
SEMANTIC QUERY ROUTING IN AGENT-BASED

PEER-TO-PEER SYSTEMS USING LIGHTWEIGHT

COORDINATION CALCULUS

����������	
���

Master of Science

(Computer Science)

School of Informatics

University of Edinburgh

2005

ii

Abstract

Agent based peer-to-peer system is an effective way of solving complex problems and

sharing data. Messages can efficiently be routed to any particular agent in the network.

However determining the destination agent is the actual challenging task. Efficient query

routing mechanisms are required to solve this problem. Query routing is a distributed

search process in which each agent considers the capabilities of other agents in order to

limit the scope of the query and its processing cost. In this project we are applying

Lightweight Coordination Calculus (LCC), which is used to write communication

protocols for agents, in an agent based peer-to-peer system. Three different types of

routing mechanisms namely overt, covert and hybrid are designed in this project using

LCC. An expertise based agent selection model has been used in which every agent

advertises its expertise to other agents in the network. An agent can select appropriate

agents to which to forward a query on the basis of semantic similarity between the

subject of the query and agent's expertise. A bibliographic references scenario has been

chosen to evaluate the protocols. In this scenario every agent represents a researcher,

who wants to share bibliographic description of publications with other researchers on

the network. In our simulation based experiments we show that expertise based agent

selection improves the recall of the system.

iii

ACKNOWLEDGEMENTS

I am filled with the praise and glory to Almighty Allah, the most merciful and

benevolent, who created the universe, with ideas of beauty, symmetry and harmony,

with regularity and without any chaos, and gave me the abilities to discover what He

thought.

Bless MUHAMMAD (P.B.U.H) the seal of the prophets and his pure and pious progeny.

I would like to thank my supervisor and long-time supporter during my time at

University of Edinburgh, Dr. Dave Robertson for all of his guidance, patience, and

instruction in the ways of the research world. From early on when I just had our first

encounters with multiagent systems and LCC, he guided me to develop my own ideas

and he challenged me to make them work. At the same time he helped me to achieve the

scientific rigor required for research. This project would not have been possible to

complete without his help. There is no part of this work that has not been the object of

his penetrating mind, and there has been no question posed to him to which he has failed

to apply his full intellect.

I would like to thank Ronny Siebes, Li Guo, Chris Walton, Adam Barker and Jane

Hilston for all the guidance; they have provided me throughout this project duration.

I would like to thank my parents and my sister for their lifelong guidance and steadfast

support throughout my life.

I would also like to thank Aitezaz Ali and Peter Muir for helping me setting up Postgres

Database, Danish Najam for giving me the idea of using Jane Hilston’s simulator and

helping me in formatting this report; Chris Ellis for helping in Java Swing, Shakir for

giving me valuable advice on completing dissertation in time; Asher, Saqib, Muddassar,

Fouad, Awais and Omair for their emotional support, emails and phone calls throughout

the year.

Lastly, I would like to thank my best friend in Edinburgh, Salman Elahi for helping me

get through the difficult times, for all the emotional support and care he provided and for

iv

all the discussions, walks, dinners, laughs we had together. Life at Edinburgh would not

have been the same without him.

v

Declaration

I declare that the thesis was composed by me, that the work contained herein is my own

except where explicitly stated otherwise in the text, and this work has not been

submitted for any other degree or professional qualification except as specified.

 (Zeeshan Pervez)

vi

Dedicated to My Dedicated to My Dedicated to My Dedicated to My Ammi & AbbuAmmi & AbbuAmmi & AbbuAmmi & Abbu

Thanks for being the greatest parents of this world!

vii

 Table of Contents

1. Introduction ..1

2. Background ..5

2.1. Agent ...5

2.2. Agent Characteristics ..5

2.3. Agent Classifications ..5

2.3.1. Simple Reflex Agents ..5

2.3.2. Model Based Reflex Agents...6

2.3.3. Goal Based Agents...6

2.3.4. Utility Based Agents ..6

2.3.5. Learning Agents ...6

2.4. Agent Environments..7

2.4.1. Observable..7

2.4.2. Deterministic ..7

2.4.3. Episodic..7

2.4.4. Dynamic ...8

2.4.5. Discrete ..8

2.4.6. Agents ..8

2.5. Why to use Agent based approach ..9

2.6. Multiagent Systems...9

2.7. Multiagent Coordination ...11

2.7.1. Electronic Institutions ..12

2.7.2. Problems with Electronic Institutions ..13

2.8. Distributed Dialogue Protocols ...13

2.8.1. Lightweight Coordination Calculus ...14

2.9. Machine Learning Algorithms ..18

2.9.1. Lazy Learning ..18

2.9.2. Eager Learning...19

2.9.3. Comparison of Eager and Lazy Learning ..19

2.10. Peer-to-Peer Computing..19

2.11. Hop Count ...21

3. Related Work ...22

4. Project Overview..26

4.1. Assumptions..27

4.2. Working Example ...27

4.3. Types of Messages ..30

4.3.1. Advertisement Message ...31

4.3.2. Query Message...31

4.3.3. Answer Message ..31

viii

4.3.4. Re-route Message...31

4.4. Routing Mechanism ..32

4.4.1. Overt...32

4.4.2. Covert...33

4.4.3. Hybrid ..34

4.5. Simulator ...35

4.6. ACM Topic Hierarchy ..37

4.7. Scenario...38

4.8. Agents Roles ...38

4.8.1. Requester..38

4.8.2. Replier ..39

4.8.3. Advertiser...39

4.8.4. Receiver..39

4.9. LCC Protocols for Routing ...39

4.9.1. Overt Protocol ..39

4.9.2. Covert Protocol ..40

4.9.3. Hybrid Protocol..40

4.9.4. Advertisement Protocol..41

4.10. Settings..42

4.11. Input Parameters..42

4.11.1. Number of Agents ..42

4.11.2. Number of Bibliographic References...42

4.11.3. Data Distribution..42

4.11.4. Network Topology ...42

4.11.5. Advertisement ..43

4.11.6. Agent Selection Algorithm ..43

4.11.7. Maximum Number of Hop Counts ..43

4.12. Intermediate Agents ..43

4.13. Relevance Calculation...43

5. System Design..45

5.1. System Components..45

5.1.1. Local Knowledge base ...45

5.1.2. Advertiser...45

5.1.3. Query Replier ...45

5.1.4. User Interface ...46

5.2. System Modules ..46

5.2.1. Expertise Advertisement ..46

5.2.2. Query Subject...47

5.2.3. Querying Agent Selection ..47

5.2.4. Local Knowledge Base Lookup...48

ix

5.2.5. Message Forwarding Mechanisms...48

5.3. Similarity Function ...50

5.4. Query Relaxation ..53

5.4.1. Duplicate Filtering ...54

5.5. Search Mechanism ..54

5.6. Data Set ...56

5.7. Data Distribution...56

5.7.1. Topic Distribution ..56

5.7.2. Random Distribution..57

6. User Interface ...58

7. Evaluation ..64

7.1. Relevance ..64

7.2. Recall...64

7.3. Precision..64

7.4. F-measure..65

7.5. Network Load..65

8. Comparison with Intelligent Agents ..76

9. Conclusion ...79

10. Future Work ...80

Appendix A-Random Distribution Graphs ..81

References ..86

x

Table of Figures

Figure 1 Multiagent System and its Interactions..10

Figure 2 Agent Stack..11

Figure 3 LCC syntax ..15

Figure 4 LCC Rewrite Rules..17

Figure 5 Typical P2P Network...20

Figure 6 Hop Count Example ..21

Figure 7 Process Diagram ..30

Figure 8 Overt Routing ..32

Figure 9 Covert Routing ..33

Figure 10 Hybrid Routing ..34

Figure 11 ACM Topic Hierarchy...51

Figure 12 Simulation Starting Interface...58

Figure 13 Topic Selected from ACM Topic Hierarchy ...59

Figure 14 User selecting setting from setting drop down list ..60

Figure 15 Search Keywords are entered ..61

Figure 16 Results Displayed ..62

Figure 17 Result Details...63

Figure 18 Number of messages comparison ..66

Figure 19 Naive and semantic overt routing for 20 agents network67

Figure 20 Naive and semantic overt routing for 40 agents network67

Figure 21 Naive and semantic overt routing for 60 agents network67

Figure 22 Naive and semantic covert routing for 20 agents network68

Figure 23 Naive and semantic covert routing for 40 agents network69

Figure 24 Naive and semantic covert routing for 60 agents network69

Figure 25 Naive and semantic hybrid routing for 20 agents’ network69

Figure 26 Naive and semantic hybrid routing for 40 agents’ network70

Figure 27 Naive and semantic hybrid routing for 60 agents’ network70

Figure 28 Recall with various hop counts in network of different sizes.........................71

Figure 29 Sensitivity Analysis with different selection criteria’s72

Figure 30 Recall with different known agents in 20 agents’ network72

Figure 31 Recall with different known agents in 40 agents’ network73

Figure 32 Recall with different known agents in 60 agents’ network73

Figure 33 Recall in proceeding distribution with different settings.................................74

Figure 34 Recall comparison of agents with LCC protocols and intelligent agents........77

Figure 35 Naive and semantic overt routing mechanism for 20 agents' network81

Figure 36 Naive and semantic covert routing mechanism for 20 agents' network81

Figure 37 Naive and semantic hybrid routing mechanism for 20 agents' network..........82

xi

Figure 38 Naive and semantic overt routing mechanism for 40 agents' network82

Figure 39 Naive and semantic overt routing mechanism for 60 agents' network82

Figure 40 Naive and semantic covert routing mechanism for 40 agents' network83

Figure 41 Naive and semantic covert routing mechanism for 60 agents' network83

Figure 42 Naive and semantic hybrid routing mechanism for 40 agents' network..........83

Figure 43 Naive and semantic hybrid routing mechanism for 60 agents' network..........84

Figure 44 Recall with various hop counts in network of different sizes..........................84

Figure 45 Recall with different known agents in 20 agents' network..............................84

Figure 46 Recall with different known agents in 40 agents' network..............................85

Figure 47 Recall with different known agents in 60 agents' network..............................85

xii

List of Tables

Table 1 Simulation Settings ...59

1

 Chapter 1

1.Introduction

The exponential growth of Internet has immensely changed the availability of

electronically available information. Currently there are 600 billion static pages in the

WWW and the growth rate is 10,000,000 pages per day [30]. However this success has

made it very hard to find and use the information required by different users. Since it is

not possible for any user to examine all the web pages, search engines are there to do

this work.

Search engines use spiders, which roam around the Web, extract important textual

information from web resources and build a huge index correlating keywords to web

pages. When user enters a query, these search engines actually search in their index

database, located on centralized server instead of searching the Web. It can be possible

that some of the indexed web pages have been changed or even removed. So, to tackle

this problem, the index database needs to be updated continually to maintain high

quality search results [31].

Searching a specific piece of information in billions of web pages is a compute intensive

task for centralized search engines. For this, they need to have complex and expensive

hardware as well as efficient strategies to reduce response time. Dedicated and powerful

processing machines are also required both to feed web addresses to spider programs for

crawling and to process the data returned by these programs. On the software side they

need highly customized compression and hashing algorithms to reduce storage cost and

ensure efficiency and speed [31].

Some of the disadvantages of these centralized search engines are (i) they are expensive

to build and maintain (ii) they poorly handle web pages whose content changes rapidly

(iii) they even do not know about large amount of those web pages which cannot be

reached by spider programs and (iv) their referenced information can quickly go out of

date. All of these problems are also increasing as Internet continues to grow, making it

impossible for any centralized search engine to regularly visit and index all web pages

2

[31].

Peer-to-peer (P2P) systems are distributed systems in which all the peers are equal and

there is no centralized control. In P2P, peers act as both clients and servers, form an

application-level network, and route messages e.g. requests to locate a resource [4]. P2P

paradigm is best suited for information retrieval. In this case instead of a centralized

index database, indices are maintained at each node. These indices are small, updated

regularly and point to current information.

Scalability is an important issue to be considered in these systems. P2P systems which

broadcast queries to all the peers in the network are not scalable. In order to perform

smart search, we need intelligent query routing mechanism to be able to route queries to

relevant subset of pairs. Query routing protocols are of the highest importance in P2P

systems [4]. Unfortunately current techniques tend to be inefficient as they generate too

much load on the system by broadcasting queries to all the peers in the system.

The notion of agent has been introduced with a two-fold purpose: i) a new paradigm for

the modeling and implementation of complex software systems and ii) a way to include

in a computational abstraction some behaviors which are usually associated with living

beings, such as the capability to take autonomous actions in a specific

context/environment in response to other agents activities and/or based on design

objectives [5, 6].

Agents and P2P systems are complementary concepts as agents can drive the

coordination between peers in P2P systems by residing in each peer [8]. Agents can

initiate the task on the behalf of the peers e.g. an agent can receive a request from the

user and it searches in its own local information repository/knowledge base present at

the peer at which it is residing, or if it cannot find the answer, it can forward the query to

one of the agents that it believes can answer the query. Multiagent Systems (MAS) can

be thought of as network of equal peers. Agents in MAS give the same kind of

abstraction as peers in P2P systems. In the next generation P2P systems, one might wish

to have typical properties associated with agency (e.g. autonomy, reactivity, pro-

activeness etc.) [32].

Lightweight Coordination Calculus (LCC) is a coordination language between agents.

3

“The most basic behaviors are sending a message and receiving it, where sending a

message may be conditional on satisfying a constraint, and receiving the message may

imply constraints on the agent accepting it” [9].

Query routing is a process of identifying the peer which is expected to contain the

answer of the query and passing the query to that peer. Effective query routing not only

minimizes the query response time and the overall processing cost, but also eliminates

the unnecessary communication overhead that are inherent in the global networks and

also over the individual information sources. Currently, a query routing mechanism does

not exist in LCC. This limits its use in the communication where information is

distributed across various sources.

This project is aimed at the development of query routing mechanism in an agent based

P2P system, which will make use of LCC protocols. In this system, one agent would be

present at each peer and act on the behalf of that peer. Every agent performs its tasks

autonomously without any centralized control. Users give query and select their desired

settings for query routing. LCC protocols for different routing mechanisms have been

written and implemented. These routing mechanisms are compared with each other.

Finally this system is compared with intelligent agents system [33].

This research is very closely related to SWAP project [40]. We have used the idea of

semantic expertise advertisement and agent's expertise calculation from their work after

necessary modification. However we have developed LCC protocols, query routing

algorithms and query relaxation algorithms of our own.

This thesis is structured as follows:

In chapter 2, background knowledge for this project has been described. Agents have

been introduced; their types and environments are discussed. Multiagent systems and

coordination languages of multiagent systems are described in detail.

Chapter 3 describes the related work in the area of query routing and distributed

dialogue protocols.

Chapter 4 covers the system overview, a complete example of system working, types of

4

messages used in this project, query routing mechanisms and agents roles.

Chapter 5 is a description of system architecture, components of the system, query

relaxation, search algorithm and duplication filtering algorithm.

User interface is explained in chapter 6 with diagrams.

Chapter 7 describes the tests which were performed to evaluate the protocols.

Chapter 8 covers the comparison between simple agents with intelligent protocols and

intelligent agents.

Chapter 9 summarizes our conclusion.

Chapter 10 identifies topics of further research in this area.

5

Chapter 2

2.Background

In this chapter, concepts of agents, multi-agent systems and agent communication are

explained with examples.

2.1.Agent

An agent is a software program which is autonomous and interacts with its environment

with the help of its sensors and actuators. Generally some sort of reasoning is performed

to decide about the behavior of the agent. Input to agent is given through its sensors and

the agents give output through its actuators. Agents produce appropriate output on the

basis of given input [10]. An agent autonomously acts on the behalf of its user, has a set

of objectives and takes actions in order to accomplish these objectives [14].

2.2.Agent Characteristics

Some important agent characteristics are as follows [13]:

Autonomy: Agents have control over their internal state and actions and they can

perform their tasks without being intervened by humans.

Social ability: Agents can cooperate with humans or other agents to perform their tasks.

Reactivity: Agents can perceive their environment, and respond to changes that occur in

it.

Pro-activeness: Agents not only act in response to their environment but also take the

initiative to achieve their goals.

2.3.Agent Classifications

Agents can be classified into five groups based upon their functionalities [10]:

2.3.1.Simple Reflex Agents

6

This is the simplest type of agent. These agents do not take percept history into account

for deciding about their actions. In other words these agents do not have any memory.

According to current situation of environment, they find a rule in their perception and

then perform actions which are associated with those rules. These agents work only if

the environment is fully observable [10].

2.3.2.Model Based Reflex Agents

This type of agent has internal state, which acts as a memory and keeps track of previous

events in their life. These agents find a rule which best matches their current situation,

not only by using perception but also their stored internal state and then perform the

action associated with that rule. The internal state of the agents helps them make a better

selection of the rule to apply [10].

2.3.3.Goal Based Agents

This type of agent has explicit goals and performs actions to achieve its goals. In

deciding about actions, these agents also perform planning in which they evaluate

different possibilities and then chose the one which is closer to their goals. In general,

they are more flexible than simple reflex agents and are capable of achieving their goals.

If the world is changing, even then these agents have the same goals and they try to

reach their goals [10].

2.3.4.Utility Based Agents

This type of agent has a utility function that maps agent states to a real number that

describes the degree of how well the agent is performing. The decision about actions of

agents depends upon this utility function. If the agent have conflicting requirements i.e.

only some of them can be achieved (e.g. safety vs. robustness), utility function provides

the appropriate trade off between them [10].

2.3.5.Learning Agents

This is the most sophisticated type of agent. This type of agent evaluates its performance

and changes its behavior according to that. It also explores new behaviors and tries to

find the best possible behavior for itself so that it can perform better in every possible

7

situation [10].

In this project model based reflex agents were used because if an agent receives some

query again, which it has already answered, then it will use its knowledge base to find

out which is the most appropriate agent to answer the query based upon the information

which is available regarding its known agents and their expertise.

2.4.Agent Environments

Russel and Norvig [10] classify agent environments into six dimensions. Those six

dimensions are:

2.4.1.Observable

If at every time, sensors of the agent can access the complete environment, the

environment is said to be fully observable. Otherwise the environment is only partially

observable. In case of fully observable environment, agents do not need to maintain

internal state of the world. Reasons for partially observable environment can be noise,

inaccurate sensors or missing state data from sensors [10].

2.4.2.Deterministic

An agent environment is said to be deterministic, if there is no uncertainty in it and new

state of the environment can be completely determined by the current state and the

actions performed by the agent. In this type of environment, agent does not need to

worry about unexpected behavior of the environment, in result of its actions. If the agent

is not sure about the state of the world its actions will result in, then the environment is

said to be stochastic [10].

2.4.3.Episodic

In an episodic environment, the choice an agent makes is only based upon its current

perception and has no dependency on its previous perceptions. If previous perceptions

are also considered in taking a decision, then the environment is called sequential. An

example of sequential environment is games, where each move by player is a part of

his/her strategy to win the game [10].

8

2.4.4.Dynamic

If the environment can change in between the time an agent receives input at its sensor

and when it performs the action, then the environment is dynamic. In static

environments an agent can take as much time as it needs [10].

2.4.5.Discrete

In a discrete environment, there are fixed and finite number of possibilities for percepts

and actions. If this is not the case then the environment is said to be continuous. In other

words discrete environments fall into categories while continuous environments do not

have categories but they have ranges for perception [10].

2.4.6.Agents

If there is only one agent in the system, then it is a single agent environment, otherwise

if there are more than one agents involved, the environment is said to be multi agent

environment [10].

After defining and explaining all types of agents’ environments, we can classify the

environment in which our case is in: multiple agents coordinating with each other to

answer user queries.

The environment of this project is multiagent environment as it involves more than one

agent. It is static because the number of agents and their knowledge bases are kept

constant. The environment is partially observable because if the agents do not store the

expertise description of other agents they would not be able to retrieve this information

later from the system. The environment is stochastic because the agent which receives

the query from a user does not know whether those agents to which it is passing the

query will be able to answer the query or not. The environment is episodic as current

query processing is being affected by previously asked queries and expertise of those

agents which answered those queries.

This environment is in one of the hardest categories of agent environments as it is

partially observable and stochastic.

9

2.5.Why to use Agent based approach

There are many reasons to use an agent based computing approach. Some of them are as

follows [13]:

� If the components of the system change over time or not known in advance, an

agent based approach allows developing such systems which are flexible, robust

and they can adapt to the environment by using their negotiation ability and their

social skills.

� In the case of domains where data and expertise are distributed, an agent based

approach is more natural.

� An agent based approach is more useful in non deterministic cases where it is

impossible to predict in advance that how the system would exactly behave.

Agents can learn and change their behavior according to the requirements.

2.6.Multiagent Systems

Multiagent Systems (MAS) are defined as “ the subfield of Artificial Intelligence (AI)

that aims to provide both principles for construction of complex systems involving

multiple agents and mechanisms for coordination of independent agents' behaviors”

[11].

A MAS consists of multiple agents that can collectively solve problems which are

beyond the capabilities of individual agents. In MAS agents coordinate to accomplish

unsupervised actions.

MAS normally assumes a decentralized control. Message passing is used for

communication purposes among agents. The key advantages of MAS are that each agent

in MAS can be developed easily and independently as long as it is developed by

following the specifications so that it can communicate with other agents in the system.

MAS are also scalable as agents can easily be added into it as compared to changing the

whole system every time.

 MAS is an ideal solution for large and complex problems with more than one problem

10

solving entities and methods. In MAS, this type of problem is divided into number of

small problems and each agent in the system is responsible for solving only part of the

whole problem. Solving the complete problem is beyond the capabilities and knowledge

of each problem solver.

Following are the characteristics of MAS [14]:

� There is no centralized control

� Each agent has incomplete information or capabilities to solve a problem.

� Computation is asynchronous.

� Data is decentralized

The interaction of agents in MAS is shown in Figure 1 [14]:

Figure 1 Multiagent System and its Interactions

Although agents are autonomous in MAS, yet MAS is viewed as a society. This society

sets the principles for agents to communicate and coordinate with each other and achieve

the common goal. An auction house can be seen as an example of MAS. The rules and

regulations of auctions are defined and each agent in the system must follow them. In

this case, there are two possible roles; an agent can be a bidder or an auctioneer.

Auctioneer wants to sell the item for maximum possible price where as each bidder

wants to acquire the item for lowest possible price.

11

2.7.Multiagent Coordination

As described earlier, an individual agent is not capable of solving a complex and large

problem on its own. It needs to interact with other agents. In particular if agents are

designed by different developers, then they must have some common conventions in

order to understand each other. Collections of such conventions can be represented in an

agent protocol. The most common method for communication between agents is sending

and receiving messages. An agent protocol defines types and order of messages along

with the conditions in which agents will send and receive the messages. Different

protocols will be required for different scenarios e.g. Protocols describing two different

types of interactions will be different [45].

An agent protocol does not describe how the agents interact. KQML/KIF [15] and FIPA-

ACL [16] are two standard communication languages in MAS domain. In these

languages, agents communicate with each other by passing messages. Internal

implementation of agent and its decision making abilities are not defined in these

languages. These issues are left up to the individual implementation of agents.

Figure 2 Agent Stack

Agent protocols come in between the top layer, which defines the rational behavior of an

agent, and the communication protocol layer, which defines how the agents will

communicate as shown in Figure 2 [42]. An agent protocol is just a predefined plan of

how the agents will collaborate in a given situation.

12

2.7.1.Electronic Institutions

Electronic Institutions (EI) is a way of providing communication in MAS, between

agents which have been implemented in different ways. EI have been designed by

following the conventions of human organizations. Different institutions exist in human

societies and in these institutions, responsible authorities set laws, act upon them and

monitor others to do the same [17].

An EI is a formal framework for an open multiagent system. It requires agents to interact

in a predefined manner and follow the commitments and obligations of their roles.

Agents in an EI can be viewed as actors. Every actor within the institutions can adapt

different roles [17].

Each role has dialogic actions associated with it. After adopting a role, an agent can

perform those actions which are associated with that role. Agents interact with each

others in group meetings which are called scenes in EI. A scene contains a well defined

protocol which is known as a script. A script contains all the possible dialogues, which

agents in that scene might have. All the agents that are present in that scene follow the

same script [42]. “These scenes can be connected and compose a network of scenes

which is called performative structure. Performative structures capture the relationship

between scenes and it also contains description that how different roles change as agents

move between scenes” [43].

This is illustrated in a simple example of auction scene. In this scene, there are four

agents. Three of them are in the role of bidder, while the forth have adopted the role of

auctioneer. The agents who have adopted the role of bidder can perform the dialogic

action “bid” where as the agent who is in the role of auctioneer can perform two dialogic

actions, “Invite bids” and “Sold”. In agent protocols, it is defined that how two groups of

agents with different roles can communicate with each other [42].

Agents also require common knowledge to interact with each other. This knowledge is

represented in a dialogic framework. The structure of dialogic framework allows

heterogeneous agents to exchange knowledge. Illocutions are defined by the institutions

through common language (ontology). Agents interact with each other by sending and

receiving messages. By observing human conventions, EI have been able to deal with

13

the complexities of open multiagent systems like trust, heterogeneity of agents and

social change etc [42].

2.7.2.Problems with Electronic Institutions

Although EI produces a framework for agent coordination in MAS and solves many

related issues but it also has some significant problems in it. The following are some of

the problems in EI, due to which it has not become a true standard of the agent

community [17, 42, 43]:

� One of the main problems is that all the interactions are coordinated through a

central agent known as administrative agent. The administrative agent is

responsible for making sure that agents adhere to institution's regulations. The

administrative agent is the bottleneck in the system. The correct functionality of

the whole system is dependent on it. If it does not perform correctly or crashes

then all the agents in the system will be unable to behave correctly. In the

presence of an administrative agent as central body, agents are no longer

autonomous; hence they undermine one of the key properties of agency.

� Another problem is the scenes in which the agent will be taking part must be

determined before the agents are deployed. Due to this, if a new agent wishes to

participate in an institution, it needs to know all the internal details of the

institution and follow the design of the institution. The current approach is that

path of the agent needs to be pre-determined. This approach is fine with simple

and predictable interactions. The problem comes in large and complicated cases

when it is not possible to predetermine the path of an agent through institution.

� Thirdly, it is assumed that the topology of the institution will not change. If the

institution definition changes, then the individual agents will need to be re-

synthesized and corrected. Thus a small change in the definition of an institution

may end up complicated reworking of all the individual agents which is not

desirable and make it difficult to deploy.

2.8.Distributed Dialogue Protocols

14

Distributed dialogue [18] is an interaction among group of agents. It consists of dialogue

sequences between agents. It is built on the basis of EI, however it provides an enhanced

mechanism for ensuring that the agents are truly autonomous and there is no central

agent. In MAS, agents coordinate by sending and receiving messages to other agents.

This message behavior can be described in a notation which is very similar to Calculus

of Communicating Systems (CCS) [19]. CCS is a process calculus which is used to

formally describe concurrent and communicating processes [18].

Consider an example of two agents. First agent a (r1, a1) wants to send a message m1 to

second agent a (r2, a2). Where r1 and r2 are the roles of agents and a1 and a2 are the

unique identifiers of the agents. After receiving message m1, agent a (r2, a2) will send

reply message m2 to agent a (r1, a1). Assuming that each agent operates sequentially, set

of possible dialogues between two agents can be represented as follows [42]:

 For a (r1, a1): m1=> a (r2, a2), m2 <= a (r2, a2)

 For a (r2, a2): m1<=a (r1, a1), m2 => a (r1, a1)

In the above protocol => denotes message sending and <= denotes the message

receiving.

 Two languages have been developed on the basis of distributed dialogue protocols: the

Light Weight Coordination Calculus (LCC) and the Multi Agent Protocols (MAP).

However these are similar languages from the same research group. For the purpose of

this project LCC was used.

2.8.1. Lightweight Coordination Calculus

LCC is an extension of EI and it defines the scenes in the framework in very innovative

way. It does not require any centralized agent for coordination between agents. Due to

this, agents have been able to preserve their autonomy property. LCC has been formally

defined by using light weight formal methods. The abstract syntax of LCC is presented

in figure 3 below [9]:

15

Figure 3 LCC syntax

An agent A is defined by a term A::D where D is the definition which defines the

messages, an agent is allowed to send. Different operators can be used to construct D. A

message is only sent if the constraint associated with it is satisfied and this type of

constraint is known as a proaction constraint. Similarly a message is received only if the

constraints implied by the message are accepted. This type of constraint is known as a

reaction constraint. Complex behaviors can be specified using the connectives then, or

and par which denotes sequence, choice and parallelization respectively. With the help

of constraints on messages, an agent can interact according to social norm while

maintaining as much as possible of their autonomy [44].

Agents also share certain amount of common knowledge. An example of this could be

current reserve price of an item taking part in auction [42]. As an example in LCC, we

take the scenario of interaction between two agents in which one of them is in the role of

bookseller and other is in the role of inquirer. An inquirer agent asks the price of book X

from bookseller agent. The bookseller will send a reply in a message containing price Y

of book X. Below is the LCC version of this scenario:

a (inquirer(X), A):: ask (price(X))���� a (bookseller, B) then

16

 offer (price(Y)) ⇐⇐⇐⇐ a (bookseller, B)

a(bookseller, B) :: ask (price(X)) ⇐⇐⇐⇐ a (inquirer(X), A) then

 offer (price(Y)) ���� a (inquirer(X),A) ←←←← knowsPrice (X)

As described earlier, in EI all the agents in a scene follow a global script which cannot

be modified and all the agents participating in the scene must stick to it. LCC on the

other hand takes a different approach. There is only one copy of script which is shared

between all agents participating in a scene. This script is passed from one agent to

another during the execution of protocol. Hence there is flexibility in LCC that script can

be extended as the conversation of the agent progresses [45].

In LCC when an agent communicates with other agent (who is unaware of the first

agent), the framework allows the first agent to inform second agent that how it is

intended to communicate with it. Every agent can also determine the current state of

dialogue. This is achieved by separately maintaining the instances of dialogue clauses

used by each agent participating in the dialogue [44].

With every message received by the agent, a protocol is attached. The protocol is of the

form as illustrated above. The agent updates the protocol it receives and finds the next

move it is allowed to take. After taking its move, it will update the protocol describing

the new state of the dialogue. In simple words each time an agent performs an action

which it has been asked to do by the script; it will update the script and pass the protocol

on. In the same way when the next agent receives the protocol, it will exactly know what

it is required to do because the preceding agent has marked the script, retrieving the

current state and knows where to pick up where the last agent left off [42].

“This is done by applying rewrite rules. As an example an agent receives a message with

an attached protocol, P, and extracts from P the dialogue clause, Ci, determining his part

of dialogue. Rewrite rules are applied to give an expansion of Ci in terms of protocol P,

in response to set of received messages, Mi. They generate a new dialogue clause Cn, an

output message set Mn (a subset of Mi). These are produced by exhaustively applying

the rewrite rules:

17

Agent clause Ci will be replaced by Cn and protocol Pi will be replaced by the protocol

Pn. Now the agent will send messages accompanied by new protocol Pn” [9]. Rewrite

rules are listed in Figure 4 [9]:

Figure 4 LCC Rewrite Rules

LCC works even in those cases where agents do not possess protocols before hand and

where the number of agents participating in the interaction has not been predefined. As

18

autonomy is key to agency, in LCC this property is retained in agents as there is no

centralized agent present to synchronize the coordination of agents. The protocol is also

not required to be distributed to all agents which are going to take part in the scene in

advance. This means that change can easily be made without modifying the protocol and

having to redefine each and every agent. In short with LCC, agent definitions are

dynamic, simpler and without the need for a centralized controlling agent.

2.9.Machine Learning Algorithms

In machine learning paradigm, two types of algorithms are generally discussed:

� Lazy Learning Algorithms

� Eager Learning Algorithms

2.9.1.Lazy Learning

In these algorithms, training samples are simply stored for future use. In these

algorithms, no generalization of these algorithms is performed to generate any type of

rules. The characteristics of these algorithms are as follows [39]:

� They do not perform any processing on the input until they receive a request for

that information.

� They combine stored training data to reply queries

� They do not store any intermediate results.

Typical type of lazy learning algorithms are case based learning, example based learning

and instance based learning. The term “lazy” is borrowed from lazy evaluation in

functional programming languages [39]. As an example of lazy learning in agent based

P2P system, suppose a query is made of some agent. The first agent which receives this

query from the user will forward this to other agents in the network and receive results

from them. Now instead of inferring any information from this, the agent will simply

store this data against the query. If this agent receives the same query in future, it will

search its knowledge base to find out which agent replied last time and then forward the

query to that agent.

19

2.9.2.Eager Learning

Eager learning algorithms induce abstract concepts from the training samples e.g. using

decision trees, neural networks etc. When eager learners receive requests for

information, they make use of abstract information. As an example, when an agent

receives an answer for a query from different agents in the network, it will store the

expertise of agent in its knowledge base depending upon the related topic of the query

instead of just storing the agent id and query. Whenever it receives the same query or a

similar query, it can forward the query to appropriate agent based upon the subject of the

query (cf. section 5.2.2).

2.9.3.Comparison of Eager and Lazy Learning

The main difference between both algorithms is that lazy learners perform little

processing on training data and eager learners induce abstract rules from it. In eager

learning algorithms, learning time is high while the query response time is low and vice

versa in lazy learning algorithms.

� Lazy learning is useful when number of training data is small and query arrival is

not frequent. However if there is large set of data, finding the appropriate agent is

time consuming and requires smart indexing techniques.

� As eager learning algorithms discard training data and store only compact

summary in the form of rules so they require quite small size of knowledge base

as compared to lazy learners.

� Lazy learners can generate detailed explanations of its decisions about any

particular request for information instead of abstract explanations which may be

required for some tasks.

2.10.Peer-to-Peer Computing

P2P computing paradigm is very popular for sharing computing resources/services such

as data files or processing cycles. In these systems very large amount of peers pool

20

together their resources and depend upon each other for data and services. These

systems are characterized by symmetric roles among the peers, where each peer in the

network acts alike. Popular examples of P2P systems are Napster
1
, Gnutella

2
, Freenet

3

and Kaaza
4
. P2P computing can also be applied to other areas like Grid Computing (e.g.

SETIHome
5
) and collaboration networks (e.g. Groove

6
).

Locating the peer which contains the resource/information required by the user is the

key issue in P2P systems. There are two types of solutions for this. First is to forward the

query to all the agents in the network. This technique is called “Flooding”. Gnutella is

based on this technique. Second technique is Distributed Hash Tables (DHT). DHT

based schemes (e.g. Chord [41].) include peers into structured overlay networks and

assign each data item to a specific peer. In this way each peer needs to know about

O(log N) neighbors [32].

Figure 5 Typical P2P Network

None of these methods support semantic methods. They perform keyword based search.

However, in this project we are using semantic similarity of agents' expertise (cf. section

5.2.1) and query subject (cf. section 5.2.2) in the process of identifying appropriate

peers.

1
 http://www.napster.org

2
 http://www.gnutella.wego.com

3
 http://www.freenet.sourceforge.net

4
 http://www.kaaza.com

5
 http:// www.setiathome.ssl.berkley.edu

6
 http://www.groove.net

21

2.11.Hop Count

The number of agents/peers traversed by a message between its source and destination is

known as a hop count. As an example Agent A is the querying agent, it forwards the

query to Agent B, this makes hop count=1. Now Agent B sends the same message to

Agent C, which will make the hop count=2.

Figure 6 Hop Count Example

22

Chapter 3

3. Related Work

We consider two areas of research related to our work. The first is distributed dialogue

protocols and the second area deals with semantic query routing in P2P systems. In this

chapter work on both of these research areas is described briefly.

As it has been discussed previously, that two languages emerged from distributed

dialogue protocols namely LCC and MAP. LCC has been explained in depth in Chapter

2. In this chapter we will briefly look at MAP and its difference with LCC.

“The MAP language is a lightweight dialogue protocol language that allows designing a

multiagent protocol in an easy and convenient way” [22]. In MAP every agent is defined

by its role which contains different methods with input parameters. Every agent has a

fixed role which cannot be changed for the duration of the whole protocol. The protocol

describes who sends and receives messages along with their types. In MAP logical

operations and procedures are also allowed. These procedures are used to check the

constraints associated with the messages [22].

Although both LCC and MAP are built upon CCS, yet the execution of protocols in both

languages are not the same. Agents’ communication via MAP is reliable, buffered and

non-blocking. In MAP a separate protocol is defined for each role in the scene. In

addition to this, agents’ decisions are also added to the syntax [42].

In MAP, all agents have their own copy of protocols before the execution starts. The

agent just unpacks the protocol and follows the steps in the protocol. In MAP, there is no

need to update the protocol as every agent has its own copy [22]. This is the fundamental

difference between MAP and LCC, as in LCC there is only one global copy of the script

and agents need to update it [42].

For query routing in P2P systems, the challenge is to find the peer that is expected to

contain the answer of the query and passing query to that peer without involving

23

unrelated peers and keeping messages on the network as minimum as possible. This is

very hot area of research and many research groups have come up with different

techniques. Below is the brief analysis of different approaches of query routing and

related work.

The Small-World Effect project [20] is one example how network and document

distribution topologies can be used efficiently to establish a relation between two peers.

In this project, contents of a peer are advertised to all of its neighbors. In this way

whenever a peer joins or leave the network or it updates its contents, the network will be

flooded with advertisement messages, which is a substantial overhead over the network.

Tempich et. al. [21] have used a lazy learning approach in their system REMINDIN' for

query routing in P2P system. In this approach, instead of passing advertisement

messages to all the peers in the network, peers observe the queries being asked on the

network and their answers and store this information in their local repository. Next time

if these peers receive similar queries, then they would exactly know which peers contain

the answers of the query. So they will pass the query to exactly that peer instead of

broadcasting the query or passing it to all neighbors. If a peer does not have information

about the query and it also does not know which peer can answer this query then it will

relax the query. They use the ACM Topic Hierarchy (cf. section 4.6) so if the peer is

unable to decide on an appropriate peer then it will generalize the query subject using

this hierarchy. They have claimed 80% recall after running 20,000 queries [21].

However this approach has two major shortcomings. First is it ends up replicating large

subsets of foreign knowledge bases at every peer and secondly it requires to send a large

number of queries to become efficient.

[12] presents schema-based P2P networks and the use of super-peer based topologies for

these networks, in which peers are organized in hypercubes. [11] shows how this

schema-based approach can be used to create Semantic Overlay Clusters in a scientific

Peer-to-Peer network with a small set of metadata attributes that describe the documents

in the network. In contrast, the approach in our system is completely decentralized in the

sense that it does not rely on super-peers.

In [23] a query routing mechanism has been proposed based upon super peers. In this

24

system peers with the same topic are organized in a hypercube topology [26]. There is a

two step routing mechanism involved in this setting. In the first step, queries are routed

to the super peer back-bone and then it is distributed to those peers which are connected

to super peers. The second step can be avoided if the super peer cache data from their

connected peers. With this topology, each peer will be queried only once for a single

query (which is still quite a big number of queries). They also have not provided any test

on the performance of their algorithm. Another limitation of this approach is that it does

not distinguish between more knowledgeable and less knowledgeable peers within the

hypercube [26].

A different approach to finding appropriate peers in the network is social network

analysis. ReferralWeb [24] make efficient use of this technique. ReferralWeb reveals the

existing social network by data mining resources found on the web. These resources can

be anything ranging from home pages, links to other resources, list of author and co-

authors in a research paper, citation of a technical report to news archives and

organizational charts [26].

Their experiments prove that this technique work even better in large networks. [25]

Shows that precision of answers increases when these referrals are used. They have also

shown the case where the peers with similar expertise are grouped close to each other

according to their similarity function. They have claimed that number of messages per

query passed on the network will decrease. However they have not proved this in their

experimental results. They store the queries and expertise in vectors and calculate

similarity based on taking the cosine of both vectors [26].

 Bibster [27] is an application which is based on the approach of using semantics in P2P

systems. This system is designed for exchanging bibliographic data among researchers.

In this system each bibliographic entry is structured and classified into two ontologies

SWRC [28] and ACM Topic Hierarchy [29]. In this system peers advertise their

expertise to all of their known peers. If the received advertisement is related to one's

known expertise then it will accept the advertisement, otherwise it will discard it.

Different experiments have been performed in this project and they have proved that

their technique works in different settings. However one shortcoming in this system is

that querying peer does not store this information that which peer has replied about this

25

query, it just adds the replying peer to its known peers. If again it receives the same

query, it needs to repeat the whole process instead of just passing the query to that peer

who has replied last time.

26

Chapter 4

4.Project Overview

This project has several purposes:

� Enabling query routing in LCC (cf. section 2.8.1) by writing different query

routing protocols in it.

� Development of an interpreter in Java that is able to understand the protocols.

� Testing the protocols in a simulation based environment to check if they are

working correctly.

� Comparison of an MAS based upon agents with LCC protocols to an MAS

consisting of agents which are intelligent themselves and do not need any

protocols to guide them.

This project has been done as a part of joint research study carried out by two MSc

students Zeeshan Pervez and Salman Elahi under supervision of Dr. Dave Robertson.

We have tried to study that whether agents with little intelligence but with LCC

protocols, can perform at comparable levels of query routing effectiveness as more

intelligent agents. As query routing is of paramount importance in agent based P2P

computing, so we have selected this feature and developed two query routing systems,

one with intelligent protocols and other with intelligent agents. This report is related to

intelligent protocols work but a brief summary of the intelligent agent system [33] is

also included in this report for completeness (cf. chapter 8).

This project is developed as a simulation to test the effect of different input parameters

(cf. section 4.11) in a controlled environment. There are 20 agents in the simulation and

each agent knows only 4 other agents which means that every agent can initially

communicate with only 4 other agents. These 4 agents are called known agents of that

particular agent. These known agents are selected by a Java program which randomly

selects 4 known agents for every agent.

27

4.1.Assumptions

The following are some assumptions on which this project has been based:

� The user of simulation is Computer Science researcher and not a naive user.

He/She will neither give any invalid input nor misspell the words.

� The user is aware of ACM topic hierarchy (cf. section 4.6). He/She selects the

related area of query by selecting related node from ACM topics tree in

simulation. This selected area will be the closely related to the query. For no

reason, he/she will select an area which is not related to the query.

� The user will write major part of title or important keywords of the bibliographic

reference, he/she is looking for. As this system is not a search engine, so if the

user pastes some lines of text, he/she might not be successful as full text search

facility is not provided in this system.

� Network related issues like network topology and physical connection between

peers are not discussed in this project. It has been assumed that communication is

reliable. Messages sent over the network are always received. The message

content does not change on the medium. Messages are only received by the

intended receivers and no unauthorized agent has access to the message contents.

� Peers/Agents are also assumed to be reliable and they will not fail during the

simulation.

� The Number of agents is fixed in the simulation and it cannot be changed. No

peer can leave or join the network. The number of bibliographic references and

agent's expertise are also assumed to be fixed and they do not change.

4.2.Working Example

Before moving into technical details about the project, one complete working example

of the system is explained below in simple terms:

When the simulation starts, every agent in the network will send advertisement messages

(cf. section 4.3.1) to all of its known agents (which are 4 in our case). The advertisement

28

message consists of description of expertise of the sender. From these messages, every

agent knows the expertise of all of its known agents. This information is required when

every an agent needs to forward the query to its known agents. Instead of forwarding the

query randomly or broadcasting the network, the agent can select the most appropriate

agents which are likely to answer the query.

The user selects an area from ACM expertise tree which is closely related to his/her

query. On the basis of this selection of user, the first agent (the querying agent which

will receive the query before anyone else) will be selected.

The user will select one of the settings from the setting combo box. Each setting

includes different combination of input parameters (cf. section 4.11), message passing

(cf. section 4.3) and peer selection algorithms (cf. section 5.3).

The user will enter the keywords on which he/she wants to perform a search and press

the search button.

The simulation will select the first agent on the basis of closest area identified by the

user. This first agent will receive keywords entered by the user. This agent will perform

a local search into its knowledge base and retrieve all the results (if any), it finds

relevant to the search.

Now depending upon the setting selected by the user, the querying agent will select the

best agents (other than the naïve settings (cf. section 4.10), in which the query is

forwarded to the randomly selected known agents) and forward the query to those

agents. In the semantic settings (cf. section 4.10), these agents are selected based upon

the expertise sent in the advertisement messages.

When the intermediate agents (cf. section 4.12) receive the query message, they will

look into their knowledge base and try to find the relevant answers. If they find the

relevant results, they will reply to the sender of query message (which will be querying

agent itself in this case) with answer message containing the relevant results of the

query. If these agents are unable to find any relevant result in the knowledge base, then

they will not send any message to the querying agent. Similarly if the querying agent

does not receive any message from the agent to whom it has forwarded the query, it will

29

assume that the agent does not know about that query. This process of forwarding the

query to next agent continues till hop count (cf. section 2.11) is not reached to its limit,

which is set to n=2 for the purpose of this project. This essentially means that querying

agent will forward the query to its known agents that will make hop count=1 and these

agents will forward the query to their known agents which will make hop count=2.

The above process is shown in Figure 7:

30

Figure 7 Process Diagram

In chapter 5, all the above system modules are explained in detail.

4.3.Types of Messages

In this simulator, the following four types of messages have been used:

31

4.3.1.Advertisement Message

The purpose of this message is to inform the known agents about the expertise of the

sender agent. As the number of known agents is fixed to 4 in the simulation, so every

agent will send advertisement message to all of its 4 known agents. At the same time, it

will receive an advertisement message from all of its known agents.

4.3.2.Query Message

When an agent receives a query from the user, it forwards the query to its known agents

based upon the setting selected by the user, so it will send a query message. When an

agent receives a query message, it will try to answer the query by looking into its

knowledge base. If the hop count (cf. section 2.11) of that query has not reached its

maximum limit (which is n=2 in our case) then the agent will forward a query message

to its known agents based upon the settings.

4.3.3.Answer Message

When an agent receives a query message, it will look into its knowledge base and try to

find the relevant answers for the query. If it finds the answers then it will send an answer

message to the sender of the query message, containing the answer of the query. In that

case when an agent receives a query message but it does not find any relevant results in

its knowledge base, then it will not send any message to the sender of query message. If

the sender does not get any reply then it will assume that the receiver of the query

message has no information about the query.

4.3.4.Re-route Message

This type of message is used in the overt routing mechanism (cf. section 4.4.1). In this

case if intermediate agents (cf. section 4.12) do not have the answer of the query, then

instead of sending messages directly to their known agents, they will send re-route

message to the querying agent. The purpose of this message is to introduce querying

agent and known agents of intermediate agents so that they can communicate directly

without the involvement of any middle agent.

In this project as we do not deal with network related issues, so network communication

32

is assumed to be reliable. Messages neither are lost nor are they forged. So, there is no

need of acknowledgment or negative acknowledgment messages. It is always assumed

that messages sent are always received.

4.4.Routing Mechanism

As query can be sent from one agent to other agent in different possible ways, the

following three mechanisms are used in this project:

4.4.1.Overt

In this mechanism, every agent will only communicate with the querying agent or the

first agent which receives the query from the user. The querying agent will pass the

query to its known agents. Now if those agents know about the query, they will send an

answer message to the querying agent, otherwise they will send the re-route message to

the querying agent. The querying agent will check that if the hop count of that query has

not exceeded its maximum limit (which is n=2 in our case), then it will forward the

query to the known agents of its known agents.

As an example, Agent A is the querying agent; it receives a query from the user. It will

forward the query to agent B which is its known agent. Now agent B will look into its

knowledge base. If agent B cannot find any answer, it will send a re-route message to

agent A, which contains information about agent C, which is the known agents of agent

B. After receiving re-route message agent A will check that if the hop count (cf. section

2.11) of this query has not reached to its maximum limit, then it will forward the query

to agent C, otherwise it will only display results it has received till now. This process is

shown in Figure 8.

Figure 8 Overt Routing

33

The overt routing mechanism is expensive in terms of query and re-route messages, as

every agent has to communicate with the querying agent. Number of messages can be

reduced if intermediate agents start sending messages to their known agents themselves,

without involving querying agent every time. At the same time, this technique is

efficient in answer messages. As every agent is communicating with the querying agent

which actually needs the answer of the query, so the answer message is received at the

querying agent in just one message.

4.4.2.Covert

This is a more advanced form of routing mechanism as compared to the overt.

Intermediate agents can communicate with each other along with the querying agent and

they do not need to send re-route messages to the querying agent. They will directly

send the query message to their known agents. In this case, an answer is always sent to

the sender of query message, instead of the querying agent or any other agent. The

receiver of the answer message will check that if it is not the originator of this query,

then it will send the answer message to that agent which sent it the query message. In

this way messages are kept on forwarding to the known agents until the hop count limit

does not reach its maximum value (which is n=2 in our case). Every agent sends the

query message to its known agent and an answer message to the sender of the query

message.

Figure 9 Covert Routing

As an example, agent A receives a query from the user. It looks into its local knowledge

base and then forwards the query to agent B which is its known agent. The hop count for

this query has reached to 1 till this point. Now whether agent B, finds results from its

local knowledge base or not, will forward the query to agent C which is its known agent.

Hop count has reached to 2 which is the maximum value set for this project, so if agent

C finds the relevant results, it will send the answer message to agent B, otherwise it will

34

not do anything. This process is shown in Figure 9.

The covert mechanism is more parsimonious in terms of query messages, as

intermediate agents send the messages directly to their known agents, instead of passing

them to the querying agent every time. In this way the total number of messages sent on

the network is reduced. At the same time they are not very good in terms of answer

messages. As in overt, all agents receive messages from the querying agents, so they

send answer messages directly to querying agent but in covert agents receive messages

from their known agents, so they send answer messages back to the sender of query

messages, In this way, answer messages follow the path of query message in the

opposite direction and finally reach the querying agent.

4.4.3.Hybrid

This is the most advanced form of routing mechanism. It is basically a mixture of both

approaches i.e. overt and covert. It is more efficient than both above mentioned

techniques as it floods the network with the least number of messages. In the hybrid

mechanism, query messages are sent following the covert mechanism and answer

messages are sent following the overt mechanism. This means that query messages are

sent directly to the known agents of intermediate agents and the answer messages are

sent directly to the querying agent, instead of sending it to the immediate sender of the

query. As this approach is taking the best of above both approaches, it involves the least

number of messages on the network.

 Figure 10 Hybrid Routing

As an example, agent A is the querying agent. It forwards the query to agent B. First

agent B will look into its local knowledge base, if it finds relevant result, it will send the

answer message to agent A. As the hop count has not reached its maximum value (which

is n=2 in our case) so B will directly forward the query to agent C without involving

35

querying agent. If agent C finds the relevant results for the query, it will send the answer

message back to the querying agent A, instead of passing it to their immediate senders of

query message (i.e. agent B). This process is shown in Figure 10.

4.5.Simulator

For the simulation purposes, a network simulator developed by Dr. Jane Hilston and her

PhD student Yussuf Abu Shaaban has been used. This simulator has been developed in

Java. One of the reasons for using this simulator is we wanted to use Java instead of

Prolog as an LCC interpreter in Prolog has already been developed. We wanted to study

LCC in some object oriented programming language like Java.

This simulator has many features that exactly matches our requirements and best suited

for this project. The simulator allows the user to generate a network by creating peers.

The user can store the network and use the same network next time by loading the

already stored network.

It uses an XML file to store the information about the network. In that XML file the

number of peers in the network along with id, color, failed status, x-coordinate and y-

coordinate of every peer is stored. Every peer in the network has a unique id and is

shown by a blue circle on the simulator except for the first peer which has yellow color.

This difference in color is made to distinguish the first peer from the others. To connect

two peers, the user needs to left click on the first peer and then left click on the other

peer. In order to demonstrate peer failure, the user press the centre button of the mouse

on that peer and a red cross will appear on that peer to show that the peer has failed and

can longer work. When a peer fails, its failed status is set to true in XML file, which is

false otherwise.

The message passing behavior between the peers is demonstrated by drawing a yellow

rectangle at the sender and then after a second or two that rectangle will disappear from

the sender and appear at the receiver peer, which basically shows that the message has

been sent to receiver from the sender. This rectangle contains three pieces of information

namely type of message (e.g. query message or answer message), sender id and receiver

id.

36

However for the purpose of this project, many changes were made to this simulator.

Now in this project, the first agent is not selected by the user; it will be selected by the

simulation based upon the ACM topic area selected by the user. This is done because we

want to pass the query to that agent which is most likely to answer the query instead of

just selecting a random agent by the user. As we are not dealing with agents’ failure so

this facility is no longer available to the user. We are assuming that only known agents

can communicate so user is not required to draw the connections between agents. In our

case when ever the user starts the simulation, a network of fixed agents (which is set to

20, other than the scale up experiments) is displayed in the simulator. The user cannot

add or delete agents or make any changes in the network.

We have added many features in the network which were not initially present in the

network:

A notice board has been added to the simulator. In that message board, all the messages

which are sent across the network are printed. Initially the user has only one method of

determining that which agent has sent the message and which agent is the receiver of the

message and that was by looking at the message rectangles. When multiple agents

simultaneously send and receive messages of different types, then it is very different for

the user to understand what is happening in the system by just reading the text in the

rectangles. If an agent receives two messages, then the first message rectangle will be

overdrawn by a second message rectangle, so if the user misses that, he/she is unaware

of the first message, but now, with the help of message board, the user can read all the

messages even at the end of simulation and no message disappears until the user enters

another query to search. In order to graphically demonstrate the results, a table has been

added to the simulator. After receiving the answer message, the querying agent will

retrieve answers from it and display them to the user in that table. In this table we

present to user the id of bibliographic reference, its title, authors, year of publication and

its relevance with the keywords entered by the user. The user can get the complete

details of bibliographic reference by a mouse click on that particular record and a new

window will appear which contains the complete reference in Bibtex format. An

example of Bibtex entry is :

@article{1058005,

author = {Cirrus Shakeri and David C. Brown},

37

title = {Constructing design methodologies using multiagent systems},

isbn = {0890-0604},

pages = {115--134},

publisher = {Cambridge University Press},

address = {New York, NY, USA},

}

The ACM topic hierarchy is also given to user in a tree format. The user is required to

expand the tree and find the most relevant area related to his/her query. This selection

helps the simulator in selecting the most appropriate agent as the querying agent. This

selection plays an important role because if an agent with a different expertise is

selected, then the user might not be able to get relevant results.

4.6.ACM Topic Hierarchy

When a user enters a query, we need to find the topic of that query i.e. related area of

that query so that most suitable agent can be selected as the querying agent. In order to

find the relations between different topics, we are using ACM topic hierarchy. This topic

hierarchy is called ACM Computing Classification System (CCS). This classification is

useful to readers as it provides the quick content reference for relevant literature search.

It also makes search easy in the ACM Digital Library and other ACM resources.

“CCS is a four level hierarchy of terms that has three coded levels and an uncoded level

of subject descriptors” [36]. Subject descriptors are generally at the fourth level. This

hierarchy contains both categories as well as subject descriptors. The tree classification

is restricted to three letters and numbers coded levels. Categories are assigned a single

alphabet at the first level while sub-categories are assigned alpha numeric codes [36]. As

in example:

I Computing Methodologies (First-level node number and title)

 I.2 Artificial Intelligence (Second-level node number and title)

 I.2.11 Distributed Artificial Intelligence (Third level node number and

title)

 * Multiagent Systems (subject descriptors)

38

This tree consists of 11 first-level nodes. In addition to that there is a set of 16 separate

concepts called “General Terms” that apply to all areas. Language theory is an example

of these terms [36].

4.7.Scenario

In order to simulate and test our system, we have selected a bibliographic references

scenario:

In the daily life of a computer scientist, one has to look for publications related to their

research interests. Most common methods for performing these searches are with search

engines like Google and Yahoo, via libraries or simply asking those people who are

likely to know the desired information [26]. As publications are increasing day by day,

this problem is also increasing. We present a P2P system in which on every peer, there is

an agent which can communicate on the behalf of that peer. Every agent is basically

representing a researcher. Each researcher has some bibliographic references which

he/she wants to share with others on the network. These bibliographic references are

classified against the ACM topic hierarchy.

As an example a researcher is expert on the topic of “knowledge management” and is

looking for references of paper on the same topic. He/She can get bibliographic

references using the search functionality of our system. Along with this, researchers can

also determine which other researchers are working on the same area. In case this

researcher has some bibliographic references which are not available with anyone else

on the network, it can advertise those references to the researchers whose expertise are

also in the same area.

4.8.Agents Roles

As it has been described in chapter 2 that every agent has a role in a scene and it

performs those actions which are associated with its role. Now we look at different roles

that agents can have in this project:

4.8.1.Requester

All the agents which are sending query message to other agents are in the role of

39

requester. This role is adopted in the situation when an agent does not have some

information which is currently needed so it is asking for the information

4.8.2.Replier

In the role of replier, an agent receives a query and send answer message to the requester

of that information. In the execution of one query, an agent can shift between its roles

e.g. When an agent A receives a query from another agent B, A is in the role of replier.

When A is forwarding query to other agents and receiving answers, it is in the role of

requester. After receiving answer message, when it sends back the reply to agent B,

which is the actual querying agent, A will be again in the replier role.

4.8.3.Advertiser

In this role, every agent sends advertisement messages to all of its known agents (which

is 4 in our case).This advertisement message describes the expertise of the sender from

ACM CCS (cf. section 4.6).

4.8.4.Receiver

In this role, every agent receives advertisement messages from all of its known agents

(which are 4 in our case). These advertisement messages contain the expertise

description of the sender.

4.9.LCC Protocols for Routing

As we have discussed that three routing mechanisms have been used in this project, we

now look at the LCC version of these protocols:

4.9.1.Overt Protocol

Agent A in role of Requester asks about query X from agent B in role of Replier. If

agent B knows about the answer Y of query X, then it will send an answer message to

agent A. Otherwise agent B will send a re-route message to agent A, introducing agent C

(which is a known agent of agent B but agent A does not know about that) to agent A, so

that agent A can directly ask from agent C (as every agent only communicates with the

40

querying agent in overt protocols).

a(Requester(B), A) :: Enquire(X) ���� a(Replier,B) � needs (X) then

 answer (X,Y) <= a (Replier, B)

 OR

 re-route (C) <= a (Replier, B) then a(Requester(C), A)

a(Replier, B) :: Enquire(X) <= a (Requester (B), A) then

 answer (X,Y) ���� a(Requester(B), A) � has_answer(X,Y)

 OR

 re-route (C) ���� a(Requester(B), A) � not (has_answer(X,Y)) and

 peer (C)

4.9.2.Covert Protocol

Agent A in role of Requester asks about query X from agent B in role of Replier. If

agent B knows about the answer Y of query X, then it will send an answer message to

agent A. Otherwise agent B will become requester itself and ask from one of its known

agents and this process continues. When any agent has got the answer for the query, it

will send it to its immediate sender of query message and agents keep on sending answer

messages back to their senders till the first agent (agent A in this example) receives the

answer.

a(Requester(B), A) :: Enquire(X) ���� a(Replier(A),B) � needs (X) then

 answer (X,Y) <= a (Replier(A), B)

 OR

 no_answer(X) <= a (Replier(A), B)

a(Replier (A), B) :: Enquire(X) <= a (Requester (B), A) then

 answer (X,Y) ���� a(Requester(B), A) � has_answer(X,Y)

 OR

 a(Requester(C), B) � not (has_answer(X,Y)) and peer (C)

 OR

 no_answer(X) ���� a(Requester(B), A) � not (has_answer(X,Y)) and

not(peer (C))

4.9.3.Hybrid Protocol

41

Agent A in role of Requester asks about query X from agent B in role of Replier. If

agent B knows about the answer Y of query X, then it will send an answer message to

agent A. Otherwise agent B will become requester itself and ask from one of its known

agents and this process continues. When any agent has got the answer for the query, it

will send it to first agent (I in this example).

a(Requester(I,B), A) :: Enquire(X) ���� a(Replier(I,A),B) � needs (X) then

 answer (X,Y) <= a (Replier(I,A), B)

 OR

 no_answer(X) <= a (Replier(I,A), B)

a(Replier (I,A), B) :: Enquire(X) <= a (Requester (I,B), A) then

 answer (X,Y) ���� a(Requester(I,B), I) � has_answer(X,Y)

 OR

 a(Requester(I,C), B) � not (has_answer(X,Y)) and peer (C)

 OR

 no_answer(X) ���� a(Requester(I,B), A) � not (has_answer(X,Y))

and not(peer (C))

4.9.4.Advertisement Protocol

Agent A is in the role of Advertiser and it wants to send message M (which contains its

expertise description) to all of its known agents whose ids' are in list S. Agent A will

keep on sending message M until all the known agents receive M. Agent B in the role of

receiver will receive message M from all of its known agents whom ids' are in list T.

Select is a predicate which pulls out first element from the list.

a(Advertiser(M,S),A)::= (M ���� S1�S=[S1|Rest] then

 a(Advertiser(Rest),A)

 OR

 null�S=null

a(Receiver(M,T), B)::= select (S1,T,Rest) � M <= S1 then

 a(Receiver(M,Rest), B)

 OR

 null � T=null

42

4.10.Settings

In this project, we are comparing different types of agent selection mechanisms. If the

querying agent and other intermediate agents (cf. section 4.12) randomly select other

agents to forward query, this is known as the naïve setting, while if they select agents on

the basis of semantic similarity (cf. section 5.3) between agent’s expertise and query

subject (cf. section 5.2.2), this is known as the semantic setting.

4.11.Input Parameters

In this section we define the input parameters which will provide a basis for our

algorithm evaluation. These parameters are mainly from information retrieval

community and mainly discussed in [37].

4.11.1.Number of Agents

The number of agents in an agent based P2P system is regarded as the size of the

network [26]. Other than scale up experiments, we have used 20 agents in our

simulation.

4.11.2. Number of Bibliographic References

“The ability of a P2P system can also be expressed in terms of its shared resources” [26].

In our case, as we are not making any restrictions on the number of results retrieved so

this parameter does not make any difference to our results. We have set this parameter as

a constant.

4.11.3.Data Distribution

Almost every data distribution has some pattern and is not completely random [26]. We

have used two distributions in this project, first is topic distribution (cf. section 5.7.1)

and second is proceeding distribution (cf. section 5.7.2). We study how our algorithm

performs in two different types of data distributions.

4.11.4.Network Topology

The performance of a P2P system is strongly dependent on the network

43

topology and can vary with change of network topology. Examples of different possible

network topologies can be a star topology, a ring based topology, a super-peer based

topology or simply a random topology. In our simulation we are assuming a random

topology. Every agent in the simulation knows 4 other agents in the network. No further

assumptions have been made about the network topology.

4.11.5.Advertisement

Semantic topology (knowledge of agents about the expertise of other agents) in the

network is built on the basis of advertisement in the network. There are many variables

related to advertisements e.g. whom to send advertisements and which received

advertisement messages to accept.

4.11.6.Agent Selection Algorithm

This algorithm selects agents to whom query will be forwarded. In a naïve setting (cf.

section 4.10), query is forwarded to two randomly selected agents, while in semantic

setting (cf. section 4.10), query is forwarded on the basis of agents’ expertise.

4.11.7.Maximum Number of Hop Counts

This parameter determines that how many times a query is allowed to be sent to next

agent. From this parameter, we can determine that how much the network will be

flooded by a single query [26]. We have set this parameter (n=2) in most of our

experiments but we have also performed experiments by increasing and decreasing this

number.

4.12.Intermediate Agents

Agents which receive query from one of their known agents and forward it to other

known agents are known as intermediate agents.

4.13.Relevance Calculation

When an agent looks into its knowledge base to find results for a query, it also

determines that how much these results are relevant to the query. Different users may

44

require different result relevance criteria; however we have set it to be 50 % in our

project which means that at least half of the keywords entered by the user must be in the

result.

As an example of relevance calculation, the querying agent receives the query of

“business process modeling and multi-agent system”. The querying agent will discard

the word “and” from the query. Each word in the remaining phrase has 20% weight. If

any particular result has two words from these five words, then it has 40% relevance

with the query. If another result has all of these 5 keywords, it is 100% relevant with the

query.

 However we also performed sensitivity analysis (cf. chapter 7) and test our algorithm at

different relevance criteria including 75% and 100% relevance. We have seen that

performance of naïve algorithm (cf. section 4.10) reduces significantly as we increase

the size of network (cf. chapter 7).

45

 Chapter 5

5.System Design

Although in our implementation of the system, we have used simulation on a single

machine in which we have demonstrated all the agents. However our protocols for query

routing can work in real applications. Similarly our agents are by no means dependent

on the simulation. They are complete entities themselves. Although there is no network

communication taking place in reality in the simulation but all the required components

are present for the complete functionality of the system.

5.1.System Components

We will now briefly describe the components of our system:

5.1.1.Local Knowledge base

Information gathered from local knowledge sources or acquired from other sources are

stored here. All the queries are answered from this module. It provides a basis for peer

ranking and selection

5.1.2.Advertiser

The responsibilities of an advertiser are to advertise the currently available knowledge of

the agent to its known agents in the network. This is realized by sending advertisement

messages about the expertise of an agent over the network. In our system this description

consists of those topics in which that agent is expert.

5.1.3.Query Replier

It is coordinating component which controls the process of replying queries. As our

system is implemented in Java, this component consists of threads, which support

handling multiple queries at a time. However the simulator, we are using have only

support for dealing with a single query at a time, so in our current system we are not

dealing with multiple queries at a time.

46

5.1.4.User Interface

The user interface of our system allows the user to search for particular keywords,

visually look interaction between agents through message passing, read details of

messages from message board and look at the results in the result table. The user

Interface has been described in detail in chapter 6.

5.2.System Modules

We will now look at all the modules of the project in the order of sequence of events in

detail:

5.2.1.Expertise Advertisement

Our agent based P2P system consists of “A” agents. Every a � A has a local knowledge

base that contains the knowledge which it wants to share with others over the network.

All of these agents use the same ontology “O” (a shared conceptualization of their

domain). This ontology is used in describing expertise of the agent and the subject of the

queries. An expertise e � E is the semantic description of the knowledge base of the

agent which is based on common ontology O. The expertise of an agent can be

determined from its knowledge base. Advertisements A
/
 ⊆ A X E are used to distribute

the expertise of an agent in the network. An advertisement a
/
 is used to relate an agent a

with an expertise e. Every agent decides itself whom to send advertisement based on the

network topology [26].

The advertisement messages are sent at the start of each simulation, which basically is

the network bootstrap time in which every agent is telling other agents about its

expertise. In result of this advertisement “known” relationship is established between

two agents. Knows ⊆ A X A where knows (a1, a2) means that a1 and a2 knows about

the expertise of each other. Hence they both are known agents of each other [26]. In this

project we have always used this assumption that if an agent a1 knows agent a2, then

agent a2 also knows agent a1.

The last thing about the advertisement messages is that agents can also discard the

advertisements which are unrelated their own expertise. However in our current system

47

agents accept all advertisements.

5.2.2. Query Subject

A subject s � S is an abstraction of given expression expressed in terms of ontology [26].

Queries are given by the user to find the relevant results in the whole network. In order

to select the appropriate querying agent and appropriate known agents of querying agent

we need to find the subject of query. This subject will be matched with the expertise of

the agents. We have used 20 ACM topics in our initial setting because we have 20

agents in it and we are demonstrating that every agent is expert of only one topic.

All of these topics have keywords associated with them. When a user enters the query,

we match the keywords entered by the user with the topic keywords. The expertise

which has maximum similarity will be selected as the subject of the query. This query

subject is third level node in ACM CCS. At the time of determining the query subject,

we also determine its first and second level topic from ACM CCS. This information will

be used in query relaxation module.

5.2.3.Querying Agent Selection

Querying agent is the first agent which receives the query entered by the user. The

selection of querying agent is based upon the subject of the query. The subject of the

query is matched to the expertise of all the agents. As described earlier, the expertise of

an agent can be determined from its knowledge base. The agent, whose expertise is most

closely related with the topic of the query, will be selected as the querying agent. This

querying agent will start the interaction in the network. It will gather all the relevant

results returned by other agents in the network.

Once the querying agent is selected and the query is passed to that agent, then depending

upon the setting selected by the user, an appropriate LCC protocol is received by the

querying agent. Querying agent will always be in the role of requester other than at

network bootstrap time when advertisement messages will be sent by it in the role of

advertiser and received by it in the role of replier. With the help of the LCC interpreter,

all the agents will be able to find their task from the protocol and act according to that.

The task of the interpreter is just to translate the LCC protocol into a form which is

48

understandable by the agents. The interpreter capabilities are limited to the extent of

LCC which is being used in this project. This interpreter is currently embedded into the

simulator and cannot be used separately.

Below is the querying agent selection algorithm:

Q:=Query topic

E:= Expertise of all agents

A:=selected Agent

MaxSimilarity:=eo // first agent is assumed to have maximum similarity

for every e � E do

 if(calculateSimilarity (Q, e) > MaxSimilarity then

 MaxSimilarity=calculateSimilarity (Q, e);

 A= getAgentOfExpertise(e);

end;

5.2.4.Local Knowledge Base Lookup

Every agent keeps the bibliographic references in its local knowledge base which it

wants to share with other agents in the network. Whenever an agent receives a query, it

looks into its local knowledge base. It is assumed that all the agents in the system have

this much intelligence. In our LCC protocols, we have not added this clause which asks

the agent to look into its local knowledge base after receiving its query message.

5.2.5.Message Forwarding Mechanisms

Every agent including the querying agent after looking into its local knowledge base will

check the hop count (cf. section 2.11) of the query. There are only two well known

methods of determining when to stop forwarding the query to the next agent in the

network:

Introduce a limit on number of answers retrieved, when a certain number of answers are

retrieved, query should be stopped forwarding to next agents. This method is not a good

choice in our case as in most of our settings an agent is only expert of one topic from

ACM topic hierarchy. Due to this, if that particular agent is not selected then the query

has to traverse the whole network. Alternatively if that agent is selected as the querying

agent then there will be no routing at all, both of these situations are not desirable for our

49

project.

Set a limit on the number of agents traversed. This approach is more reasonable as

neither we want the query to traverse the whole network nor not traverse at all. So

setting a limit on the number of agents traversed is a good approach to ensure that this

query will traverse this many number of agents for sure.

After looking into its local knowledge base, every agent will check the hop count (cf.

section 2.11) of the message. In our all of the settings in this project, we have set the hop

count limit n=2. In every message we are storing the following information:

� Message Types

� Query Originator

� Message Sender

� Message Receiver

� Hop Count

� Visited Agents

There can be four possible types of messages i.e. query messages, answer messages, re-

route messages and advertisement messages (cf. section 4.3). Specifying the message

type in the message is necessary as, after receiving the message, an agent performs

different actions depending upon the type of message. Query originator information is

stored in the message because in case of overt mechanism, every agent is only

communicating with the querying agent which is originator of the query, while in covert

mechanism every agent will keep on sending the answer message back till the query

originator receives it and in the hybrid mechanism every agent sends the answer

message only to the query originator. So in all of our mechanisms we need information

about the query originator.

Message sender and message receiver id's are also stored in the message to determine

which agent has sent the message to whom. This information will also be required for

the network communication purposes. As in our current implementation, we are not

using any network communication but the system has been designed in the way that it

can be deployed in real applications by adding network support.

50

Visited agents ids are also stored in the message so that if the same agent is selected

again as a candidate for query, query should not be passed to it as it has already

answered what it knows. By keeping this information stored in the message, we can save

a lot of messages on the network. Finally results and expertise of answering agent (the

agent which has originated the answer message) are also stored in the answer messages.

As the querying agent is the originator of the query and the hop count of that query is 0

till now, so it will forward the query to its known agents. In order to save the network

from redundant messages and not involving those agents which are not related to the

subject of the query, the querying agent needs to select agents from the list of its known

agents based upon their expertise and then forwards the query to those agents.

5.3. Similarity Function

Querying agent uses the subject of the query given by the user and matches that subject

against the expertise of its known agents using a similarity function. The similarity

function SF: S X E can have values between 0 and 1. The values closer to 1 mean agent

expertise and query subject are closely related, while values close to 0 denote less

similarity between query subject and agent expertise. If the value is 0, the topics are not

similar at all and if the value is 1, query is exactly related to agent's expertise. Querying

agent will forward the query based upon their SF value with the query subject [26].

The idea of using a similarity function is based on the notion that topics which are close

according to their positions in the tree are more similar than those which have a larger

distance. As an example, agents whose expertise topic is “Distributed Artificial

Intelligence/Multiagent systems” is more likely to answer the query related to

“Intelligent agents” as compared to that agent whose expertise is related to

“Programming Techniques/Logic Programming”. [34] have studied similarity functions

for hierarchically structured semantic networks like ACM topic hierarchy which we are

using as common ontology in our project. According to them, the following similarity

function gives the best results:

51

l is the length of the shortest path between topics t1 and t2 and h is the level in the tree of

the direct common subsumer of t1 and t2. � and � both are positive numbers and they are

scaling the contribution of shortest path of length l an depth h respectively. The optimal

values of � and � are 0.2 and 0.6 respectively based upon their benchmark data [10].

They may have different values in some data sets but we are taking these both values as

constants in all of our experiments. Depth of direct common subsumer has been included

in the calculation because topics which exist at the upper layer of these hierarchical nets

are more general and semantically less similar than the topics at the lower levels [35].

Rada [35] have proven that the minimum number of edges separating two topics is a

metric for measuring the distance between two topics in the tree.

 This function lies in the category of edge counting-based or dictionary thesaurus -based

methods. This method is useful for those applications which have highly constrained

taxonomies e.g. Medical semantic net [35].

As an example we calculate the semantic similarity between two topics “functional

programming” and “object oriented programming”. In order to reduce space, only

relevant part of ACM topic hierarchy is shown below in the figure 11.

Figure 11 ACM Topic Hierarchy

The shortest distance between these two topics is 2 and their direct common subsumer is

52

the node containing topic “Programming Techniques” which is immediate parent of

these both topics. “Programming Techniques” node is at second level expertise of ACM

topic so the direct common subsumer value will be 3 (as we take root at level 1), so we

have the following similarity value:

sim(“Functional Programming”, “Object-oriented Programming”) = 0.63

Applying the above formula we get the similarity value between both topics is 0.63

which is above our threshold of 0.5. So we can forward the query related to “functional

programming” to the agent whose expertise is related to “object-oriented programming”

and vice versa. Now we calculate the similarity of “functional Programming” and

“Knowledge acquisition”, which comes out to be 0.3 which is less than our threshold, so

we do not pass queries related to “functional Programming” to the agent whose expertise

is in the field of “knowledge acquisition”.

sim(“Functional Programming”, “knowledge acquisition”) = 0.3

We now discuss the pseudo code of the agent selection algorithm for query forwarding:

This algorithm assigns a rank to all the candidate agents. The value of this rank is same

as provided by the similarity function. From these ranks, one agent can select the best

“n” known agents from the list of all known agents to forward the query.

L:= List of all known agents

A:= Advertisements available about the expertise of known agents.

rankedAgent:= �

Threshold:= 0.5

for all adver �A do

 agent:= getAgentOfExpertise (adver)

 rank:=getSimilarityFunction(Expertise(advr))

 if(rank>threshold)

 rankedAgent:=rankedAgent
����

(agent,rank)

 return rankedAgent

return;

From this list of ranked agents, we will take the two highest rank agents. In this

algorithm we have also set a threshold of at least 50 % similarity to make sure that the

query is forwarded to those agents which contain the answer of the query. In this way

53

querying agent will select those agents which are more likely to contain the answer of

the query.

When the intermediate agents (cf. section 4.12) receive the query, they will repeat the

above process again. In short, they will look into their knowledge base, if they get

relevant results they will send the answer message to the querying agent followed by

checking hop count value. If the hop count is still less than the maximum value then they

will also send the query to those agents which have similar expertise as that of query

topic and this process continues till the hop count of the query reaches its maximum

value.

The querying agent will keep on returning the results to the user by displaying it in the

results table as soon as it gets answers from different agents in the network.

5.4.Query Relaxation

We have discussed above that when an agent wants to forward the query to other agents,

their expertise similarity with the query subject must be above a certain threshold which

we have set to 0.5. Now if the agent is not successful in finding any such known agent

which has at least 50% similarity with query topic, then it will relax the query. In query

relaxation we exploit the consideration that if an agent has answered similar queries

before, it is more likely to answer query as compared to those agents which have

answered queries in totally different domain.

For this the agent will look at the second node level topic of the query which is more

generalized than the previous topic. Now the agent will match the more generalized

query with the agent's expertise. Note that each agent has also three levels of expertise

so query topic and agent's expertise can be matched easily.

Now after matching generalized query topic with agent's expertise, the agent will pass

the original query to those agents whose similarity function has returned values above

the threshold. In our experiments, we generally find suitable agents after relaxing the

query. If the agent is still unsuccessful in finding such a suitable agent then it will

forward the query to those known agents which have answered most of the queries in the

past.

54

5.4.1.Duplicate Filtering

As our system is based upon distributed system without any centralized control and the

results come from different agents in the network, it is possible to get duplicate results.

If the query subject is related to expertise of more than one agent then the chance of

getting duplicate results is fairly high. Querying agent is actually responsible for

collecting results from different agents and displaying them in a table. Duplication

filtering is the responsibility of querying agent.

For this task, the querying agent will match the titles of new records with the already

existing records. If the title of both the records is the same, then the new result will be

considered as the duplicate result.

In this system, duplicate results are considered as one result, so we do not show the same

results again and again; rather present the user only one record. However if there are

conflicting property values e.g. Two records are exactly the same other than the

publisher detail. One of them have publisher “ACM Press” and the other has

“Association for Computing Machinery Press”. We know that both of these values are

the same but the querying agent does not have this intelligence to infer this. In this case

the querying agent will take that value which has more detail than other. In the above

example, the querying agent will select “Association for Computing Machinery Press”

as publisher. It selects this value by counting words in both values and selects the one

which have maximum words.

In the case when there are two records for a particular bibliographic reference and both

have some missing property values, then the querying agent will take union of both

records and give the user one complete record e.g. The querying agent receives two

records for title “A peer-to-peer network for open archives” but one record does not

have publication year information and second record does not have the conference name

information. The querying agent will merge both records and present a complete record

to the user.

5.5.Search Mechanism

Though our project is very closely related to information retrieval, our focus is on query

55

routing mechanisms, instead of efficient search algorithm implementation. We have

used a simple keyword based search mechanism which matches the query keywords

with the keywords of bibliographic references. As the target user is a researcher, who

has information about the title of the bibliographic reference, he/she is looking for, so

there are fair chances that he/she will include majority of important keywords from the

title in the search criteria and can easily find the results he/she is looking for.

The researchers can also add those words in the search criteria which do not have any

significance in getting results e.g. prepositions like “for”, “of”,” by” and conjunctions

like “or”,” and” etc. So the querying agent will eliminate all this kind of words from the

query. As we have limited amount of keywords from ACM hierarchy we have

distributed these keywords into two categories. The first category is of most important

keywords and the second category is of the less important keywords. Examples of first

category are “distributed”, “multi-agents” etc. while the examples of second category are

“systems”, “programming” etc. First category of words has more weight as compared to

words of second category.

When the agents are performing search in their local knowledge bases, they will not

separately chose keywords of the second category but they will pick a first category

word from the query which is adjacent to second category words and then search for that

e.g. If the user is searching for the keywords “Security in Distributed Systems”, the

query agent will eliminate the keyword “in” from the query and the remaining phrase

will be searched in the local knowledge base and will be passed to other agents. In the

remaining phrase “security” and “distributed” are first category keywords where as

“systems” is second category keyword. So the word “system” will not be searched alone

but the compound word “distributed systems” will be searched.

This categorization helps us in eliminating irrelevant results because second category

keywords can come in many different expertise queries e.g. word “system” can come in

queries like “multiagent systems”, “database systems” and in “distributed system”. All

of these come under different ACM expertise.

 Though there is no one definition for relevant results. It depends upon the needs and

type of user that how much relevant result is required by him/her. Some users require

56

very strictly close results and some wants to look at loosely related broad range of

results. However we have set a medium level relevance criterion which is 50%, so every

agent will return only those results to the querying agent which has at least half of those

keywords which are entered by the user.

5.6. Data Set

To obtain large amount of bibliographic references (1200 bibliographic references), we

have used the ACM portal1. We have selected 4 main categories in ACM CCS and some

of their sub categories and in each selected sub category, we have selected some

subcategories randomly. For each of third level subcategory we have taken twenty

references from ACM portal.

To decide about whether a particular publication comes under a given classification or

not we have left this up to ACM portal search. We have selected on each of our topic

manually and selected the results. Though there are many sophisticated classification

mechanisms but as high precision of classification is not required in this project, so this

method worked well.

5.7.Data Distribution

In the simulation and the evaluation of this system, two different data distribution

schemes have been used as described in the following:

5.7.1.Topic Distribution

In this distribution, bibliographic references are distributed according to their topics.

There is only one dedicated agent for each of the expertise. However few of the

references related to that topic are spread to two more agents. One agent will be from the

known agents of that agent and other agent from outside the known agents list.

The reason for this is we want to study that whether the results which are present with

other two agents are included in the result or not. Another reason is that we do not want

1www.acm.org

57

all results to be coming from one agent only as there will be no point of routing the

query in this case.

5.7.2.Random Distribution

In this distribution, references are distributed randomly across the network. In this

setting more than agent is expert on one topic in the ACM CCS (cf. section 4.6). This

distribution is basically simulating that each agent contains bibliographic references of

one conference proceedings. As there are multi topic conferences in which proceedings

belong to more than one particular topic, so in this case agents can be expert of more

than one topic. However conferences generally cover a coherent set of topics, so there

will still be a correlation between agent's expertise and distribution.

58

Chapter 6

6.User Interface

In this chapter user interface of the simulation has been described. All the steps required

by the user are explained in step by step manner both in textual as well as graphical

form:

The simulation starting interface is shown in Figure 12. On the left side, ACM topic

hierarchy (cf. section 4.6) is displayed in a tree format. The user will specify an area

which is closely related to his/her query from this table. In the centre of the simulation,

all the agents are displayed as blue nodes with their ids. On the right side of the

simulation, there is a notice board, on which all the messages will be displayed. There is

a result table at the bottom section of the simulator to show the query results to the user.

Figure 12 Simulation Starting Interface

59

The user will select a node from ACM topic tree, which he/she thinks, is closely related

to the query from the available options as shown in Figure 13. This topic tree has been

populated with ACM topics for computer science.

 Figure 13 Topic Selected from ACM Topic Hierarchy

The user will select a setting (cf. section 4.10) from the settings drop down list as shown

in Figure 14. Currently, there are six settings in the simulation. Following is a brief

summary of all the settings in Table 1.

Setting No. Agent Selection Algorithm Routing Mechanism

1 Naïve Overt

2 Naïve Covert
3 Naïve Hybrid

4 Semantic similarity based Overt
5 Semantic similarity based Covert

6 Semantic similarity based Hybrid

 Table 1 Simulation Settings

60

 Figure 14 User selecting setting from setting drop down list

The user will enter the keywords of bibliographic reference; he/she wants to search. We

assume that the user is aware of title of major keywords of the title; he/she is going to

search. After entering these keywords, he/she will press the search button as shown in

figure 15.

61

 Figure 15 Search Keywords are entered

The first agent will be selected. It will perform local knowledge base lookup, forward

the query to appropriate known agent as per query selected by the user, collect results

from different agents in the network and display the results in results table as shown in

Figure 16. All the agent communication will be displayed in notice board for user

information.

62

 Figure 16 Results Displayed

The user will click on the desired record in the results table and the complete

bibliographic reference for that record is displayed to the user in Bibtex format in a new

window as shown in Figure 17.

63

 Figure 17 Result Details

The user can repeat the search process by entering different keywords, changing ACM

topic from the tree or changing the setting.

64

Chapter 7

7.Evaluation

Evaluation of a system helps us to compare it with other developed systems in the

related area as well as study the effect on the performance of overall system with

changing certain input parameters. There are many known ways to evaluate

conventional P2P networks, but the focus of this project is more towards semantic issues

of P2P systems which is not very mature area and there are no standard methods

available to evaluate this kind of P2P system. However some of the important evaluation

functions are described below.

7.1.Relevance

Relevance is the measure that whether the retrieved information is of importance with

respect to query or not. This can be calculated using many methods. In this project we

have done relevance calculations using keyword matching. The possible values of

relevance can be between 0 and 1.

7.2.Recall

Recall is the measure of all relevant documents from the retrieved set [26]. It is one of

the standard measures of information retrieval domain. Recall can be defined as:

 Recall = Relevant � Retrieved

 Relevant

Where “Relevant” is the set of relevant documents and “Retrieved” is set of those

retrieved.

7.3.Precision

Precision is defined as the proportion of retrieved set that is relevant [26]. It is also one

of the standard measures of information retrieval domain.

65

 Precision =Relevant � Retrieved

 Retrieved

In this project as we are matching exact queries, therefore retrieved queries will also be

relevant. So Precision in our case will always be 1.

 Precision = Relevant

 ------------- =1

 Relevant

7.4.F-measure

“F-measure describes the symmetric difference between retrieved and relevant

documents” [38]. It is one of the most common combinations of above two parameters.

 F-measure= (�2
 +1) + PR

 �
2

P+R

where �= P/R [38].

7.5.Network Load

Network load is a measure of messages sent on the network per query. It is being used to

determine how much network is being flooded as a consequence of each query. Some

other evaluation functions are Information Loss, Reliability and Real time [38]. For the

purposes of this project, recall and network load are the most related ones. The same

parameters are used for the evaluation of SWAP project [26]. So, we have calculated

these evaluation functions using different combinations of input parameters.

We will now discuss evaluation of this system, using varying input parameters (cf.

chapter 4.11):

We have used three different routing mechanisms in this project namely overt, covert

and hybrid. The only difference between them is that they send messages via different

agents. Due to this, different numbers of messages will be sent across the network for a

particular query for each of these schemes. Figure 18 shows the results of messages sent

on the network using these three mechanisms. As can be seen from figure 18, overt and

66

covert involve almost the same number of messages. They differ in number of messages

only in those queries in which same agent is selected again for sending query in one of

them and not in other mechanism. Hybrid always involves less or an equal number of

messages in all cases.

Messages Comparison Graph

0

2

4

6

8

10

1 4 7 10 13 16 19 22 25 28 31

Queries

M
e
s
s
a
g

e
s OvertMessages

CovertMessages

HybridMessages

 Figure 18 Number of messages comparison

The above graph is both for semantic and non-semantic settings (cf. section 4.10). The

number of messages does not depend upon semantic or non-semantic settings. Hence in

terms of number of messages, hybrid always performs equal or better than the other two

mechanisms.

We now compare naïve settings of all these three routing mechanisms with their

semantic ones. The selection criteria of the agents to whom the query will be forwarded

is different in naïve and semantic cases. The naïve algorithm randomly selects any two

agents from the known agents of the querying agent and forwards the query to them,

while the semantic algorithm selects the two agents on the basis of their expertise. In

Figure 19, 20 and 21 data distribution, number of queries, number of known agents and

routing mechanism are kept constant. The size of network is different in Figure 19, 20

and 21. Figure 19 has a network of 20 agents, Figure 20 has a network of 40 agents and

Figure 21 has a network of 60 agents.

67

 Overt Routing Mechanisms for 20 Agents Network

0
0.1

0.2

0.3
0.4
0.5

0.6

0.7

0.8

0.9
1

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29

Queries

R
e
c
a
ll

Naïve Overt

Semantic Overt

 Figure 19 Naive and semantic overt routing for 20 agents network

 Overt Routing Mechanism for 40 Agents Network

0

0.2

0.4

0.6

0.8

1

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29

Queries

R
e
c
a
ll Naïve Overt

Semantic Overt

 Figure 20 Naive and semantic overt routing for 40 agents network

Overt Routing Mechanism for 60 Agents Network

0

0.2

0.4

0.6

0.8

1

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29

Queries

R
e
c
a
ll Naïve Overt

Semantic Overt

 Figure 21 Naive and semantic overt routing for 60 agents network

68

In the case of 20 agents’ network, the recall rate of naïve algorithm (cf. section 4.10) is

54% and semantic algorithm (cf. section 4.10) is 60%. Though the semantic recall is 6%

more than the naïve one, this difference is small for the following reasons:

First, the network is small. It consists of only 20 agents and the hop count (cf. section

2.11) is 2 which mean that the query will be forwarded to about 7 agents which is more

than one third of the network. For this reason, there are high chances that the naïve case

(cf. section 4.10) has also been able to find that agent which contains the majority of the

answers (as this is topic distribution). So if an agent is reached whose expertise is same

as that of querying agent, then majority of the relevant results will be retrieved. As it can

be seen in Figure 20 and 21, when the size of the network has been increased the recall

rate of both techniques has been lowered, but the naïve has lowered proportionally more

than the semantic.

The second reason is that as agents are assigned to other agents without considering their

expertise, so there can be a chance that both naïve and semantic selects the same agents

in some cases and therefore the difference between them is not that much.

In Figure 19, 20 and 21, the routing mechanism is overt. Now we look at covert and

hybrid mechanisms and study the effect of increase in network size on recall. In Figure

22, 23 and 24 routing mechanism is covert while in Figure 25, 26 and 27 the routing

mechanism is hybrid. From Figure 22 to 27, we can see that semantic algorithms (cf.

section 4.10) are performing better than the naïve algorithm in terms of recall.

Covert Routing Mechanisms for 20 Agents

0

0.2

0.4

0.6

0.8

1

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29

Queries

R
e
c
a
ll Naïve Covert

Semantic Covert

 Figure 22 Naive and semantic covert routing for 20 agents network

69

C ov e rt R outing M e chanisms for 40Age nts

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1 4 7 10 13 16 19 22 25 28

Q u e rie s

R
e
c
a
ll Naïve Covert

S em antic Covert

 Figure 23 Naive and semantic covert routing for 40 agents network

C o v e rt R o uting M e ch an ism fo r 60 Ag e n ts N e tw ork

0

0 .1

0 .2

0 .3

0 .4

0 .5

0 .6

0 .7

0 .8

0 .9

1 3 5 7 9 1 1 1 3 1 5 1 7 1 9 2 1 2 3 2 5 2 7 2 9

Q ue r ie s

R
e

c
a

ll

N a ïve C o ve rt

S e m a n tic C o ve rt

 Figure 24 Naive and semantic covert routing for 60 agents network

H yb r id R o u tin g M e ch an ism fo r 20 Ag e n ts N e tw o rk

0

0.1

0 .2

0 .3

0 .4

0 .5

0 .6

0 .7

0 .8

0 .9

1 4 7 10 13 16 19 22 25 28

Q u e rie s

R
e
c
a
ll N a ïve H y b rid

S em an t ic H y brid

 Figure 25 Naive and semantic hybrid routing for 20 agents’ network

70

H ybrid R outing M e chanism for 40 Age nts N e twork

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

1 4 7 10 13 16 19 22 25 28

Q ue rie s

R
e
c
a
ll Naïve Hy brid

S em ant ic Hy brid

 Figure 26 Naive and semantic hybrid routing for 40 agents’ network

Hybrid Routing M echanism for 40 Agents Network

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

1 4 7 10 13 16 19 22 25 28

Que ries

R
e
c
a
ll Naïve Hybrid

Semantic Hybrid

 Figure 27 Naive and semantic hybrid routing for 60 agents’ network

In both cases above, we have seen that the hybrid routing mechanism (cf. section 4.4.3)

involves less messages and the semantic algorithm (section 4.10) gives more recall

compared to the naïve algorithm, so we select the semantic hybrid setting (i.e. setting 6

cf. Table 1) for the remaining evaluation. In the above scenarios we have set hop count

(cf. section 2.11) limit=2. Now we study effect of change in the recall with changing the

value of hop count. We start with setting its value to 0, which means no routing at all

and we continue till n=5 as shown in Figure 28.

71

Effect of H op count on R ecall

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0 1 2 3 4 5

Hop count

R
e
c
a
ll

20 agents network

40 agents network

60 agents network

 Figure 28 Recall with various hop counts in network of different sizes

Recall increases as the hop count is increased. In simulation the first agent is selected

based upon the query related topic selected by the user. The above graph shows that on

average 40% of the answers are coming from that first agent (hop count=0, which means

no query routing at all, only local search is performed by the querying agent). At hop

count values 1, 2 and 3, there is significant increase in recall values but after that recall

is almost constant.

It can be seen that recall is reduced when more agents are added into the network. This

is because agents are assigned randomly as agents known to others. As there are more

agents in the network, so there are more chances that a particular agent has those agents

as its known agents whose expertise are not the same as that of its own.

In all of above settings, we have set our selection criteria for keyword matching at 50%

which means that if half of the keywords entered by the user are found in bibliographic

reference, then it will be considered relevant and will be displayed to the user. However,

as a user may have more strict requirements for relevance depending upon his/her needs,

we have also performed a sensitivity analysis. In this analysis we have performed two

more tests on the same set of queries and in the same network but this time selection

criteria was 75% and 100% instead of 50%.

72

Sensitivity Analysis

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31

Queries

R
e
c
a
ll

Selection

Criteria=50%

Selection

Criteria=75%

Selection

Criteria=100%

 Figure 29 Sensitivity Analysis with different selection criteria’s

It can be seen in Figure 29 that recall has been lowered in those cases where selection

criteria are set to 75% and 100%. Number of relevant results decrease with the increase

of selection percentage. So, if the agents which contain these results are not known

agents of the querying agent or of agents within reach of it, then those results will not be

included in the final results and recall will decrease.

 We now study whether recall is improved if an agent has only those agents as its known

agents whose expertise are the same as that of its own or which are closely related to its

own expertise, recall can be improved.

Effect of Known Agents on Recall in 20 Agents'

Network

0

0.2

0.4

0.6

0.8

1

1 4 7 10 13 16 19 22 25 28

Queries

R
e
c
a
ll

Random Known

Agents

Similar Expertise

Known Agents

 Figure 30 Recall with different known agents in 20 agents’ network

There is an increase of 4% in recall in case of similar expertise known agents, which is

quite significant. Recall has increased because now the querying agent and all

intermediate agents are those who are likely to have the answer of the query, as

73

their expertise is related to the querying agent.

E ffect o f K n ow n Agents on R ecall in 40 Agents

N etw ork

0

0.2

0.4

0.6

0.8

1

1 4 7 10 13 16 19 22 25 28 31

Que rie s

R
e
c
a
ll

Random K nown

A gents

S im ilar E xpert ise

K nown A gents

 Figure 31 Recall with different known agents in 40 agents’ network

Effect of know n Agents on Recall in 60 Agents

N etw ork

0

0.2

0.4

0.6

0.8

1

1 4 7 10 13 16 19 22 25 28 31

Que rie s

R
e
c
a
ll

Random Known

Agents

S im ilar Expertise

Known Agents

 Figure 32 Recall with different known agents in 60 agents’ network

It can be seen from Figure 31 and 32 that recall did not lower for similar expertise

known agents when we introduce more agents in the network. This is because querying

agent has not been effected by new agents because it will still forward the query to only

those known agents which are related to the subject of the query. If new agent’s

expertise is also in the same area, then it must send an advertisement message to this

agent and they both become known agents of each other. In this way they form a

semantic cluster of agents with similar expertise.

From all of the above tests, we can infer the following:

74

� In all cases, fewer or an equal number of messages are sent across the network

using the hybrid routing mechanism as compared to overt and covert routing

mechanisms.

� The semantic algorithm gives better recall compared to the naïve algorithm

� Known agents with similar expertise in the semantic algorithm give better recall

as compared to random known agents.

We have repeated all the above experiments for random data distribution (or proceeding

data distribution). The above three statements hold true in that data distribution as well.

We have not included graphs for random data distribution in this chapter because they

are almost the same as the results already described. However for completeness

purposes, they have been shown in Appendix A.

The only difference between the results of topic distribution and proceeding distribution

is that in case of proceeding distribution naïve algorithm gives lower recall as compared

to naïve algorithm recall in topic distribution.

Recall in Proceeding Distribution

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1 4 7 10 13 16 19 22 25 28

Queries

R
e
c
a
ll

Naïve Hybrid

Random Known

Agents

Similar Expertise

Known Agents

.

 Figure 33 Recall in proceeding distribution with different settings

The reason for this reduced recall is that every agent has multiple expertise and data is

75

spread across the network. So, in order to get most or all of the results, only relevant

agents should be selected. As in the naïve algorithm, agents are selected randomly so

recall is lowered in this case. In topic distribution, as most of the results are with only

one agent then if by any chance that agent is selected randomly by the naïve algorithm,

then most of the results will be returned.

76

Chapter 8

8.Comparison with Intelligent Agents

As we have described in chapter 2 and chapter 4 that this project is carried out as a part

of joint research study in which we performed a comparison of

� Advertisement based algorithms and lazy learning algorithms

� Simple agents with intelligent LCC protocols and intelligent agents.

� Different query routing mechanisms (e.g. overt, covert and hybrid)

The comparison of query routing mechanism has been discussed in chapter 7 in detail

and we have seen that least number of messages is sent on the network in case of hybrid

mechanism. In intelligent agents system [33] agents use hybrid mechanism for sending

messages from one agent to other agent. So both systems perform equally in case of

query routing mechanism. Before comparing our results with intelligent agents [33], we

present a brief overview of their system.

Intelligent agents system is based on lazy learning algorithms which mean they simply

store the results without performing any processing on them. In agent based P2P system,

the main challenge is to identify the agent who is expected to contain the answer of the

query without involving those agents which are not related to that query. The following

is a brief overview of agent selection in [33]:

� Agents keep semantic reference index about other agents and update it when

their knowledge about other agents changes.

� The first agent will forward the query to the content holders (if it can find any for

this query). Content holders are those agents which have replied to the similar

query previously.

� If the first agent is unable to find any content holder, then it will search for

counselors. Counselors are those agents which acted as intermediate agents when

the similar query was asked previously. So they have information about that

77

querying agent which received the query previously. The counselor will forward

the query to the querying agent and the querying agent will forward the query to

the content holders.

� If neither content holder nor counselor is found, then query is relaxed and

appropriate agents are selected as per relaxed query but actual query is passed to

these agents.

It is important to note that in [33], the main emphasis is laid on searching from already

answered queries, while in our case as we only store agents' expertise; we select

appropriate agents by looking at their expertise.

A major advantage of our approach is that we do not need to populate foreign

knowledge bases for any agent, which is one of the major limitations of lazy learning

algorithms. As an example, if we have a network of 20 agents and every agent is expert

in only one topic in ACM hierarchy, then every agent can have a maximum of 20 entries

about the expertise of other agents in the network, while in the case of lazy learning

algorithms, agents need to store information about all content providers and counselors

of that query. So a huge number of foreign knowledge bases will be populated at every

agent.

We now compare both systems in terms of recall:

Recall Comparison

0

0.2

0.4

0.6

0.8

1

1 4 7 10 13 16 19 22 25 28 31

Queries

R
e
c
a
ll

Agents with LCC

Protocols

Intelligent Agents

 Figure 34 Recall comparison of agents with LCC protocols and intelligent agents

78

Our system gives recall of 64%, while intelligent agents [33] give a recall of 71%. There

are two reasons for this lower recall of our system:

� In our system, the querying agent does not store the protocol executions, after

returning the answers to the user, so each time our agents need to calculate the

semantic similarity and forward the query to the appropriate agent, while in [33]

information about content providers and counselors is stored for every query.

� As the notion of LCC is to keep protocols lightweight, we do not want to add

additional clauses of searching content providers and counselors for every query

at every agent as done in [33].

79

Chapter 9

9.Conclusion

This chapter summarizes some of the important lessons we have learned from this

project:

� Simple agents with intelligent LCC protocols for query routing can work as well

as intelligent agents. We demonstrate our claim that we no longer need to build

intelligent but task specific agents. Instead simple agents with task specific

protocols can work effectively.

� Agents' selection on the basis of their expertise gives better recall of answers as

compared to the random selection of agents.

� Storing knowledge about the expertise of other agents is sufficient and agents do

not need to store the actual answers (which results in generating major chunks of

foreign knowledge bases).

� Sending advertisement about the expertise of an agent, when it joins the network,

of those agents with which it can communicate is better than learning by

observation, because in that case a lot of queries need to be flooded on the

network so that agents can learn about the expertise of other agents.

� Use of ontologies and semantic algorithms provide an “added value” in our

system and similar applications (e.g. Bibster [27]) by introducing more

sophisticated search capabilities [26].

� By grouping agents of similar expertise together in the network and creating a

semantic cluster of agents of similar expertise, recall can be improved and the

number of messages sent across the network can be lowered [26].

� Expertise-based agent selection combined with ontology-based matching

performs better than random agent selection and searches based on exact matches

[26].

80

Chapter 10

10.Future Work

There are many fruitful directions in which this work can be enhanced:

� The LCC interpreter which we have developed in this project has limited

capabilities. This interpreter could be enhanced so that it can deal with every type

of LCC protocol instead of only query routing.

� Currently the LCC interpreter is embedded into the network simulator and cannot

be used separately. This interpreter should be made independent of the simulator

so that it can be used for other purposes as well.

� Another improvement would be to enable agents will be able to store the whole

execution of protocols and next time when it receives the same query they will be

able to determine from previously executed protocols that which agents have

answered the query last time and simply pass the query to them.

� Agents might be made more selective so that they can discard any advertisement

message which is not related to their own expertise. Currently our agents accept

all the advertisements and they are not capable of discarding those

advertisements which are not related to their own expertise.

� Currently agents in our system only understand ACM topic hierarchy, which is

fairly simple and works well for bibliographic scenario. Other domains may

require more complex ontologies. So agents might be enhanced to be able to

incorporate more ontologies.

� To verify the results of our simulation in the real world, these protocols and

agent selection algorithms need to be tested in real applications.

81

Appendix A-Random Distribution Graphs

As it has been discussed in chapter 7 that experiments with random data distribution (cf.

section 5.8.2) yields almost the same results as that of topic distribution (cf. section

5.8.1) except for those which have been discussed in chapter 7. However for the sake of

completeness purpose, all the graphs with random data distributions are shown in this

section:

Over Routing Mechanism for 20 Agenst Network

0

0.2

0.4

0.6

0.8

1

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29

Queries

R
e
c
a
ll Naïve Overt

Semantic Overt

 Figure 35 Naive and semantic overt routing mechanism for 20 agents' network

Covert Routing Mechanisms for 20 Agents

0

0.2

0.4

0.6

0.8

1

1 4 7 10 13 16 19 22 25 28 31

Queries

R
e
c
a
ll Naïve Covert

Semantic Covert

 Figure 36 Naive and semantic covert routing mechanism for 20 agents' network

82

Hybrid Routing Mechanism for 20 Agents Network

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29

Queries

R
e
c
a
ll Naïve Hybrid

Semantic Hybrid

 Figure 37 Naive and semantic hybrid routing mechanism for 20 agents' network

Overt Routing Mechanism for 40 Agents Network

0

0.2

0.4

0.6

0.8

1

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29

Queries

R
e
c
a
ll Naïve Overt

Semantic Overt

 Figure 38 Naive and semantic overt routing mechanism for 40 agents' network

Overt Routing Mechanism for 60 Agents Network

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29

Queries

R
e
c
a
ll Naïve Overt

Semantic Overt

 Figure 39 Naive and semantic overt routing mechanism for 60 agents' network

83

Covert Routing Mechanisms for 40Agents

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1 4 7 10 13 16 19 22 25 28

Queries

R
e
c
a
ll Naïve Covert

Semantic Covert

 Figure 40 Naive and semantic covert routing mechanism for 40 agents' network

Covert Routing Mechanism for 60 Agents

Network

0

0.2

0.4

0.6

0.8

1

1 4 7 10 13 16 19 22 25 28

Queries

R
e
c
a
ll Naïve Covert

Semantic Covert

 Figure 41 Naive and semantic covert routing mechanism for 60 agents' network

Hybrid Routing Mechanism for 40 Agents

Network

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

1 4 7 10 13 16 19 22 25 28

Queries

R
e
c
a
ll Naïve Hybrid

Semantic Hybrid

 Figure 42 Naive and semantic hybrid routing mechanism for 40 agents' network

84

Hybrid Routing Mechanism for 60 Agents

Network

0

0.2

0.4

0.6

0.8

1

1 4 7 10 13 16 19 22 25 28

Queries

R
e
c
a
ll Naïve Hybrid

Semantic Hybrid

 Figure 43 Naive and semantic hybrid routing mechanism for 60 agents' network

Effect of Hop Count on Recall

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0 1 2 3 4 5

Hop Count

R
e
c
a
ll

20 agents network

40 agents network

60 agents network

 Figure 44 Recall with various hop counts in network of different sizes

Effect of Known Agents on Recall in 20 Agents'

Network

0

0.2

0.4

0.6

0.8

1

1 4 7 10 13 16 19 22 25 28

Queries

R
e
c
a
ll

Random Known

Agents

Similar Expertise

Known Agents

 Figure 45 Recall with different known agents in 20 agents' network

85

Effect of Known Agents on Recall in 40 Agents

Network

0

0.2

0.4

0.6

0.8

1

1 4 7 10 13 16 19 22 25 28

Queries

R
e
c
a
ll

Random Known

Agents

Similar Expertise

Known Agents

 Figure 46 Recall with different known agents in 40 agents' network

Effect of known Agents on Recall in 60 Agents

Network

0

0.2

0.4

0.6

0.8

1

1 4 7 10 13 16 19 22 25 28

Queries

R
e
c
a
ll

Random Known

Agents

Similar Expertise

Known Agents

 Figure 47 Recall with different known agents in 60 agents' network

86

References

[1] Fensel, D., Wahlster, W. and Lieberman, H. 2002. Spinning the Semantic Web:

Bringing the World Wide Web to Its Full Potential. MIT Press.

[2] Liu, L., Pu, C., Buttler, D., Han, W., Paques, H., and Tang, W. 2000. AQR-toolkit:

an adaptive query routing middleware for distributed data intensive systems. In

Proceedings of the 2000 ACM SIGMOD international Conference on Management of

Data (Dallas, Texas, United States, May 15 - 18, 2000). SIGMOD '00. ACM Press, New

York, NY, 597. DOI= http://doi.acm.org/10.1145/342009.336579

[3] Yang, B. and Garcia-Molina, H. 2002. Improving Search in Peer-to-Peer Networks.

In Proceedings of the 22 Nd international Conference on Distributed Computing

Systems (Icdcs'02) (July 02 - 05, 2002). ICDCS. IEEE Computer Society, Washington,

DC, 5.

[4] Menascé, D. A. 2003. Scalable P2P Search. IEEE Internet Computing 7, 2 (Mar.

2003), 83-87. DOI= http://dx.doi.org/10.1109/MIC.2003.1189193

[5] Klusch, M. 2001. Information agent technology for the Internet: a survey. Data

Knowl. Eng. 36, 3 (Mar. 2001), 337-372. DOI= http://dx.doi.org/10.1016/S0169-023X(00)00049-5

[6] Wooldridge, M. 2002. Intelligent Agents: The Key Concepts. In Proceedings of the

9th ECCAI-ACAI/EASSS 2001, AEMAS 2001, HoloMAS 2001 on Multi-Agent-

Systems and Applications Ii-Selected Revised Papers V. Marík, O. Stepánková, H.

Krautwurmova, and M. Luck, Eds. Lecture Notes In Computer Science, vol. 2322.

Springer-Verlag, London, 3-43.

[7] Camorlinga, S., Barker, K., and Anderson, J. 2004. Multiagent Systems for resource

allocation in Peer-to-Peer systems. In Proceedings of the Winter international

Synposium on information and Communication Technologies (Cancun, Mexico, January

2004). ACM International Conference Proceeding Series, vol. 58. Trinity College

Dublin, 1-6.

87

[8] Moro, G., Ousel A. M., Sartori C. 2002. Agents and peer-to-peer computing: A

promising combination of paradigms. In Proceedings of AP2PC-02, Bologna, Italy.

pages 1–14. Springer-Verlag LNCS 2530.

 [9] Robertson, D. 2004. Multi-agent coordination as distributed logic programming.

20th International Conference, ICLP 2004, Saint-Malo, France.

[10] Russell, S. J. and Norvig, P. 2003 Artificial Intelligence: A Modern Approach. 2.

Pearson Education.

[11] Stone, P. and Veloso, M. 2000. Multiagent Systems: A Survey from a Machine

Learning Perspective. Auton. Robots 8, 3 (Jun. 2000), 345-383. DOI=

http://dx.doi.org/10.1023/A:1008942012299

[12] Special issue on Intelligent Agents, Comm. ACM, vol. 37, no, 7, July 1994.

[13] Wooldridge, M. and Jennings, N.R. Intelligent agents: Theory and practice. The

Knowledge Engineering Review 10, 2 (1995), 115–152.

[14] Woolridge, M. and Wooldridge, M. J. 2001 Introduction to Multiagent Systems.

John Wiley & Sons, Inc.

[15] Mayeld, J., Y. Labrou, and T. Finin: 1996, Evaluating KQML as an Agent

Communication Language. In: M. Wooldridge, J. P. Muller, and M. Tambe (eds.):

Intelligent Agents II (LNAI Volume 1037). Springer-Verlag: Berlin, Germany, pp. 347-

360.

[16] FIPA Foundation for Intelligent Agents. FIPA Specification part II agent

communication language. April 1999.

[17] Esteva M., Rodriguez J.A., Arcos J.L., Sierra C., Garcia P. (2000); Formalising

Agent Mediated Electronic Institutions, Catalan Congres on AI (CCIA 00), pp. 29-38.

[18] Robertson D. 2002 Distributed Agent Dialogues. Edinburgh University.

[19] Milner, R., 1980. Lecture Notes in Computer Science Vol 92: A Calculus of

Communicating Systems. Springer-Verlag

88

[20] Adamic, L. A., Lukose, R. M., Puniyani, A. R., and Huberman, B. A. Search in

Power-law Networks. Physical Review E 64 (2001).

[21] Tempich, C., Staab, S., and Wranik, A. 2004. Remindin': semantic query routing in

peer-to-peer networks based on social metaphors. In Proceedings of the 13th

international Conference on World Wide Web (New York, NY, USA, May 17 - 20,

2004). WWW '04. ACM Press, New York, NY, 640-649. DOI=

 http://doi.acm.org/10.1145/988672.988759

[22] Walton, C. 2004. Multi-Agent Dialogue Protocols. Proceedings of the 8th

International Symposium on Artificial Intelligence and Mathematics

[23] Nejdl, W., Wolpers, M., Siberski, W., Schmitz, C., Schlosser, M., Brunkhorst, I.,

Loser, A. 2003.: Super-Peer-Based Routing and Clustering Strategies for RDF-Based

P2P Networks. In Proceedings of the 12th International World Wide Web Conference

(WWW), Budapest, Hungary.

[24] Kautz, H., Selman, B., and Shah, M. 1997. Referral Web: combining social

networks and collaborative filtering. Commun. ACM 40, 3 (Mar. 1997), 63-65. DOI=

http://doi.acm.org/10.1145/245108.245123

[25] Yolum, P. and Singh, M. P. 2003. Dynamic communities in referral networks. Web

Intelli. and Agent Sys. 1, 2 (Dec. 2003), 105-116.

[26] Haase, P.; Siebes, R.; and van Harmelen, F. 2004. Peer selection in peer-to-peer

networks with semantic topologies. In International Conference on Semantics of a

Networked World: Semantics for Grid Databases, 2004, Paris.

[27 Broekstra, J., Ehrig, M., Haase, P., van Harmelen, F., Kampman, A., Sabou, M.,

Siebes, R., Staab, S., Stuckenschmidt, H., and Tempich, C. 2003. A metadata model for

semantics-based peer-to-peer systems. In Proceedings of the 1st Workshop on Semantics

in Peer-to-Peer and Grid Computing at the 12th International World Wide Web

Conference. Budapest, Hungary..

[28] The Semantic Web Research Community Ontology.

89

http://ontobroker.semanticweb.org/ontos/swrc.html.

[29] The ACM Topic Hierarchy.

http://www.acm.org/class/1998/.

[30] How Big Is The Internet? http://metamend.com/internet-growth.html

[31] So, E., Collins M. (2002). P2P Search Engines.

http://ntrg.cs.tcd.ie/undergrad/4ba2.02-03/p8.html

[32] Koubarakis 2003. MultiAgent Systems and PeertoPeer Computing: Methods,

Systems, and Challenges. Invited Talk in 7th Int. Workshop on Coop. Information

Agents, Finland.

[33] Elahi, S. 2005. Semantic Query Routing in agent-based P2P systems. Thesis

(MSC). University of Edinburgh.

[34] Li Y., Bandar Z, and McLean D. An approach for measuring semantic similarity

between words using multiple information sources. IEEE Trans. on Knowledge and Data

Eng., 15(4):871--882, 2003.

[35] Rada R, Mili H., Bicknell E. and Blettner M., “Development and application of a

metric on semantic nets IEEE Trans. Systems, Man, and Cybernetics, Jan./Feb. 1989,

vol. 19 , no. 1, pp. 7-30.

[36] How to Classify Works Using ACM? Computing Classification System

http://acm.org/class/how_to_use.html

[37 Ehrig, M., Schmitz, C., Staab, S., Tane, J., Tempich, C. 2003.: Towards evaluation

of peer-to-peer-based distributed knowledge management systems. In: Proceedings ofthe

AAAI Spring Symposium “Agent-Mediated Knowledge Management (AMKM-2003)”.

[38]Crestani, F. and Rijsbergen, C. J. 1997. A Model for Adaptive Information

Retrieval. J. Intell. Inf. Syst. 8, 1 (Jan. 1997), 29-56. DOI=

http://dx.doi.org/10.1023/A:1008601616486

[39] Aha, W. 1998. "Feature weighting for lazy learning algorithms." Feature Extraction,

90

Construction and Selection: a Data Mining Perspective, edited by H. Liu and H. Motoda.

Norwell, MA: Kluwer.

[40] Ehrig, M., P. Haase, et al. 2003. "The SWAP Data and Metadata Model for

Semantics-Based Peer-to-Peer Systems." Lecture Notes in Computer Science 2831: 144-

155.

[41] Brunskill, E. 2001. Building Peer-to-Peer Systems with Chord, a Distributed

Lookup Service. In Proceedings of the Eighth Workshop on Hot Topics in Operating

Systems (May 20 - 22, 2001). HOTOS. IEEE Computer Society, Washington, DC, 81.

[42] Barker, A.D. 2004. Coordination is the key. Thesis (MSC). University of

Edinburgh.

[43] Esteva, M., Rodriguez-Aguilar J. 2000. Institutionalizing Open Multi-Agent

Systems. In Proceedings of the Fourth international Conference on Multiagent Systems

(Icmas-2000) (July 10 - 12, 2000). ICMAS. IEEE Computer Society, Washington, DC,

381.

[44]Robertson D. 2004. A lightweight method for coordination of agent oriented web

service. In Proceedings of AAAI Spring Symposium on Semantic Web Services,

California, USA.

[45] Walton, C. D., and Robertson, D. 2002. Flexible Multi- Agent Protocols. In

Proceedings of UKMAS 2002. Also published as Informatics Technical Report EDI-

INF-RR-0164, University of Edinburgh.

