
Addressing Constraint Failures

in Distributed Dialogue Protocols

Nardine Z. Osman

Master of Science
School of Informatics

University of Edinburgh

2003

Abstract
Early agent communication languages lacked the means to coordinate the interaction between
agents. The importance of coordination was better appreciated when open systems became
in favor. Some solutions have been proposed; however, these normally rely on centralized
gatekeepers. Distributed Dialogues, on the other hand, provide both communication and coor-
dination protocols for multi-agent systems. They do that without the need to re-program agents
every time they need to adapt to a new dialogue system and without the need for centralized
gatekeepers for coordination.

However, these dialogue protocols still aren’t tolerant to failure. When an agent does not
respond appropriately, the dialogue simply stops. This usually happens when constraints are
broken. This dissertation addresses these kinds of failure by offering ‘induced backtracking’ to
explore other parts of the dialogue. It also proposes a negotiation protocol that could be used
when some failed constraints are better dealt with by negotiation.

i

Acknowledgements
Many thanks to my supervisor, Dr. Dave Robertson, for his support and advice and for making
my dissertation work pleasant and interesting. Our meetings and discussions have been the
most important source of information for this dissertation; his suggestions and ideas have been
invaluable for my work.

I owe special gratitude to my father for his tremendous emotional and financial support, without
him my studies would not have been possible.

ii

Declaration
I declare that this thesis was composed by myself, that the work contained herein is my own
except where explicitly stated otherwise in the text, and that this work has not been submitted
for any other degree or professional qualification except as specified.

(Nardine Z. Osman)

iii

To Rida . . .

iv

Table of Contents

1 Introduction 1

1.1 Communication in Multi-Agent Systems . 1

1.1.1 Performative Languages . 2

1.1.2 The Coordination Issue . 3

1.1.3 Electronic Institutions . 4

1.2 Distributed Dialogues . 5

1.2.1 The Concept . 5

1.2.2 Failure Issues . 5

2 Background 7

2.1 Dialogue Representation . 7

2.1.1 Dialogue Clauses . 7

2.1.2 Dialogue Framework . 8

2.1.3 Dialogue Protocol . 9

2.2 Implementing Coordination . 9

2.3 Accomplishments . 11

3 Failure Recovery: Induced Backtracking 13

3.1 Inducing Backtracking . 14

v

3.1.1 Marking Failed Atomic Terms . 14

3.1.2 Guiding Dialogue Backtracking . 15

3.1.3 Additional Modifications . 16

3.2 Limitations . 19

3.3 Example and Analysis . 21

3.3.1 Testing . 25

3.3.2 Observations . 28

3.3.3 Limitations Revisited . 29

3.3.4 Final Remark . 29

4 Constraint Failure and Negotiation 31

4.1 Overview: Negotiation Theories . 31

4.2 Constraints Failure and Negotiation . 34

4.3 The Negotiation Protocol . 36

4.3.1 Stage 1: Establishing Negotiation . 36

4.3.2 Stage 2: Preference Inquiry . 39

4.3.3 Stage 3: Searching for a Solution . 40

4.3.4 Stage 4: Results . 41

4.4 Example and Analysis . 42

4.4.1 Testing and Results . 42

4.4.2 Observations and Remarks . 46

4.4.3 Final Remark . 47

5 Conclusion 48

Bibliography 50

vi

A Dialogue Protocol Examples 52

A.1 The E-Commerce Protocol . 52

A.1.1 The Buyer’s Dialogue Clauses . 52

A.1.2 The Seller’s Dialogue Clauses . 54

A.2 The E-Commerce Protocol Implementing Negotiation 56

A.2.1 The Buyer’s Dialogue Clauses . 56

A.2.2 The Seller’s Dialogue Clauses . 57

A.3 The Negotiation Protocol . 59

A.3.1 The Negotiation Initiator’s Dialogue Clauses 59

A.3.2 The Negotiant’s Dialogue Clauses . 64

B The Code 66

B.1 negot.pl . 67

B.2 basic.pl . 72

B.3 loader.pl . 82

B.4 interface.pl . 84

vii

Chapter 1

Introduction

Language and communication has been a major philosophical issue since the very early ages of
humanity. Things are not different in the computer science world. Communication has again
been the central issue that helps define how systems might interact with one another. How-
ever, communication got more complicated in concurrent systems where the synchronisation
of processes became critical. This led to the introduction of the CCS process calculus and CTL
temporal logic theories. Lately, with the demand of large scale multi-agent systems that require
agents to automatically solve problems collaboratively, synchronisation and coordination again
became a critical issue of agent interaction.

In what follows, we will give a brief introduction to the history of communication in multi-
agent systems that will lead us to introduce Robertson’s distributed dialogue method for com-
munication/coordination.

1.1 Communication in Multi-Agent Systems

To better understand communication in multi-agent systems, let us first take a look at commu-
nication in object-oriented programming. In the latter case, communication takes the shape of
method invocation. Let’s consider the following example from [Woo02]. Object o1 can com-
municate with object o2 by invoking the public available method m2 of object o2. Taking a
closer look at this example, we notice that the decision of execution of m2 lies entirely in the
hands of o1 rather than o2! Such actions will be unacceptable in the agent community.

1

Chapter 1. Introduction 2

In general, agents are known to be autonomous. An agent would have its own beliefs and goals,
and it will act in accordance with its beliefs in order to pursue its goals. This implies that agents
cannot control other agent’s actions or beliefs. What they could do, is attempt to influence each
other’s beliefs (hence decisions and actions). This leads to the introduction of a new concept
of actions based on the theories of speech acts. The following section elaborates on this issue.

1.1.1 Performative Languages

Agent communication highlighted the need to perform actions different from the usual actions.
These actions were ‘communicative actions’. Agent Communication Languages that followed
were based on Austin’s theories of speech acts [Aus62]. Austin has defined some utterances
to be ‘speech acts’ since they were capable of changing the state of the world surrounding
them. Speech acts were based on performative verbs like request, inform, promise, etc. Austin’s
theory was then modified by John Searle, [Sea79], who identified the different types of speech
acts and added some properties that need to hold for speech acts to succeed (like normal i/o
conditions, sincerity conditions, etc.).

In the early 1990’s, Knowledge Query and Manipulation Language (KQML) was delivered
along with Knowledge Interchange Format(KIF) as a method for knowledge sharing [Woo02].
KIF described the representation of knowledge of a certain domain. The KQML, on the other
hand, was a language for agent communication. It defined a general format for messages and
wasn’t concerned about the content of the messages (as in KIF). Messages were formed of
performatives (e.g.tell, ask-about, discard, deny, etc.) and its parameters.

KQML was criticised on many aspects, some of which are the weakly defined semantics, the
missing commissives class of performatives (the class that deals with commitments), the ex-
cessively long performative set (made up of 41 performatives), etc. These criticisms led to the
development of FIPA–ACL. However, FIPA–ACL was similar to KQML. It didn’t define any
specific language for message content. Messages were very similar to those of KQML, the
only major difference was the number of performatives provided: 20 performatives. Table 1.1
introduces and categorises the performatives provided by FIPA–ACL [FIP97]. The informa-
tion passing category allows sharing of knowledge either by imparting information or by con-
firming/disconfirming the accuracy of information. Information requesting allows the sender
to query the receiver about some something. Negotiation actions allow requesting, making,
accepting or rejecting proposals. Performing actions allow the sender to agree or refuse to

Chapter 1. Introduction 3

perform actions as well as request others to perform actions. Error handling actions allow
informing the receiving agent about misunderstandings and failures.

Performative Passing Requesting Negotiation Performing Error
Information Information Actions Handling

accept-proposal ×
agree ×
cancel × ×
cfp ×
confirm ×
disconfirm ×
failure ×
inform ×
inform-if ×
inform-ref ×
not-understood ×
propagate ×
propose ×
proxy ×
query-if ×
query-ref ×
refuse ×
reject-proposal ×
request ×
request-when ×
request-whenever ×
subscribe ×

Table 1.1: the performatives provided by FIPA–ACL

1.1.2 The Coordination Issue

Let’s consider the following scenario of an English auction system [Rob]. The bidder agents
are only allowed to bid when invited by the auctioneer, and their bidding value should be higher
than the current leading bid. These constraints are critical constraints, that if unsatisfied, might

Chapter 1. Introduction 4

break down the system or result in unwanted behaviour. ‘For instance, an agent operating as if
our English auction were a Dutch auction might wait forever for the leading bid announced by
the auctioneer to fall (as it does in Dutch auctions) when in fact the (English) auctioneer will
assure that the leading bid always rises’. Hence, the need for further coordination rises.

The communication protocols described earlier define how agents can communicate. However,
for further coordination, we need to deal with when are agents allowed to communicate. This
imposes further constraints on agents’ communication. These constraints could either be on
the sequence of messages, on the content of messages, or even on the status of the dialogue.

A common solution to this problem is to have agents pre-engineered to deal with the dialogues
they are known to encounter. But what happens in open systems? The problem in such systems
is that the agents will have to be re-engineered for every new dialogue scenario they might have
to adapt to. With the emerging need for such large-scale systems, a more reasonable solution
needs to be investigated. The concept of Electronic Institutions addresses this problem by
defining agent protocols, as opposed to communication protocols such as KQML and FIPA–
ACL, that would deal with the coordination issues. The agents will still use the communication
protocols to communicate; however, an upper layer of protocols – the agent protocols – will
deal with the coordination issues [WR02].

1.1.3 Electronic Institutions

The idea behind these electronic institutions is that human interaction, in general, is always
accompanied with ‘social conventions’. For instance, when people are bidding in an English
auction, it is automatically assumed that people abide with the English auction’s rules or con-
ventions. Similarly, agent’s interaction should also be accompanied with ‘social conventions’
in order to insure coordination. Each electronic institution will have its own set of ‘social
conventions’. For instance, an English auction system could be represented by one electronic
institution and a Dutch auction system by another. The representation is very similar to that of
the CCS process algebra. State transition diagrams are used to express the acceptable actions
each agent can take at a certain time. Actions in these cases are usually communicative actions.

Yet another problem arises with these agent protocols. In practice, these protocols are imple-
mented by making use of a centralised gatekeeper. All messages would be directed through
this gatekeeper which would ensure message sequencing and provide the coordination needed.

Chapter 1. Introduction 5

However, this centralised gatekeeper might itself become a bottleneck. Moreover, these gate-
keepers do not deal with all coordination constraints issues (e.g. the constraints imposed on
message content). The next section introduces yet another method for communication / coor-
dination: distributed dialogues. These dialogues are an attempt to solve the communication/
coordination problems discussed above.

1.2 Distributed Dialogues

Distributed dialogues do not require agents to be re-programmed each time they need to adapt
to a new system of dialogue, nor to adapt their knowledge or beliefs solely for the purposes
of dialogues. They preserve the autonomy of agents and offer dialogue coordination without
the need for centralised gatekeepers. Distributes dialogues are a form of both communication
and coordination protocols. In other words, they replace communication languages such as
FIPA–ACL and coordination protocols such as electronic institutions.

1.2.1 The Concept

“A distributed dialogue is a conversation among a group of agents which can be described as
a collection of dialogue sequences between agents” [Rob]. Hence, a distributed dialogue is
a specification of the allowed dialogue sequence. This could be thought of as a code for the
transition diagram of a certain scenario’s dialogue.

How does it work?
The dialogue starts when one agent takes a certain permissible action. It marks that action as
closed, and sends the dialogue protocol to the other agent it is communicating with. The other
agent then looks up the received dialogue protocol for permissible actions it can take, marks
the completed action as closed, and send the protocol to the appropriate agent. The process
iterates until the dialogue completes successfully.

1.2.2 Failure Issues

The problem with these dialogue protocols is that they are not tolerant to failure. Hence, when
an agent does not respond appropriately, the dialogue simply stops. This usually happens

Chapter 1. Introduction 6

when constraints are broken. This dissertation addresses these kinds of failure. It provides a
mechanism to backtrack and explore other parts of the dialogue when one part fails. However,
upon failure, some constraints might better be solved by negotiation instead of directly marking
them as failed. So the second part of the dissertation will provide a sample negotiation protocol
that might be useful in certain cases of constraint failure.

To better understand our work, we will start with Chapter 2 with some background on the
dialogue protocols and how they actually work. After that, Chapter 3 will introduce our ‘in-
duced backtracking’ as a solution to constraints failure. Chapter 4 will then provide the sample
negotiation protocol.

Chapter 2

Background

In order to better understand our work in chapters 3 and 4, one needs an idea of how do these
dialogues work. This chapter provides a detailed description of the distributed dialogue proto-
cols. It starts with a description of the representation used, then explains how these protocols
actually work, and finally offers an overview of what these dialogues achieve.

2.1 Dialogue Representation

2.1.1 Dialogue Clauses

Dialogue protocols provide coordination in dialogue systems. They achieve this by restricting
agent’s actions to those that apply to the system’s ‘social conventions’. Conventions are im-
plemented by defining rules for the participating parties. These rules, however, do not encode
individual agents but the roles those agents take (for instance, rules for bidder agents). Hence,
agents in the distributed dialogues are expressed by a(role, id), where role is the role of the
agent in that dialogue (e.g. bidder) and id is the agent’s unique identifier.

Rules in a dialogue system are implemented by giving definitions to agents’ roles, i.e. defining
the actions a certain agent can take. These could either be taking another role, a message
passing action, a do nothing action (or null action), or a combination of other actions (or
definitions). The logical connectives used are the then, or and par. Definitions of the form
‘A then B’ imply that action A is followed by action B. Where as ‘A or B’ implies that either

7

Chapter 2. Background 8

action A or action B can take place. Finally, ‘A par B’ (or A in parallel with B) implies that both
actions ‘A’ and ‘B’ need to be fulfilled but the order of doing this does not matter.

As for message passing actions, these could either be of the form of receiving a message (M
⇐ A) or of sending one (M⇒ A). As mentioned in the introduction, coordination issues might
not be restricted to the dialogue sequence. Hence, further constraints could be added to the
message passing actions. [Rob] distinguishes two types of constraints: proaction constraints
and reaction constraints. The proaction constraints ‘define the circumstances under which a
message allowed by the dialogue framework is allowed to be sent’. These constraints are of the
form M ⇒ A ← C, where C is the condition for sending M to A. The reaction constraints, on
the other hand, ‘define what should be true in an agent following receipt of a message allowed
by the dialogue framework’. These constraints are of the form C ← M ⇐ A, where C is the
reaction upon receiving M from A. The idea behind proaction and reaction constraints is to
allow further testing of the state of the agent or its beliefs. However, constraints could also be
used to further test dialogue state, message content, etc. Hence, constraints could also be added
to other kinds of definitions. For example, when the next action is to take a different role.

2.1.2 Dialogue Framework

We have seen how to give definitions to different roles in a dialogue. However, a dialogue
system (like the English auction system) is made up of several interacting roles (like the auc-
tioneer, bidder, etc.). Hence, we will need a set of dialogue clauses. This set will be known as
the dialogue framework. As a result, the syntax of the dialogue framework will be defined as
follows [Rob]:

Framework := {Clause, . . .}
Clause := Agent :: Def
Agent := a(Role, Id)
Def := null | Agent |Message | Def then Def | Def or Def | Def par Def
Message := M⇒ Agent |M⇒ Agent← C |M⇐ Agent | C← M⇐ Agent
C := Term | C ∧ C | C ∨ C
Role := Term
Id := Constant
M := Term

Chapter 2. Background 9

where Term is a structured term and Constant is a constant.

2.1.3 Dialogue Protocol

We have been talking about agents communicating by means of sending and receiving the di-
alogue protocol itself. But what does this dialogue protocol exactly consist of? The dialogue
protocol is a collection of the dialogue state, the dialogue framework and the common knowl-
edge. The dialogue framework, which we saw above in section 2.1.2 and which consists of sets
of dialogue clauses, is the generic protocol. This protocol is preserved throughout the dialogue.

However, during communication, the protocol might need to be modified in order to keep track
of the current state of the protocol. Instances of the generic dialogue clauses will always get
updated in the dialogue state to help agents determine the current protocol state, and hence
their next action to be taken. This approach frees the agents from the need of keeping track
of all the dialogues they’re engaged in as well as their state in each dialogue. In the following
section, we will demonstrate how this is achieved.

Finally, the dialogue protocol also consists of the common knowledge. The common knowledge
contains the knowledge that might be needed solely for the given dialogue protocol. Hence,
this also frees agents from the need to adapt their own knowledge or beliefs only for the sake
of some dialogue system. Moreover, throughout the course of the dialogue, agents will also
be capable of modifying that knowledge as needed by asserting to and retracting from the
common knowledge. Knowledge is expressed in the form of known(Agent, Knowledge), where
Knowledge ‘could be expressed in any form, as long as it can be processed reliably by all
appropriate agents’ [Rob].

2.2 Implementing Coordination

We have seen the format of the dialogue protocol that is sent along with the messages during
communication. In what follows, we will introduce what happens upon the receipt of a mes-
sage, how do agents retrieve the dialogue state and decide upon their next action to be taken.

Upon the receipt of a certain message, the agent first needs to lookup for the appropriate dia-
logue clause to deal with. If the agent is already in the middle of the dialogue, then a modified
copy of the generic dialogue clause should be available in the dialogue state section of the

Chapter 2. Background 10

protocol received. The appropriate clause is retrieved by checking for the appropriate role.
However, if the agent is starting a new role within this dialogue, then it won’t be able to find an
appropriate dialogue clause copy from the dialogue state, and will then fetch a generic copy
from the dialogue framework.

After obtaining the correct dialogue clause to work with, the agent will need to find its next
action to be taken, complete the action, and modify the dialogue clause appropriately. This is
achieved by applying rewrite rules to expand the dialogue state. Rewrite rules often result in
having messages to be sent to certain agents. The rewrite rules are applied repeatedly either
until no change occurs in the result or until no rewrite rules match anymore. At this point, the
agent should send the appropriate messages to their corresponding agents attaching the new
dialogue state to these sent messages.

The following table defines the rewrite rules used [Rob]:

A
Mi ,Mo ,P,O
−→ A :: B if clause(P, A::B)

A :: B
Mi,Mo ,P,O
−→ A :: E if B

Mi ,Mo ,P,O
−→ E

A1 or A2
Mi,Mo ,P,O
−→ E if (A1

Mi,Mo ,P,O
−→ E) ∨ (A2

Mi ,Mo ,P,O
−→ E)

A1 par A2
Mi ,Mo ,P,O1∪O2−→ E1 par E2 if ((A1

Mi ,Mn ,P,O1−→ E1) ∧ (A2
Mn ,Mo ,P,O2−→ E2))

∨ ((A2
Mi ,Mn,P,O1−→ E2) ∧ (A1

Mn ,Mo ,P,O2−→ E1))

A1 then A2
Mi ,Mo,P,O
−→ E then A2 if A1

Mi ,Mo ,P,O
−→ E

A1 then A2
Mi ,Mo,P,O
−→ A1 then E if (closed(A1)) ∧ (A2

Mi,Mo ,P,O
−→ E)

M ⇐ As
Mi,Mi−{M⇐As},P, /0

−→ c(M ⇐ As) if ((M ⇐ As) ∈ Mi) ∧ receive(P,M)

M ⇒ A
Mi ,Mi,P,{M⇒A}

−→ c(M ⇒ A) if send(Pn,M)

null
Mi ,Mi,P, /0−→ c(null)

A ← C
Mi,Mo ,P,O
−→ A :: B if clause(P, A::B) ∧ satisfy(C)

C ← M ⇐ As
Mi ,Mi−{M⇐As},P, /0

−→ c(M ⇐ As) if ((M ⇐ As) ∈ Mi) ∧ receive(P,M) ∧ satisfy(C)

M ⇒ A ← C
Mi ,Mi,P,{M⇒A}

−→ c(M ⇒ A) if send(Pn,M) ∧ satisfy(C)

null ← C
Mi ,Mi ,P, /0−→ c(null) if satisfy(C)

Table 2.1: the rewrite rules used for expanding dialogue clauses

Mi above represents the set of incoming messages (the received messages), Mo represents the
remaining set of incoming messages, P represents the dialogue protocol and O the set of output

Chapter 2. Background 11

messages (the messages to be sent).

The rewrite rules of Table 2.1, expressed informally, say that an agent A may be rewritten to
A::B if the clause A::B was part of the protocol P. The dialogue clause A::B may be rewritten
to A::E if B may be rewritten to E. A1 or A2 may be rewritten to E if either A1 or A2 may be
rewritten to E. A1 par A2 may be rewritten to E1 par E2 if both A1 may be rewritten to E1 and
A2 may be rewritten to E2 (in whatever order). A1 then A2 may either be rewritten to E then
A2 if A1 may be rewritten to E, or it may be rewritten to A1 then E if the actions in A1 have
already been completed and A2 may be rewritten to E. This introduces the ‘closed’ concept.
When actions are completed, they are marked as closed to denote their completion. But how to
test when a definition is closed? The following are guidelines to be used in testing for closed
definitions:

– A :: B is closed if B is closed
– A or B is closed if either A or B is closed
– A par B is closed if both A and B are closed
– A then B is closed if A is closed and B is closed
– c(T) resembles a closed term T

And when are terms marked as closed?
M ⇐ As is rewritten to c(M ⇐ As) if the message M is received along with the protocol P
and M ⇐ As is an element of the incoming messages Mi. After marking M ⇐ As as closed,
the new set of incoming messages Mo will now be Mi - {M ⇐ As} and the set of outgoing
messages O will be /0. Rewriting M⇒ A to c(M⇒ A) is much more straight forward. The term
is directly closed, the set of outgoing messages is /0, and the message M is sent along with the
new protocol Pn. As for the empty term null, it is automatically closed.

The last four rewrite rules are a repetition of four of the above mentioned rules. The differ-
ence here is the addition of constraints. Hence, in order to be able to rewrite those terms the
constraint C first needs to be satisfied.

2.3 Accomplishments

We have seen how these dialogues work. As promised, the distributed dialogues do offer
distributed coordination (as opposed to the centralised gatekeepers solution). They also free

Chapter 2. Background 12

agents from the need to keep track of the dialogues they’re engaged in as well as their state
in each dialogue. This is now possible, with the methodology proposed above, because with
each message an agent receives, the protocol is also attached. From the protocol, the agent will
be able to compute it’s current state in the dialogue and the actions it needs to take. More-
over, knowledge exclusive to a specific dialogue is embedded in its protocol. Hence, this also
frees agents from the need to adapt their knowledge to the dialogue’s knowledge. As a re-
sult, these distributed dialogues remove the need of standardising the engineering of individual
agents. They preserve the availability of truly autonomous agents that are capable of getting
engaged in several dialogues simultaneously in large scale open systems, and remove the need
for global controllers for coordination. Distributed dialogues accomplish these tasks by requir-
ing two engineering commitments on the agent design level. The first is that the constraints
must be comprehensible for the agents, i.e. they ‘must be in an ontology recognised (possibly
via translation) by the agent’ [Rob]. The other is that the agents should be able to encode and
decode the dialogue protocols (as illustrated in the sections above) in order to be able to extract
the protocol state and act accordingly.

The background given in this chapter is sufficient for understanding this dissertation. However,
for further readings, [Rob] offers much more interesting information on this subject, such as a
comparison to performative languages, possible implementations, possible human interaction
with the protocol, etc.

Chapter 3

Failure Recovery: Induced
Backtracking

In this chapter we address the problem of failure recovery in dialogues when constraints are
not satisfied. As we saw earlier, distributed dialogues offer dialogue coordination; the proto-
col controls the path the dialogue between agents takes by specifying the acceptable message
sequences. But what happens when a certain path fails? In this case, the dialogue simply stops!

In order to better explain the problem, consider the following example: an e-commerce scenario
where an agent A wants to buy a piece of furniture from agent B. Say agent A is badly in need
of a desk for the office as soon as possible. It will then initiate a dialogue with agent B. Now
the dialogue can take different paths. For instance, agent A may either end up buying a readily
available desk if a suitable one is found, or it may buy one that is packed flat for home assembly.
However, if agent B neither has a readily available one nor one for home assembly, then the
dialogue should fail in the sense that the goal of the dialogue is impossible to achieve.

However, what actually happens is that when a certain path is selected, agents cannot backtrack
later during communication to select a different path. So let’s say the first path was selected and
agent A asked agent B for its available desks. After a discussion with agent B, agent A notices
that none of the readily available desks are suitable. At this point, agent A should be able to
backtrack and select another acceptable dialogue path, which is in this case to inquire about
the packed desk for home assembly. Unfortunately, this was not possible with the original
protocol mechanism. This chapter discusses the method used to induce backtracking for this

13

Chapter 3. Failure Recovery: Induced Backtracking 14

kind of failure – failure of constraints.

3.1 Inducing Backtracking

As we saw in the example above, the dialogue sometimes fails before exploring all the possible
approaches it can follow to complete successfully. The solution to that is to induce backtracking
to help implement a depth first search. Hence, whenever one path fails, the dialogue backtracks
until it finds another path it could take. Moreover, a depth first search guarantees that the whole
space will be explored, as long as there are no infinite paths or loops in the search tree. (The
end of Section 3.2.2 better elaborates on the issue of infinite paths or loops in such dialogues.)

Chapter 2 explained how the protocol actually works and the expansion concept in detail. In
this section we explain the changes that were made in order to mark failed paths and properly
guide the dialogue.

3.1.1 Marking Failed Atomic Terms

The first step to be made is to mark atomic terms as failed whenever their constraints are not
satisfied. An atomic term represents an action to be taken by an agent. These actions are of the
following forms:

– no action to be taken: null
– the agent should take a different role: a(Role, Id)
– send a message to another agent: M⇒ A
– receive a message from another agent: M⇐ A

Along with these actions, proaction and reaction constraints are added as needed. Hence, the
expansion of these atomic terms should not be altered, except when a corresponding constraint
is not satisfied. In the latter case, the atomic term should be marked as failed instead of closed.

The only exception to the above is the case of receiving a message. In this case, three different
scenarios can occur:

CASE 1: The message is received and the constraint, if any, is satis£ed:

In this case, the atomic term is marked as closed.

Chapter 3. Failure Recovery: Induced Backtracking 15

CASE 2: The message is received and the constraint is not satis£ed:

In this case, the atomic term is not marked as failed. However, a message is sent back to the
sender to inform it of the failure of the sent message. This is the only case when the agent
forces the other agent to do the backtracking. This is necessary because if the agent does mark
that term as failed and does the backtracking itself, then in most cases it will end up waiting
for another message and the other agent wouldn’t even know about the failure that occurred.
Hence we will end up with two agents each expecting to receive a message from the other.
(Note that dealing with the receipt of failed messages is discussed later in section 3.2.1)

CASE 3: The message received is not the message the agent is expecting:

This case takes place when one of the agents backtracks and sends a different message than that
the other agent is expecting. Hence, the receiving agent does not delete the received message
from the list of incoming messages and it marks the atomic term at which it is standing as
failed. This will then force it to backtrack searching for the other path in order to synchronise
with the sending agent.

3.1.2 Guiding Dialogue Backtracking

Section 3.1.1 discusses how atomic terms are marked as failed, and this is what induces back-
tracking. However, we now need to guide the backtracking process. To do that, the expansion
rules (or rewrite rules), described in Chapter 2 and concerning the different connectives (then,
or and par), were modified as follows:

The then Connective:

To understand this case better, let’s think of a dialogue tree. A path in that tree is a sequence of
A then B terms. If one of the nodes on that path is marked as failed, then the whole path should
be marked as failed. To do that, we need to move backwards and mark all previously closed
terms on that path as failed until we hit a disjunction of events and jump to another path.

Hence, as before, if A is closed, then B should then be expanded. But if A is closed and B is
marked as a failed term, then A should be marked as failed too. However, if A is marked as
failed, then there is no need to expand B and the term A then B is marked as failed. Otherwise,
if A is neither marked as closed nor as failed, then it is expanded.

The or Connective:

Chapter 3. Failure Recovery: Induced Backtracking 16

A

B

...

Figure 3.1: the ‘A then B’ term in dialogue trees

When we reach a node on the tree where two paths may be selected, first the left-most path is
chosen. If that path fails, then the other may be selected. The node is marked as failed only
after all paths fail. Hence, if a disjunction of terms of the form A or B is reached then the first
thing to do is to test whether both A and B have failed. If they did, then the A or B term is
marked as failed too. Otherwise, A is expanded first. If that path fails, then B is expanded.

The par Connective:

The term A par B implies that both A and B should take place; however, there is no preference
concerning the order of the actions. Hence, either A is expanded and then B, or the other way
around. If any of them fails, then the term A par B is marked as failed.

3.1.3 Additional Modi£cations

At the beginning of our implementation, testing was done by using examples that would test
all possible structures of terms. This shed light on some problems of these dialogue protocols.
As we will discuss shortly, with some modifications, many of those problems were solved.
Nevertheless, other tougher problems were uncovered. We discuss these later.

The sections above introduced the modifications made to induce and guide backtracking. Those
modifications were not enough to ensure that the protocol works correctly. For instance, let’s
consider dealing with terms of the form (A or B) then C. If A is first selected and later on C
fails, then C is marked as failed and so is A. The other path should then be selected and B is
expanded. After expanding B, C should be re-expanded next; however, it is marked as failed!
In order not to fall in the trap of deciding when is it permissible to open a previously failed term
and re-expand it, every generic protocol is modified at the very beginning of the protocol run in
order to convert all terms of the form (A or B) then C into (A then C) or (B then C) (illustrated
in Figure 3.2 below).

Chapter 3. Failure Recovery: Induced Backtracking 17

A B

C

...

A B

C C

... ...

Figure 3.2: converting terms of the form ‘(A or B) then C’ into ‘(A then C) or (B then C)’

It is true that this will introduce many redundant terms; however, it preserves a very neat
solution to our problem. Moreover, when testing many fairly complicated protocols full of
terms of the form (A or B) then C, no effect was noted on the performance. Hence, without
degrading performance, this method offers a solution which (with the automatic translation) is
also transparent to the users – the protocol engineers.

Another faced problem was that of reaching a deadlock by having each communicating party
waiting to receive a message from the other. This could happen under several circumstances,
one of which is the case of failing to satisfy a reaction constraint (this is the case when a mes-
sage is received and the constraint is not satisfied, discussed earlier in section 3.1.2). Another
case is illustrated in the figure below. It is the case when an agent backtracks and reaches a
disjunction of terms where the next action to take is to receive a message.

...

f(...) ...

f(M1 <= A) M2 <= A

Figure 3.3: backtracking to a disjunction of ‘M⇐ A’ terms

To solve this problem, modifications where made to the expansion protocol of the ‘or’ connec-
tive discussed earlier, and the following new case was added:

– When a disjunction of terms is reached and one of the terms has already failed, then the first
atomic term in each path is examined. If all are of the form M⇐ A, then the expansion stops

Chapter 3. Failure Recovery: Induced Backtracking 18

and a message is sent back to the sender of the failed term forcing it to do the backtracking.

To understand this case better, let’s look at the example in the figure above. When the left-most
path fails, eventuallyM1⇐ A is marked as failed. Now since we reach a disjunction of terms of
the form M⇐ A and one of them has failed, the expansion stops here and a message indicating
the failure of receipt of M1 is sent to agent A.

But how do agents deal with an incoming failed message notice?
When an agent receives a message accompanied by a protocol, the first thing it does is to check
whether the message is a notice of an earlier failed sending message action (i.e. of the form f(M
⇒ B)). If it is, then it marks all previously closed terms matching the failed message as failed.
Otherwise, nothing happens. Only after that the protocol expansion process proceeds.

Now we move on to discuss yet another complication. This complication arises when an agent
whose protocol has already completed successfully receives an incoming message. Most of the
times this happens at the very last step of a dialogue. One agent sends the last message in the
dialogue; however, the receiving agent’s constraints fail to be satisfied. Hence, the first agent,
which has already completed its part in a dialogue successfully, eventually receives a failed
message notice. Now whenever a message is received and the protocol is considered closed,
the protocol should be opened again. In this case, it is automatically opened after marking
that previously closed term(s) matching the incoming failed message as failed. Hence, when
expansion is called, backtracking automatically takes place.

Nevertheless, it is not always the case that the received message is a failed message notice. If
we consider the case in which multiple agents are communicating, then it could very easily
happen that one of those agents fulfils its part in that dialogue, then another agent backtracks
and sends back another message. The following figure better explain this situation.

Let us consider the case when agent C is sending its last message M5. At this point it is clear
that agent B has already completed its part in the dialogue. However, if C now fails to satisfy
a proaction constraint accompanied with sending M5, then C will backtrack and send M3 to
agent B.

What can agent B do then?
We noted above that whenever a message is received and the dialogue is marked as closed,
this implies that the protocol shouldn’t be closed and backtracking should take place. This is
automatically done in the case when the received message is a failure message notice (as noted

Chapter 3. Failure Recovery: Induced Backtracking 19

M2 <= B M3 <= B

M1 => B

M4 => C

M5 <= C

M1 <= A

M1 => C

M2 <= C M3 <= C

M2 => A M3 => A

Agent A Agent B

M1 <= B

M2 => B M3 => B

M4 <= A

M5 => A

Agent C

Figure 3.4: an example of multiple agents communicating

above). But what if the message is a normal message (i.e. not a failure message notice)? In this
case, the dialogue needs to re-open the protocol by marking all leaf nodes (i.e. nodes that have
no children) that are already closed as failed. Hence, in agent B’s tree above, the only closed
leaf node would be the node M2 ⇒ A. Hence, it will be marked as failed which will force
agent B to backtrack until it reaches the node M3 ⇐ C. From there the protocol will proceed
successfully.

3.2 Limitations

We have seen the theory behind inducing backtracking in order to be able to search all possible
scenarios a dialogue can take. We also discussed the implementation and the difficulties that
were resolved. However, the method discussed in this chapter has its limitations. In this section
we address those limitations in order to reach a better understanding of them and of why weren’t
those problems resolved.

The first limitation we encounter in this design is that of resolving all possible deadlock sit-
uations. Deadlocks will arise during backtracking when reaching a disjunction of terms. If
the next atomic term to be selected was not of the form M⇐ A, then there is no problem. The
problem occurs when the agent backtracks and reaches a point where it is waiting for a message
(the term is of the form M⇐ A). Section 3.2.1 presented a partial solution to this problem. The
solution solves the problem when all nodes following that disjunction are of the form M⇐ A.
Hence, if one of them has already failed, the agent can send a failure message notice back to

Chapter 3. Failure Recovery: Induced Backtracking 20

the sender. However, if the nodes are a collection of terms of the form M ⇐ A and M ⇒ A,
then it could become extremely complicated to know what failed message to send back to the
sender. The complexity of this issue depends on the complexity of the sub-tree of the failed
path.

Nevertheless, this limitation isn’t a critical one since protocol engineers can overcome this
limitation by adding slight variations to the protocol. The simplest way is to engineer the
protocol in such a way that the message actions at each tree level are of one form, either M⇐
A or M ⇒ A. Another similar engineering limitation is the order of the disjunction of terms.
The search technique used to search the dialogue tree is a depth-first search. Hence, this should
be kept in mind when writing protocols, especially to ensure that the terms in a disjunction are
written in parallel.

Overcoming the above limitations is a comparatively easy task for engineers. However, a
bit more challenging limitation is faced when common knowledge might need to be changed
when backtracking occurs. As described in chapter 2, common knowledge is the knowledge
needed for a specific protocol. Along the run of the protocol, common knowledge might be
changed with the use of constraints. Clauses defining common knowledge may be asserted
or retracted. When we backtrack, we do not revert all changes that already took place in the
common knowledge. Although this can be implemented, it will result in a messy solution.
Moreover, when backtracking, not all knowledge might need to be reverted; on the contrary, in
some cases, knowledge should be preserved. And if we did want to revert knowledge, we might
face the problem of constraints not being saved when a term is marked as closed. Tackling the
latter issue, we notice that constraints might get very large as in the next example in section
3.3. Saving them might in most cases be a waste of space. In order to keep our solution neat
and tidy, and in order not to face the problem of when and which constraints should be saved
and which part of the common knowledge should be reverted, an alternative option would be
to construct the protocol in a way that backtracking shouldn’t affect a change in the common
knowledge. This could be achieved by distinguishing between the used knowledge of different
paths wherever needed. An example on that is presented in the following section (Section 3.3).

All of these engineering limitations could be overcome, as we will see from the example in the
next section. However, there remains a performance issue concerning the type of search that is
implemented. The depth-first search is definitely not a very efficient search technique and, as
we saw earlier, it also imposes some limitations. But the traditional depth-first disadvantages,

Chapter 3. Failure Recovery: Induced Backtracking 21

such as having an infinite path or loop, is not possible in such dialogue protocols unless explic-
itly defined by the protocol. That is because the expansion of a protocol is made step by step.
And since our protocols are dialogue protocols, the expansion will eventually have to stop until
it receives some additional info from the agent it is communicating with. The only way expan-
sion can loop forever in a certain path is if it was explicitly defined by the protocol that an agent
should loop forever doing a certain action. For example, to loop forever sending a message M
to a certain agent A, or to loop forever doing null. But since we’re dealing with communication
protocols, infinite loops in these protocols become meaningless, since they imply that an agent
is performing some actions independently without communicating with others. Moreover, as
in any other language, if one knows the rules of the language, one might be able then to predict
the results of the code.

This topic triggers the efficiency issue of the depth-first search technique. Paths will have to
be tested from the left-most path towards the right-most path. This means that the search will
be mostly inefficient in cases when the successful path is the right-most one. This raises the
question: Can a different and more efficient search technique be implemented?

In such search trees which represent a dialogue between agents, each node represents an action
to be taken by the agent. In most cases, this action is either to send or to receive a message.
Hence, if other more efficient search techniques, like the breadth-first technique, were to be
implemented, this will result in a massive increase in the number of messages sent back and
forth between agents and the expansion will be a considerably complicated task. Unfortunately,
this will be outside the scope of this dissertation.

We may conclude that despite the above mentioned limitations, this method offers a neat and
formal solution for backtracking when constraints failure occur. The limitations are not critical,
since they can be overcome by the protocol engineers, and the methodology is a simple and
clear one.

3.3 Example and Analysis

The following is a practical dialogue protocol example that was written for further testing and
illustrating this methodology. The scenario is a typical e-commerce scenario where agent B,
the buyer, is interested in buying an item I from the seller S.

Chapter 3. Failure Recovery: Induced Backtracking 22

a(buyer(I,S),B) ::=

inquiry(I) ⇒ a(seller,S) then

a(buyerSt2(I),B).

a(buyerSt2(I),B) ::=

(

inquiring preference(T) ⇐ a(sellerSt2(B,I),S) then

(

preference(T,P) ⇒ a(sellerSt2(B,I),S) ← preference(I,T,P)

or

preference(T,null) ⇒ a(sellerSt2(B,I),S)

) then

a(buyerSt2(I),B)

)

or

a(buyerSt3,B).

a(buyerSt3,B) ::=

suitable items([I1|]) ⇐ a(sellerSt3(B,I),S) then

reserve(I1,B) ⇒ a(sellerSt3(B,I),S) then

waiting for payment(I1) ⇐ a(sellerSt3(B,I),S).

a(seller,S) ::=

seller of(I) ← inquiry(I) ⇐ a(buyer(I,S), B) then

null ← item topics(I,AllTopics) and

assert(topicsToInquire(AllTopics)) and

assert(preferences([])) then

null ← assertz((compute results([], I, , AllItems) :-

acceptable(I, AllItems))) and

assertz((compute results([[T,P]|[]], I, null, NewResults) :-

acceptable title(I, List), acceptable(I, AllItems),

Chapter 3. Failure Recovery: Induced Backtracking 23

substitute(T, List, P, NewList), set search(P, NewList, FinalList),

setof(FinalList, member(FinalList, AllItems), NewResults))) and

assertz((compute results([[T,P]|Tail], I, null, NewResults) :-

acceptable title(I, List), acceptable(I, AllItems),

substitute(T, List, P, NewList), set search(P, NewList, FinalList),

setof(FinalList, member(FinalList, AllItems), OldResults2),

compute results(Tail, OldResults2, NewResults))) and

assertz((compute results([[T,P]|[]], I, OldResults, NewResults) :-

acceptable title(I, List), \+ OldResults = null,

substitute(T, List, P, NewList), set search(P, NewList, FinalList),

setof(FinalList, member(FinalList, OldResults), NewResults))) and

assertz((compute results([[T,P]|Tail], I, OldResults, NewResults) :-

acceptable title(I, List), \+ OldResults = null,

substitute(T, List, P, NewList), set search(P, NewList, FinalList),

setof(FinalList, member(FinalList, OldResults), OldResults2),

compute results(Tail, OldResults2, NewResults))) and

assertz((set search(, [], []))) and

assertz((set search(V, [V|T], [V|R]) :- set search(V, T, R))) and

assertz((set search(V, [X|T], [|R]) :- \+ X=V, set search(V, T, R))) then

a(sellerSt2(B,I),S).

a(sellerSt2(B,I),S) ::=

(

inquiring preference(T) ⇒ a(buyerSt2(I),B)

← retract(topicsToInquire([T|RT])) and assert(topicsToInquire(RT)) then

preference(T,P) ⇐ a(buyerSt2(I),B) then

(

null ← (\+ P=null) and retract(preferences(OldPref)) and

assert(preferences([[T,P] | OldPref]))

or

null ← retract(preferences(Old list)) and

select([T,],Old list,New list) and assert(preferences(New list))

) then

Chapter 3. Failure Recovery: Induced Backtracking 24

a(sellerSt2(B,I),S)

)

or

(

null ← topicsToInquire([]) then

a(sellerSt3(B,I),S)

).

a(sellerSt3(B,I),S) ::=

suitable items(Results) ⇒ a(buyerSt3,B) ← preferences(Preferences) and

compute results(Preferences, I, null, Results) then

reserve(I1,B) ⇐ a(buyerSt3,B) then

waiting for payment(I1) ⇒ a(buyerSt3,B).

The protocol is initiated by the buyer B. B initiates the protocol run whenever it has a certain
item I and a seller S in mind. It then sends an inquiry on that item to the seller S (inquiry(I)⇒
a(seller,S)). After that step the buyer takes another role, buyer state1.

At that point, this is all the buyer can do. On the other side of the dialogue, agent S, the seller,
receives B’s inquiry on item I. However, there is a constraint on that inquiry. The agent can
only accept it if it is truly the seller of such items. This becomes the first possible node of
failure. If this constraint is satisfied, then the seller proceeds to make sure that it has all the
knowledge needed in that domain and asserts some additional knowledge that will be needed
for this specific protocol run. Then the seller will take the role seller state1. This will move the
dialogue into the next state.

The first part of the dialogue was concerned with making sure that the seller is the correct seller
and that it has all the knowledge needed to assist the buyer in buying its item. The second
state of the dialogue is when the seller tries to know the buyer’s preferences in some areas in
order to check if it does have the suitable item needed. Hence, in this state of the dialogue,
both the buyer and the seller will enter a loop that results in the seller knowing the buyer’s
preferences. At the beginning of the loop, the seller sends a question inquiring about the buyer’s
preferences concerning a certain area. For instance, if the seller was questioning the buyer’s
budget, it would send it inquiring preference(budget). The seller then stops, since it cannot
complete its loop before receiving a message from the buyer. The buyer receives the seller’s

Chapter 3. Failure Recovery: Induced Backtracking 25

inquiry and replies back with the appropriate answer, either preference(budget,something) or
no preference(budget), depending on its beliefs.

When the seller receives a buyer’s preference, it either loops back again to inquire about some
other topic or it exits the loop by computing the result of acceptable available items. The latter
case takes place when the list of preferences to inquire about is empty. Similarly, the buyer
exits its loop when it receives a list of available items instead of a message inquiring about
some other preference.

The last stage in the dialogue is the reserve(X,B) and waiting for payment(X,P) messages that
confirm and end the transaction.

3.3.1 Testing

The context used for testing the above protocol was the selling of ‘cars’. For that the seller had
to have some knowledge about cars. The following is an example of the beliefs the seller had:

seller of(cars).

item topics(cars, [budget,manufacturer,color]).

acceptable title(cars, [budget, manufacturer, color]).

acceptable(cars, [[10000, bmw, black],

[9000, mer, red],

[7000, bmw, grey],

[7000, bmw, yellow]]).

Similarly, the buyer also needed some knowledge of its own preferences:
preference(cars, budget, 1000).

preference(cars, manufacturer, bmw).

preference(cars, color, black).

The next page illustrates what the dialogue tree looks like for the above special case. Note that
constraints are not added to this picture for the sake of simplification. However, nodes with
proaction or reaction constraints are underlined.

Now let’s look at the possible failures that could occur in this protocol. If failure occurred
during the very first steps of the protocol, i.e. if agent S is not the appropriate seller agent or if
it fails to acquire the needed knowledge in order to sell cars, then the dialogue fails. Since the
failed term is of the form M ⇐ A, then the seller sends the failed message back to the buyer.

Chapter 3. Failure Recovery: Induced Backtracking 26

inquiry(cars) => S

inquiring_preference(budget) <= S

preference(budget,something) => S no_preference(budget) => S

inquiring_preference(manufacturer) <= S

preference(manufacturer,something) => S no_preference(manufacturer) => S

inquiring_preference(color) <= S

preference(color,something) => S no_preference(color) => S

suitable_items(items) <= S

reserve(item, buyer) => S

waiting_for_payment(item,price) <= S

ST
A

G
E

1
ST

A
G

E
2

ST
A

G
E

3

Figure 3.5: the buyer’s dialogue tree

Chapter 3. Failure Recovery: Induced Backtracking 27

inquiry(cars) <= B

inquiring_preference(budget) => B

preference(budget,something) <= B no_preference(budget) <= B

inquiring_preference(manufacturer) => B

preference(manufacturer,something) <= B no_preference(manufacturer) <= B

inquiring_preference(color) => B

preference(color,something) <= B no_preference(color) <= B

suitable_items(items) => B

reserve(item, buyer) <= B

waiting_for_payment(item,price) => B

ST
A

G
E

1
ST

A
G

E
2

ST
A

G
E

3

Figure 3.6: the seller’s dialogue tree

Chapter 3. Failure Recovery: Induced Backtracking 28

The buyer tries to backtrack, but this dialogue protocol doesn’t give the buyer any options if it
selected the wrong seller. Hence, the dialogue fails.

The second possible failure could occur at the beginning and throughout stage 2 of the protocol.
This is whenever the seller needs to inquire about a certain preference. If there are no more
preferences to inquire about, then the seller backtracks and selects the path that computes the
results to be sent to the buyer.

On the other hand, failure also occurs when the buyer doesn’t have a preference for the seller’s
inquiry. In this case, the buyer sends the no preference(P) back to the seller.

Another failure that might occur at the beginning of stage 3 of the protocol is when the seller
fails to compute a non empty list of suitable items. Hence, if no suitable cars were found, the
dialogue will backtrack. This backtracking will result in sending a failure message notice to
the buyer informing it that its last mentioned preference failed. In the above example, it will
inform the buyer that its preference for ‘color’ has failed. This will then force the buyer to
backtrack and send a no preference(color).

Note that if again no suitable cars were found, this will force the seller to backtrack and send
the buyer a failure notice of the preference sent concerning the ‘manufacturer’.

This scenario is repeated until a suitable car is found or the dialogue fails. However, in our
specific example above, eventually the dialogue will always succeed. That is because whenever
a preference is not suitable, a no preference message is sent. Hence, in the worst case scenario,
the list of suitable cars will be the list of all available cars.

3.3.2 Observations

It is important to note that the protocol described above is a general purpose protocol. The
protocol is written in a way that it suits any item, whether cars or not. And for each item, each
different seller might have his own questions to ask the buyer. For instance, one seller might
inquire about the color of the car while another might not. All of those details are specific to a
certain item and/or seller since they are extracted from the seller’s own beliefs.

Moreover, room is made for additional modifications of the protocol. For instance, the buyer
now selects the first car from the list of suitable cars. Changes could be made to select the car
according to preferences.

Chapter 3. Failure Recovery: Induced Backtracking 29

Another modification that could easily be appended to the following version is adding a con-
straint to sending a no preference message. For instance, the buyer might want his budget
constraint to be a strict constraint. Hence, if no cars were found within that budget, the buyer
prefers not to buy. And so, many other modification can easily be added.

However, it should be noted that the ontology used in this protocol needs to be the same as that
used in both the seller and buyer’s beliefs.

3.3.3 Limitations Revisited

Reconsidering the limitations mentioned in section 3.2, it is worthy to note that the limitations
mentioned there were easily resolved. The result was similar to backtracking in other logic
programming languages, such as Prolog. Keeping in mind how the language works and its lim-
itations, one should be able to construct a dialogue protocol that does not end up in a deadlock
situation when some constraint fails.

As for the limitation of being unable to revert changes in common knowledge, it is clear from
the example above that this is again possible through careful engineering. The trick in such
problems is not to change clauses when backtracking might require to revert the change. In-
stead, make use of the possibility of asserting new predicate definitions. Then engineer your
knowledge in a way that makes use of those asserted predicates to catch changes instead of
making a change permanent. For instance, in the example above, instead of re-computing the
list of suitable cars every time a new preference is added, the computation takes place at the
very end. If something fails and backtracking is considered, the protocol is engineered carefully
to easily obtain the old knowledge needed.

3.3.4 Final Remark

What we have defined in this chapter is a formal method to overcome constraint satisfaction
failure in distributed dialogues by searching for other possible dialogue scenarios. This was
possible by inducing backtracking. We notice there was no need for agents to communicate
failed terms on a regular basis for synchronisation. The agent which encounters such a failure
automatically backtracks. The other agents involved in the dialogue will automatically readjust
their positions accordingly. The only case when failure is reported, is when backtracking will
result in a deadlock situation where each agent is waiting to hear from the other. To overcome

Chapter 3. Failure Recovery: Induced Backtracking 30

these situations, agents need to communicate failure messages in order to force the other agent
to backtrack.

This methodology has its limitations. However, with careful engineering of the protocol, it
appears to be possible to overcome these limitations.

Chapter 4

Constraint Failure and Negotiation

Chapter 3 proposes a solution to constraint failure in agent’s dialogues: backtracking to in-
vestigate further possible dialogue solutions. The e-commerce dialogue example in chapter 3
illustrates the possible use of such a solution. However, considering the same example, we
notice that a more realistic solution could still be implemented to better address such failure.
Let’s consider the case when the seller couldn’t find the car with the customer’s specified con-
straints. In scenarios similar to this, negotiation might be necessary. For instance, the buyer
might decide to soften its constraints and give other acceptable values instead of simply decid-
ing whether it can either accept any other value or none!

This chapter discusses the possibility of constraints negotiation. It starts with some background
on negotiation theories in general. Then moves to discuss the possibility of implementing
negotiation in the case of constraints failure of distributed dialogue protocols. Details of the
implementation are presented and the example in the previous chapter is used again to test the
negotiation protocol.

4.1 Overview: Negotiation Theories

One of the most important properties of agents is autonomy. This property implies that an
agent “can act without the direct intervention of others and has control over its own actions and
internal state” [KJ99]. We know that agents have their own goals and that they are expected
to take initiatives in order to meet their goals. However, in multi-agent systems, goals are

31

Chapter 4. Constraint Failure and Negotiation 32

achieved by the help of other agents. At many times, the actions an agent needs to take in order
to fulfil its goal includes asking other agents to take other actions.

But what happens when the means of one agent to achieve its goals con¤icts with the beliefs
of another involved agent? “Because the agents are autonomous and cannot be assumed to
be benevolent, agents must in¤uence others to convince them to act in certain ways, and ne-
gotiation is thus critical for managing such inter-agent dependencies” [BdL+99]. Agents will
have to negotiate over the issue in question until they could persuade each other to change their
beliefs and reach an acceptable solution.

Negotiation could be defined as a “distributed search through a space of potential agreements”
[JFL+01]. The following figure better explains this idea. The grey areas are the agents’ initial
region of acceptability. The areas with rigid boundaries are the current regions of acceptability.
The element marked ‘O’ is the current offer, while the ‘Xs’ are previous offers.

X

X

X

X

A1

A2

OX

X
X

X

X

X

X

X

XX
X

X

Figure 4.1: the space of negotiated agreements (a modi£ed version of [JFL+01])

Hence, in theory, agents will communicate trying to change other agent’s beliefs that would
result in changing their regions of acceptability in the direction of reaching a common point in
the space of potential agreements.

In practice, how can we define this communication (negotiation)?
The minimum requirements for negotiation is to be able to propose acceptable parts of the
search space and to respond to such proposals by either acceptance or rejection. However, with
a simple accept or reject reply, the proposer has no idea in which direction of the search space
should it move. This could not only be time consuming and inefficient, but it might also lead
to an infinite loop. The agent that responds to a proposal will need to include more information
in its response in order to help direct the proposer.

Chapter 4. Constraint Failure and Negotiation 33

To do that, we can define two forms of replies to proposals could take two different forms:
critiques and counter-proposals [PSJ98]. Critiques could be comments on those parts of the
proposal that need further modifications and might also indicate the direction of modification.
For example, consider the following dialogue between agents A and B:

A: I propose that I will provide you with service Y if you provide me with service X.
B: I’m not interested in service Y.

On the other side, a critique could simply be an acceptance or rejection with further details:

A: I propose that you provide me with service X.
B: I don’t have the privilege to provide service X.

Critiques usually cause the proposer to send another modified proposal. It is important to note
that the more information a critique holds the better the probability is for reaching an agreement
faster.

In addition to critiques, agents might also reply to proposals with another proposal. These are
called counter-proposals. Counter proposals might extend the initial proposal, as shown in the
following example:

A: I propose that you provide me with service X.
B: I propose that I will provide you with service X if you provide me with service Y.

Or, counter proposals might only amend part of the initial proposal:

A: I propose that I will provide you with service Y if you provide me with service X.
B: I propose that I will provide you with service Y if you provide me with service Z.

In addition to critiques and counter-proposals, meta-information could also be sent. Meta-
information is usually used to justify the response or proposal. Meta-information could also
help persuade the other agent to change it’s beliefs. For instance it could offer a reward, indicate
a threat or appeal [SJNP97].

With the above defined negotiation’s generic model, the figure next page best describes the
resulting negotiation protocol. The process begins when an agent ‘a’ proposes ‘X’ to an agent
‘b’ (proposal(a,b,X)). This automatically moves the protocol to state 1. At this point, either
agent ‘a’ makes a second proposal (protocol stays at state 1), or agent ‘b’ makes either a
counter proposal proposal(b,a,X) (protocol moves to state 2), or a critique of the initial proposal

Chapter 4. Constraint Failure and Negotiation 34

(protocol move to state 3). The process iterates until one of the agents sends an accept or reject.
These are represented by the grey final states 4 and 5, respectively.

proposal(a,b,X) proposal(a,b,X)

proposal(b,a,X)cri
tiq

ue(
b,a

,X
)

accept(b,a,X) acc
ept

(a,
b,X

)

critique(a,b,X)

w
ith

dr
aw

w
ith

dr
aw

w
ith

dr
aw0 1

2

3

4

5

pr
op

os
al

(b
,a

,X
)

pr
op

os
al

(a
,b

,X
)

proposal(a,b,X) proposal(b,a,X)

Figure 4.2: the negotiation protocol [PSJ98]

Negotiation could get very complex. Different negotiation rules might be needed for different
scenarios. However, the above tries to generalise the negotiation protocol by giving general
permissible states and state transitions for negotiation. In what follows, we will introduce the
negotiation protocol that we built for our distributed dialogue system.

4.2 Constraints Failure and Negotiation

How could a dialogue recover from failure when constraints are not satisfied? Negotiation
might be a solution to many cases. The agent might decide to negotiate constraints that failed
with other agents in order to permit the dialogue to proceed and complete successfully.

In our negotiation model, critiques and counter-proposals do not exist. Since we are negotiating
constraints, messages could either hold a set of constraints, a set of meta-information, or both.
To better understand why we did this, let us consider the critique example above. Agent B’s
responses could be considered as a meta-information itself, since it is informing the proposer
the reasons behind the failure of its proposal. The counter-proposal examples, on the other
hand, could be embedded in our dialogue protocol as follows:

Chapter 4. Constraint Failure and Negotiation 35

First Example,
A sends B: B provides A = X
B sends A: B provides A = X and A provides B = Y

Second Example,
A sends B: B provides A = X and A provides B = Y
B sends A: B provides A = X and A provides B = Z

where B provides A and A provides B are the constraints being negotiated.

Now the question is how to implement the negotiation protocol?
The first thing to bear in mind is that not all constraints in a dialogue protocol are negotiable.
Hence, the negotiation protocol should not be implemented automatically whenever failure
occurs. It should be specifically called when certain constraints need negotiation. Secondly,
Figure 4.2 above defines the protocol as a set of states that the negotiators pass through when
performing the negotiation actions, where these actions are usually of the form of message
passing. With our modifications to the negotiation model above, the resulting negotiation pro-
tocol will look similar to that in Figure 4.2, except that state 3 is now deleted. Hence, it looks
a perfect candidate to be implemented with a dialogue protocol. With the use of backtracking,
the protocol engineer would decide when should a constraint be negotiated by simply back-
tracking to the negotiation protocol as needed (a more practical example is given in section
4.3).

But how general could the protocol be? As we mentioned before, negotiation may get ex-
tremely complex. Different protocols might be needed for different scenarios. Section 4.1 tries
to categorise the huge range of negotiation dialogues. Some of these may include cases where
the issues (or constraints in the case of our dialogue protocols) negotiated might change. For
instance, consider the case when agent A proposes that agent B would provide it with service
‘X’, and agent B replied by proposing that it will provide service ‘X’ if A provides it with
service ‘Y’. In such cases, constraints being negotiated might themselves be subject to change
by either being deleted or introduced. Our negotiation protocol assumes that the set of con-
straints being negotiated is a strict un-negotiable set. Values of these constraints are the only
thing being negotiated. Moreover, if there is any need for change within the set of negotiated
constraints, then this will have to take place outside our defined protocol.

Another main assumption our negotiation protocol takes is that only two agents are involved
in any one negotiation dialogue at a certain time. Nevertheless, agents may still be engaged in

Chapter 4. Constraint Failure and Negotiation 36

several dialogues simultaneously.

The next section gives an exact definition of our negotiation protocol. Following that are some
implementation details and a practical example.

4.3 The Negotiation Protocol

Figures 4.3 and 4.4 illustrate the negotiation protocol implemented. One agent initiates the pro-
tocol by asking the other whether it agrees to negotiate (soften constraints(Error) ⇒ B). If it
does receive an agreement (negotiation status(accepted)⇐ B), then it inquires about the topic’s
ranking and the acceptable values for the topic being negotiated (inquiring topics ranking (All-
Topics)⇒ B and inquiring topic preference(T, data cat, preference)⇒ B). After receiving an-
swers for its inquiries, it moves to search for applicable results (Stage 3 of figure 4.3). It exits
stage 3 either when applicable results are found, or when failure occurs. In the latter case, it
proposes other acceptable results (only acceptable values(OldNResults) ⇒ B) which may or
may not be accepted by the other agent (the negotiant).

The stages of figures 4.3 and 4.4 are discussed below. (For further reference, the code of the
negotiation protocol is available in Appendix A)

4.3.1 Stage 1: Establishing Negotiation

The negotiation protocol is called when certain constraints need to be negotiated. However,
negotiation is triggered after some failure to fulfil certain constraints. Hence, the protocol first
starts by examining the type of error that occurred and resulted in the failure. Then, depending
on this error, the negotiant may or may not decided to proceed with the negotiation. To further
understand the need for this, let’s consider the example when an agent seeks the help of another
agent to build a PC. The agent should have certain requirements. It would then start a dialogue
with an appropriate agent informing it of the requirements to be fulfilled. The other agent then
tries to fulfil those requirements. If failure occurs, it asks the first agent whether it’s interested
in negotiating and informs it of the reason behind the failure. Now let’s say that the failure
was due to manufacturing constraints. Manufacturing constraints could include component
placement, component type, etc. In such cases, the negotiant should accept negotiation, because
otherwise it will not be able to reach its goal even if it seeks other agents’ help. We classify

Chapter 4. Constraint Failure and Negotiation 37

ST
A

G
E

1
ST

A
G

E
2

ST
A

G
E

3
ST

A
G

E
4

Topic
Select Next

ordinal

data type
interval data type

get results
matching
interval

Select Next
Value

only_acceptable_values(OldNResults) => B

negotiation_status(failed) <= Baccept(SelectedResults) <= B null

topic_preference(T, DataCat, TPrefs) <=B

inquiring_topic_preference(T, data_cat, preference) => B

topics_rankins(TsRanks) <= B

inquiring_topics_ranking(AllTopics) => B

negotiation_status(accepted) <= B

negotiation_status(rejected) <= B

soften_constraints(Error) => B

Figure 4.3: the negotiation initiator dialogue tree

those constraints as hard constraints that need to be negotiated. Another possible reason behind
failure might be that a certain item is out of stock, or maybe the agent being contacted doesn’t
support this specific requirement. We classify these kind of constraints as soft constraints, and
it is completely up to the negotiant agent to decide whether it will proceed with negotiation
or not. For instance, if the error description was ‘out of stock’, then the agent might decide to
reject negotiation and prefer to wait for more supplies to arrive. However, in the latter case,
it might either decide to negotiate or again end negotiation and try to find another agent that
could fulfil its requirements.

The negotiation protocol’s very first step is to try to establish negotiation. Now this step could
get as complex as the agents want it to get and its complexity has nothing to do with the negoti-

Chapter 4. Constraint Failure and Negotiation 38

ST
A

G
E

1
ST

A
G

E
2

ST
A

G
E

3
ST

A
G

E
4 only_acceptable_values(OldNResults) <= S

negotiation_status(failed) => Saccept(SelectedResults) => S null

inquiring_topic_preference(T, data_cat, preference) <= S

topics_rankins(TsRanks) => S

inquiring_topics_ranking(AllTopics) <= S

negotiation_status(rejected) => S

soften_constraints(Error) <= S

negotiation_status(accepted) => S

topic_preference(T, DataCat, TPrefs) => S

Figure 4.4: the negotiant’s dialogue tree

ation protocol itself. In the simplest case, an agent might have no knowledge whatsoever on the
reason of failure and hence always result with an ‘unknown error’. In a more complex scenario,
the agent might be connected to a complex knowledge base that would give the exact details
explaining failure. This would very much help the negotiant to achieve a better decision when
accepting or rejecting negotiation. In such cases, the knowledge base should always be up-to-
date, and it should offer the smallest detail that could help the negotiant make a better decision.
Similarly, on the other side, the negotiant might either decide to always accept negotiation, or
it could have a more complex opinion on which errors are acceptable. Moreover, a GUI could
be used to display an unrecognised error to the negotiant in order to also reach a better decision
(unfortunately, a GUI was not available at the moment of writing this dissertation).

Chapter 4. Constraint Failure and Negotiation 39

Hence we see that the complexity of the first step of negotiation, establishing negotiation, does
not depend on the negotiation protocol itself, but on the agents involved as well as the dialogue
scenario and the type of constraints that result in failure. Different dialogue scenarios and
different constraints might have different considerations to this first step.

4.3.2 Stage 2: Preference Inquiry

At the very beginning of negotiation, and if several constraints are subject to negotiation, then
the agent that initiates negotiation will need to inquire about the preference of constraints. The
other agent will need to rank the constraints according to their importance. For instance, if
we take a look at the example in section 3.3, the constraints that might need to be negotiated
are the budget, manufacturer and color. Color won’t be as important to the buyer as much as
the budget is. It might prefer to change its color instead of its budget. Therefore, it should
inform the seller of the ranking of these constraints (for example, budget=1, manufacturer=2,
color=3).

The above takes place only once and at the very beginning of negotiation. However, the proto-
col is called once for each constraint being negotiated. For every run of the protocol, the agent
that initiates the protocol will also need to inquire about the alternative acceptable preferences
for a given constraint.

Now alternative preferences might be categorised differently depending on the type of the
constraints being negotiated. The alternative preferences for the constraint budget might be an
interval of values. For instance, the buyer might accept any value between £5,000 and £10,000.
For other constraints, like manufacturer, it could be a list of other acceptable manufacturers
with a ranking indicating the order of preference. This data category is known as ordinal.

The protocol deals differently with each of these categories (as we will see in the following
section). However, for the time being, only those two categories are being dealt with. In the
future, if the need for additional categories arises, like the combination of the interval and
ordinal, then that will have to be introduced. Such a task will be a simple task. The protocol
part to deal with the new category will have to be written in a separate agent definition. Then
a link to this definition will have to be introduced in the ‘a(select topic(T, OldNResults, B),S)’
agent definition of the protocol (check appendix A for reference).

Chapter 4. Constraint Failure and Negotiation 40

4.3.3 Stage 3: Searching for a Solution

As we have mentioned above, the protocol is called once for each constraint being negotiated.
So if we take a look at the example in section 3.3, we notice that if failure occurs, the constraint
color will be negotiated to find other acceptable results. If this fails, then manufacturer will
be negotiated, and so on. It’s also important to note that constraints that have been given a
no preference value from the beginning will not be negotiated.

Now when searching for different values for the constraint color, for example, the protocol first
makes sure that the un-negotiated constraints do succeed in finding acceptable results. For in-
stance, the un-negotiated manufacturer and budget do have acceptable results. Because if they
don’t, then it’s useless to search for other acceptable color values, since the protocol will even-
tually backtrack again to negotiate the manufacturer constraint. Hence, only if un-negotiated
constraints do have successful results, then the protocol will further search for solutions to the
constraints being negotiated. Moreover, it will search for its solutions among the successfully
results of the un-negotiated constraints only.

Now the question is how does the protocol search for acceptable results with the given prefer-
ences? Let’s say that the topics being negotiated so far are the color and manufacturer of the
earlier example. They rank 3 and 2, respectively. Let’s also assume the following to be the
acceptable values of each:

– Manufacturer: Mercedes with rank 1, or BMW with rank 2
– Color: Black with rank 1, Dark Blue with rank 2, or Grey with rank 3

Black Dark Blue Grey Black Dark Blue Grey

All Cars

COLOR:

MANUFACTURER: BMWMercedes
(Rank 1)

(Rank1) (Rank 2) (Rank 3)

(Rank 2)

(Rank 1) (Rank 2) (Rank 3)

Figure 4.5: searching for a solution for the negotiated constraints manufacturer and color

The above picture explains the order that values will be tested for. The protocol will first try to
check if a Mercedes car is available, since Mercedes is the value with the highest rank to the

Chapter 4. Constraint Failure and Negotiation 41

constraint with the highest rank, the manufacturer constraint. If this succeeds, it will proceed
down the tree to try and find whether a ‘black Mercedes’ is available, since black is the highest
ranked value of the color constraint. If black fails, then dark blue is tested and so on. If all
colors fail for a Mercedes, then a BMW manufacturer is selected, and colors are again tested
one by one, starting with the highest ranked value to the least ranked.

The above example is a simple example. Constraints with interval typed values might also be
included. However, the concept is still the same. The protocol will try its best to get the highest
ranked value for each constraint, giving priorities for constraints with higher ranks. Hence
we can look at the above tree as being part of the actual dialogue tree. Moreover, since such
branches change with the different constraints being negotiated and their different acceptable
values, our protocol’s tree will also be dynamic.

4.3.4 Stage 4: Results

As we have seen above, the protocol moves from one constraint to the other and from one value
(for a given constraint) to the other. Now let’s consider the case when the protocol is solving
constraints of an interval data type. If this fails, then the protocol will suggest other available
solutions, before finalising the failure of negotiation. This is very much useful, especially when
available values are very close to the limits of the interval. However, in general, it might still
be a good idea to close a failing negotiation dialogue by giving the last possible options. The
negotiant might find something appealing among them, and save the negotiation from failure.
Hence, even when failure occurs when negotiating constraints of an ordinal data type, it might
still be a good idea to conclude with the list of suggested options.

But the question is what will the list of suggested options be?
We definitely wouldn’t want to include everything available! Let’s take the same e-commerce
scenario to make things clearer. Only that we’ll now increase the number of constraints being
negotiated in order to better illustrate this issue. Let the customer agent’s initial request to be
as follows: Budget = £10,000, VehicleType = Sports Car, YearModel= 2000, Manufacturer =
Mercedes and Color = Red.

Now let’s say that the protocol is half way through negotiating the color, manufacturer and
year model constraints. It finds an acceptable year model, say 1999. However, it fails when it
gets to themanufacturer. Instead of letting it fail, the protocol would suggest the available cars,

Chapter 4. Constraint Failure and Negotiation 42

if any, with the given un-negotiated constraints values (i.e. Budget = £10,000, VehicleType =
Sports Car) and the successful negotiated constraints values (i.e. YearModel= 1999). Hence,
it would be suggesting the available results that are closest to what the negotiant wants. If the
negotiant accepts any of the results, then the negotiation is saved from failure.

It is important to note that in the case when several partial negotiated constraints succeed, the
selected results are those values with the highest rankings.

4.4 Example and Analysis

In this section we discuss the tests and results made on the above proposed method of nego-
tiation. For testing purposes, we have used the same example as that in section 3.3. This has
been modified, as shown in the following figure, to make use of negotiation. The figure below
only shows the seller’s side of the dialogue. Similarly, the buyer’s side will be parallel to this.
For further reference, the modified code of the e-commerce scenario dialogue protocol is also
available in Appendix A.

The added paths are those with the circle in the middle. As we can see in Figure 4.6, the
dialogue starts as usual by collecting info on the preferred budget, manufacturer and color.
When there are no more topics to inquire about, it tries to compute the results and send them
to the buyer within the ‘suitable items(Items)’ message. If this fails, then the dialogue will
first backtrack to negotiate the color constraint. If this fails too, it will try to negotiate the
manufacturer constraint as well, and so on, until either a solution is found, or negotiation fails.

4.4.1 Testing and Results

The above have been tested thoroughly to ensure that the design explained in section 4.3 works
as intended. In what follows, different cases have been tested to further understand how the
negotiation takes place.

First, note that the buyer’s requested values for budget, manufacturer, and color are £10,000,
Mercedes, and Black, respectively. If negotiation is needed, then the other acceptable values
are:
– Budget between £8,000 and £12,000

Chapter 4. Constraint Failure and Negotiation 43

inquiring_preference(color) => B

preference(color,something) <= B no_preference(color) <= B

preference(manufacturer,something) <= B no_preference(manufacturer) <= B

inquiring_preference(manufacturer) => B

preference(budget,something) <= B no_preference(budget) <= B

inquiring_preference(budget) => B

inquiry(cars) <= B

suitable_items(items) => B

reserve(item, buyer) <= B

waiting_for_payment(item,price) => B

negotiate

negotiate the

constraint
as well

negotiate

as well

ST
A

G
E

1
ST

A
G

E
2

ST
A

G
E

3

manufacturer

constraint

constraint
color

budget

the

the

Figure 4.6: he modi£ed version of the seller’s dialogue tree

Chapter 4. Constraint Failure and Negotiation 44

– Manufacturer could either be Mercedes or BMW with ranks 1 and 2 respectively
– Color could either be Black, Dark Blue or Grey with ranks 1, 2 and 3, respectively

Case 0: Let’s assume that the list of available cars is:

Car # Price Manufacturer Color
Car 1 £10,000 Mercedes Black
Car 2 £10,000 Mercedes Red
Car 3 £10,000 BMW Grey
Car 4 £10,000 BMW Yellow

In this case, Car 1 is selected without any need for negotiation.

Case 1: Now, let’s assume that the list of available cars is:

Car # Price Manufacturer Color
Car 1 £10,000 Mercedes Grey
Car 2 £10,000 Mercedes Red
Car 3 £10,000 BMW Grey
Car 4 £10,000 BMW Yellow

In this case, none of the above cars suits the initial requirements of the buyer. The seller
backtracks to negotiate the color values. It tests whether Mercedes cars priced £10,000 already
exist, and it gets 2 results for that, cars 1 and 2. Now it tries to find if any of them will fit the
negotiated color values. Car 1 succeeds, and it is returned to the buyer as a suitable car.

Case 2: Now, let’s assume that the list of available cars is:

Car # Price Manufacturer Color
Car 1 £9,000 Mercedes Yellow
Car 2 £9,000 Mercedes Red
Car 3 £10,000 BMW Grey
Car 4 £10,000 BMW Yellow

Again, none of the above cars suits the initial requirements of the buyer. The seller backtracks
to negotiate the color values. It tests whether Mercedes cars priced £10,000 already exist. Since
it fails, it automatically backtracks to negotiate the manufacturer constraint.

The seller then tries to find a £10,000 priced cars (i.e. cars 3 and 4). It checks branches of the
tree (Figure 4.5) that fit any of the above cars. The search used is a depth first search. That’s
because it needs to find the results with the highest rankings. In this case, car 3 is the only one

Chapter 4. Constraint Failure and Negotiation 45

that succeeds, and it is returned to the buyer as the only suitable item.

Case 3: Now, let’s assume that the list of available cars is:

Car # Price Manufacturer Color
Car 1 £10,000 Mercedes Yellow
Car 2 £10,000 Mercedes Red
Car 3 £10,000 BMW Grey
Car 4 £10,000 BMW Yellow

Again, none of the above cars suits the initial requirements of the buyer. The seller backtracks
to negotiate the color values. It again tests whether Mercedes cars priced £10,000 already
exist. This time it succeeds, returning cars 1 and 2 as a result. However, when it tries to find
acceptable color values among those results, it fails!

At this point the protocol doesn’t automatically backtrack to negotiate the manufacturer con-
straint, as above, but it suggests available values (i.e. cars 1 and 2). In Case 2 above, checking
for available acceptable color values was useless. Hence, it automatically backtracks. How-
ever, in this case, negotiating the color constraint has failed since no results were found. Trying
to overcome failure, the seller decides to let the buyer know of any available results (cars 1 and
2). The buyer might either accept any of the results and successfully complete the protocol, or
it might reject them, forcing the seller to backtrack and continue with the negotiation.

Case 4: Now, let’s assume that the list of available cars is:

Car # Price Manufacturer Color
Car 1 £9,000 Mercedes Black
Car 2 £9,000 Mercedes Red
Car 3 £9,000 BMW Grey
Car 4 £9,000 BMW Yellow

Let’s also assume now that at the very beginning of the protocol, the buyer decided that it
doesn’t have a certain preference for the manufacturer constraint.

Hence the initial requirements now are Budget = £10,000 and Color = Black. This fails, so
the seller backtracks to negotiate the color values. It again tests whether cars priced £10,000
already exist, and it fails.

At this point, the protocol doesn’t backtrack to negotiate themanufacturer constraint, but back-
tracks directly to negotiate the budget. That’s because the buyer already had no preference what

Chapter 4. Constraint Failure and Negotiation 46

so ever for the manufacturer.

The seller will now try to find car’s whose prices is between £8,000 and £12,000. All of the
above cars succeed. So it now tries to get the one with the highest ranking color value, and car
1 is returned to the buyer as the suitable item.

4.4.2 Observations and Remarks

The negotiation protocol discussed above is complex. But it provides results closer to real
negotiation.

Let us go back to the search process. The protocol tries to soften constraints one after the other
until a solution is found. After softening few constraints, it tries to fulfil them with respect to
the constraint’s ranking order. Now if this fails, then in order to give the negotiation a final
chance to succeed, acceptable results are suggested. Those acceptable results are carefully
computed to give the negotiant the closest results to the current given preferences.

This option makes the negotiation dialogue more real. It allows both parties to actually nego-
tiate by permitting each to inform the other of what it has or needs, instead of just having one
agent requesting and the other trying to fulfil its requests without actual negotiation.

Another similar case is at the very beginning of the protocol. The negotiant is given the option
to accept or reject the negotiation. In this case too, more information is communicated between
both parties in order to make the negotiation as realistic as possible, and in order to allow the
protocol to reach better results in the shortest time. One agent tries to give as much detailed
explanation as possible to the other, to help it better understand the problem that results in
making a better decision.

However, as noted in section 4.3.1, this also depends on the agents involved, dialogue scenarios
and constraints being negotiated. In cases when such information is given high importance, it
is recommended that the agent would be connected to a powerful knowledge base that would
provide it with the most updated detailed explanation.

Hence we notice that the proposed negotiation method could become more powerful by making
use of other more powerful tools, like a knowledge base. Another important tool that could be
used is a graphical user interface. Consider the case when the agent is informing the negotiant
of the reasons behind failure. The negotiant receives this data and notices that it is an un-

Chapter 4. Constraint Failure and Negotiation 47

recognised reason. In such cases, a GUI would be perfect to handle these situations, instead of
using a default value that would always accept or reject such un-recognised errors.

Yet another important use of a GUI would be at the very end of the negotiation. If negotiation
fails and the agent proposes some available results, the GUI might be a better way to deal with
those results too.

We have tried to make the protocol as general as possible, and as realistic as possible. The
protocol we implemented deals only with cases when two agents are negotiating over a strict
set of constraints. One agent would have certain requirements, and the other would try to
convince that agent to soften its constraints in order to reach acceptable results. It might also
direct the agent by providing it with some advice. However, only with the help of other tools
can the protocol reach it’s full potential.

4.4.3 Final Remark

In chapter 3, we proposed a formal solution, induced backtracking, to overcome constraints’
failure in distributed dialogue protocols. In this chapter we have discussed the importance of
negotiation for certain cases of constraints failure. The negotiation protocol proposed employs
our ‘induced backtracking’ method. Without backtracking, the protocol can not backtrack to
negotiate other constraints. The potential capabilities of backtracking are especially obvious in
the part of the protocol that looks for acceptable results by moving from one constraint to the
other and from one constraint value to the other.

Chapter 5

Conclusion

The distributed dialogues proposed did not completely offer what the language presented.
When engineers construct definitions of the form ‘A or B’, they expect that if either A or B
can be completed successfully, then ‘A or B’ will be completed successfully. This is true when
A and B are atomic terms. However, with more complex definitions, it becomes hard to back-
track to the appropriate other option.

In this dissertation we have provided a simple methodology to induce backtracking and pre-
serve the full potential of these dialogues. The concept was relatively straight forward. How-
ever, the tricky part was to try to cover and resolve the most likely deadlock situations. We have
tackled questions like when and how do we open already closed dialogues? When and how do
we communicate failed terms? These were critical questions needed to provide a smooth coor-
dination. We had to insure that the agents communicating will backtrack together to the same
protocol state. This had to be done without the need to send every single term marked as failed.
Hence, failed terms were only communicated on crucial occasions: to prevent the dialogue
from ending up in a deadlock situation.

However, similar to human dialogues, agent dialogues might also get very complicated. A
formal methodology, such as our ‘induced backtracking’, can not cover all possible dialogue
deadlock situations. But engineers could make use of our proposed solution in building dia-
logues to act as intended. Chapter 3 already discussed the limitations of our solution and how
to overcome them.

The result is that we have introduced a method that could be used to solve constraint failure

48

Chapter 5. Conclusion 49

issues. When one path of the dialogue fails, other paths are investigated for possible success.
Further more fancy solutions could also be investigated for such failure. But these will most
probably be dependent on the type of failure, the dialogue involved, the specific constraints that
failed, etc. For instance, on certain occasions, one might be interested in considering patching
the protocols to deal with the specific failure involved. At other occasions, it might be more
appropriate to negotiate the failed constraints.

In the second part of our dissertation we constructed a negotiation protocol that makes use of
our ‘induced backtracking’ solution and could be used to deal with constraints failure. Again,
we tried to make the protocol as general as possible. The protocol we implemented dealt
only with cases when two agents are negotiating over a strict set of constraints. One agent
would have certain requirements, and the other would try to convince that agent to soften its
constraints in order to reach acceptable results. It might also direct the agent by providing it
with some advice.

However, as mentioned earlier, the full capabilities of this protocol could only be uncovered
with the use of other tools (such as having a selling agent connected to a powerful knowledge
base or having a buyer agent with a GUI). Hence, It would be interesting to consider these
additional issues that could help highlight the full potential of our protocol.

As we have seen, different situations require different actions towards constraint failure. In
this dissertation we have fixed the backtracking issue in distributed dialogues. This is not
only a solution that addresses the constraints failure issue, but also a basic definition of the
behaviour of dialogue protocols. We also provided a negotiation protocol that implements the
‘backtracking’ solution to negotiate constraints. However, the door is also open for much a
wider range of further proposals.

Bibliography

[Aus62] John L. Austin. How to do things with words. Oxford: Oxford University Press,
1962.

[BdL+99] Martin Beer, Mark dInverno, Michael Luck, Nick R. Jennings, Chris Preist, and
Michael Schroeder. Negotiation in multi-agent systems. Knowledge Engineering
Review, 14(3):285–289, 1999.

[FIP97] FIPA. Agent communication language specification, October 1997. FIPA 97 Spec-
ification, Part 2.

[GHB99] Mark Greaves, Heather Holmback, and Jeffrey Bradshaw. What is a conversation
policy? In Proceedings of the Workshop on Specifying and Implementing Conver-
sation Policies, at third annual conference on Autonomous Agents, May 1999.

[JFL+01] N. R. Jennings, P. Faratin, A. R. Lomuscio, S. Parsons, C. Sierra, and
M. Wooldridge. Automated negotiation: Prospects, methods and challenges. Jour-
nal of Logic and Computation, 10(2):199–215, July 2001.

[KJ99] Susanne Kalenka and Nick R. Jennings. Socially responsible decision making by
autonomous agents. In K. Korta, E. Sosa, and X. Arrazola, editors, Cognition,
Agency and Rationality, pages 135–149. Kluwer, 1999.

[PSJ98] Simon Parsons, Carles Sierra, and Nick R. Jennings. Agents that reason and nego-
tiate by arguing. Journal of Logic and Computation, 8(3):261–292, June 1998.

[Rob] Dave Robertson. A lightweight method for coordination of agent oriented web
services. Preprint, available from the author.

[Sea79] John Searle. Expression and meaning: studies in the theory of speech acts. Cam-
bridge: Cambridge Universiy Press, 1979.

50

Bibliography 51

[SJNP97] Carles Sierra, Nick R. Jennings, Pablo Noriega, and Simon Parsons. A framework
for argumentation-based negotiation. In Proceedings of the 4th International Work-
shop on Agent Theories, Architectures and Languages, pages 167–182, July 1997.

[Woo02] Michael Wooldridge. An Introduction to MultiAgent Systems. John Wiley & Sons,
Chichester, England, 2002.

[WR02] Christopher Walton and Dave Robertson. Flexible multi-agent protocols. Informat-
ics Research Report EDI-INF-RR-0164, Centre for Intelligent Systems and their
Applications, October 2002.

Appendix A

Dialogue Protocol Examples

A.1 The E-Commerce Protocol

A.1.1 The Buyer’s Dialogue Clauses

a(buyer(I,S),B) ::=

inquiry(I) ⇒ a(seller,S) then

a(buyerSt2(I),B).

a(buyerSt2(I),B) ::=

(

inquiring preference(T) ⇐ a(sellerSt2(B,I),S) then

(

preference(T,P) ⇒ a(sellerSt2(B,I),S) ← preference(I,T,P)

or

preference(T,null) ⇒ a(sellerSt2(B,I),S)

) then

a(buyerSt2(I),B)

)

or

a(buyerSt3,B).

52

Appendix A. Dialogue Protocol Examples 53

a(buyerSt3,B) ::=

suitable items([I1|]) ⇐ a(sellerSt3(B,I),S) then

reserve(I1,B) ⇒ a(sellerSt3(B,I),S) then

waiting for payment(I1) ⇐ a(sellerSt3(B,I),S).

Appendix A. Dialogue Protocol Examples 54

A.1.2 The Seller’s Dialogue Clauses

a(seller,S) ::=

seller of(I) ← inquiry(I) ⇐ a(buyer(I,S), B) then

null ← item topics(I,AllTopics) and

assert(topicsToInquire(AllTopics)) and

assert(preferences([])) then

null ← assertz((compute results([], I, , AllItems) :-

acceptable(I, AllItems))) and

assertz((compute results([[T,P]|[]], I, null, NewResults) :-

acceptable title(I, List), acceptable(I, AllItems),

substitute(T, List, P, NewList), set search(P, NewList, FinalList),

setof(FinalList, member(FinalList, AllItems), NewResults))) and

assertz((compute results([[T,P]|Tail], I, null, NewResults) :-

acceptable title(I, List), acceptable(I, AllItems),

substitute(T, List, P, NewList), set search(P, NewList, FinalList),

setof(FinalList, member(FinalList, AllItems), OldResults2),

compute results(Tail, OldResults2, NewResults))) and

assertz((compute results([[T,P]|[]], I, OldResults, NewResults) :-

acceptable title(I, List), \+ OldResults = null,

substitute(T, List, P, NewList), set search(P, NewList, FinalList),

setof(FinalList, member(FinalList, OldResults), NewResults))) and

assertz((compute results([[T,P]|Tail], I, OldResults, NewResults) :-

acceptable title(I, List), \+ OldResults = null,

substitute(T, List, P, NewList), set search(P, NewList, FinalList),

setof(FinalList, member(FinalList, OldResults), OldResults2),

compute results(Tail, OldResults2, NewResults))) and

assertz((set search(, [], []))) and

assertz((set search(V, [V|T], [V|R]) :- set search(V, T, R))) and

assertz((set search(V, [X|T], [|R]) :- \+ X=V, set search(V, T, R))) then

a(sellerSt2(B,I),S).

Appendix A. Dialogue Protocol Examples 55

a(sellerSt2(B,I),S) ::=

(

inquiring preference(T) ⇒ a(buyerSt2(I),B)

← retract(topicsToInquire([T|RT])) and assert(topicsToInquire(RT)) then

preference(T,P) ⇐ a(buyerSt2(I),B) then

(

null ← (\+ P=null) and retract(preferences(OldPref)) and

assert(preferences([[T,P] | OldPref]))

or

null ← retract(preferences(Old list)) and

select([T,],Old list,New list) and assert(preferences(New list))

) then

a(sellerSt2(B,I),S)

)

or

(

null ← topicsToInquire([]) then

a(sellerSt3(B,I),S)

).

a(sellerSt3(B,I),S) ::=

suitable items(Results) ⇒ a(buyerSt3,B) ← preferences(Preferences) and

compute results(Preferences, I, null, Results) then

reserve(I1,B) ⇐ a(buyerSt3,B) then

waiting for payment(I1) ⇒ a(buyerSt3,B).

Appendix A. Dialogue Protocol Examples 56

A.2 The E-Commerce Protocol Implementing Negotiation

A.2.1 The Buyer’s Dialogue Clauses

a(buyer(I,S),B) ::=

inquiry(I) ⇒ a(seller,S) then

a(buyerSt2(I),B).

a(buyerSt2(I),B) ::=

(

inquiring preference(T) ⇐ a(sellerSt2(B,I),S) then

(

preference(T,P) ⇒ a(sellerSt2(B,I),S) ← preference(I,T,P)

or

preference(T,null) ⇒ a(sellerSt2(B,I),S) ← no preference(I,T)

) then

a(buyerSt2(I),B)

)

or

(

a(buyerSt3,B)

)

or

(

a(negotiant,B) then

a(buyerSt2(I),B)

).

a(buyerSt3,B) ::=

suitable items([I1|]) ⇐ a(sellerSt3(B),S) then

reserve(I1,B) ⇒ a(sellerSt3(B),S) then

waiting for payment(I1) ⇐ a(sellerSt3(B),S).

Appendix A. Dialogue Protocol Examples 57

A.2.2 The Seller’s Dialogue Clauses

a(seller,S) ::=

seller of(I) ← inquiry(I) ⇐ a(buyer(I,S), B) then

null ← item topics(I,AllTopics) and

assert(all topics(AllTopics)) and

assert(topicsToInquire(AllTopics)) and

assert(preferences([])) then

a(sellerSt2(B,I),S).

a(sellerSt2(B,I),S) ::=

(

inquiring preference(T) ⇒ a(buyerSt2(I),B)

← retract(topicsToInquire([T|RT])) and assert(topicsToInquire(RT)) then

preference(T,P) ⇐ a(buyerSt2(I),B) then

(

null ← P=null

or

null ← (\+ P=null) and retract(preferences(OldPref)) and

assert(preferences([[T,P] | OldPref]))

) then

a(sellerSt2(B,I),S)

)

or

(

null ← topicsToInquire([]) then

a(sellerSt3(B),S)

)

or

(

a(negotiation initiator(I,T,B), S) ← (\+ var(T)) and preferences(Pref)

and member([T,], Pref) then

a(sellerSt3(B),S)

).

Appendix A. Dialogue Protocol Examples 58

a(sellerSt3(B),S) ::=

(

suitable items(Results0) ⇒ a(buyerSt3,B) ← all topics(AllTopics) and

preferences(Prefs) and get results(I, AllTopics, Prefs, Results0)

or

suitable items(NResults) ⇒ a(buyerSt3,B) ← negotiated list(NResults)

and (\+ NResults = [])

) then

reserve(I1,B) ⇐ a(buyerSt3,B) then

waiting for payment(I1) ⇒ a(buyerSt3,B).

Appendix A. Dialogue Protocol Examples 59

A.3 The Negotiation Protocol

A.3.1 The Negotiation Initiator’s Dialogue Clauses

a(negotiation initiator(I, T,B), S) ::=

(

null ← unresolved(UnresolvedTs) and retract(unresolved())

and retract(resolved(ResolvedTs))

or

null ← not(unresolved()) and all topics(UnresolvedTs)

and ResolvedTs=[] and assert(negotiated list([]))

) then

soften constraints(Error) ⇒ a(negotiant,B)

← preferences(Prefs) and error test(I, Prefs, UnresolvedTs, Error) then

(

negotiation status(rejected) ⇐ a(negotiant,B)

or

(

negotiation status(accepted) ⇐ a(negotiant,B) then

(

null ← topics rankings()

or

(

inquiring topics ranking(AllTopics) ⇒ a(negotiant,B)

← not(topics rankings()) and all topics(AllTopics) then

assert(topics rankings(TsRanks)) ←

topics ranking(TsRanks) ⇐ a(negotiant,B)

)

) then

inquiring topic preference(T, data cat, preference)

⇒ a(negotiant,B) then

assert(topic preference(T, DataCat, TPrefs)) and

assert(resolved([T | ResolvedTs]))

← topic preference(T, DataCat, TPrefs) ⇐ a(negotiant,B) then

Appendix A. Dialogue Protocol Examples 60

null ← all topics(AllTopics) and resolved(NResolvedTs)

and subtract(AllTopics, NResolvedTs, NUnresolvedTs)

and assert(unresolved(NUnresolvedTs)) then

a(select topic(I,null,ResultsI,B),S) ← preferences(Prefs)

and get results(I, NUnresolvedTs, Prefs, ResultsI)

)

).

a(select topic(I, T, OldNResults, B),S) ::=

(

null ← resolved(ResolvedTs) and topics rankings(TsRanks) and

next topic(ResolvedTs, TsRanks, T, NextT) then

(

(

null ← topic preference(NextT, ordinal,) then

(

null ← (T = null) and assert(firstTopic(NextT))

or

null ← (\+ T = null)

) then

a(select value(I,NextT, null, OldNResults, B),S)

)

or

(

null ← topic preference(NextT, interval, [LB, UB]) then

a(interval data(I,NextT, LB, UB, OldNResults, B),S)

)

)

)

or

(

null ← resolved(ResolvedTs) and topics rankings(TsRanks) and

(\+ next topic(ResolvedTs, TsRanks, T, Next T)) and

Appendix A. Dialogue Protocol Examples 61

retract(negotiated list()) and assert(negotiated list(OldNResults)) then

(

null ← firstTopic() and retract(firstTopic())

or

null ← not(firstTopic())

) then

(

null ← savedResults() and retract(savedResults())

or

null ← not(savedResults())

)

).

a(select value(I, T, V, OldNResults, B),S) ::=

(

null ← topic preference(T, ordinal, TPrefs)

and next value(TPrefs, V, NextV) then

a(ordinal data(I,T, NextV, OldNResults, B),S)

)

or

(

null ← topic preference(T, ordinal, TPrefs) and

(\+ next value(TPrefs, V, Next V)) then

(

null ← savedResults(SR)

or

null ← not(savedResults()) and assert(savedResults(OldNResults))

) then

null ← firstTopic(T) and retract(firstTopic(T)) then

a(suggest values(OldNResults, B),S)

).

Appendix A. Dialogue Protocol Examples 62

a(ordinal data(I, T, V, OldNResults, B),S) ::=

(

null ← retract(preferences(OldPref)) and select([T,], OldPref, NewPref)

and assert(preferences([[T,V] | NewPref])) and

ordinal results(I, T, [[T,V] | NewPref], OldNResults, NewNResults) then

a(select topic(I,T, NewNResults, B),S)

)

or

(

null ←

(\+ ordinal results(I,T,[[T,V]|NewPref],OldNResults,NewNResults)) then

a(select value(I,T, V, OldNResults, B),S)

).

a(interval data(I, T, LB, UB, OldNResults, B),S) ::=

(

null ← interval results(I, T, [LB,UB], OldNResults, NewNResults)

and (\+ NewNResults=[])then

a(select topic(I,T, NewNResults, B),S)

)

or

(

null ← interval results(I, T, [LB,UB], OldNResults, New NResults)

and (NewNResults=[]) then

a(suggest values(OldNResults, B),S)

).

a(suggest values(OldNResults, B),S) ::=

only acceptable values(OldNResults) ⇒ a(reassessment negotiant, B) then

(null ← retract(savedResults())or null ← not(savedResults()))then

(

(

accept(SelectedResult) ⇐ a(reassessment negotiant, B) then

Appendix A. Dialogue Protocol Examples 63

null ← retract(negotiated list()) and

assert(negotiated list(SelectedResult))

)

or

negotiation status(failed) ⇐ a(reassessment negotiant, B)

).

Appendix A. Dialogue Protocol Examples 64

A.3.2 The Negotiant’s Dialogue Clauses

a(negotiant,B) ::=

soften constraints(Error) ⇐ a(negotiation initiator(I,T,B), S) then

(

null ← (\+ Error = unknown) then

negotiation status(rejected) ⇒ a(negotiation initiator(I,T,B), S)

)

or

(

null ← Error = unknown then

negotiation status(accepted) ⇒ a(negotiation initiator(I,T,B), S) then

(

null

or

(

inquiring topics ranking(AllTopics) ⇐

a(negotiation initiator(I,T,B), S) then

topics ranking(TsRanks) ⇒ a(negotiation initiator(I,T,B), S)

← topics ranking(I, TsRanks)

)

) then

inquiring topic preference(T, data cat, preference) ⇐

a(negotiation initiator(I,T,B), S) then

topic preference(T, DataCat, TPrefs) ⇒ a(negotiation initiator(I,T,B), S)

← topic preferences(I, TsPrefs) and member([T, DataCat, TPrefs], TsPrefs)

then

(

null

or

a(reassessment negotiant,B)

)

).

Appendix A. Dialogue Protocol Examples 65

a(reassessment negotiant,B) ::=

only acceptable values(Results) ⇐ a(suggest values(X,B), S) then

(

accept(SelectedResult) ⇒ a(suggest values(X,B), S)

← accepted(Results, SelectedResult)

or

negotiation status(failed) ⇒ a(suggest values(X,B), S)

← (\+ accepted(Results, SelectedResult))

).

Appendix B

The Code

This appendix contains only the major prolog files for this dissertation:

– The negot.pl file of section B.1 contains the predicates used by the negotiation protocol of
Appendix A.3.
– The basic.pl is our major work. It contains all the rewrite rules and their modifications that
resulted in the ‘induced backtracking’ methodology proposed in Chapter 3.
– The loader.pl file contains the predicates that load the institutions.
– The interface.pl deals with the user interface. We have included it in this appendix since it
has been slightly modified to keep the user informed of dialogue states.

66

Appendix B. The Code 67

B.1 negot.pl

:- use module(library(lists)).

subtract([], , []).

subtract(List1, [], List1).

subtract([H|T], List2, Result) :- member(H, List2), subtract(T, List2, Result).

subtract([H|T], List2, [H|Result]) :- \+ member(H, List2),

subtract(T, List2, Result).

accepted([H|], H).

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Predicates to find error type

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

error test(I, ListofList, UnresolvedTopics, AllErrors) :-

get preferences(UnresolvedTopics, ListofList, ListofNewPreferences),

unacceptable title(I, [, ,List]),

prepare search(List, ListofNewPreferences , SearchList),

unacceptable(I, ListToSearch),

get error(SearchList, ListToSearch, AllErrors).

get preferences([H|[]], ListofList, [[H,P]]) :-

member([H,P], ListofList).

get preferences([H|[]], ListofList, []) :-

\+ member([H,], ListofList).

get preferences([H|T], ListofList, [[H,P]|Results]) :-

member([H,P], ListofList),

get preferences(T, ListofList, Results).

get preferences([H|T], ListofList, Results) :-

\+ member([H,], ListofList),

get preferences(T, ListofList, Results).

prepare search([H|[]], List, [P]) :-

Appendix B. The Code 68

member([H,P], List).

prepare search([H|[]], List, [null]) :-

non member([H,], List).

prepare search([H|T], List, [P|Result]) :-

member([H,P], List),

prepare search(T, List, Result).

prepare search([H|T], List, [null|Result]) :-

non member([H,], List),

prepare search(T, List, Result).

get error(SearchList, ListToSearch, AllErrors) :-

setof([A,B,SearchList], member([A,B,SearchList], ListToSearch), AllErrors).

get error(, , unknown).

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Predicates to find applicable results for a given list of topics

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

get results(I, ListOfTopics, Preferences, Results) :-

acceptable(I, CurrentList),

search results(ListOfTopics, I, Preferences, CurrentList, Results).

search results([], , , CurrentList, CurrentList).

search results([H|T], I, ListOfPreferences, CurrentList, FinalResultingList) :-

memberchk([H,P], ListOfPreferences), acceptable title(I, List),

substitute(H, List, P, NewList), set search(P, NewList, FinalList),

setof(FinalList, member(FinalList, CurrentList), ResultingList),

search results(T, I, ListOfPreferences, ResultingList, FinalResultingList) .

search results([H|T], I, ListOfPreferences, CurrentList, FinalResultingList) :-

\+ memberchk([H,], ListOfPreferences),

search results(T, I, ListOfPreferences, CurrentList, FinalResultingList) .

set search(, [], []).

set search(V, [V|T], [V|R]) :- set search(V, T, R).

Appendix B. The Code 69

set search(V, [X|T], [|R]) :- \+ X=V, set search(V, T, R).

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Predicates to find applicable results for an ordinal data category

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

ordinal results(I, Topic, Preferences, [], Results) :-

acceptable(I, CurrentList),

search results([Topic], I, Preferences, CurrentList, Results).

ordinal results(I, Topic, Preferences, CurrentList, Results) :-

search results([Topic], I, Preferences, CurrentList, Results).

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%Predicates to find applicable results for an interval data category

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

interval results(I, Topic, [X,Y], [], Results) :-

acceptable(I, CurrentList),

fix boundaries([X,Y], [LB,UB]), acceptable title(I, List), nth(N, List, Topic),

compare interval(CurrentList, N, LB, UB, Results).

interval results(I, Topic, [X,Y], CurrentList, Results) :-

fix boundaries([X,Y], [LB,UB]), acceptable title(I, List), nth(N, List, Topic),

compare interval(CurrentList, N, LB, UB, Results).

fix boundaries([X,Y], [X,Y]) :- X =< Y.

fix boundaries([X,Y], [Y,X]) :- X > Y.

compare interval([H|[]], N, LB, UB, [H]) :-

nth(N, H, Value),

Value >= LB, Value =< UB.

compare interval([|[]], , , , []).

compare interval([H|T], N, LB, UB, [H|FL]) :-

nth(N, H, Value),

Value >= LB, Value =< UB,

compare interval(T, N, LB, UB, FL).

Appendix B. The Code 70

compare interval([|T], N, LB, UB, FL) :-

compare interval(T, N, LB, UB, FL).

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Predicates to find Next Topic and Next Value, respectively

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

next topic(TopicstoResolve, AllTopicsRanking, null, FirstTopic) :-

get ranking(TopicstoResolve, AllTopicsRanking, Results),

get first rank(Results, FirstTopic).

next topic(TopicstoResolve, AllTopicsRanking, CurrentTopic, NextTopic) :-

get ranking(TopicstoResolve, AllTopicsRanking, Results),

member([Rank,CurrentTopic], Results),

get higher ranks(Rank, Results, ListofHigherRanks),

get first rank(ListofHigherRanks, NextTopic).

get ranking([H|[]], TopicsRanking, [[R,H]]) :-

member([R,H], TopicsRanking).

get ranking([H|T], TopicsRanking, [[R,H] | Results]) :-

member([R,H], TopicsRanking),

get ranking(T, TopicsRanking, Results).

next value(ListofValues, null, FirstValue) :-

get first rank(ListofValues, FirstValue).

next value(ListofValues, CurrentValue, NextValue) :-

member([Rank,CurrentValue], ListofValues),

get higher ranks(Rank, ListofValues, ListofHigherRanks),

get first rank(ListofHigherRanks, NextValue).

get first rank([[,Value]|[]], Value).

get first rank([[Rank1,Value1]|[[Rank2,]|[]]], Value1) :- Rank1 < Rank2.

get first rank([[Rank1,]|[[Rank2,Value2]|[]]], Value2) :- Rank1 > Rank2.

get first rank([[Rank1,Value1]|[[Rank2,]|T]], FirstValue) :- Rank1 < Rank2,

get first rank([[Rank1,Value1]|T], FirstValue).

Appendix B. The Code 71

get first rank([[Rank1,]|[[Rank2,Value2]|T]], FirstValue) :- Rank1 > Rank2,

get first rank([[Rank2,Value2]|T], FirstValue).

get higher ranks(Rank1, [[Rank2,Value2]|[]], [[Rank2, Value2]]) :- Rank1 < Rank2.

get higher ranks(Rank1, [[Rank2,]|[]], []) :- Rank1 >= Rank2.

get higher ranks(Rank1, [[Rank2,Value2]|T], [[Rank2,Value2]|Results]) :-

Rank1 < Rank2, get higher ranks(Rank1, T, Results).

get higher ranks(Rank1, [[Rank2,]|T], Results) :-

Rank1 >= Rank2, get higher ranks(Rank1, T, Results).

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

Appendix B. The Code 72

B.2 basic.pl

:- use module(library(lists)),

use module(library(random)).

:- ensure loaded([util,negot]).

:- op(900, xfx, ’::=’),

op(900, xfx, ’::’),

op(900, xfx, ’>>’),

op(800, xfx, ’=>’),

op(800, xfx, ’<=’),

op(830, xfx, ’<--’),

op(820, xfy, and),

op(850, xfy, par),

op(850, xfy, then),

op(850, xfy, or).

%%%%%%%%%%%%%%%%%%%%% starting the expansion process %%%%%%%%%%%%%%%%%%

% modified to deal with incoming failed message notices

expansion(Agent, Ms, Os, P, FinalMs, FinalOs, FinalP) :-

check failed message(Agent, Ms, P, Msi, Pi),

expansion step(Agent, Msi, Os, Pi, NewMs, NewOs, NewP),

check EOF expansion(Agent, Ms, Os, P,

NewMs, NewOs, NewP, FinalMs, FinalOs, FinalP).

expansion(Agent, Ms, Os, P, Ms, Os, P) :-

\+ expansion step(Agent, Ms, Os, P, , ,).

% added to check for failed message notices

% and fix the protocol, if necessary

check failed message(At, [m(At,f(OldM => Af) <= Af)], Prot, [], NewProt) :-

!, mark failed(At, c(OldM => Af), Prot, NewProt).

check failed message(, Ms, Prot, Ms, Prot).

check EOF expansion(, Ms, Os, P, NewMs, NewOs, NewP, Ms, Os, P) :-

NewMs = Ms,

Appendix B. The Code 73

NewOs = Os,

NewP = P.

check EOF expansion(Agent, , , , NewMs, NewOs, NewP,

FinalMs, FinalOs, FinalP) :-

expansion(Agent, NewMs, NewOs, NewP, FinalMs, FinalOs, FinalP).

%%%%%%%%%%%%%%%%%% selecting dialogue clause to exapnd %%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%% and saving it after expansion %%%%%%%%%%%%%%%%%%%%

expansion step(a(Role,Id), Ms, Os, P, NewMs, NewOs, NewP) :-

protocol select(agent, P, (a(ARole,Id) ::= Def), P1),

expand protocol((a(ARole,Id) ::= Def), Role, Id, Ms, Os, P1,

NewA, NewMs, NewOs, P2),

protocol add(agent, P2, NewA, NewP).

expansion step(a(Role,Id), Ms, Os, P, NewMs, NewOs, NewP) :-

\+ protocol select(agent, P, (a(,Id) ::=),),

protocol member(dialogue, P, Clause),

Clause = (a(Role,Id) ::= Def),

expand protocol((a(Role,Id) ::= Def), Role, Id, Ms, Os, P,

NewA, NewMs, NewOs, P2),

protocol add(agent, P2, NewA, NewP).

%%%%%%%%%%%%%%%%%%%%%%%%%% the rewrite rules %%%%%%%%%%%%%%%%%%%%%%%%%%

% first 2 cases added to deal with messages received after closing the protocol

expand protocol(Role ::= Def, , , [], Os, P, Role ::= Def, [], Os, P) :-

closed(Def), !.

expand protocol(Role ::= Def, , Id, Ms, Os, P, Role ::= E, Mf, Of, Pf) :-

closed(Def),

open and fail(Def, NDef),

expand protocol(NDef, Role, Id, Ms, Os, P, E, Mf, Of, Pf).

expand protocol(Role ::= Def, , Id, Ms, Os, P, Role ::= E, Mf, Of, Pf) :-

expand protocol(Def, Role, Id, Ms, Os, P, E, Mf, Of, Pf).

% modified to return A or B instead of only expanded part)

% also added 2 cases for failure (cases 1 and 2)

Appendix B. The Code 74

expand protocol(A or B, , , Ms, Os, P, f(A or B), Ms, Os, P) :-

failed(A or B).

expand protocol(f(A) or B, Role, , [], Os, P, f(A) or B, [],

[m(Role,f(M => Role) => S) | Os], P) :-

receiving message(A, M, S),

receiving message(B).

expand protocol(A or B, Role, Id, Ms, Os, P, E or B, Mf, Of, Pf) :-

expand protocol(A, Role, Id, Ms, Os, P, E, Mf, Of, Pf).

expand protocol(A or B, Role, Id, Ms, Os, P, A or E, Mf, Of, Pf) :-

expand protocol(B, Role, Id, Ms, Os, P, E, Mf, Of, Pf).

% A then B modified

% 2 cases (2nd and 4th) added for failure cases

% NOTE: if only B failed then we first need to close A as failed

expand protocol(A then B, Role, Id, Ms, Os, P, A then EB, Mf, Of, Pf) :-

closed(A),

expand protocol(B, Role, Id, Ms, Os, P, EB, Mf, Of, Pf).

expand protocol(A then B, , , Ms, Os, P, FA then B, Ms, Os, P) :-

closed(A),

failed(B),

fail clause(A, FA).

expand protocol(A then B, Role, Id, Ms, Os, P, EA then B, Mf, Of, Pf) :-

expand protocol(A, Role, Id, Ms, Os, P, EA, Mf, Of, Pf).

expand protocol(A then B, , , Ms, Os, P, f(A then B), Ms, Os, P) :-

failed(A).

% A par B modified

% also added 2 cases for failure issues (cases 3 and 4)

expand protocol(A par B, Role, Id, Ms, Os, P, EA par EB, Mf, Of, Pf) :-

expand protocol(A, Role, Id, Ms, Os, P, EA, Mn, On, Pn),

expand protocol(B, Role, Id, Mn, On, Pn, EB, Mf, Of, Pf).

expand protocol(A par B, Role, Id, Ms, Os, P, EA par EB, Mf, Of, Pf) :-

expand protocol(B, Role, Id, Ms, Os, P, EB, Mn, On, Pn),

expand protocol(A, Role, Id, Mn, On, Pn, EA, Mf, Of, Pf).

expand protocol(A par B, , , Ms, Os, P, f(A par B), Ms, Os, P) :-

Appendix B. The Code 75

failed(A).

expand protocol(A par B, , , Ms, Os, P, f(A par B), Ms, Os, P) :-

failed(B).

expand protocol(C <-- M <= A, Role, Id, Ms, Os, P, c(M <= A), Mf, Os, Pf) :-

memberchk(m(Role,M <= A), Ms),

satisfied(Id, P, C, Pf),

select(m(Role,M <= A), Ms, Mf).

% added to mark term as failed when constraint not satisfied

% this is the only case where it is not closed as failed

% and a message is sent to inform failure

expand protocol(C <-- M <= A, Role, Id, Ms, Os, P, C <-- M <= A, Mf,

[m(Role,f(M => Role) => A) | Os], P) :-

select(m(Role,M <= A), Ms, Mf),

\+ satisfied(Id, P, C,).

expand protocol(<-- M <= A, , , Ms, Os, P, f(M <= A), Ms, Os, P) :-

memberchk(m(, <=), Ms).

expand protocol(M => A <-- C, Role, Id, Ms, Os, P, c(M => A), Ms,

[m(Role,M => A) | Os], Pf) :-

satisfied(Id, P, C, Pf).

% added to mark term as failed when constraint not satisfied

expand protocol(M => A <-- C, , Id, Ms, Os, P, f(M => A), Ms, Os, P) :-

\+ satisfied(Id, P, C,).

expand protocol(M <= A, Role, , Ms, Os, P, c(M <= A), Mf, Os, P) :-

select(m(Role,M <= A), Ms, Mf).

expand protocol(M <= A, , , Ms, Os, P, f(M <= A), Ms, Os, P) :-

memberchk(m(, <=), Ms).

expand protocol(M => A, Role, , Ms, Os, P, c(M => A), Ms,

[m(Role,M => A) | Os], P).

expand protocol(Role <-- C, , Id, Ms, Os, P, Role ::= Def, Ms, Os, Pf) :-

Role = a(,),

satisfied(Id, P, C, Pf),

protocol member(dialogue, P, (Role ::= Def)).

% added to mark term as failed when constraint not satisfied

Appendix B. The Code 76

expand protocol(Role <-- C, , Id, Ms, Os, P, f(Role), Ms, Os, P) :-

Role = a(,),

\+ satisfied(Id, P, C,).

expand protocol(Role, , , Ms, Os, P, Role ::= Def, Ms, Os, P) :-

Role = a(,),

protocol member(dialogue, P, (Role ::= Def)).

expand protocol(null <-- C, , Id, Ms, Os, P, c(null), Ms, Os, Pf) :-

satisfied(Id, P, C, Pf).

% added to mark term as failed when constraint not satisfied

expand protocol(null <-- C, , Id, Ms, Os, P, f(null), Ms, Os, P) :-

\+ satisfied(Id, P, C,).

expand protocol(null, , , Ms, Os, P, c(null), Ms, Os, P).

%%%%%%%%%%%%%%% backtracking marking messages as failed %%%%%%%%%%%%%%%

%%%%%%%%%%%%% testing for actions of receiving a message %%%%%%%%%%%%%%

% added to fail ’A’ in ’A then B’

% when ’A’ is closed and ’B’ fails

fail clause(A then B, f(FA then FB)) :-

fail clause(B, FB),

fail clause(A, FA).

fail clause(A par B, f(FA par FB)) :-

fail clause(A, FA),

fail clause(B, FB).

fail clause(A or B, FA or B) :-

closed(A),

fail clause(A, FA).

fail clause(A or B, A or FB) :-

closed(B),

fail clause(B, FB).

fail clause(<-- M <= A, f(M <= A)).

fail clause(M => A <-- , f(M => A)).

fail clause(M <= A, f(M <= A)).

fail clause(M => A, f(M => A)).

Appendix B. The Code 77

fail clause(c(X), f(c(X))).

% added to check if the first action in a definition

% is that of receiving a message (needed when backtracking to know

% if we need to inform sender a failure notice)

receiving message(<=).

receiving message(<-- <=).

receiving message(A then) :-

receiving message(A).

% searching for the message to be sent back to the sender

% informing it of its failure

receiving message(c(M <= A), M, A).

receiving message(c(<-- M <= A), M, A).

receiving message(f(B) then , M, A) :-

receiving message(B, M, A).

%%%%%%%%%%%%%%%% testing for closed or failed clauses %%%%%%%%%%%%%%%%%

closed(c()).

closed(A or) :-

closed(A).

closed(or B) :-

closed(B).

closed(A then B) :-

closed(A),

closed(B).

closed(A par B) :-

closed(A),

closed(B).

closed(::= Def) :-

closed(Def).

% in the definitions of the following predicate,

% ’f()’ is used instead of ’failed’

Appendix B. The Code 78

% since we want to close each part by itslef

% to be be able to check for sending/receiving messages

failed(f()).

failed(f() or f()).

failed(f() then).

failed(then f()).

failed(f() par).

failed(par f()).

failed(::= f()).

%%%%%%%%%%%%% marking closed nodes as failed when needed %%%%%%%%%%%%%%

% added to mark closed nodes as failed

% when a failure message notice is received

mark failed(a(,Id), CM, P, NewP) :-

protocol select(agent, P, (a(Any Role,Id) ::= Def), P1),

mark failed message(a(Any Role,Id) ::= Def, CM, Pf),

protocol add(agent, P1, Pf, NewP).

mark failed(a(,Id), , P, P) :-

\+ protocol select(agent, P, (a(,Id) ::=),).

mark failed message(A ::= c(Def), CM, A ::= Def2) :-

mark failed message(Def, CM, Def2).

mark failed message(A ::= Def, CM, A ::= Def2) :-

mark failed message(Def, CM, Def2).

mark failed message(A or B, CM, A2 or B2) :-

mark failed message(A, CM, A2),

mark failed message(B, CM, B2).

mark failed message(A then B, CM, A2 then B2) :-

mark failed message(A, CM, A2),

mark failed message(B, CM, B2).

mark failed message(A par B, CM, A2 par B2) :-

mark failed message(A, CM, A2),

mark failed message(B, CM, B2).

Appendix B. The Code 79

mark failed message(c(M => A), c(M => A), f(c(M => A))).

mark failed message(X, , X).

% added to mark closed leaf nodes as failed

% when a completed dialogue receives a normal message

% NOTE: marking closed leaf nodes as failed

% automatically opens the protocol

open and fail(A then B, A then NB) :-

open and fail(B, NB).

open and fail(A or B, NA or NB) :-

open and fail(A, NA),

open and fail(B, NB).

open and fail(c(A), f(c(A))).

open and fail(X, X).

%%%%%%%%%%%% testing for satisfied constraints predicates %%%%%%%%%%%%%

satisfied(Id, P, A and B, Pf) :- !,

satisfied(Id, P, A, Pn),

satisfied(Id, Pn, B, Pf).

satisfied(Id, P, X, Pf) :-

meta pred(Id, X, P, Pf, Call), !,

Call.

satisfied(Id, P, X, P) :-

\+ meta pred(Id, X, P, ,),

call direct(X),

X.

satisfied(Id, P, X, P) :-

protocol member(common knowledge, P, known(Id, X)).

satisfied(Id, P, X, Pf) :-

protocol member(common knowledge, P, known(Id, X <-- C)),

satisfied(Id, P, C, Pf).

call direct(X) :-

Appendix B. The Code 80

(predicate property(X, built in) ;

predicate property(X, interpreted) ;

predicate property(X, imported from())), !.

meta pred(Id, not(X), P, P, \+ satisfied(Id,P,X,)).

meta pred(Id, retract(X), P, Pf, protocol remove(common knowledge,P,known(Id,X),Pf)).

meta pred(Id, assert(X), P, Pf, protocol add(common knowledge,P,known(Id,X),Pf)).

%%%%%%%%%%%%%%%%%%% managing the protocol predicates %%%%%%%%%%%%%%%%%%

protocol component(agents, def(Clauses, ,), Clauses).

protocol component(dialogue, def(, Clauses,), Clauses).

protocol component(common knowledge, def(, , Clauses), Clauses).

protocol member(agent, def(Clauses, ,), Clause) :-

member(Clause, Clauses).

protocol member(dialogue, def(,Clauses,), ClauseCopy) :-

member(Clause, Clauses),

copy term(Clause, ClauseCopy).

protocol member(common knowledge, def(, ,Clauses), ClauseCopy) :-

member(Clause, Clauses),

copy term(Clause, ClauseCopy).

protocol select(agent, def(Clauses,A,B), Clause, def(R,A,B)) :-

select(Clause, Clauses, R).

protocol select(dialogue, def(A,Clauses,B), ClauseCopy, def(A,R,B)) :-

select(Clause, Clauses, R),

copy term(Clause, ClauseCopy).

protocol select(common knowledge, def(A,B,Clauses), ClauseCopy, def(A,B,R)) :-

select(Clause, Clauses, R),

copy term(Clause, ClauseCopy).

protocol remove(agent, def(Clauses,A,B), Clause, def(R,A,B)) :-

select(Clause, Clauses, R).

Appendix B. The Code 81

protocol remove(dialogue, def(A,Clauses,B), Clause, def(A,R,B)) :-

select(Clause, Clauses, R).

protocol remove(common knowledge, def(A,B,Clauses), Clause, def(A,B,R)) :-

select(Clause, Clauses, R).

protocol add(agent, def(Clauses,A,B), X, def([X|Clauses],A,B)).

protocol add(dialogue, def(A,Clauses,B), X, def(A,[X|Clauses],B)).

protocol add(common knowledge, def(A,B,Clauses), X, def(A,B,[X|Clauses])).

%%%

Appendix B. The Code 82

B.3 loader.pl

:- ensure loaded(basic).

load institution(Institution, InstDef) :-

concat(Institution,’.inst’,File),

see(File),

read institution(InstDef),

seen.

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

read institution(InstDef) :-

read institution1(def([],[],[]), InstDef).

read institution1(InstDef, FinalInstDef) :-

read(Clause),

\+ Clause = end of file, !,

add to institution def(Clause, InstDef, NewInstDef),

read institution1(NewInstDef, FinalInstDef).

read institution1(InstDef, InstDef).

add to institution def((Head ::= Body),def(I,D,K),def(I,D1,K)) :-

fix protocol((Head ::= Body), Fixed Protocol),

append(D, [Fixed Protocol], D1).

add to institution def(known(Agent,Clause),def(I,D,K), def(I,D,K1)) :-

append(K, [known(Agent,Clause)], K1).

% ’fix protocol’ to change definitions of the form ((A or B) then C)

% into ((A then C) or (B then C))

fix protocol(P, Pf) :-

fix(P, Pi),

\+ Pi = P, !,

fix protocol(Pi, Pf).

Appendix B. The Code 83

fix protocol(P, Pf) :-

fix(P, Pf).

fix(A ::= Def, A ::= P) :-

fix(Def, P).

fix(A or B, P1 or P2) :-

fix(A, P1),

fix(B, P2).

fix((A1 or A2) then B, ((P1 then P3) or (P2 then P3))) :-

fix(A1, P1),

fix(A2, P2),

fix(B, P3).

fix(A then B, P1 then P2) :-

fix(A, P1),

fix(B, P2).

fix(A par B, P1 par P2) :-

fix(A, P1),

fix(B, P2).

fix(Unit, Unit).

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

Appendix B. The Code 84

B.4 interface.pl

:- ensure loaded([util,

basic,

display util,

’/home/s0233771/agent/PTK/ptk.pl’,

loader]).

:- dynamic pwin/5, rwin/5, swin/5.

agent dir(’/home/s0233771/agent/agents’).

institution(eCommerce, buyer, [item,seller]).

institution(eCommNegt, buyer, [item,seller]).

institution(testingEx, first, [second,middle]).

%%%

manager :-

setof(w(I,R,P), institution(I,R,P), Institutions),

institution items(Institutions, Frames),

tk new window(

[frame(idframe,

[(borderwidth,5),(relief,raised),(bg,yellow)],

pack([(side,top),(anchor,w),(fill,x)]),

[button(identity,

[(background,’SlateGrey’),(text,’Identity :’)],

pack([(side,left)])),

entry(id,

[(width,20)],

pack([(side,left)])),

button(react,

[(background,’SlateGrey’),(text,’New Messages’)],

pack([(side,right),(fill,x)]))

]),

frame(arole,

[(borderwidth,5),(bg,yellow)],

Appendix B. The Code 85

pack([(side,top),(anchor,w),(fill,x)]),

[message(arole,

[(text,’Roles’), (width,200),(bg,yellow)],

pack([(side,top)]))]),

frame(main,

[(height,200),(width,300)],

pack([(fill,both),(expand,true)]),

Frames)

],

manager callback,

).

institution items([E|T], [I|R]) :-

institution item(E, I),

institution items(T, R).

institution items([], []).

institution item(w(I,R,P), Frame) :-

IItem = button(inst,

[(background,’SlateGrey’),(text,I)],

pack([(side,left),(fill,x)])),

RItem = message(R,

[(text,R),(width,200),(bg,yellow)],

pack([(side,left)])),

institution args(P, Args),

append([IItem,RItem], Args, Items),

Frame = frame(I,

[(borderwidth,5),(relief,raised),(bg,yellow)],

pack([(side,top),(anchor,w),(fill,x)]),

Items).

institution args([E|T], [A|R]) :-

institution arg(E, A),

Appendix B. The Code 86

institution args(T, R).

institution args([], []).

institution arg(Id, Arg) :-

atom(Id),

Arg = frame(Id,

[(borderwidth,2),(relief,raised),(bg,yellow)],

pack([(side,left),(anchor,w),(fill,x)]),

[message(m,

[(text,Id),

(width,200),(bg,yellow)],

pack([(side,left)])),

entry(id, [(width,10)], pack([(side,left)]))]).

manager callback(Interp, button, , identity) :-

tk operation(’$TclInterp’(Interp), entry, ’.idframe.id’, get(Id)),

load agent(Id).

manager callback(Interp, button, I, inst) :-

institution(I,R,Items),

tk operation(’$TclInterp’(Interp), entry, ’.idframe.id’, get(Id)),

get institution args(Interp, I, Items, Args),

Role =.. [R|Args],

load institution(I, Prot),

postit(a(Role,Id), [], Prot).

manager callback(Interp, button, , react) :-

tk operation(’$TclInterp’(Interp), entry, ’.idframe.id’, get(Id)),

retrieve message(, Id, Dialogue),

Dialogue = protocol(m(Af,M => At),Prot),

postit(At, [m(At,M <= Af)], Prot).

get institution args(Interp, I, [Id|T], [Arg|R]) :-

concat list([’.main.’,I,’.’,Id,’.’,id], Obj),

tk operation(’$TclInterp’(Interp), entry, Obj, get(Arg)),

Appendix B. The Code 87

get institution args(Interp, I, T, R).

get institution args(, , [], []).

load agent(Name) :-

agent dir(Path),

concat list([Path,’/’,Name,’.agent’],File),

see(File),

read agent,

seen.

read agent :-

read(Clause),

\+ Clause = end of file, !,

assertz(Clause),

read agent.

read agent.

% ’postit’ was modified to call ’displaybox’

% instead of doing the job itslef

% since we now allow three cases of the box to be displayed

postit(Role, IMessages, Prot) :-

expansion(Role, IMessages, [], Prot, RMessages, Messages, EProt),

displaybox(RMessages, Messages, EProt).

% the first case of ’displaybox’ added

% to inform the user of dialogue failure

displaybox(RMessages, Messages, EProt) :-

RMessages = [],

Messages = [],

protocol component(agents, EProt, AProt),

\+ all closed(AProt),

final message(’Dialogue has failed!’).

Appendix B. The Code 88

% the second case of ’displaybox’ added

% to inform the user of dialogue success

displaybox(RMessages, Messages, EProt) :-

RMessages = [],

Messages = [],

protocol component(agents, EProt, AProt),

all closed(AProt),

final message(’Dialogue has completed successfully!’).

% the last case of ’displaybox’ is

% the case originally covered by ’postit’

displaybox(RMessages, Messages, EProt) :-

RMessages = [],

Messages = [m(Agent,Message)],

protocol component(agents, EProt, Insts),

copy term((Agent,Message,Insts), (CAgent,CMessage,CInsts)),

term to atom(CAgent, AAgent),

term to atom(CMessage, AMessage),

goal sequence to display(CInsts, Text),

BColour = ’SlateGrey’,

tk new window(

[frame(arole,

[(borderwidth,5),(relief,raised),(bg,yellow)],

pack([(side,top),(anchor,w),(fill,x)]),

[message(arole,

[(text,AAgent), (width,400),(bg,yellow)], pack([(side,top)]))]),

frame(initiate,

[(height,200),(width,300)],

pack([(fill,both),(expand,true)]),

[frame(dialogueframe,

[(borderwidth,5),(relief,raised),(bg,yellow)],

pack([(side,top),(anchor,w),(fill,x)]),

[message(m1,

Appendix B. The Code 89

[(text,’Dialogue :’),

(width,200),(bg,yellow)],

pack([(side,left)])),

scrolling text(text,

[(width,70),(height,10), (wrap,none),

(borderwidth,5),

(font,’-adobe-courier-bold-r-normal-*-14-*-*-*-*-*-*-*’)],

pack([(side,left),(fill,both),(expand,true)]),

xyscroll([],[]),

maketext(Text, []))

]),

frame(responseframe,

[(borderwidth,5),(relief,raised),(bg,yellow)],

pack([(side,top),(anchor,w),(fill,x)]),

[frame(buttons,

[(borderwidth,3),(relief,raised),(bg,yellow)],

pack([(side,left),(anchor,w),(fill,both)]),

[button(respond,

[(background,BColour),

(text,’Send message’)],

pack([(side,top)])),

button(quit,

[(background,BColour),

(text,’Forget it’)],

pack([(side,top)]))

]),

scrolling text(response,

[(width,50),

(height,3),

(borderwidth,5),

(font,’-adobe-courier-bold-r-normal-*-14-*-*-*-*-*-*-*’)],

pack([(side,left),

(fill,both),

Appendix B. The Code 90

(expand,true)]),

xyscroll([],[]),

maketext([AMessage],[]))

])

])

],

postit callback,

Interp),

assert(pwin(Interp,[m(Agent,Message)],EProt)).

% the ’all closed’ predicate was added

% to help test whether the protocol is closed or not

all closed([]).

all closed([::= Def | []]) :- closed(Def).

all closed([::= Def | Y]) :- closed(Def), all closed(Y).

% the ’final message’ predicate was added

% to display the final message which could either be

% a success or failure notice

final message(Message) :-

tk new window(

[frame(lasttitle,

[(borderwidth,5),(relief,raised),(bg,yellow)],

pack([(side,top),(anchor,w),(fill,x)]),

[message(lastmsg,

[(text,’End of Dialogue’), (width,400),(bg,yellow)],

pack([(side,top)]))]),

frame(lasttext,

[(borderwidth,5),(relief,raised),(bg,yellow)],

pack([(side,top),(anchor,w),(fill,x)]),

[scrolling text(text,

[(width,40),(height,5), (wrap,none),

(borderwidth,5),

Appendix B. The Code 91

(font,’-adobe-courier-bold-r-normal-*-14-*-*-*-*-*-*-*’)],

pack([(side,left),(fill,both),(expand,true)]),

xyscroll([],[]),

maketext([Message], []))

])

],

,

).

postit callback(Interp, button, , quit) :-

delete proaction win(Interp).

postit callback(Interp, button, , respond) :-

pwin(’$TclInterp’(Interp), Messages, Prot),

send protocol messages(Messages, Prot),

delete proaction win(Interp).

delete proaction win(Interp) :-

retractall(pwin(’$TclInterp’(Interp), ,)),

tk main window(’$TclInterp’(Interp), Win),

tk destroy window(Win).

%%%

agent id from role(a(,Id), Id).

send protocol messages([m(Af,M => At)|T], Prot) :-

agent id from role(Af, From), nonvar(From),

agent id from role(At, To), nonvar(To),

send message(From, To, protocol(m(Af,M => At),Prot)),

send protocol messages(T, Prot).

send protocol messages([],).

send message(From, To, Message) :-

find server(Server, PID),

Appendix B. The Code 92

add message(Server, PID, From, To, Message),

write(’Sent: ’), write(Message), nl, !.

retrieve message(From, To, Message) :-

find server(Server, PID),

read message(Server, PID, From, To, Message),

write(’Read: ’), write(Message), nl, !.

%%%

