustra-

tion we have the case where the customer requests for four red coloured wheel guards.

The supplier attempts a counter proposal to supply with pink coloured wheel guards

which the customer rejects. This corresponds to order number sc4. For the faulty

implementation case, a customer receiving a counter proposal refrains from sending a

response. This is effected by changing theprocesschangeconstraint output to anything

buta or r. Both the correct and faulty implementations of the scenario showed the cor-

rect satisfaction and violation of the properties. The violation of the liveness property

for the faulty implementation is because of the inclusion of the role determination of

the message sender in the liveness property which cannot be resolved due to the non-

termination of the supplier and the customer roles.

The scenario corresponding to the order number sc2 is the case where the supplier

rejects the customer order outright as he cannot meet the requirements specified by the

order even with a counter proposal. The order in the example has a large number of
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foot rugs, rear view mirrors, bumpers and jacks. This too was verified correctly.

6.2.7 Conclusion

For this scenario simulation, the algorithm for automatic protocol generation in 4.5

was used. The faulty protocol simulation reflects the very common corrupt practices

which might go undetected if not verified. With the verifier as a tool, it is possible to

easily detect the errors. Though the verifier supports the determination of constraint

satisfaction or violation for all the possible interactions, such an attempt on even a

slightly complex scenario takes a very long time.
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6.3 Software Quality Management - Change manage-

ment process

6.3.1 Process Description

“A functional change in a released software has to be carried out within stipulated

effort limits. An impact analysis of the requested change is performed by the sup-

plier to estimate the effort required. If effort suggested by impact analysis is within

limits, the requester approves the change for a negotiated effort and evaluates the

changed software for requirement compliance. Any deviation would require a rework

with additional effort and the process of change-evaluation iterates until compliance

is established or the effort limit is exceeded. “

6.3.2 PCMDL

XOR  OR

acceptor

XOR

changeRequest(X,V,EffortLimit)
<<PCK>>

verifiedCorrect(X)

request_change(X)

withinlimit(Effort,Effortlimit,G)
<<RCK>>

<<PCK>>
agreedparam(E3,D3)

 OR

implementor

<<PCK>>
actualparam(X,ActEffort)

reworkRequest(X,ActEffort,true,R)
<<PCK>>

<<RCK>>
iscorrect(X,U)

 OR

reworkRequest(X,ActEffort,false,R)
<<PCK>>

analyser

[U=true]

START

END

requestor

 <<PCK>>
impactparam(X,Effort)impact(X,Effort)

request_rejected(X)

[G=true][G=false]

changeapproved(X,Effort3)

changed(X,Ae)

change_rejected(R) <<PCK>>
reworkparam(R,ReEffort)

[U=false]

change_scraped(X)

SQM change management process model
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6.3.3 Protocol Specification

As indicated in the PCMDL, the change management process has two main interact-

ing processes, each with a subprocess. The scenario simulation requires two agents

and four roles. The identified roles arerequestor, analyser, acceptorandimplementor.

The roles of requestor and acceptor is performed by one agent and, the roles of anal-

yser and implementor is enacted by the other. It is the requestor agent which triggers

the interaction. It knows the details of the change that is needed and the budget in

terms of effort that is allocated for this particular change. For the purpose of simplic-

ity, we restrict the known details about a change to be just the change request number

X in the knowledge constraintchangeRequest(X,V,EffortLimit)where V corresponds

to the supplier/analyser who should be approached with the request for the required

change. Without revealing the limits on the effort, the requestor communicates the

change request to the analyser agent. In turn, the analyser performs the impact analy-

sis, indicated as a constraintimpactparamand responds to the request with theimpact

message indicating the effort estimate for the requested change. Equipped with this

knowledge about the estimated effort and the previously known effort limit, the re-

questor determines whether the go ahead for implementation of the change in terms

of approval can be granted. This is shown as the reaction constraintwithinlimit and

the possible decision outcomes, by the messageschangeapprovedandrequestrejected

messages. Therequestrejectedmarks one of the possible business process termination

messages. Thechangeapprovedmessage is based on the assumption that the negoti-

ations required for agreeing upon an effort by both the parties has been carried out

and the agreed effort is acquired by the requestor agent as indicated by the knowledge

acquisitionagreedparam. In live deployments of this business process, the actual im-

plementation process after change approval might involve several interactions between

the two interacting parties. We opt to adhere to the process description in 6.3.1 and

consider the details of implementation as external to the modelling boundaries. Hence

the role of implementorin our case is summoned to take care of communicating to

the requestor of the completed change and the actual effort that was consumed in the

process of implementing the requested change. Thus on receipt of thechangeapproved

message, the analyser invokes the implementor with the constraintactualparam, that
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supplies the actual effort to the implementor. The implementor then notifies the com-

pletion of change implementation and the actual effort in thechangedmessage to the

requestor, which has meanwhile changed its role to that of an acceptor after having sent

thechangeapprovedmessage. Acceptor on its part validates the change for compliance

(modelled as constraintiscorrect) and if found satisfactory, it sends theverifiedCorrect

message to the implementor. This constitutes another possible business process ter-

mination. However if the change implementation is not satisfactory, the acceptor uses

the actual effort sent to explore the possibility of a rework. A rework can be called

for if there is still some effort left in the set budget. This decision is indicated by the

reworkRequestwhich also creates a new request number corresponding to the change

only if rework can be afforded. A negative rework decision causes the acceptor to no-

tify the implementor to abandon the implementation with thechangescrapedmessage.

If the rework decision created a rework request number, this is sent to the implementor

in thechangerejectedmessage. This requires the implementation cycle to be repeated

and as before we consider the actual implementation to be completed before the im-

plementor is called upon with the actual effort supplied in this case byreworkparam.

The acceptor also calls upon itself to await the details of rework. The subsequent

interactions with thechangedandchangerejectedmessage is repeated until either a

verifiedCorrector changescrapedcauses a termination of the business process.

The specification of the protocol for the two agents is given in figures 6.5 and 6.6. It

may be noted that the model may have many implementor and acceptor agents instan-

tiated as the roles call upon themselves in thechanged - changerejectedmessage loop.

The association of each implementor and agent instances is one-one. That is for each

instantiation of an implementor role for a rework request a corresponding acceptor

agent is instantiated.

6.3.4 Assumptions

Summarising the assumptions a few of which have already been stated explicitly in the

protocol specification we have the following :

- The functional elaboration of the individual subprocesses is outside the modelling

scope.
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a(requestor(V,X),C) ::=

 request_change(X)  => a(analyser(C,X),V) <−− changeRequest(X,V,EffortLimit) 

a(acceptor(V,X,ActEffort),C))).

then

(changeapproved(X,Effort3) => a(analyser(C,X),V) <−− G=true and agreedparam(X,Effort3)
or 
(request_rejected(X) => a(analyser(C,X),V) <−−− G=false

then
withinlimit(Effort,EffortLimit,G) <−− impact(X,Effort) <= a(analyser(C,X),V)

 then

protocol specification for requestor agent

 iscorrect(X,U) <−− changed(X,ActEffort) <= a(implementor(C,X,ActEffort),V)

then
(verifiedCorrect(X) => a(implementor(C,X,ActEffort),V) <−− U=true
or
(change_rejected(R) => a(implementor(C,X,ActEffort),V) <−− U=false and reworkRequest(X,ActEffort,true,R)

then
a(acceptor(V,R,ReEffort),C))

or
change_scraped(X) => a(implementor(C,X,ActEffort),V) <−− U=false and reworkRequest(X,ActEffort,false,_)).

a(acceptor(V,X,ActEffort),C) ::=

protocol specification for acceptor agent

Figure 6.5: Requestor Agent Protocol

- The negotiated effort for an approved change is available with the requestor.

- The role of the implementor is called upon after the completion of the change imple-

mentation. The details of actual implementation is considered to be out of scope.

- Whenever the implementor agent reports the actual effort, it reports the total effort

for the change request and not just the rework effort.

- Any message sent by an agent will eventually be received by the receiver agent.

6.3.5 Properties for verification

As in the earlier SCM example,satisfied(X)indicates the satisfaction of a property X,

send(M,R)indicates M was sent to R,receive(M,S)indicates M was received from S.

Termination : The change process initiated should always complete. This requires

all the initiated roles to eventually terminate. The roles ofrequestorandanalyserwill

always be initiated while theimplementorand theacceptorare initiated conditionally
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change_scraped(X) <= a(acceptor(V,X,ActEffort),C)).

changed(X,ActEffort) => a(acceptor(V,X,ActEffort),C) 

then

(verifiedCorrect(X) <= a(acceptor(V,X,ActEffort),C)

or

a(implementor(C,R,ReEffort),V) <−− reworkparam(R,ReEffort)

then

a(implementor(C,X,ActEffort),V) ::=

(change_rejected(R) <= a(acceptor(V,X,ActEffort),C)

or

protocol specification for the implementor agent

protocol specification for analyser agent

a(implementor(C,X,ActEffort),V) <−−  actualparam(X,ActEffort)))
then

or
(request_rejected(X) <= a(requestor(V,X),C) 

impact(X,Effort) => a(requestor(V,X),C) <−− impactparam(X,Effort) 

then

(changeapproved(X,Effort3) <= a(requestor(V,X),C)

request_change(X) <= a(requestor(V,X),C) 

then

a(analyser(C,X),V) ::=

Figure 6.6: Analyser Agent Protocol

depending upon the effort estimate, approval and rework decisions.

satisfied(termination)←− �end(requestor)∧ �end(analyser)

∧ (start(implementor)→ �end(implementor))

∧ (start(acceptor)→ �end(acceptor))

Safety: The effort limit should never be exceeded.

satisfied(safety)←− effort(actual)< effort(limit)

Liveness: Any change-request should either be accepted or rejected or scraped.

satisfied(liveness)←− result(change,accept)∨ result(change,reject)∨ result(change,scraped).

Correctness: The onus of ensuring the correctness of the flow is borne mainly by the
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requestor agent. The requestor should respect the limits on effort and approve the im-

plementation of a change only if the subsequent impact analysis confirms the estimated

effort to be less than the effort limit. The acceptor should accept the change if found

to be correct, else should request for a rework if the actual effort does not exceed the

limits and scrap the request if the actual effort exceeds limits. On its part, the analyser

agent should respond to the requestor agent with impact and actual effort.

satisfied( correctness(customer))←− request(R)∧ analyser(V)∧ effort(limit,L)∧
send(request(R),V)∧ receive(effort(impact,I),V)∧
((withinlimit(I,L,true)∧ send(approve,V)

∧ receive(response(change,effort(actual,A)),V)∧
(correct(change)∧ send(accept,V)

∨ incorrect(change)

∧ ((exceedlimit(L,true)∧ send(scrap,V))

∨ exceedlimit(L,false)∧ send(rework,V)))

∨ (withinlimit(I,L,false)∧ send(reject,V)))).

satisfied( correctness(analyser))←− receive(request(R),C)∧ customer(C)

∧ analyse(R,effort(impact,I))∧ send(effort(impact,I),C)

∧ ((receive(approve,V)→ send(response(change,effort(Actual,A))))

∨ (receive(rework,V)→ send(response(change,effort(Actual,N)))))

6.3.6 Constraint Specification

The constraint specification for the termination property is given below.

(not(start(a(acceptor(V,_,_),C)) @ I3) & not(sart(a(implementor(C,_,_),V)) @ I4)))

end(a(requestor(V,X),C) @ I & end(a(analyser(C,X),V) @  after(I2) 
&

((start(a(acceptor(V,_,_),C)) @ I3 & end(a(acceptor(V,_,_).,C)) @ before(after(0,I))) 
&

((start(a(implementor(C,_,_),V)) @ I4 & end(a(implementor(C,_,_),V) @ before(after(0,I2)))
v

cons(termination) ::=

The specification checks for the completion of the analyser and the requestor roles

which are instantiated whenever the business process is triggered. The acceptor and
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implementor roles may not be called upon in some cases as in the case when the re-

questor determines that the impact analysis has revealed an effort which cannot be

accommodated within budget. Hence the part of the specification checking for the ter-

mination of the acceptor and implementor roles, test for the start of these roles. Further

as we stated earlier the association between acceptor and implementor is one-one and

hence we check for both of these roles to have started or not started.

The specification of the safety property checks for the actual effort to be less than the

effort limit. The specification is shown below. The conditionsrequestsin the spec-

ification provides the verifier with all the request numbers associated with a change

request. It may be recalled from the protocol specification that whenever a rework is

requested a new request number is generated. Hence a single change request can have

more than one request numbers. The safety property is checked for each of the cases

where the actual effort is sent to the requestor.

cons(safety) ::=

ci(changeRequest(X,V,El) , a(requestor(V,X),C)) @ _ <−−− (requests(Rs) & member(X,Rs)) 
&

cons(chksafety(Rs,V,El)).

cons(chksafety(Rs,V,El)) ::=

(((ci(kr(V,changed(X1,ActEffort)),a(requestor(V,X1),C)) @ _ 
&

v
ci(kr(V,changed(X1,ActEffort)),a(acceptor(V,X1,ActEffort),C)) @ _ )

v

&

ActEffort =<El)

 ((null <−−− Rs=[X1 | T] 

not(ci(kr(V,changed(X1,ActEffort)),a(Role,C)) @ _)) 
v

null <−−− Rs=[]).

The liveness property requires that therequestrejected, verifiedCorrector thechangescraped

message be eventually sent to the implementor. Since the process allows for the rework

to be done with a different request number, the constraint specification needs to give

the details of all the change and rework request numbers related to a particular change

request. This is done as in safety specification by using therequests(L)dynamic con-
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straint specification. As an additional check we add the constraint that the instance

sending the message should be in the role of the acceptor.

cons(liveness) ::= 

v
((ci(kr(C,request_rejected(X),a(analyser(C,X),V)) @  I & role(requestor(V,X),C)) @ before(I))

v
ci(kr(C,change_scraped(X)),a(implememtor(C,X,_),V)) @ I)

(ci(kr(C,verifiedCorrect(A)),a(implementor(C,X,_),V)) @ I <−−−(requests(L) & member(A,L))

&
role(acceptor(V,X,_),C) @before(I).

The correctness property checks if every interaction is as per model requirement. As

we have detailed the interactions in the protocol specification, we give the constraint

specification with just an overview. To maintain legibility in specification, the correct-

ness constraint is specified in three parts,cons(correctness)is the main specification

which uses the two other partscons(correctness(acceptor(N)))and

cons(correctness(implementor))corresponding to the roles of acceptor and the imple-

mentor. The correctness is checked for each of the acceptor instances created during

the rework cycle. We assume that a message sent by an agent will eventually be re-

ceived by the receiver. Hence we do not check for the reception of message by each

implementor instance.

 ci(changeRequest(X,V,El),a(requestor(V,X),C)) @ I1
&
ci(kr(V,impact(X,E)),a(requestor(V,X),C) @ after(I1) 

&
role(analyser(C,X),V) @ I1 
&
ci(withinlimit(E,El,G),a(requestor(V,X),C)) @ I2 
&

((ci(G=false,a(requestor(V,X),C)) @ I3 

ci(ks(V,request_rejected(X)),a(requestor(V,X),C)) @ after(I3))
v

(ci(G=true and agreedparam(X,E3),a(requestor(V,X),C) @ I2 
&

ci(ks(V,changeapproved(X,E3)),a(requestor(V,X),C)) @ after(I2) 
&
cons(correctness(acceptor(L))) <−−− requests(L)))

&

ci(kr(C,request_change(X)),a(analyser(C,X),V) @ I6 

&
ci(impactparam(X,_),a(analyser(C,X),V)) @ after(I6)
&
(cons(correctness(implementor))

v
null).

cons(correctness) ::=

&
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cons(correctness(acceptor(N))) ::=

(ci(kr(V,changed(X,Ae)),a(acceptor(V,X,Ae),C)) @ I4 <−−−N=[X|tail]
&
role(implementor(C,X,_),V) @ I4 
&
ci(iscorrect(X,U),a(acceptor(V,X,Ae),C)) @ I5
&

((ci(U=true,a(acceptor(V,X,Ae),C)) @ after(I5)
&

ci(ks(V,verifiedCorrect(X)),a(acceptor(V,X,Ae),C)) @ after(I5))
v
(ci(U=false and reworkRequest(X,_,true,R),a(acceptor(V,X,Ae),C)) @ I6

&
ci(ks(V,change_scraped(X)),a(acceptor(V,X,Ae),C)) @ after(I6)))
&
cons(correctness(acceptor(Tail))))

v
null <−−− N=[].

   cp(actualparam(X,_),a(implementor(C,X,_),V)) @ I7 

cons(correctness(implementor)) ::=

v
cp(reworkparam(J,_),a(implementor(C,J,_),V)) @ I7 <−−−(requests(L) & member(J,L)).

6.3.7 Evaluation and Discussion

Below we list four of the possible alternatives with a possible test case for each of the

alternatives. Efforts are stated in units of person days(pd). The knowledge content of

the agents is given after the scenario alternative description.

Alternative 1: The impact analysis is within the effort limit. The implementation

does not comply to the requirement in the first iteration but meets the requirement in

the second iteration with the total effort well within the limit.

TEST CASE: The requester has an effort limit of 300pd, the impact analysis suggests

an effort of 200pd. Actual effort utilised in the first iteration is 250pd. The correct

change is delivered in the second iteration with an additional effort of 25pd.

Alternative 2: The impact analysis is within the established effort limit and the change

is verified to be correct on first delivery of the implementation.

TEST CASE: A rather too ideal test case with the budgeted, estimated and agreed effort

of 200 pd is considered.
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Alternative 3: The impact analysis exceeds budgeted effort suggesting that the change

cannot be effected within the set effort limit.

TEST CASE: The test case uses a budgeted effort of 200pd while the estimated effort

after impact analysis is stated at 250pd.

Alternative 4: The impact analysis is within the effort limit. However compliance

to the requirement is not met even after the allocated effort is exhausted, necessitating

the change implementation to be abandoned.

TEST CASE: The effort limit is set at 400pd while the impact analysis reveals an effort

of 300pd, the work is started with a negotiated effort of 280 pd but the actual effort

consumed in the first iteration is at 300pd. A rework raises the actual effort spent to

450 pd causing the project to be scraped.

The knowledge specifications for scenarios described above is given below

knowledge common to all the scenarios

known(c,(reworkRequest(Cr,Ae,true,Rcr)← changeRequest(Cr,,El) and Ae=<El and name(Cr,K) and name(r,D) and append(D,K,L)

and name(Rcr,L))).

known(c,(reworkRequest(Cr,Ae,false,)← changeRequest(Cr,,El) and Ae>El)).

known(c,(withinlimit(Effort,EffortLimit,true)← Effort=<EffortLimit)).

known(c,(withinlimit(Effort,EffortLimit,false)← Effort>EffortLimit)).

knowledge forscenario 1- changerequest cr1

known(c,changeRequest(cr1,v,300)).

known(c,iscorrect(cr1,false)).

known(c,iscorrect(rcr1,true)).

known(c,agreedparam(cr1,180)).

known(v,impactparam(cr1,200)).

known(v,actualparam(cr1,250)).

known(v,reworkparam(rcr1,275)).
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knowledge forscenario 2- changerequest cr2

known(c,changeRequest(cr2,v,200)).

known(c,iscorrect(cr2,true)).

known(v,impactparam(cr2,200)).

known(c,agreedparam(cr2,200)).

known(v,actualparam(cr2,200)).

knowledge forscenario 3- changerequest cr3

known(c,changeRequest(cr3,v,200)).

known(v,impactparam(cr3,250)).

knowledge forscenario 4- changerequest cr4

known(c,changeRequest(cr4,v,400)).

known(c,iscorrect(cr4,false)).

known(c,iscorrect(rcr4,false)).

known(v,impactparam(cr4,300)).

known(c,agreedparam(cr4,280)).

known(v,actualparam(cr4,300)).

known(v,reworkparam(rcr4,450)).

The verifier correctly identified the satisfaction of properties. All the above correct sce-

narios show the satisfaction of the termination, safety, liveness and correctness prop-

erties except for the scenario in Alternative 4 where the safety property is correctly

determined as violated.

The scenarios for the faulty protocol requirements are listed below

Alternative 1: The change is approved even though the effort estimate after the impact

analysis exceeds the budgeted effort limit.

TEST CASE: An effort limit of 200pd is set while the estimated effort turns out to be

250pd. The other data items required for the test are set such that the change is verified

correct and the process terminates in the first iteration with an actual effort of 300pd.
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The change in the protocol specification is brought about by removing the constraint

checking the output of thewithinlimit knowledge acquisition on thechangeapproved

message.

The verifier correctly identifies the violation of the safety and the correctness proper-

ties while correctly detecting the satisfaction of the liveness and termination property.

The violation of the safety property is because of the actual effort of 300pd exceeding

the effort limit of 200pd. The correctness property is violated because of the absence

of the constraint onchangeapprovedmessage send event.

Alternative 2: Acceptor fails to respond after receiving thechangedresponse from

the implementor.

TEST CASE: To simulate this case we use the scenarios with change request number

cr2 from the correct protocol implementation and change the knowledge possessed by

the acceptor agent about the correctness of the implementation that is theiscorrectcon-

straint, such that it is neither is true nor false. This prevents any further message from

the acceptor and ends the role of the acceptor while the implementor is left waiting for

a response to itschangedmessage.

All the properties are indicated as being violated. This is because the termination of

the implementor cannot be detected, all other properties which use ci specification for

the implementor fail.

Alternative 3: requestor sendschangeapprovedas well as therequestrejectedmes-

sages.

TEST CASE: In order to bring about the above stated effect, the protocol specification

of the requestor is changed as below such that it ignores the outcome of thewithinlimit

processing and sends both therequestrejectedandchangeapprovedmessages.
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a(requestor(V,X),C) ::=

 request_change(X)  => a(analyser(C,X),V) <−− changeRequest(X,V,EffortLimit) 

a(acceptor(V,X,ActEffort),C))).

then

(changeapproved(X,Effort3) => a(analyser(C,X),V)
then 
(request_rejected(X) => a(analyser(C,X),V)   

then
withinlimit(Effort,EffortLimit,G) <−− impact(X,Effort) <= a(analyser(C,X),V)

 then

Faulty protocol specification for requestor agent

Since the analyser receives therequestrejectedmessage first, it terminates. However

the acceptor is kept alive waiting for a response to thechangeapprovedmessage from

the analyser which it will never receive because the analyser has already terminated.

This causes a failure of the termination property. Since all other property specifications

are in terms of ci constraints, they too are not satisfied.

Alternative 4: The acceptor does not verify the correctness of the received changes

and respondsverfiedCorrect.

TEST CASE: The reaction constraintiscorrectis eliminated from the protocol specifi-

cation for the acceptor role. The verifier correctly detects the violation of the correct-

ness property while the safety, liveness, and termination properties are satisfied.

Alternative 5: The analyser agent fails to perform the impact analysis but sends the

impactmessage.

TEST CASE: Any of the correct protocol knowledge specifications can be used for

this case. The protocol is changed such that the analyser reports an impact without

performing the impact analysis. The part of the protocol for the role of the analyser

change bringing in this effect is given below where the analyser sends an impact effort

of 215pd without performing impact analysis.

impact(X,Effort)⇒ a(requestor(V,X),C)← impactparam(X,Effort)is changed to

impact(X,215)⇒ a(requestor(V,X),C)
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The verifier correctly identified the violation of the correctness property while the

safety, liveness and termination properties were satisfied.

6.3.8 Conclusion

With this business process we have demonstrated the use of process loops or repeated

invocation of a part of the business process. Such invocations are prone to live-lock

conditions. An example of live-lock could be case with thechanged-changerejected

loop in our case. Though while stating the properties we have not explicitly mentioned

about live-lock, the liveness property takes care of detecting the live-lock conditions.

The simulation creates a new instance of an agent in acceptor and implementor roles

for each interaction. If we have to correspond an individual in actual deployment of

this business process with an entity in the BPM, we need to associate role with the

individual. The time span during which the role remains activated will be from the

instantiation of the first instance of the role to the termination of the last instance of

the role. As the complexity of the constraint definition in terms of alternatives or dis-

junctions increases the time taken for the verification increases tremendously. Hence

in some cases the constraint specification had to be split up to verify the satisfaction

part by part.
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6.4 Tender invitation and award

6.4.1 Process Description

“Company ABC wishes to outsource its software migration project. It has already

shortlisted five consultancy firms for the purpose. The request for proposal (RFP) is

sent out to all the five firms and their proposals are evaluated. The company is

convinced with the technical competence of the shortlisted firms and the sole criteria

for the award of tender would be the cost factor. Hence the lowest bidder bags the

contract.”

6.4.2 PCMDL

purchaser

<<PCK>>
vendors(Vs) and item(X)

lowest_quote(Quotes,P,S)
<<PCK>>

OR

START

OR

proposer[s]

tender_accepted(X,Price)

award_tender(X,Price)
OR

OR

OR

END

buyer

request_for_proposal(X)

tender_notaccepted(X)

tender_Res_ack(X)

<<PCK>>
quote(S,Quote)

vendor

contractee

<<MI>>

<<MI>>

proposal(X,Quote)

deliver(X)

delivered(X)

evaluator

contractor

Tender invitation and award process model

In the emanating discussion we use the termvendorto refer to the consultancy firms.
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6.4.3 Protocol Specification

As identified in the PCMDL, the scenario requires two main roles, that of abuyer

representing the company ABC in the process description andvendor representing the

various shortlisted companies. This model requires a one to many relationship between

the buyer and several vendors. In particular the one-many relationship is used with the

purchaser-vendor and the evaluator-proposer role interactions. The simulation is initi-

ated by an agent performing the role of abuyer. During the course of the simulation

the buyer transforms its role frompurchaserto evaluatorand then to acontractor.

a(buyer,B) ::=

a(purchaser(X,Vs,Qs),B)← vendors(Vs) and item(X) then

a(evaluator(Vs,S,X,Price), B)← lowestquote(Qs,Price,S) then

a(contractor(S,X,Price), B).

In the role of the buyer, the agent should have the knowledge of the list of ven-

dors(Vs) to which it should send the RFP and also the details of the itmigration service

represented as X for which the tenders are to be invited. This knowledge is a constraint

on the change of role frombuyerto purchaser. The purchaser role iterates over the list

of vendors sending therequestfor proposalmessage to each of the vendors and col-

lecting theproposalwith quote sent by each of the vendors.

a(purchaser(X,Vs,Qs), B) ::=

(requestfor proposal(X)⇒ a(vendor(B,X),S)← Vs=[S | R] then

proposal(X,Quote)⇐ a(vendor(B,X),S) then

a(purchaser(X,R,Qp),B)← Qs=[q(S,Quote)| Qp]) or

null← Vs=[] and Qs=[].

The quotes gathered in the role of the purchaser is used by the buyer to determine the

lowest quote and the identity of the vendor who proposed the lowest quote. These are

passed to the evaluator and constitute the knowledge constraintlowestquoteimposed

on the role change frompurchaserto evaluator. In the role of the evaluator the mes-
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sageaward tenderis sent to the proposer with the lowest quote andtendernotaccepted

message is sent to the remaining proposers. The role of the evaluator is completed after

it has received acknowledgements from all the proposers. The proposer who received

the awardtender message acknowledges with thetenderacceptedmessage while the

other proposers respond with the tender result acknowledged (tenderres ack) mes-

sage. Role evaluator helps in iterating through the list of vendors and sending appro-

priate messages to each of the vendors.

a(evaluator(Vs,S,X,Price), B) ::=

(((award tender(X,Price)⇒ a(proposer(B,X),S1)← Vs=[S1|R] and S1=S then

tenderaccepted(X,Price)⇐ a(proposer(B,X),S1)) or

(tendernotaccepted(X)⇒ a(proposer(B,X),S1)← Vs=[S1|R] and S1\=S then

tenderres ack(X)⇐ a(proposer(B,X),S1))) then

a(evaluator(R,S,X,Price),B)) or

null← Vs=[].

In the role of the contractor the buyer requests for the delivery of the system and the

role completes on receipt of the delivery from the chosen vendor.

a(contractor(S,X,Price), B) ::=

deliver(X,Price)⇒ a(contractee(B,X,Price), S) then

delivered(X,Price)⇐ a(contractee(B,X,Price), S).

We now give the specification for the vendor role. There would be two different in-

teractions depending on whether the vendor is successful or not. All the vendors will

take on the role of theproposerafter responding to the RFP and only the successful

vendor will further take on the role of thecontractee. Each of the vendors should have

the knowledge of the quote that it would propose and this acts as a constraint on the

sending of theproposalmessage. Further, if the vendor does not receive a RFP, there

is no transition in the role from the vendor to the proposer. This is indicated by the use

of null in the specification.
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a(vendor(B,X),S) ::=

((requestfor proposal(X)⇐ a(purchaser(X,Vs,Qs), B) then

proposal(X,Quote)⇒ a(purchaser(X,Vs,Qs), B)← quote(S,Quote) then

a(proposer(B,X),S)) v null).

In the role of the proposer, the vendor waits for the receipt of the tender evaluation

result which could be eitheraward tenderor tendernotacceptedand will respond ac-

cordingly. The role change for the successful vendor from proposer to contractee will

be initiated in this part of the specification.

a(proposer(B,X),S1) ::=

(tendernotaccepted(X)⇐ a(evaluator(S1,S,X,Price),B) then

tenderres ack(X)⇒ a(evaluator(S1,S,X,Price),B))

or

(award tender(X,Price)⇐ a(evaluator(S1,S,X,Price),B) then

tenderaccepted(X,Price)⇒ a(evaluator(S1,S,X,Price),B) then

a(contractee(B,X,Price), S)).

As a contractee, the vendor needs to complete the delivery of the item before comple-

tion of its role.

a(contractee(B,X,Price),S) ::=

deliver(X,Price)⇐ a(contractor(S,X,Price), B) then

delivered(X,Price)⇒ a(contractor(S,X,Price), B).

6.4.4 Assumptions

• All the shortlisted vendors respond to the RFP.

• There is no concept of deadline and the company ABC waits until it has received

the proposals from all the vendors before it can evaluate the proposals.

• Instead of using broadcast of the RFP message, a sequential iteration through the
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vendor list is used.

• The communication channel is loss less. Therefore the messages sent are always

received by the intended recipients.

6.4.5 Properties for verification

Termination : Requires all the roles for the buyer and the vendor to terminate implying

the termination of the purchaser, evaluator, contractor, proposer and contractee roles to

terminate.

satisfied(termination)←− �(end(buyer)∧ end(purchaser)∧ end(evaluator)

∧ end(contractor)∧ end(proposer(X))∧ end(contractee)∧ end(vendor(X)))

∧ X∈ vendors(Vs).

Safety: For this scenario we have two safety properties.

Safety1Award of tender should be to only one of the shortlisted candidate firms.

satisfied(safety1)←− send(award(itmigration),X)∧ proposer(X)∧
¬(send(award(itmigration),Y)∧ proposer(Y)∧ X\=Y)

Safety2If a firm is awarded the contract then tender-not-accepted notification should

not be sent to the same firm.

satisfied(safety2)←− send(awardtender(itmigration),X)∧ X∈ vendors(Vs)−→ ¬
send(tendernotaccepted(itmigration),X)

Liveness: The tender should eventually be awarded to some proposer.

satisfied(liveness)←− � send(award(itmigration),X)∧ proposer(X).

Correctness: The requirements comprising the migration activities and the short list

of the consultancy firms should be available, request for proposals should be sent to

all the shortlisted vendors. On receiving the proposals from the shortlisted vendors,

evaluation of the proposals should be done. The contract should be awarded to the

lowest bidder and notifications sent to all the other contenders.
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satisfied(correctness)←− cp(vendors(Vs) and item(M),purchaser)

∧ (∀ Z∈ vendors(Vs)−→ (send(requestfor proposal(M),Z)∧ receive(proposal(M,Quote),Z))

∧ ∃ Y∈ vendors(Vs)∧ send(awardtender(X,Price),Y)∧ lowestquote(Quotes,Price,Y)

∧ (∀ K ∈ vendors(Vs)∧ K 6=Y−→ send(tendernotaccepted(M),K))).

6.4.6 Constraint Specification

Having described the properties that we are interested in verifying in earlier sec-

tion 6.4.5 we now give the constraint specification of the termination, safety, live-

ness and correctness properties. As in previous simulations, satisfaction of termina-

tion property expects all roles to terminate. We might provide a lenient version of

the specification which checks for the closure of the main processes i.e, the buyer

and the five vendor roles. The specification listed in figure 6.7 is that of a stricter

version which ensures the closure of even the purchaser and evaluator iteration roles

along with all the roles named in the protocol specification. Part of the specification

cons(termbuyerroles(Vs,X))iterates over the buyer subroles whilecons(termvendor(Vs))

iterates over the list of vendors in the role of the proposers. Theaward tendermessage

should be sent to no more than one vendor.

The specification for the safety1 property in the figure 6.8 checks that the number

of vendors to which the awardtender message is sent is exactly one. To do this it

uses thecons(chkaward(Vs,As))specification which iterates through the list of vendors

collecting the identities of the vendors which receive theaward tender message. The

safety property2 ensures that theaward tenderandtendernotacceptedmessages are

not sent to the same vendor in the same run of the simulation. It additionally checks

that either of the two messages is sent.

The liveness property requiring the tender to be awarded to one of the listed vendors

is shown in figure 6.9. The specification checks that the recipient of theaward tender

message is in the role of a vendor. This property may seem rather ideal because not

always will a tendering process come to a perfect termination. There might be cases

where none of the proposals met the internal constraint of functional correctness or

cost. However the treatment of such cases would require elaboration of the model or
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end(a(contractor(S,X,_),B)) @ _ &

end(a(buyer,B)) @ _ &
cons(termbuyerroles(Vs,X)) <−−− vendors(Vs)  & item(X)&

end(a(contractee(B,X,_),S)) @ _ &
cons(termvendor(Vs)).

cons(termination) ::=

cons(termbuyerroles(Vs,X)) ::=
(Vs  = [_ | R] &

end(a(purchaser(X,Vs,_),B)) @ _

end(a(evaluator(Vs,S,X,Price),B)) @ _
&

&

cons(termbuyerroles(R,X)))
v

null <−−− Vs=[].

cons(termvendor(Vs)) ::=
(end(a(vendor(B,X),A)) @ _ <−−− Vs=[A|T] 

&

&
end(a(proposer(B,X),A)) @ _ 

cons(termvendor(T)))
v

null <−−− Vs=[]

Figure 6.7: Constraint specification for termination property

separate model to be created to handle every alternate scenario.

The correctness property encompasses the correctness of every aspect of whole

scenario interaction. Since we assume the channel to be loss-less we check the correct-

ness from the perspective of the buyer agent. In the specification given in figure 6.10,

cons(correctness)is the main specification which calls uponcons(purchaser(Vs,X,Qus)

andcons(eval(Vs,Qs,S))constraint rules. As stated earlier, the purchaser and evalua-

tor roles are involved in one to many association with the vendor roles. Hence the

specification cons(purchaser(Vs,X,Qus) is used to check the satisfaction of the re-

sponsibilities of the buyer in the role of the purchaser. It iterates through the list of

vendors supplied as input to check if all the vendors were sent the RFP and if the

proposals were received from all the vendors. Similarly, the part of the specification

in cons(eval(Vs,Qs,S)) iterates to check the appropriate result notification to each of

the vendors. Finally the contractor-contractee interaction is checked. In addition we

can also check the plausibility of the bidder with lowest quote receiving the award of

tender. Such checks are very important while modelling business processes. Dynamic
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((ci(ks(S,award_tender(X,Price)),a(buyer,B))  @ _ 

(not(ci(ks(S,award_tender(X,Price)),a(buyer,B)) @ _ &

ci(ks(S,tender_notaccepted(X)),a(buyer,B)) @ _ ))
&

v
ci(ks(S,tender_notaccepted(X)),a(buyer,B)) @ _ )).

cons(safety2) ::=

&

(((ci(ks(P,award_tender(X,Price)),a(evaluator(Vs,S,X,Price), B)) @ _<−−− Vs=[P | R]

&

cons(chkaward(R,Ap) <−−− As=[P|Ap]) 
v

(not(ci(ks(P,award_tender(X,Price)),a(evaluator(Vs,S,X,Price),B)) @ _) <−−− Vs=[P | R]

&
cons(chkaward(R,As))))

null <−−− Vs=[] & As=[]).

v

cons(chkaward(Vs,As)) ::=

cons(safety1) ::=

cons(chkaward(Vs,As)) <−−− vendors(Vs).

& As=[H]

Figure 6.8: Constraint specification for the safety1 and safety2 properties

specification can be used to supply the verifier with information on ways to perform

the calculation of the lowest quote. As an example, suppose the company ABC has

a deal with one of the listed vendors to acquire services for a subsidised rate. This

can form a part of the lowest quote calculation in the dynamic constraint specification.

Such a constraint specification would allow to cross check the calculations.

6.4.7 Evaluation and Discussion

The instantiations of the agents is done by specifying to the simulator the list

[a(buyer,b),(5,vendor(, ))] where (5,vendor(, )) indicates 5 instances in the role of

the vendor needs to be instantiated. For the input where the protocol is correct and no

errors have been introduced into the protocol specification, we have an output wherein

all the properties have been satisfied. With very few conditional constraints in the

protocol, we give a single scenario for the correct version of the protocol with the

knowledge content of the agents as specified below whereb andax, x an identifying
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ci(ks(S,award_tender(X,Price)),a(buyer,B)) @ _
&

role(vendor(B,X),S) @ _ 
&

ci(vendors(Vs) and item(X),a(buyer,B)) @ _
&

member(S,Vs).

cons(liveness) ::=

Figure 6.9: Constraint specification for the liveness property

number, correspond to the buyer and the vendor instances. The knowledge specifica-

tion also includes the method for calculation of the lowest quote.

known(b,item(itmigration)).

known(b,vendors([a1,a2,a3,a4,a5])).

known(b,(lowestquote(Qs,Q,S)← busort(Qs,Lk) and Lk=[q(S,Q)|R])).

known(b,(busort(L,Ls)← append(X,[q(A,Q1),q(K,Q2)|R],L)

and Q2<Q1 and append(X,[q(K,Q2),q(A,Q1)|R],M) and busort(M,Ls))).

known(b,(busort(L,L))).

known(a1,quote(a1,500)).

known(a2,quote(a2,200)).

known(a3,quote(a3,100)).

known(a4,quote(a4,300)).

known(a5,quote(a5,400)).

The verifier correctly identifies the satisfaction of the safety, liveness, termination and

correctness properties of the model simulation. The scenarios for the faulty run of the

protocol and the corresponding verifier output are described below. The simulation is

performed with vendors{a1,a2,a3,a4,a5}.

Scenario1: We simulate a faulty protocol implementation where the RFP is not sent

to one of the listed vendors a3. The protocol specifications for the purchaser and the

evaluator roles are changed in such a way that these roles interact with all vendors ex-

cept vendor instance a3. The verifier detects the satisfaction of the safety(1 and 2) and

liveness properties and, the violation of termination and correctness properties. The

violation of the termination property is because the verifier checks for the termination



Chapter 6. Evaluation and Discussion 98

cons(correctness) ::=

cp(vendors(Vs) and item(X), a(purchaser(X,_,Qs),B)) @ _
&

cons(purchaser(Vs,X,Qus)) 
&

cons(eval(Vs,Qs,S)) <−−−(lowest_quote(Qus,Q,S)) 
&

ci(ks(S,deliver(X,Price)),a(contractor(S,X,Price),B)) @ _ 
&

ci(kr(S,delivered(X,Price)),a(contractor(S,X,Price),B)) @ _.

cons(purchaser(Vs,X,Qs)) ::=

(ci(ks(S,request_for_proposal(X)),a(purchaser(X,Vs,Qs),B))  @ _ <−−− Vs=[S |R]
&

ci(kr(S,proposal(X,Quote)),a(purchaser(X,Vs,Qs),B)) @ _

&
cons(purchaser(R,X,Qus)))

v
null <−−− Vs=[].

cons(eval(Vs,Qs,S)) ::=

(Vs=[S1|R]

&
((ci(ks(S,award_tender(X,Price)),a(evaluator(Vs,S,X,Price),B)) @ _ 

&
ci(kr(S,tender_accepted(X,Price)),a(evaluator(Vs,S,X,Price),B)) @ _)

v
(ci(ks(S1,tender_notaccepted(X)),a(evaluator(Vs,S,X,Price),B)) @ _ 

&
ci(kr(S1,tender_res_ack(X)),a(evaluator(Vs,S,X,Price),B)) @ _))

cons(eval(R,Qs,S)))
v
null<−−−Vs=[].

&

Figure 6.10: Constraint specification for the Correctness property

of vendor a3 in the role of the proposer. Since the vendor a3 has not received any

RFP, it remains in the role of the vendor throughout the interaction. The correctness

property is detected as violated as the RFP message and the tender result notification

messages are not sent to vendor a3 and there was no proposal received from a3.

Scenario2: As the next test case scenario we consider the lowest quote calculation to

be flawed where the tender is awarded to the vendor with the highest bid. To simulate

this effect the knowledge for lowestquote in the protocol specification is changed to

give the highest quote and the vendor with the highest bid which in our case is a1.
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The verifier correctly detected the violation of the correctness property and showed the

satisfaction of all the other properties.

Scenario3: The vendor with the lowest quote identified in the process is ignored and

the tender is awarded to a different vendor who is also one among the listed vendors.

The protocol specification is changed so that the evaluator and the contractor roles are

invoked with a2 as the successful bidder without taking into consideration the outcome

of the lowestquote constraint. However the constraint specification had the a3, the bid-

der with the lowest bid as being successful. As for the verifier output the safety(1 and

2), liveness and termination were detected as satisfied while the correctness property

was not as it is only the correctness property that has the constraint check for the lowest

quote.

Scenario 4: The business process terminates without the tender being awarded to any

vendor. The desired fault for test is induced by invoking the evaluator with a non-

existent vendor a10 as the selected vendor and conditionally invoking the role of the

contractor with the condition that a10 is in the vendors set{a1,a2,a3,a4,a5}. This

would cause the protocol to terminate without the transition of the buyer to the role of

the contractor. The safety1, termination, liveness,correctness properties are violated.

Only the safety2 property is satisfied. The termination property does not detect the

closure of the contractor and the contractee roles and hence is detected as violated. All

other property violations are because of the check for theaward tendermessage in

their constraint specification.

Scenario 5: The notification of unsuccessful bid is not sent to any of the other vendors.

The protocol of the evaluator is changed as below to introduce the above faulty test

scenario.

a(evaluator(Vs,S,X,Price), B) ::=

(((award tender(X,Price)⇒ a(proposer(B,X),S1)← Vs=[S1|R] and S1=S then

tenderaccepted(X,Price)⇐ a(proposer(B,X),S1)) then

a(evaluator(R,S,X,Price),B)) or

(a(evaluator(R,S,X,Price),B)← Vs=[S1|R] and S1\=S))

or
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null← Vs=[].

The Safety(1 and 2) and liveness properties are satisfied. Termination and correct-

ness properties are identified as violated. The vendors in the roles of proposers wait

for a response form the evaluator after having sent the bid and do not terminate. The

absence of the notification message in the interaction causes the violation of the cor-

rectness property.

Scenario 6: All the proposers incorrectly receive the award of tender whether success-

ful in their bid or otherwise. The desired effect is induced by changing the proaction

constraint on theaward tendermessage from ’Vs=[S1|R] and S1=S’ to ’ Vs=[S1|R]’.

The safety1,termination and correctness properties are not satisfied while safety2,liveness

properties are satisfied. Since the number of vendors receiving theaward tendermes-

sage is more than one, the safety1 property is violated. All the proposers change their

roles to that of a contractee expecting to receive the deliver message but the contractor

role of the buyer does not loop and sends the deliver message to only one contractee.

This leaves all the proposer roles without terminating. The correctness property is vi-

olated due because it checks for the notification of the vendors other than the vendor

indicated by the lowest calculation.

6.4.8 Conclusion

Owing to the non-discrete representation of time, we had to make some hypothetical

assumptions that all vendors will respond to the proposals and had to implement the

protocol without considering the absolute time. It might have been more realistic to

have set deadline for each milestone in the tendering process like, last date for the

receipt of the proposals, last date for completion of evaluation and award of tender

etc.,In this business process we demonstrate the use of one-many relationship between

the interacting processes in the purchaser-vendor and the evaluator-proposer interac-

tions. However we restrict the broadcast of RFP by the purchaser to be sequential than

being parallel because of our scope considerations. In this scenario, the PCMDL for

the purchaser and the evaluator roles show the loops that require the iteration of these
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roles. This may seem more biased towards the obvious notions of an LCC educated

modeler. For a business modeler the purchaser and evaluator role iteration might not

be that obvious. These might be represented as a single process which is more close

to the real life deployment of the model. In such cases the translation can be enhanced

by use of inference of iteration for one-many associations.



Chapter 7

Conclusion and future directions

The verifier built is intended as a management tool with simulation and verification to

aid the diagnosis of a business process design in terms of satisfiability of constraints.

With this project we have demonstrated the use of light weight temporal logic for de-

termining the satisfaction of properties of business process models expressed at user

level as constraints on message flow. Allowing the end-user to define properties puts

the system to its best use without binding the end-user to design-time properties. As

shown in the sample simulation scenarios, faulty deployments can be identified for

some examples of bad practices. Ability to verify conformance to temporal ordering

requirements via interaction constraint satisfaction is an effective feature in minimis-

ing inter-department communication issues in practical BPM deployments. Using an

agent-based simulator with the LCC interaction framework is advantageous as it can be

related very closely to the manual, automated or the future agent oriented deployments.

In our system we assume monotonic constraints. We may need to use non-monotonic

constraints in the world of agent deployment for BPM processes, as the agents are al-

lowed to revise their beliefs. This however, is less of a problem than it might seem

because, although the agents themselves are non-monotonic, the protocols used by the

agents are monotonic. Owing to the arduous manual intervention required in the usage

of the verifier to create the model, deriving the protocol and constraint specification

limits its acceptability and makes it error-prone. Having an integration of the compo-

nents would be a good idea.
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7.1 Future Directions

In this project we have restricted to linear interactions between business processes.

Evaluating and extending the verifier to cater to parallelisation techniques would un-

leash a wide range of interesting properties concerning efficiency of the BPM to be

determined. Though the verifier supports the determination of constraint satisfaction

or violation for all the possible interactions, such an attempt on even a slightly com-

plex scenario takes a very long time. This is because the constraint solver used for

this project is simply Prolog which is not optimised for constraint solving. Prolog is

a general programming language. It would be a useful extension to this project to

replace our Prolog constraint solver with a more sophisticated satisfiability solver or

model checker. The design-simulate-verify cycle can be automated making the system

user-friendly if the few issues identified in automatic translation are resolved. One of

the first steps in this direction would be to have a method to translate the identified

constraints in the PCMDL to a corresponding constraint specification.
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Appendix A

Appendix A - Business Term Glossary

Business Process Managementtechnology is a framework of applications that effec-

tively tracks and orchestrates business process. Business Process Management helps to

automate tasks allowing manual intervention where required. The trend favouring au-

tomation is refered to asStraight Through Processing.[3]. Not all business processes

are simple enough for automation. To accommodate those processes which are too

complex for automation, the alternative trend in Business process management that

favours data-driven workflow with authorizations to skip or undo activities is called

Case Handling. The automation is controlled by the rules which define the sequence

in which the tasks are performed.

A workflow management systemis defined as “A system that defines, creates and man-

ages the execution of workflows through the use of software, running on one or more

workflow engines, which is able to interpret the process definition, interact with work-

flow participants and, where required, invoke the use of IT tools and applicatiions.” [3]

As per Geoffrey Sparks, “ABusiness Processis a collection of activities designed

to produce a specific output for a particular customer or market ”. [29]. AProcessis

an ordered sequence of activities across time and place with a beginning, end, inputs

and outputs. A business process can be composed of other business processes while

itself being a part of other business process. A single business process may affect more
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than one organisational unit. The customer to a business process could be internal to

the organisation or an external customer. The inputs to the business process could be

eitherResourcesor Information, the difference being that the resources are consumed

during the processing while the information is not. Further elaborations of the Bus-

ienss Process definition by Chris Menzel is “An objective real world event, described

totally as a sequence of events(activities,sub-processes) occuring over time containing

certain objects having certain properties standing in certain relations” [28][6]

Jeffery Herrmann : “ A process can be decomposed into other processes. A process

begins and ends at points in time. One can view a process from different perspectives

that include different things. Objectives or drivers may be part of one perspective but

not another: if included, they could be seen as instructions”[28][6].
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