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Abstract 
 
The use of formal specifications based on varieties of mathematical logic is becoming 

common in the process of designing and implementing safety critical systems and practices 

for hardware design. Formal methods are usually intended to include in the specification, all 

the important details of the final system in the specification, with the aim of proving that the 

specification possesses certain properties and lacks other unwanted properties. In large, 

complex systems, this task requires sophisticated theorem proving, which can be difficult and 

complicated. Telecommunications systems are large and complex, making detailed formal 

specification impractical given current technology. However, formal “sketches” of the 

behaviours the services provide can be produced, and these can be very helpful in locating 

which service might be relevant to a given problem. 

This thesis describes CABS, a case-based approach that uses coarse-grained graphical 

requirements specification sketches, to outline the basic behaviour of the system's functional 

modules (called services), thereby allowing us to identify, re-use and adapt requirements 

(from cases stored in a library), to construct new cases. The matching algorithm identifies 

similar behaviour between the input examples and the cases stored in the case library. By 

using cases that have already been tested, integrated and implemented, less effort is needed to 

produce requirements specifications on a large scale. Using a hypothetical 

telecommunications system as an example, it will be shown that a comparatively simple logic 

can be used to capture coarse-grained behaviour and how a case-based approach benefits from 

this. The input from the examples is used both to identify the cases whose behaviour corre-

sponds most closely to the designer's intentions, and also in the process of adapting, validating 

and, finally, verifying the proposed solution against the examples. 
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Chapter: 

1. Introduction 

Requirements play an important role throughout system development and the lack of 

validated, verified and easily accessible requirements has been suggested to be one of the 

main areas of focus in requirements engineering [Bubenko 95]. State-based modelling is one 

of the ways used in practice to tackle this. A conventional use for state-based modelling in 

telecommunications services is in describing the precise behaviour of those services. 

Unfortunately this form of detailed modelling is prohibitively expensive for realistically sized 

problems. This thesis describes a different role for state based models - not as precise 

behavioural descriptions but as "sketches" of key features required by a client. These 

features are used by a case-based reasoning (CBR) system to suggest existing services 

which might be adapted to the clients’ needs. 

The core of the thesis is in the CBR matching system but, in order to provide this, we need to 

solve a set of subsidiary problems: how to describe required behaviours at an appropriate 

level of detail (just sufficient to discriminate cases); how to refine the input examples if (as is 

likely) the first draft of this isn’t sufficient; how to test if the required behaviour is included in 

the proposed and selected solution (by simulation and automated verification identifying 

where the behaviour differs). 
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1.1 Functional Requirements, Problems and Benefits 

The application domain that has been chosen is telecommunications services and, in 

particular, telephone services. Telephone services are a non-trivial domain where hundreds of 

different services and variants of services have been implemented in telecommunications 

switches and where the number of services and demand for new services is increasing. Most 

big telecommunications companies have tried to apply formal methods to the specification of 

telecommunications services, due to the stringent requirements for reliability in telephone 

networks and, in particular, the demand that no additional functionality should affect the basic 

functionality, such as calling an emergency service. The application domain is in fact so 

complex and large, that formal requirements specifications have not been applied in practice. 

In the 1970s, research started in earnest on formally specifying systems and, by the late 

seventies and early eighties, industry assumed that research progress was sufficient to bring 

the knowledge and research results into practical use [Hsia, Davis, Kung, 93]. A number of 

large scale projects were initiated to introduce formal requirements specifications. In most 

areas, formal methods did not deliver on their early promise [Zave 91]; a number of 

explanations for this are given in [Hall 90]. 

The size of the application domain (functional requirements of telephone services) used for 

reference in this research, is large enough to be non-trivial and to confront a number of issues 

arising from a full scale application. Seventeen behavioural outlines of telecommunications 

services (the behaviour seen from the point of view of a phone user without describing any of 

the complex behaviour occurring in the telecommunications network) have been formalised 

and used in evaluation. Each service contains a number of transition rules1, representing the 

behaviour of the service, and a number of term definitions connecting the specification of the 

system to its environment. 

                                                 

1 Transition rules and term definitions will be explained in Chapter 5. 
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Mainstream requirements capture tools in telecommunications are informal and methodology 

centred and do not require any particular notations of formalisms (Ericssons2 PROPS method 

for example). In the state of the art requirements capturing tool Rational Rose use-cases are 

used to capture an initial sketch of the behavioural requirements. Rational Rose will be 

introduced at Ericsson to be used as their main requirements capturing tool. Use-cases 

capture examples of behaviour. Different notations can be used in the method depending on 

the application domain and user preferences. For example the unified modelling language, 

UML, is recommended for static modelling of objects and their relations. Informal 

requirements in telecommunications have in a number of cases been shown to be expensive 

(for an unconfirmed example se Section 2.3.1), leading to legal problems over the exact 

meaning of the informal requirements once a functionality is delivered that does not meet the 

customers expectations. Informal requirements have also led to misunderstandings in the 

design and implementation, causing serious problems, faults and down time in 

telecommunications systems (an example of this is given in Chapter 2). It has been claimed 

that poor quality software is costing UK industry £2000 million every year, and that many 

failures have their roots in informal requirements and specifications [Schofield 92]. 

These problems are the main reasons for the interest in formal methods from major 

telecommunications companies. Formal specifications based on varieties of mathematical 

logic are being used more frequently in the design of safety critical systems. Formal methods 

are usually intended to include all important details of the final system in the specification, 

with the aim of proving that it possesses certain properties and does not exhibit other 

unwanted properties. Fully formalised requirements are today mostly used for well isolated 

problems where the number of states are less than a few thousand, for example used in 

protocol specifications. It is believed that a wider use of formal methods would reduce 

problems caused by textual requirements and formal specifications are successfully used for 

                                                 

2 Ericsson is one of the largest communications supplier for network operators, service providers, 

enterprises and customers and employees more than 100,000 people in 140 countries. 
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many different tasks, but limitations in tools and graphical notations limit their use today 

[Jensen 97]. Telecommunications services in general include hundreds of thousands of states 

and have been resistant to such rigorous methods. Isolated parts of the behaviour of services 

have been formalised but even here the number of states has been exceeding the limit of 

performance of available tools [Capellmann, Christensen, Herzog 98]. Major 

telecommunications companies started investigating formal methods thoroughly in the eighties 

([Zave 91], [Funk, Reichman 90] [Kelly, Nonnenman 91]) but none use formal methods 

routinely in service and feature requirements. In large, complex systems, this task requires 

sophisticated theorem proving, which can be difficult and complicated. Telecommunications 

systems are large and complex, making their detailed formal specification impractical with 

current technology. Sometimes, the formalism or combination of formalisms is so complex 

that even experts in formal methods find it difficult formally to represent some aspects of the 

system to be specified [Mataga, Zave 93]. Some researchers doubt that existing methods will 

scale up to such complex systems [Heimdahl, Leveson 95]. 

1.1.1 Previous Experience and Domain Related Problems 

In 1985 Ericsson Research & Development started to explore formal methods in detail. In 

autumn 1985 I was employed in an industrial project at Ericsson at the department of 

computer science involved with the task of bringing formal specification into use in industry 

for the specification of computer based systems. During the following six years, we 

collaborated with the University of Stockholm, the University of Uppsala, Stanford University 

and the Swedish Institute of Computer Science (SICS), amongst others. The main task was 

to develop a formal notation and implement a prototype to explore the use of formal methods 

in industrial applications such as telephone service requirements. A large coarse grained 
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formal specification of sixteen telephone services3 was made [Funk, Raichman, 90] where 

the main behavioural requirements of the services where captured. Most effort was put into 

exploring and choosing a suitable formal notation expressive enough to capture these 

requirements but not more expressive than necessary, to enable simulation and analysis of the 

requirements. The chosen logical notation for this research is based on the results used in the 

formal methods project at Ericsson (see Appendix A and [Funk 93]). The logical notation 

was expressive enough to be used in formalising coarse grained telecommunications service 

specifications on a high abstraction4 level but, for different reasons (lack of resources being 

one), we had not addressed sufficiently: 

Re-use and modification of previously specified services or parts of services. The most 

frequent situation in the domain of telecommunications service specifications is the 

specification of services similar to previous ones. 

The issue of iteratively refining and incrementally extending requirements that originally 

where sketchy, incomplete and contained errors. 

End users with background in systems design and programming did not accept the idea of 

using the formal notation to specify services at Ericsson. Their interest in formal methods 

was high until they where confronted with logical axioms. Even showing slides with logical or 

mathematical notations drastically reduced any interest earlier shown. 

                                                 

3 A telephone service (such as divert calls) in Europe is called a feature in the United States. Service is 

used here and the word feature always refers to features in case-based reasoning (as described in 

Chapter 6). 

4 At the beginning we had hoped to define a formal notation expressive enough to capture the 

complete detailed behaviour of telecommunications services (concurrently occurring events, 

parallelisms, timing constraints, nondeterminism, etc.), but realised that this had to be abandoned if 

we at the same time wanted to have access to simulation and powerful analysis methods. 
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These factors contributed to the cancellation of the project in 1992 (started in 1985, about 40 

man years where invested). A related project implementing a full scale theorem prover for 

service requirements specifications with a graphical interface [Ridley, Höök, Engstedt, 

Lapins, Lindroos 97], started in 1993 and was successfully completed technically but 

cancelled in 1997. The logical notation and the theorem prover was implemented in C++ and 

Erlang5 and proved to be sufficient for full scale use for service specifications. A graphical 

notation was introduced in parallel with the textual notation (the notation is based on decision 

trees and bears no similarities to the one used in this research) and required knowledge in 

logic and formal methods which turned out to be more than any users were prepared to 

accept. Also, the problem of re-use and refinement of service sketches was not further 

explored (and was not a defined part of this project). Ericsson is at the moment not actively 

involved with formal methods for requirements specifications of telecommunications services. 

1.2  Capturing and Formalising Requirements 

In this research, some of the main features of traditional “strong” use of formal methods are 

sacrificed in the requirements capture process: we do not require the specification to be 

correct and complete from the start. In many application domains, including the 

telecommunications domain, original requirements are often sketchy ideas and it is not always 

justified to force the user to give complete and correct requirements from the start [Cybulski 

96]. Requirements capture is seen as an iterative refinement process of some initial 

requirements that are incomplete (lacking details, missing behaviour for different situations 

such as odd and unusual situations) and may contain flaws (reflecting a naive or an unclear 

idea of the functionality that needs refinement). 

                                                 

5 Erlang is a concurrent functional programming language developed at Ericsson and widely spread 

both for prototype programming, complex system implementations and in education and for research 

at universities. 
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This approach to formal methods has a number of advantages such as: the rapid creation of 

an outline of the new behaviour which is used for identifying similar behaviour, then simulated 

and refined until the formalised behaviour reflects a required functionality. This approach is 

consistent with what has been called a lightweight approach to formal methods [Hesketh, 

Robertson, Fuchs, Bundy 95], where the formal notation has been chosen to be as simple as 

possible and just expressive enough to outline the main behaviour required6. The simplicity of 

the logical notation enables automated manipulation, translation and comparison between 

behavioural requirements specifications and formalised input examples. This enables re-use if 

the requirements of services, previously specified and subsequently implemented, are stored 

in a case library. 

1.2.1 Identifying Similar Behaviour 

The main focus for this research is on identifying similar behaviour to enable re-use of 

previously specified requirements or parts of requirements. In addition to re-use, iterative 

refinement, enabling the user to sketch out the required behaviour without giving all the details 

from the start is included, in contrast with the common approach within formal methods 

where the user is expected to produce complete and correct requirements from the 

beginning. The aims of this prototype implementation7 are mainly: 

To provide a platform where the identification of similar behaviour can be evaluated 

(evaluated in Chapter 8). 

                                                 

6 The notation is purposely not expressive enough to represent the full complexity of 

telecommunications requirements specifications, such as concurrence, internal communication, etc. 

7 The system has been implemented in LPA-Prolog (Macintosh/Windows) and the non-graphical parts 

are also compatible with SICSTUS-Prolog.  
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To put the matching and re-use in context of case-based reasoning where an initial sketch of 

some wanted behaviour is used for identification of similar behaviour that may be re-used 

(evaluated in Chapter 8), refined, validated and verified. 

1.3  A Scenario Showing how CABS may be Used 

To give a framework for understanding CABS (Case Based Requirements Specification 

System) and to put the different chapters in context, I will give a brief example of how 

someone might use a full implementation of CABS (including some of the extensions 

proposed in Chapter 9). I will not dwell in this description on what has been implemented and 

what is left for further work. By reading the rest of the thesis, it will be clear what has been 

explored in depth and implemented in this research and what has been left for further 

improvements. Figure 1.1 gives an overview of how an idea can be taken to a full 

specification (se Section 1.3.1). At present, the first formal level used in telecommunications 

requirements is mostly SDL (a programming language with graphical and textual parts often 

used for telecommunications applications, see Section 2.4), and earlier steps are informal 

[Eberlein, Halsall, 96a]. CABS acknowledges the need for a tool where the behaviour of a 

new service can be sketched at an early stage (although this is only one aspect of the 

requirements). The customer and service designer can, after providing some behavioural 

examples of the required behaviour, explore the new service by simulation. This is a form of 

high-level prototyping. CABS is also able to identify similar behaviour in previously specified 

services and suggest these as solutions, to be re-used in whole or in part. 

1.3.1  From Service Idea to Formalised Requirements 

Let’s assume that a service provider comes up with the idea that a new telecommunications 

service is needed to increase their income and to attract new customers. The cloud at the top 

in Figure 1.1 illustrates such a vague idea of some new functionality. The more focused idea 

might then be to provide phone users with an emergency service, i.e. if something happens, a 

specific emergency number is automatically dialled. The details have not yet been worked 

out, but the board meeting assigns a task to one of the telecommunications service sales 
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employees which is to produce a proposal on the functionality, and to acquire an estimate of 

how much it would cost to order the functionality from a telecommunications company. 

Fully detailed, formalised
functional requirements

with interactions and some
design decisions

Customer and service designer

Service Requirements

Sketching & Rapid
Prototyping Environment

Traditional Requirements
Engineering and Design Environment

Requirements engineer

SDL

MSCs

Idea

sketching, concretising
aided by re-use, simulation

and verification

refinement,
integration,
expansion

TTCN

Use- Cases

Formalised using a
lightweight approach,
validated and verified.

 

Figure 1.1: From an idea via formalised requirements sketches to a full specification. 

The sales employee makes a mental picture of how the new service would work from a 

phone user’s point of view. Traditionally, a large text document containing requirements of 

the new telecommunications service, interwoven with descriptions of functionality, 

restrictions, limitations, implementation details etc. would be produced. Once the service is 

ordered and delivered half a year la ter, it is hoped that it meets the customers needs and the 



CHAPTER 1. INTRODUCTION 

 

10

informal requirements. If not, the company may face legal proceedings on the meaning of the 

requirements specification documents.  

If she was using CABS, the service designer would make a number of sketches of the 

behaviour of the new functionality (as seen from the telephone user’s point of view) in the 

graphical editor illustrated in the top left picture in Figure 1.1. The service designer would first 

sketch some examples of the most common use of the service. The most frequent behaviour 

may be: if a telephone user has an emergency service set up and he lifts the phone but is not 

able to dial a number (for example a diabetic in distress, unable to dial a telephone number but 

able to lift the receiver), a previously selected number will be dialled after a short delay (to 

make sure it is not a normal call). The receiver of the call would need to have the existing 

telephone service Callers Display to see who is calling, and can then decide what action to 

take For example, he might send an ambulance/doctor/nurse or call the neighbours to check 

the situation). The service designer may also decide to provide examples of the expected 

behaviour if the called number is busy or if there is no answer. 

Once these examples have been given as behavioural example sketches, the sales employee 

asks the system to propose a solution. A matching algorithm searches a case library where all 

previously formalised and implemented telephone services are stored, and identifies a number 

of services that exhibit similar behaviour. The user inspects them, reads some brief textual 

descriptions of them and may explore some of them in greater depth by simulating their 

behaviour with the simulator provided8. The system also points out where differences exist 

between the sketches of the behaviour and the formalised behaviour. 

The service designer may decide on one proposal that is close in behaviour and already 

implemented by another company having a large number of residential care homes, where the 

                                                 

8 Simulating their behaviour involves initialising a number of phones and setting up the different 

services for the different phones. The user lifts the receiver with a mouse click on the computer 

screen and tests out the behaviour as if real telephones were involved. 
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individual guests live in their own apartments but have a reception with a nurse and part-time 

medical doctor. The service has been in use for 6 months, and after 3 months of use, the 

customer ordered an extension of the service since the staff quickly found out that they 

needed three alternative choices of numbers (reception, nurse, doctor). When exploring the 

service further (using the simulator) she finds that the emergency numbers can only be 

changed by the receptionist. After considering the customers that her company intends to 

target, she decides to add the possibility for the telephone user to change the emergency 

number list themselves. She gives some examples of this behaviour and makes a selective 

match using only these input examples, and finds that the service divert call has a set-up 

functionality that fits the needs well and which only needs minor adaptation of the behaviour. 

The sales employee calls the technical service support at the telecommunications company 

they use and also transfers the input examples and selected solutions (middle square box in 

the Figure 1.1). A requirements engineer receives the formalised requirements, simulates and 

verifies them together with all other services the customer has to identify interaction and also 

uses traditional methods to look at how a design of the functionality can be made together 

with an estimate of the cost. One hour later, the customers sales person gets a proposal back 

which contains a service which includes the desired behaviour and where all the functional 

behaviour has been formalised (bottom square box in the Figure 1.1, all packaged into a 

simulation environment easy to use for the customers sales person). The sales person 

validates and verifies the service and, at the next board meeting, she demonstrates the 

functionality of the new service by simulating it on her PC with connection to a number of 

telephones. The decision is then made to go ahead and order the service which is delivered 

by re-using parts of the implementation from the similar services. 

1.4  Structure of Thesis 

Chapter 2 gives a brief background in requirements engineering, formal methods, case-based 

reasoning and graphical notations, with references to related and relevant literature/research. 

In Chapter 3, a brief overview and introduction to the problems directly addressed in this 
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research are given. Chapter 4 shows the graphical input examples and defines the syntax and 

the detailed information that may be added. The case library and everything stored in it is 

explained in Chapter 5. Definitions of equal and similar behaviour and how these can be 

translated into a set of features used to identify cases in the case library that have similar 

behaviour is explained in Chapter 6. In Chapter 7, the design process from an informal idea of 

a new behaviour to validated and verified formal requirements is explored. Chapter 8 contains 

an evaluation where the ability to identify similar cases is explored, along with ways in which 

a solution can be partially evaluated against the input examples. Further work and ideas of 

improvements are given in Chapter 9. Chapter 10 gives a summary and the conclusions of the 

research. Appendix A defines the logical notation used by CABS as internal representation. 

Appendix B contains a glossary of a number of telecommunications terms. Appendix C 

contains all the formalised telephone services stored in the case library and used for 

evaluation. Appendix D contains all the input examples used for evaluation in Chapter 8. 

Appendices E, F and G are reviewed papers, published during the research. 
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Chapter: 

2.  Background 

This chapter describes interesting areas related to this research project: 

• Requirements engineering. 

• Formal methods, their benefits and limitations. 

• Examples of formal methods in telecommunications. 

• Visual notations for state based systems, both telecommunications oriented and 

generic notations (SDL, MSC, PTNs, Petri nets, etc.). 

• Case-Based Reasoning applied to specification and design tasks. 

A brief background from the perspective of this research is given for these areas and some 

references are given to enable the reader to investigate them in greater detail. 

2.1  Requirements Engineering 

In system development, a major task is to establish in detail what the system is supposed to 

do. Requirements engineering is concerned with capturing, analysing and defining precisely 

the tasks the system should perform. This includes formalisation, re-use and evaluation of the 

system and its requirements. Identifying the requirements is an essential element of system 

development. Faults/misunderstandings at this level are often very difficult and costly to 

correct at later stages. Many faults in systems are traced back to requirements capture and 

specification stages, and are believed to cause a large proportion of industrial costs for poor 
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software (estimated by the UK Department of Trade & Industry to be above £2000 million 

per year) [Schofield 92]. In addition to this, many systems tackle wicked problems  

[Sommerville 96] where the true nature of the problem first emerges when they are solved 

during development. Telephone services may be classified as wicked problems . Even if their 

coarse grain characteristic behaviour is simple , interaction and unusual situations can be 

difficult to identify and predict, and are often first identified when implemented. Prototyping 

may be useful in identifying and solving wicked problems , since these difficulties may be 

encountered in a prototype and can be solved before a full implementation is made. If 

prototype development by programming is impractical, too costly, or not feasible for other 

reasons, simulation of behavioural requirements may be considered (this approach is used in 

CABS). Simulation and prototyping provide new knowledge, as Herbert Simon elegantly 

expresses it: Firstly, “even if we have the correct premises, it may be very difficult to 

discover what they imply” and secondly, “All correct reasoning is a grand system of 

tautologies, but only God can make direct use of that fact. The rest of us must 

painstakingly and fallibly tease out the consequences of our assumptions.” [Simon 81, 

page 19]. 

A requirements specification should be open to different implementations as long as the 

implementation reflects fully the required behaviour, and excludes all unwanted behaviour. 

Implementation of telephone services has been achieved on a variety of systems (mechanical, 

electronic and digital), in different programming languages and programming paradigms 

(centralised, distributed, concurrent).  

A lot of research effort is focused on re-use, and it is assumed that the full potential of re-use 

in system development is far from fully exploited. Re-use by categorisation is one of the main 

research activities in requirements engineering [Maiden, Mistry, Sutcliffe, 95] and 

categorisation is essential to the identification of relevant parts for re-use.  

In program development, re-use is performed by identifying and using program components 

or objects from a software library. The amount of code re-used is dependent firstly on the 

classification and description of the parts so that they can be identified when needed, and 
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secondly on how well re-use is incorporated into the system development process. 

Automated identification and re-use of software that has not been classified manually is 

difficult. Most program code is context dependent (the interpretation of a program statement 

is dependent on the previous and following statements) and allows a lot of freedom to 

construct a program in a personal style, making automated identification and re-use difficult 

(although there is ongoing research in this area). Behavioural requirements are sometimes 

less complex than code because not all the details are included in the requirements. If a 

formal method restricts the possible ways in which a behaviour solving a particular problem 

can be described, comparison between different requirements is facilitated, and automated 

identification of parts that may be relevant for re-use will benefit. 

2.2  Formal Methods 

Since the 1960s, formal methods have been of growing interest, and have been targeted with 

increasing research effort. Formal methods are often regarded as a scientific approach to 

software development [Hall 90]. Formal methods allow precise specification of some aspects 

of a system; informal specifications are often imprecise, incomplete and ambiguous. A wide 

variety of formal representations are available which are suited to different tasks in 

requirements specification and the system development process [Barroca, McDermid, 92]. 

However, formal notations are not suitable for everything in the requirements and design 

process, and it is important to carefully select those parts for which they are used [Bowen, 

Hinchey, 95]. One of the main principles applied when choosing formal representations for 

requirements engineering is that “a formal representation should be as simple as possible, but 

no simpler.” [Zave, Jackson, 97, page 106]. Technological advances and increased 

expressiveness in formal representations are important in order to tackle new and demanding 

application domains. However, a formal representation with the ability to capture everything 

would be complicated. Thus, expressiveness has a price in terms of automated reasoning 

capabilities, executability, proof of consistency, level of mathematical skill needed to 

understand and use a formalism, etc. Carefully choosing a simple but sufficiently expressive 



CHAPTER 2. BACKGROUND  

 

16

formal notation [Wing 90] is an important task when using formal notations, and limiting 

expressiveness is a major approach to taming the combinatorial explosion in production 

systems [Acharya 94]. Sometimes in formal methods, more research effort has been directed 

towards expressive formalisms that are generic and capture as many aspects and details 

(such as timing constraints, indeterminism, probabilities, concurrency, etc.) of the system as 

possible [Johnson, Benner, Harris, Sanders, 93], than into embedding the formalisms in some 

system development method which facilitates requirements capture and aids the transfer of 

requirements into a formal notation. 

Since the 1980s, formal methods have been used in industry for safety critical applications 

(avionics, railway signalling systems, power plant control systems, medical electronics, VLSI 

design), and are often applied by highly skilled mathematicians/logicians using semi-automated 

theorem provers. Outside these areas, the use of formal methods is less common. Even so, a 

number of successful individual projects have been reported [Cleland, MacKenzie, 1995]. 

There is an increasing demand for the use of formal methods in safety-critical systems, for 

example the UK Ministry of Defence (MoD) strongly recommends formal notations, analysis 

of consistency and completeness in specifications of safety-critical components and software 

[Bowen, Hinchey, 95]. The interest in and demand for formal methods for security-sensitive 

applications such as telecommunications, traffic signalling systems, share dealing systems, 

banking and finances, is increasing. It is believed that making the use of formal methods 

easier for non-mathematicians would enable a wider use of formal methods in security-

critical/sensitive applications. One factor holding back a wider use of formal methods is 

“maths scare” amongst designers and programmers [Hall 90]. Furthermore, greater care in 

identifying which formal methods are suitable for which problem is needed, as the use of an 

unsuitable formal notation may cause a project to experience difficulties or even fail. 

The main issue of this research is to show that it is possible to identify similar behaviour to 

enable requirements capture and re-use in a case-based reasoning system. Some related 

issues have been briefly explored and addressed to enable exploration and validation of the 

main focus of this research, which is the identification and re-use of similar behaviour: 
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Help users to give more accurate requirements. 

Addressed in CABS: Sketching input examples exemplifying the behaviour of some required 

functionality that are used to identify similar behaviours enables the user to re-use previously 

formalised and implemented specifications. They can be simulated and verified using a case-

based reasoning approach which is hoped to aid the user in identifying problems at an early 

stage compared with traditional approaches where the first formalised level is program code. 

Problems with service specifications were identified during evaluation that had not been 

identified before matching, formalisation, validation and verification of the behaviour which at 

least shows that these tools under some circumstances are of benefit. 

Reduce errors in the final requirements and system implementation. 

Addressed in CABS: By re-using a proposed solution from the case library, errors will be 

reduced since the re-used service has already been integrated with other services and 

implemented. 

Identify and re-use previously specified behaviours that have already been implemented. 

Addressed in CABS: The case-based matching is able to identify similar cases in the case 

library that can be re-used in whole or in part as shown in Chapter 8. Identification and 

matching is the main focus of this research. 

Simplify the task (for non logicians) of creating and modifying formal requirements 

specifications. 

Addressed in CABS: Graphical input sketches combined with transition rules are believed to 

be more readily accepted than the direct use of a formal logic. Also, an iterative refinement 

process is proposed and supported by CABS. To confirm this hypothesis, an evaluation with 

potential users is needed, but this is outside the scope of this research. 
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Issues relevant to the task of bringing formal methods to industrial use are explored more in 

depth in the following section (Section 2.2.1). If the readers main interest is the identification 

and matching similar behaviour reading this section can be omitted. 

2.2.1 Issues of Formal Methods and their Relation to this Research 

The following are some claims, opinions and critiques about the use of formal methods which 

are relevant to the application domain of CABS. Not all of the seven issues are within the 

scope of this research but some of them have been addressed to enable evaluation of 

CABS’s main issues and others are briefly discussed with some ideas or references to 

potential solutions. Selected solution: is a brief description of CABS’s specific way of 

addressing them (independent of whether they are a main issue for this research): 

It is commonly believed that formal methods are difficult to scale up since expressive 

formalisms are often not executable and are only seen as a way of describing requirements 

more precisely than with natural language [Hall 90]. 

Proposed approach: Choosing a simple logic which is sufficient to formalise the initial 

requirements, but not necessarily able to capture the full and final behaviour, allows us to 

specify some basic behavioural requirements for the application domain of 

telecommunications services and to handle these effectively by simulation of the initial 

behaviour, re-use, verification and validation. 

Selected solution: A simple logic tailored to this particular application domain has been 

shown to enable re-use by case-based reasoning, simulation and limited verification. Also, 

translation to and from restricted natural language has been applied for similar notations 

[Dalianis 95]. 

Resistance from non-mathematicians and non-logicians to the use of formal methods [Zave, 

Jackson, 96]. 
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Proposed approach: Bearing in mind the rejection of formal methods by designers and 

programmers at Ericsson it is hoped that by using graphical notation similar to informal or 

semi-formal notations already used in the application domain, the acceptance of formal 

methods will be eased. Textual rules are used in the domain of telecommunications, transition 

rules bear similarities to these textual rules and transition rules can be translated to and from 

restricted natural language [Dalianis 95]. 

Selected solution: A graphical notation is chosen but no effort has been taken to make the 

notation similar to existing notation since this is beyond the scope of this research and such a 

notion should be developed in close co-operation with the final users to warrant for an 

acceptance. The user is not directly confronted with the logical notation used internally. A 

textual representation of transition rules has not been implemented. 

Formal specifications are difficult to re-use [Hall 90]. 

Proposed approach: By using a case-based reasoning approach and a restricted logical 

notation, it should be possible to identify parts from a case library that may be re-used. 

Identification of cases that are similar to the behaviour exemplified in the input examples will 

enable re-use if the same or a similar case exists in the case library. Also, re-use of individual 

transition rules may be possible, if the transition rules are context independent. 

Selected solution: Matching input cases against a case library enables the identification of 

similar behaviour (CABS uses an uncomplicated matching algorithm described in Chapter 6) 

and evaluated in Chapter 8. Results are encouraging and the matching is able to identify the 

most similar case to sets of input examples. If no matching case exists in the case library, the 

matching is able to identify similar transition rules that may be re-used. The features used for 

identifying similar behaviour may need fine-tuning but they have proved to be fairly robust 

with the case library used for the evaluation 

Formal methods are often said to be unsupported by tools which allow the user to iteratively 

refine and clarify the requirements [Bowen, Hinchey, 96]. 
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Proposed approach: Design and use an approach based on an iterative refinement process 

where an initial idea of some new behaviour can be refined and modified iteratively until it 

captures the intended behaviour. 

Selected solution: The CABS approach includes a refinement methodology supported by the 

implementation (see Figure 7.1, page 124). The process was used in the evaluation and no 

obstacles were encountered. Even if no matching case is available, the input examples can be 

used to generate a set of transition rules used as an initial proposal for the new service (see 

Figure 7.1). During the evaluation (Chapter 8), a few unexpected problems were identified 

both in the input examples and in the case library, which shows the value of using test cases 

generated from input examples. 

Formal specifications are often regarded as difficult to modify [Gotel, Finkelstein, 94]. 

Proposed approach: 1) Structuring the telecommunications services as cases (sets of 

transition rules), 2) keeping links to the original input examples, test cases, full specification, 

etc. (enabling traceability of requirements, from where they originate and where they have 

been used) and 3) providing a simulator and automated verification so that modifications can 

be explored in depth. 

Selected solution: CABS’s approach is to: 1) structure cases as sets of transition rules, 2) 

store all original input examples, informal comments and test, 3) simulate and verify cases 

separately or together with other services. When the behaviour of a service needs 

modification, the input examples aid the understanding and modification process. Test cases 

identify precisely where the behaviour has been changed. 

Formal methods are accused of being difficult to combine and integrate with current system 

development methods [Bowen, Hinchey, 96]. 

Proposed approach: By using a formal notation that can be translated into graphs, state 

machines and natural language, and used for simulation (in the same way as prototypes) and 
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to generate test cases, CABS exhibits desirable features that may integrate into many 

systems development methods. 

Selected solution: CABS focuses on re-use and requirements capturing - a process that is 

currently hardly supported at all. Nothing in CABS contradicts traditional system development 

methods and a system which aids system development would benefit from the functionality 

exemplified by CABS. It may even be possible to translate the output from CABS into the 

representations used in telecommunications (SDL, Use-Cases, MSCs, etc.) but this has to be 

investigated. Since the formal notation captures state machines, translation to state based 

formalisms is possible. 

Executable formal methods are often regarded as computationally inefficient. 

Proposed approach: This is often true for advanced formalisms handling indeterminism and 

where the application domain is complex. A restricted logic is proposed for CABS which 

doesn’t aim to capture all the behaviour of the system (only the initial behavioural 

requirements, leaving out unusual behaviour, error cases, etc.), gives sufficiently fast 

response times for both simulation and theorem-proving. 

Selected solution: The CABS system is implemented in PROLOG with acceptable response 

time on a desktop computer (response times are below a second for simulation and stepwise 

verification). Matching times are acceptable even if the case library is considerably larger 

(see Chapter 8 for details). 

Requirements capture is often seen as the main bottleneck in system development [Bubenko 

95]. Using a rigorous formal notation in a lightweight formal approach to capture the initial 

behavioural requirements is shown to have some powerful and desirable features, such as 

enabling the identification and re-use of previously specified behaviour. 
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2.3  Telecommunications and Formal Requirements 

Telecommunications have, until recently, been mainly technology driven (limits have been set 

by technical constraints), and less application driven. This has changed rapidly due to the 

computerisation of telecommunications, which has started replacing technical limits by limits 

of imagination and innovation. This revolution will change the demands and judgements of 

telecommunications services. Increasing demands for innovative and creative services with 

high levels of usefulness, user-friendliness and functionality are emerging, as they are no 

longer so tightly limited by the difficulties of implementation in hardware and software. 

Bandwidth is still a limited resource, but the bandwidth available now (and in the near future) 

is far from fully utilised. One scenario of the future is that bandwidth will be supplied in the 

same way as petrol/gas/electricity (Norway and Sweden allow customers to change their 

electricity supplier), and the user will make short term agreements with the supplier offering 

the best deal on bandwidth. Under this kind of price competition, telecommunications vendors 

or independent service providers will have to provide services adding value to bandwidth 

supply, such as more sophisticated telephone services (traditionally call waiting, multi-party 

calls, re-call, call diversion, levels of availability/privacy, charge advice, banking and also, 

increasingly, services based around the integration of mobile phones/home 

phones/computers/video/music, etc.). Changing supplier means, in most circumstances, a 

changed set of services. Services will be the supplier’s best assets in such a scenario, and 

patenting services may be more relevant than patenting hardware. This puts 

telecommunications services at the forefront of the basic functionality (a basic telephone call) 

and providers who cannot provide competitive services to their customers in a short time will 

see their market share decrease rapidly. Those suppliers who are able to offer services in 

which the users are interested, will attract more customers. Parts used to design and 

implement services have been standardised and formalised such as service independent 

building blocks (SIB’s, [ITU Q1203], for formalisation see [Nyström, Jonsson 96]), but 

telecommunications services themselves cannot be standardised without stifling competition 

between operators for customers. 



CHAPTER 2. BACKGROUND  

 

23

Telecommunications services can be classified as security-critical (hence formal methods are 

of interest and relevance). It is not acceptable that an additional telephone service should 

inflict problems on basic functionality such as an emergency call, or cause problems for other 

telephone users, (situations which have in fact occurred in the past9). Formal specifications 

have been explored as ways of identifying and reducing such problems in the system 

development process but are not routinely used. Pamela Zave at AT&T Bell Laboratories 

has been active in this area since the late 1970s. PAISLey is an executable specification 

language developed by Zave and her research team at Bell Laboratories over 8 years (from 

1979 onwards) [Zave 91]. Her research is now aimed more at muliparadigmal approaches to 

requirements specifications, where the underlying notation is based on a simple logic [Zave, 

Jackson, 97]. There are some similarities to CABS’s formal notation; for example, neither 

system allows internal events, in order to keep the formalism and semantics simple and only 

allow specification of the system’s externally observable behaviour10). Using logic as the 

                                                 

9 Call diversion was one of the earliest telephone services provided. The specification and 

implementation allowed redirection over many steps. Unfortunately, it also allowed redirection to the 

original number. When a user diverted calls to their holiday home and then diverted calls back from 

there to their main home, the signalling bandwidth between the two telecommunications switches 

was, after a while, used up by phone calls diverted back and forth between them in an infinite loop. 

Worse still, a restart of the telecommunications switch left the diverted number unchanged, causing 

the same problem all over again. This might have been prevented with formalised requirements, 

which had been validated and verified (in CABS, such loops cannot be specified and the number of 

steps that a telephone call can be diverted has to be specified explicitly). 

10 By only specifying the system’s interaction with its environment and not the system’s inner 

workings, the specification is kept implementation independent (a black box approach since nothing 

of the inner working of the system is exposed). The inner working of the system is left for design and 

implementation where hardware and software architecture can be chosen to meet other non-
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underlying formalism shifts the focus from the development of a language suitable for a 

particular application domain to the selection of a suitable subset of logic, which is as 

restricted as possible, but expressive enough to capture the desired features of the domain. 

A different approach to service specification (compared with the PAISLey approach) is the 

WATSON system [Kelly, Nonnenmann, 92] also developed at AT&T. WATSON takes 

informal textual examples of telephone services (a graphical notation is also mentioned, but 

not illustrated), and translates them semi-automatically to a logical notation (similar to the one 

used in CABS). After the natural language scenarios have been given (WATSON was able 

to handle scenarios of the size of four sentences (50 words), in 1992), the system tries to 

identify incomplete parts and problems in the informal description and asks the user yes/no 

questions (WATSON uses an “off the shelf” theorem prover and domain knowledge mainly 

encoded in Lisp). WATSON produces control flow skeletons together with attached code for 

some parts. Control skeletons can then be simulated. Such an approach requires large 

amounts of knowledge (encoded, stored and kept updated in WATSON) of requirements 

specification, design, implementation and application domain knowledge, to be able to produce 

control flow skeletons with attached code from short textual descriptions (such as hardware, 

network protocols, expected end user etiquette, style of skeleton design, etc.). Capturing a 

large application domain knowledge base and keeping it up to date is recognised as a problem 

in the WATSON project. This is a large task even for a narrow application domain (which 

can be partly bypassed if case-based reasoning can be applied, as discussed in Section 2.5). 

A Requirements Assistant for Telecommunications Services tool (RATS) was developed 

during a PhD project at the University of Wales [Eberlein 97]. RATS enables the user to give 

information in a structured and layered approach, mostly as informal text but also with links to 

libraries and in other notations. A high level of tractability is maintained by keeping references 

                                                                                                                                          

functional requirements (price, size, security, power consumption, distribution, modularity, 

technology, etc.) 
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and links between all information objects. The system uses application domain rules to keep 

track of what information is still missing, guiding the user and ensuring that all the necessary 

information is given (218 user defined rules and 33 constraints are currently used). RATS can 

ask questions such as “How do you intend to achieve the goal ‘authentication very 

important’?”. Once the user has linked all information with a traditionally produced SDL 

diagram (production of diagrams is aided by the structured requirements), RATS’ task is 

completed. Compared with using large textual requirements documents (which is the current 

practice), the structured approach in RATS has some obvious advantages such as tractability 

and maintainability (for a comprehensive analysis of the tractability problem see [Gotel, 

Finkelstein, 94]). 

A formal specification project at ERICSSON Telecommunications (research phase 1985-

1991, implementation phase 1992-1997) was centred more around temporal logic [Echarti, 

Stålmarck, 88] and theorem proving than PAISLey and WATSON (the logic used is similar 

to the one used in WATSON). The functional behaviour of telecommunications services is 

expressed in a logical notation (a graphical notation based on a tree structure is also added in 

parallel with some logical expressions); generic application domain knowledge (a conceptual 

model) is given in a graphical notation (directly translated to logical axioms). Simulation 

enables validation of services, and theorem proving is used to prove consistency 

(inconsistencies between application domain knowledge and services can be identified). Test 

suites used in telecommunications for testing implementations can be produced semi-

automatically from event traces generated by the theorem prover (all possible behaviours up 

to a certain length may be generated from the specification) [Ridley 94] [Ahtianen, Chatras, 

Hornbeck, Kesti, 94]. Event traces share similarities with Node Usage Cases, used in 

telecommunications to guide design and implementation [Ask 94]. The notation used in CABS 

is based on the notation used in the research project at Ericsson (the logic has been simplified 

and restricted; see Appendix A). 

There are three desirable features for service development: 
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A prototype/simulation of the new behaviour is needed to explore new services. 

Formalisation of the functional requirements, to ensure stable properties and safe integration 

with other functionality. 

Ability to re-use, in order to optimise implementation of new services by re-using previously 

specified and implemented services. 

If formalised requirements can be used as a prototype, the new functionality can be explored 

on its own as well as with other services and both 1) and 2) are covered. If the formalised 

requirements can be created by identifying and re-using similar services, then 3) will be 

solved. Current research explores this approach using a narrower focus than WATSON 

(CABS does not aim at code production) to capture, refine, re-use and produce requirements 

in the domain of reactive systems11, and to enable simulation of the new requirements. CABS 

shares one main ambition with WATSON, in Kelly and Nonnenmann’s own words: “helping 

ordinary people (that is conventionally trained telephone engineers) achieve 

extraordinary results (mathematically precise specifications)”. If the mathematically 

precise notation can be hidden or encapsulated, it may be possible to relax the limitation to 

conventionally trained telephone engineers with the ambition that telephone users, sales 

personnel, etc. should be able to specify their requirements themselves, if their aim is to 

capture only the characteristic requirements (not necessarily consistent and complete, i.e. 

including all exceptions, odd cases, resolved interactions). Extending, refining and integrating 

the new behaviour with other telecommunications services would need more experienced 

requirements designers. The CABS approach takes coarse grained graphical input examples 

exemplifying the desired behaviour, identifies similar services and parts of services that may 

                                                 

11 Reactive systems have a direct relation between stimulus and response (input/output) and need 

external stimuli to produce a response. An example of a trivial reactive system is a light switch having 

two states (on/off), with the stimulus being: switching it on or off. 
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be re-used, and enables validation (simulation of the behaviour) and limited verification of 

requirements. This is a worthy task in itself, and if this can be accomplished and accepted by 

industry for the specification of reactive systems, the benefits may, for some application 

domains, be sufficient to make it worthwhile incorporating formal requirements into the 

system design process. Validation by simulation and verification may be regarded as 

prototyping combined with the capability to analyse the behaviour in depth. 

2.3.1  Specifications in Telecommunications 

Customers (public and private telecommunications suppliers, service vendors, institutions, 

universities or even private customers), order specific telephone services which they hope 

will meet their needs. One difficulty is that precise informal requirements are difficult to 

produce and require a high level of skill. It is easy to find examples where misinterpreted 

informal requirements have caused serious problems12. Formal specification aims to provide 

precise and exact descriptions, independent of stakeholders (customers, engineers, 

programmers, sales personnel, translators, managers, etc.). Different abstraction levels (with 

more, or less detail shown) and views (wether only issues relevant for a particular 

perspective are shown) of the requirements may be useful for different stakeholders [Pohl 

94]. 

                                                 

12 One story (not officially confirmed) goes that the service three party call was informally specified in 

such a way that it was able to reach a situation where four parties were able to speak with each other. 

When the three party call service was delivered, the customer insisted on having the four party 

situation. This could only be implemented by redesigning the hardware, because the exchange only 

had digital mixers capable of mixing three speech connections. Finally, a solution was found: a trunk 

line (a connection to another telephone exchange) looping back to the same station, treating the 

incoming (two party) call as one external caller and able to connect the incoming call with the two 

other parties. This is an expensive solution, but must, in this case, have been estimated to be less 

costly than breach of the contract. 
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Naming something often gives us a false sense of understanding it. It is often surprising how 

differently words are defined by different domain experts, definitions which sometimes even 

contradict each other. In telecommunications, the expression “User A is in speech connection 

with user B” has been defined in the following ways by different persons: 

A can hear any sound generated by B. 

A can hear B and B can hear A simultaneously. 

Either A hears B or B hears A. 

 

None of the three definitions is incorrect. However, speaking about “being in speech 

connection” or “being connected” without agreeing on a definition will cause problems 

during specification or, worse, during design, implementation or product verification. 

2.4  Graphical Notations 

There are two main types of symbolic representations which both use symbolic expressions: 

sentential representation (natural language descriptions) and diagrammatic/graphical 

representations. The latter can explicitly capture topological and geometrical relationships 

which can only be captured indirectly in a textual representation [Larkin, Simon, 1987]. There 

is a growing interest in, and promising results from, the use of graphical formalisms for 

knowledge elicitation, specification and programming (see for example [Hirakawa, Monden, 

Yoshimoto, Tanaka, Ichikawa, 86], and [Addis, Gooding, Townsend, 93]). It is obvious that 

the trend in interaction/communication involving computers is becoming more graphical 

oriented (icons, windows, pictures, animation). For many tasks, graphical notations are 

claimed to be more readable than textual language [Mataga, Zave, 94]. For the creative and 

exploratory phases of forming new knowledge, visualisation is often essential and the use of 

diagrams also aids knowledge elicitation and co-operation between those involved [Addis, 

Gooding, Townsend, 93]. In formal methods, advanced specification languages have been 
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developed which tackle a wide variety of application domains, but the human aspects of the 

use of these notations (making them easy to use and understand) have been slower 

[Robertson 96]. When new formal notations are created, diagrams are often used (see for 

example [Allen 83], [Kowalski, Sergot, 86]), but the final notations are mostly pure linguistic 

representations. The role of diagrams is rarely recognised and is, therefore, underestimated in 

the communication and conceptualisation process [Addis 94].  

Recently, more research effort has been focused on giving informal or semi-formal graphical 

notations clear syntax and semantics, and developing new notations to enable the graphical 

expression of conceptual models, requirements, dynamic behaviour and programs. Earlier 

approaches using conventional state machines or state-diagrams encountered difficulties 

when applied to system design, due to the exponential explosion in the number of states 

[Harel 87], and were claimed to be hard to read, modify and refine and not suitable for 

complex specifications [Martin, McClure, 85]. Different approaches to overcome these 

problems have been explored and graphical languages (often combined with a textual 

language) are common in system development today; for example: 

SDL (Specification and Description Language, standardised by the International 

Telecommunications Union, [ITU-Z100]). The SDL language contains both a graphical and 

textual part. The graphical part is similar to flow charts. The graphical parts together with the 

textual part of the language enable the user to describe the functionality in such great detail 

that executable code can be generated directly. Some formalisation efforts have been 

undertaken, see for example [Leue 95]. With minor alterations in the semantics, a subset of 

SDL can be translated to Petri nets which has been used for protocol verification at Siemens 

Telecommunication, Germany [Regensburger, Barnard 98]. 

Statecharts [Harel et. al. 90]. A graphical notation designed to make it easier to design and 

implement real time systems. Similar to SDL, it has a graphical part and a textual part and 

detailed descriptions can be created and used to generate executable code. 
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Process Transition Networks (PTNs) [Malec 92], [Sandewall 90]. PTNs can be translated to 

temporal logic and to a subset of Petri nets. The notation aids conceptualisation and 

knowledge acquisition and its simplicity makes it easy to use for domains in which the 

expressiveness is sufficient. 

Use-Cases [Jacobson, Christerson, Jonsson, Övergaard, 93]. Not a notation in itself, but 

which allows different notations or even text documents describing specific examples of how 

the system to be designed will behave. Formalisation and graphical syntax is under 

development [Regnell, Kimbler, Wesslén, 95]. 

MSC (Message Sequence Charts describing signalling between objects in a distributed 

system). A widely used graphical trace language for communicating entities. MSCs may also 

be used for requirements specifications with a set of suitable tools [Ben-Abdallah, Leue 96]. 

Petri Net notations [Jensen 97] are a graphical notation enabling behavioural analysis and 

model checking. The notations are often regarded as complicated for non logicians and this is 

sometimes overcome by translating to Petri nets from specialist languages. For example some 

parts of SDL (with slightly altered semantics) can be translated to Petri nets in order to 

enable model checking [Grahlmann 98]. Since Petri nets are emerging as a common formal 

notation into which other notations more close to notations used in different application 

domains can be translated, Petri nets are described in more depth in Section 2.4.1. 

These languages are all more expressive than is required for the approach taken in CABS, 

and include different types of concurrency which is often useful or essential when designing a 

complex system. In most larger systems, such as telecommunications, the full functionality is 

difficult to describe with a state transition notation as the number of states will by far exceed 

the number of states that can be practically handled in available notations. Even so, examples, 

scenarios and sketches of behaviour for different aspects of a system’s functionality can be 

expressed with state-flavoured style, which is often done informally to complement textual 

descriptions. An important aspect of CABS is that the graphical notation used is not intended 

to be a traditional state-based notation capturing a finite state machine: a diagram in the 
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notation used may represent a large set of state machines enabling the user to sketch a 

behaviour, ignoring details and avoiding confrontation with the so called state explosion. The 

notation used in CABS captures the initial (design independent) sketches of behavioural 

requirements before design decisions have been taken13 (the graphical notation for CABS is 

described in Chapter 4). Little consideration and time has been spent on what graphical 

formalism is most appropriate for the application domain, bearing in mind that the main 

research contribution is the identification of similar behaviour. Graphical representation may 

provide greater benefit if it has been adapted to the application domain and to a specific set of 

users [Robertson 96], but to do so is beyond the scope of this research. 

2.4.1  Petri nets  

Petri nets are used as a powerful algebraic graphical notation for communicating automata 

and are expressive enough to capture systems where concurrent events occur. This is 

beyond the ability of the chosen notation for CABS but both Petri nets and input examples 

are state (in CABS a node denotes all states the which the given restriction hold) and 

transition oriented. Petri nets developed by C. A. Petri in the sixties were the first general 

theory for discrete parallel systems. Petri nets have proven to be well suited to describe 

concurrency. A wide variety of Petri Net notations exist which either extend the 

expressiveness to new classes of problems or make them easier to use. Examples of 

extensions are high-level Petri nets, timed Petri nets, stochastic Petri nets and Coloured Petri 

(CPN) nets [Jensen 97]. Petri nets have always had a precise formal definition which 

                                                 

13 Design decisions are, for example, dividing the system into communicating entities, internal 

concurrency, communication mechanisms, etc. An example of how deeply design decisions are 

included in these formalisms would be to use, for example, MSC diagrams with signalling switches to 

specify a telecommunications service, and implement the functionality using the internet, instead of a 

network of signalling telecommunications switches (most of the “specification” would be 

irrelevant”). 
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enables the use of powerful analysis tools (e.g. SPIN [Holzmann, Peled 94]) that can be used 

to prove different properties of Petri nets. Also, there is n on-going effort to standardise Petri 

nets. 

Lately, Petri nets have emerged as a common notation for different graphical notations 

adapted to specific application domains. These notations are translated into Petri Boxes, a 

special kind of low level Petri nets enabling a wide variety of verification techniques such as 

model checking, verification and application of reduction algorithms [Grahlmann 98]. Both 

SDL and MSCs have been translated into Petri nets in order to use verification tools 

developed for Petri nets. 

Petri nets look similar to input examples in CABS as shown in Figure 2.1 below (a low-level 

Place/Transition Net) where the right example is a Petri net and the left example is an input 

example for CABS as described in Chapter 4. The Petri net has been designed to visually 

look as similar as possible to the input example for CABS, it has not been explored whether 

the two examples are semantically equal. Even though the examples look similar, the 

terminology and way of thinking is different. Petri nets are built with places, input transitions, 

output transitions, input arcs, output arcs and tokens [Jensen 92]. Places can hold one or 

more tokens (in the example, there are two telephone tokens), arcs have the capacity to hold 

1 or more tokens (the default being one), transitions have no capacity (cannot hold a token). 

A transition is enabled if the places with arcs leading to the transition have a number of 

tokens greater than or equal to the capacity of the arc (default capacity being one). During 

execution of a Petri net, the tokens will move around in the net and the number of tokens may 

vary. When using a Petri net, terms such as synchronisation, concurrency and merging are 

difficult to avoid. The Petri net example in Figure 2.1 contains the primitive constructions: 

synchronisation (e.g. the processes “ring tone a” and “ring signal b” are synchronised by 

starting the transition “dialling idle b”), concurrency (e.g. “ring tone a” and “ring signal b” are 

two concurrent processes started by the transition “dialling idle b”) and merging which are 

not used in CABS when sketching the behaviour of telephone services. In high level Petri 

nets, a token can contain complex data and may describe the entire state of the process or 
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data base. For the input example in the notation for CABS, each node has facts that are 

expected to be valid, and all states in which these facts are true are denoted by the node. For 

more details see Chapter 4, and for details on facts for the nodes in the CABS input example 

see Appendix C.3. The additional facts for nodes in CABS notation may indicate that high 

level Petri nets are the closest of these dialects to CABS (tokens in low-level Petri nets 

cannot carry any data). On the other hand, high level Petri nets have a larger vocabulary 

such as functions (ML is used in CPN), markings, initialisation expressions, guards and are 

able to express process invocation, different types of loops and procedure calls. Kurt Jensen 

states: “Making a CPN model is very similar to the construction of a program” [Jensen 92]. 

This may be very useful when specifying and designing a complex concurrent system but is 

much more than CABS needs for initial sketches of required behaviour. 
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Figure 2.1: Input example in CABS and Petri net example  
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2.5  Case-Based Reasoning 

The central concept of case-based reasoning is expressed by Riesbeck and Schank as: “... 

the essence of how human reasoning works. People reason from experience. They use their 

own experience if they have a relevant one, or they make use of the experience of others ...” 

[Riesbeck, Schank, 1989, page 7]. Aamodt and Plaza’s picture, Figure 2.2, illustrates the main 

ideas of case-based reasoning: a problem is given in the top left corner, similar cases are 

retrieved from a case library and the most suitable case is selected and re-used. The most 

suitable case may need to be revised to solve the problem. If the solution is approved, the 

problem and its solution are stored in the case library. Next time a similar problem is 

encountered, less adaptation of the retrieved case may be needed and the performance will 

increase if similar problems are often encountered and the features identifying similar cases 

are good enough.  
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Figure 2.2: General architecture of a case-based reasoning system. Adapted from [Aamodt, 

Plaza 94]. 

If a rule based system produces a particular solution, or fails to do so, it may not always make 

sense to look at individual rules that produced the result [Jackson 90]. Looking at a previous 

case that has solved a similar problem may, for some situations, be easier to understand 

because cases provide a context for understanding [Kolodner 93]. A case-based system may 

also adapt to changing demands, for example, if a new type of problem not previously 

encountered is solved (if no similar cases are available, a solution to the problem is most likely 

to be produced manually). The solved problem and its solution are stored in the case library 

as a new case, with the aim of expanding its competence [Aamodt 93]. The next time the 
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system encounters the same or a similar problem, the system will have increased its potential 

to produce a solution. It is more likely that, in a rule based system, the rules would need to be 

updated to include this new class of problems. 

Case-based reasoning may be suitable for problem areas in which the knowledge of how a 

solution is created is poorly understood [Watson 97], e.g. the creation of formal requirements 

of telecommunications services from a set of behavioural examples. The WATSON system, 

described in Section 2.3, is one of the few research projects taking on the task of formally 

capturing knowledge about how telecommunications services are formalised from natural 

language in a semi-automatic approach. In technical domains, case-based reasoning has been 

applied to a variety of application domains such as: architectural design support [Pearce, 

Goel, Kolodner, Zimring, Sentosa, Billington, 92]; qualitative reasoning in engineering design 

[Sycara, Navinchandra, 89], [Nakatani, Tsukiyama, Fukuda, 92], software specification re-

use [Maiden, Sutcliffe, 90], software re-use [Fouqué, Matwine, 93], re-use of mechanical 

designs [Mostow, Barley, Weinrich, 89], [Bardasz, Zeid, 92], telecommunications network 

management [Brandau, Lemmon, Lafond, 91], fault correction in help desk applications 

[Watson 97], building regulations [Yang, Robertson, Lee], fault diagnosis and repair of 

software [Hunt 97]. 

In conclusion, case-based reasoning may be applied to application domains that are not 

sufficiently well understood to create a consistent and complete rule -base, on condition that: 

problems and their solutions have similarities. 

a case library with past problems and their solutions is available or can be created. 

there are good ways for identifying relevant cases in the case library. 

solutions can be adapted and re-used for similar problems. 
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Chapter: 

3.  Introduction to CABS 

In this chapter, an overview is given of the case-based specification approach, and an 

introduction to the problems addressed in this work. In application domains like 

telecommunications, formal methods are still not used for requirements specification. Even so, 

a number of logical formalisms seem to be ready for large scale commercial use in real 

applications and have been explored in the domain of telecommunications services (see for 

example [Armstrong, Elshiewy, Virding, 86] and [Echarti, Stålmarck, 88]). As explored in the 

previous chapter, there are a number of different reasons why formal methods are still rarely 

used for requirements specification in industry. 

In the CABS methodology, the task of producing a requirements specification is not just 

handled as a simple task of transferring the requirements from the user to the chosen 

formalism. It is a much more involved intellectual process, and when parts of the 

requirements are captured, the user often modifies and changes his requirements, i.e. 

requirements change and evolve until the user is satisfied. This iterative refinement process is 

often acknowledged in software production and experimental development, but less often 

supported by formal methods. Formal methods practitioners sometimes give the impression 

that they are expecting the clients to have their requirements all ready, and the main task is to 

get them into some formal notation (not necessarily executable). 
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Using CABS, we view the process of producing formal requirements, in particular, 

behavioural requirements, as more of an experimental development task, where we start with 

sketches of required behaviour and use these sketches to rapidly produce something which 

can be evaluated in a variety of ways (simulation, automatic verification, simulation involving 

end users, etc.). We then refine the sketch, compare them with similar requirements, re-use 

parts of similar requirements, modify the original sketches, all this in a tightly integrated 

environment where no unnecessary demands on order or sequence are put on the 

requirements engineer. This will aid the user of CABS to refine and extend the requirements 

until she is convinced that the formalised requirements capture what the user/customer 

requires.  

3.1 Outline of the CABS System 

CABS attempts to ease or overcome some of the obstacles encountered when producing 

formal requirements specifications for telecommunications services. The approach is based 

on the combination of formal methods, case-based reasoning, example based input and the 

use of an executable logic. By using this combination, CABS aims to make formal 

requirements specifications more acceptable and to bring formal requirements specifications 

to practical use for telecommunications services (and similar application domains). 

The CABS system is illustrated in Figure 3.1. In the top left-hand corner, the requirements 

process starts with a number of graphical input examples provided by the user and produced 

with the graphical editor implemented in CABS (see Figure 4.1 for an example input and the 

editor). These graphical input examples use nodes and links (explained in Chapter 4) to 

sketch the behavioural requirements. When the behaviour of some examples has been drawn, 

they can be refined and extended by selecting a node or link to obtain a window where details 

can be added. 

The matching algorithm (the second box from the top on the left in Figure 3.1), uses the input 

examples to identify cases from the case library (top right in Figure 3.1) which capture similar 
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behaviour. The cases are previously formalised requirements that have been validated, 

verified and integrated with other cases (as described in Chapter 5). An analysis of the 

differences and similarities between links and transition rules is used to identify transition 

rules that are similar (the analysis measures a number of features and is described in Chapter 

6). It is always possible to determine whether the rules capture exactly the same behaviour 

(but this is less likely to occur). When a set of similar transition rules have been identified, 

each case is ranked on the basis of its transition rules and how well they match links in the 

input examples. 

The user has a number of different options (shown in the third box from the top on the left in 

Figure 3.1) to choose from when confronted with the result from the matching. The user may 

select one of the proposed previously specified services (solid line from the re-use box) that 

have been identified as capturing similar behaviour to the exemplified behaviour. If a close 

enough case is not present in the case library, then a new service has to be constructed based 

on input examples, matching cases and transition rules. Alternatively, the input examples can 

be refined (this choice is shown with the broken line from the re-use box) in order to improve 

the match. If there is no suitable match in the case library, the input examples can be used as 

a starting point to specify a new case (explored in Chapter 7). 

When there is a proposed case that the user believes may be an acceptable solution, she can 

verify and validate the proposed solution (the Revise box in Figure 3.1). From the input 

examples, test cases are generated which, if successful, verify that the proposed solution 

captures the behaviour exemplified in the input examples. The user can also simulate the 

dynamic behaviour of the proposed solution in order to validate that her intentions are 

captured (these simulations may also be added as test cases). A theorem prover analyses the 

solution with respect to known domain restrictions (this is not fully implemented in CABS: 

simple checks of restrictions have been implemented, but not fully integrated, in the CABS 

prototype). The user may also decide to undertake some adaptation of the proposed solution 

in order to make the behaviour conform to the input examples. At any stage, the user may 

decide to add more (or refine) input examples and re-do the match in part or in full (the 
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broken line from the Revise box in Figure 3.1). When the solution has been validated and 

verified, it is added to the case library. 
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Figure 3.1: Outline of the CABS approach 

For some application domains, the ultimate goal may be to use the formalised and confirmed 

requirements directly as an implementation. This is possible for a very narrow class of 

application domains, where the interface to the environment (stimuli/response) of the 

requirements specification of the system is expressed on the same abstraction level as the 
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final system itself and where the final system has to be implemented on a computer (which is 

not the case for telecommunications services where stimuli/response are commonly 

expressed on higher abstraction levels). If so, a requirements specification including all the 

desired behaviour and excluding all unwanted behaviour might be used as the final 

implementation. For the application domain of telecommunications services there are high 

demands of efficiency on the final code. The requirements could be seen as the tip of the 

iceberg and the final implementation is a highly optimised and integrated system of software 

and hardware in a global network of co-operating telecommunications switches. In these 

circumstances, the requirements specification is used as input to the design process and for 

generating test sequences for verification. 

In conclusion, CABS is aimed at providing a closely integrated approach to requirements 

design and supporting iterative refinement, re-use and revision to produce formalised, 

validated and verified requirements specifications capturing the required behaviour of the 

system to be constructed.   
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Chapter: 

4.  Graphical Input Examples 

Exemplifying Behaviour 

It is common to apply graphical notations to a number of different tasks in specification and 

design processes. In telecommunications, graphical notations are widely used, examples of 

which are SDL (a graphical Specification and Description Language, standardised by the 

International Telecommunications Union [ITU-Z100]), MSC (Message Sequence Charts), 

traditional flow charts, etc. Most notations used in specification have been formalised to a 

greater or lesser extent and are mostly used for design reflecting the chosen implementation 

structure (MSCs capture signalling between nodes assuming the services are implemented 

with communicating entities). CABS uses a graphical notation to capture behavioural 

examples (see Figure 4.1), which outlines different parts of some required behaviour, but 

does not aim to compete with the large area of ongoing research on graphical formalisms. 

The graphical notation used is only intended to capture some of the externally visible 

behaviour (any requirements specification should not put demands on how the behaviour is 

implemented internally [Wieringa 96]) and internal signalling or communicating entities can 

purposely not be expressed in the formalism. 

Graphical formalisms for behaviour can mostly be classified as state based, transition based, 

transaction based or any combination of these. The full behaviour of a telecommunications 
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system contains too many states to be handled graphically (even if there are only a few 

telephones involved), without introducing levels of abstraction for states. Therefore, it is 

difficult to base telecommunications requirements specifications directly on state transition 

diagrams: state transition based formalisms are mainly used in domains with less then a few 

thousand states, preferably less than a few hundred states if they are produced and 

maintained by humans. If there is no abstraction of states, the number of different states in 

the telecommunications domain will be so large that it will be difficult for a user to handle. 

From a computational point of view, there would be no problems with this application domain 

since the specified behaviour for telecommunications services is simply that they should be 

finite and deterministic. The purpose of the graphical notation is simply to outline the main 

characteristics of the behaviour (and not to describe all possible behaviour) and it therefore 

bypasses the need to handle large numbers of states; the graphical notation is a starting point 

for the production of formal requirements. 

For CABS, a graphical transition based formalism has been chosen. The graphical examples 

in the CABS system are used in the initial stage of rapidly putting together a draft 

specification, and arriving at an executable specification, so that initial ideas about the 

required behaviour and their corresponding examples can be refined and validated. The 

graphical input examples are also used together with the information added during the 

refinement of the input examples to provide automated assistance in verification. It contains 

nodes (ovals) and directed links (arrows) which will be explained in detail in sections 4.1 and 

4.2 respectively. Nodes and links are given names (links have their stimulus name in a square 

box, where a stimulus is the external event that triggers a transition from one node to another, 

if all other conditions are met) and pairs of nodes can be connected by links in any way. A 

new node is created by selecting the create node tool (the first tool in the tool list in Figure 

4.1) and a new link is created by selecting the create link  tool (the second tool in the tool 

list). For nodes and links, an additional window with details about the node or link can be 

shown. This window is shown when the details tool (third tool in tool list) is chosen and the 

node or link is selected by clicking on it. A node can be moved by choosing the move tool (the 
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fourth tool) and dragging the node to the new position (all links to/from the node will 

automatically be updated). A node can be renamed/replaced and a node or link can be 

deleted by selecting the corresponding tool (fifth, sixth respective seventh tool), and then 

selecting the node or link (any links to/from a deleted node will automatically be deleted). The 

graphical representation and editor are designed to be uncomplicated, general and deliberately 

unlike other graphical formalisms used in telecommunications since their aim is different and 

similarities may confuse matters. Graphical input examples also have a non-graphical 

representation (with some additional information about the input example), which can be 

examined by the user by selecting the information tool (eight tool from the top in Figure 4.1) 

which results in the display of a window with details of the input example as shown in Figure 

4.2. The ninth tool is used to redraw the window and the last tool matches the input example 

against the case library. 

 

 

Figure 4.1: A graphical input example exemplifying a basic behaviour for the service basic 

call 
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The non-graphical window for the input example (Figure 4.2) contains a scrollable list, Links 

in example, with all the links in the input example and information of triggering stimulus, start 

node and end node. A scrollable list, Nodes in example:, contains all the nodes in the input 

example. These two lists capture all the information shown graphically in Figure 4.1. 

Selecting a node or link in these lists and then pressing the Show button will show a window 

describing the node or link in detail, as described in Sections 4.1 and 4.2 (this window is also 

accessible through the detail tool in Figure 4.1). 

Some of the functionality may be dependent of the functionality of some previously specified 

service. When creating a new input example, the user states the services on which the new 

behaviour is obviously dependent: for example, the three way call service is often defined as 

an extension of the call waiting service, and if call waiting is not available, three way call 

cannot be used on its own. These services are listed under Known behavioural 

dependencies: and are called behavioural dependencies to distinguish them from more subtle 

dependencies (see Section 5.1) which, in some cases, can be identified automatically in 

CABS. Structuring services as being dependent on other services is common practice for 

telephone services. In CABS, this information is used in the matching process where cases 

on which the behaviour is dependent should be included as proposed solutions. 
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Figure 4.2: Textual representation of input example 

Informal examples of behaviour given in textual requirements specifications of a 

telecommunications service are often categorised in some way for convenience of reference. 

We have not investigated which categories are most commonly used, but have implemented a 

facility for defining categories. Five different categories have been selected (categories can 

be added/removed to suit the application domain): basic behaviour; odd case; error case; 
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unsuccessful behaviour; excluded behaviour. An input example may be classified as 

being in more than one category. The user selects the categories when creating a new input 

example and the categorisation is shown in the text list field Input example categorised as. 

In Figure 4.2, the input example a_basic_example  is categorised as basic behaviour. 

Categories may aid the user in the process of structuring behavioural requirements. The 

classification may also be used to assess whether the user has given sufficient input 

examples, or if the system should request more input examples. If an input example 

exemplifies excluded behaviour, it should be handled differently in the matching, validation 

and verification process. Excluded behaviour (negative examples) has not been fully 

implemented in CABS (see the discussion in Chapter 10). 

Interaction between behaviours is of central concern in telecommunications and is often 

claimed to be the most severe problem in developing and managing telecommunications 

systems [Zave 93]14. If the behaviour of a telecommunications service is modified when 

some other service is active/inactive, or if it modifies the behaviour of some other service 

when it is active/inactive, we say then that the two interact. Interaction between services is 

not “a problem that can be solved” since it is part of the required behaviour, therefore 

decisions on how services interact have to be made before or during implementation. When 

the user adds a new input example, she can select what interaction the input example 

exemplifies, and the selected services are shown in the text list Exemplifies interaction 

with: in Figure 4.2. In input examples, it is more likely that the desired interaction is 

exemplified, leaving unwanted interaction to be handled when the full specification is 

produced (including all the desired behaviour and excluding all the unwanted behaviour). If 

the unwanted behaviour is exemplified as an input example, it is categorised as negated input 

examples. A negated input example can be used if there is some specific behaviour that 

                                                 

14 Some interaction between services may be introduced by architectural/implementation choices such 

as dividing the system into communicating processes [Cameron, Velthuijsen 93], and is not relevant 

on a requirements specification level. 
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should not be allowed (this may be needed in the telecommunications domain when services 

interact, but may also be useful in other situations). Negated input examples are considered a 

useful extension, and may, in some situations, further improve matching/verification results, 

but are not classified as essential to the approach and have not been implemented in the 

prototype. 

An informal textual description of the input example together with relevant links can be 

provided by the user in the text field Informal description of input example. This 

information is used for the convenience of the users and for documentation. The Graphic  

button shows the window with the graphical representation. The Update  button is used to 

update any changes (the graphical window is updated dynamically). 

4.1  A Node 

Each node has a unique name that is a mnemonic name for a situation, such as two telephone 

users being in speech connection with each other (the oval in speech in Figure 4.1). 

A situation can encompass many different states15, for example the node dial tone a (details 

for this node are shown in Figure 4.4) may intuitively mean that the user a has a dial tone, 

which may be true for many different states. In a telecommunications system, there may be 

millions of different states where the user a has a dial tone, but most of the differences will 

be irrelevant for any particula r example. 

                                                 

15 A state is defined as a unique description of a system’s current status, as used in state based 

approaches, where each state is often given a unique number. A finite state machine is an example of 

a frequently used state based formalism. 
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4.1.1  Creating Nodes 

When the user creates a new input example, the first step is to create some nodes. The user 

selects the first tool from the list of tools on the left in Figure 4.1. The user then clicks on the 

position in the graphical area where the node is to be placed. A window where the user can 

select the node name appears (Figure 4.3). If the user chooses to use a node that has been 

specified earlier in some other input example, she clicks on the selected node and presses the 

OK button. If in doubt, the Details button can be pressed in order to inspect the selected 

node. Ideally there is always a suitable node to select. If a new node name is given, the 

details for this new node can be specified as explained in section 4.1.2 when the Details 

button is pressed. 

 

 

Figure 4.3: Select node name for input example  

After the user has pressed the OK button, the node is drawn as a circle with the name in the 

graphical area (Figure 4.1). 

4.1.2  Details for Nodes 

When a telecommunications expert talks about a specific situation such as two subscribers 

being in speech connection (represented by a node in CABS), the user normally has a 
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comparatively well defined meaning in her mind. Unfortunately, it often happens that different 

telecommunications experts do not necessarily have the same meaning in their minds; hence, 

a more precise description of a situation is needed. In CABS, a more fine grained definition 

of a node is given as a conjunction of terms. Terms are explained in detail in Section 5.1 (the 

following example may be sufficient to provide a basic understanding). To add to or modify 

the details of a node, the user selects the detail icon in the graphical window (the third icon 

on the left in Figure 4.1) and then clicks on the chosen node in the graphical window. This 

appears in a node window, as shown in Figure 4.4. If no details have been given for this node, 

all fields will be empty. The user can now select the terms (by selecting them from a menu or 

by typing them into the field) that are expected to hold for this node, and add them in the 

corresponding field. For example, for the node a calling b, the terms calling(a, b) and 

ring_tone(a) and ring_signal(b) are expected to hold (terms may also be negated). The 

first predicate term, calling(a, b), is a relation between user a and user b, stating that user a 

is calling user b; the second term states that user a has a ring tone and the third term states 

the fact that user b’s telephone is ringing. A relation term is by definition not externally 

visible and is therefore added in the field Characteristics (not externally visible). The two 

terms ring_tone and ring_signal are defined as response terms and are therefore, by 

definition, externally visible and added in the field Response (externally visible). In 

telecommunications systems, externally visible effects are so central that response terms 

(externally visible terms) are often treated separately, even on a requirements specification 

level. 

The same node may be used in different input examples, and the input examples in which the 

node is used will be shown in the list Node is used in input example. If a node has to be 

modified, the user must make sure that the change is valid for all other input examples using 

the same node or, if not, they must choose a different name for the node and define this new 

node. 

When giving input examples, it is obvious to the user in most cases which node is the start 

node and which is the end node (there may be more than one). Intermediate nodes are nodes 
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that are temporarily passed through in order to achieve some required result. The user can 

specify whether a node is a start node, an end node, both or neither (if a node is neither a 

start node nor an end node, it is an intermediate node). In CABS, this selection is made by 

ticking the corresponding box in Figure 4.4. This information is useful in the verification 

process and in order to automatically generate test cases which will capture all behaviour 

between the start and end nodes (this narrows down the number of test cases considerably 

and in fact, in a large system, the number of test cases would be difficult to handle without 

this information; for more on this, see Chapter 7). 

 

 

Figure 4.4: Example of a detailed node description in CABS 



CHAPTER 4. GRAPHICAL INPUT EXAMPLES EXEMPLIFYING BEHAVIOUR 

 

53

As mentioned, the user is expected to give the main characteristics of a node (by choosing 

from a list with all terms that have been defined in the case library), excluding facts of less 

relevance for the node. In most cases, such a brief description of the main characteristics will 

be sufficient, since the input is used primarily for identifying similar behaviour in the case 

library and for the final verification after the requirements have been formalised. In cases 

where there is no good match (a new type of behaviour with no similar case in the case 

library), the input examples are used as a starting point for generating a new case. However, 

in these situations, the input may need refinement. From this point, whenever we mention 

input examples, or graphical input examples, we mean both the diagram itself and the details 

given on nodes and links. 

If all terms have a natural language phrase declared, the user could choose to use natural 

language (NL) phrases instead of terms. For example, if calling(A, B) has the NL phrase A 

is calling B, this phrase could be shown in Figure 4.4 in the field Characteristics (not 

externally visible). An NL translation would be useful for users less familiar with formal 

notations and if the examples were shown to customers, they may not wish to see brackets at 

all. The way in which formulae of terms can be translated into natural language phrases has 

been explored in depth [Dalianis 96]. In CABS, NL phrases have not been implemented but 

this is proposed as an extension (adding a prototype implementation of NL phrases would 

require little effort). 

4.2  A Link 

A link in the input example describes a transition from one node to another. The main 

condition for the transition to take place is that the stimulus term in the link occurs. A stimulus 

in the telecommunications domain may, for example, be an action performed by a phone user, 

such as lifting the receiver (hook_off) or dialling a number (dialling) as shown in Figure 4.1. 

In the graphical notation it is optional to show arguments for a link. When looking at the 

details for a link, all arguments to a stimulus are shown (for example in dialling(A,Nr,T), the 

first argument is the phone user dialling, the second argument is the number dialled and the 
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third argument is the time this occurred). See Section 4.2.1, Figure 4.6 and Section 5.1 for 

more on arguments. 

When the user wishes to add a new link between two nodes, she selects the second tool from 

the list of tools on the left in Figure 4.1 and then clicks on the node from which the link will 

originate. Then, she clicks on the terminating node (a broken line is shown between the 

originating node and the cursor until the terminating node is selected). When the terminating 

node has been selected, a window for selecting the stimulus term for the link is shown (Figure 

4.5). The user can select a stimulus term from the list showing all stimuli terms defined in the 

case library. If the item -- New Stimulus -- is selected, the user can add the name of a new 

stimulus term. The user may define the stimulus term in detail, as described in Section 5.1 

(this should be done before the input examples containing the new term are used in the 

matching). 

 

 

Figure 4.5: Select stimulus name for new link for input example  

When the stimulus term has been selected, the new link will be drawn between the two nodes 

and the name of the stimulus term will be shown in a box in the middle of the link. When all 

nodes and links have been put in place in the input example (as shown in Figure 4.1), the input 

example gives all stakeholders a graphical sketch of the required behaviour. 
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4.2.1  Defining or Refining Links 

A link is identified by its originating node, its terminating node, its stimulus term and the input 

example in which it is used. In our examples, the triggering stimulus name is always used as 

the name of the link. We refer to a link by the name of its input example followed by the 

originating node name, the triggering stimulus name and the terminating node name and, 

therefore, there is no practical need to introduce unique names for links. In some situations, a 

link needs some added details in order to reflect the user’s intention for the transition between 

the originating and terminating nodes. The details for a link are added in the same way as for 

nodes (by selecting the detail-tool and clicking on the link in order to get a link window as 

shown in Figure 4.6). In the link window, we draw the originating node and terminating node. 

The first edit field is the stimulus term, with its arguments extracted automatically from the 

definition of the term. 

In CABS, the terms of the originating and terminating nodes are put, by default, into the 

corresponding scroll edit fields in Figure 4.6 (Conditions from originating node: and 

Conclusions from terminating node:) when a new link is created. The user deletes the 

condition and conclusion terms that seem to be irrelevant or of low significance, bearing in 

mind that the link will be used to identify a matching case in the case library. 

Additional conditions in Figure 4.6 (field Additional conditions (qualifications/ 

instantiation):) are there to allow the user to add some specific conditions not explicitly 

given by the originating node. In some cases, additional conditions may be added to 

discriminate between two links with the same stimulus term leaving the same node. For 

example, if user a lifts the receiver and receives a dial tone, she should not currently be called 

by some other user (if she lifts the receiver when called by another used she would answer 

the incoming call, this can be exemplified with another link). This additional condition 

~calling(Z,a), not explicitly stated in the field Conditions from originating node, is put in 

the field Additional conditions (qualifications/instantiation). 
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Additional conclusions in Figure 4.6 (field Additional conclusions:) are there to allow the 

user to add some specific conclusions not explicitly given by the terminating node (no 

additional conclusions are given in Figure 4.6). Added conclusions may be facts to be carried 

forward in time and used at a later stage in the telecommunications service or used by some 

other telecommunications service such as Charge Advice. An example of a fact needed at a 

later stage is which user originated a three way call (the service three way call is 

specified such that if the person who originated the call hangs up, the other two connections 

are cancelled so that no confusion about who is paying for the call may arise). This fact can 

be added as an Additional conclusions: three_way_call_originator(User) when the three 

way call is initiated. 
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Figure 4.6: An example of a detailed transition link description in CABS 

The pop up menu Match select for link: and the buttons Show match and Select are first 

relevant during and following matching as is explained in Chapter 7. If a link does not 

generate any good matches, the user may decide to refine an input case by revising/refining 

the links (by adding/removing appropriate terms), which hopefully results in a better match. 

Other ways of improving the matching results are explored in Chapter 7. The Update  button 

confirms any changes made in the edit fields and the previous definition of the link is 

replaced. 
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4.3  The Use of Graphical Input Examples in CABS 

Initially, every case (the required behaviour for a telecommunications service) originates from 

a number of graphical input examples. These input examples represent the original 

behavioural requirements for the case even if the case itself captures more behaviour than 

exemplified in the input examples (the case may have been refined during validation and 

integration). We store the input examples for each case in the case library for a number of 

reasons: 

Input examples are used to automatically generate test cases and verify that the final solution 

(the formalised requirements) captures the behaviour exemplified in the input examples 

(explained in Chapter 7). 

Generated test cases are also used to verify the interaction with other cases (explained in 

Chapter 7). 

If the behavioural requirements for a case are changed, this change will be made by altering 

the graphical input examples. 

We may re-use input examples as a starting point when we specify the behavioural 

requirements of a new case (input examples can be copied and renamed in CABS). 

The input examples may be used for understanding, learning and documentation of the 

telecommunications system produced. 

In Chapter 5, a detailed description is given of exactly what is stored in the case library, and 

how relevant information is defined, updated and shown to the requirements designer. 
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Chapter: 

5.  Case Library 

The case library is a central part of CABS. It is intended to contain everything that is needed 

for the process of formalising the required behaviour (a subset of the total behaviour of the 

system when it has been fully implemented) such as initial requirements, informal and 

formalised definitions, test cases used for verification and relations between these objects. To 

make CABS’s internal representation easy to extend and modify, the case library is organised 

in an object-oriented fashion where each instance can be uniquely identified and has a 

number of attributes and methods assigned to it (for example see [Bose 94]). Figure 5.1 

shows an overview of the case library and the relationships between the main parts within it. 

The relationships shown as broken lines have not been implemented in the CABS system 

(beyond the scope of the research) and are only shown to give the context. All the main 

objects in the case library have attributes such as creation and modification dates, informal 

description, etc. These organisational issues and design decisions are all hidden behind the 

user interface and the case library will be described as seen through the user interface. 

Everything in the case library can be saved and loaded between sessions. 

The case library comprises six main sections: case definitions, transition rule definitions, term 

definitions, test cases, graphical input examples and system definitions. A system definition 

(top left corner of Figure 5.1) is basically a set of cases capturing all the required behaviour 

the system is expected to exhibit when it has been implemented, including the more common 
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interactions between these cases. An add-on system is a set of cases that adds some 

particular functionality to a system, for example the system mobile_telephony or 

ISDN_telephony (Integrated Service Digital Network) adds behaviour to the system 

basic_telephony (see glossary in Appendix D). A case (a telecommunications service) 

captures the required behaviour of some particular functionality in a system and is shown in 

the centre of Figure 5.1. The behaviour of a case is represented by a set of transition rule 

definitions (middle left of Figure 5.1) and definitions of terms (below centre) that are 

considered to belong to that case. Graphical input examples (top right of Figure 5.1) 

exemplify the initial required behaviour of a case and the more common interactions with 

other cases. If a case is added or modified, the interaction between this case and the other 

cases needs to be analysed and may need to be verified again (see Chapter 7). All test cases 

(bottom right of Figure 5.1) that capture the required behaviour extracted from the input 

examples, are stored for use in the automated verification process. Once a case and required 

behaviour have been designed and implemented (the implementation of a new 

telecommunications service may be a combination of software and hardware such as three 

party call needing specific hardware connecting three phone lines to each other), the 

connection between the transition rule definitions and term definitions should be kept (these 

links are shown in Figure 5.1 as dotted lines). These links, shown as dotted lines, are beyond 

the scope of this research. 
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Figure 5.1: Overview of case library 

In the following sections, we will describe the different parts in the case library, their use and 

how they are defined or modified by the user. First, we describe terms, which are one of the 

most fundamental parts in CABS, then transition rules, which represent the dynamic 

behaviour of cases, then cases (telecommunications services in our application domain), 

systems (sets of cases) and, finally, we describe graphical input examples and test cases. 

Once all the parts of CABS are explained, Chapter 6 explores how similar behaviour can be 

identified by input examples and using them in a matching process, in order to identify cases 

that may be re-used in whole or in part.  

5.1  Terms 

The purpose of terms is to capture a system’s current state. Terms are used both in input 

examples and in transition rules and are an important part of defining an ontology for the 
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domain16. A precise and clear meaning for each term is crucial to the interpretation and 

understanding of a formal specification, although few requirements methods address this 

issue effectively [Zave 96]. Also, if a term is used in an input example, it is important that the 

term is well understood by the user so that the input examples and the cases in the case 

library are built on the same terminology. In CABS, the user is expected to define terms with 

care and in detail before the term is used in input examples and in transition rules. Term 

definition should be one of the first tasks when approaching a new application domain or a 

new class of behaviour that cannot be expressed with existing term definitions. If a term does 

not have a clear meaning, or its meaning is modified during a specification, all previous 

specifications are no longer valid and have to be re-validated by the user. For a large system, 

where the specification may have hundreds of cases and thousands of transition rules, this 

will be a tedious and time consuming task. If a term’s meaning in CABS is changed for some 

reason, all this work has to be repeated. The idea is to give elaborated definitions of the 

meaning of terms in order to reduce the risk of introducing problems at an early stage, which 

may cause costly corrections later on. Informal discussions with telecommunications experts 

have shown that experts sometimes disagree on the meaning of terms they use: large efforts 

are put into standardisation of telecommunications terminology both by telecommunications 

companies and international standardisation organisations, but if terms are properly defined 

the first time they are used, some of these efforts may be reduced. 

Figure 5.2 shows an example of a term definition in CABS. The purpose of the current way 

of defining terms is not to compete with ongoing research in conceptual modelling (see for 

example [Johannesson, Boman, Bubenko, Wangler, 97]). However, Figure 5.2 may provide 

an alternative way of presenting some of the information traditionally captured in conceptual 

modelling. The examples merely give an illustration of the different pieces of information of 

interest for formalisation/validation/verification and exemplifies how this information can be 

                                                 

16 Defining an ontology is beyond the scope of this research, only a few aspects of defining an 

ontology are addressed, for more details on ontologies, see for example, [Uschold 95]. 
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collected at an early stage of requirements capture. The content of Figure 5.2 will be 

explained briefly now and explored in more depth in sections 5.1.1 to 5.1.6. 

The first field, Term name (with arguments): in Figure 5.2 is the term name and arguments; 

in this example divert(Nr1, Nr2) is typed in by the user when defining the new term 

(argument names must start with a capital letter and can contain any number of letters, 

numbers and underscores). The next field, Informal description: is an informal description 

of the term and arguments. The list Defined term belongs to cases: shows which cases in 

the case library the term definition belongs to. The most common situation is that a term is 

only defined in one case. On some occasions, it makes sense to let the same term be defined 

in more than one case, for example, if there are two varieties of the same case in the case 

library. This occurs in telecommunications since services are often adapted for different 

customers and markets (the service three party call for regular customers is different from 

three party call for Centrex, see glossary in Appendix D). Terms can be of four types in 

CABS: stimulus terms, response terms, relation terms (more than one argument) and attribute 

terms (zero or one arguments). When defining a new term, the user has to select the term 

type by selecting the appropriate type in the pop-up menu under Type for term: in Figure 5.2. 

The user can also choose a sort for each of the term’s arguments (Figure 5.2), Sort for 

argument <position number>. The maximum number of arguments is restricted to five in 

the implementation of the interface, which is sufficient for the current examples in the 

application domain and should also be sufficient for the telecommunications domain. The size 

of the window is adapted automatically to the number of arguments in the term. For each 

term, the type of relation between the arguments can be specified by selecting the 

appropriate choice in the pop-up menu Relation type: in Figure 5.2. The set of types 

available depends on the number of arguments for the term: if there are zero or one 

arguments, the selection cannot be made. With the pop up menu Term occurrence: the user 

can select whether a term has any restrictions on its occurrence. The options for terms with 

one or more arguments are one, any, zero or one, one or more. Option one would mean 

that if the system can reach a state (see section 5.1.6) in which the term exists more than 
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once or not at all, then there is a conflict between the definition and the transition rules 

leading to the state. For example, if the terms current_time(1) and current_time(2) are true 

at the same time, it is incompatible with this definition. This sort of generic information is 

often easiest to capture when the user defines a new term and can then be used in a number 

of different ways. For example, if new transition rules are generated from links or adapted 

from other transition rules, they can be inspected for consistency with the term occurrence 

definition. This information can also be used when verifying a system (see Chapter 7.6). 

The button Show where used produces a cross reference list of all transition rules in the 

case library and tells the user which cases contain transition rules that use the term in their 

condition-part/conclusion-part (currently this is not fully implemented but it could be 

implemented with a simple search function). The More button gives some additional 

information, such as the times at which a term definition was created and last modified. The 

Update  button updates any changes of the definition (if the user has the privilege of 

modifying term definitions). The Cancel button ignores any changes and leaves the term 

definition unchanged. 
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Figure 5.2: An example of a term definition in the CABS system 

5.1.1  Significance of Term Names 

The terms used are in predicate logic (see for example [Luger & Stubblefield 89]) where the 

term names bear the main part of the non-instance-specific information. For example, if we 

would like to capture the statement that a user a has dialled the number 222 and that the 

number 222 has all its calls redirected to the number 333, that there is a user b answering 

calls on number 333, and c is not calling b, we could capture this with the four terms:  

dialling(a,222) and redirect(222,333) and 

answer_number(b,333) and not calling(c,b) 
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In this example, all the non-instance-specific information is captured in the term name and all 

instance-specific information is represented as arguments to the terms. The term names are 

relations or attributes that can be given a clear meaning from a phone user’s perspective. The 

arguments are phone numbers (222, 333, 444, ...) and phone users (a, b, c, ...) which are the 

most central entities in the telecommunications domain. 

In an entity relation model, in contrast, terms are of the form is_a or has_property , and most 

of the significance is shifted to the arguments. An example with low significance in term 

names and high significance in the arguments would be: 

has_property(a,dialling,222) and has_property(222,333) and 

has_property(b,answer_number,333) and not has_property(c,calling,b) 

In this example most of the significance has been shifted from the term names to the 

arguments. Both examples contain the same information when we know the instances and in 

most applications, the choice between the two representations may not be of any 

significance. But in our approach, it will prove important as will be explained in Chapter 6 

(part of the matching is based on term names and is independent of the current domain of 

discourse). Term names are central to the matching process and if their significance is low, 

this will affect the validity of the matching result. 

5.1.2  Instances, Arguments and Sorts 

In behavioural input examples, requirements specifications and simulations, a set of instances 

are needed (to be precise, names uniquely identifying the real instances in the domain of 

discourse, i.e. all the telephones and phone numbers). This is not to be confused with the 

application domain (such as telecommunications services). Instances can be classified into 

sorts; in the application domain of telecommunications, there are sorts such as telephone 

numbers, phone users, etc. 
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In CABS, it is an advantage to use terms with few arguments as this often gives the term 

name higher significance. In fact, everything that can be expressed using terms with more 

than two arguments can be represented using terms with only two arguments; but this may 

look odd even if there are advantages in doing so. For example, the facts answer_nr(User, 

Nr) & accepts_incoming_calls(User) could be represented with one term and three 

arguments, user_info(User, Nr, ‘incoming_calls’). If the term user_info(User, Nr, F) 

occurs in a node, link or transition rule, a careful analysis of the arguments will tell us which 

information is relevant to the situation. Since our matching algorithm uses term names as its 

main guide in identifying relevant matches, the matching result will be more accurate if terms 

use fewer arguments (for details on matching see Chapter 6). 

From a pragmatic point of view, any non-trivial specification will initially contain mistakes, 

misunderstandings and errors. Sort declarations may be used in a number of different ways to 

aid the requirements capture process and, hopefully, to improve the accuracy of the final 

specification. The most common use is to identify any mismatch with sorts and point out 

where these occur. The argument against sort declarations and typing is mainly that in 

prototype systems and small specifications made by one or a few persons, the gains are not 

large enough to justify the additional workload. In our approach to specification, we 

acknowledge both the need for an early prototype of the requirements (i.e. to arrive quickly 

at some intermediate result that can be partly validated and verified in order to aid the 

refinement and revision process) and the need to produce a validated and verified formal 

specification outlining the required behaviour. CABS provides, as an option, the default sort 

Not specified when selecting the sort (in Sort for argument <argument number> in Figure 

5.2), which has all other defined sorts as a subset. This will allow the user to specify, simulate 

and refine the system incrementally and to decide when to declare this information. A new 

specification should only be accepted when all arguments have their sort declared (checking 

that all arguments have their sorts defined is trivial to implement, although not implemented in 

the CABS prototype, see for example [Cohn 85]). Furthermore, theorem provers and 

simulators can improve their performance by using sort information. 
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5.1.3  Constraints on Terms 

There are a number of static constraints that can be declared on terms (static since they are 

valid for all states the system can reach). Much research effort has been put into the 

modelling of static models: entity relationship modelling is one of the most popular approaches 

[Wieringa 96]. A number of different graphical notations are also used and some are 

translated into logic [Preifelt, Engstedt, 93] or into logical programming languages such as 

PROLOG [Johaneson 91]. Examples of constraints on terms in the telecommunications 

domain are: 

  A user can have only one other person calling (next caller gets busy tone). 

 A user can have only one last called number (used when the redial service 

is activated). 

 Only one current time can exist in a given state. 

This information is useful in the verification process for the specified system. A term can 

either be a propositional term, e.g. lamp_is_on or have arguments, e.g. 

switched_on(lamp_1). A term can either be true or false: ¬ switched_on(lamp_1) means 

that it is not true that the lamp_1 is switched on. In the following sections, we will explore 

how to represent different aspects of terms and their properties (such as the three examples 

above) in more detail. 

Each term is defined according to an approach similar to that used in some entity relationship 

approaches (for more details on different approaches see [Wieringa 96]). In the current 

implementation of CABS, there is no graphical representation of static constraints for terms. 

The four static constrains defined in CABS are: type of relation for terms; sort of arguments; 

relation type between the arguments; term occurrence, as shown in Figure 5.2. 

If there are two arguments for a term, the choices are 1:1, 1:m (m for many), m:1, m:m (see 

examples of the relation types in Figure 5.3). The relation type 1:1 means that each object in 

the set of possible values for the first argument can have only one relation with one object in 
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the set of possible values for the second argument. The relation type m:1 means that each 

object in the set of possible values for argument 1 can have only one relation with one object 

in the set of possible values for argument 2, and objects in the set of possible values for 

argument 2 can have many relations with different objects in the set of possible values for 

argument 1 (for more on this see, for example, [Davis 90]). This information can be used in 

various ways in verification and validation, or when adapting or generating new transition 

rules. 

 

m:1

m:m

possible values
for argument 1

possible values
 for argument 2

1:1

1:m

possible values
for argument 1

possible values
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Figure 5.3: Relation type between arguments in a term with two arguments. 

An example of a static constraint is a binary relation term named answer_number with two 

arguments, the first argument being a telephone user, and the second argument being the 

telephone number the user answers. The static constraint is that the user can have only one 

answer number. This is an m:1 relation, i.e. each user has only one answer number and many 
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users can have the same answer number. For example, if it were true that 

answer_number(daniel, 3990) and answer_number(daniel, 5555), that would be in 

conflict with the declaration. But the statement answer_number(sandra, 3990)) and 

answer_number(andreas, 3990) is not in conflict with the declaration. 

In some formal specification approaches, and often in logical systems, redundancy may be 

unwelcome, or even purposely avoided and eliminated. In a requirements capture task, which 

by nature will often be incomplete, contain errors and require revision and refinement, we 

should take every opportunity to collect information which is easily available and easy to 

capture, whether to aid the user to clarify her thoughts or for use later in verification. 

5.1.4  Response Terms (Externally Visible) 

Any terms visible from the environment in which the final system will operate are declared as 

response terms (for example ring signals, dial tones). This may be anything from an 

asynchronous request, to a command given to some external equipment or a message to 

another system. What effects the visible term will cause outside the specified system are 

beyond the control of the specification (with a straightforward extension of the simulator, 

communicating systems can be simulated, see Chapter 9). Hence, a clear understanding of 

the visible terms is crucial to ground the system’s behaviour in its environment. In the current 

implementation, we provide only a facility for adding some text explaining each term’s 

meaning (which may also contain references or formalisations). 

5.1.5  Stimulus Terms (External Input) 

Stimuli are the only way for the environment of a system to affect its behaviour (for example 

dialling, hook_off, hook_on, recall). A stimulus may be ignored by the system, but the 

most common response is an internal change of state and, eventually, an external reaction in 

the form of changed response terms (see transition rules). If time is an important part of a 

behaviour, it may be regarded as an external stimulus.  
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5.1.6  A State is a Set of Statements 

The purpose of terms is to capture a system’s current state. A state comprises a number of 

terms representing all statements which are true, with all other statements not stated as true 

assumed to be false. CABS is intended for modelling systems in which we can assume a 

closed world (specifications of systems to be implemented with computers mostly fall into this 

category, real world systems do not). The closed world assumption simplifies the logic and is 

the classical decision taken in many logic based languages (such as PROLOG) and 

knowledge based systems (such as production systems). Requirements specifications of 

systems implemented with computers (such as telecommunications services) mostly fall into 

this category (we either know that something is true or false, but do not need to reason about 

situations where we do not know if something is true/false). 

5.2  Transition Rules 

When specifying a system in CABS, the only way of causing a change is by a transition rule. 

If a transition rule’s conditions are met, the system will change into a state where the 

conclusions of the transition rule are true. One of the conditions in a transition rule has to be a 

stimulus term. State changes can only occur in response to an external event and, thereafter, 

the system will wait (stay in the same state) until a new stimulus is received. This has the 

advantage (and for some domains, the limitation) of restricting the specification to be 

internally loop free. Depending on the environment of the system, it may still be possible to 

create external loops outside the scope of the specification (see section 5.2.1 about external 

loops). 

Stimuli are sequenced in order to simplify the logic: we do not attempt in this high-level 

specification to specify what should happen when signals are competing (e.g. if two users call 

a third user at exactly the same time); the approach taken is that the decision of how to 

resolve such a situation is not necessarily a requirements choice, and can be dealt with in the 

design process (for many application domains, including telecommunications, assigning an 
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arbitrary but reproducible order between competing external signals will be sufficient). Figure 

5.4 shows the model used in CABS. Sequences of stimuli provided by users of telephones are 

used to activate appropriate transition rules. As a consequence, a sequence of states is 

generated, containing sets of facts that describe the system at each time a stimulus was 

received (f represents the frame axiom, which transfers unaltered facts from the previous 

time t to the current time t+1, see Appendix A for more details on the logic used). 
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Figure 5.4: Model of the dynamic behaviour of telecommunications network 

An example of a transition rule window in CABS is shown in Figure 5.5. The Stimulus: field 

shows the triggering external stimulus condition. The Condition: field contains a conjunction 

of terms defining all other conditions that have to be met. The Conclusion and responses: 

field is a conjunction of all terms that become true as a consequence of this transition rule, if 

the conditions are true. In the Informal description: field, a textual explanation of the rule, 

its meaning and references to relevant information are given. In the list Used in cases: all 

cases in the case library that include this transition rule are listed. The user may select a case 

in the list and press the Show Case button in order to display the case window, as in Figure 

5.7. 
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Figure 5.5: Transition rule example in CABS 

The More button gives some additional information on maintenance etc. Above the buttons, 

either the text Transition rule is not part of any priority or Transition rule is included in 

priority is shown (see Section 5.4.2 for information on priority between transition rules). 

Pressing the OK button saves the modifications and closes the window. Before saving the 

changes, a brief analysis of the changes is made and if in doubt, the user must confirm the 

changes (see Chapter 7 for circumstances under which transition rules may be modified).  
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5.2.1  Recursive Behaviour in Requirements 

How to represent recursive behaviour, as well as the restrictions imposed on recursion by the 

formalism and syntax, are of major importance for requirements specifications. The main risk 

with recursive behaviour is that loops are specified that may be infinite under some 

circumstances and that this is not identified during validation and verification (this would be a 

major problem in any safety critical application). One advantage of recursive behaviour is that 

some requirements are considered easier to express with recursive behaviour. Before 

explaining what type of recursive behaviour is enabled in CABS, an example is given of the 

call diversion service (see glossary in Appendix D) in a recursive situation. 

Call diversion may be used for diverting a call for more than one step. Calls to phone number 

111 may have been diverted to phone number 222, and calls to 222 may be diverted to phone 

number 333. A careless specification of repetitive behaviour may enable specifications that 

exhibit unwanted behaviour, which may be difficult to validate and verify (the problem is to 

separate loops that always terminate and loops that under some circumstances may not 

terminate). If, for example, phone calls to 222 have been diverted back to 111 in the above 

example, some formalisms and ways of specifying the diverted call may cause an infinite loop 

(see example in footnote 9, page 23). A full specification (specifying all wanted behaviour 

and excluding all unwanted behaviour) should state what happens: an infinite loop is most 

likely not part of the requirements for a telecommunications systems. A requirements 

specification (compared with a full specification) does not include all wanted behaviour and 

exclude all unwanted behaviour: it merely outlines the main behaviour and leaves other parts 

of the behaviour open for later refinement, in order to produce a full specification (which is 

outside the scope of this research). 

In CABS, recursive behaviour is restricted to aid validation and verification. There are two 

different ways to express recursive behaviour: 

Expanded Recursion: If a finite recursive behaviour is to be expressed with transition rules, 

this can be represented with a separate transition rule for each recursive step. A recursion in 
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n steps will result in n transition rules. Hence, we cannot create infinite loops and only one 

time step passes for the rule triggered (if other rules trigger in parallel, it will still be one time 

step, for more on this see 5.2.2). This is expressive enough for telephone services but may be 

awkward for some cases, especially if a user manually edits or adds transition rules capturing 

recursive behaviour (a more compressed syntactical notation for recursion may be introduced 

and automatically expanded to a set of transition rules, see Chapter 8). Both validation and 

verification of expanded recursion is supported in CABS (transition rules representing 

expanded recursion are, with respect to CABS, no different to other transition rules). 

External Recursion: This mode of recursion is optional and may be forbidden if unwanted 

for an application domain. If a recursion is caused by a response converted externally 

(outside the formally specified system) to a signal, it is called an external recursion (Figure 

5.6). Infinite loops can be specified in this way and are outside the control of the formal 

notation. The filter process may add restrictions and monitor recursion. One time step passes 

for each recursion. This can often be translated (manually) into expanded recursion. Even if 

they can be translated manually, they are different in nature to each other since in CABS, a 

time step will occur for every stimulus and hence each recursion will result in a time step. 

This may be an over-specification, especially if the requirements can be translated with 

expanded recursion (only one time step will pass, independent of the number of recursions). 

Validation of external recursion is supported by CABS, which identifies responses named 

stimulus and submits the argument as a stimulus to be simulated, see Section 5.2.1.2. 

5.2.1.1 Example of Expanded Recursion 

As an example, suppose we accept divert call in three steps, then we know that if there are 

three divert numbers (divert(123,125) & divert(125, 139) & divert(139, 144)) there 

would be three transition rules if we formalise the requirements with expanded recursion. The 

first transition rule would handle diversion in three steps; the second one in two steps, with 

the precondition that the last number does not have a divert, and the third in one step, with the 

condition that there is no further diversion from that number. Since there is no transition rule 
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handling four diversions, any further diverts would be ignored by the specification (which is 

the aim if we limit the maximum number of diverts to three). Also, if the second divert was a 

divert back to 123 (divert(139, 123)) this would be no problem since the effect is that phone 

calls to the number 123 end up at 123. This is most likely a profitable situation for a service 

provider, since the service provider normally bills each diversion as a normal call (billed to the 

subscriber who activated the diversion). This would result in the subscriber for telephone 

number 123 paying for the call between 123 and 125, the subscriber for 125 paying for the 

call to 139, and the subscriber for 139 paying for the call to 123 (a triple payment for a call). 

5.2.1.2 External Recursion 

If recursion is specified as an external recursion, a transition rule concludes a special 

response, which is identified by the filtering process, and the argument is returned as a 

stimulus (see Figure 5.6). When behaviour is specified with external recursion, the 

specification exploits some known and reliable behaviour. In CABS, this special response 

term is named stimulus since its argument is one stimulus to be sent as input to the system. 

When the filtering process identifies a response, stimulus(<stimulus term to be sent to 

system>), it is converted to a stimulus term and sent to the system. The external filter 

process is transparent for all responses directed to the users, and only identifies and filters out 

responses from the system that should be sent back as stimulus terms. 

With this mechanism, we could specify call diversion by having a transition rule identify when 

a caller C calls a number N1 for which a diversion is set to number N2, and generate a 

response term stimulus( dialling(C, N2, NextTime) ) which the filtering process will 

translate to a signal dialling(C, N2, NextTime) and present as an input to the system. 
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Figure 5.6: External recursion 

If number N2 has also diverted calls to number N1, we would end up with an infinite external 

loop. When dialling(C, N2, NextTime) is received by the system, it would correctly identify 

that N2 is diverted to N1 and generate a response term stimulus(dialling(C, N1, 

NextTime)): this may continue forever. It is theoretically difficult in general to prove that a 

specification containing external recursion is finite. A crude way of reducing the risk to the 

most obvious loops would be to add restrictions in the filter process. For example, one might 

only allow a stimulus with the same arguments (allowing different times) to be sent to the 

system a certain number of times within a given time frame. If a restriction is added that the 

response stimulus(dialling(C,Nr,T)) is accepted only three times with the same arguments 

within one second, the loop in the example would most likely be eliminated. But since there is 

no way in CABS to prove that the use of external recursion will not cause an infinite loop, 

this way of specifying behavioural requirements should be avoided in cases where reliability is 

a high priority (or all external recursion should be translated to expanded recursion in the 

refinement process of the specification). In situations where there are good reasons for using 

external loops to specify some particular behavioural requirements, the part of the 

specification that can cause infinite loops is clearly identifiable.  
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5.2.2  Parallel Transition Rules and Order Independence 

For requirements specification, it is useful to have transition rules that can trigger in parallel if 

all their conditions are met, and can also trigger independently of the order of the transition 

rules (transition rules are by default context independent). This can be used to separate the 

specifications of more or less unrelated behaviours (for example, separate call billing 

functionality for a telephone call from the behaviour of how to establish the call) which are 

triggered by the same external stimulus. Context-independent transition rules give the 

advantage of defining the behaviour independently of both loading order and other transition 

rules included in the full requirements specification (in many rule based systems, the exact 

behaviour of a rule can only be determined if the conflict resolution methods are known, as 

well as the loading order: the system may behave completely differently if the rules are 

loaded in a different order17). Transition rules which may trigger in parallel must be checked 

carefully to ensure that they do not have conflicting conclusions (this can be done 

automatically, see Section 7.6). Parallel transition rules do not affect the expressiveness of 

the logic and can be translated (manually) to a set of non parallel transition rules with exactly 

the same behaviour. Their sole purpose is to aid the separation of requirements. 

5.3  Structuring Functionality in Cases 

There are a number of different ways to structure functional specifications. The main aim of 

any structure is to make it easier for a human to understand, extend or modify a specification. 

It is considered to be difficult to structure large systems in predicate logic. If a structure is 

required for a formal specification based on predicate logic, it has to be introduced either in 

the formal notation itself or on a meta-level. The most common approaches are to modularise 

a specification or to divide the specification into a number of communicating objects (not to 

                                                 

17 Since telecommunications systems requirements are composed of hundreds of different services 

(cases), it would be a major task to handle loading order for transition rules. 
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be confused with the objects in the domain of discourse, hence I will call these objects 

‘process objects’). 

In the chosen telecommunications domain, the functionality is divided into functional parts18 

called services, where each service reflects some particular behaviour of the final 

telecommunications system. Services are often classified as either basic services, capturing 

some main functionality, or as services which add functionality to these basic services. In 

telephony, the basic functionality is to establish a voice or data connection between two 

users. Examples of services adding functionality are call return, call minder and call 

waiting (for more examples see “Selected services, User guide, BT” and Appendix B). The 

basic service in telecommunications is decreasing as part of the total functionality and the 

overall functionality is getting more complicated. In our example domain of 

telecommunications services, we implemented each service as a separate case, which 

follows the traditional way of structuring telecommunications services. 

Figure 5.7 shows an example of how a case is displayed in the CABS system. In the scroll 

list under the text Transition rules (T-rules) in case: a list with all transition rules belonging 

to the case is shown. The user may chose to inspect a particular transition rule by selecting 

the appropriate button. This will show the window for the transition rule as shown in Figure 

5.5. In the same way, a transition rule can be removed from or added to the case. The 

informal description gives a brief description of the case, its purpose, functionality and links to 

relevant documentation. In the list Terms defined by case: a list with all terms defined by the 

                                                 

18 In telecommunications, it is also common to have an object oriented structure at the 

design and implementation level (but not at the requirements level) where different parts are handled 

and implemented separately (trunk lines, protocols, regional processors, access points, etc.). In 

contrast, functional requirements specifications should ideally be as independent as possible of 

design and implementation decisions. 
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case is shown. The button Show Term will show the selected term in the list. This 

information is used to determine relationships between cases. 

If a case specifies behaviour added to that of a previously specified case, in the sense that a 

system does not include the base case, the extension case does not make sense on its own (in 

telecommunications, three party call may be specified as an extension to call waiting). If a 

case specifies some behaviour added to a previously specified case, this is shown in the list 

<case name> is dependent on cases: in the window. 

The button Interaction makes an in-depth analysis of relations and dependencies between 

cases (some of the interaction can be determined automatically in CABS, see Chapter 9 for 

more details). The user can choose to inspect the input examples on which the case has been 

based on by pressing the Input Examples button, or can choose to inspect the test cases used 

for the verification of the case by pressing the Test Cases button (if no Test Cases have been 

generated automatically from the case, this can be initialised). The More button gives some 

additional information, such as when a case was last modified. 
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Figure 5.7: The case window in CABS 

In a requirements specification, it should be obvious which parts of the specifications are 

requirements and which are merely there to aid the human user in handling a large 

specification. To represent both the specification and these additional structures in logic may 

complicate the logic used to represent the specification and it may be difficult to extract the 

part of the specification relating purely to requirements. With an object oriented approach, the 

distinction between specification and supporting structure may be difficult to make, since 

dividing a functionality into a number of communicating objects may be a requirement or just 

a decision taken in order to make the specification easier to understand. If a large system 
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with varied functionality is divided into large numbers of communicating objects, this may 

require extensive communication and large numbers of communication protocols to 

understand and handle. If so, this may reduce the benefits from structuring the requirements 

into objects, or, in the worst case, lead to a specification which is more complicated than if 

specified without a communicating object structure. 

In CABS, a case consists of a set of transition rules. Cases also contain references and 

information aiding human understanding, re-use, modification and evaluation. The logical 

formalism does not know what a case is and treats all transition rules as one large set of 

axioms. The main reasons for this design are:  

CABS is aimed at people who are not skilled in logic, so it is important to keep the logic as 

clear and simple as possible. 

To avoid complications in the verification and simulation of specifications. 

To keep the distinction clear between what parts of the requirements are requirements and 

what parts are an aid to human thought processes. 

One of CABS’ aims is to stretch a simple, executable logic as far as possible and to explore 

the benefits and drawbacks of this minimalistic approach in a real application domain. 

As mentioned earlier, a case may be specified as being dependent on another case. The 

opposite would be that a case is independent of all other cases and doesn’t interact with any 

other cases (not common in the telecommunications domain). If such an approach can be 

taken for an application domain, each case may be viewed as a single process that can be 

specified, re-used, validated and verified in CABS. If a domain contains individual 

autonomous components exhibiting external communication only, there is no need to consider 

interaction and dependencies. Such a domain would be well suited for CABS (or, even better, 

a simplified version of CABS where all parts especially included to handle interaction and 

dependencies are excluded). One current limitation in CABS is that if the overall behaviour of 

the system is determined by a set of communicating cases (communicating with each other 
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by external stimuli), this may be simulated, but not formally verified in CABS (beyond the 

scope of this research). 

5.3.1  Case Relations  

A telecommunications service may be dependent on other services (adding functionality to 

them) or interact with another service, i.e. there is a new behaviour when both services are in 

the same system. For this reason, requirements have to be carefully validated and verified to 

determine where and how cases affect each other and the overall behaviour. 

Cases being dependent on each other is a common feature of a system that is structured 

according to functionality. A case X may add functionality to case Y, hence case X is 

meaningless if case Y is not included in the constructed system. This information has to be 

captured during the initial specification. Also, analysis of where terms are used, and in what 

way (as a condition, conclusion, negated, ...), may identify dependencies and relations 

between cases, since terms are specified as belonging to a case. How a term is used is 

important during analysis. For example, if a term is used in the condition part of a transition 

rule, the rule can never be triggered if no other transition rule has the term in its conclusion 

part. Some cross-reference tools have been developed in order to analyse the transition rules 

and their use of terms (these tools have not been integrated in the current version of CABS). 

5.4  System Requirements (Sets of Cases) 

The requirements specification of a system specified in CABS is a set of cases whose 

behaviour (including the most common interaction between them) has been validated and 

verified. Systems requirements may include additional input examples, exemplifying 

interaction between different cases in the system. In the telecommunications domain, system 

requirements may denote all telephone services supplied to a particula r country, service 

vendor, local or global company. Interactions between systems may also have input examples 

exemplifying certain interactions. When a case has been modified or a new case is added to 

a system, all input examples describing interaction with other cases should be verified again. 
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Also, the system that includes these modified or new cases should have all its interaction with 

other systems verified. In CABS, automated verification of sets of test cases is implemented, 

assuming that we can select which system or systems to verify, and select which input 

examples to verify. 

In Figure 5.8, an example of the system window in CABS is shown. First, a list of all cases 

included in the system is shown. The user may inspect, remove, replace or add cases to a 

system. An informal description is given as a textual description of the system, with links to 

relevant material. The list Behaviour dependent on systems/cases: contains the names of 

systems and cases on which the system is dependent to specify a meaningful behaviour. If 

the list is empty, then the system specifies a meaningful behaviour on its own. If not, then in 

telephony it is most likely a set of add-on services (specially designed services adding 

functionality for which phone users are prepared to pay extra, which in turn increase income 

for telecommunications service providers). If there are cases in the list, then the system is 

dependent on any system including these cases. In telecommunications, there may be a large 

number of different systems where only a few cases differ for each system, and so it is 

preferable if an add-on system is dependent only on the parts of the system that are the same 

for all these different systems. This increases the possibility of re-using the system and 

facilitates adaptation and integration. 

The list Integrated with systems/cases: is a list of systems or cases with which the particular 

system has been verified and validated. In telecommunications applications, it is important to 

keep track of these, since there are a large number of different systems designed for specific 

categories of users, vendors, service providers, etc. If it is a case in the list, then the same 

reasoning applies as for the Behaviour dependent on systems/cases: situation. Also, when 

validating and verifying a particular service, CABS needs to know in which context the 

service is to be tested (a set of cases/systems). 
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Figure 5.8: System window in CABS 

5.4.1  Different Application Domains 

A case library normally contains cases from just one application area, since different parts of 

the case library can have only one unique meaning. If a case library captures different, but 

related, application domains, where terms may have different meanings, great care has to be 

taken to ensure that any reasoning and re-use is not based on terms from the different 

application domains having similar but not equivalent meanings. A requirements capture 

process, whether formal or informal, has the main purpose of outlining the requirements as 
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closely as possible, and if this reasoning process is based on terms not clearly defined, or 

even having different meanings, it would complicate matters considerably. 

5.4.2  Priority for Transition Rules in Systems 

In some situations, it may be desirable to have context dependent rules on a local level. Since 

every transition rule has a unique name, we can define local orders between transition rules, 

i.e. if transition rule divert_call triggers (has all its conditions met) then normal_dialling 

should not trigger. Such a request can be specified with transition rules by including all 

conditions from divert_call as a negated conjunction in the transition rule normal_dialling. 

If there are more than two or three transition rules that are exclusive, or overriding each 

other, this solution is somewhat tedious as the conditions will get very large. Therefore, we 

allow the user to define explicitly a local order between a number of named transition rules 

(see Appendix A for more details on logic). Figure 5.9 demonstrates setting the priorities for 

transition rules triggered by stimulus dialling. To inspect or modify a priority, the user first 

selects the stimulus to which the priority applies (by selecting the stimulus in the list Priority 

for stimulus). The current order shown is the number after Priority order followed by the 

total number of priority orders for this stimulus in the brackets. In the next list, the name of 

the transition rules (with the name of the case in which they are defined) and their local 

priorities are displayed. For example, transition rule 1. divert_call will override 9. 

dialling_busy. If divert_call has its condition met, all the following transition rules in the list 

cannot trigger. The same transition rule may occur in different orders which enables the user 

to specify a lattice. If transition rules are exclusive (they cannot have their conditions met in 

the same state), they may be given the same priority numbers (as is the case for transition 

rule dialling_busy_queue_call_1 and dialling_busy_queue_call_2). Protection against 

circular priorities should be provided when new priorities are added or existing priorities are 

changed (not implemented). 
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Figure 5.9: Priority window in CABS 

The explicit local order is purely syntactical and, from a logical point of view, the priority is 

expanded into negations in the transition rules (explained in Appendix A). This local order 

allows us to make the meaning of the transition rules independent of the order in which they 

are loaded, as discussed in Section 5.2.2. 
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5.5  Graphical Input Examples 

All previous graphical input examples on which a specification is built are stored in the case 

library, including both their graphical layout (created by the user) and the detailed 

requirements added to them under refinement. Since the graphical input examples are the 

original source on which the formalised requirements are based, we have to keep them for 

further modifications and extensions of the system. In the CABS system, the user can create 

new and re-open previously created input examples, and modify and save them in their 

graphical form. All information is stored in the case library. 

5.6  Storing and Re-using Test Cases 

Test cases are generated from input examples and in some cases, revised or added by a user 

(user initiated simulations may be stored as test cases; some parts of this are implemented in 

CABS). All the test cases are needed in order to verify a modified system. If changes have 

been made to some parts of the system, all test cases that can be theoretically affected by 

the change have to be re-tested in order to verify that the required behaviour is still captured 

by the requirements specifications.  

We also need to maintain the link to the input examples from which the test cases originally 

stem. This gives us the ability to identify which test cases are still valid or have to be removed 

due to changes in the input examples on which they are based. How test cases are used in 

the validation and verification task is explained in Section 7.5 and Section 7.6. 
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Chapter: 

6.  Matching and Identification of 

Similar Behaviour 

The purpose of the matching process is to identify cases, or parts of cases, hold in the case 

library which have similar behaviour (as exemplified by the input examples) and which may 

be considered for re-use. A computationally fast and uncomplicated matching algorithm 

aimed at identifying similar behaviour is used in CABS. The result of the matching must be 

narrow enough to identify candidates for re-use and broad enough not to exclude relevant 

cases. The final selection will be carried out by the user, validating and verifying the selected 

match with the tools provided in CABS. If the user is not satisfied with the result of the 

matching, she may redo the match after refining the input examples or modifying parameters, 

thus directing the matching process in order to identify more suitable candidates. 

When a user of CABS wishes to make a match, she selects ‘Match…’ from the CABS pull 

down menu. A dialogue window (Figure 6.1) with all the input examples on which the match 

may be based is shown. The user selects the input examples to be used in the match 

(a_basic_example  and a_busy_example  have been selected in Figure 6.1). When the OK 

button is pressed, the system will try to identify cases in the case library that capture the 

same or similar behaviour. The result is shown in Figure 6.9. 
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Figure 6.1: Selecting input examples to match. 

CABS implements a two-step matching process based on comparing sets which results in a 

fast and fairly easy to understand matching algorithm. First, transition rules capturing the 

same or similar behaviour (as exemplified in the detailed links from the input example) are 

identified, and then cases capturing similar behaviour exemplified in the input examples are 

identified. Both individual transition rules and whole cases may be re-used to create a new 

requirements specification capturing the exemplified behaviour. In Figure 6.2, the matching 

algorithm is outlined in pseudo-code. 
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 For all links from the input examples, Ln: 

 For all transition rules in the case library, Tm: 

  Analyse the different features indicating closeness of 
  behaviour for Ln and Tm, 

  Calculate the score for the behavioural closeness between 
  Ln and Tm (calculation based on the features and 
  parameters set by user). 

 For all cases in the case library, Ci: 

 Calculate an overall score for Ci based on the closeness scores 
 of the transition rules in Ci. 

 Sort transition rules and cases according to their overall  
 score for closeness of behaviour. 

 

Figure 6.2: Outline of matching algorithm 

Requirements specification, as well as re-use of requirements specification, is seen as an 

iterative process: parts of the result of the matching can be confirmed by the user before a 

partial re-match is carried out, possibly with a different set of matching parameters. 

Any matching algorithm able to identify cases with the same or similar behaviour to the input 

examples may be considered for the task. The matching may be semantic or syntactic. 

Syntactic matching may be a straightforward keyword based matching or a more elaborate 

one, using knowledge about the structure in order to improve the matching result. A syntactic 

matching which is sufficiently fast and accurate for the task of identifying similar behaviour 

has been chosen for CABS. The matching algorithm used is based on set intersections and 

unions.  

For some application domains, a computationally faster choice would be a pure keyword 

based search, identifying terms occurring in both the detailed links and the transition rules 
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from the case library. A keyword based search produces good results when there are one or 

more unique keywords (terms) that may be identified in the input examples, or by the user, in 

order to determine relevant cases and parts of cases. This is true for some of the services 

specified in CABS in the telecommunications domain (for example, redirect calls, which 

defines and uses the term redirect). Many services in the application domain of 

telecommunications do not have easily identifiable unique terms like redirect calls does (pick 

up call and voting are examples of services not having any terms defined and if there are 

variants of a service in the case library, they will all have the same terms defined), so 

keyword matching cannot be used as the only method of identifying cases. Also, similar 

services or variants of the same service do not, in most cases, have discriminating terms, 

making keyword matching less accurate. If no unique terms are present in the set of terms, 

and many cases use the same set of terms, too many matching cases may be identified as 

possible candidates. Since telecommunications services requirements are based on a fairly 

small set of different terms used by most services (terms such as answer_number, calling, 

ring_signal, busy_tone, in_speech), straight keyword matching is unlikely to produce 

reliable results in this domain. Keyword based matching could complement the algorithm used 

in CABS, since keyword matching is even faster, and if there are some specific terms related 

directly to the behaviour exemplified in the input, the relevant cases can be identified. 

However, keyword matching is not implemented in the current system. The matching used in 

CABS has the advantage of capturing features, thus allowing the user to make some 

semantic assumptions about a match that may be useful in the selection process or when 

modifying matching parameters. For more on optimising matching and different methods on 

how to prune a search see for example [Althoff, Auriol, Barletta, Manago 95]. 

In this chapter, we first explore the terms what “similar behaviour” and “closeness of 

behaviour” mean, and establish how to identify and score transition rules capturing behaviour 

which is similar to the detailed links. After that, the process of identifying similar cases is 

described (this process is based on the identified transition rules capturing a similar behaviour 

to the links). 
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6.1  Defining Similar Behaviour 

One of the main issues in case based reasoning systems is the choice of appropriate features 

for cases. A case in the case library is only of use if there is a way of identifying when the 

case can be re-used in whole or in part. If indexes are badly selected, it will require great 

effort or even be impossible to locate relevant cases. If the indexing vocabulary [Kolodner 

93] is well chosen, it will be easy to compare stored cases to the given task, and to determine 

if a case is of interest or not. Hence we need to investigate both the application domain and 

the semantics of cases, and to carefully select features to be used in the matching process. 

The features used should be fairly easy to understand and to explain to the user, which will 

aid in the task of adapting matching parameters to a particular application domain. The 

algorithm implementing these features should also be computationally fast enough to produce 

a result within an acceptable time. 

Before we define the features (see section 6.4) used in the matching algorithm, a number of 

expressions are defined. These are used as the basis for feature definitions, which make the 

assumptions and compromises necessary to produce acceptable results and achieve a 

computationally efficient implementation of the matching algorithm. 

In our application domain, it is always possible to determine if a link19 from the input examples 

and a transition rule from the case library capture exactly the same behaviour. If a transition 

rule and a link have exactly the same behaviour, they must have the same conditions 

(stimulus and other conditions) and conclusions (responses and other conclusions). It will 

therefore be obvious that all behaviour included in the link is included in the transition rule, and 

all behaviour excluded by the link is excluded by the transition rule. In the following 

                                                 

19 If we use ‘link’ without a discriminator, we mean a detailed link (the expanded graphical link with 

extended conditions and conclusions). The term ‘graphical link’ will be used to refer to a graphical 

link from the input example. 
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definitions, we will treat the links as transition rules, since they are so similar syntactically that 

there is no need for a distinction in the definitions. When translating the definitions into 

features, the difference is of importance and will be reintroduced, since the features capture 

some of the semantic aspects of the differences between links and transition rules. 

Definition 0, exactly the same behaviour: Two transition rules exhibit exactly the same 

behaviour if and only if all conditions (stimuli and other conditions) and conclusions 

(responses and other conclusions) in the transition rules are equal. 

If there is more than one link in the input examples which has the same behaviour as a 

particular transition rule, the relevance of this transition rule may be more significant (for 

further details on combined links, see Section 6.5). The notation of capturing exactly the 

same behaviour is not sufficient in the telecommunications domain since it is very unlikely 

that a link and transition rule have exactly the same conditions and conclusions. The reasons 

for this are that a behavioural input example represents a particular example of the behaviour, 

but a transition rule captures many cases, and also includes interaction with other 

telecommunications services. This usually results in links having fewer conditions and 

conclusions than transition rules. For this reason, we need a more fine grained vocabulary to 

be able to reason about closeness of behaviour.  

Definition 1, same external triggering condition: Two transition rules have the same 

external triggering condition if and only if their stimulus term conditions are equal. 

It may be useful to know whether there is a contradiction between a transition rule and a link, 

i.e. if they cannot apply to the same states and hence not capture the same behaviour. This is 

done in definition 2. 

Definition 2, under no circumstances capture the same behaviour: Two transition 

rules can under no circumstances capture the same behaviour if there is a contradiction 

between their condition parts or their conclusion parts or both. 

It may also be useful to know whether a link and transition rule apply to the same state. 
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Definition 3, same originating state: Two transition rules have the same originating 

state if and only if all their conditions are equal (stimulus conditions do not need to be equal). 

If definition 3 is not met, it may be useful to know if there is any state in which the link and 

transition rule have their conditions met. We do not distinguish between a reachable state and 

a possible state. The difference between this and definition 3’ is that even if there is a state 

(a set of terms) under which both transition rules may have their conditions met, there may be 

no possible sequence of stimuli that can bring the system into this state. Such an analysis may 

be used as an additional source of information when determining how similar two transition 

rules are, but may be computationally expensive for large requirements. 

Definition 3’, some originating states in common: A transition rule, T1 has some 

originating states in common with another transition rule T2 if the conditions of T1 are a 

subset of T2’s conditions and there is no contradiction between T1 and T2’s disjunction. 

The relationship between the terminating states may also be of interest:  

Definition 4, cause the same effect: Two transition rules cause the same effect if their 

conclusions are equal and they have some originating states in common. 

A weak form of definition 4 looks at the question of whether there is any state in which both 

the link and the transition rule have their conclusions met. 

Definition 4’, some terminating states in common: Two transition rules, T1 and T2, have 

some terminating states in common if T1’s conclusions are a subset of T2’s conclusions and 

they have some originating states in common. 

In the application domain of telecommunications services, the external visible side effects 

(response terms) may have a higher significance than other conclusions, hence we introduce 

separate definitions (definitions 5 and 5’) for externally visible side effects (responses). 
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Definition 5, same externally visible effects: Two transition rules have the same 

externally visible effects if and only if the response terms in their conclusions are equal and 

they have some originating states in common. 

Definition 5’, some externally visible effects in common: Two transition rules, T1 and 

T2, have some externally visible effects in common if T1’s response terms is a subset of 

T2’s response terms and they have some originating states in common 

Because of the fact that links are expected to be part of some particular input example, it is 

unlikely that there are input examples and transition rules meeting the definitions fully, hence 

we need to define a set of matching features based on the definitions, which allow for some 

flexibility. Features should be defined in such a way that their subsequent use is 

computationally efficient. The result should also aid us in determining the closeness of 

behaviour between an input example and a set of transition rules from the case library. These 

definitions have been selected since they can easily be translated into features which can all 

be determined fairly accurately at a low computational cost, using the structure inside 

transition rules and comparing sets of terms. 

In the next sections, we will explore how these definitions are used to define features which 

are useful in the evaluation of behavioural closeness. We will then look at how these features 

can be translated into values, and how these values are then combined into a single value, 

which gives a sufficiently accurate estimate of the closeness of the behaviour between links 

and transition rules, or input examples and cases respectively. 

6.2  Using Parts and Sets to Analyse Similarity 

Before exploring the connection between the definitions, features for estimating closeness 

and structural matches between transition rules and links, the syntactic structure used for 

comparison is detailed. The transition rules and the links are each partitioned into seven parts:  
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Transition rule: Stimulus part (extracted from condition part) 

 Condition part (stimulus and negative conditions excluded) 

 Negative condition part (stimulus and non negative conditions 

excluded) 

 Conclusion part (response parts and negative conclusions excluded) 

 Negative conclusion part (response parts and non negative conclusions 

excluded) 

 Response part (extracted from conclusion part) 

 Negative response part (extracted from conclusion part) 

An analysis of arguments for terms is not made at this stage of the matching. Sufficient 

assumptions can be made which exclude a large number of transition rules from further 

analysis and rate the remaining matches without an in-depth analysis of arguments and 

variable bindings (a variable refers to a specific entity in the application domain, such as a 

specific phone number or subscriber without naming the entity). The exclusion is made 

conservatively, since care must be taken not to exclude transition rules that may be good 

candidates. Each part is treated as a set with zero or more terms. This can be done safely 

because the condition, conclusion and response parts are all restricted to conjunctions of 

terms. With current restrictions on expressions, disjunctive terms (where no brackets are 

allowed, and conjunction has priority over disjunction), may be allowed to occur in a transition 

rule, and any disjunctions which occur can be expanded to a set of transition rules containing 

only conjunctive terms. 

The partitioning of transition rules is trivial since terms are typed as stimulus, response, 

attribute or relation before they are used in links or transition rules. The stimulus part is 

restricted to only one non-negated term of the type stimulus, and the stimulus terms are only 

allowed to be used in the stimulus part. The partitioning of terms gives us a basis for 
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comparison and for drawing some conclusions to be used in the closeness of behaviour rating. 

Negated terms in parts are handled separately, so seven features may be compared for each 

link/ transition rule pair, and six cross comparisons (negated/ non negated parts, see line nc2, 

cn2, nc3, cn3, nc4, cn4 in Figure 6.3) may be made. Selected comparisons are used for 

defining features. They are translated into numerical form and used to create an overall 

score, which in turn is used in the final rating of the “closeness” between the transition rule 

and link. These comparisons have been chosen because they are computationally fast to 

determine, fairly easy to understand and the fact that they can be used to indicate if a link and 

a transition rule capture similar behaviour. The choice of which of these comparisons to use 

as features and their connection to the definitions are explored in the following sections. 

 Link comparisons Transition Rule 

 

 Stimulus Stimulus 

 

 Conditions Conditions 

 

 Negated Conditions Negated Conditions 

 

 Conclusions  Conclusions 

 

 Negated Conclusions Negated Conclusions 

 

 Responses Responses 

c1 

c2 

n2 

c3 

c4 

cn2 nc2 

cn3 nc3 

n3 

cn4 nc4 
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 Negated Responses Negated Responses 

Figure 6.3: Possible comparisons between parts in link and transition rule  

For reasons of computational cost, we do not calculate every comparison for every pair of 

link/ transition rules, since, if some comparisons are below a threshold set by the user, the 

transition rule is classified as uninteresting and no further evaluation on the transition rule will 

be made. These thresholds set by the user should ensure that no relevant matches are 

excluded but, if in doubt, the threshold values can always be set to zero and all matches will 

be included whatever the score is. This may take a considerable time for a large case library, 

and it is up to the user or system manager to weigh up the advantages of a faster match 

against the risk of missing possible matches (see section 6.5.1). Since the comparison is set 

based without any computationally expensive calculations, it is computationally fast and only 

marginally slower than keyword matching since the comparisons all are implemented as a 

number of keyword matches (each term in the link/transition rule is used as a keyword for 

the corresponding set). Hence, a linear relationship, depending on the number of terms in the 

link and the transition rule, determines the upper limit of the computational cost. In 

telecommunications specification, the number of terms in transition rules are expected to be 

below 35 (in our case library no transition rule has more than 30 terms). In links from input 

examples, even fewer terms are expected. 

6.3  Translating Comparisons to Values 

Before defining the features used to estimate how similar the behaviours of a case and input 

examples are (Section 6.4), we will describe how to calculate the values used in these 

features. It is not necessary to understand this section in detail to be able to understand the 

feature definitions. A comparison (all possible comparisons are shown in Figure 6.3) between 

a part from a link and a part from a transition rule is first translated into an integer triple, 

n4 
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where the first number is the number of terms in the link, the second is the number of terms 

in the intersection and the third is the number of terms in the transition rule from the case 

library. These triples are then used to calculate two coverage percentage values used for 

calculating the features. 

For each comparison, two values called the intersection coverage percentage are calculated. 

The intersection coverage percentage values are called ICL (Intersection Coverage of Link) 

and ICT (Intersection Coverage of Transition rule). The terms in the part of the link and the 

transition rule under consideration are both regarded as two sets (L and T respectively) and 

the intersection L∩T is a set called I. The value for ICT = 100 * number(I) / number(T) and 

ICL = 100 * number(I) / number(L). The value is given as a percentage value between 0 and 

100, appropriately rounded since decimals would not make any significant difference. If L=Ø 

or T=Ø (a rare situation in our application domain) then ICL (respectively ICT) is set to zero. 

In Figure 6.4, the five main situations for coverage are shown. In the first case (top left 

example in Figure 6.4) the sets L and T are equal, hence the intersection, I, is also equal to L 

and T ((I=L∩T) ∧ (L=T)) ⇒ I=L=T). The intersection covers 100% of the terms in the link, 

hence ICL = 100. The intersection fully covers the terms in the transition rule, hence ICT = 

100 in this case. 

If there are 3 terms in T and 2 terms in L and L⊂T, the intersection I = L and contains 2 

terms. The intersection has 2/3 of the terms in T giving an ICT value of 67 (67 %) and an 

ICL value of 100. This corresponds to the top right example in Figure 6.4. 

If there are 2 terms in L and 3 terms in T and the intersection I contains 1 term, then ICL is 

100*1/2 = 50 and ICT = 100*1/3 = 33. This example corresponds to the middle left example 

in Figure 6.4. 

The middle right example corresponds to the top right example (L and T have their positions 

switched, T⊂L). The bottom example illustrates when the intersection I between the two sets 

is empty (L∩T) = Ø. Both ICT and ICL are assigned the value 0 for the last situation. 
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Figure 6.4: Examples of different matches when comparing parts (sets) 

In the next section, we will define the different features used to measure closeness between 

a link and transition rule, based on the definitions in the previous section and examine how to 

translate the features into numerical values. 

6.4  Features for Measuring Closeness of Behaviour 

Feature 1, based on definition 1, same external triggering condition (stimulus). 

Can the transition rule and link be triggered by the same external stimulus? 

Feature 1 is a straightforward match between the stimulus part of the links and the transition 

rules (see Figure 6.3, comparison c1).  



CHAPTER 6. MATCHING AND IDENTIFICATION OF SIMILAR BEHAVIOUR 

 

103

If a link and a transition rule have the same stimulus as their triggering condition, feature 1 

may be used as an indication that it is relevant to analyse them further for similarity. For 

example, if a link has the triggering stimulus hook_on and a transition rule has the triggering 

stimulus hook_on, it is obvious that the link and transition rule will trigger in the same 

situation if all other conditions and arguments are equal. We can also conclude that a 

transition rule with the triggering stimulus dialling cannot trigger in the same situation as the 

hook_on link (no parallel stimuli are allowed in the CABS model of the telecommunications 

domain). Since links and transition rules are restric ted to having only one triggering stimulus, 

the match can either be full (the intersection between the two stimuli sets is equal to the 

triggering stimulus in the link and the transition rule), or empty (the intersection is the empty 

set). Intuitively, we can draw the conclusion that any transition rule not having the same 

triggering stimulus as the link cannot capture the same behaviour and that this is sufficient to 

exclude the transition rule from further investigation, thus reducing the search space 

considerably (see Figure 6.5 for how the matching in such a case is more efficient). 

The difference between definition 1 and feature 1 is that feature 1 matches the stimulus 

name but makes no full analysis of the arguments (exemplified below). Feature 1 will give 

good results if the term name bears high significance (as described in Chapter 5.1.1). A 

successful match for feature 1 would occur when the stimulus dialling(a1, 123, 12:00) in a 

link is matched with the stimulus in a transition rule dialling(A, Nr, Time) and where no 

variables are bound to some other values throughout the transition rule (see Appendix A for 

details on logic). An example in which feature 1 would reduce the score is when 

switch_service_on( a1, redirect, 123, 12:00) is matched against 

switch_service_on(UserA, hotline, Number, Time). The second argument (redirect and 

hotline) are not equal. A difference between feature 1 and definition 1 would occur in the 

situation where two variables, or one variable and one constant, are matched and later on in 

the condition part of the transition rule are bound to a specific value. For example, if 

switch_service_on(a1, redirect, 123, 12:00) is matched against 

switch_service_on(UserA, Service, Number, Time) and the conditions in the transition rule 
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contains the term equals(Service, hotline), feature 1 would not identify the binding of 

variable Service, since at this stage of the match, no analysis of the condition part is made. 

The main reason for this is efficiency: a large number of transition rules can be excluded 

from further matching at a low computational price, hence the decision was made to not 

include further analysis of variable binding at this stage of the matching (see Figure 6.5) in 

order to be able to exclude some additional transition rules. 

CABS also allows the definition of similar stimuli. This facility can be used if there are stimuli 

which have different term names, but a similar semantics in the application domain. An 

example in the telecommunications domain would be the origination of a call which may be 

initiated in two ways, either by dialling a number (dialling stimulus) or by a set_up stimulus 

from an ISDN terminal. Thereafter, the matching algorithm will treat them as the same 

stimulus for matching purposes. 

 

Feature 2, based on definition 2, exclusive transition rules:  

Is there any contradiction, such that the behaviour in the transition rule cannot include the 

behaviour exemplified in the link? 

The cross comparisons between the non-negated and negated parts of the link and transition 

rule (cn2, nc2, cn3, nc3, cn4, nc4 in Figure 6.3) are most useful in determining if a transition 

rule is of low or no interest for further investigation. If a contradiction exists between the link 

and transition rule, they cannot capture the same or similar behaviour and we may exclude 

the transition rule from further investigation. When matching the arguments to terms, there 

are situations in which it is difficult to determine if it is a real contradiction or just appears to 

be one (e.g. whether answer_number(A,B) and not answer_number(C,D) is a 

contradiction or not). If unbound variables exist in both negated and non negated forms in the 

link or transition rule (see the example at the end of this section) we take the conservative 
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approach and do not classify this as a negation. With this conservative approach, exclusion of 

transition rules that may be appropriate candidates is avoided. 

An example of the successful identification of a contradiction between a link and a transition 

rule (example of comparison cn2 in Figure 6.3) is when the condition part of a link has the 

term dial_tone(a1), the transition rule has the condition not dial_tone(UserA) and UserA 

has been instantiated to a1 by matching the stimulus (the only way of binding arguments 

during matching). A more difficult example would be if a link has the condition 

answer_number(a2, 222) & ... and a transition rule has the conditions 

answer_number(UserB, Nr1) & not answer_number(UserC, Nr2) & ... . In this situation, 

it is difficult to determine if there is a real contradiction. Since feature 2 does not perform a 

full analysis of arguments, feature 2 cannot discriminate between the negated and non-

negated term, and should not be reason enough alone to exclude a transition rule. 

After identifying and removing matches with contradictions above the user-set threshold in 

Figure 6.6, the numerical value of contradictions (the sum of the number of terms in the 

intersections for cn2, nc2, cn3, nc3, cn4, nc4 in Figure 6.3) is calculated. Since all the other 

comparisons have a percentage value between 0 and 100 apart from feature 2, we translate it 

with a linear function to a percentage value where 100% signifies no contradictions and 0% 

signifies the maximum allowed number of contradictions. If the maximum number of 

contradictions is set to 0, then the value for feature 2 is 100% for all transition rules that are 

scored. In this case, it does not make sense to give feature 2 any weight in the final scoring. 

If the maximum number of contradictions is Cmax and the number of contradictions is Ctot 

and Ctot = Cmax and Cmax > 0 then the ICL and ICT are set to 100 - 100*Ctot/Cmax for 

feature 2. The fact that feature 2 is calculated in a different way from the other features may 

require a careful selection and tuning of the weight for feature 2 (see Chapter 6.5.1).  

 

Feature 3, based on definition 3’, some originating states in common:  
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Can the transition rule trigger in the same or similar situation ? 

For feature 3, we can directly apply the result from comparison c2 and n2. If the intersection 

of the conditions of the link and transition rule is empty, it is less likely that a behaviour similar 

to the link is captured by the transition rule. If the intersection captures most of the terms in 

the link’s condition part, the behaviour of the link may be captured in the transition rule. The 

additional terms in the transition rule may be additional interactions and may be used to 

exclude special situations handled by a separate transition rule in the case. Since interactions 

are common in telecommunications services, we expect that there are more terms in the 

transition rule capturing interaction.  

In the situation where the condition from the link has terms which are not present in the 

condition from the transition rule, it may be that the transition rule is more general and 

deliberately does not include these terms. A match is often better if most of the terms from 

the link are included in the transition rule. By setting the appropriate parameter values, the 

final scoring will rate this as an indication of a possibly good match and use the result to 

create an overall score of closeness for the transition rule. 

An example of a successful indication of a similar behaviour using feature 3 is if the condition 

part of a link is answer_number(a1, 111) & redirect(111, 222) & answer_number(a2, 

222) & not calling( Z, a2), and the conditions in a transition rule are answer_number(A1, 

Nr1) & redirect(Nr1, Nr2) & answer_number(A2, Nr2) & not calling(Z, A2) & not 

dont_disturb(A2). In this example, the condition part of the link is a subset of the condition 

part in the transition rule, so there exists at least one state in which both condition parts are 

true. 

An example of a match in which there is a difference in the result between feature 3 and 

definition 3’ is a link that has its condition part equal to answer_number(a1, 111) & 

redirect(111, 222) & not dont_disturb(222) and a transition rule that has its condition part 

equal to answer_number(A1, Nr1) & call_back_request(Nr1, A1) & not 

dont_disturb(Nr1). In this situation, feature 3 identifies that the terms answer_number and 
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not dont_disturb are present in both condition parts, but that the rest of the condition terms 

are different. Feature 3 would give the match some significance but since the not 

dont_disturb is actually two different identities in: answer_number(a1, 111) & not 

dont_disturb(222) and the same in: answer_number(A1, Nr1) & not dont_disturb(Nr1), 

they would not be regarded as equal by definition 2’ since Nr1 and Nr2 cannot have the 

values 111 and 222 at the same time), only one of the terms would count as a match. In some 

application domains, feature 3 may be preferred, since definition 3’ may exclude interesting 

matches. 

The numerical results for feature 3 are based on the conditions for the link and transition rule 

(stimulus excluded for both). These two sets of terms are translated into the numeric ICT and 

ICL values (in accordance with Section 6.3). 

 

Feature 4, based on definition 4’, some terminating states in common. 

Can the transition rule end in the same or a similar state as the link 

If the conclusions from the link and the transition rule match fully, it would signify that both 

are causing the same changes to the states to which they apply (responses not considered). 

This is a similarity that may be worth noticing even if there is not a full match in the 

conclusions. In the telecommunications domain, a transition rule may include conclusions 

needed for other services, for example, to note the starting time of a call in order to provide 

the charging service with sufficient information. It may also be the case that the link has 

omitted terms in the conclusion which are not obvious to the user making the input examples.  

Situations may also occur when a link includes conclusions that are redundant and are known 

to be already true in the previous situation and, hence, a match, as shown in Figure 6.4, 

middle left example, is expected. For example, if a user puts the phone down (hook_on), we 

may specify a generic transition rule concluding that the user is idle. If this transition rule 

always triggers when a hook_on stimulus occurs, other transition rules can ignore this 
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conclusion. If accuracy of matches of an application domain specified with parallel20 

transition rules, gives poor results for feature 4, adapting the matching of feature 4 to consider 

transition rules that may apply in parallel could improve the matching result. 

An example of the successful indication of a similar behaviour by feature 4 is when the 

conclusion part of a link is calling(a1, a7) and the conclusion of a transition rule is 

calling(A1, A2) & last_call(A1, Nr). In this example, the conclusion part of the link is a 

subset of the conclusion part of the transition rule and, therefore, there exists a state in which 

both conclusion parts are true.  

An example of a match where there is a difference in the result between feature 4 and 

definition 4’ is a link that has its conclusion part equal to calling(a1, a7) & last_call(a1, 

777), and a transition rule that has its conclusion part equal to calling(reminder, A2). In this 

situation, feature 4 identifies that the term calling is present in both conclusion parts, but that 

the rest of the conclusion terms are different. Feature 4 would give the match some 

significance but overlooks the fact that the transition rule could never match the link if the 

arguments are those set out for definition 4’ (a call from a “reminder” is a special case where 

the service reminder call initiates a call and where the reminder is not an ordinary user). 

The numerical results for feature 4 are based on the comparison between the conclusions for 

the link and transition rule (c3 and n3 in Figure 6.3). These two sets of terms are translated 

into the numeric ICT and ICL values according to Section 6.3. 

 

Feature 5, based on definition 5’, some external visible effect in common. 

                                                 

20 Not to be confused with parallel stimuli which are not allowed in order to avoid 

indeterminism and added complexity. See Model of the dynamic behaviour of telecommunications 

network, Figure 5.4. 
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Is the externally visible result (responses) from the link included in or similar to the responses 

from the transition rule? 

If response terms from the link and the transition rule fully match, it would mean that both 

may result in a state with the same response. In telecommunications services, this is an 

important indication that it may be a good match but, on its own, it is often too general (many 

different transition rules have responses such as ring_signal/ ring_tone in their 

conclusions). On the other hand, if the response terms do not match, it is less likely that it is a 

good match, assuming the user has specified the externally visible side effects accurately (in 

telecommunications services, the side effects alone are rarely affected by interaction with 

other services). For example, if a link ends in a situation with a ring_signal, transition rules 

with no ring_signal as a conclusion are probably not good candidates, and transition rules 

having ring_signal as a conclusion would be candidates for further analysis. 

An example of a successful indication of a similar behaviour by feature 5 is if the conclusion 

part of a link is not ring_tone(a1) & not ring_signal(a2) and the conclusion in a transition 

rule is in_speech(A1, A2) & not ring_tone(A1) & not ring_signal(A2). In this example, 

the response part of the link is a subset of the response part of the transition rule so there is 

at least one state in which both response parts are true. As with previous features, there is a 

risk that feature 5 gives a match too much credit since no in-depth analysis of arguments 

occurs.  

The above example may give too much weight to some transition rules since the link does not 

reveal if user a1 has made a hook_on (ring_tone and ring_signal have to be cancelled) or 

if user a2 has made a hook_off (ring_tone and ring_signal have to be cancelled since a 

speech connection has occurred which is a completely different situation and transition rule). 

In most cases, the combination of features reduces the risk of such mistakes and in the above 

case, feature 1 would have indicated that the stimulus does not match between the link and 

the transition rule, and so the transition rule should not be used in further investigations.  
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The numerical results for feature 5 are based on the comparison between the conclusions for 

the link and transition rule (c4 and n4 in Figure 6.3). These two sets of terms are translated 

into the numeric ICT and ICL values are in accordance with Section 6.3. 

6.5  Overall Score for Matching 

First, we have to produce an overall score for each transition rule that is a candidate for a link 

from the input examples. When that is done, we need to produce an overall score for cases 

(sets of transition rules) in the case library. After the best matching transition rules and cases 

have been identified, both of these results are shown to the user, who must decide if the 

match is good enough, or if the input examples need to be extended or the matching 

parameters tuned. First, we describe the process of scoring transition rules and after that, we 

describe the scoring of the cases. 

In order to make a rating of the closeness of transition rules, the results from comparing these 

different features and their values are weighted and combined into one value (according to 

the matching parameters set by the user). This value is then used as a measurement of the 

closeness between a link and transition rule. In order to adjust the match parameters for a 

domain, these comparisons and their meaning have to be understood. In the following 

sections, we explain how an overall score is calculated for a comparison, when transition 

rules are excluded from further calculations, and how the ranking of transition rules and cases 

is performed. 

6.5.1  Scoring a Match Between Link/Transition Rule 

The algorithm for calculating features, reducing the search space and calculating the final 

score for a match between a link and transition rule is outlined in Figure 6.5. There are two 

types of parameters that can be adjusted in CABS: 

Threshold parameters reducing the search space by excluding uninteresting matches. 
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Parameters guiding the overall scoring of a match (capturing information about the validity of 

different features and their relationship in the application domain). 

Much computational effort can be saved by excluding transition rules from further 

calculations: to minimise the calculations, the user set threshold values are checked after each 

feature is calculated. If the result is below the user set threshold, the transition rule does not 

need further investigation and the next transition rule can be explored (see Figure 6.2). The 

main purpose of the threshold for the features is to make the matching faster and to reduce 

the search space (with one exception, which is explained further on). Another advantage with 

the threshold settings is that some of the application domain knowledge about when a 

transition rule is uninteresting and can be exempt from further calculation, is captured. 

 



CHAPTER 6. MATCHING AND IDENTIFICATION OF SIMILAR BEHAVIOUR 

 

112

Yes
Summarise feature-
values according to

parameters

Store result of match

Match of link/
transition rule

completed

4 + 5
threshold ok?

Summarise
feature 4 and 5

No

Calculate feature 1

Feature 1
threshold ok?

Yes

Calculate feature 2

Feature 2
threshold ok?

Yes

Calculate feature 3

Feature 3
threshold ok?

Yes

Calculate feature 4

Feature 4
threshold ok?

Yes

Calculate feature 5

Feature 5
threshold ok?

Yes

No

No

No

No

No

 

Figure 6.5: Flow diagram for link/transition rule match 

The different threshold values have to be selected carefully, so that they do not exclude 

relevant matches within a particular case library. If these values are set too high, good 

matches may be removed before the final scoring. Once the values have been tuned for a 

particular case library (and do not exclude interesting cases), they do not need much 
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attention. CABS provides a default setting of these parameters, which is initially set and 

tuned for the case library currently used (these default values may need updating if the case 

library changes greatly). The experienced user can also load and save settings of threshold 

and parameter profiles. These may be used if the matching algorithm is identifying less 

acceptable matches. Less acceptable matches can have three causes: 

The input examples do not point out suitable cases well enough. Solution: 

- Add/refine input examples. 

- Exempt proposed transition rules and cases from a rematch. 

There is no good match in the case library. Solution: 

- A new case may have to be constructed/generated. 

Threshold and parameter setting are not well chosen for the case library. Solution: 

- Load an alternative set of threshold and parameter values and rematch. 

- Modify threshold and matching parameters. 

The threshold and parameter settings seem to be fairly robust for both the 

telecommunications domain and the case library used for evaluation (see Chapter 8). 

After all the features have been calculated, an overall score for each transition rule is 

calculated. For this overall score, an overall threshold value can be set; if a transition rule 

does not meet this threshold it will not be considered as a match to the corresponding link 

(see Transition rule threshold  in Figure 6.6). If this value is not met, the match will neither 

be used for the identification of matching cases (see Section 6.5.2 on parameter and 

threshold settings for cases), nor presented to the user as a possible match for a link. For 

more detailed settings and optimisation of matching, there are five individual threshold settings 

for each of the five features (see Figure 6.6). Only the ICL (Intersection Coverage of Link) 

is used for thresholds, since ICL is the most significant value. For feature 2, there is an 

additional value where a maximum number of suspected contradictions is set. This value is 

also used in the calculation of feature 2’s value, as explained in Section 6.4. There is also a 
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separate threshold value for the combination of features 4 & 5. The combination of features 

4 & 5 is used when a case library may have cases that are of interest if at least one of the 

features has good scores (which is the case for some transition rules in the 

telecommunications domain). These weights should provide sufficient opportunities for tuning 

the matching for case libraries for different application domains. 

 

 

Figure 6.6: Parameters for transition rule match 

When all the features have been calculated, we have to calculate an overall score for each 

relevant match. Calculation of an overall score is based on domain knowledge that captures 

the value of the different features for the application domain. In the telecommunications 

domain, stimulus and response terms usually have higher significance than other conditions 

and conclusions, and hence should contribute more towards the final score than other terms in 

the conditions and conclusions. In fact, the example setting in Figure 6.6 has the stimulus 
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threshold set to 100% and transition rules that do not have the same triggering stimulus as the 

link are exempt from further matching. Therefore, there is no need for a weighting of feature 

1 (see Weight for feature, field 1), as we know that all matches qualifying for an overall 

score calculation, have the value 100 for feature 1. 

The ICL and ICT value for every feature in a match is used to calculate a total ICL and ICT 

value for the transition rule. If all weights are set equally and the weighing is not adjusted 

according to the number of terms in the link, the total score for ICL and ICT respectively 

would be the sum of all the values for the features divided by the total number of features. In 

the generic formula for the calculation of ICL and ICT scores for a match, TotTerms is the 

total number of terms from the link used in the calculation of the features, Fn(ICL) and 

Fn(ICT) are the ICL and ICT scores for the feature n, WFn is the weight for the feature n 

and LFn is the number of terms of the part in the link on which the calculation is based. The 

total score is a pair of values, where the ICL value is given the highest significance. When 

sorting all matches for a link, the matches with the highest ICL will come first and matches 

with the same ICL will be ordered according to their ICT value. f is the set of features used 

for calculating the total score. If a feature weight is set to zero, it is not used in calculating the 

total score. x is either L or T. 

The total score for the ICL or ICT is calculated as:  

SCORE(ICx) = ∑ weighted_score(Fn(ICx), LFn, TotTerms, WFn ) 

The weighted score for a feature is calulated by the formula: 

Fn(ICx) * WFn * LFn

100 * TotTerms
weighted_score(Fn(ICx),  LFn,  TotTerms, WFn ) =

 

If the check box Adjust weights according to number of terms in link  is unmarked, then 

LFn and TotTerms are both set to the value 1 before the calculations start. 

n ∈ f
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6.5.2  Scoring a Matching Case 

After all transition rules have been scored, the task for the matching algorithm is to identify 

cases capturing similar behaviour to the input example. The overall score for each case 

depends on the matches between the transition rule in the case and the links in the input 

examples. If we look at a particular case, C1, from the case library (see Figure 6.7), some of 

the transition rules (squares) are matches for links in the input examples, indicated by broken 

lines to the matching link. The example in Figure 6.7 has six matches (m1 to m6) between 

links from the two input examples, E1 and E2 (the two input examples are indicated by 

broken circles around a group of links). 

 

Case C1

Input Examples

transition rules

links

matches

m1

m2
m3

m4
m5

m6

E1

E2

 

Figure 6.7: A match of a case and an input example  

If the Always match cases box is selected in Figure 6.8, CABS will identify and rank similar 

cases (for some situations only matches of transition rules may be relevant). To score a case, 

the matching algorithm counts the matches between all links and the transition rules in the 
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case (m1 to m6 in Figure 6.7). A case with a greater number of matches is ranked higher 

than a case with a lower value. This naive approach seems to be accurate enough (see 

evaluation in Chapter 8) in most instances of identifying cases of relevance, after adjustment 

of some additional parameters guiding the final ranking has occurred. 

If a transition rule in the same case is matched by more than one link (an example of this is 

match m1/m2 and m3/m4 in Figure 6.7), we do not know if the transition rule is capturing 

many different transitions, if the links in the input examples are a repetition of a similar link 

(for m1/m2), or if the application domain allows parallel transition rules to occur in the same 

case (for m3/m4). In our telecommunications service examples, we chose to allow parallel 

transition rules only if they are from different telecommunications services (different cases). 

If the application is specified with transition rules of a more general character (including a 

large number of transitions), then different links may be covered by the same transition rule. 

If the applications are specified with more specific transition rules, then the fact that the same 

transition rule is matched by more than one link may just be a less relevant match, and hence 

should not be included in the scoring. This choice is shown in Figure 6.8: the second choice If 

same transition rule matches more links, count each match is not selected. 

A decision also has to be made as to what to do if there is more than one matched transition 

rule in the same case (m5 and m6 Figure 6.7). If the other transition rule captures a similar 

but not exactly the same behaviour, this information may be useful, since it may increase a 

case’s relevance. The relevance for multiple matches can be set by selecting the third choice 

Give credit if more than one transition rule in case matches link. Count multiple 

matches up to NR in Figure 6.8. An upper limit, NR, on how many matches should be 

counted can also be set, in order to avoid over-scoring cases which have a large number of 

very similar transition rules (set to three in the example). 

A parameter, defining a threshold value for when a transition rule should count as a match for 

a case, can also be set by the user (Only count matching transition rule if ICL is above 

NR in Figure 6.9). This is a different value than the threshold setting for the total score for 

transition rules. A score for a match passing the threshold set for transition rules allows the 
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rule to be presented as a possible match for a link, but in order to be counted as a match for a 

case, the match has to pass this second threshold. If a large number of cases have a high 

score, the value may be set higher, to reduce the number of good matching cases. 

 

 

Figure 6.8: Parameters for case match 

6.6  Presentation of Matching Results 

When the system has completed the match, the result is presented to the user. Both the best 

matching cases and the best matching transition rules are shown. The user is asked to select 

a solution that she will use as the proposed solution (or refine the input examples so a better 

match may be achieved). Figure 6.9 shows an example of a result from matching two input 

examples: a_basic_example  and a_busy_example . In the upper left corner under the text 

Best matching cases (descending order), a scrollable list with the best matching cases from 

the case library is shown. The number in brackets after the name of the matching case tells 

the user how many links from the input examples are matched by the case. The user may 

inspect a matching case by selecting the case in the list and pressing the button Show Case, 

which will result in the system showing the case window as shown in Figure 5.7. The 

Exclude Case button will be explained in Chapter 7. 
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In Figure 6.9, Links and corresponding transition rules show the links from the input 

examples identified by their start node, triggering stimulus and end node. In the table  

matching transition rule, the proposed/selected transition rule is shown. There are five 

different types of prefixes to the transition rules: 

P: <transition rule name> - The best matching transition rule in the case library according 

to the matching result is shown. If the user wishes to see all the matching rules (sorted in 

descending order) this can be viewed in the link window (Figure 4.6). 

N: No match is shown when there is no matching transition rule in any case that meets the 

set transition rule threshold set in Figure 6.6. 

I: Ignore this link  - If the user has labelled a link to not be included in the match. This 

choice can be selected when showing the link. The user may set this if it is obvious that a link 

captures behaviour from another case on which the new case is dependent. In 

telecommunications, it could be a service based on a basic call and therefore, getting the 

proposal basic_call as the first and best proposal may not be useful. By pointing out those 

links that are not crucial for the new functionality, the matching result is narrowed down to 

find cases that capture the selected parts of the input examples. 

The user can inspect a link in more detail by selecting the link in the list and pressing the 

button Show Link in Figure 6.9, which results in a link window showing the selected link in 

detail. If there are many links, the user may wish to sort the links after the start node, 

stimulus, end node etc. This can be selected by pressing the button Sort list (these sorting 

choices are not fully implemented in CABS). 
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Figure 6.9: Presentation of result from match 

If the user does not accept the proposal in Figure 6.9, she can add input examples and redo 

the match, which will hopefully result in a solution that can be accepted as a proposed 

solution (although it may need refinement). For this purpose, the button Exclude Case can be 

used when there are proposals in the best matching cases list that have been inspected and 

are not relevant. Chapter 7 explores how the user selects, revises, validates and verifies the 

solution selected in Figure 6.9. 
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Chapter: 

7.  The Requirements Design 

Process in CABS 

In the previous chapters, we looked closely at the central parts of CABS and explained the 

graphical input examples, the case library and the matching process. In this chapter, we put 

these parts in the context of requirements design and examine how a requirements designer 

may use such a system to produce formalised, validated and verified requirements. The 

examples are given in the context of the chosen application domain, where the most common 

task is to modify and extend a large system (a large number of closely interacting telephone 

services) and where the requirements designer is not necessarily an expert at applying 

scientific methods in order to produce requirements. CABS aims to simplify the task of 

requirements engineering so that a person with some idea about a new or modified behaviour 

can outline their ideas, and then refine, validate and verify them. Graphical input sketches, 

case-based reasoning and formalisation are tools used in combination to aid this creative 

process and are not aims in themselves. Persons performing this task may be service 

vendors, sales staff or even end-users of the telephone system (or any combination of these), 

who would benefit from being able to express and formalise their behavioural requirements. 

For this reason, we have adopted the terms: requirements design and requirements 

designer instead of the traditionally used requirements engineering and requirements 
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engineer which, for many people, imply some technically advanced and complicated task. 

Design often implies a more creative process, such as outlining and sketching an idea, so is a 

better choice of name for the task CABS aims to support and simplify. 

Modifying and adding behavioural requirements to a requirements specification mostly 

includes refinement cycles. When an idea for a new behaviour has been formalised, validated 

and verified, a large number of iteration and refinement steps may have occurred. In CABS, 

these cycles are treated as central parts of the process of producing requirements. In Figure 

7.1, the whole process from idea to a validated, verified and formalised requirement is 

outlined. The process of producing a requirements specification starts with an idea for a new 

behaviour (the top of Figure 7.1). In the application domain of telecommunications it is most 

likely that the new behaviour is being added to some already specified behaviour. The first 

step is to decide if the new behaviour can be expressed within the existing ontology or if the 

ontology has to be extended (see Section 7.2). Once the ontology is approved, the 

requirements designer can provide input examples outlining the main behaviour with the 

graphical input editor in CABS (third oval from top in Figure 7.1, see Section 7.3). Once the 

user has expressed some parts of the new behaviour with input examples, including some 

refinements of nodes and links as described in Chapter 4, the matching can start. The 

matching will identify candidates from the case library as described in Chapter 6. The user 

selects a solution and validates the selected solution. If the user does not accept any of the 

solutions proposed by CABS, the user has three choices, i1, i2, i3 (which are also shown in 

Figure 7.1). These are: 

i1. The user believes that there is some fundamental problem with the idea of the 

behaviour to be specified. This is a restart and it may be necessary to modify the idea, 

ontology and input examples. In Figure 7.1, this situation is shown with the arrow pointing to 

Revise Idea. 

i2. The user decides to refine or add new input examples which may be based on 

the assumption that the current input examples do not capture the behaviour to be specified 

well enough (Refine Input Examples in Figure 7.1). 
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i3. The user assumes that the result from the matching can be improved by 

adjusting matching parameters and modifying these before a rematch is carried out (Prepare 

for Re-match in Figure 7.1). 

Once a solution has been selected (based on the matching result) the next task is to validate 

the proposed solution with the simulator provided (see Section 7.5). If the validation results in 

a rejection of the proposal, the user has the same choices as described when the matching 

result is rejected (i1, i2, i3 in Figure 7.1), as well as an additional choice, i4, of revising the 

solution, which is a more traditional way of modification where the user may edit the 

transition rules (described in Section 7.5.1). 

If the validation is successful, and the user is convinced that the intended behaviour is 

captured by the proposed solution, the solution has to be verified. The input examples are 

used to generate test sequences (called test cases) of behaviour that should be included in the 

formalised solution. These are automatically or semi-automatically verified against the 

formalised solution. If the case includes all behaviour that is included in the input examples, 

the verification against the input examples is successful. If the verification is unsuccessful, 

the skilled user may use the feedback from the verification in order to locate the problem and 

modify the solution (i4, Revise Solution in Figure 7.1), or iterate back via i3, i2 or i1. The text 

to the right in Figure 7.1 is the part (or parts) of CABS aiding the process/step to its left. 
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Figure 7.1: Overall process from idea of behaviour to formalised solution 
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7.1  Idea for New Behaviour 

Before starting a new specification, an idea of the behaviour to be added has to be created 

(the “cloud” marked Idea for New Behaviour at the top of Figure 7.1, with the cloud 

indicating that the idea is a mental product “stored” in the users mind21). The initial idea is, by 

its nature, always implicit since it is in the head of a person or a group of people. Often, the 

overall goal with an idea is to add some behaviour to an existing implemented behaviour in 

order to add value to the total behaviour (in telecommunications, this is called an added value 

service). In CABS, the main concern is the process of formalising an idea for a new 

behaviour so it can be validated and verified before any larger commitments, in time and 

money, have been made, and also provide a basis for decision making, design and 

implementation. 

7.1.1  Revising an Idea for Behaviour 

If the requirements designer for some reason decides to rethink the idea of the behaviour 

(major changes, for refinements see 7.3), all steps after the initial Idea for New Behaviour 

in Figure 7.1 have to be performed again. Revising an idea may involve respecification of 

ontology and may require major changes in input examples. Revising the behaviour at this 

stage (within CABS) is not a major disaster because, at this stage, only a small investment in 

the new functionality has taken place (a few hours work). Most likely parts of the previous 

formalisation of the idea can be re-used by manually copying ontology, input examples or 

parts of input examples and even parts of the solution that could be re-used by refinement. 

                                                 

21 For more on mental representation both from a philosophical perspective and in the context of 

theories of cognition see [Cummins 89]. 
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7.2  Defining Ontology 

Defining an ontology is a main issue in knowledge acquisition and in enabling re-use of 

knowledge. Many requirements specification approaches have neglected ontological issues 

(most likely due to more pressing problems) but their importance is now widely acknowledged 

and research into their use is increasing. The purpose of an ontology is to capture the 

conceptualisation of a domain and to define (informal, structured, semi-formal or formal 

[Uschold 96]) all relevant concepts and terms. There are three main areas in which an 

ontology is useful:  

Communication between all involved parties. 

Interaction between systems. 

System design and engineering. 

For CABS, the first area above is the most relevant: when a specification of a behaviour is 

made, it is essential that the entities, attributes and relations used in the specification have a 

clear meaning for all involved parties (customers, requirements designers and end users). The 

view taken in CABS is that information which is easy to capture and may be useful at a later 

stage (revision / design / implementation), should be captured at the earliest convenient stage. 

The definition of an ontology is not the aim and focus of CABS (it is in fact a research topic 

in itself), but defining an ontology is still a main part in the process for transforming an idea of 

a behaviour to a formalised requirements specification. Therefore, only a simple approach has 

been implemented in CABS where entities, attributes and relations are defined partly 

informally and partly formally. For the telecommunications domain it is often possible to 

identify and use previously specified definitions stored in the case library (which have been 

validated and verified). If not, any addition or modification of the ontology should be carefully 

investigated, validated and agreed upon by all involved parties, in order to minimise the risk of 

serious problems at a much later stage in the development process [Zave, Jackson, 96]. 
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7.3  Expressing an Idea with Input Examples 

As described in Chapter 4, the user can give a set of graphical input examples where each 

example exemplifies a category (categories such as basic behaviour, odd case, error case, 

etc.) or combination of categories of the new behaviour. Once the requirements designer has 

an idea for the behaviour, the behaviour is captured using the graphical examples that are 

produced with the graphical input example editor. Nodes and links are refined thereafter 

using definitions from the case library (the ontology of the domain). Once the requirements 

designer has outlined the main characteristics of the new behaviour with input examples, 

which capture the most common behaviour, whilst leaving out less usual behaviour, a match 

against the case library can be performed. 

7.3.1  Refining Input Examples 

Refining input examples is done with the graphical input example editor in the same way as 

new examples are produced. The user can copy and rename graphical input examples, as 

well as add, remove and modify links and nodes until satisfied. Links may also be excluded 

from matching for different reasons (some links may not be part of the new behaviour, 

merely putting the new behaviour in the context of previously specified behaviour). 

7.4  Matching Input Examples Against the Case Library and 

Selecting a Solution 

The matching process identifies cases in the case library, capturing similar behaviour to the 

behaviour exemplified in the input examples, as described in Chapter 6. This enables the 

requirements designer to identify and select a proposed solution. 

7.4.1  Prepare for Match or Re-match 

Before the user starts the matching process, he or she has to choose which input examples 

are to be used (Figure 6.1). If a match result is not satisfactory and a re-match has to be 
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performed, selecting a different set of the input examples may be the preferred choice in an 

effort to improve the result of the matching. Some of the input examples may guide the 

matching better than others and there may even be input examples that misguide the 

matching (this will be explained further on). Since the final rating of cases is directed by the 

number of matching links/transition rules for the cases, it is obvious that if most input 

examples direct the matching in one direction, then a few input examples with links pointing to 

another case will have less effect on the final ranking. Matching parameters are normally not 

changed, but if matching using the method mentioned above (using different sets of input 

examples for the match) does not produce acceptable results, the user may consider tuning 

the matching parameters22 in order to try to achieve a better matching result (Figure 6.6 and 

Figure 6.8). In the future, the system may also be involved in the process of improving the 

matching result by asking the user for some specific input examples, outlining the behaviour 

of parts of the functionality. This will enable it to confirm or exclude cases from the case 

library (an adaptive approach to case-based search [Callan, Fawett, Rissland, 91]). This 

possibility has not been explored in the current implementation of CABS. 

If CABS proposes solutions that are rejected by the requirements designer, these proposed 

cases can easily be removed from further re-matches by selecting the proposals and pressing 

the Exclude Case button in Figure 6.9. In the same manner, the user may exclude links from 

the match if these are judged as being less relevant when searching for a matching case 

(these may be links that are known to belong to a case to which the new behaviour is 

complementary, but not included in, hence these links may direct the matching in an unwanted 

direction). When the user is ready for a re-match, the Redo Match button in Figure 6.9 is 

selected and a dialogue window is shown where the user can select the input examples on 

which the rematch will be based. 

                                                 

22 Note that to tune the matching parameters, knowledge of the matching process is needed. 
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7.4.2  Selecting a Proposed Solution 

When confronted with the matching result (as shown in Figure 6.9), the user must select a 

solution. The scroll list Best matching cases (descending order) may include a proposal that 

the user might decide to explore. The interface enables the user to inspect any of the 

proposals in the list by selecting the case and pressing the Show Case button. If the user 

accepts a proposal, the proposal has to be validated and verified (see sections 7.6). If the 

proposed case has been validated and verified, the task is completed and the user has 

identified a case that captures the required behaviour. In telecommunications, a case may be 

re-used directly or with minor modifications, if there is a variant of the service (a case that 

has been implemented for some other customer or market but where the main behaviour and 

functionality is matching) already specified and implemented. If no similar service is 

identified, the use of parts from different cases may be combined into a new service, which 

will be explained in the following section. 

7.4.3  Adapting a Close Match 

If there is a matching case that captures most of the main behaviour, but not all of the 

behaviour, the user may select this case as the proposed solution. Then, through validation 

and verification, he/she can locate the differences and construct a solution covering all 

wanted behaviour by adding transition rules from other cases (the transition rules may need 

modification, see Section 7.5.1). All links have their best matches shown in the menu Match 

selected for link: in the link window (Figure 4.6), where the user can select a matching 

transition rule that is not part of the proposed solution (a manual selection will by default 

exclude the link from a rematch). This allows the user to construct a new case with parts 

from other cases (modified or unmodified) by adding in missing behaviour. If some behaviour 

exemplified by a link is not included in the solution, this behaviour may be added in three 

different ways: 
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The user selects a transition rule from the case library which is good enough to be adapted 

and modifies it until it captures the desired behaviour. 

The user lets the system generate a new transition rule capturing the behaviour of the link 

(how transition rules are generated from links is described in Section 7.4.4).  

The user may manually construct a new transition rule. 

In all three cases, validation and verification will identify if the transition rule is fulfilling its 

purpose. Once all links whose behaviour was not captured by the selected solution have been 

handled in this way, we have a solution that can be fully validated and verified. When 

transition rules are used from different cases and added to the new case, the new behaviour 

is a combination of parts from previous specified cases. In telecommunications, parts of 

behaviour in different services often show similarity (end users mostly require a uniform 

interface to services) and hence finding parts of behaviour from different services that can be 

used when specifying a new service is likely. 

7.4.4  Generating a New Case  

If there are no cases in the case library that can be re-used for the new behaviour, the input 

examples can be used to automatically generate a set of transition rules which can be used as 

a starting case. A solution case generated in this way will be a naive solution in the respect 

that it is merely a generalisation of the input links from all input examples only including the 

behaviour of the input examples. It is missing other wanted behaviour that has not been 

explicitly exemplified (error cases, odd situations, interaction, etc.) which would have been 

included if a previously specified, designed and implemented case had been re-used as 

starting point for the new behaviour. A generated case is most likely good enough as a 

starting point for refinements, modifications and adaptations, as described in Section 7.5.1. 

CABS generates transition rules from the input examples by putting all conditions into the 

condition part of the generated transition rule and all conclusions into the conclusion part of 
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the transition rule. Since most heuristics are most likely application domain dependent they 

should be given as an external set of rules enabling an easy way of changing them (the 

CABS prototype has not implemented these heuristics and the user has to do these 

adaptations manually). Since generating transition rules from input examples is not a main 

issue in CABS, this part is only briefly outlined and implemented to point at the possibility and 

to capture the situations where no good matching case or set of transition rules exist in the 

case library. This part is based on earlier experiments with rule induction [Funk 88], [Verpers 

91]. There are interesting research results in the area of rule induction [Quinlan 87] and logic 

program induction [Muggleton 90] which should be used in order to extend this initial 

approach. 

7.5  Validating a Proposed Solution 

Executable specifications have lately become more popular and, in addition, for many non-

executable formal notations, there is an ongoing research effort to identify executable 

subsets/extensions [Fuchs 92]. One of the main advantages of executable specifications is 

that the requirements designer can explore the specified behaviour (under different 

circumstances) by simulation. Executable specifications can be used as part of the 

communication about the system functionality between customers, system designers and 

programmers. The simulation allows an interactive exploration of the required functionality 

(the required dynamic behaviour) captured by the requirements specification. If any 

unexpected, unspecified or unwanted behaviour is encountered then the solution needs 

refinement: the requirements designer can refine, revise and/or extend the specification (as 

described earlier in this chapter and shown in Figure 7.1), so that it captures correctly the 

intended behaviour.  

Since the requirements designers intention of the behaviour is not fully covered by the 

examples, and since the proposed solution includes more behaviour than explicitly exemplified 

in the input examples, the specification has to be validated. In CABS, we have implemented a 

basic text based simulation tool as shown in Figure 7.2. If simulation is to be used with 
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customers of the system it would need to be improved and the logical notation better 

encapsulated. A graphical representation or simulation animation would be one way of further 

assisting understanding for people not skilled in formal notations [Hughes, Cooling, 91]. Some 

experiments in graphical and icon based representation for simulations and specifications 

have been performed in the domain of telecommunications services [Preifelt, Engstedt, 92]. 

In the simulation tool, the user can create an initial state (the Initialise button in Figure 7.2), 

give a sequence of stimuli to the simulator, and explore which transition rules have been 

triggered and what facts and responses are concluded. This gives the user a powerful tool 

with which to explore the behaviour of the formalised requirements. The user starts a 

simulation by initialising the facts. In Figure 7.2 one subscriber is answering calls to number 

111, answer_number(a, 111), and calls to number 111 are accepted, 

accepts_incoming_calls(111) are the initial facts as shown in the top right field. The user 

gives a stimulus (which may be selected from a menu containing all valid stimuli) in the text 

field Next stimulus: at the top of Figure 7.2 and selects the Simulate button. The New facts 

since previous state , Unchanged facts since previous state  and Triggered transition 

rules fields will be updated and show the state after the stimulus has occurred. If the user 

wishes to inspect why a transition rule has triggered, the user can select the button Show 

Transition Rule which shows the transition rule with variables replaced by actual values 

from the simulation. The user can also explore why a transition rule has not triggered by 

choosing the Why Not button23, selecting a transition rule that will be shown with the 

conditions which have or have not been met. The field Facts at time shows the current time 

step: if the user has simulated a number of steps, the <, > or View time button can be used to 

traverse forward and backward in the simulation space (in this implementation, a new 

                                                 

23 Why Not button and the corresponding functionality has not been implemented in the final simulator 

for CABS. Such a functionality is a minor extension and was implemented in an earlier versions of the 

simulator. 
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stimulus can only be given at the last time step, but it would be desirable if tree structured 

simulations could be built and a different simulation branch could be started from any 

simulation step). Before a simulation is started, the user has to decide with which cases the 

new behaviour should be simulated (only transition rules from these selected cases will be 

triggered by a stimulus). For telecommunications services [Funk, Raichman, 1990], it is often 

an advantage to first simulate a new case without other interacting cases initially, and once 

this behaviour has been validated and refined so that it covers the basic idea, additional cases 

can be explored. If the user wishes to reset a simulation from a particular step, the button 

Reset from is used. If the Initialise button is chosen, the current simulation is cleared and a 

new initialisation can be selected (either select from previously defined initialisation or define 

a new initialisation containing facts that are true at time step zero). 

 

Figure 7.2: Example of simulation window in CABS 
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7.5.1  Revising a Solution 

If missing behaviour which is part of the input examples is identified, then the proposed 

solution needs to be extended (by identifying matching transition rules for the links not 

covered by the solution or by refining the transition rules). If missing behaviour, which is not a 

part of the input examples, is identified and classified as relevant to include in the initial 

behavioural requirements, the input examples should be extended to include this behaviour. In 

the domain of telecommunications services, the number of behaviours to be captured in a 

specification may be so large that it is not feasible to make input examples for all behaviours, 

only for the more common and normal ones. Other more unusual situations and interactions24 

are captured by the formalised requirements (a refinement of the behavioural requirements 

towards a full specification).  

If behaviour is added to the formalised requirements, but not included in the input examples, 

there is still a possibility to perform some verification, if the simulation traces are kept as test 

cases for later re-verification and to formally prove that any modifications/alterations to a 

case have not accidentally changed any of the previously captured behaviour represented by 

the simulation traces. Verifying modifications/alterations of cases is a major issue for 

telecommunications service providers since services are often modified for different markets 

and users, or altered to interact in a desirable way with new services. It is a well known fact 

that alterations are one of the main causes of errors. This risk of accidentally introduced 

errors is reduced if previous input examples and previously performed simulations are re-used 

to verify that none of these behaviours have been accidentally altered (see [Buchanan, 

                                                 

24 If looking at a telecommunications service such as call diversion or three party call, it could be 

argued that the behaviour normally encountered by the phone user is the main issue for the top level 

requirements sketch. The more unusual situations should of course eventually be catered for, but 

this can be left for a later stage in the process, after the main behaviour of the new service has been 

validated, verified and approved for full implementation.  
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Shortliffe 84]). Storing simulations has not been implemented in CABS but is a trivial 

extension to the automatic verification described in Section 7.6. 

The solution may be revised on the level of transition rules (I4 in Figure 7.1) by editing the 

transition rules in a traditional way until they capture the behaviour exemplified in the input 

examples (individual transition rules can be edited in the transition rule window, Figure 5.5). If 

transition rules are revised to capture the behaviour exemplified in the input examples, the 

solution can be verified as normal, as described in Section 7.6 (no extra verification with 

simulation traces as described previously is needed). 

7.6  Automatic and Interactive Verification of Results 

Validation of new cases can be done more or less systematically but as long as traditional 

methods for validation are used, there is no guarantee that all requirements exemplified in the 

input examples are captured in the formalised requirements. In CABS, a step of formal 

verification is added where the input examples are translated to test sequences (called test 

cases) that are used by the verification tool. This is done automatically and can prove that the 

behaviour exemplified in the input examples is captured in the case and its environment, i.e. 

all the other cases with which it is expected to coexist, and with which it may also interact or 

be dependent on. If behavioural examples outlining excluded behaviour have been given, 

these have to be proven not to be included in the behaviour (negative input examples have not 

been implemented in CABS but is a straightforward extension of the existing 

implementation). In CABS we have implemented this automatic verification for positive input 

examples. If a case does not capture some specific behaviour exemplified in links in the input 

examples, CABS will point out which behaviour in the input examples is missing from the 

formalised requirements. This indicates that the transition rules in the formalised requirements 

specification corresponding to these links fail to fulfil their task of capturing the exemplified 

behaviour. Hence, the verification has failed and the user has to refine the input example or 

add another input example in order to give more information, so that a transition rule meeting 
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the requirements can be identified by the matching process or generated from the input 

examples. 

Once a case and its transition rules have been altered, all cases that include this transition rule 

directly or indirectly need to be verified. Those cases which need to be re-verified can be 

determined automatically (which can be done without a search through all the transition 

rules). 

By using a formal notation, we also have the possibility of identifying inconsistency in rule 

sets [Funk 93]. A program performing some consistency checks on rules has been 

implemented but not integrated in the CABS system (see Chapter 9). 

7.6.1  Generating Test Cases from Input Examples 

A test case is a sequence of triples of preconditions (facts and responses), stimulus and 

postconditions (facts and responses) that are expected to hold before and after the stimulus 

has occurred. The input examples are a set of links and nodes. The links contain conditions 

(both conditions from the originating node and additional conditions) and conclusions (both 

originating from the terminating node and additional conditions) which can be used directly to 

produce test sequences, containing sequences of stimuli, preconditions and conclusions that 

are expected to hold before/after the stimuli have been received. If a link has some additional 

conditions that are not a conclusion of some previous link or a part of any previous node, 

these terms can be added to the initial start situation if this option is selected. Input examples 

always have a finite number of nodes, so we only need to generate all possible routes 

between all the denoted start and end nodes. We do not need to expand loops since if we 

follow a branch of stimuli between start node and end node and encounter a node in the input 

example that has already been traversed, this branch needs no further exploration since each 

node has already had all its branches explored. 

Once all branches for an input example have been expanded between start node and end 

node in the input examples, we have a number of test cases to verify. As well as using test 
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cases, we may also show different properties, such as liveness [Segala, Gawlick, 

Søgaard-Andersen, Lynch 98], i.e. if a branch cannot reach an end node within a 

reasonable number of stimuli (for instance a phone user is only expected to do a reasonable 

number of actions resulting in stimuli, dialling, putting calls on hold, joining them into three 

party calls etc. which can be limited to a safe maximum number of stimuli), this can be 

identified. 

7.6.2  Verifying a Test Case Against Formalised Requirements 

The purpose of the verification is to verify (formally prove) that all the behaviour captured in 

the input examples is included in the formalised requirements and that the behaviour of 

negative input examples is excluded from the formalised requirements [Atkinson, 

Cunningham 1990]. 

Definition of included behaviour: Given the same sequence of stimuli, the formalised 

requirements capture the behaviour of the input examples if and only if the formalised 

requirements exhibit a list of responses which can be mapped to the list of responses in the 

input examples: Note that there may be responses in the formalised requirements that are not 

present in the list of responses from the input example. 

Definition of excluded behaviour: The formalised requirements exclude the behaviour of the 

input examples if and only if the formalised requirements do not exhibit the same responses, 

given the same sequence of stimuli as exemplified in the input examples. 

In CABS, the requirements designer selects which cases or set of cases are to be verified by 

selecting from the list Verify Cases in Figure 7.3. If more cases are selected, interaction 

between these cases is also verified (if input examples exemplifying interaction between 

these exist). If the check box precondition is ticked, the verification will check that 

preconditions connected to stimuli in the test case are checked and any differences are 

reported. If the check box postcondition is ticked, the postconditions are checked in the 

same way. If the check box response is ticked, the externally visible response terms are 

checked (same response for same sequence of stimuli). If the check box attributes and 
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relations is ticked, attributes and relations connected to stimuli in test sequences are 

checked. These settings may be useful if a verification fails because of differences between 

the exemplified behaviour of the input examples and the captured behaviour of the proposed 

solution and gives the user a tool that may be of help in the exploration of the differences. If 

the Verify All button is pressed, all existing test cases for the selected cases are verified (if 

the verification of a test case fails, the verification stops and the failing situation is shown in 

the Verification window). If the Verify Next button is pressed, the name of the next un-

verified test case is shown in the Verifying test case: field. Test cases are always named 

after their originating input example name merged with a number (the number is the order 

number in which the test case was generated). If the requirements designer wishes to step 

through a test case, the Step button is pressed and one stimulus at a time from the stimulus 

list Test sequence is verified (the highlighted stimulus in the Test sequence: list is the last 

verified).  

In the step mode, the result after every step is shown in the Facts: list, listing all the facts 

true in the state. What facts have been changed since the previous time are listed first. After 

the dotted line the facts that are not true any more are listed and finally after the second 

dotted line, all the facts that have not been changed since the previous step are listed. The 

Expected terms: list shows what the test case expects for terms in the state and the 

Triggered transition rules: list shows all the transition rules that have been triggered as a 

direct consequence of the stimulus. A discrepancy is an indication of a behavioural difference 

between the initial requirements and the formalised specification sketch. The user has to 

decide if the initial requirements have changed or if the formalised requirement sketch has to 

be revised. The Restart button is used to reset the current test case to its initial start state, 

which may be useful when stepping trough a test case. The Select New button allows the 

user to select and initialise the Verification window with another test case. 

The verification uses the simulator in batch mode. This has the advantage that if any 

discrepancies are identified and the verification is halted, the Simulate button can be pressed 

and the last test case can be explored with the simulator (stepping forward/backward, 

resetting from a particular time and simulating different stimuli and their effects). The original 
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graphical input example can also be viewed by pressing the Show Input Example  button. 

The test case can be viewed by pressing the Show Test Case button. Each step in the Test 

Sequence list has a reference to its originating link in the graphical input example which can 

be viewed by pressing the Show Link  button. 

 

Figure 7.3: Example of verification window in CABS 

The verification also handles test cases where variables are used. In Figure 7.3 in the Test 

sequence list, the third step, service_request(a, X, 3), can under the given restrictions 

(preconditions and postconditions), only be equal to service_request(a, call_back, 3) as 

shown after Occurred. If the variable causes indeterminism and the variables can be 

instantiated to different values, the user has to make a selection to make the test case valid. 
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7.7  Revising and Refining the Solution 

A solution may be directly modified by editing transition rules. This does not conflict with the 

methodology of CABS since verification and, most likely, validation has to be performed 

before the task can be considered complete. The verification ensures that the solution still 

conforms to the input examples. If the verification is unsuccessful, the question to explore is if 

the input examples or the formalised requirement specification has to be modified. Once the 

original idea has been formalised, validated and verified, the solution includes the behaviour of 

the input examples. If the input examples reflect the behaviour of the new functionality, then 

the solution meets the original requirements. 

If the proposed solution needs some revision (such as adding in the behaviour for unusual 

situations), or if there is no single case that meets the user’s requirements, a more traditional 

approach of editing transition rules may be necessary. This requires knowledge of production 

systems and rule based approaches. 
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Chapter: 

8.  Evaluation of CABS 

As mentioned in Chapter 2, there are hundreds of different telephone services implemented 

by modern telephone networks. These exist in different variations where adaptations have 

been made for different countries, companies and telephone operators. The CABS case 

library contains seventeen telecommunications services (127 transition rules, 54 terms), 

reflecting a variety of different types of telephone services commonly supplied to phone users 

which are often used in experiments and research involving service specifications [Funk, 

Raichman, 1990]. The case library selected for the evaluation contains the following 

services25: basic call; call barring; call diversion; call waiting; call reminder; call back; call 

return; charge advice; emergency call; three-way calling; pick-up call; banking; voting; queue 

calls; caller display; basic telephony. 

For case-based reasoning, there are a number of key issues to be evaluated (described in 

Section 8.1). The most desirable approach for an evaluation is when a set of objectively-

measurable criteria can be defined and proven: for example, if the aim of a research project 

is to apply an approach enabling micro-processors which are ten times faster, compared with 

                                                 

25 For details on some of the services, see for example BT’s brochure “Welcome to Selected Services, 

Your User Guide”. 
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currently available technology, a prototype that meets this criterion is clear evidence that the 

claims of the research hold. In the area of mathematics, a precise answer may be a 

mathematical formula or proof. In artificial intelligence and knowledge based systems, where 

different areas and approaches are combined and integrated to achieve the desired results, an 

empirical approach to evaluation is usually the preferable choice [Mark, Greyer, 93]. 

An important question is: with what data should an evaluation be carried out. For the case 

library, a set of services is chosen that is commonly used in experiments with telephone 

services [Funk, Raichman, 90], [Klusener, Vlijmen, Waveren, 93]. For these services, input 

examples were created in the same way in which end users are expected to use the system. 

These are used to evaluate the robustness of the system, and the results reported give an 

indication of how well it meets its claims (identifying similar behaviour and verifying the 

solution against the input examples). The results are reported in the tables of the following 

sections. 

The decision was taken that end user evaluation was not appropriate, for two main reasons. 

Firstly, real end users are not accessible; telephone services designers are in great demand, 

and they would not grant time for the evaluation of CABS. The second reason is that since 

the implementation is fairly large, any results from an end user evaluation would be 

questionable as it may be difficult to separate the evaluation of the prototype (an end user 

may like or dislike a particular implementation depending on background knowledge, 

experience and personal preferences) from the evaluation of the general approach. 

8.1 Issues to Evaluate in Case-Based Retrieval 

The success or failure of case-based reasoning systems depends on five key issues listed in 

Table 8.1, each with a brief reference to CABS. They are in no particular order and are 

extended and adapted from [O'Leary 93] and [Ketler 93]: 

How easy is it to use the system (giving input examples on a suitable abstraction level). 

CABS uses graphical input examples. Graphic notations are common in telecommunications 
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applications and the notation used is considerably less complex (due to a reduction in 

expressiveness) than notations traditionally used (SDL, MSC, CP, etc.). To evaluate the 

notation is beyond the scope of this research and the view is taken that the notation should be 

adapted and tailored to meet the user’s wishes. 

Consistency and uniformity of knowledge representation (sufficient for all involved parties 

and also enabling automated verification, adaptation, etc.). 

CABS uses a predicate logic notation based on Horn-clauses.  

Clustering of cases (application domain feature). 

Telecommunications services, and in particular telephone services, are on a behavioural level 

often similar to each other. Different countries and service providers offer similar, but not 

identical, services to telephone users. Re-use is high on the agenda in telecommunications. 

Metrics for the retrieval of cases. 

A set of structural features, based on an analysis of the semantics, is used to identify and 

retrieve cases capturing similar behaviour. 

Assessment of the solution produced by the system. 

CABS uses input examples to verify solutions. Simulation is used to explore behaviour not 

covered by the input examples. Theorem proving is a further extension (partly implemented 

but not integrated in the prototype system, see Chapter 9). 

Table 8.1: The five main issues to be evaluated 

This research focuses on the identification of similar behaviour for re-use and to confirm that 

the final solution captures the behaviour exemplified in the input examples, so issues 4 and 5 

in Table 8.1 are the main issues in this evaluation and will be explored in depth in sections 8.2 

and 8.3. 
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To evaluate issue one to three is beyond the scope of this research but they are discussed 

briefly because they are of relevance if a full scale implementation of a system based on the 

CABS approach is considered: 

Issue 1 (Table 8.1): The behaviour imagined by the user has to be expressed in some notation 

as input examples, in CABS. To use a graphical notation is an obvious choice for the domain 

of telecommunications since graphical notations are often used in this application domain for a 

variety for different purposes. CABS has a very basic graphical representation (the notation 

should be adapted to the user’s needs and also for different application domains. This is 

beyond the scope of this research.). The main requirement for the input examples is that it 

should be possible to translate them into transition rules used for matching and for generating 

test cases used in the verification. Whether the input examples capture the desired behaviour 

correctly can only be assessed by the designers, making evaluation of the problem description 

difficult (especially without access to end users). 

Issue 2 (Table 8.1): For a number of reasons (convenience being one of them), CABS uses a 

subset of predicate logic extended with a frame axiom as its knowledge representation 

language. With this simple but sufficiently expressive predicate logic, the implementation of 

matching, simulation, verification and translation from input examples to transition rules is 

realised with reasonable effort. Translation to and from natural language has also been 

explored for a notation similar to the one used [Dalianis 95]. 

Issue 3 (Table 8.1): The application domain of telephone services has the features needed to 

make re-use beneficial since similarities between services are common in 

telecommunications. Re-use is considered an important matter, and is high on the priority list 

for service development. Since new telephone services are designed and implemented all 

over the world in different company branches, companies and service vendors, it is assumed 

that a lot of work is repeated and that there is a large potential for re-use. Effort to 

standardise service independent building blocks has been undertaken by the international 

telecommunications union but this will not lead to standardised services (as discussed in 
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section 2.3). Section 8.4 shows that CABS has the capability to considerably reduce 

repetitive work by identifying similar services. 

8.2 Evaluation of Retrieval and Solution Assessment 

Figure 8.1 gives an evaluation view of CABS (the large box) and the two main issues: 

(i) identifying and retrieving similar behaviour for re-use (issue 4 in Table 8.1) and 

(ii) verifying the proposed and selected solution against the input examples (issue 5 in Table 

8.1). In the telecommunications service domain, CABS is not expected to find a case in the 

case library exactly meeting the exemplified behaviour in the input examples since it is 

unlikely that the user would give an example of a behaviour that exactly matched a case in 

the case library (When this occurs, either the service is uncomplicated or the user knows 

exactly how the service behaves). CABS proposes a list of similar cases that are candidates 

for the behaviour expressed in the input examples. The requirements designer makes the final 

selection, eventually changing the initial idea of the behaviour exemplified (changing input 

examples or accepting input examples belonging to the case). The overall question to evaluate 

is whether or not the matching heuristics are practically useful and produce a set of similar 

cases, which is small enough to be manageable, yet broad enough not to miss relevant 

cases26. If we know the solution case for a set of input examples, we can find out how well 

the features used by CABS work to identify the solution. At the same time, it would not be 

desirable if the matching only gave the single most expected case as a solution, since a case 

capturing exactly this behaviour need not necessarily be the solution sought (a requirements 

designer may revise and extend the behavioural ideas). Therefore, a set of similar cases 

                                                 

26 Even so, similarity-matching may not, in a fully functioning system, be the only approach to 

identifying relevant cases: keyword matching, text -based matching on informal descriptions of cases, 

and matching new input examples against input examples stored with cases in the case library are 

some interesting extensions to CABS. 
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where the most similar solution has a high ranking is preferable. In Section 8.3, the input 

examples are selected and matched, and the results are summarised and their implications 

discussed. 

Another central feature of CABS is to verify proposed and selected solutions (see Figure 

8.1). The matching process should purposely give a set of more or less similar cases from 

which the user can select the one(s) they want. The verification, on the other hand, should 

confirm that the behaviour exemplified in the input examples is included in the selected 

solution and if not, describe where it differs. If it does differ, the requirements designer has to 

explore why this is so. In Section 8.5, proposed and selected solutions are verified against the 

input examples. 

Case Library

Identified Similar
Behaving Cases

Verified
Solution

Idea of
Behaviour

    heuristic features to
identify similar behaviour

verify proposed and
selected  solution

Behavioural
Examples

CABS

 

Figure 8.1: A verification view of CABS. 
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8.3 Selection of Input Examples and Target Cases 

As mentioned erlier the set of cases that are stored in the case library are commonly used in 

experiments with telephone services [Funk, Raichman, 90], [Klusener, Vlijmen, Waveren, 

93]. For all cases in the case library, one input example, giving an example of the behaviour 

of the corresponding service, was designed. An effort has been made to produce input 

examples which are similar to those a requirements designer might give, without knowledge 

of the behaviour of any service implementing the exemplified behaviour. This is fairly easy to 

achieve, as there is often little choice in how to exemplify a particular behaviour with an input 

example. A good illustration of this is basic_example_0 (Figure 8.2) which contains four 

nodes: all subscribers idle; dial tone a; a calling b; in speech. The node dial tone a has 

the condition dial_tone(a) and the node a calling b has the condition calling(a, b) & 

ring_tone(a) & ring_signal(b). The nodes are connected with the links illustrating the 

actions the telephone users can make. This is sufficient for the matching algorithm to identify 

basic_call as the best matching case (for matching results see Table 8.3). Different 

requirements designers would most likely express the same behaviour in a similar way with 

the given set of nodes. 
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Figure 8.2: input example basic_example_0 

In Table 8.2, the names of the input examples are given with the corresponding target case 

(telephone service). Appendix B lists all the cases in the case library and Appendix D gives 

all the input examples used for the evaluation (as listed in Table 8.2). 

Input example  Case in Case Library 

 a_banking_example  banking 

 a_barring_example  call_barring 

 a_basic_behaviour_example_0 basic_telephony 

 a_basic_behaviour_example_1 basic_telephony 

 a_basic_example_0 basic_call 
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 a_basic_example_1 basic_call 

 a_busy_example  basic_call 

 a_call_back_example  call_back 

 a_call_last_caller call_back 

 a_call_reminder_example call_reminder 

 a_call_return_example  call_return 

 a_call_waiting_example  call_waiting 

 a_charge_advice_example  charge_advice 

 a_divert_example  call_diversion 

 a_multi_call_example  tree_way_calling 

 a_pick_up_call_example  pick_up_call 

 a_queue_example  queue_calls 

 a_show_number_example  caller_display 

 a_voting_example  voting 

 a_wake_up_call reminder_call 

 an_emergency_example  emergency_call 

 

Table 8.2: Input examples and target cases 
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8.4 Evaluation of the Matching Algorithm 

Each input example targeting the same case has been used for evaluating the matching 

algorithm. Test cases are all defined as being dependent on the basic_call service and basic 

telephony service (except input examples describing basic call and basic telephony), so these 

services are not considered as a solution and are excluded from the matching result. The 

parameters for matching transition rules and cases have been left at their default values. In 

Figure 8.3 the matching result for the input example a_call_reminder_example is shown 

(for an example on a full matching result, see Figure 6.9). 

 

Figure 8.3: Match result for input example a_call_reminder_example  

The column Best matching cases in Table 8.3 contains the matching result for each input 

example. The result from Figure 8.3 is shown as a list with numbers {321111} in Table 8.3. 

After the results list a number is shown (/6) with the number of links the match is based on. 

Since we know the solution case for the match, the number representing the best case is 

underscored. Cases that have the same ranking are not ordered in any way. 

This rating is actually quite crude; if a more precise ranking is needed for a large case library, 

it could be refined by taking the individual scores of transition rules into account when 

accumulating the total score for a case, rather than counting the sum of the number of 

matching transition rules. The crudeness of the ranking cannot alter the set of proposed 

services, but in some cases causes results in two or more cases being ranked equal highest. 

Since the requirements designer makes the final selection among all proposed services and 
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the total number of services were manageable, their ranking seemed to be a good enough 

guide for the final selection, and a more discriminating algorithm was not implemented. 

If there is only one best match then the matching process has led the user directly to the 

solution. If the number is greater than one, then there are several cases in the case library 

which share characteristics with the input example. As explored in detail in Chapter 7, the 

requirements designer is expected to handle this situation (by adding more input examples, 

excluding links from the input example, exploring and selecting the most appropriate case, 

combining more than one case, etc.). Excluding links from the input example is an easy 

approach to improve a matching result if it is obvious that the best proposed cases are not 

acceptable. This can be done directly from the detail window for links, by selecting Link not 

relevant for match in Match select for link: (see Figure 4.6). One should bear in mind that 

excluding links will not extend the search (the same or fewer cases are proposed as a 

solution) and will only be useful if the solution case is within the list of proposed solutions. In 

the column Excluded links (Table 8.3), some links which are obviously not relevant for the 

match have been excluded from the match and the match has been re-done. The number of 

links used in the match is given as a number in the same way as in the column Best matching 

cases; the number of links will obviously always be less since links have been excluded from 

the match. 

If the total number of proposed cases which scored higher than one is too high the 

requirements designer may increase/reduce appropriate matching parameters. If a service 

has few characteristic features, it is expected that this total will be large, whereas if the 

service is very specific in its behaviour, there will be fewer cases. No matching parameters 

have been altered during the evaluation presented in Table 8.3 (every transition rule scoring 

higher than 10 is counted as a match). 

Some matching results clearly point out the solution, for example match 6 in Table 8.3. Case 

17, where 10 proposals are ranked, has two proposals ranked highest and this match is 

regarded as having a weak focus towards the solution. If the focus is weak the input example 
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(and the service) may be of more general character and share features with many other 

services. 

Input example   Best matching    Excluded  
 cases     links  

 

 1. a_banking_example  {2111111}/4 v 

 2. a_barring_example  {111}/3 v  

 3. a_basic_behaviour_example_0 {433311}/4 v 

 4. a_basic_behaviour_example_1 {2111}/3 v 

 5. a_basic_example_0 {6211111}/6 v 

 6. a_basic_example_1 {7211111}/7 v 

 7. a_busy_example  {211111111}/2 v 

 8. a_call_back_example  {22211}/6 v  

 9. a_call_last_caller {1111}/4 4 {1}/1 

 10. a_call_reminder_example  {321111}/6 v 

 11. a_call_return_example  {32211111}/8 v 

 12. a_call_waiting_example  {211}/5 v 

 13. a_charge_advice_example  {322111111}/7 nb {22111}/4 

 14. a_divert_example  {2221111111}/7 v 

 16. a_multi_call_example {321}/6 v 

 15. a_pick_up_call_example  {11111}/5 5 {1}/1 

 17. a_queue_example   {2211111111}/6 v 

 18. a_show_number_example  {1}/3 v 

 19. a_voting_example  {1111111}/3 7 {1111111}/1 

 20. a_wake_up_example  {21111}/3 v 

 21. an_emergency_example  {22111}/6 nb {111}/1  

Table 8.3: Match result for input examples 
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The input example, a_basic_example_0, is in fact faulty because a node is missing27, hence 

one link is missing and one is faulty. It is interesting that the solution case was identified in 

spite of this mistake. This result was unexpected, but on analysing the result it becomes clear 

that this is exactly one of the desired benefits of case-based reasoning compared with other 

more precise approaches (e.g. some logical proof of equivalence). Input examples may lack 

details or even be partly faulty, but if the heuristics for the match (the features used) are well 

chosen, the matching algorithm should be robust enough to identify relevant solutions based 

on the part of the input example which is not faulty. During the evaluation, a more obscure 

fault was identified in the matching (if matching transition rules had constants in their stimulus 

part, variables were accidentally bound in stimulus terms with these constants). 

Coincidentally, this problem only caused the matching algorithm to miss the correct solution in 

one example and after correcting this problem the four input examples got one additional 

proposed case. 

8.4.1 Over-Diffuse Identification of Solution 

For all input examples used in the evaluation, the solution case is amongst the proposed 

solutions, but in two cases (13, 21) the correct solution case was not amongst the highest 

ranked, and in two cases (9, 19), more than three proposals where ranked highest. Before 

analysing these cases, a brief summary of how such a result may be tackled by the 

requirements designer is given. If a requirements designer does not find an appropriate case 

among the proposed cases, one of their first actions is to refine the input examples (as 

described in Chapter 7), either by supplying more input examples or refining those already 

given. One way of refining input examples is to label links as not directly being a part of the 

                                                 

27 When two users are talking to each other and one of them puts the receiver down, the other user will 

have silence until their receiver is also put down, the input example makes both the caller and the 

called person idle when one person puts the receiver down, this is not true since the person who did 

not put down the receiver cannot receive a call or lift the receiver (hook_off) . 
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behaviour sought for in the case library, which as shown below, often gives a better matching 

result. For example, in the service charge_advice, everything in the input example 13 (Table 

8.3) up to telephone user a talking to telephone user b (for input example see Appendix C) is 

a normal call, but the matching process does not know that and should still identify similar 

services to propose for this part of the input example; this may misdirect the search in some 

situations or result in a less focused proposal, depending on how large a part of the input 

example is part of the target case. If these links (up to node speech) are marked as being 

irrelevant for the search28, the search focuses on the part in which the requirements designer 

is interested. For input example 13 this brings the correct service (charge_advice) to the top 

of the ranking list (shared with call_reminder which could be classified as having a similar 

behaviour to the example 29); before this selection of links charge_advice was ranked to be 

amongst the second best proposals. The re-match result is shown in the column Excluded 

links in Table 8.3. 

After the requirements designer has excluded selected links in the input example, example 19 

still shares the solution with other proposals which may be considered as a weak focus on the 

solution, but when inspecting the matching result of the link, the highest ranked transition rule 

belongs to the service voting, hence the service voting is correctly identified as the best 

match (a list with proposed and ranked similar transition rules can be viewed in the detail link 

window, see Section 4.2.1). This shows that the link/transition rule matching is able to 

correctly rank the transition rule  from the solution case as the highest. This information is not 

carried forward when ranking cases in the case library due to the crude approach of counting 

the number of matching links for each case. Also, for input example 21, the solution would 

                                                 

28 The links are still relevant when verifying the behaviour. 

29 Reminder_call may even have parts that could have been re-used to create a new service 

charge_advice if such a service had not existed in the case library. No analyses of this possible re-

use has been explored. 
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have been ranked the highest if the link/transition rule ranking had been carried forward to 

the ranking of the cases. Hence the ranking of cases would benefit from receiving and using 

more information from the link/transition rule match. Using more information from the 

link/transition rule match when calculating the overall score for matching cases is considered 

a minor alteration. This would further improve the matching results, especially if the matching 

result is based on a few links from the input example. It would add a few calculations to each 

ranked case in the case library which would be negligible with other calculations performed 

for each transition rule and case (for more on time efficiency of matching algorithm see 

Section 8.7). 

8.4.2 Conclusions for Match Evaluation 

For all input examples given, CABS was able to identify the corresponding solution amongst 

the highest ranked proposals and for 14 (out of 21) input examples, it ranked the solution as 

the best proposal. In 19 (out of 21) input examples, the solution was amongst the three 

highest ranked proposals. When it did not rank the solution amongst the highest, excluding 

irrelevant links in the input example, it put the solution case amongst the highest ranked, but 

for input example 19, seven other suggestions were ranked at the same level. This is 

sufficient in the case library used for the evaluation, but may give the requirements designer 

too many cases to select from in a large case library. By using more information from the 

links/transition rule match when ranking, cases from the case library would help in the 

identification of the best solution. In the input examples, we purposely avoided using solution 

specific terms since, in a larger case library, the user may not always be able to identify and 

chose these terms. For example, the service voting has a term 

vote_counter(VoteNumber,TotalVotes) used as a counter and the service call_diversion 

has a term redirect(FromNumber, ToNumber). These terms were purposely not used in the 

input examples in order to simulate a less knowledgeable service designer. It may be argued 

that a more experienced service designer, when designing input examples and selecting from 

a list of 52 terms, may select one of these terms. This would focus the search considerable 
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(but not necessarily exclude a solution not containing these terms), and improve the matching 

result. 

This result is sufficient to enable a requirements designer to identify the corresponding case in 

the case library. If this was the hit-rate in a full-scale system, it would be very good, since if 

this represented all services that would have been fully specified, evaluated, verified, 

integrated with other telephone services and implemented30, a large amount of work would 

have been saved. 

In some cases it would be beneficial to provide the designer with both similarity matching and 

some additional matching approaches, for example keyword matching. Keyword matching 

would in many situations be less accurate and miss possible solutions when compared with 

similarity matching, but it may be able to focus the search, especially in small case libraries, 

since it is more likely that there are specific terms unique for a particular service. If an 

experienced requirements designer can identify the terms discriminating the solution service 

from other services, the service would be found with keyword matching (in 

telecommunications services this is less common since many services do not introduce new 

terms even if they were, they may not always be easy to guess, even with access to all term 

definitions). As mentioned earlier, a restrictive attitude towards using terms discriminating a 

solution from other cases was adopted when producing input examples for the evaluation. 

Also CABS is not dependent on cases having particular keywords discriminating them from 

other services since the matching is bases on a careful analysis of the semantics of transition 

rules, translated to a number of syntactic features. 

A relevant question is what happens if the matching cannot identify a suitable case if there is 

no similar case (a new type of service not yet specified and implemented) in the case library. 

                                                 

30 Implemented in a way where all references between requirements, specification, design and 

implementation are kept, and where the design and implementation is structured in a way that re-use 

is enabled (for example an object oriented approach). 
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Some case-based reasoning approaches cannot handle such a situation. In CABS, input 

examples are translated to transition rules which are not expected to contain all details, 

interactions etc. These input transition rules can be used by the requirements designer as a 

starting point for the new service and the input example may be refined and extended to 

generate transition rules closer to what is needed for the new service. Hence, the approach 

does not falter if there are no suitable cases in the case library or if the requirements designer 

(with the help of CABS) fails to identify a suitable case in the case library. 

8.5 Evaluation of Automatic Verification 

All the input examples that describe a full behavioural example from a start node to an end 

node have been used to produce test cases (for consistency, all test cases are listed in Table 

8.4). Cases marked with “-” in the Generated Test Cases column in Table 8.4 have input 

examples not including a start node and end node or are not detailed enough to generate test 

cases. If a test case does not include a start and end node, it may just be a fragment of some 

required behaviour which may be sufficient to identify a matching case or it may be an 

addition to other input examples (7b, a_busy_example in Table 8.4 is an addition to 7, 

a_basic_example_1, so, it is not sufficient on its own to generate test cases, but generates 

test cases in conjunction with a_basic_example_1). If the requirements designer accepts a 

match, all input examples belonging to the search should be used to generate test cases and 

these should pass the automated verification before the solution is accepted. The verification 

process of test cases do not accept differences as the matching does and will therefore 

identify possible problems. In those test sequences used, the test sequences identified 

problems both in the input examples and in the solution case. After correcting these, the input 

example will pass. The input examples identified one ore more of the following problems (no 

particular order): 

a) Variables were used in input examples that might cause unwanted 

indeterminism. Refining input examples by changing variables to constants makes them more 
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specific. Verification can handle variables in stimuli if there is only one variable binding 

possible (no indeterminism). 

b) Faults/misunderstandings in the input examples were identified. An input 

example may contain faults and misunderstandings (as in input example 5 discussed in 

Section 8.4.1) yet still be sufficient for identification of an acceptable solution case in the case 

library. Test cases produced from such an input example should not pass the verification and 

the input example should be refined to reflect the factual requirements. 

c) Conditions to links that have not been used anywhere else (in nodes/links) in 

an input example may not be determinable when testing a test case. If additional conditions 

are consistent they may, by default, be added to the start node (this option has been 

implemented in CABS), but if they are not consistent, no test cases are produced and the 

input example needs refinement. 

d) Missing facts for transition rules expected to trigger: If during verification, a 

particular transition rule, which is expected to trigger has some preconditions that have not 

been mentioned in any node or link in the input example, then these preconditions will also be 

missing in the test case and this transition rule cannot trigger. This can be resolved by adding 

these facts either to the corresponding link (additional conditions) or to the start node (or any 

other appropriate node) in the input example. 

e) Identified faults in the case library: If the input example is correct and the 

cases tested do not pass, then the cases are not correct. The requirements designer has the 

choice of either modifying the matching service or making a new variation of it which meets 

the current requirements. If the difference is small, much of the proposed case failing the 

verification may be re-used. 

Most of the generated test sequences identified some problems, showing that the approach of 

using test cases to recognise potential problems is helpful. Services specified and stored in the 

case library for the evaluation were assumed to be functioning properly based on simulation 

during the development. Even so, a number of problems were identified when verifying test 
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cases. This shows that during the development of new services (not previously specified and 

stored in the case library), the use of test cases will be useful. Test cases are also valuable 

when new services are integrated with previous existing services (added value services such 

as call_waiting and three_way_calling have much interaction). Also, if a new service 

accidentally alters some of the behaviour of a previously formalised service, this will be 

identified by the test cases if the previous unaltered behaviour that has accidentally been 

changed is included in the input examples/test cases. If test cases identified problems, the 

necessary corrections in the input examples or cases in the case library have to be carried out 

by the requirements designer until the test cases pass. This correction/refinement was carried 

out for some of the input examples and cases during the evaluation, but not for all of them, 

since this effort does not contribute to the evaluation itself. Problems of class a, c and d are 

all classified as refinements of the input examples and are often trivial (less than twenty 

minutes work for most input examples). 

Input example  Generated Correctly identifying 
 test cases problems(a-e)/passed(p)  

 1. a_banking_example  1 a,d  

 2. a_barring_example  1 p  

 3. a_basic_behaviour_example_0 1 p
  

 4. a_basic_behaviour_example_1 1 p
  

 5. a_basic_example_0 3 b  

 6. a_basic_example_1 3 p  

 7. a_busy_example  - -  

 7b. 6 & 7 5 p  

 8. a_call_back_example  2 b 

 9. a_call_last_caller 1 b,e  

 10. a_call_reminder_example  2 b  

 11. a_call_return_example  2 b  
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 12. a_call_waiting_example  1 e 

 13. a_charge_advice_example  1 a,b,e 

 14. a_divert_example  2 b,e  

 15. a_multi_call_example  1 e  

 16. a_pickup_call_example  1 e 

 17. a_queue_example  1 e 

 18. a_show_number_example  1 b  

 19. a_voting_example  1 e 

 20. a_wake_up_example  1 b,d 

 21. an_emergency_example  1 d,e 

Table 8.4: Generated test cases and their success rate 

8.5.1 Reducing the Need for Refinement 

Refinements of type a, c and d may prevent test cases from passing even if there is potential 

for the test case to pass. The effort required from a user in refining these by replacing 

variables with constants and including necessary facts to start node/conclusions could be 

reduced when generating test cases. This is possible because when the test cases are 

produced and verified, the user has selected a solution case. This information can be used to 

refine the input examples and fill in missing details or make over-generalisation specific 

enough to produce test case which less or no need for refinements of type a, c and d.  

Refinements of class a always originate from the use of variables in input examples. In most 

cases it is obvious what terms should be for a stimulus, such as user x lifting the receiver at 

time 1, off_hook(x,1). Time variables do not need to be given since these can easily be 

determined when generating test cases. A user may exemplify how a service is invoked in a 

particular situation by adding a link between two nodes, service_request(x,Service,T). The 

requirements designer cannot know the name or code for the service since it is either a new 

service or it is unknown which of the services it is in the case library, before matching. 
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However once a solution proposal has been accepted, the service is known to be 

transfer_call and so CABS could instantiate these variables and generate a test case with 

less variables (CABS can handle variables if there is only one choice, then during the 

verification of the test case, the variable is instantiated to the only possible value). 

Refinements of class c and d are often required because of missing facts in the initial state. 

In the input examples, nodes are a conjunction of facts that are required to be true, and the 

node denotes all states that have these facts true. When generating a test case, a proper start 

state is required. Since nodes are expected to be predefined (often by some more 

experienced requirements designer) and it is expected that input examples can be created by 

selecting nodes from a set provided, the start node can often be (and is for the evaluation) so 

well defined that it can be used as a start state for verifying test cases. If each case in the 

case library has a proposed start state (or required facts for any a start state), for simulation 

and testing, this could be merged with facts in the start node in the input example. If there are 

contradictions it may be relevant to report these. Some variables that have been used in terms 

occurring in nodes and links in the input example could be bound to constants and missing 

facts could be added, reducing the need of refinements of type a, c and d. 

 

8.5.2 Conclusions for Verification 

Generating test cases from input examples to verify that the behaviour of the test cases are 

included in the solution, has been shown to enable the user to improve the standard of the 

input examples and of cases that are under development. In most situations, refinement of 

input examples is trivial and was usually achieved by adding (or removing) a term in a node or 

link. The value of these automatically generated test cases is also obvious if changes are 

made in requirements or when new services are integrated with other services, since all 

previous test cases can be re-evaluated in order to confirm that no accidental change of 

behaviour in other services has occurred by integrating a new service in a communication 
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system. This is a major issue in any specification of a large system that is modified and 

extended. 

8.6 Summary of Evaluation Results 

CABS can, using input examples, identify similar cases and also use the input examples to 

identify differences between the behaviour outlined in the input examples and the selected 

case. An improvement to the ranking of cases with the same number of matching links is 

proposed: by using the ranking from the matching link and the transition rules, the ranking for 

each case would better reflect the link/transition rule match (this is a small extension). If 

there is no matching case in the case library for an input example, the input examples can be 

used as a starting point to construct a new case which is most likely to be more efficient than 

formalising a service from scratch (although no tests have been carried out on this). The 

approach is also robust because it is not necessary for the solution to be the highest ranked as 

the requirements designer can make the final selection from the proposed solutions. The test 

cases generated from the input examples identified problems in both the input examples and 

the cases in the case library, and so they proved to be of use. 

8.7 Computational Time for the Match 

One of the advantages of the CABS approach is that it has a fast matching algorithm 

enabling the identification of similar behaviour. The matching is performed in two steps: firstly 

all links in the input example are matched against all transition rules and then all cases are 

ranked by inspecting their transition rules matching result and by making a ranking of each 

case in the case library. It is expected that a common size of an input example contains 5-8 

links. As described earlier matching of each link is based on comparing sets of terms. The 

computational time used for this is linear in the size of the sets. In the current case library the 

number of terms in a transition rule is between 5 and 35 terms and a link has between 5 and 

15 terms. Once the matching result is calculated, it is stored with the link (a ranked list of the 

best matching transition rules for the link). 



CHAPTER 8. EVALUATION OF CABS 

 

163

Once all transition rules have been matched against all links, each case is matched against the 

input example. This is done by taking all transition rules belonging to a case and giving the 

case a numerical value representing the number of transition rules that match with any link 

from the input example. Hence matching and ranking all cases is a linear algorithm and 

directly proportional to the number of transition rules in the case, the number of cases in the 

case library and the number of links in the input examples. This enables an implementation of 

a very fast matching algorithm. For a realistically large case library, containing some hundred 

cases and some thousand transition rules with an optimised implementation of the matching 

algorithm, the response time, for matching an input example of normal size (5-8 links), could 

be guaranteed to be below a second. Some time measurements where the time scale is 

irrelevant31 ensures that the prototype implementation performance is in accordance with the 

matching algorithm (see Figure 8.4). 

                                                 

31 The implementation is made in an interpreted Prolog. Implementation has been made with no 

efficiency considerations and an object oriented layer that at least triples each access time to links, 

cases and transition rules has been used. The Prolog used is written for the 68000 processor 

emulated on a PowerPC. External interface to C++, efficient data storage available in LPAProlog and 

partial compilation mode (this requires declaration of what parts of the program are static and what 

parts are dynamic, which would take considerable time in a prototype system often changed and 

modified) have not been used in the prototype implementation. A re-implementation of the matching 

taking these factors into consideration and using a faster computer (5-10 times faster computers are 

available) should be sufficient to increase the matching performance by two to three orders of 

magnitude. Hence the fact that the time scale in the tests are seconds is irrelevant. 
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Figure 8.4: Matching time measurements, 32 cases, 225 transition rules 

The variation reflect the different sizes of links, transition rules and cases. Some additional 

tests with different sizes of case libraries (smaller than 32 cases) showed that it is likely that 

the total matching time in the implementation also is linear to the size of the case library (ca. 

4:1, every additional case increases the time consumption with 0.26 time units for an average 

sized input example, 6-8 links) in accordance with the matching algorithm. For more on 

optimisation strategies for matching see [Althoff, Auriol, Barletta, Manago 95] 
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Chapter: 

9.  Further Work and Extensions 

In this chapter, some suggestions and ideas for further work and extensions are given. They 

are not presented in any particular order. Some of the proposals are minor implementation 

issues, which would have been implemented in the CABS system if there had been more 

time. Others may be seen as challenging ideas, maybe PhD projects in themselves, which I 

wish to document in this context to ensure that they are not lost. 

9.1  Using Icons for Terms and Situations 

In the links and nodes, the names of the terms and arguments provide the main means for a 

requirements designer to remember their meaning, which is informally described in the case 

library. For an alternative representation, a suggestion is to use icons (experiments with use 

of icons for telecommunications services have been made by [Preifelt, Engstedt, 92]). Terms 

or conjunctions of terms and nodes which are conjunctions of terms and links (which have the 

originating node as preconditions and the terminating node as conclusions) could be assigned 

icons. Figure 9.1 shows an idea of how a link could be represented by icons instead of terms, 

nodes and links. The node all subscribers idle  in Figure 4.1 is represented by the icon in the 

upper right corner in Figure 9.1. When clicking on this icon, a details window could be shown 

(as exemplified in Figure 4.4 for the node a calling b). The next node, dial tone a is in the 

middle right and the link is represented by an icon symbolising that the receiver is lifted. In the 



CHAPTER 9. FURTHER WORK AND EXTENSIONS 

 

166

bottom right corner is an icon representing the node a calling b and the link (stimulus dialling) 

connection the two nodes dial tone and a calling b is shown beside the arrow pointing to 

this node. Choosing and designing icons would be highly application domain specific. If the 

mapping is a direct mapping between sets of terms, links and nodes, adding such a graphical 

representation is a matter of implementation (but with plenty of interesting possible extensions 

and improvements that may be small or large research projects: graphical simulation where 

the output from a simulation is presented in icons representing the terms may be one of the 

larger ones). 

 

User  a User  b User  c

User  a

User  a User  b

Rrrrrrrring

User  a

1423...

User  a

 

Figure 9.1: Idea of graphical representation of terms/nodes/links 
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9.2  Mapping Specification Against Design Objects 

Most approaches to formal methods for specification have a weak connection between the 

specification and the actual design. Usually the specification is used for guiding the design 

and programming, at best the test cases are generated from the specification which may be 

used in a method to verify the implementation.  

In large systems one of the main tasks is to update and modify the system (and hence the 

corresponding requirements and specifications) to meet new demands. With the weak 

connection between specification, design and program, the question arises of whether it is 

worth the effort to keep the specification up to date with changes in the system. In industry, 

requirements are not often maintained, which is sometimes suspected to be one of the 

reasons, that some years after they are written, systems start to get more and more difficult 

to modify and maintain.  

By choosing the same formalism for the design of the different components and objects of 

the design, and the specification, we may use this in a mapping process. Given a new or 

modified specification we generate a design where we know which design components 

corresponds to which part in the specification. If the complete specification can be mapped in 

such a way that all parts of the specification correspond to design components and objects, 

then we have a design which can be realised.  

An even stricter approach would be to only allow a specification with already designed and 

implemented components and objects32. If all the components and objects are already 

                                                 

32 An analogy to this would be to let an architect only use a given set of ready made 

symbols in the production of a plan for a building. These symbols correspond to pre-manufactured 

components such as ready made walls, electricity and water pipes, floors with a ready made finish, all 

with a given specification. Contrast this with a plan where all walls, electricity, placing of windows 

and water pipes have to be worked out uniquely for each design and the building has to be built with 
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implemented in software or hardware then there may not be any need for programming or 

construction of new hardware. On a lower level, some integration and adaptation of the 

objects and components may still be needed. Test cases (generated from specifications, in a 

similar way as test cases are generated from input examples may be adopted by breadth first 

expansion of possible stimuli/response sequences to a chosen depth) may be used to verify 

that the implementation meets the requirements. An interesting question is whether it is 

possible to map specifications onto Service Independent Building Blocks (Sib’s), as 

standardised and specified by the International Telecommunications Union (ITU) as part of 

the Intelligent Network Recommendations. If terms in a specification could be mapped 

against functions in a functional language (such as the concurrent programming language 

Erlang, [Armstrong, Virding, Williams, 1993] which is used for implementing 

telecommunications services), an implementation could be generated from a specification. 

9.3  Using CABS for Other Application Domains 

Application domains which, for practical reasons, are too large for explicitly state based 

approaches may be considered as potential application domains for CABS. If an application 

domain has a fairly simple interaction with its environment, where the connection between 

response and stimulus is not too complicated, but contains large numbers of states, and where 

it is of value to explore in detail the behaviour to show that the system will have certain 

properties and lack other properties, CABS may be considered. Also domains such as train 

signalling systems, safety systems in cars, aeronautics, power plants, computerised medical 

equipment (dialysis machines, scanners, etc.) may be potential application domains. 

9.3.1  Object Oriented System Specifications  

A similar approach to CABS may be potentially useful for requirements capture of software 

objects in an object oriented system. In object oriented methods it is popular to include some 

                                                                                                                                          

bricks and concrete by highly skilled craftsmen. 
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state based formalism describing behavioural requirements on objects. Each object would be 

seen as having a closed behaviour. Stimuli and responses need to be classified as belonging to 

the environment of the system, or as belonging to another object in the system. Structuring 

the system in this way will result in some limitations in validation and verification, since CABS 

does not incorporate the overall validation and verification of communicating objects (but the 

formalised requirements in logic may be used in some theorem prover able to do validation 

and verification of sets of communicating objects). If behavioural requirements used in object 

oriented methods are similar enough to the one used in CABS, similar behaviour could be 

identified. 

9.4 Simulation with Connected Telephones 

Simulation by providing stimuli sequences in order to explore the behaviour is useful in order 

to explore a telecommunications service. If presenting the functionality to customers, end 

user or to evaluate a services popularity with telephone users before implementing the 

service, a simulation with real end user equipment may be useful. An interface between the 

simulation tool in CABS and telephones could be written. A number of phones could be 

connected to a PC and then the service could be tried out before ordering it, if the receiver of 

telephone a has been lifted, the stimulus off_hook(a,1) is sent to the simulator in CABS. The 

response dial_tone(a) needs to be translated by the telephone driver and a dial tone is sent. 

Time response for simulation of the formalised services may be sufficient if a small number 

of telephones/terminals are used (even if the simulator is fast, a couple of hundred 

telephones/terminals is to be likely a maximum if response times must be below a second). 

9.5  Adding a Theorem Prover to CABS 

One of the benefits of using a formal notation for requirements specification is that it enables 

the requirements designer to reason about the specification. This is the main advantage of a 

logical formalism over many other specification and programming languages [Bundy 92]. The 

kinds of reasoning we wish to do are: 
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Verification (whether the specification implements the required behaviour). 

Synthesis (of specifications into a new specification). 

Transformation (transform the specification into a representation using less memory and/or 

time when simulated). 

Termination (show that no deadlocks exists). 

Abstraction (abstract information about the type of its input/output etc.). 

Consistency checking (prove that there are no contradictory statements in the specification). 

CABS partly tackles 1 (test cases), 4 (restriction in language, see Appendix A) and 6 (a 

program identifying potential inconsistency between transition rules has been implemented, 

but not integrated). Adding a theorem prover would greatly increase CABS abilities in these 

areas. At the moment, there are a number of advanced theorem provers available that could 

be used. 

9.6 Analysing Interaction Between Modules 

As mentioned earlier, the condition and conclusion part in transition rules can be cross-

referenced. This gives valuable information on relations between transition rules and cases. 

For example, if a transition rule R1 belonging to case C1 has a conclusion term T and a 

transition rule R2 belonging to case C2 has the term T as a condition, then we can conclude 

that case C1 may influence the behaviour of case C2 in one step. More obvious analyses can 

be made: for example, if a term only occurs in conclusions of transition rule, and is not used in 

any condition part of a transition rule, then the conclusion of this term is redundant. A wide 

variety of such analyses can be performed with straight forward cross-references between 

transition rules. These may be helpful in the requirements capturing process and aid the 

understanding of cases and their interactions, and relations. 
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9.7 Generating Code from State-Based Requirements 

Statecharts [Harel, Naamad, 87] is part of a semi-automatic method that supports stepwise 

refinement to produce C, Ada or VHDL code. Formal methods for requirements 

specification and for program specification often have similarities, especially if the 

requirements specification is executable. Code is automatically generated from formal 

specifications, such as RSML [Heimdahl, Keenan, 1997] and non-instantaneous state 

transition assertions (NSA) [Gordon 86]. The code produced from RSML is 5-10 times 

slower than manually produced code from the state machines but if the transformations 

producing the code are correctness preserving, the code will have the same properties as the 

specification. Since both Statecharts and RSML reduce the complexity of large state 

transition diagrams by using substates, and if substates and CABS terms in transition rules 

can be mapped onto these, the approaches may potentially be combined. If combined, RSML, 

NSA and Statecharts would be able to apply a CABS approach to re-use and CABS would 

benefit from generating code from requirements. The same reasoning may be relevant for 

UML (Rumbaugh, Booch and Jacobson), OOA (Shlaer-Mellor) and JSD (M. Jackson) which 

all have graphical notations and may be extended with a re-use approach based on similar 

behaviour (an object with similar behaviour could be identified and proposed for re-use).  

9.8 Re-Use of System Development Processes 

Ericsson has a large number of detailed descriptions of system development processes that 

have been tailored for different projects (hardware and software) and to meet specific 

requirements (ISO 9000, toll-gates, milestones, well specific input/output information for 

different process steps). The processes are currently stored simply as pictures and text. A 

preliminary analysis of these processes suggests that the formal notation used in CABS might 

be used to describe them. It might then be possible to identify similar processes or parts of 

processes that can be re-used. Identifying similarities and differences can also be used to 

compare the solution processes to some master or standard process to identify and point out 
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differences and suggest improvements. This possibility is being investigated with Ericsson and 

QLabs. 

9.9 Re-Use of SDL 

Re-use of SDL (se Section 2.4) diagrams form previous program implementations. SDL is 

more expressive than the formal notation used in CABS. Even so the graphical parts may be 

used as a skeleton for re-use and the formal notation in CABS may be extended to be more 

expressive. Since SDL is a graphical programming language that is being used more widely 

and outside traditional telecommunications applications, identification of similar behaviour in 

SDL diagrams is interesting. 
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Chapter: 

10.  Summary and Conclusions 

As described in Chapter 1, formal notations can be used to formalise coarse grained tele -

communications service requirements at a high level of abstraction. Formal methods for re-

quirements have a number of advantages over informal methods, as discussed in Chapter 2.1 

and 2.2. Even so, formal methods are not routinely used for telecommunications service re-

quirements specifications. Previous research projects by Ericsson aiming at the use of formal 

requirements for service specifications suggest that the main reasons for this is that a number 

of issues have not been sufficiently addressed and solved (repeated from Section 1.1.1): 

Re-use and modification of previously specified services or parts of services. The most 

frequent situation in the domain of telecommunications service specifications is the 

specification of services similar to previous ones. 

The issue of iteratively refining and incrementally extending requirements that were originally 

sketchy, incomplete and contained errors. 

End users with background in systems design and programming did not accept the idea of 

using the formal notation to specify services at Ericsson. Their interest in formal methods 

was high until they where confronted with logical axioms. Even showing slides with logical or 

mathematical notations drastically reduced any interest shown earlier. 
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These factors contributed to the cancellation of a large formal methods project and currently 

there is no active work at Ericsson to bring formal methods to broader use in requirements 

specifications for telecommunications services. 

10.1 Summary of Work 

In this research, the main focus is on issue 1 in the previous list and a different use of formal 

methods for requirements specification is proposed. Traditionally, state based formal methods 

for requirements specifications are used to describe the precise behaviour of all the 

requirements. This detailed modelling is difficult for more realistically sized problems. 

However, formal “sketches” of the required behaviours can be produced. The formalised 

service sketches are not intended to capture all the required behaviour and exclude all the 

unwanted behaviour, but are merely intended to sketch the key features of the behaviour 

required. These features are used to identify and suggest similar existing services in a case-

based reasoning approach. 

The similar services proposed may be adapted to the users’ needs and can be validated and 

verified against the initial service sketches. The chosen application domain of 

telecommunications services is non-trivial and seventeen services often used in evaluation of 

service specifications have been specified and used in the evaluation. Matching is the core 

component of a case based reasoning system and has been the main focus of this research. 

In order to evaluate the matching, subsidiary components for the CBR system have been 

implemented: a graphical input editor where input examples can be produced and refined, a 

simulator to simulate the proposed and chosen solution and a verification component that 

generates test cases from the input example and verifies that the final solution contains this 

behaviour. The matching component and these subsidiary components have been 

implemented in the CABS system enabling the user to sketch desired behaviours of a 

telecommunications service, for which the CBR system proposes similar solutions from the 

case library that may be re-used in whole or in part. The input examples and the 

simulator/verification component are used to evaluate the matching algorithm. See Figure 3.1 
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for the different parts in CABS. Both the matching and the re-use of test cases have been 

put in context with an iterative requirements development method as shown in Figure 7.1. 

CABS performs matching on two levels. Firstly each link in the input examples with the 

corresponding originating and terminating node are translated to transition rules which will 

only be used for matching. These input transition rules are then matched against all transition 

rules in the case library to identify transition rules that capture “similar” behaviour as defined 

in Chapter 6. Transition rules in the case library are grouped in services and the result from 

the transition rule matching is used to identify which of the services in the case library have a 

similar behaviour to the input examples. To evaluate the matching, a case library with 

seventeen services and twenty-one input examples of services have been used. All the input 

examples were very rudimentary and only captured a coarse grained sketch of a small part of 

the total behaviour of the corresponding service in the case library. Even so, the matching 

successfully identified the corresponding services (including some where the input example 

and service did not captured exactly the same behaviour) as evaluated in Chapter 8.  

To test the proposed solution, the input examples were used to generate test cases which 

were automatically tested against the selected service with a batch mode of the simulator. 

Since the solution was known to each input example, no problems were expected in the 

verification, but more than half of the test cases did not pass. By analysing these, a number of 

mistakes were found in the input examples and in services in the case library, which shows 

that the verification process was useful under these circumstances. So many errors in the 

case library would not be expected under real conditions since all the services in the case 

library would already have been successfully integrated and fully implemented, and many 

mistakes should have been corrected during this process. 

Input examples and test cases also play a role when completely new services have to be 

specified and there is no similar service in the case library. The input examples are translated 

to a set of transition rules when used in the matching, and these transition rules can be used 

as the starting point for a new service. During refinement of the new service, the test cases 
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will identify where the service differs from the input examples, and the requirements designer 

has to either change the input examples or the service requirements. 

10.2 Limitations 

The formal notation used in CABS is constrained to suit a particular (efficient) matching 

strategy and visualisation, in this sense its simplicity is a virtue. However its limited 

expressiveness makes CABS unsuitable for more complex behaviour including concurrency, 

timing constraints, communicating processes and simultaneously occurring events, which 

would have been possible if a more expressive formal notation had been chosen (for example 

Petri nets). 

If requirements specifications and formal methods are used for tasks where new 

requirements bear little similarity to previous requirements, more traditional use of formal 

methods may be preferred, i.e. mathematicians develop the formal requirements directly in a 

suitable formal notion using logic or algebraic notation. The proposed method is aimed at 

applications where re-use and modification are central issues. Using a system such as CABS 

would be unnecessarily limiting for problems where re-use and modification of specification is 

less relevant. 

10.3 Future Work 

This research will be continued by identifying commercially interesting areas where 

identification of similar behaviour is of value and where a case library with formalised cases 

exists or can easily be produced. By producing prototypes for this new application domain, 

further insights to the problem of identifying similar behaviour will be achieved. 

The hope is that this result can be transferred to other application domains where comparison 

and re-using of similar behaviour is relevant. Some potential application domains where the 

identification of similar behaviour is of interest have already been identified: re-use of system 

development processes and re-use of SDL diagrams (SDL is briefly described in Section 2.4) 

as mentioned briefly in Section 9.8 and 9.9. 
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