Bridging the Specification Protocol Gap in

Argumentation

Ashwag Omar Magrhaby

Doctor of Philosophy
Centre for Intelligent Systems and their Applications
School of Informatics
University of Edinburgh
2013

Abstract

As a multi-agent system (MAS) has become more mature and systems in general
have become more distributed, it is necessary for those who want to build large scale
systems to consider, in some computational depth, how agents can communicate in
large scale, complex and distributed systems. Currentely, some MAS systems have
been developed to use an abstract specification language for argumentation. This as a
basis for agent communication; to provide effective decision support for agents and
yield better agreements. However, as we build complete MAS that involve
argumentation, there is a need to produce concrete implementations in which these
abstract specifications are realised via protocols coordinating agent behaviour. This

creates a gap between standard argument specification and deployment of protocols.

This thesis attempts to close this gap by using a combination of automated synthesis
and verification methods. More precisely, this thesis proposes a means of moving
rapidly from argument specification to protocol implementation using an extension
of the Argument Interchange Format (AIF is a generic specification language for
argument structure) called a Dialogue Interaction Diagram (DID) as the specification
language and the Lightweight Coordination Calculus (LCC is an executable
specification language used for coordinating agents in open systems) as an

implementation language.

The main contribution of this research is to provide approaches for enabling
developers of argumentation systems to use specification languages (in our case
AIF/DID) to generate agent protocol systems that are capable of direct

implementation on open infrastructures (in our case LCC).

Acknowledgements

I wish to thank, first and foremost, my God (Allah) for given me the power to believe

in myself and giving me the strength to complete this work.

Thank you to everyone who has helped me in completing this work. Above all, I am
eternally grateful to my beloved family. My parents Omar Maghraby and Khadiyja
Alsolimani for their unconditional love, their faith in me, endurance and
encouragement. I express my deep gratitude for the support they have provided to me
over the years without which this work would not have been completed. Also, a
special gratitude and love goes to my sister and brother for their concern, their advice

and their unfailing support. Thank you for believing in me.

I would like to express my special appreciation and thanks to my primarysupervisor,
Prof. David Robertson, for his guidance, motivation, support and encouragement
throughout the course of my research. His positive attitude and confidence in my

research inspired me and gave me confidence.

I would also like to thank my second supervisor, Dr.Michael Rovatsos, for his sound
advice and encouragement. Additionally, I would like to express my deepest
gratitude to Adela Grando for her suggestions, understanding, encouragement and

personal attention.

I cannot forget to express my deep and sincere thanks to Umm Al-Qura University

for their financial support.

Last but not least, special thanks should be given to my friends (too many to list here
but you know who you are!) for providing support and friendship that I needed

during my research.

(Ashwag Omar Maghraby)

Declaration

I declare that this thesis was composed by myself, that the work contained herein is
my own except where explicitly stated otherwise in the text, and that this work has
not been submitted for any other degree or professional qualification except as

specified.

(Ashwag Omar Maghraby)

Table of Contents

CHAPTER 1: INTRODUCTION ...ccuiiiiuniiinenniiinnnieinnsssisnssssisnssssssnssssssnssssssnssssssnssssssnssssssnssssssnsssssanssssss 1
1.1 THE CHALLENGEccuuiiieeiiiieniiiieeiciieeeieiiensietienseissnssessenssssssnssssssnssssssnssssssssssssnssssssnssssssnnssssanne 2
1.2 THE PROPOSED APPROAGCHcoitiiiinnnteiiiiiissssnnseetssissansassssssss 3
1.3 APPROACH ...cciiinereiiiiiiiisinnneesisiisissanssssssssss 4
1.4 CLAIMS OF NOVELTY ..iiiiiirirueeeeiisissssssnneesssasssssssssssnnssssssssss 4
1.5 THESIS STRUCTURE.......ccctttunnttiiiiiiisinnneeiiississssssssessasssssssssssanssssssssss 5
CHAPTER 2: BACKGROUND AND LITERATURE REVIEWccootiiimmmnniiinniinnnnnnssnisniinnsmmsssssssimmnsssssses 7
2.1 AGENT PROTOCOL DEVELOPMENT LANGUAGEcceetiiiiiiiiiinnniiiiisiinnseesnisssssssssessssssssssssssenns 7
2.1 1 LCC SYNTAX cciiiiiiiiisnnteeiiississssnsneessisssssssssseesssssssssssssessssssssssssssessssssssssssssssssssssssssansssssssssssnns 8
2.1 2 LCC EXAMPLEcuuveeereiiiiiiisnsnneesisisssssssnssesssssssssssnssessssssssssssssessssssssssnnsssssssssssssnnssassssssssnnns 10
2.2 DESIGN PATTERNccurerriiiiiiiissnnnneeiinissssssnssessssssssssssssssssssssssssnssasssssssssssnssesssssssssssnnssasssssssssnns 13
2.2.1 SOFTWARE ENGINEERING DESIGN PATTERNvvvevvteseieesiisesieesseesssesiseesssessesssssessessssssssssssssnssssessns 14
2.2.2AGENT PROTOCOL DESIGN PATTERNvvvevttesuteeeutsesuseessssesissasssssssessssssssssssesssssessssssasssssssssssessssessns 14
2.2.3 LOGIC PROGRAMMING PATTERNS (LOGIC PROGRAMMING TECHNIQUES) ..vevvveeveesieesiseesiieesisesesseasisennns 17
2.2.3.1 Prolog Programming TECANIQUES..............cccuueeeeiuueeeesiieeesiieeeesiieeeeesiseseesisesaesisssssasisesanans 17
2.2.3.2 TECANIQUES EUILINGccveeeeeeeieieee ettt ee ettt e e e ettt e e e eesssaeaaaeeessnssareaaaaeeasnes 19
2.2.3.3 A Structural Synthesis System for LCC ProtOCOIS...........cccccueevecveeeesiieeeeiiesesiieesesienannns 20
2.2.3.4 Comparing LCC-Argument Patterns with Logic Programming Techniques...................... 22

2.3 VERIFICATION METHOD BASED ON SML AND COLOURED PETRI NETcccccererrrisssssnnnennsssssssnnns 23
2.3.1 COLOURED PETRIINETS (CPINS)....veeeeeeeeeee et eetee et e e ettt et e e ettt e e e etaa e esasaaastsaaanaatsaaennses 24
2.3.1.1 CPNS MOAEI EIEMENLS ...ttt ettt et s e ssteaesisee e e 24
2.3.1.2 CPNS HierarchiCQl StIUCLUIEceeeveeeeecieeeeeieeeestteeeeea e estaeessteaessstaasssseasssssenanns 28
2.3.1.3 CPN TOOI COMPONENLS ...t eeeee et ea e e e ee ettt e e e e e e e e stasaaaeeessissaseaasaeeasnes 30

2.3.2 COMPARING OUR APPROACH WITH VERIFICATION APPROACHES BASED ON SML AND CPN MODEL............ 36
2.3.2.1 A Transformational Approach to CPN MOdelcc..ueuveeeeeeeeeiiciiiiieeeeeccciiiieaaeeeeians 366
2.3.2.2 A Verification Method Based 0N SMILococueeeeeciieeeeiieeecieeeeseeeeeee e eseaaeesien e 37
2.3.2.3 LCC Verification Approaches based on Model Checkingc.ccccueeeevcvvevccveeeeiienans 38

2.4 SUMIMARY ...ccuuiiiiineiiiieneiiiieesiiiisssieiisssieiisssieiisssieisssssisssssissssistssssstssssstssssistessssstessssssssssssssnnnss 39

CHAPTER 3: ARGUMENTATION, DIALOGUE GAMES AND MULTI-AGENT SYSTEMS........ccceceeeriicnnnnee 40

3.1 ARGUMENT AND ARGUMENTATIONomrriitiiiiininnnniiniiiisnnnneeseissssmssnseesisssssmssssesssssssnens 40

3.2 DIALOGUE GAMES (ARGUMENTATION-BASED DIALOGUES).......cccceveeeeeeeeeeeeeeeennsnnnnnnnnsnnnnnnnnnnns 41
3.3 ARGUMENTATION FOR AGENT COMMUNICATIONcceierirenierenencereenncerennncerensscersnsssersnssssssnnnes 45
3.4 DIALOGUES GAMES TERMINOLOGYccceuueerrenniereenneereennserennseersnssseresssssssnsssssssssssssnssssssnssssssnnnns 46
3.5 TYPES OF DIALOGUEScceuuieitteniererenierereeierenesieressserensssessssssssessssssessssssssssssssssssesssssssssnsssssannnne 49
3.6 EIVIBEDDED DIALOGUESccucitteuieiieeeiertneeierenesieresssseresssieressssesessssssessssesssssssssssssssssssssssnsssssannnns 53
3.6.1 FIRST TYPE: SHIFT FROM ONE TYPE TO ANOTHER TYPE.....ccceeaeaeaeeeaeaeaaeens 544
3.6.2 SECOND TYPE: INTERNAL EMIBEDDEDuueeeeeeeeiiiieeeeeeeeeiiieeeeeeeeeeaiieaesesesssssaeaeessssssssneeessssssssnnnnns 54
3.7 ARGUMENTATION SHARING PROBLEM AND ARGUMENT INTERCHANGE FORMAT 54
3.7. T AIF DEFINITION. ..uvvvvieeeeeesiteeieeeeeeeeiieeeeee e eetesasteaeeeessstaseeeaseesassasseesssssessasssssasssesssstssssesseesssses 555
BL7.2AIF ELEMENTS oottt ettt ettt 55
BU7 B AIFEXAMPLE...c.cccooceeeeeeeeeeeeeeeeeeeeeeeeeeee ettt 56
3.7. 4 AIF IMPLEMENTATION PROBLEMcccceeeeeeeeeeeeieeieeeeieeeeeeieeeeeeeeeeeeeaeeeseeeeeeeseseeeseseseeeeeseseseeeaeeeeesenenes 57
BL7. 5 AIFEXTENSION ..ottt ettt ettt 58
3.8 SUMIMARY.cuuiiiienniiiennietiensiensensietssssiessanssessssssssssssssssnssssssnssssssnssssssnssssssnssssssnssssssnssssssnssssssnnnns 64
CHAPTER 4: ARGUMENT SPECIFICATION LANGUAGEcccoeettmnniiinmenieinnnnicisnnsscissssssssssssssssssssssnnnes 65
4.1 AGENT PROTOCOL CONCEPTS FOR ARGUMENTATION BETWEEN TWO AGENTSccccceerrennnenne 66
4.2 DIALOGUE INTERACTION DIAGRAM (AN EXTENSION OF AIF)ucceirirrercreirccesnsssnssssssssssssssssnnnns 67
O A D D N Y Y K 68
4.2.2 HOW TO DRAW A DID DIAGRAMeeeveeeeeeeeettee e e e eeettttee e e e eeatataaaesaaeeatssaaessaeeesassnnesseeesssnnnannas 70
4.2.3 EXAMPLE (PERSUASION DIALOGUE)vvvveeeeeeeeecsieeeeeeeeectiseseeeseesesissseseseesesisnsssssssssessssssssesesensssinns 73
4.2.4 DID FOR TWO AGENTS FORMAL DEFINITION ...cvvvveeeeeeeeeeeiiiieeeesesessstniseesssssssssnniaeessssssssieesesssessnnnens 78
4.3 DIALOGUE INTERACTION DIAGRAM FOR EMBEDDING DIALOGUE........ccceeeteeenerrennnerrennnereennnenes 88
4.3.1 DID FOR EMBEDDING DIALOGUEcccvvvveeeeeeeseessaiieeeesesssstniaeeessssssssasaesssssssssnaesesssssssniaeeessssssnnnenns 88
4.3.2 DFSL FOR EMBEDDING DIALOGUEcccceeeeeeeeeeseeeeeeee aa e e 88
3.3 EXAMPLE ..oeeeeeeeeeeeeeeeeee e e eeeeeeeeee e e e e e e e e e e e e e et et e e e e e e e e e e e e e e e e e aaaaaaaaaaaaaas 89
4.4 DIALOGUE INTERACTION DIAGRAM FOR ARGUMENTATION BETWEEN N-AGENTcccoceveeenee 102
4.4.1 NEED FOR DIALOGUE GAMES AMONG N-AGENTcccrvuiriiiriiiiiiiiiiieisitiiesiteessntcessneaesssness e 1022
4.4.2 ISSUES OF DIALOGUE GAMES AMONG N-AGENT ...vuueeeeeeeereeiiieeeeeeseesniieeeessssessniaesesssssssniiaessssessnnienns 102
4.4.3 METHOD FOR DIALOGUE GAMES AMONG N-AGENT c..ccceeeeeeeeeeeeseseeeeeeeeeeeeeeeeeeee e eaeeeeeeeaeeeaeaeaeaaaaens 105
B4, 4 DID FOR N-AGENT ...cceeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeee et e eeeeeeeeeeeeeeeeeeeeeeeeaeaeeeaeaeaeeeeeeeaeaeeeteaeaeeeaeteaaeeaeaeaaaeees 109

4.4.5 PROBLEMS AND SOLUTIONS OF DID FOR N-AGENT ...ccccevevveteeeeeeeeeeiiieeeeeeesesiiiaeseessssssniaeesssessnnnnenns 110

4.5 SUMMARY. ...cuuttttitiiiiiinnttiitiiiieeniieesisssaasssessisssnnsasssssss 112

CHAPTER 5 : SYNTHESIS OF CONCRETE PROTOGCOLS....c.cittueeriennereenncreenscrrensessenssessanssessanseesenns 114
5.1 LCC-ARGUMENT PATTERNSceeuiiiteeiertenniettennertensiereanserennssessanssessanssesssnssessanssessanssessansssanne 115
5.2 AGENT PROTOCOL AUTOMATED SYNTHESIS TOOL.....cccceertuunierrennicreenncreensersenssersensessanseessens 143
5.2.1 AUTOMATED SYNTHESIS STEPS FOR GENERATING AGENT PROTOCOL BETWEEN TWO AGENTScuve..... 144
5.2.2 AUTOMATED SYNTHESIS STEPS FOR GENERATING AGENT PROTOCOL FOR N-AGENT.......cccvvveveeeeeaeaeaaannn, 144
5.3 SUMIMARYccuitenirenereencrenereescrenerenseresssensessssssnsessssssnsessssssnsessssessssssssessssssssssnsesansesnssssnsesnnssnnne 148
CHAPTER 6: VERIFICATION METHOD BASED ON COLOURED PETRI NETS AND SML.....ccccceveuneenneee 150
6.1 STEP ONE: AUTOMATED TRANSFORMATION FROM LCC TO CPNXML....ccceuerrennerrenncreennecrenns 151
6.1.1 DECLARATION OF COLOUR SETS AND FUNCTIONS ..vvvvvvvvvevevererereresessserssesssssssssssssssssssssssssssssssssssssssens 152
6.1.2 GENERATION OF A CPN SUBPAGE ...vvvvvvvvvvvesererssesesessnsns 152
6.1.3 GENERATION OF A CPIN SUPERPAGEcuvttteeeeeeeeeeiieeeeeeeeeeiteeeeeeeeeasiiaeeeeessssssssesessssssssinenaesens 169
6.2 STEP TWO: CONSTRUCTION OF STATE SPACEcccccieiteeiereeenereenecreensereenssersenssessanssessenssesenns 172
6.3 STEP THREE: AUTOMATED CREATION OF DID PROPERTIES FILES......cccccttvmeerrnnnicrrnnncrsnnccnenns 174
6.4 STEP FOUR: APPLYING VERIFICATION MODELcccccetteueiiiinnniciiennicinensicnnenssesssnssesssnssssssnsssssnns 175
6.5 SUMIMARYccuiiiteniiiiennieiiensietiensieisensiotssssiesssnssesssnsssssssssssssssssssnnsssssssssssssssssssnssssssnnsssssnnsssssnne 187
CHPATER 7: DESIGN AND IMPLEMENTAIONcottuuierteeniereenniereennereenssereenssesssnssessanssessanssssennssssenns 189
7.1 ARCHITECTUREccuutttteuiereeenereeenereenssereenssersenssersenssssesnssssennssssssnssssssnssssssnssesssnssssennssssennssssenns 189
7.1.1 PART ONE: SYNTHESIS OF CONCRETE PROTOCOLS ARCHITECTURE .vvvvvveeeeeeeeeeuiieeeesesessssieesssssesssnnnenns 189
7.1.2 PART TWO: VERIFICATION MODEL ARCHITECTURE ..eeevevevvtieeeeeeesesuniiaeessssssssniaessssessssnsaessssesssnnnnnns 189
7.2 AN EXAMPLE SCENARIQccuiiiiieeiiitennieiieenietiensieisensiesssnssesssnssssssnssssssnssssssnssssssnsssssansssssanssssanne 191
7.3 SUMIMARYceuiiirnniiitennietienniersensiersanssesssnssssssnsssssanssssssssssssnnsssssansssssnsssssssssssssnnsssssnnsssssnnssssanne 201
CHPTER 8: EVALUATION AND DISCUSSION....c.cctttueierreeniereennereenssereensereesssesssnssessenssessnssssssnnssssenns 202
8.1 SYNTHESIS OF CONCRETE PROTOCOLSccctteenerteenereennereennereenssereenssesssnssessenssessnnssesennssssenns 202
8.1.1 RELATION BETWEEN DID AND AIF ...ttt eetttttee e e e e evvttae e e e e aeestaaeeeassasassnaaneesassssnnns 202
8.1.2 THE DIFFERENCE BETWEEN DID AND AIF EXTENSIONuuuuueeiiiiisisisisssssssssssssssssssssssssssssssnnnnnnnnns 208
8.1.3 DID LIMITATION. .. .uuuuuuuuunennnnnnnssnnnssnsnssssssnssssssssssssnsssnnssssssnssssssssssssssssssnsssssssssssssssssssssns 215
8.1.4 LCC-ARGUMENT PATTERNS LIMITATIONS. ... eeeeeeeeeutneeeeesssesssieseeesssesssniaesessssesssnnsesesssssssnieessssssssnns 217

8.2 VERIFICATION METHOD BASED ON COLOURED PETRI NET AND SMILcccceeeemmmmmnennnnnnnnnnnnnnees 220

8.2.1 AUTOMATICALLY TRANSFORMING THE LCC SPECIFICATION INTO AN EQUIVALENT CPNXML FILE LIMITATION

... 221
8.2.2 CONSTRUCTION OF THE STATE SPACE LIMITATIONc.veueeueeneenieniesiesieeieeiteiteiesienie e eieeaeenensenae i 221
8.2.3AUTOMATICALLY VERIFYING METHOD LIMITATION ...c.vvueeueenteieniesiesieeieeieeiteiesaeniesieeie st eaeenenaenie i 222
8.3 GENERATELCCPROTOCOL TOOL....uuetiiiiuniiiinneisissnesisssssesssssssssssssssssssssssssssssssssssasssssssasssssssnns 222
8.3.1 TASK ONE: SYNTHESIS OF CONCRETE PROTOCOLSvveeeiiiieraiiiiesiiieeesiiie st sinee st 222
8.3.2 TASK TWO: MODEL VERIFICATIONeeveniriieiiiieesiitieesieteeeiteeesiste s e st e s st esisneassintessinneessasnes 223
8.4 SUMIMARY......uuuiiiuiiiuiiittietessstsssst s st e s sse s st s s st s s s e s s e s sae s st s e ae s s as e s bae s sae s e at e s an e s nne s naess 225
CHPTER 9:CONCLUSION AND FUTURE WORKccoitttmmmnniiiniiinnnnnsisisiiinssmsssisssiimssmsssissssees 20226
9.1 SUMMARY OF CONTRIBUTIONSccoittiriuniiiiiiiinninnsiiisiiinssssssisssiimmssmsssssssimssssssssssssssssssses 22026
9.2 IMPROVEMENTS AND FUTURE WORKccoertriruiriruiinieineeiinessaesssseessseessssesssanssssnessssesnes 2208
9.2.1 DID FUTURE WORKcccuetriuiiiuiiiiiinieeiienisatesseesseesssessss s ssssesessesessesssssessssesessesessnsns 228
9.2.2 AUTOMATED SYNTHESIS METHOD FUTURE WORKccoieuiiiiiirieinieenieeseeseeeseanenas 229
9.2.3 SEMI-AUTOMATED VERIFICATION METHOD FUTRUE WORKccccereuirinnennnennneenianenns 230
9.2.4 OTHER FUTURE WORK.....cciiitiiutiiiiieenetisats st st s sss s ssss s ss s as s s s s s sna s nneaes 231
APPENDIX A : NEGOTIATION DIALOGUE.........ccccerruirrnnenrineerannenans ERROR! BOOKMARK NOT DEFINED.
A.1 NEGOTIATION DIALOGUE EXAMPLE..........ccccevruerrreersecriunnans ERROR! BOOKMARK NOT DEFINED.
A.2 DFSL OF THE NEGOTIATION DIALOGUEcccocervueernecrcnnenans ERROR! BOOKMARK NOT DEFINED.
A.3 DID OF THE NEGOTIATION DIALOGUE.........ccoevuerrnueeriecrcnnenans ERROR! BOOKMARK NOT DEFINED.
A.4 THE PICTURE HANGING EXAMPLE...........cccocveriinirinnenseeninaenans ERROR! BOOKMARK NOT DEFINED.

A.5 LCC SYNTHESIS PROTOCOL OF THE NEGOTIATION DIALOGUE ERROR! BOOKMARK NOT DEFINED.

A.6 VERIFICATION MODEL OF THE LCC SYNTHESIS PROTOCOL OF THE NEGOTIATION DIALOGUE

... ERROR! BOOKMARK NOT DEFINED.
APPENDIX B: N-AGENT DIALOGUE.........cueiiiuiiiruiiineeiieeiisstsssstessssessssesssessssssssssesessesesssssssssssssssnes 266
B.1 DID FOR N-AGENT FORMAL DEFINITIONuvveviuiiiiiniiiieiiiiiieiniiiecsiiiec st csiacc e siinee s csanae s 266
B.2 DID FOR N-AGENT EXAMPLE ...c.vvvieiiiiieiiiiie ittt sitte ettt ettt ettt e s st s st s 274
B.3 GENERAL N-AGENT PATTERNS «..vvtteitiiieiitiie sttt siit e sttt e sttt sttt st e s et s sitsesssnasessanesessnnns 288
B.3.1 GENERAL LCC-ARGUMENT N-AGENT PATTERNS. ..c.vevuteueeueeueeientesiesueeuesieeaeesensessessessesieeaeessensensenaens 288

APPENDIX C: PERSUASION DIALOGUE.......cccittirirmmniiiiiiinininnnteeiiiinsnnnneeeiisssmmsssseessssssmmssssessssss 315

C.1 AN EXAMPLE OF AN LCC PROTOCOL BEGIN GENERATED FOR TWO AGENTSccccceveueerneene 315
C.2 AN EXAMPLE OF AN LCC PROTOCOL BEGIN GENERATED FOR N-AGENTcccccceerneereecrenens 315
C.3 VERIFICATION MODEL OF THE PERSUASION DIALOGUEccceeruerinneeieeerinesinnesneessnnesenaeas 330
APPENDIX D: CPN FUNCTIONSccuuuiiiiiiiiniineiisiiiiinsssssssssiiisssssssssssimssssssssssssssmssssssssssssssssssssssssss 354
APPENDIX E: GENERATELCCPROTOCOL TOOL GRAPHICAL USER INTERFACEccccooeeerrinnnnnnnnnnnns 354
E.1 GRAPHICAL USER INTERFACE FOR SYNTHESIS OF CONCRETE PROTOCOLS (PART ONE) 357

E.1.1 DIALOGUE INTERACTION DIAGRAMcuvieiiiiesieeieeie et ste ettt st eit e sttt e saeeaesaa st e saeenae e 357

E.1.2 SYNTHESISING CONCRETE LCC PROTOCOLS FROM DID SPECIFICATIONS.......vvveeeiiiieraiiieeeniiieeeiieee e 370
E.2 A GRAPHICAL USER INTERFACE FOR PART TWO: VERIFICATION MODEL SCREENS.................. 371
APPENDIX F: PUBLISHED PAPERScoiiiiiiiiiiiiiiiiissssssssssssssissssssmssmmmmmssmmmssmmmnes 354

BIBLIOGRAPHYccoiiuiiiiiniiiiiiitniisenesiisnnessssssessssanssssssasesssssssesssssnsessssasssssssnsssssssnsessssansessssanaens 376

List of Figures

1.1: SYSTEM ARCHITECTUREcceviiiiiiiiinnniiiiiiiinennnieniinsssennseessssssssanssssssssssssssnssssssssssssssssnsssssssns 5
2.1: THE SLAVE CLASScuuueetiiiiniiinnnnieeiiissnensssessnnssssssssssans 16
2.2: CPNS MODEL ELEMENTS EXAMPLE.......ccoovmmiiiiiiiiininniiiiniiinnnnieessissssensnsessssssssssssseessssssssnns 25
2.3: A HIERACHICAL CPN ...cceriiiiiiiiriinntitiiiiiinsnnnnteesiissssisssseesissssssssssesssssssssssssssssssssssssssssasssssssssans 29
2.4: CPN TOOK...uuuiiiiiiiiiiinnniieiniiissisnnieeesisissssssseeesisssssssssssessssssssssssasesssssssssssssasessssssssssssassssssssssns 32
2.5 (A): CPNXMK FILE STRUCTURE EXAMPLEueiriueiineirieeiineinnnesseessssesesessssesssssessssessssessssness 33
2.5 (B): CPNXMK FILE STRUCTURE EXAMPLEceiviiiiieirieeiineinnnenseenssesssssssesssssessssesessessssnees 34
2.6: STATE SPACE GRAPHcccotiiittiiiiiiiininniiieeeincssnnineesisssssssssaeessssssssssssseesssssssssssssasssssssssnns 35
3.1: PERSUASION DIALOGUE EXAMPLE (CAR SAFETY CASE)ceevvurerimerinerisnnnsssnesssnesessessssnssssnenns 51
3.2: DETERMINING THE TYPE OF DIALOGUEccetiiiiinmmiiiiiiincnnniiesninsssssssnssesnsssssssssssessssssssans 53

3.3: SPECIFICATION IN AIF OF THE ARGUMENTS EXCHANGED BY AGENTS DISCUSSING THE FLYING
ABILITIES OF THE "P" BIRD ...uuuttiiiiuereiiiinnneiisssneeiissneeiissneiisssnesessseesessssessessssesssssssesesssnsssesssssssesssns 56

3.4: A DIALOGUE GRAPH REPRESENTED IN THE AIFccutiiiiiiiiiinnnnnieeiiiiisssnnnneeeissssssssnseeenssssnnes 59

3.5: ILLUSTRATING THE LINK BETWEEN ARGUMENT (AIF NODES) AND DIALOGUE GAMES (AIF*

110 0) 62
4.1: MISSING CONCEPTS BETWEEN AIF AND AGENT PROTOCOLuueemmieeriiicssnnnnnneninnscsssnsnnneennes 65
4.2: LOCUTION ICONcooiiiinenmiiiiiiniisnnsiiieniissssssssesnisssssssssssssissssssssssssssssssssssssssesssssssssasssssessnss 69
4.3 DID STRUCTURE OF A PERSUASION DIALOGUE..........cccocmmriririiicssnnnnniennissssnnnnneennssssssssnsneennes 75
4.4: THE COMPLEX CAR SAFETY EXAIMMPLE........cccovummiiiiiininnnnniineninsssassissesnsssssssssssseessssssssssssssessnes 77
4.5: THE PERSUASION DIALOGUE LEGAL MOVES.......cccoiiiiiinnnnnnnnnnnniisssnnes 87
4.8: THE INQUIRY DIALOGUE LEGAL MOVEScccoviiiiiininnnnnnniniiisssnss 96
4.9: DID STRUCTURE OF AN INQUIRY DIALOGUE........cccoetiiinnnnnnnnnnnssnes 98
4.10(A): INQUIRY DIALOGUE LOCUTIONS PRE-CONDITIONS AND POST-CONDITIONS.c.cceunee. 929
4.10 (B): INQUIRY DIALOGUE LOCUTIONS PRE-CONDITIONS AND POST-CONDITIONS...........ccou.. 100
4.10 (C): INQUIRY DIALOGUE LOCUTIONS PRE-CONDITIONS AND POST-CONDITIONS...........ccou.. 101
4.11: EMBEDDED INQUIRY DIALOGUE EXAMPLEcccoivmmmiiiiniicssnnnnieeenisssssnsseenssssssssssesennes 103

4.12: DIALOGUE AMONG N-AGENTuuueiiiiiiiiiiientitiniiinennieeisssenseessnssssssssssesssssssssssssssssssns 106

4.13: EXAMPLE TWO OF DIALOGUE AMONG N-AGENT.ccettiiiiiiiniinnniiiiiiinsnenneeeniinmaeeeeeens 107

4.14: EXAMPLE THREE OF DIALOGUE AMONG N-AGENT. ...ccetttiiiiiiiinnnniiniiiinenniieenineeeseeens 108
4.15: LOCUTION ICON FOR N-AGENT....ccetttitiiiiniinnnniiiiiiiisnnnieeiiiimmmieesiissmsssiessssssmmmsssesssss 111
4.16: BLACK BOX OF DID FOR N-AGENT.......ccciitiimmmntiiiiiisisnnnnneiiiiissnnnneeeiisssmmmssseeessssmmmssseesses 112
5.1: BROADCASTING PATTERN SOLUTION (STEP ONE)cooveiriueirieerieeiisnnensseessseesesessssessssnens 125
5.2: BROADCASTING PATTERN SOLUTION (STEP TWO)......covveerneerieersseenssnrenssnesseesessessssessssnenns 127
5.3: BROADCASTING PATTERN SOLUTION (STEP THREE: DIVIDE).......c.cocerrrurrrsueerseerseerssensssanens 128
5.4: BROADCASTING PATTERN SOLUTION (STEP THREE: TERMINATION)ccocevrvueerieerirenncnnnnns 129
5.5 : STRUCTURE (PROPOSALSENDERpgoposar AND PROPSALRECEIVERRggcgiver ROLES)cueeeuneeene. 131

5.6 : STRUCTURE (REPLYTOPROPSALSENDER AND REPLYTOPRPOSALRECEIVERpgoposaL ROLES) ... 132

5.7 : STRUCTURE (RESULTSENDERproposa. , SENDREACHAGREEMENT proposar, DIVIDEGROUP proposat

AND RESULTRECEIVER ROLES)uuueerreirireirineinseessseenssessstssssessssesssssssssssssssessssesssssssssssssssesenses 133
5.8: SOLUTION OF RECURS-TO-N-DIALOGUE PATTERN........cccoviummierriiiisisnnnnneennssssssnnnneeessssssssnnnnnne 141
5.9: AGENT PROTOCOL AUTOMATED SYNTHESIS TOOL.......cccovvumrrerriiissssnnnnecenisssssnnnneessssssssnnnnnne 144
5.10: TWO AGENTS PROTOCOL AUTOMATED SYNTHESIS ALGORITHMccovviiinnnnnneeniiccssnnnnnnee 145
5.11: N-AGENTS' PROTOCOL AUTOMATED SYNTHESIS ALGORITHMcorvvurriurersnerineicsenessanenns 147
6.1: VERIFICATION PROCESS........ccosvummiiiriniissnnninieniiissnsninsenisssssssmmeesissssmsssssesnisssssssssssssssssses 151
6.2: STATE SPACE TOOL PALETTE.....cceitiiiiiiiineniiiiiniiicneniinenissssssssnseesisssssssssssessssssssssssssssssssssses 173
6.3: PROPERTY 1 AS AN STANDARD ML FUNCTIONuuuetiiiiriiicnnnnniinninsnnnnisesnnnsssssssseennessees 177
6.4: PROPERTY 2 AS AN STANDARD ML FUNCTION.ccceveremmmmmmmmmmnnnnnnnnnenmnmmmnnsessmsssssssssssssssennees 179
6.5: PROPERTY 3 AS AN STANDARD ML FUNCTIONccceeemmmmmmmmmmmnnnnnnnnnnnnnnmmmeemmemmemssssssssssmsseneees 182
6.6: PROPERTY 4 AS AN STANDARD ML FUNCTIONccceuuemmmmmmmmmmmnnnnnnnnnnnemmmmmmmmemsssssssssssssssssneees 185
6.7: PROPERTY 5 AS AN STANDARD ML FUNCTIONuuuetiiiiriiiinsnnnnninninsnanninesnissssssnsneensesnees 186
7.1: GENERATELCCPROTOCOL TOOL......ccovviciuummiiiininissnnnninienisssssssnseeniisssmsssmssesisssmsssmseesssssaes 188
7.2: OVERALL ARCHITECTURE.......cuumiiiiiiiiicnneiiiieninscssssissesissssssssssssesisssssssssssssnsssssssssssssssssssssnns 190
7.3: AN EXAMPLE SCENARIO OF GENERATELCCPROTOCOL TOOLcccvvicerunmmnneeninccsssnennnnennnsennns 192

7.4: CREATE NEW DIALOGUE INTERACTION DIAGRAM EXAMPLE (CLAIM LOCUTION ICON)......... 193

7.5: CREATE NEW DIALOGUE INTERACTION DIAGRAM EXAMPLE (ADD LOCUTION FORMAL

DEFINITION TO DID) .ccovuriiiuneiineiinnicsnnisssnesssneisneissseiessssesssesssnessssessssesessssssssesssnesssnssessssssssesssnesss 193
7.6: OPEN DID FILE DIALOGUE BOXcccttiiiiiinnnnnniniiiissnnnnnneenisssssinnnnessisssnssssesssssssssssssessssssssnns 194
7.7: THE DID TEXTUAL REPRESENTATION OF THE PERSUASION DIALOGUEcccovvummmnnerriiinnnnne 195
7.8: SYNTHESISES OF LCC PROTOCOL OF THE PERSUASION DIALOGUE..........ccceeeeriiicnnnnnnneerinscnnnns 196
7.9: SPECIFYING AGENTS KNOWLEDGE BASE SCREENS.........cccccciinummmiieniiiisinnnneneninissnnnnneeennssnnne 197
7.10: TRANSFORMING LCC PROTOCOL INTO AN EQUIVALENT CPN MODEL SCREENS................... 199
7.11: INSTRUCTION SCREENccccommiiiiiiiiiinnniiiieiinisinsniesesisssssssssesesisssssssssassssssssssssssassssssssssns 200
7.12: VERIFICATION MODEL RESULT SCREEN.........ccottivirmmmmiiiiiiiininnnnieeiiisssnnnneesniisssmmsssseesssssnee 201
8.1:THE RELATIONSHIP BETWEEN AIF AND DID LOCUTIONS ICON..........ccovvvummmnnrrrissssnnnnneennssssnens 204
8.2 (A) : ILLUSTRATING THE LINK BETWEEN ARGUMENT (AIF NODES) AND DID LOCUTIONS........ 205
8.2 (B): ILLUSTRATING THE LINK BETWEEN ARGUMENT (AIF NODES) AND DID LOCUTIONS......... 206
8.3: LOCUTION CONCEPTScccetiiiiiiinnnnneernisssssnsneeesissssssssssasessssssssssssassssssssssssssassssssssssssssassssssssssns 209
8.4 (A): DIALOGUE GAMES CONCEPTS.....ccceeiieeiisuerisutisstesseesssesssstssssnessssesessessssssssssessssesessesenanss 211
8.4 (B): DIALOGUE GAMES CONCEPTScueiiieeiieiiiutiniteseesseesssrssssessssesessesesassssssessssesessesenaes 212
8.5: MODGIL AND MCGINNIS EXAMPLE OF DIALOGUE GAMES CONCEPTS...........oceevvummnnnenniisnnnnne 212
8.6: AIF+ DESCRIPTION OF PERSUASION DIALOGUE GAMES.........ceuriiiriiiinnnnnnnennnnicsnnennneennnsnnees 213
8.7: DID PROTOCOL IMPLEMENTATION CONCEPTSuuueriiiiiiniinsnnniiieninssnnnnisesninssssssssneenssessees 214
8.8: PARTIAL DID DIAGRAIMcccccvummiiiiniiicssnnniiienisssssssssssesisssssssssesssissssssssssesssssssssssssssssssssssns 218
8.9: POSSIBLE SEQUENCE OF REPLY MOVESccuuuveeeeeeeeeeeennennennnnnnnnnssssssssssssssssssssssssssssssssssssses 218
A.1: THE NEGOTIATION DIALOGUE LEGAL MOVESccociiiiinnnnnnnnininnnnsnnssssssssssssssssssssssssssssssssssnes 238
A.2: DID STRUCTURE OF A NEGOTIATION DIALOGUEcccciiiiiinninnnnninssnsnsssssssssssssssssssssssssssssssnnns 240
A.3(A): NEGOTIATION DIALOGUE LOCUTIONS PRECONDITIONS AND POSTCONDITONS. 241
A.3 (B): NEGOTIATION DIALOGUE LOCUTIONS PRECONDITIONS AND POSTCONDITONS.............. 242
A.3 (C): NEGOTIATION DIALOGUE LOCUTIONS PRECONDITIONS AND POSTCONDITONS.............. 243
A.3 (D): NEGOTIATION DIALOGUE LOCUTIONS PRECONDITIONS AND POSTCONDITONS 244
A.4: THE PICTURE HANGING EXAMPLE.........cccoirnmmttiiiiiiniinnnnteeiinnnnenneeeennsssssssseessissssmsssseessses 245

A.5(A): GENERATED LCC PROTOCOL FOR NEGOTIATION DIALOUGEcccccersumercnnnicnnissanencnnenenns 247

A.5(B): GENERATED LCC PROTOCOL FOR NEGOTIATION DIALOUGEcccccervumercnneicnninsanensanennne 248

A.6: THE REQUESTSENDERA CPN SUBPAGEuuuurriiiiiiiitnniiinnnieneneeennnensssessssssssenssseesnnes 251
A.7:THE REQUESTRECEIVERB CPN SUBPAGEccuttiiiiiiiiinnnnniiiiiiininnnniesiiiisnssmseessssssmmsssseesses 251
A.8: THE REPLYTOREQUESTSENDERB CPN SUBPAGEccutiiiiiiiinnnnnieniiinsennnneeennsnnsnseeenes 252
A.9: THE REPLYTOREQUESTSENDERB CPN SUBPAGEccccutiiiiiiininnnninieninsssnnnnieeenisnnssssseeesns 253
A.10: THE REPLYTOCHALLENGESENDERA CPN SUBPAGEcccovviiiniunmnnnieninsssssnnnnneenisssssssssssesnes 248
A.11: THE REPLYTOCHALLENGERECEIVERB CPN SUBPAGEccovvumrriierrniisnnnnnneeenssscssnnnsenennes 253
A.12: THE REPLYTOJUSTIFYSENDERB CPN SUBPAGE..........cccccuiirriiiiinnnniiiininssnnnnieeennssssssssseeesnes 254
A.13: THE REPLYTOJUSTIFYRECEIVERA CPN SUBPAGE.........ceerriririiinntniininineennnnennnsssnesseennnaes 254
A.14: THE REPLYTOPROMISESENDERA CPN.......uuuumiiiiiiiiissnnnniiniiniisnnnniiesiiissmsssssesnsssssssssseessns 255
A.15:THE REPLYTOPROMISERECEIVERB CPNccurtiiiiiiiinnniiiiiinneeniinsnnnnsnnsssssssssssssssseessnes 255
A.16: THE PROTOCOL CPN SUPERPAGEccccoiiumniiiriiiisssnnnnneeeiisissssnnnneeessssssssssssseessssssssssssssesssns 256
A.17: THE STATE SPACE GRAPHcccciimiiitiiiiinintiiieeeiisssnsniieesisissssssnneeesssssssssssssesssssssssssssssssssas 257
A.18: POSSIBLE LOCUTIONS FILEccuuuumiieeriiiiissnnnnieeenissssssnnnneessssssssssssseessssssssssssssssssssssssssssssssssas 257
A.19: REPLY LOCUTIONS FILE......ccciiiiiiiummneenniiisssnnnneeenisssssssnsneessssssssssssssessssssssssssssssssssssssssssssssssns 257
A.20: STARTING LOCUTIONS FILEcouueerriiiiiiiiiinniiiiniinseensinssissssassssssssssssssssssssssssssssssssssssssses 257
A.21: INTERMEDIATE LOCUTIONS FILEccoiviiiuemiiiiiiinisnnniineninnssssssssesnsssssssssnseessssssssssssssenses 258
A.22: TER,OMATOPM LOCUTIONS FILEcoovieiummiiiiiiiicsnnniineninncseesnssesnnsssssssssseessssssssssssssennes 258
A.23: TERMINATION LOCUTIONS EFFECT CS AND EFFECTIVE CS FILEScccovvummmreerrnicnnnnnnnneennne. 258
A.24: PLAYER TYPES FILEccuunrnininnnnnssnes 258
A.25: PLAYER IDS FILE.......ociiiiiiinnininss 258
A.26: TERMINATION ROLE NAMES FILEcooviiiiininnnininnnnnnnnnssssssssssssssssssssssssssssssssssnes 259
A.27: THE VERIFICATION RESULT OF THE FIVE BASIC PROPERTIES........c.cccovviiinuemmnieniiiccsnnennneennne. 259
2.8: SUCCESSFUL AND UNSUCCESSFUL DIALOGUE EXAMPLES........cceteirriiiiinenniieininscnnennneennnsnnnee 261
2.9: C-SUCCESSFUL DIALOGUE EXAIMPLE........ccetiiiiiiniiinnnnieieninssssssniesesissssssssmseenisssssssssssesssssssans 262
A.30: PROPERTY 6 (SUCCESSFUL DIALOGUE) AS AN STANDARD ML FUNCTION........ccccevsurersunerenee 262

A.31: PROPERTY 7 (C-SUCCESSFUL DIALOGUE) AS AN STANDARD ML FUNCTIONccccceriunerenee 264

A.32: PROPERTY 6 (SUCCESSFUL DIALOGUE) VERIFICATION RESULTcccccteisumercnnnicsnniesanessanennne 265

A.33: PROPERTY 7 (C-SUCCESSFUL DIALOGUE) VERIFICATION RESULTcccvvmercnercnnicsnnessanennne 265
B.1: PERSUASION DIALOGUE BETWEEN N-AGENTcceetiiiiiiiininnniiniiiinnnniieenineesesesnssmennene 275
B.2:THE PERSUASION DIALOUGE BETWEEN N-AGENT LEGAL MOVES.........cccccveeinnnnnneeenisccsssnnnnnne 280
B.3: DIALOGUE INTERACTION DIAGRAM FOR N-AGENT (DIDN)......cococervrurriruerssnenseersseesssansssanens 282
B.4(A): DIDN LOCUTIONS PRE-CONDITIONS AND POST-CONDITIONS........ccoccernurerseerseerssunsssanees 283
B.4(B): DIDN LOCUTIONS PRE-CONDITIONS AND POST-CONDITIONS.......ccccocevrsurerseerseerssunsssaneas 284
B.4(C): DIDN LOCUTIONS PRE-CONDITIONS AND POST-CONDITONS.cceescteisurersnerssnercsenessanenns 285
B.5: THE COMPLEX CAR SAFETY EXAMPLE AMONG N-AGENTccccetriiiiinnmmniiniiinnnnnnnieennnsneennnn 287
B.6: RECURSIVE STARTING(SENDING) PATTERN SOLUTIONccccereumirinrrisnnessnnessnescssenesenessanenns 290
B.7: RECURSIVE TERMINATION-RECUR PATTERN (TERMINATION) SOLUTIONcccereuereuersnnenne 297
B.8: RECURSIVE TERMINATION-DIVIDED PATTERN STRUCTUREcccovnmmiierriiiiisnnnneecnnissssannnnnee 303
B.9: N-AGENT PROTOCOL AUTOMATED SYNTHESIS ALGORITHM..........uuuuurriiiriiiiiinnnnnecnniicssnnnnneee 307
B.10(A): GENERATED LCC PROTOCOL FOR N-AGENT DIALOGUEccoevuerirurrnsneensneerseesesensssanenns 310
B.10(B): GENERATED LCC PROTOCOL FOR N-AGENT DIALOGUEccovvurriureisurensaneicsnesesenessanens 311
B.10(C): GENERATED LCC PROTOCOL FOR N-AGENT DIALOGUEccoevemreurrisnrensuneiceeneenessanens 312
B.10(D): GENERATED LCC PROTOCOL FOR N-AGENT DIALOGUEcccocererurrirurensnneiceeiesenesanenns 313
C.1(A): GENERATED LCC PROTOCOL FOR PERSUSION DIALOGUE (PART 1)ccvvverrrurersunersanerennens 319
C.1(B): GENERATED LCC PROTOCOL FOR PERSUSION DIALOGUE (PART 2)ccocvcervrurrssunersnnesennnes 320
C.2 (A): STEP 3 OF PROTOCOL GENERATION (MATCHING THE STARTING PATTERN)........ccccueruneee. 321
C.2 (B): STEP 3 OF PROTOCOL GENERATION (COMPLETING THE RECURSIVE ROLES)couueee. 322
C.3(A): STEP 5 AND 6 OF PROTOCOL GENERATIONceerveirireerisnriisuneissnesssnesssessssnesssnesssnesessns 323

C.3 (B): STEP 7 OF PROTOCOL GENERATION (MATCHING THE TERMINATION-INTERMEDIATE
o 11 324

C.3 (C): STEP 7 OF PROTOCOL GENERATION (COMPLETE THE RECURSIVE ROLES).......cccccovunerrennnes 325

C.3 (D): STEP 8 OF PROTOCOL GENERATION (MATCHING THE REWRITING METHODS OF THE
TERMINATION-INTERMEDIATE PATTERNcoviimrtiiiiiiiinnnntttiiiinnenneeessnssssnansseesssssssssnsssessssnes 326

C.8(A): GENERATED LCC PROTOCOL FOR PERSUSION DIALGOUE (PART 1)cccevererurensunercnnerennnes 331

C.8(B): GENERATED LCC PROTOCOL FOR PERSUSION DIALGOUE (PART 2)cceevuressurersunercnerennnes 332
C.8(C): GENERATED LCC PROTOCOL FOR PERSUSION DIALGOUE (PART 3) ...cccceeuresnrensunercnnencnnnes 333
C.8(D): GENERATED LCC PROTOCOL FOR PERSUSION DIALGOUE (PART 4)ccocvurrrrurersunercnnercnnnes 334
C.8(E): GENERATED LCC PROTOCOL FOR PERSUSION DIALGOUE (PART 5).....cccoevuervueensunersneesennnes 335
C.8(F): GENERATED LCC PROTOCOL FOR PERSUSION DIALGOUE (PART 6)ccoevuerrurersueersunesanenes 336

C.9 (A): STEP 2 OF PROTOCOL GENERATION (MATCHING THE MOVE-TO-DIALOGUE PATTERN) ..337
C.9 (B): STEP 2 OF PROTOCOL GENERATION (MATCHING THE MOVE-TO-DIALOGUE PATTERN) ... 338

C.9 (C): STEP 3 (PART 1) OF PROTOCOL GENERATION (MATCHING THE REWRITING METHODS OF
THE RECURS-TO-N-DIALOGUE PATTERN)......cttrvtiirriiiiiiintinsnreissneissnesesnssssnesssnessssesssssssssnessanesnns 339

C.9 (D): STEP 3 (PART 2) OF PROTOCOL GENERATION (MATCHING THE REWRITING METHODS OF
THE RECURS-TO-N-DIALOGUE PATTERN)......ciirtiriiiriteiineinnteisee e sssessssessnessssesesssssssnsssssesnes 340

C.9 (E): STEP 3 (PART 3) OF PROTOCOL GENERATION (MATCHING THE REWRITING METHODS OF

THE RECURS-TO-N-DIALOGUE PATTERN)......civrtiriiiriteiietiniteiteseesssesssssessssesssesesssssssssssssesnes 341
C.10: THE CLAIMSENDERp CPN SUBPAGEcettiiiiiiiiiinnniiiiiiissinnniieesiisssnsssneeesisssnsssssssesssssnsns 342
C.11: THE CLAIMRECEIVER CPN SUBPAGE........c.cccttiiiiinnniniiiiisisenniiesnisessssessnissssssssseesssssee 343
C.12: THE REPLYTOCLAIMSENDERG CPN SUBPAGEuuurriiiiiiiineniinininceneinessnnssssnsesesssssnees 343
C.13: THE REPLYTOCLAIMRECEIVERp CPN SUBPAGEccettiiriiiineenniiiniisnnnieesnnsssssssensssssees 344
C.14: THE REPLYTOWHYSENDERp CPN SUBPAGEouuueriiiiiiniceeiiiiennnneennsssnnsssasssseessnssnnes 344
C.15: THE REPLYTOWHYRECEIVERg CPN SUBPAGEceeeummemmmnnnnnnnnnnnennnneenneeeeseensesssssssssmssseeeee. 345
C.16: THE REPLYTOARGUESENDER CPN SUBPAGEccevvvmmmmmmmennnnnnnnnneneneeeeneneeeeeeeeesesessseseeeee. 345
C.17: THE REPLYTOARGUERECEIVERp CPN SUBPAGEceeevrmmeemmmnnnnnnnnnnnnnnnneneneennennssseseseseeemeee. 346
C.18: THE PROTOCOL CPN SUPERPAGEcccceriiirriiiinnninieninscassinsssisssssssssessisssssssssssesssssssans 347
C.19: THE STATE SPACE GRAPHcuuueeriiiiiiicceetiiiinineeiisssnnnssssassnssssnsssssassssssssssssssssssssssssssssnes 348
C.20: DIALOGUE OPENING PROPERTY PAGE........cccovtiivvummmniiniissssnnnnnneniisssssnmeesniessssssmseessessees 351
C.21: TERMINATION OF A DIALOGUE PROPERTY PAGEccoeecinummmiieninicssnennineninscssnssnseesnsssnaes 352
C.22: TURN TAKING BETWEEN AGENTS PROPERTY PAGEccceutemmmmmmmmnnmnnnnnnnnneeeenennnneneeeneeennnnne. 352
C.23:MESSAGE SEQUENCING PROPERTY PAGE.......ccceeumemmmmmmmnnennnnnnnnnmennnneenemmsmsmmmsessssmssmsmesssesessee. 352

C.24: RECURSIVE MESSAGE PROPERTY PAGEccoovvvnmmmnniiiiiiininnnttiiiiinnnenneeenisnmmsessseesisnnnes 353

C.25: THE VERIFICATION RESULT OF THE FIVE BASIC PROPERTIESccovvvmmmnirriiiininnnnnnenniiinnnnee 353

E.1: GENERATE LCC PROTOCOL TOOL MAIN SCREENcootvvrummmneniiiinninnnnnneeniisssnnnnneeensssssnnnnnnes 358
E.2: DIALOGUE INTERACTION DIAGRAM LIBRARY SCREENceurririiiiinrinnnnnniniiissnnnnneeeensssssnnnnnns 358
E.3: CREATE NEW DIALOGUE INTERACTION DIAGRAM SCREEN.........cccovvmmmiririiinnrnnnnnenninisssnnnnnnns 358
E.4: SIMPLE DID GRAPHICAL REPRESENTATION OF A PERSUASION DIALOGUE...........cccccuvrueeeenne 360
E.5: DID FORMAL REPRESENTATION OF AN INQUIRY DIALOGUE..........cccccumererriicssnnnnncenssscsssnnnnane 360
E.6: FULL DID GRAPHICAL REPRESENTATION OF A PERSUASION DIALOGUE..........ccccuveerriccnnnnnnnee 362
E.7 (A): HOW TO READ DID.......uetreueerieeiisueissueiissneisseisssesssstesssnessssessssessssesssssssssssssssesossesessssssssesss 364
E.7 (B): HOW TO READ DID......uuetrieiiieiiisniiisnneissneisseissstisssnesssnessssessssesessssssssessssesssnessssesesssssssnesss 365
E.8: ADD NEW ARGUMENT SUBSCREENccoetiiiiiininnniiiiiiiicnneniienniinaennssenissssssssesessssssssnsnees 366
E.9: ADD NEW CONDITION SUBSCREEN........cceetttiiiisinnnnieiiiiissinnniesiiiissasnsssesissssmsssnssessssssssssnes 366
E.10: DID TEXTUAL REPRESENTATIONuuuuiiiiiiiiiiiinnnnieeniiiisinnnnneesiisssssnsneeesissssssssssssessssssssssssaee 367
E.11: DID TEXTUAL REPRESENTATION OF CLAIM LOCUTION......cccettttiiiiiisnnnmeeernssssssnnnnneessssssssnnnnnne 369
E.12: CREATE NEW DIALOGUE INTERACTION DIAGRAM SCREEN..........ccocureeerriiissnnnnneennssssssnnnnnee 370
E.13: OPEN DID FILE DIALOG BOX.....ccootiiiiinmnneeniiiissssnnnneeenssssssssnnneesisssssssssnssessssssssssssasssssssssssssaane 370
E.14: GENERATES CONCRETE LCC PROTOCOLS FOR PERSUASION DIALOGUEccerreerriicsnnnnnnes 372

E.15: GENERATES CONCRETE LCC PROTOCOLS FOR PERSUASION DIALOGUE AMONG N-AGENT.. 373

E.16: SHOW GENERATED LCC PROTOCOLS SCREENccorviiiuuerriiiiniicnneniinennnceesinssnnnssssnnannns 374

List of Tables

2.1: THE ABSTRACT SYNTAX OF LCCccoiiiiinnntiiitiniinnnnnnieesinssennnsessssssssnnssseessssssssassssesssssssssannnees 9
3.1: DIALOGUE TYPEScuuuuerriiiiiiiininnniteiiiisnnnniseesisssssnnssssssisssssssssassssssssssssssssssssssssssnnsssssssssssans 50
5.1 : BROADCASTING PATTERN ROLES ARGUMENTS.cootvrrrmmmniriiiinsnnnnnnneniissssnnnnneeenissssennnnens 135
5.2 (A): BROADCASTING PATTERN FUNCTIONScoriiuiinsurensneisneissnnicssnisssnesssnesssnessssesesssesssnenes 136
5.2 (B): BROADCASTING PATTERN ROLES FUNCTIONS.........covrveirneeriseerineissnnisssnesssnesessesessessssnnns 137
5.3: RELATIONSHIP BETWEEN LOCUTION TYPE AND PATTERNScccoivmmmiieriiiisnnnnnneennsscsssnnnnnne 144
6.1: LCC-CPNXML AUTOMATIC TRANSFORMATION TABLE (ROLE)........cerneereeerisunissneessnnessnesesenes 156
6.2:LCC-CPNXML AUTOMATICALLY TRANSFORMATION TABLE (SEND A MESSAGE)c.ccceruneee. 157
6.3: LCC-CPNXML AUTOMATICALLY TRANSFORMATION TABLE(RECEIVE A MESSAGE)................. 158

6.4: LCC-CPNXML AUTOMATICALLY TRANSFORMATION TABLE (THEN KEYWORD AND CHANGE

30 8 159
6.5:LCC-CPNXML AUTOMATICALLY TRANSFORMATION TABLE (OR KEYWORD)ccvveereneerennne 161
6.6: LCC-CPNXML AUTOMATICALLY TRANSFORMATION TABLE (DIALOGUE TOPIC)ccoevueruneen. 162

6.7: LCC-CPNXML AUTOMATICALLY TRANSFORMATION TABLE (STARTER ROLE ARGUMENTS) ... 163
6.8: LCC-CPNXML AUTOMATICALLY TRANSFORMATION TABLE (END STATEMENT)cervuuerneene 165

6.9 (A):LCC-CPNXML AUTOMATICALLY TRANSFORMATION TABLE (GET AN ARGUMENT
Lol 1111 1 T) 166

6.9 (B):LCC-CPNXML AUTOMATICALLY TRANSFORMATION TABLE (GET AN ARGUMENT CONDITION)

6.10: LCC-CPNXML AUTOMATICALLY TRANSFORMATION TABLE (ROLE IN THE CPN SUPERPAGE).170

6.11: LCC-CPNXML AUTOMATICALLY TRANSFORMATION TABLE (DIALOGUE TOPIC IN THE
SUPERPAGE).....e.cuueeseeseescsaesasessssssssssssssssasssssssssssssssassastassssesssssssassastassssssssssssassassassssssssssssssassasssses 171

6.12: LCC-CPNXML AUTOMATICALLY TRANSFORMATION TABLE (AGENT'S STARTER ROLE
ARGUMENTS IN SUPERPAGE)........ceiiiiiiiiiinieiiiiseiiissssesssssnssssssssssssssss s sssssssssssssesssssssssssssssssssssnns 172

8.1 DIFFERENCES BETWEEN MODGIL AND MCGINNIS [MODGIL AND MCGINNIS, 2007], REED ET
AL. [REED ET AL., 2008] AND DID.......cceesctrssumensnerssueicsunesssnesssnessssesessnssssnessssessssessssessssssssssessssesnns 209

B.1 RELATIONSHIP BETWEEN LOCUTION TYPE AND PATTERNS.ccovvririiiiiiiiiiiiiiiniennennennnnneeeeeen 307

Bridging the Specification Protocol Gap in Argumentation

Chapter 1

Introduction

An argument offers a reason for believing a statement, taking an action, changing a
goal, etc. Recently, argumentation has been an important area of research in natural
language processing, knowledge representation, and construction of automated
reasoning systems [Maudet et al., 2007]. It also has merged with multi-agent
systems (MAS), in particular for modelling the communication between agents,
where it supports mechanisms for designing, implementing, and analyzing models of
the interaction among agents. However, a wide ranging approach of this kind carries
with it various challenges. An important challenge is to ensure that agent arguments

can be communicated in a reliable way by using argument-based protocols.

The Argument Interchange Format (AIF) [Chesnevar et al.,2007;Willmott et al.,
2006] 1s an approach that has been used successfully to tackle this challenge.
Recognizing that no single style of argumentation fits all circumstances, the AIF
stipulates a layered style of specification in which a high-level language is used to

specify the argument which is then implemented as a protocol.

Interaction protocols in AIF [Chesnevar et al.,2007;Willmott et al., 2006] can be
represented using a protocol language called the Lightweight Coordination Calculus
(LCC) [Robertson, 2004; Hassan et.al., 2005], an executable specification language

which is at the core of an overall architecture for coordination of MAS.

The goal of this research is to develop a useful tool that can enable designers to build
an efficient LCC program in the easiest and quickest manner. The aim is to propose a
high-level control flow specification language, called a Dialogue Interaction
Diagram (DID) between AIF and LCC, for designers to build an agent by reusing
common LCC argumentation patterns. The selection and instantiation of these
patterns is performed automatically given a high-level specification ideally written in

the AIF.

Chapter 1 Introduction

Bridging the Specification Protocol Gap in Argumentation

1.1 The Challenge

Today, argumentation [Rahwan and Moraitis, 2009] is gaining more prominence
because it is being used as a key form of interaction among agents in MAS.
However, the argumentation community encounters various problems, such as the
lack of a shared interchange format for arguments. Arguments [Rahwan and
Moraitis, 2009] are represented in many different ways depending on the particular
approach people used. To solve this problem, the argumentation community
developed the AIF [Chesnevar et al.,2007;Willmott et al., 2006], which provides an

abstract language to exchange argumentation concepts among agents in a MAS.

However, AIF [Chesnevar et al.,2007;Willmott et al., 2006] is an abstract language
that does not capture some concepts that are needed to support the interchange of
arguments between agents (e.g. sequence of argument, locutions and pre- and post-
conditions for each argument). Rather, AIF only specifies the properties that define
an argument without prescribing how that argument may be made operational. An
example of this problem occurs in one of the basic dialogue games stereotypes: A1

and A2 are reasoning about whether a particular penguin, Tweety, can fly:

Al) Tweety flies. (making a claim);

A2) Why does Tweety fly? (asking for grounds for a claim);

Al) Tweety is a bird, birds generally fly. (arguing: offering grounds for a claim);

A2) Tweety does not fly because Tweety is a penguin, penguins do not fly. (stating a

counterargument);
Al) You are right.(conceding an argument).

In this dialogue game each agent responds in turn to the argument made by other
agent. This flow of the dialogue is not captured by AIF (e.g. AIF does not record that
a given argument has been made in response to an earlier argument). AIF only
captures argument structures (e.g. it connect "Tweety flies" with its premises

"Tweety is a bird, birds generally fly"). (see chapter 3 for a detailed discussion of

Chapter 1 Introduction 2

Bridging the Specification Protocol Gap in Argumentation

this problem). This means that there is a gap between argument specification
languages and multi-agent implementation languages. The objective of this thesis is
to fill this gap using a combination of automated synthesis and verification methods.

The following sections provide an introduction to these methods.

1.2 The Proposed Approach

The main research question is:

"Can we automatically synthesise multi-agent protocols (LCC as an
operational specification language) from a high-level argument specification

languages (AIF as a high-level specification language)?"

This research presents an approach to solve the described argument implementation
challenge. It demonstrates how a generic argumentation representation (acting as a
high-level specification language) can be used to automate the synthesis of
executable specifications in a protocol language capable of expressing a class of
multi-agent social norms. As our argumentation language we have chosen the AIF.

As our protocol language we have chosen LCC.
This approach has two main tasks (parts):

(1) Bridging the gap between AIF and LCC by using transformational synthesis

methods:

a) Extending the AIF diagrammatic notation (since AIF is an abstract language
and fully automated synthesis starting only from the AIF is not possible) to
give a new, intermediate recursive visual high-level language between the
AIF and LCC. The new high-level specification language remedies the AIF

problem and represents the dialogue game protocol rules in abstract way.

b) Implementing a tool which automatically synthesise concrete LCC protocols
from the new high-level specification language using a new pattern-based

synthesis method.

Chapter 1 Introduction 3

Bridging the Specification Protocol Gap in Argumentation

(2) Checking the semantics of the new high-level specification language, used as a

starting point, against the semantics of the synthesised LCC protocol.

1.3 Approach

Our approach attempts to close the gap between standard argument specification and
deployable protocols by automating the synthesis of protocols, in LCC, from
argument specifications, ideally written in the AIF. It consists of two parts (as shown

in Figure 1.1):

Part one which is used to bridge the gap between AIF and LCC by using a

transformational synthesis. Part one was built in two stages:

(1) Proposing a new high-level specification language, between the AIF and LCC,

for multi-agent protocols called a DID;

(2) Synthesising concrete LCC protocols from DID specifications (automatically
synthesising LCC protocols from DID specifications by recursively applying LCC-
Argument patterns).

Part two provides a verification methodology based on Standard functional
programming language (SML) and Colored Petri Net (CPNs) to verify the semantics
of the original DID specification against the semantics of the synthesised LCC

protocol.

1.4 Claims of Novelty

This thesis contributes to the area of multi-agent argumentation protocol
implementation. Firstly, it extends the AIF diagrammatic notation to give a new,
intermediate recursive visual high-level language between the AIF and LCC called a
DID. It does this to remedy the AIF obstacle (AIF is not an excutable language). The
goal is to be able to represent, in an abstract way, dialogue game protocol rules.
Second, it introduces LCC-Argument patterns. It uses LCC-Argument patterns with

DID to fully automated synthesis multi-agent protocols. Finally, it introduces

Chapter 1 Introduction

Bridging the Specification Protocol Gap in Argumentation

Part 1(Synthesis of Concrete Protocols)
T e T !
:) Synthesis —— :
| Taiput - Tool — - Output - - |
|
|
| 2
1 i
i |
I DID Resulting LCC I
| Protocol |
I (Argument (LCC = I
| Specification) |
I Language) Multi-agents |
: guag Development I
| Language) :
| 7o
| |
s R (U
Part 2 (Verification Model)
e
| |
' - ; |
| hipit - Ihpix |
: T—‘ Verification :
| g < A |
: " Tool D :
| |
| |
| N-}-‘ I
| -Output . |
| |
|
| v |
: Result :
I True /False I
]

Figure 1.1: System Architecture

verification methods to verify the semantics of the DID specification, used as a
starting point, against the semantics of the synthesised LCC protocol. The remaining

chapters of this thesis illustrate how this may be accomplished.

1.5 Thesis Structure

The rest of this thesis is structured as follows:

e Chapter 2: Background and Literature Review. This chapter reviews research

related to our representation approach.

Chapter 1 Introduction

Bridging the Specification Protocol Gap in Argumentation

e Chapter 3: Argumentation, Dialogue Games and MAS. This chapter
introduces the basic concepts of arguments, argumentation, dialogue games
and AIF. It also summarises the advantages of using argumentation for
modelling agent communication, as well as the shared and the
implementation problems faced by argumentation community and the

requirements we need in order to solve these problems.

e Chapter 4: Argument Specification Language. This chapter proposes a new
high-level specification language, between the AIF and LCC, for multi-agent
protocols called a DID, which is used to specify the dialogue game protocol

in an abstract way.

e Chapter 5: Synthesis of Concrete Protocols. This chapter proposes a set of
LCC—Argument patterns and describes a fully automated synthesis method
which can utomatically synthesise LCC protocols from DID specifications by
recursively applying LCC-Argument patterns.

e Chapter 6: Verification Method based on Standard functional programming
language (SML) and Colored Petri Net (CPNs). This chapter proposes a
verification methodology based on SML and CPNs used to evaluate the

research hypothesis.

e Chapter 7: Design and Implementation. This chapter presents the architecture
and the prototype implementation of the represented approach, that is used to
synthesise concrete LCC protocols from DID specifications by recursively

applying LCC-Argument patterns.

e Chapter 8: Evaluation and Discussion. This chapter discusses and summarises
the main contributions of this thesis. It is also points out limitations of the

thesis.

e Chapter 9: Conclusions and Future work. This chapter summarises the thesis
and discusses the main significance, contribution and limitations of the

current work. It also outlines future research work.

Chapter 1 Introduction 6

Bridging the Specification Protocol Gap in Argumentation

Chapter 2

Background and Literature Review

This chapter provides an overview and background of previous work on topics
related to this thesis. Given the extensive literature on these topics, we limit the

discussion to areas that are most relevant to later chapters.

We open this chapter with a summary of agent protocol development language
related works in Section 2.1. This is followed by a description of research on design
patterns in Section 2.2. Section 2.3 introduces research on relevant verification

methods. Lastly, Section 2.4 summarises this chapter.

2.1 Agent Protocol Development Language

The approaches presented in this thesis began with Argument Interchange Format
(AIF) which provides a common language to exchange argumentation concepts

among agents in a MAS.

To support formal analysis and verification, the AIF community [Willmott et al.,
2006; Modgil and McGinnis, 2007] (see chapter 3 for more information about AIF)
suggests using a process' and declarative” language to implement the dialogue games
protocol. For this reason we chose the Lightweight Coordination Calculus (LCC)

[Robertson, 2004; Hassan et.al., 2005], a declarative, process calculus-based,

! Process language: Process calculi [Baeten,2005] provide a tool to describe the behaviour of agents or
processes interactions or communications by algebraic means in a high-level way. It allows formal

reasoning and process verification.

? Declarative language: According to Lloyd [Lloyd, 1994] "declarative programming involves stating

what is to be computed, but not necessarily how it is to be computed".

Chapter 2 Background and Literature Review 7

Bridging the Specification Protocol Gap in Argumentation

executable specification language for choreography’ which is based on logic
programming and is used for specifying the message-passing behaviour of MAS

interaction protocols.

LCC is based on process calculus, in the sense that it determines when and what
actions the agent can perform and under what circumstances these actions may be
carried out. In other words, LCC restricts each agent's behaviour in the dialogue by
specifying the rules of the dialogue game. It controls what messages can be received
or sent, in what order these messages may be received or sent, and under what pre-
conditions and post-conditions these messages may be sent or received [Grivas,

2005].

In addition, LCC is a declarative language, in the sense that it only describes the
interaction between agents (what to do, not how to do it) and can be understood
independently from any specific execution architecture. It also contains few
operators, which make LCC a compact language for agent interaction [Willmott et

al., 2006; Modgil and McGinnis, 2007].

LCC is also an executable specification language (a very high-level executable
programming language) in the sense that there is a deployment mechanism for LCC

agent protocols [Grivas, 2005].

2.1.1 LCC Syntax

The abstract syntax of an LCC clause [Robertson, 2004; Hassan et.al., 2005] is
shown in Table 2.1. In an LCC framework each of the N > 2 agents is defined with a
unique identifier /d and plays a Role. Each agent, depending on its Role, is assigned

an LCC protocol.

3 Choreography: According to Dijkman and Dumas [Dijkman and Dumas, 2004] "Choreography is
collaboration between some service providers and their users to achieve a certain goal. It only
describes tasks that involve communication between the parties involved, and not tasks performed

internally."

Chapter 2 Background and Literature Review 8

Bridging the Specification Protocol Gap in Argumentation

Meaning

Framework := {Clause,....}

Clause := Agent ::= Dn

Agent == a(Role, Id)

Dn := Agent | Message | null < Constraint | Dn then Dn | Dn or Dn

Message := M => Agent | M => Agent < Constraint | M <= Agent |
Constraint €M <= Agent

Constraint := Term | Constraint and Constraint | Constraint or Constraint

Role = Term

M= Term

Term:= Constant (Argument,........)

Id Constant | Variable

Constant Character sequence made up of letters or numbers beginning with a lower

case letter

Variable Character sequence made up of letters or numbers beginning with an upper

case character

Argument Term | Constant | Variable

Table 2.1: The abstract Syntax of LCC

AN LCC protocol can be recursively defined as a sequential composition (denoted as
then) or choice (denoted as or) of LCC protocols. In an LCC protocol, agents can
change roles, exchange (receive or send) messages and exit the dialogue under
certain constraints C (null € C). Null represents an event (a do-nothing event) that
does not involve role changing or message exchanging. A constraint is defined as a

propositional formula specified over ferms connected by or and and operators.

Messages M are the only way to exchange information between agents. An agent can
send a message M to another agent (M => Agent), and receive a message from
another agent (M <= Agent). There are two types of constraints over the messages
exchanged: pre-condition and post-condition. Pre-conditions (M => Agent & C)
specify the required conditions for an agent to send a message. Post-conditions (C
<M <= Agent) explain the states of the receiver after receiving a message. An agent
can test the satisfaction of the constraints either privately (by using the internal

agent's mechanism) or by using shared knowledge transferred via messages.

Chapter 2 Background and Literature Review 9

Bridging the Specification Protocol Gap in Argumentation

An agent can play more than one role during several interactions. In LCC, recursion
can be achieved by repeating the same role either to process a list or to loop it until

the recursive condition fails.
LCC has a Prolog like syntax [Besana, 2009]:

(1) Constrant name are character sequence made up of letters or numbers beginning

with a lower case letter;

(2) Variable are character sequence made up of letters or numbers beginning with an

upper case character;

(3) Constraints are analogues to Prolog queries (Although LCC itself does not

assume that the constraint solver must be a Prolog system);

(4) Some of the role parameters are input and others are output parameters. The

values of output parameters are set when the role ends;

(5) The semantics of the assignment and the comparison of variables is taken from
Prolog: an assignment to an un-instantiated variable always succeeds by putting
the value in the variable (simple assignment action), whereas an assignment to
an instantiated variable succeeds if, and only if, the values of the two variables

are the same (comparison action).

2.1.2 LCC Examples

This section illustrates three simple and complex examples, which demonstrate the
use of LCC as a specification language for specifying the message-passing behaviour

of MAS interaction protocols:

Example 1: Simple Persuasion Protocol

This is the simplest example of a persuasion protocol between two agents P and O.
P and O have arguments for and against Topic. Agent P sends a claim message Topic
and agent O receives this claim message Topic. A fragment of LCC protocol for the

interchange in this argument is:

Chapter 2 Background and Literature Review 10

Bridging the Specification Protocol Gap in Argumentation

a(R1,P)::=
claim(7opic) => a(R2, O)
then
a(R3,P).

a(R2,0)::=
claim(7opic) <= a(R1, P)
then
a(R4,0).

This is read as: role R/ of agent P sends a claim message to the role R2 of agent O
and then role R2 of agent O receives the claim message from role R/ of agent P.

Then P changes its role to R3 and O changes its role to R4.

Example 2: Buying and Selling

In this example (adapted from [Besana, 2009]), there are two parties: buyer and

seller. The buyer wants to buy an item R.

a(buyer, A)::=
request(R) => a(seller, B) < need(R)
then
price(Y) <= a(seller, B)
or
failure <= a(seller, B).

a(seller, B)::=
request(R) <= a(buyer, A)
then
price(Y) => a(buyer, A) < find(R,Y)
or
failure => a(buyer, A).

This is read as: the buyer role of agent A4 satisfies the constraint need(R) (the request
for the item that the seller needs to provide), and then sends the request message with
the needed item to the seller of agent B and waits for agent A to reply (the buyer
waits for one of the two messages: price(Y) or failure). Then, the seller, receives the
request message, tries to satisfy the constraint find(R,Y) (finds the item), and then
either replies with the item price or sends a failure message if the constraint find(R,Y)

cannot be satisfied.

Chapter 2 Background and Literature Review 11

Bridging the Specification Protocol Gap in Argumentation

Example 3: An Auction

In this example (adapted from Besana and Barker works [Besana and Barker, 2009]),

there are N agents: 4 which is considered to be an auctioneer and more than one

agent B, which are considered as bidders.

a(auctioneer(Product,Bidders), A) ::=
a(caller(Product, Bidders),A)
then
a(waiter(Bidders, Bids, curwinner(nul, 0),A)
then
sold(Product,Price) => a(bidder, WB) < curwinner(WB, Price) = Winner.

a(caller(Product,Bidders), A) ::=
null < Bidders = [] %no bidders left
or
invite bid(Product) => a(bidder, BH) < Bidders = [BH|BT]
then
a(caller(Product, BT), A). %recursion

a(waiter(Bidders, Bids, curwinner(WinBidder, WinBid), A) ::==
null < allarrived(Bids, Bidders) and Winner = curwinner(WinBidder, WinBid)
or
null €< timeout() and Winner = curwinner(WinBidder, WinBid)
or
bid(Product,Offer) <= a(bidder, B)
then
a(waiter(Bidders, [B|Bids], curwinner(B, Offer), A) < Offer > WinBid
or
a(waiter(Bidders, [B|Bids], curwinner(WinBidder, WinBid), A)

or
a(waiter(Bidders, Bids, curwinner(WinBidder, WinBid), A) < sleep(1000).

a(bidder, B) ::=
invite_bid(Product) <= a(caller, A)
then
bid(Product, Offer) => a(waiter, A) < bid_at(Product, Offer)
then
sold(Product, Price) <= a(auctioneer(Product,Bidders), A).

The auctioneer role of agent 4 has two input parameters: Product to sell and the list

of Bidders. The auctioneer role starts by changing its role to caller. The caller role of

agent A recurses over the Bidders list. If the list is empty, it returns null, otherwise, it

Chapter 2 Background and Literature Review

12

Bridging the Specification Protocol Gap in Argumentation

sends the invite bid message to one bidder (at the head of the Bidders' list) and then
it recurses over the remaining bidders. The caller role ends once the invite bid

message is sent to all the bidders (Bidders = []).

Afterwards, the control changes to the auctioneer role which then changes its role to
waiter. The waiter role of agent 4 has one input parameter: Bidders, and two output
parameters: (1) Bids (Bids represents the list of replied bidders); (2) Winner
(Winner=curwinner(WinBidder, WinBid) where WinBidder represents bidder's ID
and WinBid represents bidder's offer). The values of output parameters are set when
the role waiter ends. The waiter role begins by checking if all the replies have
arrived (all the bidders have replied to the invite bid message) or if the period has
expired (timeout() = true). If either condition is true, then the waiter role assigns the
current winner as the final winner. Otherwise, the waifer role receives a message
from a bidder (there is a message in the receiving message queue) and checks if the
bidder's offer is higher than the current highest offer. If this condition is true, the
waiter role recurses to make the current bidder the current winner, otherwise it
simply recurses. The waiter role then waits for a second (sleep(1000)) and recourses,

if there is no message in the receiving message queue.

At the same time, the bidder role of agent B receives the request to bid, and sends the
offer to the waiter role of agent A. Then, if the offer is successful (the current bidder
is the final winner), the bidder role receives a sold message from the auctioneer role
of agent A. If the offer is unsuccessful, then the interaction between agent 4 and B

will end.

2.2 Design Pattern

To support agent protocol development activities, this thesis proposes LCC-
Argument design patterns. Design patterns, which are common and recurring code
patterns of a specific programming language [Gamma et.al, 1995], have been
extensively studied within the object-oriented and logic programming community.
This section summarises the software engineering, the agent protocol and the logic

programming community view of design patterns and how they have been used in

Chapter 2 Background and Literature Review 13

Bridging the Specification Protocol Gap in Argumentation

software development. It also compares our LCC-Argument patterns with the

literature.

2.2.1 Software Engineering Design Pattern

Object-oriented software engineering [Gamma et.al, 1995] uses the definition of
patterns as proposed by the architect Christopher Alexander [Alexander et.al, 1977]

to define the design pattern:

"Each pattern describes a problem which occurs over and over again in our
environment, and then describes the core of the solution to that problem, in
such a way that you can use this solution a million times over, without ever

doing it the same way twice".

In a practical sense, design patterns are generic and recurring solutions to common
problems. However, they are not finished code that can be used directly. In essence,
design patterns describe how to solve some problems that are dependent on a
particular language, such as Java, but are independent of any particular algorithm or
problem domain, and can be reused in many different situations. These patterns can
help to speed up the development process by allowing a set of tested and proven

patterns to be reused in order to solve a given problem.

2.2.2 Agent Protocol Design Pattern

Patterns for agent protocols are different from traditional object-oriented design
patterns because objects and agents do not relate to the same logical and conceptual

levels [Sauvage, 2004; Odell, 2002]:

(1) Agents are dynamic, autonomous and intelligence whereas objects are

conventionally passive.

(2) Agents communicate in a different way than object. They have the ability to

communicate with their environment and other entities.

Chapter 2 Background and Literature Review 14

Bridging the Specification Protocol Gap in Argumentation

However, most of the implemented agent protocols [Deugo and Weiss, 1999] are
implemented using object-oriented languages (such as Aglets’ and Voyager’
frameworks which are implemented using Java). Consequently, the structure of most
agent protocol patterns [Deugo and Weiss, 1999; Aridor and Lange, 1998; Tolksdorf,
199; Paschke et.al, 2006] are similar to the structure of object-oriented design

patterns.

Object-oriented design patterns usually describe relationships and interactions
between objects and classes to solve general object-oriented design problems without

identifying the software classes or objects involved.

An Example

An example of an agent design pattern (similar to Object-Oriented pattern) is from
Aridor and Lange [Aridor and Lange, 1998] work. Aridor and Lange [Aridor and
Lange, 1998] represent a set of new different mobile agent design patterns, which
can be used to generate mobile agent applications. They classify patterns into three

types: travelling, task, and interaction patterns.

One example of Aridor and Lange [Aridor and Lange, 1998] patterns is Master-Slave
pattern (see Figure 2.1) from the group of task patterns. This pattern implemented as
an aglet. It defines how master agent can assign a task to a slave agent. It has two

abstract classes:

(1) Master class, which has one abstract method gefResult. The getResult method

defines how to handle the task’s result.

(2) Slave class, which has two abstract methods:

* http://aglets.sourceforge.net/

3 hitp://www.pegacat.com/vef/

Chapter 2 Background and Literature Review 15

http://aglets.sourceforge.net/
http://www.pegacat.com/vcf/

Bridging the Specification Protocol Gap in Argumentation

public abstract class Master extends Aglet

{
public void onCreation(Object obj)

// Called when the master is created.
}//end of onCreation function

public void run ()

{
getResult()

} // end of run function

}//end of Master class

public abstract class Slave extends Aglet

{

Object result = null
public void onCreation(Object obj)

// Called when the slave is created. Gets the remote destination, a reference to
// the master agent, and other specific parameters.
}//end of onCreation function

public void run ()
{
// At the origin:
initializeJob();
dispatch(destination); // Goes to destination
// At the remote destination:
doJob(); // Starts on the task.
result=...;
// Returns to the origin.
// Back at the origin.
// Delivers the result to the master and dies.

dispose();

} // end of run function

}//end of Salve class

Figure 2.1: The Slave Class

1. initializeJob method, which defines the initialization steps to be

performed before the agent travels to a remote destination;

ii. doJob method, which defines the concrete task to be performed at the

remote destination.

Chapter 2 Background and Literature Review 16

Bridging the Specification Protocol Gap in Argumentation

A second example of an agent design pattern (similar to Object-Oriented pattern) is
from Tolksdorf [Tolksdorf,1998] work. Tolksdorf [Tolksdorf,1998] describes five
patterns which rely on some mobility mechanism of information (which are used to
manage the exchanging -accessibility dependencies- of knowledge between users,
systems and agents). These patterns, called "coordination patterns", can be used to
generate agent protocols that can manage dependence in organisation, economic, and

computing systems.

Both Aridor and Lange [Aridor and Lange, 1998] and Tolksdorf [Tolksdorf,1998]
patterns are expressed in terms of classes and objects. However, our solutions (LCC-
Argument patterns) are expressed in terms of roles. Our proposal can be interpreted
as an adaptation of object-oriented design patterns in order to capture the different

relationships and interactions between agents' roles.

Essentially, agent role design patterns (LCC-Argument patterns) are similar to
object-oriented design patterns. The only difference between them is the structure of
an agent role pattern which is described by using the notions of roles instead of the
notions of classes and objects. In fact, we use the notation of the roles since our
protocol language is LCC which is not considered to be an object-oriented language
and uses roles (instead of classes and objects) to describe agent protocols (see section

2.1 for more details).

2.2.3 Logic Programming Patterns (Logic Programming Techniques)

Since LCC has a Prolog like syntax (see section 2.1.1), in this section, we give a
summary of Prolog programming techniques (logic programming patterns),
Techniques editing and Grivas structured design methods. The general idea of logic
programming techniques is analogous to that used in Techniques editing [Bowles

et.al, 1994], to synthesise Prolog clauses, as summarised below.

2.2.3.1 Prolog Programming Techniques

Programming Techniques [Bowles et.al, 1994] uses common code patterns (loosely

called techniques), which depend of a particular language such as Prolog but are

Chapter 2 Background and Literature Review 17

Bridging the Specification Protocol Gap in Argumentation

independent to any particular algorithm or problem domain. It provides generalised
pieces of code, which can be used by software engineers to implement part of a

specification.

An Example

An example of a technique taken from [Bowles et.al, 1994], is to consider the

standard implementation of reverse in Prolog:

rev([],R,R).
rev([H|T], RO, R) :-
rev(T, [HRO], R).

This predicate consists of two parts:

(1) A part which performs the recursion down the list:

rev([],...)
rev([H|T],...) :-
rev(T,...).

(2) An accumulator pair [O'Keefe,1990] part which builds a list during the

recursion and passes the result to the top of the recursion:

rev([],R,R)
rev(...,RO,R) :-
rev(...,[H/RO],R).

These two parts are considered to be Prolog techniques because they are general
common patterns, which can be used in a wide range of domains irrespective of the

algorithm being implemented.

A summary of methodology for building programs using techniques is given in

[Kirschenbaum at.al, 1989]:

(1) This methodology constructs a program by using a set of syntactic entities

(skeletons), which describe the common control flow pattern of the program.

Chapter 2 Background and Literature Review 18

Bridging the Specification Protocol Gap in Argumentation

(2) This methodology also constructs a set of syntactic methods (techniques or

additions), which perform simple tasks such as adding parameters.

(3) Additions and techniques can be applied to the skeletons yielding extensions

(extra parameters, goals or clauses).
(4) The final program is obtained by composing extensions.

The idea of building programs is to define the set of suitable skeletons to solve the
problem. In this way, the software engineer can choose one skeleton from this set
that suits his needs. Next, the software engineer can apply additions (or techniques)
to the skeleton. Finally, the software engineer can repeat the process of applying

additions (or techniques) until the final program is obtained.

The concept of Prolog programming techniques has been developed and applied in a

variety of contexts. The most interesting context is techniques editing.

2.2.3.2 Techniques editing

Techniques editors can speed up the program-building process by reusing a set of
skeletons that solves a given problem. The idea of techniques editors has been
proposed in two editors: Roberson's editor [Robertson, 1991] and Ted [Bowles,

1994].

Robertson’s editor is based directly on methodology that is given in [Kirschenbaum
at.al, 1989] as illustrated above. The editor aims to support primary novice users. It
provides a set of Prolog skeletons, additions, and other information that allows the
editor to guide and judge the user. The user can construct the program by selecting a
skeleton and then apply additions onto the selected skeleton. This editor is limited by
a small set of skeletons and additions. Its interface is not sophisticated but it provides

a basic set of editing operations and some basic guidance in the editing process.

The second editor, Ted, also aims to support novice users, but its technique is
different from the skeleton-addition approach. Ted common patterns capture the

relationships between the head and recursive arguments in the recursive clauses of a

Chapter 2 Background and Literature Review 19

Bridging the Specification Protocol Gap in Argumentation

program. An example of Ted patterns is Same Technique [Bowles et.al, 1994], which
passes the same value between two argument positions: the head of a clause and a
recursive subgoal in the clause. (Note: in this example the technique appears

underlined).

rev([],R,R).
rev([H|T],RO,R):-
rev(T,[HROLR).

The Ted editor has a number of limitations in the patterns. Most notably, that it does
not support both mutually recursive predicates® and doubly recursive clauses’ a long
with the fact that its data-structures are limited to three types: lists, atoms, and

numbers.

The Ted editor has a graphical interface (point and click interface) and provides the
same amount of information as that provided by Robertson’s editor. It also has the
ability to map the arguments and check their suitability. However, it does not have

the ability to guide the user through the editing process.

Despite the limitations in both editors, they were tested on user groups. Ted in
particular was used in controlled experiments with novice programmers (those using

Ted tended to build programs faster and with fewer errors).

2.2.3.3 A Structural Synthesis System for LCC Protocols

Grivas' project [Grivas, 2005] developed a structured design editor for LCC protocol
(SDE). It aims to define a set of common LCC patterns, which can be reused to make
the LCC protocol-building process faster and easier by requiring less knowledge and
effort from the software engineer. In particular, Grivas' project attempts to use

similar techniques to Prolog techniques editing.

6 Mutually recursive predicate: [Krauss,2008] "If two or more functions call one another mutually,

they have to be defined in one step". An example of mutually recursive predicate is: p = *q, q 2 *p.

’ Double recursion: Double recursion [Odifreddi and Cooper, 2012] "allows the recursion to happen

on two variables instead of only one".

Chapter 2 Background and Literature Review 20

Bridging the Specification Protocol Gap in Argumentation

Grivas' project found that a direct use of Prolog technique editing approaches in the
LCC case is not easy because of the differences between Prolog and LCC languages
(LCC syntax if similar to Prolog but LCC tackles different problems from those of
Prolog). The idea is to come up with a set of skeletons by using process-oriented
methods and then extend the design using similar techniques to those employed in

Prolog.

Three different types of patterns were identified in this project. The first type of
pattern, called Skeletal, describes the general structure of the clause where the details

of the clause can be specified later either manually or by applying another pattern.

An example of this pattern follows:

a(R,X) ::
(<def>
then a(R,X))
or
null € <con>

This example represents a general recursive clause that can be applied to different
clauses. R represents role name, X represents agent identifier, <def> represents

unspecified definition, and <con> represents unspecified conditions.

The second type of pattern, called Role Refinement, describes the clause in more

detail and is used to refine the clause.

An example of this pattern is as follows:

/a(F(Al ...An),X) :: \

(

<def>

then a(F(Al...An-1,An"),X)
)
or
null € <con>

_ J

Chapter 2 Background and Literature Review 21

Bridging the Specification Protocol Gap in Argumentation

This example represents a recursive clause in more detail than the Skeletal example.

F represents the role name and A/...An represents role arguments.

The third type of pattern, called Clause Interaction, describes the interaction between

two clauses. It is a message passing specification pattern.

An example of this pattern is as follows:

/a(RI,X) : \

<def>
then M=>R2

a(R2)Y) ::
M<=R1

k then <def> /

This example represents a message passing clause where one role sends a message

and another role receives the message. R/ and R2 represent roles name, and X and Y

represent the agent's identifiers while <def> represents an unspecified definition.

There are two main differences between Robertson's editor and Ted, and the SDE
editor. Firstly, Roberson's and Ted's editors focus on helping a Prolog learner
whereas SDE aims to help software engineers by giving them a quick and easy way
to build the LCC protocol. Secondly, SDE considers patterns as reusable LCC code,
which can be useful when building protocols because that it saves effort. Conversely,
Robertson's and Ted editors consider patterns as primitive operations where the

combinations of these patterns can produce a wide range of Prolog programs.

2.2.3.4 Comparing LCC-Argument Patterns with Logic Programming

Techniques

The most notable differences between our LCC-Argument patterns and Grivas'

[Grivas, 2005] patterns are:

(1) Grivas did not base his system on a high-level language, while we used as a

high-level language DID. DID provides mechanisms to represent, in an abstract

Chapter 2 Background and Literature Review 22

Bridging the Specification Protocol Gap in Argumentation

way, the dialogue game protocol rules by giving an overview of the permitted

moves and their relationship to each other (see chapter 4 for more details).

(2) Grivas describes very small scale patterns of LCC protocol systems (operating at
individual clause level) which required quite a lot of expertise from the user
(engineers) in order to put them together, while our patterns are large scale
patterns which bring more structure at one time (across entire LCC protocols)
and specific to argumentation. Our patterns allow larger LCC components to be
synthesised from smaller specification and do not require extensive low-level

(coding) skill;

(3) Grivas' patterns are inspired by Prolog Techniques editing, while our patterns
have their origins in object-oriented patterns. We do not claim that our approach
is better but we prefer to use the object-oriented approach over the Prolog
Techniques editing approach. Essentially, we choose to work with the object-
oriented patterns approach because it allows us to build the LCC roles in one
step, whereas Prolog Techniques editing (Grivas' patterns) solve the problem
(build LCC roles) by using an incremental approach in which missing parts of an
LCC clause can be filled in (refined by) with another pattern or LCC statements
(see [Grivas, 2005] chapter 4, page 22-29).

2.3 Verification Method based on SML and Coloured Petri Net

This thesis presents a verification method based on Standard functional programming
language8 (SML) and Coloured Petri Net (CPNs). This method transforms the
generated LCC protocol to CPNs models. The generated CPNs models which can
then be used to check the validity of various concurrent behaviour properties of the
resulting LCC protocol by using state space techniques and CPN SML language.

This section gives an introduction of CPNs model models, explains a tool to specify

8 SML[Milner e et al., 1997] "SML is a general-purpose, modular, functional programming language

with compile-time type checking and type inference."

Chapter 2 Background and Literature Review 23

Bridging the Specification Protocol Gap in Argumentation

and simulate CPNs models called CPN Tool, and roughly summarizes some related
work which use SML and CPNs model to simulate, analyse the dynamic behavior

and verify the semantics of their system.

2.3.1 Coloured Petri Nets (CPNs)

CPNs [Jensen, 1992; Jensen et al., 2007; Kristensen et al., 1998] is a high-level
formal modelling language which can be used to model concurrent, distributed and
complex systems such as communication protocols [Suriadi et al.,2009; Floreani et

al.,1996]. An example of such systems are multi-agents interaction protocols.

A CPN model has a graphical representation as well as mathematical (formal)
definition [Jensen, 1992] which is defines in mathematical way what will happen and
when a specific event occurs in the model. The user does not need to know about the
formal definition of CPN. The formal definition is used by the CPN editor (such as
CPN Tool [Westergaard and Verbeek, 2002; Aalst and Stahl, 2011; Jensen et al.,
2007]) to check the syntax and the semantics of the CPN model, simulate, execute
the CPN and to do the formal verification methods [Balbo et al., 2000].

2.3.1.1 CPNs Model Elements

CPNs are Petri Nets” (PNs) which have been extended with the notion of colors or
types. As a variant of PN, the CPN model consists of four elements [Jensen and
Kristensen, 2009; Eunice, 2005; Jensen et al., 2007] (as shown in Figure 2.2): data,
place, transition, and arc which describe the net structure of the CPN model. Places
and transitions are called nodes. An arc is used to connect a place and a transition
and to specify the data flow (the pre- and post- condition relation between

transitions).

? Petri Nets [Murata, 1989] is a mathematical, executable and graphical high level modelling language

that is used for the description and analysis of concurrent distributed systems.

Chapter 2 Background and Literature Review 24

Bridging the Specification Protocol Gap in Argumentation

fmmmm
| Marking
[Rp—— -" [Rp— |
/I \
l’ \\
‘1°("P",[], [("The car is safe","it has an aribag")]
l‘nThe Car iS Safe" v\ s ”Sendclaimp""‘"’”"’ []’"O")
Open P AN ®_
. S e N <
Topie Role | ivole ! N
AL P 1 Single 1 RN S —
o Hrmemememe - _ . ' \
.~ .- 1 token Values
3+ Place :' Lo ! ! (Token '
! Type i : : colours) :
1 (COIOUI' ! (IDPacsPakBParan”apaCS091D0) LT
i set ! R pmmmmmmma
——)_ R RS : 1
_____ 1 SR ~9 Arc '
1 input : _________ 1 inscription !
| Arc :_ LTI
1; [FlndIHKE;(kBp,t)] X e 1
\ " LN} : .
v () , . [("claim",t,p, iDp, ng)
)/ SendClaimp » claiml
/ N
) P . Message
’ /’ AN
,, / v\ N
’ / RN N AN
’ ,/ S~ N
/ S N
/I /, S~ < N N
/ /! ~ N\
’ 1 S N
’ ’ RS AN
I_ _,T- - - - - I{ ,I (IDP9 CSp,kBp, S~ S o \\
! ransition | J "replyToClaimReceiverp", o N
1 gua:rfl : 4 tﬁpa CSO) IDO) '_‘\-\- ==
! condition) output '
A\ 4 1
-------- 1 1 1
l_____/___-I _Jd----" 1 L_:A_I‘C__J
: Transition | Change | 4==77"7 | Place :
1 : Rolel 1 1
A T N 2 SR,
-------- ! Role

Figure 2.2 CPNs Model Elements Example

Data represents data types (colour sets), data objects (tokens) and variables. A colour
set [Jensen, 1992] can be a basic colour set (integer, string, real and Boolean) or a
product of colour sets or a combination of other colour sets (a declared colour set
from already declared colour sets). Colour sets are used to declare variables, other
colour sets, functions, operations, constants and a place's inscription. A token is

associated with a colour set and has data values (token colours) attached to it.

Chapter 2 Background and Literature Review 25

Bridging the Specification Protocol Gap in Argumentation

A place is a location (drawn as ellipse). It is used to hold data items (tokens). Tokens
must match the place type (colour set). A place is associated with a marking, which

indicates the number of stored tokens and the value (token colours) of these tokens.

The state of the CPN model, at a particular moment, is represented by the set of

markings of all the places.

A transition is an activity which represents an event and is drawn as a rectangle. It is
used to transform data between places. In practice, transition receives data from one
or more places, checks its guard condition, executes its associated code segment, and
sends the result to other places. A guard condition is a Boolean expression enclosed
in square brackets that appears above the transition rectangle. A code segment which
is a computer program written in the CPN SML language (in the CPN Tool) or in the
other kinds of notations which has a well-defined syntax and semantic [Jensen,

1992].

An arc is used to connect a place and a transition. It has two directions: 1) an output
arc from a transition (input transition) to a place (output place); 2) an input arc from
a place (input place) to a transition (output transition). An arc is associated with
inscription (input inscription in an input arc or output inscription in an output arc)
which is used to describe how the state of the modelled system changes. In the CPN
Tool, an arc inscription is an expression that consists of CPN SML variables,

constants and functions.

An example of a CPN modelled in the CPN tool is depicted in Figure 2.2. This

model has:
1) Three colour sets (see chapter 6, section 6.1.1 for more details):
i. Topic colour is string data type;

ii. Message colour is a product type (comprising of locution, topic,
premise, sender identifier and receiver identifier) used to represent

message exchanges between agents;

Chapter 2 Background and Literature Review 26

Bridging the Specification Protocol Gap in Argumentation

1ii. Role colour is used to represent the agent's profile (played role,
agent's identifier, agent's commitment store, agent's private
knowledge based, agent's role name, topic, premise, other agent's

commitment store and other agent's identifiers).

2) Two input places (Open and P) and two output places (claiml and
ChangeRolel):

i. The names of the places are written inside the ellipses. The place's
name has no formal meaning. It has an important impact on the

readability of a CPN model.

ii. At the bottom right hand side of each place, the colour set is written.
The place Open has the colour set Topic. P and ChangeRolel places
have the colour set Role. The place claiml has the colour set

Message.

iii. At the upper right side of each place, the initial marking of the place
is written. For example, the inscription at the upper right side of the
place Open indicates that the initial marking of this place consists of
a single token with the token colour (value) "The car is safe"”. The
place claiml has an initial marking which consists of a single token
with the token colour (value) " " (the empty text string) and indicates

that the initial marking of this place has no data.
3) One transition called SendClaimp:

1. The name of the transition is written inside the rectangle. The
transition's name as the name of the place has no formal meaning. It

has an important impact on the readability of a CPN model.

ii. In the upper left side of the transition, the guard condition is written.
The transition SendClaimp has the guard condition FindInKB(KBp,t).
In the CPN Tool, this condition is written in the CPN SML

programming language.

Chapter 2 Background and Literature Review 27

Bridging the Specification Protocol Gap in Argumentation

1ii. When a transition occurs (a transition is enabled or activated when its
input places are active and all the variables in the all surrounding
input arcs are bound to values), the guard condition can be checked. If
the condition is true, the transition removes tokens from its input
places (which are connected to the transition by the input arc) and it
adds tokens to its output places (which are connected to the transition
by the output arc). Note that the removed tokens are determined by
means of the arc inscription. For the example depicted in Figure 2.2,
an agent can send a claim (SendClaimp occurs) if an open place is
active (there is a token in Topic state) and an agent playing role

SendClaimp is active (there is a token in state P).

4) Two input arcs and two output arcs. Each arc has an inscription (variables,
constants and functions). If an inscription has variables, these variables (or
functions variables) are bound to values (when the connected transition occurs)
and the inscription can then be evaluated. The bounded values must have the
same type as the connected place colour set. For example, the input arc, which
connects the place Open to the transition SendClaimp, has (f) as its inscription.
This inscription (¢) must be bound to a value of type Topic (string) because the
Open place has the colour set Topic. For this example, the arc inscription

evaluated to the "The car is safe” (the place token colour or value).

2.3.1.2 CPNs Hierarchical Structure

One of the key features of the CPN is its ability to construct large models in a
hierarchical manner [Jensen ef al., 2007] by using subpages (submodules, subnets or
child CPN model) to build superpages (parent model, complex model). The pages
interact with each other and with the superpages through a set of substitution

transitions and a set of interfaces (fusion places).

A substitution transition is a transition (drawn as rectangular double lined boxes in
Figure 2.3) which is located in a superpage and refined by a subpage. A fusion place

1s composed of one socket and one port. In practice, sockets and ports represent the

Chapter 2 Background and Literature Review 28

Bridging the Specification Protocol Gap in Argumentation

1I-TTTTT = " 1
Y U @ ! substitution 1
i Topic _transition 1
1 - ~
: l & S A
|
: SendClaimp ||——» ReceiveClaimg
[
[}
| ReceiveClaimg
|
|
[}
[}
[}
|
|
|
:
Claim
Superpage
—~
' I'("P",[], [("The car is safe","it has
1""The car is safe" an aribag")] , "SendClaimp","","",
o Open P []’ non)
In Topic
A Role
|
I
[}
: (iDp,CSp,l{BP9r7""5p9CSO7 IDO)
|
|
|
I
|
|
: [FlndInKB(kBp,t)] v ("Claim",t,p, iDp, lDo) \ 4 "
L . g
. StartClaimp claiml
N
' ' out Message
y Input | 3
| 1 \
' port ! \
| V\-————- -
1
! Output X
1
1
(i, cSp, kB, LA
"replyToClaimReceiverp",
______ tapa CSOa 1I)O)
1 1
. Output |
1
1 port :
Lo oo
T A SendClaimp
out Role Subpage

Figure 2.3: A Hierarchical CPN

Chapter 2 Background and Literature Review

29

Bridging the Specification Protocol Gap in Argumentation

same places and store the same information, but the sockets are located in the
superpages whereas the ports are located in the subpages. There are three different
types of sockets/ports: (1) input sockets which are assigned to input ports and which
receive data from other CPNs models; (2) output sockets which are assigned to
output ports and send data to other CPNs models; (3) input/output sockets which are

assigned to input/output ports and receive/send data from/to other CPNs models.

Each related port and socket always has the same marking. Figure 2.3 illustrates the
hierarchical specification of CPNs supported by the CPN tool. Note that in the CPN
Tools (see section 2.3.1.3 for more information about the CPN Tool), below each
substitution transition there is a blue rectangular subpages tag which contains the
name of the subpages related to the substitution transition. In practice, the blue
rectangle means that the subpage has more detailed information (information about

the model behaviour) than the one represented in the superpage [Jensen ef al., 2007].

The claim superpage in Figure 2.3 has two substitution transitions (SendClaimp and
ReceiveClaimp) and four sockets (Open, claiml, ChangeRolel and
ChangeRole2).The SendClaimp subpage in Figure 2.3 has an input port Open, two
output ports claiml and ChangeRolel and an internal place P. The open port place of

the SendClaimp subpage is assigned to the open socket of claim superpage.

The claim1 port place of the SendClaimp subpage is assigned to the claim i socket of
claim superpage. The ChangeRolel port place of the SendClaimp subpage is
assigned to the ChangeRolel socket of claim superpage. Note that in Figure 2.3, each
port in the SendClaimp subpage has the same name as the socket in the claim

superpage to which it is assigned, but this is not essential.

2.3.1.3 CPN Tool Components

The CPN Tool'® "is a tool for editing, simulating, and analyzing Colored Petri nets."

[Westergaard and Verbeek, 2002; Aalst and Stahl, 2011; Jensen et al., 2007].

19 http://cpntools.org/

Chapter 2 Background and Literature Review 30

http://cpntools.org/

Bridging the Specification Protocol Gap in Argumentation

The CPN Tool supports graphical representations which makes it easy for the user to
understand the structure of a CPN model and helps him/her to understand how the
individual subsystems interact with each other. It also allows the user to execute the

CPN model with data and analyse the model.

The CPN Tool uses the CPN SML language for declaration of variables, constants,
functions, arc inscription and transition's guard condition [Jensen and Kristensen,
2009; Ullman, 1998]. It is an extension of SML (see [Jensen, 1992] chapter 6 for
more information about the difference between the SML and the CPN SML
language) which can be used with the state-space technique'' to analyse the

behaviours of communication systems [Jensen et al., 2006].

The CPN tool is composed of three integrated tools which interact with a CPN

model:

(1) The CPN editor which is used to construct, edit and check the syntax of a CPN

diagram;
(2) The CPN simulator which is used to execute a CPN model;

(3) The CPN state space tool which is used to generate the state space of a CPN

model and to analyse the dynamic behaviour of a CPN model.

Figure 2.4 shows a screenshot of the CPN Tool. The area to the left is the index
which has the Tool box with various tools that are available for the user to constitute,
edit and simulate the CPN model. The remaining part of the screen is the CPN
workspace. For more information about the CPN Tool and the construction of the

CPN model see [Jensen et al., 2007; Kristensen et al., 1998].

' State-space technique: state-space technique [Jensen et al., 2006] is used to compute all reachable

states and state changes of the modeling system. See section 6.3 for more details.

Chapter 2 Background and Literature Review 31

Bridging the Specification Protocol Gap in Argumentation

(Version 20.11, September 2010)

Binder 1
Properity4

use (ogpath ™ ASKCTL/ASKCTLioader smi");

Au LS 55 S5 Sim [Hier AuX

o 1 e «lro 2 »:‘\
- o8| B20 [P Create View

CPN Bk L EERE CPN

Index (3

workspace

Figure 2.4: CPN Tool

CPNXML File

The CPN Tool generates for each CPN model a CPNXML file [Billington et al.,
2003], which is an extended markup language (XML) document [Goldfarb and
Prescod, 2003] that describes the modelling elements of the CPN model. The
structure of a CPNXML file is determined by the CPN Tool version [Eunice, 2005].
In this thesis, we used CPN Tools version 2.9.11.

In general, a CPNXML file is organised using pages, where each page represents one

CPN model. In the CPNXML file, there are two types of pages [Eunice, 2005]:

(1) Global declaration page: there is only one global declaration page in a CPN

model which is used to declare colour sets and variables;

(2) Subpage: contains the information about place, transition and arc elements of a
CPN model. There is more than one subpage in a CPN model. Note that in this

thesis, the number of subpages is dependent on the number of LCC roles.

Figure 2.5(a) and Figure 2.5(b) show a simple CPN diagram with one input place,
one output place and one transition as well as the CPNXML description of the same
CPN diagram (note that to make CPNXML file easier to read the CPNXML
description in this chapter is slightly edited as compared to the CPNXML generated

Chapter 2 Background and Literature Review 32

Bridging the Specification Protocol Gap in Argumentation

1""The car is safe"
® Start
In Topic .
out Topic
<workspaceElements>
<generator tool="CPN Tools" $Version:"2.9.1 " format="6"/>
TT = *: CPN Tool Version :
<cpnet> L and encoding :
I~ T T~ 1
| Global Declaration |
<globbox> ¢ ———————————— —— —: page definition :
<color id="ID1424220943"> ¢ _ _ _ | colour st definition _|
<id>TOPIC</id> <string/> - _
</color> o T
—— variable definition |
<varid="ID1424221049">« """ T TTTT
<type>
<id>TOPIC</id>
</type>
<id>t </id>
<Nar>
</globbox> ~ J_ _S_u Epig_e E e_ﬁgit_ioil_ |
< sd=" noa———""" r—,———————————
page id="1D6"> B lace definiti I
<pageattr name="=StartingPage"/> Pl placec e_lint_lo_n_ |
« e
<place id="1D1424211163">] I

<text>open</text> ¢ ———""" " T |

<type id="1D1424211164">
<text tool="CPN Tools version="2.9.1 1">TO€IC</text>

</type> N

|
<initmark id="ID1424211165"> | place colourset |
<text tool="CPN Tools"
version="2.9.11">1"" The car is safe "</text>
</initmark> ®

<port id="ID1424205036" type="lyy> ———————————=
</port> >~

</place> ' Input port :

Figure 2.5 (a): CPNXML File Structure Example

Chapter 2 Background and Literature Review 33

Bridging the Specification Protocol Gap in Argumentation

<place id="1D1424211177"">
<text>R</text>
<type id="1D1424211178">
<text tool="CPN Tools" version="2.9.11">TOPIC</text>
</type>
<initmark 1id="1D1424211179">
<text tool="CPN Tools" version="2.9.11"/>

<text tool="CPN Tools" version="2.9.11"/> |
</cond> E——_
</trans> - I

| Input arc definition
: (from place to
1 transition)

A//

<arc id="1D1424211194" orientation="PtoT" order="1">

<transend idref="1D1424211151"/>4¢— — —_ _ | -
———_ _] Transition ID

I reference
—

<arc id="1D1424211211" orientation="TtoP'" order="1">

</initmark>

<port id="ID1424205036" type="Outgz_ _ e

</port> o= I Output port

</place> e
| . finiti
<trans id="ID1424211151" explicit="false"><— — — 1ransition definition

<text>Start</text> *——__ _ -
<cond id="ID1424211152"> o=

|
<placeend idref="I1D1424211163"/> % _ L__— ieier_erlci S
~
~
<annot id="1D1424211195"> =~ -
<text tool="CPN Tools" version="2.9.11">t </text> < -
</annot> = T~
</arc> | Place ID

<transend idref="1D1424211151"/> Y~

<placeend idref="1D1424211177"/> =~ ~rF————

<annot id="1D1424211212"> 1 Output arc definition

<text tool="CPN Tools" version="2.9.11"> t </text> l (from transition to
</annot> AN I place)
</are> AN Le—————
N
N

</page> N
</cpnet> T_____________
</workspaceElements> | _Arc inscription |

—_

-

—_

Figure 2.5 (b): CPNXML File Structure Example

Chapter 2 Background and Literature Review

34

Bridging the Specification Protocol Gap in Argumentation

Binder 0
SendClaim Properity2 TurnTaking SS | Properity3 message sequence Properity4

L e e e —— - 1
55

x|yl 2] p
BIEIEES 1 _fode |

wn |
e
B |®
1o | s 4

—
[¢]
=
=}
=3
o
=
Q
=

11152 SendClaim'Ssndclaim 1: {5€5L=[},58=[("The car is safe" "t has an aribag")]sR="startdiam" s="5"s="0",p="t3' e car is safe"H gl
—_——_— - 1

‘ 0:1 ‘ ’{ 1?1 ‘ ’(lil ‘ ’(11 | ’{ 1“1 ‘ ’(1‘“1 ‘ ’(11 ‘ ’{ 11 ‘ ’(1.:‘1 ‘ ’l 1““ ‘ : Arcl 1

*1: - v\ 1 !
/' ReplyTowhyRecaiveretractt 1: smpty N elements 1
/| ReplyTowhyRecsivarand 1: empty ~ 1

7 ReplyTaWhyRecaiver'arguss 1: empty N
y ReslvToWhyRecaivar'whenSandaWhyChangaToRals? L: ampty N
ReplyToWhyRaceiver'whenReceiveArgueChangeToRalss 1: empty

/ SendClaim'changsRolat 1; empty

/7 SendClaim'OpenDialogus 1: 1°"The car is safe” Create [Migw Net | % = = -

SendClaim'daimt 1: empty Y
4 SendClaim 1: 1" (" (}{"The car s safe","it has an aribag")] startdlam’,™," "0") o v\ ¢ 1 State
RecaiveClaim'caiml 1: empty .
______ L RecaiveClaimichangsRele_2 1; ampty x ESAE-2 1
I RecaivaClaim'o 1: 1 ("0" [1("it has an aribag’"The car is safe")]"startcliam’, ™, "5") 1
| ReplyToArgueSendar'and 1: ampty |
\ ReplyToArgueSender'whenSendeWhyRecurse 1; empty 1
1

ReplyToArgueSender'argues 1: empty Aux Sim | Style

D D |mu

ReplyToArgueSender'whenReceiveArgueChangeToRole 1: empty

________ ReplyToArguesender concadse 1! empty «|.|>0| N
ReplyToArgueSender'why7 1: empty

ReplyToArgueSender'whenSendeArgueRecurse 1: empty

ReplyToArgueSender Defeat 1: empty k

ReplyToArgueSenderflow 1: empty
Protacol daim 1: empty \

Nane \

1
1
node 1 :

Figure 2.6: State Space Graph

by the CPN tool. We removed some CPNXML tags which are related to the

background colour, foreground colour and element position).

State Space Techniques

The state space method of the CPN tool allows to model check the correctness of
CPN models (concurrent systems) [Jensen et al., 2006]. It is used to verify
concurrent systems (in a mathematical way) by computing all reachable states and
state changes of this system. By constructing the state space, it is possible to
demonstrate that certain properties are satisfied or that certain undesired properties
are absent by using a set of CPN SML functions. An example of such properties is
the guarantee of terminating a specific service when reaching a given state and the

possibility of constantly reaching a given state [Kristensen et al., 1998].

A state space is a directed graph with reachable marking nodes and binding element
arcs. These arcs are used to connect two nodes together and demonstrate that the
occurrence of binding specific elements leads to the occurrence of the next node.

Figure 2.6 illustrates one example of a state space graph. This graph has:

Chapter 2 Background and Literature Review 35

Bridging the Specification Protocol Gap in Argumentation

(1) Ten nodes (with rounded boxes). Each of these nodes represents a reachable
marking. The marking (the token values of all places in the CPN model) of each

node is described in the rectangle box next to the node.

(2) Nine arcs. Each arc represents the occurrence of one or more binding elements
that leads to the occurrence of the next node and leads us from the marking of

the starting node to the marking of the termination node.

2.3.2 Comparing our Approach with Verification Approaches based on
SML and CPN Model

2.3.2.1 A Transformational Approach to CPN Model

Calderon [Eunice, 2005] developed a tool to transform UML-based systems [Bauer
et.al., 2001] to CPN models (Design/CPN XML" file) [Jensen, 1992; Jensen et al.,
2007; Kristensen ef al., 1998]. The tool was tested by running the Design/CPN tool"

simulator for analysing the dynamic behavior of two large—scale UML systems:

(1) The stop and wait protocol system [Kristensen et. al., 1998]: This system has
two actors: a sender and a receiver. The sender actor sends data packets to the
receiver actor using a synchronous message communication protocol. Then, the
system allows the sender to send another message only when this actor has
received an acknowledgement message from the receiver which indicates that

the receiver received the previous message;

(2) The gas station system [Shin et. al., 2003; Shin et. al., 2005]: This is a system
that allows drivers to purchase petrol (gas) and to pay the bill by credit card,

debit card or Fast Pass card.

12 http://www.tcs.hut.fi/Software/maria/tools/cpn2maria/cpn2maria.html

13 http://www.daimi.au.dk/designCPN/

Chapter 2 Background and Literature Review 36

http://www.tcs.hut.fi/Software/maria/tools/cpn2maria/cpn2maria.html
http://www.daimi.au.dk/designCPN/

Bridging the Specification Protocol Gap in Argumentation

But the CPN models generated by the tool are not ready for analysis. The user needs
to perform some manual work to get an executable CPN model and to be able to

verify the correctness of the generated CPN.

This work demonstrates that the development of a software tool that used to

transform UML-based systems into a CPN models automatically is possible.

The most notable differences between our verification tool and Calderon's [Eunice,

2005] tool are:

(1) Calderon's [Eunice, 2005] approach transforms data types of the UML-based
system model to the colour sets types of the CPN model automatically, while our
approach is not able to transform LCC parameters to the colour sets types of the
CPN model automatically because LCC is an untyped language (see chapter 6

for more information).

(2) In the Calderons' [Eunice , 2005] approach, the dynamic behaviuor of the system
is analysing by running the Design/CPN tool simulator, while in our approach,
the dynamic behaviour of the system is analysing by using state space

techniques and the CPN SML language.

2.3.2.2 A Verification Method based on SML

Paper [Suriadi et a/.,2009] used the CPN Tool to model one case study of the Privacy
Enhancing Protocols (PEPs) called the Private Information Escrow Bound to
Multiple Conditions Protocol (PIEMCP)'* manually. Then, this paper used the state
space techniques, CPN SML language and session-data files (these files are used by

SML function to verify if some security properties are achieved) to perform:

'* Privacy enhancing protocols (PEPs): "are a family of protocols that allow secure exchange and

management of sensitive user information"[Suriadi et a/.,2009].

Chapter 2 Background and Literature Review 37

Bridging the Specification Protocol Gap in Argumentation

(1) Model validation of the PIEMCP: to check various properties of the generated
CPN model to ensure that the generated CPN model is a reliable representation

of the PIEMCP protocol specification model.
(2) Verification of the PIEMCP: this is a two stage verification.

a) The basic behaviour verification: to analyse the termination of session,
deadlock freedom, livelock freedom and absence of unexpected dead

transitions.

b) The Security behaviour verification: to check that the various security
properties of PIEMCP model are holding and to prove the correctness of the

security protocols.

The similarity between our verification approach and the approach from [Suriadi et
al.,2009] paper is that both use the state space techniques, CPN SML language and
files (the session-data file in the [Suriadi ef al.,2009] paper and the DID properties
file in our work). However, the main difference between our verification approach

and the paper approach [Suriadi ef a/.,2009] are:

(1) Suriadi's et al. [Suriadi et al.,2009] approach generates a CPN model from a
PIEMCP system model manually, while our approach generates a hierarchical
CPN model from an LCC protocol by using a set of transformational rules

automatically.

(2) Suriadi's et al. [Suriadi et al.,2009] approach is used to check the behaviour
properties of PIEMCP system while our approach is used to check the semantics
of the DID specification used against the semantics of the synthesised LCC

protocol.

2.3.2.3 LCC Verification Approaches based on Model Checking

Osman's [Osman, 2007; Osman et al., 2006] approach describes a small sized and
dynamic local model checker for checking the deontic model (a list of agent

constraints) and trust model of MAS interactions. This model checker is a fully

Chapter 2 Background and Literature Review 38

Bridging the Specification Protocol Gap in Argumentation

automatic process, which helps agents at run-time to decide whether or not the given

interaction scenarios are trustworthy to join.

This model checker is implemented in XSB tabled Prolog [Sagonas et al., 1994]. It

gets as input:
(1) LCC and deontic constraints that model MAS scenarios.

(2) Desirable properties of the system expressed in model p-calculus [Bradfield and
Stirling, 2006].

Then, the local model checker generates the state space, one step at a time,
automatically to verify whether or not MAS scenarios satisfy the desirable

properties.

While Osman's approach [Osman, 2007; Osman et al., 2006] is based on process
calculus model checking, our approach is based on CPN and SML language. We do
not claim that our approach is better but we prefer to use a CPN-based approach over

a process calculus approach because:

(1) CPN are reasonably simpler modeling techniques in comparison with process
calculus [Aalst, 2005];

(2) CPN-based tools are easier to use since they have a graphical interface as well as
a formal semantics;

(3) CPNs modelled with the CPN tool are integrated with SML, which can be used
to capture and analyse the behaviour of the CPN.

2.4 Summary

This chapter has described the background of the related topics to this thesis. It also
compared the thesis with relevant related work. The background review was
narrowed down to the concepts of agent protocol development language, design
patterns and verification methods. The motivations of this research as well as the
description of the basic concepts of argument, argumentation and dialogue games are

presented in chapter 3.

Chapter 2 Background and Literature Review 39

Bridging the Specification Protocol Gap in Argumentation

Chapter 3

Argumentation, Dialogue Games and Multi-Agent Systems

Argumentation has for some time been an important area of research in natural
language processing, knowledge representation, and construction of automated
reasoning systems. It also has importance in Multi-Agent Systems (MAS), in
particular, to the design, implementation, and analysis of models of communication
between agents. In fact, argumentation-based communication not only allows agents
to exchange messages but also allows agents to support their messages by giving
reasons why those messages are appropriate. Commonly, argumentation-based
communication is based on systems of specification that use commitment and

dialogue games.

This chapter is an introduction to the basic concepts of argument, argumentation and
dialogue games. It begins by defining the meaning of an argument and argumentation
in Section 3.1. Section 3.2 provides a simple definition and examples of dialogue
games (argumentation-based dialogue). Section 3.3 explains the advantages of using
dialogue games for agent communication. The standard terminology of dialogue
games is given in Section 3.4. Section 3.5 describes six basic types of dialogue.
Section 3.6 stresses the importance of embedding more than one type of dialogue
game within another game. Finally, Section 3.7 summarises the Argument
Interchange Format work, which has been proposed to tackle the argumentation

sharing problem.

3.1 Argument and Argumentation

A simple definition of argument [Besnard and Hunter, 2008] is:

"An argument is a set of assumptions (i.e., information from which
conclusions can be drawn), together with a conclusion that can be
obtained by one or more reasoning steps (i.e., steps of deduction). The

Chapter 3: Argumentation, Dialogue games and Multi-Agent Systems 40

Bridging the Specification Protocol Gap in Argumentation

assumptions used are called the support (or, equivalently, the premises) of
the argument, and its conclusion (singled out from many possible ones) is
called the claim (or, equivalently, the consequent or the conclusion) of the
argument. The support of an argument provides the reason (or,
equivalently, justification) for the claim of the argument.”

Argumentation [Besnard and Hunter, 2008; Eemeren et al., 1987] is the act or
process of constructing arguments and counterarguments with the intention of
finding conclusions for a given problem. It normally involves handling conflicts.
Handling conflicts may involve comparing and evaluating arguments along with

looking for pros and cons for conclusions.

In particular, according to [Maudet et al., 2007] argumentation systems can be used

by:

(1) Logicians, computer scientists and autonomous agents for forming beliefs,
desires, intentions and obligations along with making decisions in the face of
uncertainty and non-standard, incomplete and conflicting information. This is for
the reason that argumentation offers formal systems that can be used for
resolving conflicts between different arguers by constricting and comparing
arguments for and against certain conclusions and finding consistent, well-

supported conclusions;

(2) Artificial intelligence (AI) and MAS designers for designing, modelling,
implementing and analysing multi-agent communication. This is for the reason
that argumentation offers structure and reasons for the exchange of information

related to an argumentation topic.

This thesis focuses on the use of argumentation in multi-agent communication.

3.2 Dialogue Games (Argumentation-Based Dialogues)

Dialogue games (argumentation-based dialogues) are a dynamic form of
argumentation which capture the intermediate stages of argument exchanges or the
process of building up the set of arguments between two or more participants until

the participants, as a group, reach a conclusion. Normally, dialogue games involve:

Chapter 3: Argumentation, Dialogue games and Multi-Agent Systems 41

Bridging the Specification Protocol Gap in Argumentation
(1) a proponent (one or more participants) which is intended as the speaker(s) of the

argument,

(2) an audience (one or more participants) which is intended as the receiver(s) of the

argument.
According to Walton [Walton, 1990] dialogue games are defined as follows:

"Argument is a social and verbal means of trying to resolve, or at least to contend
with, a conflict or difference that has arisen or exists between two (or more) parties.
An argument necessarily involves a claim that is advanced by at least one of the
parties. In an asymmetrical case, one party puts forward a claim, and the other party
questions it. In a symmetrical case, each party has a claim that clashes with the other
party's claim. The claim is very often an opinion, or claim that a view is right, but it
need not be. In a negotiation argument, the claim could be to goods or to financial
assets."

The following five cases are examples of dialogue games that we will use throughout
this thesis:
(1) Simple car safety case (adapted from [Prakken, 2006]):

P: My car is safe. (Making a claim)

O: Why is your car safe? (Asking grounds for a claim)

P: Since it has an airbag. (Arguing: offering grounds for a claim)

0: OK, your car is safe. (Conceding)
In this case, there are two parties: P and O. P claims that his car is safe and O claims
that P's car is not safe. At the end, P succeeds in persuading O that his car is safe by
offering grounds for his claim.
(2) Complex car safety case ([Prakken, 2006]):

P: My car is safe. (Making a claim)

O: Why is your car safe? (Asking grounds for a claim)

P: Since it has an airbag. (Arguing: offering grounds for a claim)

O: Your car is not safe since the newspapers recently reported on airbags

expanding without cause. (Stating a counterargument)

Chapter 3: Argumentation, Dialogue games and Multi-Agent Systems 42

Bridging the Specification Protocol Gap in Argumentation

P: Newspaper reports are very unreliable sources of technological information.

(Counterattack)

O: Still your car is not safe, since its maximum speed is very high. (Alternative

counterargument)
P: OK, I was wrong about my car being safe.

In this case, there are two parties: P and O. P claims that his car is safe and O claims
that P's car is not safe. At first, P tries to persuade O that his car is safe by offering
grounds for his claim but O puts forward a counterargument. Then, P puts forward a
strong counterattack on O's counterargument. After that, O provides his second
argument as to why P’s car is not safe and succeeds in persuading P that P's car is

not safe

(3)The picture hanging case (adapted from [Parsons et al., 1998; Maudet et al.,
2007]):

A: Can you please give me a nail? (Making a request)
B: Why do you need a nail? (Challenging)

A: Because I want to hang a picture up and to do this I need a nail. (Justifying a

request)

B: But you can use a screw and a screw driver to hang the picture up! And if you
ask me I can provide you with these in exchange for a hammer. (Providing an

alternative plan)

A: Really, I guess in that case, I do not need the hammer. Here you go.

(Acceptting the request)

In this case, there are two parties: 4 and B. A wants to hang a picture up and B wants
to hang a mirror up. A has a screw, screw-driver and hammer. However, to hang the
picture up 4 needs a nail in addition to the hammer. In contrast, B has a nail and

needs a hammer in addition to the nail in order to hang the mirror up.

Chapter 3: Argumentation, Dialogue games and Multi-Agent Systems 43

Bridging the Specification Protocol Gap in Argumentation

A knows that B has a nail and, in order to hang the picture up, 4 needs to get the nail
from B. B knows that 4 has a hammer and, in order to hang the mirror up, B needs to
get the hammer from 4. At first, 4 asks B to give him the nail but since B needs the
nail to hang the mirror up, B challenges A by asking 4 for grounds for his request.
Then, B provides an alternative plan for A that allows both 4 and B to achieve their

goals and succeeds in persuading 4 to give away the hammer.
(4) The buyer and seller car case (adapted from [Modgil and Amgoud, 2008]):
Buyer: [want to buy a car. (Request)
Seller : Why don't you try a Renault. (Making an offer)
Buyer: I don't want to buy a Renault. (Refusing an offer)
Seller: Why? (Asking the reason for rejection)

Buyer: Renault is French, and French cars are unsafe.(Justifying the reason for

rejection)

Seller: Renaults are not unsafe as they have been given the award of the safest

car in Europe by the EU. (Offering grounds for an offer)
Buyer: Okay, I accept your offer. (Accepting an offer)

In this case, there are two parties: buyer and seller. The buyer wants to buy a car and
the seller offers a Renault. At first, the buyer does not accept the initial offer made
by the seller. Therefore, the seller offers grounds for his offer and the buyer accepts

it, and the dialogue ends.
(5) The flying abilities of birds and penguins case:
Al: Tweety flies. (Making a claim)

A2: Why does Tweety fly? (Asking for grounds for a claim)

Chapter 3: Argumentation, Dialogue games and Multi-Agent Systems 44

Bridging the Specification Protocol Gap in Argumentation

Al: Tweety is a bird , birds generally fly. (Arguing: offering grounds for a

claim)

A2: Tweety does not fly because Tweety is a penguin, penguins do not fly.

(Starting a counterargument)
Al: You are right. Tweety does not fly. (Conceding an argument).

In this case, there are two parties: 4/ and A2 reasoning about whether a particular
penguin Tweety can fly. A/ claims that Tweety can fly and A2 claims that Tweety
cannot fly. 41 tries to persuade 42 that Tweety can fly by offering grounds for his
claim but 42 puts forward a counterargument which persuades 4/ that Tweety

cannot fly.

3.3 Argumentation for Agent Communication

An agent, according to Jennings et al. [Jennings et al.,1998] "is a computer system,
situated in some environment, that is capable of flexible autonomous action in order

to meet its design objectives".

Despite the fact that the agent is autonomous, in a MAS, each individual agent needs
to consider its dependence on other agent(s), their role(s) in their environment, their
commitments to other agent(s), and environment rules which control their behaviour.
Agents need to communicate, cooperate, coordinate and negotiate with each other in
order to achieve their individual or cooperative goals, resolve and manage conflicts
or disagreements and differences of opinions, work together to resolve problem or to
prove that specific information is either true or false, and inform each other of
important facts. For example, for an agent to perform a new activity or to cancel or
modify an existing activity, it needs to persuade other agents to act in the way
required. To succeed in this, agents must be able to speak the same language with
each other and must be able to construct a sequence of arguments for and against a
particular claim and exchange these arguments with other agents [Norman et

al.,2004].

Chapter 3: Argumentation, Dialogue games and Multi-Agent Systems 45

Bridging the Specification Protocol Gap in Argumentation

This is exactly the type of communication which correlates to the interests of
argumentation-based dialogue theory. In fact, communication with argumentation
allows an agent to request a change to the arguments, to justify their attitude, and to
provide reasons for their claims [Maudet et al., 2007]. As a result of this fact, there
has been an increased interest in argumentation-based dialogue (dialogue games) as
an alternative model of agent communication - for example, by Sycara [1989]; Reed

[1998]; and Parsons et al. [2003].

3.4 Dialogues Games Terminology

We can view dialogue as a game which involves interactions between two or more
participants. Each participant is considered as a player who tries to achieve its main
goal (group goals) by making some finite set of moves. As in any game, players must
speak a common communication language and abide by combination rules (e.g. rules
which stipulate when a player(s) is allowed to make particular moves at a specific
time in the game) [Parsons and McBurney, 2003; Maudet et al., 2007; Walton and
Krabbe, 1995; Norman et al.,2004].

The standard terminology considered for the specification of protocols in dialogue
games includes [Hamblin, 1970; Walton and Krabbe, 1995; Prakken, 2000;
Mcburney et. al., 2003; Prakken, 2006]:

(1) Locutions rules: represent the set of permitted moves;

(2) One Commitment Store (CS) for each participant: the CSs of the participants

reflect the state of the dialogue;

(3) Commitment rules (effective rules): define the propositional commitments made

by each participant with each move during the dialogue;

(4) Pre-condition: rules define the conditions under which the move will be

achieved;

Chapter 3: Argumentation, Dialogue games and Multi-Agent Systems 46

Bridging the Specification Protocol Gap in Argumentation

(5) Structural rules (reply rules or dialogue rules): define legal moves in terms of the
available moves that a participant can select to follow on from the previous

move;
(6) Turn Taking (next player): specifies the next player [Prakken, 2006];

(7) Starting rules (commencement rules) [Mcburney et. al., 2003]: define the

conditions beginning the dialogue;

(8) Termination rules [Mcburney et. al., 2003; Prakken, 2006]: define the conditions
ending the dialogue.

Dialogues Games Example

There are many examples [Parkken, 2000; Parkken, 2005; McBurney and Parsons,
2002; Walton and Krabbe, 1995] from literature for a formal model of dialogue
games. These examples include an abstract form (model) of dialogue games between

two agents. The primary difference between these examples is the set of locutions.

One of these examples is a persuasion dialogue (adapted from [Parkken, 2000;
Parkken, 2005]), where a dialogue is presented as a game in which one participant
(proponent 'P') attempts to persuade another participant (opponent 'O') to change
their point of view about a particular topic "T'. We will describe this dialogue by

using the standard terminology of dialogue games introduced above:

(1) Locutions:

Locutions (speech acts) Meaning of Locution
claim(T) Making a claim
why(T) Asking grounds for a claim
concede(T) Conceding (accepting) a claim
argue(Pre, T) Offering grounds for a claim
retract (T) Retracting (withdrawing) a claim

(2) Commitment Store: There is one CS for each participant: {CSp, CSo}

Chapter 3: Argumentation, Dialogue games and Multi-Agent Systems 47

Bridging the Specification Protocol Gap in Argumentation

(3) Commitment rules:

Locutions | Commitment rules Meaning of Commitment rules
claim(T) CSu {T} The effect of a 'claim' move is always to add topic 'T'
to the mover's commitments 'CS'
why(T) CS The mover's commitments remain unchanged
concede (T) | CSu {T} The effect of a 'concede’ move is always to add topic

'T' to the mover's commitments 'CS'

argue(Pre, CSu {T} u {Pre} The effect of an 'argue' move is always to add topic 'T'
T) and premise 'Pre' to the mover's commitments 'CS'
retract (T) CS - {T} The effect of a 'retract' move is always to remove topic

'T' from the mover's commitments 'CS'

(4) Pre-conditions

Locutions Pre-conditions
claim(T) There are no special pre-conditions to starting a persuasion dialogue (for the
utterance of 'claim' locution).
why(T) In order for the speaker to ask grounds for a claim 'T', he must not be able to
find 'T" in his 'KB' or 'CS' (he must not have committed to it).
concede(T) In order for the speaker to concede a claim 'T", he must not have committed

to it. He also must not have committed to the opposite of the claim '~T".

argue(Pre, T)

In order for the speaker to offer grounds for a claim 'T', he must not have
committed to the claim 'T'. He also must be able to find promis 'Pre' in his

'KB' or 'CS' to support a claim 'T".

retract(T)

In order for the speaker to retract a claim, he must have committed to it. He

also must not be able to find a promises 'Pre' to support a claim 'T".

(5) Structural rules:

Locutions Structural rules Meaning of Structural rules
claim(T) why(T) or After a 'claim' move, the Next player can select
concede(T)} either 'why' or 'concede' locutions
why(T) argue(Pre) or After an 'why' move, the Next player can select
retract(T) either 'argue ' or 'retract' locutions
concede (T) No reply After a 'concede ' move, the Next player cannot

make a move.

argue(Pre, T)

why(Pre), argue(Def) | After an 'argue' move, the Next player can select

or concede(T) 'why', 'argue' or 'concede' locutions

retract (T)

No reply After a 'retract' move, the Next player cannot make

a move

Chapter 3: Argumentation, Dialogue games and Multi-Agent Systems

48

Bridging the Specification Protocol Gap in Argumentation
(6) Turn Taking: The turn-taking between participants switches after each move.
(7) Starting rules: dialogue is allowed to begin with claim locution.

(8) Termination rules: dialogue is allowed to end when agents send either concede

or retract locutions.

3.5 Types of Dialogues

Walton and Krabbe [Walton and Krabbe, 1995] identify six different general types of
dialogue in Al and MAS: persuasion, inquiry, information-seeking, negotiation,

deliberation and eristic. These dialogue types are classified based on:
(1) Their pre-conditions of the dialogue;

(2) Their Participant's goals for the dialogue;

(3) The primary goal of the dialogue.

The definitions and properties [Walton and Krabbe, 1995] of these dialogue types are

summarized in Table 3.1.

Persuasion [Parkken, 2000; Parkken, 2005] dialogue arises from an initial clash or
conflict of opinion. Its primary goal is to resolve the initial clash or conflict. It
usually takes the form of a sequence of questions (from the opponent) and the replies
(from the proponent) or attacks (from the opponent) and defence of its position (from
the proponent) [Walton and Krabbe, 1995]. An example of a persuasion dialogue is

illustrated in Figure 3.1.

Inquiry [Black and Hunter, 2007; Black and Hunter, 2009] dialogue is similar to the
persuasion dialogue since it aims at a stable agreement. However, it differs from a
persuasion dialogue since it does not arise from a conflict but from a problem
(something that is not proved to be true or false). To successfully end an inquiry
dialogue, each participant must reach the same conclusion [Walton and Krabbe,

1995].

Chapter 3: Argumentation, Dialogue games and Multi-Agent Systems 49

Bridging the Specification Protocol Gap in Argumentation

- Primary
_ '
T.ype of General Definition Pl:e. Participant’s Goal of the
Dialogue conditions Goal .
Dialogue
Resolve the
- One participant (proponent) attempts initial
S to persuade another participant Clash or conflict,
7 L . Persuade other
s (opponent) to change their point of Conflict of articipant reach a stale
Z view about a particular topic. opinions p p agreement
A~ [Parkken, 2000; Parkken, 2005]. or clarity
issue
" b
. The pamc1pants.collaborate.to Need to prove Find and Prove or
g answer some question or questions hypothesis to . .
3 verify disprove
g whose answers are not known to any | answer some evidence hvpothesis
- one participant" [Parsons et al., 2003] questions yP
"The participants bargain over the
division of some scarce resource in a Find
- way acceptable to all, with each areasonable
g - o .
- 1nd1y1dua1 party a1'{n1ng to maximize Conflict of Get what you settlement
-5 his or her share"[Parsons et al., interests most want or an
gn 2003]. The goal of the dialogue may attractive
Z be in conflict with the individual deal to all
goals of each of the participant
participants[Parsons et al., 2003]
One
%D . . . participant
R One participant is seeking some lacks and
g information from another participant needs
2 mn o P pant, . Obtain or give | Exchange
3 who is believed by the first information information information
5 participant to know this information. and other
g [Parsons et al., 2003] participant has
b= this
A= . .
information
"Participants collaborate to decide
what course of action to take in some .
L .. Practical
a situation. Participants share a roblem that
2 responsibility to decide the course of P Co-ordinate Decide best
< . : needs for
5] action, and either share a common set action goals or course of
= of intentions or a willingness to - actions action
o) . . (decision to
) discuss rationally whether they have act)
shared intentions"[Parsons et al.,
2003]
.. Partici
"Participants quarrel verbally as a art1c1p ants
o are trying to Reveal
-2 substitute for physical fighting, with Personal . .
7] .. . " . win and deeper basis
= each aiming to win the exchange conflict . .
53| verbally hit of conflict
[Parsons et al., 2003] out opponents

Chapter 3:

Table 3.1: Dialogue Types

Argumentation, Dialogue games and Multi-Agent Systems

50

Bridging the Specification Protocol Gap in Argumentation

[N
/ A
; i \ .
[Opening stage i Participant one 'P' Participant two 'O'
\ .. :
\ Pre-condition ! . . . ‘ , ,
N Y My car is safe "Your car is not safe'
g
v v
Clash or Conflict of opinions
/
‘Pl
" My car is safe "
) v
4)
IO‘
___________ _ " Why is your car safe? "
/ A\
. \ - J
Persuasion : v
dialogue stage 4 N
.\' '/~ vPv
"Since it has an airbag"
- J
-~
I IOV I
I . |
I " OK, your car is safe " I
1 |
_— e -
|
./. _\ I
/ \ 1
| Ending stage | I
[‘.
. I .. D o ey .
!‘ Primary Goal of i Participant 'P' resolves the initial conflict
'_ the Dialogue !
N /

Chapter 3: Argumentation, Dialogue games and Multi-Agent Systems

Figure 3.1: Persuasion Dialogue Example (Car Safety Case)

51

Bridging the Specification Protocol Gap in Argumentation

Negotiation [Parsons et. al., 1998; Sadri et. al., 2001; Luo et. al., 2001] dialogue is
similar to the persuasion dialogue since it arises from a conflict. However, it differs
from a persuasion dialogue since its goal is to make a deal that is attractive to all

participants [Walton and Krabbe, 1995].

Information seeking [Doutre et. al.,2005; Walton, 1998] dialogue differs from the
negotiation and persuasion dialogues since it does not arise from a conflict but arises
from a situation where one participant lacks information and the other participant has
this information. It also differs from an inquiry and a deliberation dialogue since
these two arise from a lack of information, whereas, in an information-seeking
dialogue, the information is already present and the problem is to find a way to
obtain this information from the other participant (who obtains this information)

[Walton and Krabbe, 1995].

Deliberation [Tang and Parsons, 2006; McBurney et.al., 2007] dialogue is similar to
an inquiry dialogue but differs from a persuasion dialogue since it does not arise
from a conflict but from an open problem. However, it differs from the inquiry
dialogue since it has to proceed with some action. In practice, deliberation dialogue
is considered as a practical type of dialogue since its goal is to perform an action
(decides how to act to solve a practical problem) which enables the practical

interaction of life and human business to go ahead [Walton and Krabbe, 1995].

Eristic [Walton, 1998] dialogue is similar to the persuasion and negotiation dialogues
since it arises from conflict. However, in this dialogue each participant is trying to
win and their main goal is to hit out at other participants (opponents). In this thesis,
we will not consider the eristic type of dialogue since it is not expected to be useful
in agent interactions. Rather, it involves venting grievances or serving primarily as a

dialogue substitute for physical confrontation [Walton and Krabbe, 1995, page 76] .

Figure 3.2 (adapted from [Walton and Krabbe, 1995]) summarises the differences
between these types of dialogue.

Chapter 3: Argumentation, Dialogue games and Multi-Agent Systems 52

Bridging the Specification Protocol Gap in Argumentation

Is there a conflict
Is stable agreement Is the information
the main goal? already present?
. Is gain agreement on Information
Persuasion Is reasonable settlement .
an action deal the seekin
the main goal? main goal? &

Negotiation Eristic Deliberation Inquiry

Figure 3.2: Determining the Type of Dialogue

3.6 Embedded Dialogues

Typically, agent interaction involves several dialogue types. Walton and Krabbe
[Walton and Krabbe, 1995] stress the importance of embedding more than one type
of dialogue game within another game, which allows complex interaction to occur
(e.g. [Black and Anthony, 2007; Sadri et.al., 2001; Reed, 1998; McBurney and
Parsons, 2002; Dimopoulos et.al., 2005]). There are two types of embedded
dialogues:

Chapter 3: Argumentation, Dialogue games and Multi-Agent Systems 53

Bridging the Specification Protocol Gap in Argumentation

3.6.1 First Type: Shift from One Type to Another Type

Embedded dialogues are different dialogues types, which occur during a specific
type of dialogue between agents causing the dialogue to shift to another type. Some

examples of different situations in which we may find embedded dialogue are:

(1) One of the participants in an inquiry dialogue reaches a conclusion before the
other participants, then it needs to persuade her fellow participants to reach the
same conclusion since, to successfully end an inquiry dialogue, each participant
must reach the same conclusion. Therefore, persuasion dialogue could be

embedded as sub-dialogue in any given inquiry dialogue.

(2) A persuasion dialogue may reach a point where the participants need to settle a
fact before the discussion can continue, which means that the participants need to
move to an inquiry dialogue to settle the fact. Therefore, inquiry dialogue could

be embedded as sub-dialogue in any given persuasion dialogue.

(3) A negotiation dialogue may well move through persuasion or information

seeking dialogue in order to reach a decision.

3.6.2 Second Type: Internal Embedded

Embedding one type of the dialogue to the same type of the dialogue (change in the
subject of dialogue) called internal embedded (shifts) [Walton and Krabbe, 1995].
One example of the internal embedded is that an inquiry dialogue may reach a point
where the participants need to settle a sub-fact before settling the main fact [Black
and Anthony, 2007]. Therefore, inquiry dialogues could be embedded as

subdialogues in another inquiry dialogue.
3.7 Argumentation Sharing Problem and Argument
Interchange Format

Today, argumentation [Maudet et al., 2007; Rahwan, 2006] is gaining more
prominence since it is being used as part of the high-level specification of MAS.

However, a wide ranging approach of this kind carries with it various challenges

Chapter 3: Argumentation, Dialogue games and Multi-Agent Systems 54

Bridging the Specification Protocol Gap in Argumentation

such as the lack of shared and agreed notations for an interchange format concerning
arguments and argumentation. To tackle this challenge, the argumentation
community has developed the Argument Interchange Format (AIF) [Chesnevar et
al.,2007;Willmott et al., 2006], which provides a common language to exchange

argumentation concepts among agents in a MAS.

3.7.1 AIF Definition

AIF [Chesnevar et al.,2007; Willmott et al., 2006] is the result of an international
effort which proposed a format for representation and communication of argument
resources between agents, research groups, argumentation tools, and specific
domains. It provides an ontology that can easily be extended to deal with different
types of argumentation formalisms and schemes. It is used to represent argument

entities and the relations between these entities.

3.7.2 AIF Elements

The AIF [Chesnevar et al.,2007; Willmott et al., 2006] provides an ontology which
represents an argument as a network of linked nodes. This network consists of two
types of nodes: Information nodes (I-nodes) that contain specific data (such as
claims, proposition and premises) depending on the domain of discourse, and Scheme
Application nodes (S-nodes) that describe the domain independent patterns of
reasoning. S-nodes come in three different types; include the Rule of Inference
Application nodes (RA-nodes) that define the support or inference of argument,
Preference Application nodes (PA-nodes) that represent the value judgements or
preference orderings of argument, and Conflict Application nodes (CA-nodes) that

specify the conflict of argument.

There are various restrictions on how nodes are connected. For example, I-nodes
cannot be connected to other I-nodes directly; they must be connected across S-
nodes. On the other hand, S-nodes can be connected to other S-nodes directly.
Basically, two types of edges can be added to connect any two nodes: scheme edges

that support conclusions that start from S-nodes and end either in I-nodes or S-nodes,

Chapter 3: Argumentation, Dialogue games and Multi-Agent Systems 55

Bridging the Specification Protocol Gap in Argumentation

12
flies(p) 0.8
I 1 r
Logical attack
"~ flies(p)” preferred
(due to greater degree of support)
n
~ flies({p)
Defe?:.sglg‘leenl\gadus ~ Modus Ponens
15 I6 3 ‘ 14
bird(p) = 0.8 flies(p) bird(p) penguin(p) = ~ flies(p) penguin(p)

Figure 3.3: Specification in AlF of the Arguments Exchanged by Agents
Discussing the Flying Abilities of the "P" Bird

and data edges that supply data and start from I-nodes and end in S-nodes. See

[Chesnevar et al.,2007] for more details.

3.7.3 AIF Example

An example of AIF is shown in Figure 3.3 [Willmott et al., 2006; Modgil and
McGinnis, 2007]. This concerns a multi-agent persuasion dialogue where N (N > 2
and unbounded) agents are involved in a discussion about the flying abilities of a
bird called "P" (Note that /-nodes are shown as rectangles, RA-nodes as ellipses and

PA-nodes as hexagon):

(1) There are two arguments: one for ~flies(P) (I1-node) and one for flies(P) (12-

node);

(2) The argument for ~flies(P) is composed of one Rule of Inference Application
node (RAI-node that defines the support or inference of argument), namely

Modus Ponens and two child nodes (premises);

(3) The argument for flies(P) is composed of one RA2-node, namely defeasible

Modus Ponens and two child nodes (premises);

Chapter 3: Argumentation, Dialogue games and Multi-Agent Systems 56

Bridging the Specification Protocol Gap in Argumentation

(4) AIF assumes that there is a way of ordering the support for premises. In this
particular example, the choice was the justification through the probability. The
argument for ~flies(P) has a higher degree of support because the premises (/3-
node and [4-node) support it with a higher degree of probability (1 degree).
Conversely, the argument for flies(P) is weak because the premises (/5-node and
16-node) support it with only 0.8 degree (a low probability). So, ~flies(P) is
preferred to the argument for flies(P). That is why the intermediate Preference
Application node (PA-node that defines the value judgments or preference
orderings of argument), namely Logical attack, links ~flies(P) (II-node) to
flies(P)(12-node).

This example demonstrates that a persuasion dialogue can be specified abstractly by
using arguments expressed in AIF. It describes the argument entities and relations
between argument entities but it does not describe the items related to the
interchange of arguments between agents (e.g. locutions and pre- and post-conditions
for each argument). It also does not directly influence the specification of agent

communication languages and interaction protocol standards.

3.7.4 AIF Implementation Problem

AIF enables users to structure arguments using diagrammatic linkage of natural
language sentences. However, AIF does not model dialogue games (because it does
not show the interchange of arguments between agents). Besides, it is not an
executable specification language. It specifies the properties that define an argument
without prescribing how that argument may be made operational. In fact, AIF is used
to represent data (argumentation structure) not to process data (it does not represent
or generate a dialogue games protocol). In other words, it lacks the ability to

implement complex systems of arguments from high-level specifications.

Papers by [Chesnevar et al.,2007; Willmott et al., 2006] suggest a way to solve AIF
problem by identifying two elements: (1) Locutions, which are particular words,
phrases or forms of expressions which are used by agents, (2) Interaction Protocols,

which define communication between agents via a set of rules governing how two or

Chapter 3: Argumentation, Dialogue games and Multi-Agent Systems 57

Bridging the Specification Protocol Gap in Argumentation

more agents should interact in order to reach a specific goal. These papers also give
the advantages of defining the interaction protocol language as part of AIF: (1) If we
can find an interaction protocol language that can be used practically for computation
then it will be easier to develop an associated computer program which is durable;
(2) To support formal analysis and verification, we need to use a declarative
language; (3) To facilitate human readability, we need to use a high-level language.
These papers also suggest the use of patterns in the design of protocols. Therefore,
these papers only provide some suggestions for solving the AIF deployment problem

and demonstrate that it is difficult to solve it.

3.7.5 AIF Extension

AIF Extension by Modgil and McGinnis

Modgil and McGinnis' [Modgil and McGinnis, 2007] tried to solve the AIF dialogue
problem by extending the AIF to represent characterised argumentation-based
dialogues. The extensions are based on two types of nodes: Information nodes (I-
nodes) whose content expands to represent locution, and Protocol Interaction

Application nodes (PIA) that are created to represent interaction protocols and used

to link I-nodes.

An example of this work is illustrated in Figure 3.4 (see persuasion dialogue game

example in section 3.4):

(1) A1 opens the discussion by sending claim(Tweety flies) in I1-node.

(2) PIAI-node specifies that A2 can reply with why(T) or concede(T).

(3) A2 sends why(Why does Tweety fly?) in I2-node.

(4) PIA2-node specifies the legal replies argue(Pre) where Pre’s conclusion is 7, or

retract(T).

Chapter 3: Argumentation, Dialogue games and Multi-Agent Systems 58

Bridging the Specification Protocol Gap in Argumentation

Al I1: claim(Tweety flies)

A2
- argue(Pre)
(con(Pre) =T)
- retract(T)
Al I3: argue(Tweety is a bird, birds generally fly)

- argue(Def)
(conc(Def) = ~T)
- concede(Pre)
(conc(Pre)="T

A2 I14: argue(Tweety does not fly because Tweety is a penguin, penguins do not fly)

PIA 47
- why(Def)
- argue(Def2)
(conc(Def2) =T)
- concede(Def)
(conc(Def)=~T,

Al I5: concede(You are right. Tweety does not fly)

Figure 3.4: A Dialogue Graph Represented in the AIF

Chapter 3: Argumentation, Dialogue games and Multi-Agent Systems

59

Bridging the Specification Protocol Gap in Argumentation
(5) A1 responds to the challenge by declaring the supporting premises "Tweety is a
bird, birds generally fly" for "Tweety flies" [sends argue(Tweety is a bird, birds

generally fly) in 13-node].

(6) PIA3-node specifies the legal replies why(Pre), argue(Def) where Def’s

conclusion is ~7,, or concede(Pre) where Pre's conclusion is 7.

(7) A2 puts forward a strong counterargument "Tweety does not fly because Tweety
is a penguin, penguins do not fly " [sends argue("Tweety does not fly because

Tweety is a penguin, penguins do not fly") in I4-node].

(8) PIA4-node specifies the legal replies why(Def), argue(Def2) where Def2’s

conclusion is 7, or concede(Def) where Def's conclusion is ~T.

(9) A1l concede to the 42's argument that "Tweety does not fly" [sends concede("You
are right. Tweety does not fly") in I5-node].

This study also represents agents interaction protocols by using a Lightweight
Coordination Calculus language (LCC) [Robertson, 2004; Hassan et. al., 2005] (see
chapter 5 for more details). To explain the use of LCC it uses as an example of an
argumentation-based medical dialogue where arguments are specified and evaluated
in the ASPIC" (Argumentation Services Platform with Integrated Components)
engine.The result of this study supports the idea that protocol rules could be
represented as a part of the dialogue. However, this study was limited in three
important ways. Firstly, it only shows how to implement a particular sort of
argumentation in LCC. Secondly, it is limited to dialogues between only two agents.
Finally, it does not explain how to synthesise protocols (semi-)automatically for any

given argumentation.

> ASPIC [Fox et.al, 2006] provides a general formal model for argumentation functions for
individual agents and argumentation between agents in medical multi-agent systems. It enables agents

to resolve conflicts of opinion in order to diagnose medical cases and find treatments.

Chapter 3: Argumentation, Dialogue games and Multi-Agent Systems 60

Bridging the Specification Protocol Gap in Argumentation

AIF Extenuation by Reed et al.
Reed et at. [Reed et al., 2008] extended AIF to AIF''® so that it could handle

argumentation dialogue games as well as represent the relation between the locution

and its propositional content. The extensions are based on three nodes:

(1) Locution nodes (L-nodes) a subclass of I-nodes which are created to represent

dialogue history (utterances of locutions);

(2) Transition Application nodes (7A4-nodes) a subclass of R4-nodes which are used
to link two L-nodes and capture the flow of a dialogue (the sequence of

connected locutions)

(3) Illocutionary Application (YA-nodes). To handle natural arguments (to represent
the relation between the locution and its propositional content), [Reed et al.,
2010] extend AIF" to represent the interaction between locutions uttered as part
of an argumentation-based dialogue (AIF" nodes) and the argument structures
(AIF nodes) by creating a new node type called Illocutionary Application (YA4-
nodes). YA-nodes links I-nodes with L-nodes, and RA-nodes with TA-nodes.

An example of this work is illustrated in Figure 3.5 (Some detail is omitted from

Figure 3.5 for clarity. Please see chapter 8, section 8.1.2 for more information):

(1) In this dialogue between A/ and A2, the dialogue game consists of seven L-
nodes which are represented by L1, L2, L3, L4, L5, L6 and L7 nodes.

(2) The argument consists of six propositions which are represented by /1, 12, 13, 14,
15 and 16 nodes.

(3) The L1, L3, L4, L5, L6 and L7 have illocutionary nodes connecting them with
propositional contents 12, I5, I3, I4 and 11, respectively.

' AIF+ [Reed et al., 2008 ; Reed et al., 2010]: the development of AIF+ still ongoing. See

http://www.arg.dundee.ac.uk/?page id=197

Chapter 3: Argumentation, Dialogue games and Multi-Agent Systems 61

Bridging the Specification Protocol Gap in Argumentation

Argument

RA2

YA2

I5= bird(P) ‘—]

16= bird(p) = 0.8 flies(p)

<T

[1= ~flies(p)

RA1

3= penguin(P)

14= penguin(p) = ~flies(p)

YA4

YAS

YA6

YA7

Dialogue Games

12= flies(p) 0.8 ¢ L1= Tweety flies

L2= Why does Tweety fly?

TA2 (argue)

L3= Tweety is a bird

L4-= birds generally fly

TA3 (argue)

L5= Tweety is a penguin

L6-=penguins do not fly

TA4 (concede)

L7= Tweety does not fly

Figure 3.5 : lllustration of the Link between Argument (AIF Nodes) and

Dialogue Games (AIF* Nodes)

Chapter 3: Argumentation, Dialogue games and Multi-Agent Systems

62

Bridging the Specification Protocol Gap in Argumentation

(4) Locution nodes L/ and L2 have a transition node 74/ connecting them.

(5) Locution nodes L2, L3 and L4 have a transition node 742 connecting them.

(6) Locution nodes L2, L3, L4 and L5 have a transition node 743 connecting them.
(7) Locution nodes L5, L6 and L7 have a transition node 744 connecting them.

(8) The interaction between the argument and the dialogue game is described by

means of the YA-nodes:

e The links between LI, L3 and L4 with 12, I5, 16 are represented by YA1,YA4
and YAS5, respectively.

e The illocutionary node YA2 links L2 and its propositional content /2.
e The illocutionary node Y43 links 742 and RA2.

e The links between L5, L6 and L7 with /1, I3, 14 are represented by Y45, YA6
and YA7, respectively.

e The illocutionary node YA7 links L7 and its propositional content /1.
e The illocutionary node YA4 links 743 and RA1.

In this example:
(1) A1 opens the discussion by sending claim(Tweety flies) in L1-node.
(2) A2 sends why(Why does Tweety fly?) in L2-node.

(3) A1 responds to the challenge by sending argue(Tweety is a bird, birds generally
fly) in L3-node and L4-nodes.

(4) A2 puts forward a strong counterargument by sending argue(" Tweety does not fly

because Tweety is a penguin, penguins do not fIy") in L5-node and L6-nodes.

(5) A1 concede to the A2's argument by sending concede("You are right. Tweety
does not fly") in L7-node.

Chapter 3: Argumentation, Dialogue games and Multi-Agent Systems 63

Bridging the Specification Protocol Gap in Argumentation

Like Modgil and McGinnis' [Modgil and McGinnis, 2007], the results of AIF"
support the idea that protocol rules could be represented as a part of the dialogue.
However, similarly to AIF, AIF" is used to represent data (describe the dialogue
games' structure), not to process data (it does not generate dialogue games). It also
does not explain how to synthesise protocols (semi-)automatically for any given

argumentation.

In conclusion, both Modgil and McGinnis' [Modgil and McGinnis, 2007] and Reed
et al. [Reed et al., 2010; Reed et al., 2008] attempted to solve the dialogue problem
of AIF, but they did not try to solve the implementation problem.

In chapters 4 and 5 we will propose a new method to solve AIF dialogical and
implementation problems. We will accomplish this by extending the AIF. Our
extension will consist on adding more information to the AIF to represent interaction
protocol information, as well as some implementation information, to allow the user

to synthesise the multi-agent interaction protocol from it.

3.8 Summary

This chapter has presented some concepts of arguments and argumentation,
summarising the advantages of using argumentation for agent communication, as

well as the problems of argumentation.

In practice, the argumentation community faces various problems, such as the lack of
a shared interchange format for arguments along with the lack of ability to
implement complex systems of arguments from high-level specifications. The first
problem is addressed by the AIF, which provides a common language to exchange
argumentation concepts among agents in a MAS. However, AIF does not solve the
implementation problem. The AIF language is abstract and solely concerned with the
structure of argument, while implemented multi-agent systems are concrete and need
social constraints via protocols. This means that there is a gap between argument
specification languages and multi-agent systems implementation languages which we

bridge in chapters 4 and 5.

Chapter 3: Argumentation, Dialogue games and Multi-Agent Systems 64

Bridging the Specification Protocol Gap in Argumentation

Chapter 4

Argument Specification Language

Although, significant progress has been made in argumentation community for
modelling agent communication in abstract way (using argument specification
languages), there remain major barriers to make argumentation systems practical and
to implement (deploy) argumentation systems. This means that there is a gap

between argument specification languages and multi-agent deployment languages.

This thesis will attempt to close the gap between standard argument specification and
deployable protocol by automating the synthesis of protocols (in LCC) from
argument specifications (ideally written in the AIF). As we shall see later in the
thesis, it is not possible to fully automate synthesis starting only from the AIF
because it does not capture some concepts that are essential to the choice of protocol
structure. Some of these missing concepts we need to obtain from the user and some

of them from the development (implementation) language (see Figure 4.1).

This chapter proposes a mechanism by which the missing concepts might be
obtained from the user. We will propose a new intermediate language between the
AIF and LCC called a Dialogue Interaction Diagram (DID), which is an extension of

AIF and used to specify the dialogue game agent protocol in an abstract way.

Argument
ey g 1 Multi-agent
specification — implementation
Languages g B
o P languages
Highl ! Low Level
Language Language

Figure 4.1: Missing Concepts between AIF and Agent Protocol

Chapter 4: Argument Specification Language 65

Bridging the Specification Protocol Gap in Argumentation

We open this chapter with a discussion of dialogue game agent protocol concepts
(dialogue games and agent protocol implementation concepts) in Section 4.1. This is
followed by a graphical and formal description of DID language in Section 4.2. DID
for embedding dialogues is presented in Section 4.3. An extension of DID for
modelling dialogue between N > 2 agents is presented in Section 4.4. Finally,
Section 4.5 summarises the DID language, and justification is given for creating and

using DID as a high-level dialogue game protocol language.

4.1 Agent Protocol Concepts for Argumentation between Two

Agents

In order to represent an argument protocol in full, nine concepts are required:
(1) Locutions;

(2) Participants Commitment Store and Commitment rules;

(3) Structural rules (reply rules or dialogue rules);

(4) Turn Taking rules (Next player rules);

(5) Starting rules (commencement rules);

(6) Termination rules;

(7) Post-condition rules define the conditions which must always be true just after

the locution utterance;
(8) Pre-condition rules;

(9) Sender and receiver agents roles: a set of functions that an agent can use to
interact with another agent. Each role identifies the messages that an agent can

send or receive.

The first six concepts can be found in most of the existing dialogue games [Hamblin,

1970; Walton and Krabbe, 1995; Prakken, 2000 ; Mcburney et. al., 2003]. However,

Chapter 4: Argument Specification Language 66

Bridging the Specification Protocol Gap in Argumentation

the last three concepts are not found in most of the existing dialogue games,
[Hamblin, 1970; Walton and Krabbe, 1995; Prakken, 2000] which makes it difficult
to generate the multi-agent protocol automatically. Post-condition rules [Atkinson et
al., 2005; Modgil and McGinnis, 2007] could refer to the effect of a locution
utterance on the receiver agent commitment stores as well as the effect of a locution
utterance on the agent’s mental state structure; Pre-condition rules [Modgil and
McGinnis, 2007] could refer to three different conditions: (1) sender agent
commitment stores at a particular time; (2) agent internal reasoning states; or (3) a
strategy that enables agents to select exactly one of the moves (locutions) from the
legal moves. The concepts of the pre-condition and post-condition rules are imposed
on utterance locutions and helps to control agent behaviour. Pre-condition allows an
agent to utter a specific locution only when this agent has a prior argument or proof
from its knowledge base or commitment stores. Sender and receiver agent roles
[Willmott et al., 2006; Modgil and McGinnis, 2007] in relation to the dialogue help

to control the way the dialogue proceeds.

All these concepts need to be presented in the AIF in order to perform the automated
synthesis. Unfortunately, AIF does not possess the following nine concepts:
Locutions; Participants Commitment Store and Commitment rules; Structural rules;
Turn Taking rules; Starting rules; Termination rules; Post-condition rules; Pre-
condition rules; and Sender and receiver agents roles. The next section extends the

AIF to enable it to represent the dialogue game agent protocol concepts.

4.2 Dialogue Interaction Diagram (An Extension of AlF)

In this section, we propose a new language called Dialogue Interaction Diagram
(DID) which is an extension of AIF. The extension of AIF to DID is not added
automatically. In practice, DID is a new layer on top of AIF. DID is a new high-level
specification language for multi-agent protocols, which allows to specify the
dialogue game protocol in an abstract way. It has the nine concepts of the agent
protocol [Locutions; Participants Commitment Store and Commitment rules;
Structural rules; Turn Taking rules; Post-condition rules; Pre-condition rules;

Locution types (Starting rules and Termination rules which are used to specify when

Chapter 4: Argument Specification Language 67

Bridging the Specification Protocol Gap in Argumentation

the dialogue starts and when the dialogue ends); and Sender and receiver agents
roles]. It provides mechanisms to represent multi-agent interaction protocol rules
between two agents by allowing the designer to specify the permitted moves and

their relationship to each other.
DID is a recursive visual language which restricts agents moves to:

(1) Unique-moves: agents can make just one move before the turn-taking shifts,

and agents can reply just once to the other agent’s move;

(2) Immediate-reply moves: the turn-taking between agents switches after each
move, moving from one level to the next level, and each agent must reply to

the move of the previous agent.

This restriction is quite strict but it still allows us to include a large class of
argumentation systems in our synthesiser; for instance, all argumentation systems
that can be described as dialogue games. In general, we can synthesise arguments
that can be described as a sequence of recursive steps (each of which involves turn

taking between the pair of agents) terminating in a base case.

4.2.1 DID Elements

The basic element of every DID is a locution which is represented as an icon. A
locution icon (as shown in Figure 4.2) is simply a rectangle divided into three
sections. The topmost section contains the name of the locution (Locutions agent
protocol concept). The left hand section contains sender attributes (Role name, Role
arguments, and Agent ID), and the right hand section contains receiver attributes

(Role name, Role arguments, and Agent ID).

The left hand section and the right hand section contain Sender and Receiver agents
roles agent protocol concept. A rhombus shape represents conditions (Commitment
rules, Post-condition and Pre-condition rules agent protocol concepts) that apply to
each move; when connected to the left hand section it represents sender pre-
conditions, and when connected to the right hand section it represents receiver post-

conditions.

Chapter 4: Argument Specification Language 68

Bridging the Specification Protocol Gap in Argumentation

Locution types Locution

concept concept

Locution name »

,// ~.__—"| Role Name Role Name TN

Rl S;I;éier N x Receiver ™~
< - . « Post- >

. \condmo,r;/ Role Arguments Role Arguments \\\con dition/’

\\\\’// \\\\//,,

4 Agent ID Agent ID A
N\ AN J
Y Y
Sender Receiver

Sender and
Receiver agent's

roles concept

Commitment rules Commitment rules

and and

Pre-condition rules Post-condition

concept rules

Figure 4.2: Locution Icon

Dotted rectangles represent the locution type (Locution types agent protocol
concept): Starting (can be used to open a dialogue), Termination (can be used to
terminate the dialogue), and Intermediate locution (can be used to remain in the

dialogue).

A DID is created by linking the locution icons together. The links between locution
icons represent reply relations between arguments (Structural rules agent protocol
concept). Finally, the turn-taking between agents switches after each move, moving

from one level to the next level.

Chapter 4: Argument Specification Language 69

Bridging the Specification Protocol Gap in Argumentation

4.2.2 How to Draw a DID Diagram

(1) The first step is to identify dialogue game locutions.

(2) The next step is to draw a rectangle for each locution, and divide it into three

sections: 1) a rectangle on the top of the rectangle; 2) a rectangle on the left; 3)

and a rectangle on the right. The below symbol represents a locution icon:

a)

Write the locution name (e.g. claim(T)) in the topmost section of the icon.

claim(T)

b) Next, go to the left hand section and divide it into three rows and write the

sender role name (e.g. claimSender), role arguments (e.g. (KBsender,CSsenders
CSRreceivers 1)), and agent ID (e.g. IDgender). Note that the sender role name,
arguments and agent ID must be the same for all locutions at the same level,
since each level has one role (this restriction allows us to do the automatic

agent protocol synthesises).

claim(T)

claimSender

KB SenderaCSSenders
CSReceivera T
IDSender

Then, go to the right hand section, divide it into three rows and write the

receiver role name (e.g. claimReceiver), role arguments(e.g.
(KBReceiver:CSReceiver:CSSender)): and agent ID (eg IDReceiver)- Note that the
receiver role must be the same for all locutions at the same level (this

restriction allows us to do the automatic agent protocol synthesises).

claim(T)
claimSender claimReceiver
KB ScndcrsCSScndcra KBRcccivcrsCSRcccivcrs
CSReceiver ’T CSSender
IDSender IDReceiver

Chapter 4: Argument Specification Language

Bridging the Specification Protocol Gap in Argumentation

d) Next, draw a rectangle with rounded corners and a dotted line instead of a
solid line to signify locution type. Write the locution type inside the shape.
Following this, draw a downward dotted line from this shape to the locution
icon. Note that there are only three types of locutions: Starting Locuion (SL),
Intermediate Locution (IL) and Termination Locution (TL). Choose starting if
an agent(s) is going to use this locution(s) in order to open a dialogue.
Finally, choose intermediate if the next agent can make a move (utter
locution(s)) after this locution, or choose termination if the agent needs to use

this locution to end a dialogue.

Starting Locution

claim(T)

claimSender claimReceiver

KB Senders CSSendera KBReceiveraCSReceivera
CSReceiver ,T CSSender

IDSender IDReceiver

e) Draw a rhombus for the sender pre-condition with a dotted line. Write the
pre-condition in the shape (e.g. addToCs(T,CSsender)). Draw a solid line from
this shape to the left hand section of the locution icon. This solid line is
indicating that the sender agent can send this locution only if he is able to
achieve this pre-condition. Note that if there is more than one pre-condition
are connected to the sender, then either one of these two scenarios is
applicable: 1) if the relation between pre-conditions is 'and' draw a rhombus
shape for each pre-condition; 2) if the relation between pre-conditions is 'or'
draw one rhombus shape and write all the pre-conditions in the shape and

connect them by using 'or'.

IR i Starting Locution
2 addToCS(T,CSsender) . * i
Seo e claim(T)
"~ claimSender claimReceiver
KBSender’CSSendera KBReceiver,CSReceiver,
CSReceiver 7T CSSender
I]DSender IDReceiver

Chapter 4: Argument Specification Language

71

Bridging the Specification Protocol Gap in Argumentation

f) Draw a rhombus for the receiver post-condition with a dotted line. Write the

post-condition in the shape (e.g. addToCs(T,CSgreceiver)). Draw a solid line
from this shape to the right hand section of the locution icon. This solid line is
indicating that the receiver agent satisfies this post-condition after it receives
the locution. Note that if there is more than one post-condition are connected
to the sender, then either one of these two scenarios is applicable:1) if the
relation between post-conditions is 'and' draw a rhombus shape for each post-
condition; 2) if the relation between post-conditions is 'or' draw one rhombus

shape and write all post-conditions in the shape and connect them by using

' 1

or.
N Starting Locution | o
< 2ddToCS(T,CSsender) 3+ clainzl(T) -:_'fddToCS(T,CSRWCQ):;,
el] : - - L 7
N~ claimSender claimReceiver ST

KBSenderaCSSender: KBReceiver:-CSReceivera
CSReceiver 7T CSSender
IDSender IDReceiver

(3) Step three is to connect the locutions together by following the reply rules:

a) Put the starting locution icon(s) at the top of the diagram.

- Starting Locution PRV
< addTOCS(T,CSSendCT2 L clain:1 (T) J éddTOCS(TsCSRccci m)'_:-
s _.-77 7T claimSender claimReceiver REGRS
KBSendersCSSendera KBReceivernCSReceivern -
CSReceiver ,T CSSender
IDSender IDReceiver

b) Draw a downward arrow from this icon indicating that when this process is

Chapter 4: Argument Specification Language

completed (message sent and received), a new activity will begin on the
following lower level (new message will be sent and received). Note that the
turn taking between agents switches as we move from one level to the next

level.

72

Bridging the Specification Protocol Gap in Argumentation

Starting Locution

~.
- ~. . ; PR
P ~ H ~

-

. '.ja\ddTOCS<T,CSSender:)::' claim(T) /-.’,:a;l.dTOCS(T,CSRccm;).)
~.. .77 claimSender claimReceiver T e
e KBSenderaCSSendera KBReceiveraCSReceivera T
CSReceiver ,T CSSender
ID Sender ID Receiver

o

) Put one reply locution below the downward arrow.

Starting Locution

P ~. t : PRAGRN
- ~ H . .
H . ~

'~

. 'E(.idToCS(T,CSsmfr:) pE clainl(T) - ;jidTOCS(T,CSRecel;e;r)\;
\"\.,./'\ claimSender claimReceiver — \"-_,./"’
KBSenderaCSSender: KBReceiver:CSReceiver:
CSReceiver :T CSSender
I])Sende:r IDReceiver
A\ 4
why(T)
whySender whyReceiver
KBSenderaCSSender: KBReceiver:CSReceiver:
CSReceiver :T CSSender
IDReceiver IDSender

d) Continue drawing downward arrows and put the reply locution below the
downward arrow (from the starting locution(s)) until all reply locutions to the

starting locution appear in the diagram on level two.

e) Complete the DID diagram by continuing to draw arrow(s) between locutions
until all reply rules of the dialogue game appear in the DID. Note that since
the DID is used to represent multi-agent interaction protocol rules between
two agents, you cannot draw any more arrows between two locution icons
when the reply relation between two locution icons has already appeared in

the DID.

4.2.3 Example (Persuasion Dialogue)

Figure 4.3 illustrates a DID structure of a persuasion dialogue [Parkken, 2000] (see

chapter 3, section 3.4). In Figure 4.3, there are five locutions: three attack locutions

Chapter 4: Argument Specification Language 73

Bridging the Specification Protocol Gap in Argumentation

which have reply moves (claim, argue and why), and two surrender locutions
(concede and retract) which do not have any reply moves. There are three types of
locution: starting (claim), termination (concede and retract) and intermediate (why

and argue).

In this example, a dialogue always starts with a claim and ends with a concede or
retract locution. A rhombus shape represents conditions (pre- and post-conditions)
that apply to each move. The variable KB (knowledge base list) represents the
agent’s private knowledge, defined as arguments expressed in the AIF. The variable
CS (commitment store list) contains a set of arguments expressed in the AIF to which

the player has committed during the discussion. Initially, the CS is empty.

In this dialogue, agent P can open the discussion by sending a claim(T) locution if he
is able to satisfy the addTopicToCS(T,CS) pre-condition (note that adding an
argument to the agent commitment store is a conditions that it is always satisfied).
Then, turn-taking switches to agent O. O has to choose between two different
possible reply locutions: why(T) or concede(T). O will make his choice using the
pre-conditions which appear in the rhombus shape. In order to choose concede(T), O
must be able to satisfy the four pre-conditions which connect with concede:1)
findTopicInKB(T, KBgp) which returns true if agent O is able to find T in its
knowledge base KBo; 2) notFindTopicInCS(T,CSp) which returns true if agent O is
not able to find 7 in its commitment store CSp; 3)
notFindOppTopicInCS(not(T),CSp) which returns true if agent O is not able to find
the opposite of 7' (not(T)) in its commitment store CSo; 4) addTopicToCS(T,CSo)
which always returns true and results in agent O adding 7 to its commitment store
CSo. If O 1s not able to utter concede(T) because the explained pre-conditions are not
satisfied, then O will send why(T). After that, the turn switches to P, and so on. The

argument terminates once P or O sends concede or retract locutions.

The basic Scenario of the Interaction Protocol of Persuasion Dialogue

Figure 4.4 represents the persuasion dialogue graph of the complex car safety

example (see chapter 3, section 3.2):

Chapter 4: Argument Specification Language 74

Bridging the Specification Protocol Gap in Argumentation

Starting Locution

claim(T)

"ﬁndPremise T R
(T KB5p,CSp)

~

2

. s
~ PN
~N. s

{ Intermediate Locution

- claimSenderp claimReceiverg @
. "~ o~ KBp,CSp,CS0,T,IDo | KBo,CSo,CSp, ID4
addTopicToCS(T,CSp)” IDp Do P
{ Intermediate Locution v { Termination Locution
A\ 4 A
why(T) concede(T)
replyToClaimSender, | replyToClaimReceiverp replyToClaimSenderp | replyToClaimReceiverp ‘
KBQ,CS(),CSP,T,IDP KBP,CSP;CSOaTleO 1 KB(),CS(), CSP,T IDP KBP,CSP,CS(),T ID()
IDO IDP . IDP O
1 - fndTopchnKB
RS (T KBO)
L ’ AN . 2 N2 ~.
\"tF‘ dTopicInKB "> >+ , '
et “(‘T IEEI:) e . < “hotF lndTOPCﬂnCS TN\ addToplcTOCS(T CSo) >
notFdeopchnCS s (T Cso) - s -
. (T,CSo) .-~ e e notFmeppTopchnCS ~._-7
N~ - (not(T) CSO)
- S~ iTermination Locution }
i Intermediate Locution '
A
argue(Pre,T) retract(T)
replyToWhySenderp | replyToWhyReceivero replyToWhySenderp | replyToWhyReceiverg
KBp,CSp,CSo T,ID4 KB0,CS0,CSp,T,IDp KBp,CSp, CSo,T,IDo| KBo,CSo,CSp,T,IDp
IDp IDO IDP IDq P
1 1/
PR 2 ."’.) \'\. 2 3 -
o7 Pre= s, .z "cannotFindPremKB - PSRN

R

addPreToCS ~e
L (TPreCSy) .-

o a .\.,
~- \ 4

~._ (T,KBo) _.-"" IR e
\\.(\’ O) - pE ‘-\'f.'\ subtractFromCS pt

) ﬁndToprnCS (T CS). 7
(T.CSo)

°~

N

N

o
{Termination Locution ;

Intermediate Locution

co T

A
argue (Def, T'
why(Pre) gue () concede(T)
replyToArgue-| replyToArgue- replyToArgue-| replyToArgue- replyToArgue-| replyToArgue
Sendero Receivererp Sendero Receivererp Sendero -Receivererp
KBo,CS0,CSp, KBp,CSp, IKBo,CSo, CSp,| KBp,CSp,CSo, KBo,CSo, CSp| KBp,CSp, CSo,
T, Pre,IDp CSO,T, Pre, IDo T, Pre,IDp T, Pre, IDo T, Pre,IDp T,Pre, Do
IDo IDp IDo IDp D IDp
, o
B g/]
.2 Def=" . S
e - < . " 43 .
o . _.-" findDefeats "~. 2 L ﬁ?)dPr;IEKB > f’;iiPreEoSCS) :
- S N 1> ‘o X L ‘o e
L -~ notFindPreInkKB - { (T Pre KBO> ,-’ PhaN '\(. \re 9) 3\ .~ . P
\-\ (PreKBO) ,,-:.r-) CSO) N ~Io2 . L- \.;7»
PR e Sl . addDefeatsToCS ~. P o~ . . N
N~ . “ + "notF Prel
S FotFindPrelnCS - ~ ~. (not(T),DefCSo) 47 notFmdPreInCS ~ lzotnl;?l?r[e)l)a (rIeSn)CS
S (PreCSo) .7 "~ PR S (Pre CSO) o

Figure 4.3 DID Structure of a Persuasion Dialogue

Chapter 4: Argument Specification Language

75

Bridging the Specification Protocol Gap in Argumentation

(1) Dialogue takes place between two agents, P and O.

(2) P has KBpand CSp, and O has KBp and CSp.

(3) Initially the CSp and CSp are empty.

(4) P and O can access both CSp and CSp.

(5) P opens the discussion by sending claim("My car is safe").

(6) O checks with its argumentation system ASo (4So = {KBo, CSo}) whether "My

car is safe" is acceptable or not. It finds that "My car is safe” is not acceptable,

(7) O challenges "My car is safe". In others words, it asks what is the reason behind
P's proposal of "My car is safe”. In this example, O will challenge "My car is
safe” by sending the why("Why is your car safe") locution.

(8) P responds to the challenge by declaring the supporting premises Pre for "My
car is safe”. In this example, P is offering grounds for a claim by sending

argue("Since it has an airbag") locution.

(9) O checks with its argumentation system 4Sp whether "if car has an airbag, then
the car is safe" is acceptable or not. In this example, O finds a counterargument
for P's argument and sends an argue("Your car is not safe since the newspapers

recently reported on airbags expanding without cause") locution.

(10) P finds a counterargument for O's argument and sends an argue(”"Newspaper

reports are very unreliable sources of technological information") locution.

(11) O finds a counterargument for P's argument and sends an argue(”Still your

car is not safe, since its maximum speed is very high”) locution.

(12) P checks with its argumentation system ASp whether "if the car maximum
speed is very high, then the car is not safe" is acceptable or not. In this example
P finds that it is and retracts his main claim by sending a retract("My car is

safe"”) locution.

Chapter 4: Argument Specification Language 76

Bridging the Specification Protocol Gap in Argumentation

KBp={My car safe, My car has an airbag, car has an airbag - car is safe, newspapers are
unreliable sources}

KBo={Your car is not safe, newspapers reported on airbags expanding - car is not safe,
car has high maximum speed = car is not safe}

claim(safe)

B
»

why(safe)

| |
[argue(since airbag) } |
| |
| |

A

argue(not safe since newspaper reported

on airbags expanding)

A

argue(safe since newspaper unreliable

sources)

[
»

argue(not safe since high maximum

speed)

A

retract(safe)

v

Figure 4.4: The Complex Car Safety Example

Chapter 4: Argument Specification Language

77

Bridging the Specification Protocol Gap in Argumentation

(13) The commitment stores of P and O at the end of the dialogue are:

o CSp={My car has an airbag, Newspapers are unreliable sources}

o CSp={Your car is not safe, Newspapers reported on airbags expanding—>
car is not safe, car has high maximum speed => car is not safe}

4.2.4 DID for Two Agents Formal Definition

Up to this point we have explained the DID syntax and how to use it and draw the
DID diagrams. However, some readers may be interested to understand formally the
meaning of the DID syntax. One way to do this is to use an existing formal
definitions language from agents community such as Prakken's dialogue formal

specification language [Parkken, 2000].

In this section, we formally specify the DID for two agents, as an extension of AIF.
This formal definition called Dialogue Formal Specification Language (DFSL) is
based on Prakken's framework [Parkken, 2000]. It is used to describe dialogue
(argument) interaction protocol rules in a high-level way. Readers not interested in

such details are encouraged to skip ahead to Section 4.3.

Definition 1: Dialogue

A dialogue protocol 'D’is defined as a tuple:

(L, Players, CS , KB, Roles ,Acts, ActType, Replies, Moves, LegalMoves) where:
Definition 2: Topic

L is a set of strings which specifies the dialogue topic;

Args(L) is a set of all well-formed AIF arguments expressed as I-nodes, therefore

Args(L) < I-nodes (see chapter 3 for more information about I-nodes).
Definition 3: Players

Players = {player, player,}

Chapter 4: Argument Specification Language 78

Bridging the Specification Protocol Gap in Argumentation

Where,

e Each player player; has its own commitment store set CS; < s (Args(L)),
which contains a set of propositions to which the player is committed in the

. .1
discussion'”.

e [FEach player player; has its own knowledge base or beliefs set KB; <

¢ (Args(L)), which represents the propositions on which the agent believes.
Definition 4: Commitment Store

'CS' 1s a function which gives the commitment store set of the player at a particular

move.
CS: Players X Moves 2 @ (Args(L))

Initially CS(player;, M)= <, where i =1 or 2

Definition 5: Knowledge Base

'KB' is a function which gives the knowledge base set of the player
KB: Players 2> @ (Args(L))

Definition 6: Roles

Roles = {r|,rp............. I'm-1,Im} 1S a set of role identifiers.

Where m >= 2 (there are at least two roles: one for the first agent and one for the

second agent)

17 For any set S:
§#(S) = the powerset of any set S
C = a partial order on the set (S) of all subsets of S.

Chapter 4: Argument Specification Language 79

http://en.wikipedia.org/wiki/Weierstrass_p
http://en.wikipedia.org/wiki/Set_%28mathematics%29
http://en.wikipedia.org/wiki/Partial_order
http://en.wikipedia.org/wiki/Weierstrass_p

Bridging the Specification Protocol Gap in Argumentation

Definition 7: Acts
'Acts’ 1s the set of speech acts (permitted messages or moves).
Acts={loc(Ty, Ty, T,) such that for every n>=1>=1, T;e Args(L)}
Definition 8: ActType
'ActType' is a function which determines the type of 'Act'.
ActType: Acts > o (Types)
Where,
e Types ={Starting, Intermediate, Termination}
e Starting: to open a dialogue,
e Intermediate: to remain in the dialogue,
e Termination: to terminate the dialogue.
Definition 9: Replies

'Replies’ is a function which takes 'Acts' and return its possible replies according to

the dialogue protocol.

Replies : Acts 2> g (Acts)
For instance Replies(claim(T)) = {why(T),concede(T)}
Definition 10: Pre-conditions

'PreC' is a function which specifies the move pre-conditions according to the
dialogue protocol. It takes as input parameters an act, the sender’s commitment store,

and the sender’s knowledge base and returns a Boolean.

PreC : Acts X g (args(L)) % ¢ (args(L)) = Boolean

Chapter 4: Argument Specification Language 80

Bridging the Specification Protocol Gap in Argumentation

For example:
PreC(claim(a), CS(player;, M), KB(player;))= 3 ae CS(player;, M;) U KB(player;)
Definition 11: Post-conditions

'PostC' is a function which specifies the move post-conditions according to the
dialogue protocol. It takes as input parameters an act, the receiver's commitment

store, and the receiver's knowledge base and returns a Boolean.
PostC: Acts % g (args(L)) x g (args(L))=> Boolean
Definition 12: Move
A move M;eMoves, t >= 1, is defined as:
M; = (player, act;, M1, nextPlayer,sender;, receiver)
Where,
e Player; € Players represents the player of the move,
e Act; € Acts represents the speech act performed in the move,
e M;; € Moves U {null} represents the previous move (M; is a reply to M),
e nextPlayer;e Players U {null} represents the next player in the dialogue,
e sender; eRoles represents the role identifier of player (sender agent),

e receiverieRoles represents the role identifier of the nextPlayer (receiver

agent),
Definition 13: Legal Move for Two

'legalMove' is a function which specifies the legal moves at a particular moment in
the dialogue. It takes the dialogue history (list or sequence of moves) at a particular

moment and the commitment store of the two players:

Chapter 4: Argument Specification Language 81

Bridging the Specification Protocol Gap in Argumentation

LegalMovesTwo: MoveSeq x (args(L)) x g (args(L)) = @ (Moves)

Rule 1: (Start a Dialogue)

This rule says that a dialogue always starts with a Starting act:
LegalMovesTwo([], CS1, CS2)={ M1}
Where,
e MI=(player), act;, null, player,, sRole;, rRole;) ,
o ActType(act;) = Starting,
e PreC(act;, KB, CS;) = true , where KB(player;) = KB,
e PostC(act;,KB,, CS;) = true, where KB(player;) = KB,

Rule 2: (Dialogue Termination)

This rule says that a dialogue always terminates with a Termination act:
LegalMovesTwo([M;,Ma,....... M,],CS1,CS2)=0
if
e M,= (player,, act,, M,.;, null, sRole,, rRole,) ,
e ActType(act,) = Termination,
e PreC(act,,KB,, CS,) =true , where:
o KB(player,) = KB,
o CS(player,) =CS,

e PostC(act,, KBy, CSy,) = true, where:

Chapter 4: Argument Specification Language 82

Bridging the Specification Protocol Gap in Argumentation

o KB(playery) = KBy,
o playery, represents the receiver of act,

o CS(playery,) = CSp,

Rule 3: (Reply to an Agent's Move)

This rule says that only one move could be a reply to a move:

LegalMovesTwo([M;,M,,....... M,], CS1, CS2)= {M}

if

player; # player;
M= (player;, act;, M., player;, sRole, rRoley) ,
ActTypes(act,) € {Starting , Intermediate} ,
PreC(acti+1,KB;, CS;) = true , where:

o KB(player;) = KB;

o CS(player;) = CS;
Mi+1= (player;, act; , My, player;, sRole1, TRole 1),
act+1 € Replies(acty) (M4 replies to My),
PostC(act+1,KB;, CS;) = true, where:

o KB(player;) = KB;

o CS(player;) = CS;

With this rule we are specifying also the turn-taking restriction. The sender of move
M; is the receiver of move M+ and the receiver of move M; is the sender of move

Mt+1 .

Chapter 4: Argument Specification Language 83

Bridging the Specification Protocol Gap in Argumentation

Note that in order to send M1, player; must satisfy PreC and after M1, player; must

satisfy PostC.

Example of DFSL of Persuasion Dialogue

This example describes the persuasion dialogues in chapter 3, section 3.4 [Parkken,

2000; Parkken, 2005] by using DFSL:

(1) Players:

In this dialogue, there are two participants: one participant (proponent 'P') attempts to

persuade another participant (opponent 'O') to change his point of view about a

particular topic 'T".

Players={P,O}

(2) There are five locutions (Acts):

Acts ={claim(T), why(T), concede(T), argue(Pre,T), retract(T)}

(3) ActType(Act):

Act ActType (Act)
claim {Starting}
why { Intermediate }
concede {Termination}
argue { Intermediate }
retract {Termination}

(4) Replies(Act):

In the persuasion dialogue, the Replies rules are as follows:

Act Replies(Act)
claim(T) {why(T) , concede(T)}
why(T) {argue(Pre), retract(T)}
concede(T) 0]
argue(Pre,T) { why(Pre), argue(Def,T"), concede(T)}
retract(T) 0]

Chapter 4: Argument Specification Language

84

Bridging the Specification Protocol Gap in Argumentation

(5) PreC(Act,KB,CS):

Lets Player = P. In the persuasion dialogue, the Pre-conditions are as follows:

and

notFindTopicInCS (T,CSp) =
true

and

notFindOppTopicInCS
(not(T),CSp) = true

and

addTopicToCS(T,CSp)= true

Act PreC(Act,KB,CS) Note
claim(T) addTopicToCS(T,CSp)= true addTopicToCS function always returns
true and results in agent P adding T to its
commitment store CSp
why(T) notFindTopicInKB(T,KBp) = notFindTopicInKB function returns true
true if agent P is not able to find 7T'in its
and Knowledge Base KBp.
notFindTopicInCS(T,CSp) = notFindTopicInCS function returns true
true if agent P is not able to find 7'in its
Commitment Store CSp.
concede(T) findTopicInKB(T, KBp) = true findTopicInKB function returns true if

agent P is able to find 7 in its
Knowledge Base KBp.
notFindTopicInCS function returns true
if agent P is not able to find 7'in its
Commitment Store CSp.
notFindOppTopicInCS which returns
true if agent P is not able to find the
opposite of T (not(T)) in its commitment
store CSp.

addTopicToCS function always returns
true and results in agent P adding 7 to its

commitment store CSp.

argue(Pre, T)

Pre =

findPremise(T, KBp, CSp) =
true

and
addPreToCS(T,Pre,CSp) =

true

Where T= topic and Pre= Promises
which is used to support a claim
(Topic)

findPremise function returns true if
agent P is able to find Pre either in its
knowledge base KBp or its commitment
store CSp.

addPreToCS function always returns
true and results in agent P adding 7 and

Pre to its commitment store CSp.

Chapter 4: Argument Specification Language

85

Bridging the Specification Protocol Gap in Argumentation

Act

PreC(Act,KB,CS)

Note

argue(Def, T')

Def=

findDefeats(T, Pre, KBp, CSp)
= true

and

addDefeatToCS (T',Def,CS p)

= true

Where Def = Defeat an argument
which is used to attacking an argument
(T or Pre) with a counterarguments
(Def)

findDefeats function returns true if
agent P is able to find Def either in its
knowledge base KBp or its commitment
store CSp.

addDefeatToCS function always returns
true and results in agent P adding Def
and T'(T or Pre) to its commitment

store CSp.

retract(T)

cannotFindPreInKB(T, KBp)
= true

and

findTopicInCS (T, CSp) = true
and

subtractFromCS(T,CSp)= true

cannotFindPrelnKB function returns
true if agent P is not able to find any
promises (pre) in its knowledge base

KBp to support a claim (T).

o findTopicInCS function returns true if

agent P is able to find 7 in its

Commitment Store CSp.

o subtractFromCS function always returns

true and results in agent P subtract T’

from its commitment store CSp.

6) LegalMovesTwo(M;, CSp, CSo)

From Figure 4.5 of the persuasion dialogue, we can see that:

e Dialogue begins by making a claim move

M, = initial move, ActType(Act(M;)) = Starting and Act(M;)= {claim}

e In the persuasion dialogue, the argument terminates once agents send

a

concede or retract locution. In other words, both concede and retract ¢

Termination. There is no reply move to these moves (there are no arrows

coming out from these moves)

Chapter 4: Argument Specification Language

86

Bridging the Specification Protocol Gap in Argumentation

M;

O, concede

M,

My
Ms
< P, retract
Mg
O, argue
Moy
Mg
\/
O, retract

P, concede

Figure 4.5: The Persuasion Dialogue Legal Moves

Chapter 4: Argument Specification Language

87

Bridging the Specification Protocol Gap in Argumentation

e Both why and argue € {Intermediate}. There are several corresponding moves

to these moves (there are arrows coming out from these moves).
e The turn-taking between participants switches after each move:
= if M; then Player=P,
= celse NextPlayer=0 iff Player = P

and NextPlayer=P iff Player = O

Appendix A presents a DID, DFSL and example of a negotiation dialogue.

4.3 Dialogue Interaction Diagram for Embedding Dialogue

4.3.1 DID for Embedding Dialogue

The DID can be used to model embedded dialogues. The DID allows agents to shift
among different types of dialogues by connecting the starting locution of the sub-
dialogue with the main dialogue locutions (changing the type of starting locution of
the sub-dialogue to the intermediate locution in the main dialogue, and then connect

this locution with all other locutions in the main dialogue).

4.3.2 DFSL for Embedding Dialogue

In this section we define embedded dialogue in a formal way. If you're not interested

in such details, you can skip forward to section 4.4.
Definition 13: Embedded Dialogue

Let DI and D2 are both dialogues. Loc! is a start locution in D/ and Loc2 is a start

locution in D2.
If D2 is a subdialogue of D/ then:
e [oc2 is an intermitted locution in D/

e Loc2 appears in all level of D/ instead of level one

Chapter 4: Argument Specification Language 88

Bridging the Specification Protocol Gap in Argumentation

e D] will terminate if :
o DI termination conditions is satisfied, and

o D2 has already terminated

4.3.3 Example

Black and Anthony's [Black and Anthony, 2007] work focuses on inquiry dialogues
(see chapter 3, section 3.5 for more details about inquiry dialogues), which allow two
agents to share knowledge in order to construct arguments in a dialogue within the
medical domain. It provides a protocol as well as a specific strategy for modelling
inquiry dialogues (a dialogue strategy that enables agents to select just one of the
legal moves). Essentially, it embeds inquiry dialogues inside another inquiry

dialogue and allows agents to shift between these inquiry dialogues.

Each inquiry dialogue has its own Question Store (QS), which is used to keep track
of dialogue beliefs. During the dialogue, both agents will try to provide arguments
for the belief(s) in the QS, which may lead them to open more sub-dialogues. These
sub-dialogues have a topic whose consequent is the belief(s) in the current QS. In
fact, an agent can open an inquiry dialogue by making an open move with the belief
v and create its QS and add 'y' to it (QS={y}). Then, if an agent wants to open a sub-

dialogue, he can make a move with & where 6= B1,82,83,...pn2 7 -

To terminate an inquiry dialogue, two close moves must appear next to each other
and all sub-dialogues, which are embedded within this dialogue, must already be

terminated.

DFSL

We will start by describing the inquiry dialogue in [Black and Anthony, 2007] by
using DFSL:

(1) Players: Players={P", P}

Each player has its own KB and CS:

Chapter 4: Argument Specification Language 89

Bridging the Specification Protocol Gap in Argumentation

e P"argumentation system ASp» (ASp» = {KBp», CSp+})

e P argumentation system ASp (ASp= {KBp, CSp})

(2) There are four locutions (Acts):

Acts ={open(y), assert (®,y), close(y),subclose(s)}

(3) ActType(Act):

Act

ActType (Act)

Note

open

{Starting, Intermediate}

In the main inquiry dialogue open
locution type is starting but in the
subdialogue we change the type of
the open locution to intermediate in
order to connect the two dialogues
together.

assert

{ Intermediate }

close

{Intermediate, Termination}

To terminate an inquiry dialogue,
two close moves must appear next to
each other. The first close type is
intermediate (ActType(close) =
{Intermediat}) and the second close
type is termination (ActType(close)
= {Termination}).

subclose

{ Intermediate }

(4) Replies(Act):

In the inquiry dialogue the Replies rules are as follows:

Act

Replies(Act)

Note

open(y)

{assert (®,y),open(0), close(y)}

e (®,y)isanargument, ® is
the argument support and

v is the argument claim

close(y)

{assert (©2,X),open(02), close(y)}

e When ActType (close) =
{Intermediate}

e Xvariable in
assert(@2,X) represents

either y or B, € 9.

close(y)

e when ActType (close) =

{Termination}

Chapter 4: Argument Specification Language

90

Bridging the Specification Protocol Gap in Argumentation

Act Replies(Act) Note
assert(D,y) {assert (D2, X2),0pen(02), close(y)} X2 variable in assert (@2,
X2) represents either y or &
open(d) {assert (D2, X2),open(52), close(y),
subclose(d)}
assert(92,X2) {assert (@3, X3),0open(d3), close(y), |e Zvariable in subclose(Z)
subclose(d),subclose(Z) } represents either & or 52.
open(52) {assert (D2, X2),0pen(d2), close(y), |e Z variable in subclose(Z)
subclose(Z)} represents either & or 52.
subclose(d) {assert (D2, X2),0pen(d2), close(y), |e subclose(d) after
subclose(Z),subclsoe(d)} subclose(d) ends sub-
dialogue 6

(5) PreC(Act,KB,CS):

Lets Player = P". In an inquiry dialogue, the Pre-conditions are as follows:

Act

PreC(Act,KB,CS)

Note

Open(y)

findInKB(y,KBp) = true
and
emptyCS(CSpv) = true

and
addToQueryStore (QS, y) =
true
and
addToOpenDialogue
(v,OpenD) = true

when ActType (open) = {Starting}, four

functions must return true:

findInKB function returns true if agent P" is

able to find vy in its Knowledge Base KBp-.

o emptyCS function returns true if agent P"
Commitment Store CSpr is empty.

o addToQueryStore function always returns
true and results in agent P" adding y to
dialogue Question Store OS.

e addToOpenDialogue function always returns

true and results in agent P" adding y to Open

Dialogue list OpenD.

Chapter 4: Argument Specification Language

91

Bridging the Specification Protocol Gap in Argumentation

Act PreC(Act,KB,CS) Note
open(d) isRelationship(d,y) = true when ActType (open) = {Intermediate}, seven
and functions must return true:

e isRelationship function returns true if agent

findInQS(QS,y) = true
P is able to find a relation between & and y.
::jianB(S,KB) = e o findInQOS(0S,y function returns true if agent
and P" is able to find yin the dialogue Question
notFindInQS(QS. 8) = true | 0 95
and e findInKB(6,KB) function returns true if agent
addToQueryStore(QS2, 5) = P"1is able to find Jin its Knowledge Base
true KBpn.
and o notFindInQS function returns true if agent "P
addToOpenDialogue is not able to find 6=B,3,,B3,...pn in the
(5,0penD) = true dialogue Question Store OS.
and o addToQueryStore function always returns
addToSubD (3,y ,SubD) = true and results in agent P" adding
true &=B1,B2,P3,---Pn to dialogue Question Store
082.

o addToOpenDialogue (6,0penD) function
always returns true and results in agent P"
adding 6 to Open Dialogue list OpenD.

o addToSubD function always returns true and
results in agent P" adding J'to SubDialogue
list SubD.

assert(®,y) | findInQS(QS,y) = true o findInQS function returns true if agent P is

and able to find yin the dialogue Question Store

notFindInCS(®,CSp) = tru 0S.

and o notFindInCS function returns true if agent P"

findInKBorCS is not able to find @ in its Commitment Store

((@,7),KB,,CS;) = true CSpr.

and e findInKBorCS((®,7),KB,,CS,) function

addToCS (9,CSy) = true returns true if agent P" is able to find (@) in
either in its knowledge base KBp» or its
commitment store CSpr.

e addToCS (®,CS,) function always returns
true and results in agent P adding @ to its
commitment store CSp".

Chapter 4: Argument Specification Language

92

Bridging the Specification Protocol Gap in Argumentation

(y,OpenD) = true and
allSubDialogueClosed(y,Sub
D,ClosedD) = true

and

(
notFindInKBandCS((®,y),KB,,,
CS,) = true

or

findInCS(®,CSp) = true

)

and
(
noRelationship(d,y) = true
or

notfindInKB(8,KBp+) = true
or

findInQS(QS, d) = true

)

Act PreC(Act,KB,CS) Note

Assert setInitialValueForX(X) o setlnitialValueForX function always returns

(©2.X) =true true and results in set initial value for X.
and Note that X can be either y or B, € 4.
findInQS(QS2,X) = true e (See assert(®,y)for more information about
and functions definition)
notFindInCS(®2,CSpr) =
true and
findInKBorCS((92,X),KB,
,CS,) = true and
addToCS (92,CS,) = true

close(y) findInOpenDialogue when ActType (close) = {Intermediate},

at last four functions of seven functions must

return true:

o findInOpenDialogue function returns true if
agent P" is able to find y in the Open
Dialogue list OpenD.

o allSubDialogueClosed function returns true if
all subdialogue of 7 is already closed.

e notFindInKBandCS function returns true if
agent P" is not able to find (®,y) in either in
its knowledge base KBp or other agent P
commitment store CSp.

e findInCS function returns true if agent P" is
able to find @ in its commitment store CSp-.

o noRelationship function returns true if agent
P is not able to find a relation between & and
7.

o notfindInKB function returns true if agent P"
is not able to find J in its knowledge base
KBp.

o findInQS function returns true if agent P is
able to find &= £, 05, 5s,... B, in the dialogue
Question Store OS.

Chapter 4: Argument Specification Language

93

Bridging the Specification Protocol Gap in Argumentation

Act PreC(Act,KB,CS) Note

close(y) (when ActType (close) = {Termination},at last
notFindInKbandCS((®,y),K | three functions of seven functions must return
B,,CS,) = true true:
or o cannotFindInKBandCS function returns true
findInCS(®,CSp) = true if agent P" is not able to find (®,y) in either in
) its knowledge base KBy or other agent P
and commitment store CSp.
(e findInCS function returns true if agent P" is
noRelationship(d,y) = true able to find @ in its commitment store CSpr.
or o noRelationship function returns true if agent
notfindInKB(8,KBp) = true P" is not able to find a relation between & and
or 7.
findInQS(QS, 8) = true o notfindInKB function returns true if agent P"
) is not able to find J in its knowledge base
and KBp.
addToClosedDialogue e findInQS function returns true if agent P" is
(v,ClosedD) = true able to find 5=/3,, B>, ... 3, in the dialogue

Question Store OS.

o addToClosedDialogue function always
returns true and results in agent P" adding y to
closed Dialogue list ClosedD.

subclose(d) | findInOpenDialogue when agent sends subclose(d) after open, assert
(3,0penD) = true and or subclsoe(Z), at last five functions of eight
allSubDialogueClosed(5,Sub | functions must return true:
D,ClosedD) = true
and o FindInOpenDialogue
(notFindInKBandCS e allSubDialogueClosed
((®,8),KB,,CS,) = true e notFindInKBandCS
or findInCS(®,CSp) = true) | e findInCS
and e noRelationship
(noRelationship(82, 8) = true | e notfindInKB
or notfindInKB(82,KBp) = |e findinQS
true
or findInQS(QS, 62) =true) |(See close(y), ActType (close) = {Intermediate},
for more information about functions definition)

Chapter 4: Argument Specification Language

94

Bridging the Specification Protocol Gap in Argumentation

Act PreC(Act,KB,CS) Note

subclose(d) | (when agent sends subclose(d) after subclsoe(d),

notFindInKbandCS((®,5),K | at last three functions of seven functions must

B,,CS,) = true return true:

or e cannotFindInKBandCS
findInCS(®,CSp) = true e findInCS

) e noRelationship

and o notfindinKB

(o findIinQS

noRelationship(62,0) = true | e addToClosedDialogue

or

notfindInKB(62,KBp) = true | (See close(y), where ActType (close) =

or {Termination}, for more information about
findInQS(QS, 82) = true functions definition)

)

and

addToClosedDialogue

(8,ClosedD) = true

(6) LegalMovesTwo(M¢, CSay, CSaz)

From the inquiry dialogue depicted in Figure 4.8, we can see that:

e Dialogues begin by making an open move.
M, = initial move, ActType(Act(M;)) = {Starting} and Act(M;)= {open}

e In the inquiry dialogue, the argument terminates once one agent sends close
which is followed by a close move by the second agent. In other words, to
terminate an inquiry dialogue, two close moves must appear next to each

other in the sequence

o Assert, close, subclose and open € {Intermediate}. There are several
corresponding moves to these moves (there are arrows coming out from these

moves):

Chapter 4: Argument Specification Language 95

Bridging the Specification Protocol Gap in Argumentation

M; P

-

M,

Figure 4.8: The Inquiry Dialogue Legal Moves

Chapter 4: Argument Specification Language

96

Bridging the Specification Protocol Gap in Argumentation

o assert move, by either P or P"”, could be followed by Assert, close

and open.

o subclose move, by either P or P", could be followed by Assert, close,

subclose and open.

o 1if the dialogue has not terminate yet, close move, by either P or P”,

could be followed by Assert, close and open

o open move, by either P or P", could be followed by Assert, close and

open.

e The turn-taking between participants switches after each move (the agents

take it in turns to make moves):

= if M; then Player=P",

= else NextPlayer=P iff Player=P" and NextPlayer =P"
iff Player =P

DID

Figure 4.9 illustrates the DID structure of an inquiry dialogue (note that pre-
conditions and post-conditions for locutions are not shown in this figure but are
shown in Figure 4.10(a), Figure 4.10(b) and Figure 4.10(c)). In Figure 4.9, there are
four locutions: open, assert, subclose and close. There are three types of locutions:

starting (open), termination (close), and intermediate (assert, close,subclose and

open).

The dialogue always starts with an open and ends with a close locution. P" can open
the discussion by sending an open(y) locution if he is able to satisfy the four pre-
conditions which are connected to the sender role of this locution. Then, turn-taking
switches to P. P has to choose between three different possible reply locutions:
assert(®,y), open(d) or close(y). P will make his choice using the pre-conditions that

appear in the thombus shape. For example, in order to choose assert(®,y), P must be

Chapter 4: Argument Specification Language 97

Bridging the Specification Protocol Gap in Argumentation

open(y) ‘

Y
p
AL
\4 v \ 4
assert(®. V) open(d) close(y) |
Y A 4 A\ 4 ‘
Y v p"

0 100 T N U I NN | 3 S (N IL
A4 v A4 v v
close(y) assert(®2,X2) open(82) subclose(d) close(y)
Y
A 4 \ 4 A 4
p
\ 4 A 4 A 4
SACVON S R I 1 AL
Y A\ 4 \ 4 \ 4 \4
close(y) assert(d3,X3) open(d3) close(y) subclose(Z) subclose(d)

Figure 4.9: DID Structure of an Inquiry Dialogue

Chapter 4: Argument Specification Language 98

Bridging the Specification Protocol Gap in Argumentation

- o Starting Locution.....}
< findinKB(y,KBp) . 2 1
et TN open(y)
< emptyCS(CSp) .:'\% OpenSender,, OpenRecwerp
- KB,. CS,, 7, KB CS v,
‘o .- N s P P,
T CSp,IDp, QS CSp+,IDp, QS
LT 3 ID,, D,
.-“addToQueryStore ~ -
S~ @S T
‘o . ’_/ 4
-7 addToOpenDialogué ~
~-.._(r,.OpenD) .-~
<« findlnQS(QS,y) < {_Intermediate Locution !
/,"" \'\. assert(®,y)
o e replyToOpen- | replyToOpen-
N nozgréi;n)cs :‘\% Sender, Reciver,,
P) -
KB CS 2 KB, CS, v,
CSp ,IDp 5 QS CSp,IDp, QS
,_, ﬁndInKBorCS ID, ID,.

~ ((CI),y) KBp ,CS)

=

e ‘addToCS S
el @CS)

.-

. 1sRelat10nsh1p(6,y)

i Intermediate Locution

) ‘ \ open(d)
N ﬁndInQS(QS,y) replyToOpen | replyToOpen
I N 3 -Sender, -Reciver,,
- - S —
.7 findInKB(8,KB) >» > é‘: CS, v, | KB, CS, v,
= e R P IDp QS CSp,IDp, QS
.- “notFindnQS " ~. N D, D,

Tl (@)

'~ .
~ . -

_,~’dcdeoQuerySt0;é 9% 6
Tl @929 T

e addToOpenDlalogue - -2
T, OpenD) -

Lo

=" addToSubD ~"~-<,

~...(By,SubD) -7

Figure 4.10(a): Inquiry Dlalogue Locutions Pre-conditions and Post-

conditions

Chapter 4: Argument Specification Language

99

Bridging the Specification Protocol Gap in Argumentation

LT ~"f"1ndh10penDialogu\e" N
s “\'\-\ (Y,OpenD) P
. allSubDlalogueCIOSed L

. ~.-
Z .

~

7

{ Intermediate Locution

~. \(Y,SubD,ClosedD) P 1

~

. -
< .

- -
~- PREa N

,_/ﬁo’tl‘?indInKBan(.iéS“'\\ TG close(y) 150
- ; T~ replyToOpen- replyToOpen-
~'.:.. (((D,y),lzlr%p,CSp) =z ;» Sender,, Reciver,,
"\.\ﬁndlncsm),csp), - KB CS v, | KB, CS, v,
Tl L CSmIDm QS | CSpIDp, QS
IDP,,

T D,
P noRelatlonshlp(S,y)

R or
- notfindInKB(8,KBp) A
Tl or e
o findInQS e

\‘\.\(QS,S),.f"

L~

.-+~ notFindInKBandCS™ " ~

e ((@,7).KBy.,CSy) Termination Locution
. or
T \ﬁndInCS((D CSp)--~ i
’_,-’ - close(y)
o e . replyToOpen- replyToOpen-
.-~" noRelationship(3,y) \'\ N Asgzg(grose' A];Sei:g;se
o or ~. 2 P P
notfindinKB(8,KBp-) = —»| KB, CS, v | KB CSyX,
S or Pd ,X CSp,IDp, CSp,IDpr,
\\\ ﬁndInQS QS.Q82 QS.,Q82
<. (QS 5) LT
D, ID,

.: : addToCloselealogue) j .
~-o._ (v.ClosedD) _.-

~. -

subcolse(s) after
open, assert or _,-"A'*-\.

findinQS
~-(QS2,82) -

MLZL; - ’ﬁndInOpenDialogué Intermediate Locution
PR \'\\ (SOpenD)
L allSubDlalogueClosed ’ \ i
. '\\(S,SubD,ClosedD),/ - replyToOpen- replyToOpen-
Sl . ’A 2 AssertClose- AssertClose-
S s Sender,, Receiver,
e notFdenKBandCS‘ ~e 3 KB, CS,. 1 | KB_CS 7.5,
‘: - (((Das)’]ZI]:D’P"’CSP) :./ ,0, CSp,IDp, CSpr,IDpr,
el - S,QS2 S,QS2
=< _findinCS(®,CSp)_ .-+ QS.Q Q5.Q
\"\--«'TQT"A"-\ 4 D, D,
. h;Relationship(&, 6\)' S
‘/,- or Sl
< notfindnKB(82,KBy-) o
~ or .t

Figure 4.10 (b): Inquiry Dialogue Locutions Pre-conditions and Post-

conditions

Chapter 4: Argument Specification Language

100

Bridging the Specification Protocol Gap in Argumentation

subcolse(s) after subclose(s)
- i Intermediate Locution
_ .-~ TotFindInKBandCS "~ - .
(©.8).KBy.CS) <1 subelose(5)
sl or _.--=——— 3 | replyToOpen- | replyToOpen-
Tt _ﬁndInCS(<I>,CSp) .- AssertClose2- | AssertClose2-
PO N T Sender, Receiver,,
PR ~. 2 KB, CS, v KB, CS v,
/,/ noRelatlonshlp(SZ 6) 5, CSpr,IDpr, 3, CSp,IDp,
- or QS,Q82 QS,Q82
< notfindInKB(62,KBp)
el or D, D,
N findInQS .
\'\ (QS 52) ‘,/' .-
.:‘ addToCloselealogue S
. (8,ClosedD) _.
_ { Intermediate Locution_:
:.setInitialValueForX) . 1
LX) .7 assert(02,X)
P —3| replyToOpen- | replyToOpen-
IR AssertClose- AssertClose-
- ’ Sender,,, Receiver,
findInQS(QS2,X), > KB, CS,. KBp CSp v.9,
< o 7.8, CSp,IDp, CSpr,IDpr,
PRI Q8.Q82 Q5,Qs2
,'."/notFindInCS ~ Dy D,
S (D2.CSp) -
. TS B 5
,_, findInKBorCS’
* (@2 X0KEy C 8-
-7 addToCS T~
Yo (@2CSy) .-

Figure 4.10 (C): Inquiry Dialogue Locutions Pre-conditions and Post-

conditions

able to satisfy the four pre-conditions which connect with assert: (1) findInQS(y)
which returns true if agent P is able to find y in the dialogue question store OS; (2)
notFindInCS(®,CSp) which returns true if agent P is not able to find y in its
commitment store CSp ; (3) find((®,y),KB, ,CS,+) which returns true if agent P is
able to find (@,y) either in its knowledge base KBp or in the commitment store of
agent P"(CSp»); (4) addToCS (®,CS,r) which always returns true and results on the

agent P adding @ to its commitment store CSp. After that, the turn switches to P”,

Chapter 4: Argument Specification Language 101

Bridging the Specification Protocol Gap in Argumentation

and so forth. The argument terminates when two close moves appear next to each

other. Note that X variable in assert(®@2,X) represents either y or B, € 0.

An example of inquiry dialogue [Black and Anthony, 2007] is shown in Figure 4.11.
The goal of the dialogue is to find an argument for believing 'c'. The agent's

knowledge bases are shown at the top of the figure.

In this example, there is one main dialogue (D1 with QS1={c} start at move 1) and
three sub-dialogues (D2 with QS2={b} start at move 3, D3 with QS1={a} start at
move 8, and D4 with QS4={d, e} start at move 16) are created during the
augmentation process. The commitment store of agent P is changed at move 8 (CSp-
= {d}) and move 16 (CSp = {d,e, dre = b, b = c}). The commitment store of agent
P is changed at move 9 (CSp = {e}) and 13(CSp = {e, d, dae = b}). At move 18 the
main dialogue ends after it succeeds in achieving its goal (finding an argument for

the 'c' belief).

4.4 Dialogue Interaction Diagram for Argumentation between
N-agent
4.4.1 Need for Dialogue Games among N-agent

At times, in order to solve a particular problem, more than two agents have to work
together. Each agent has a responsibility to contribute to a finding final solution

[Dignum and Vreeswijk, 2003].

For example, five members of a family, each with their own favourite holiday, try to
decide where to go. This family can reach an acceptable solution and share their
experience by allowing all family members to take part in the dialogue.

4.4.2 Issues of Dialogue Games among N-agent

Dignum and Vreeswijk's work [Dignum and Vreeswijk, 2003] highlights some of the
key issues of N-agents' (multi-party) dialogues:

Chapter 4: Argument Specification Language 102

Bridging the Specification Protocol Gap in Argumentation

KBp'= {c.e,dAe>b,a> Db} KBp={d,b > ¢}
sl ;;' : 1: open(c) : ': ‘
QS2 :' ': [2: open(b = ¢)) '\‘. I:]
QS: E E :’ [3: open(a 2> b)) \: |E E
E : ’: (4: subclose(a=>b)) I‘, : é "
) E E E (5: subclose(a>b)) E : E
E : [6: subclose(b—>c¢)) : E "
QS: E é .I’ : 7:open(d A e > b) : i ‘.: E E ‘
: \ 8: assert({d},d) | i 5
:I ‘, .5 (9: assert({e},e) 1" " I.
\‘I E E [10: subclose(d A e = b)) E E : "
) |E : :‘ [11: subclose(d A e 2 b)) ,: E E
E : [12: subclose(b—=>c)) E : ”
:: E [13: assert({d,e,dAe>b},b)) E E
E é [14: subclose(b>c¢)) E E "
:E '.\ [15: subclose(b>c¢)) 'l é
E [16:assert({d,e,dAe=>b,B>C},C)] E]
i
; [17: close(c)] :
I'l [18: close(c)] I'l "

Figure 4.11: Embedded Inquiry Dialogue Example

Chapter 4: Argument Specification Language

103

Bridging the Specification Protocol Gap in Argumentation
(1) Open/closed system:
In two agent dialogue systems, neither agent can leave the dialogue. However, in N-
agents' dialogue systems, there are two types:

e Open system: during a dialogue, an agent can join and leave the group.

e C(Closed system: during a dialogue, existing agents cannot leave the group and
new agents cannot join the group. In other words, if the dialogue starts with

N-agent, it must end with N-agent.

(2) Player's roles:

In two agent dialogue systems, one agent can be the speaker (e.g. proponent in
persuasion dialogue) and the other agent must be the audience (e.g. opponent in the
persuasion dialogue). However, in N-agents' dialogue systems, there can be more

than one speaker agent and more than one audience agent.

(3) Addressing:

In two agent dialogue systems, one agent sends a message and the other agent
receives the message. However, in N-agents' dialogue systemsthe following can

happend:

e One-to-one system: one agent sends a message and one agent receives the

message

¢ One-to-many system: one agent sends a message and more than one agent

receives the message

e One-to-all system: one agent sends a message and all other agents receive the
message
(4) Turn taking (coordination):

In two agent dialogue systems, there is a turn taking method (the speaker will
become the audience in the next turn and so on). However, in N-agents' dialogue

systems:

Chapter 4: Argument Specification Language 104

Bridging the Specification Protocol Gap in Argumentation

¢ One agent will take the next turn; or

e More than one agent will take the next turn; or

e The turn could pass from one agent to another (under some conditions).
(5) Termination:

In two agent dialogue systems, the dialogue will terminate when one (or both agents)

has achieved its main goal. However, in N-agents' dialogue systems:

e All agents have to achieve the dialogue main goal (e.g. in a persuasion

dialogue: all agents have to be persuaded); or

e The majority of agents have to achieve the dialogue main goal (e.g in a

persuasion dialogue: the majority of agents have to be persuaded)

In the following sections, we will present a new system for dialogue among N-agent.

This system will be:
e A closed system; and

e A flexible addressing system (messages could be one-to-one, one-to-many, or

one-to-all); and
e A system where more than one agent can take the next turn; and

e A flexible termination system (the software engineer can decide the

termination condition).

4.4.3 Method for Dialogue Games among N-agent

In this section, we describe a method for dialogue among N agents. We adapted this
method from [Ito and Shintani, 1996]. The idea is to consider the dialogue among N-
agent as a dialogue between two agents by dividing agents into groups composed of
two agents under certain conditions. For example, Figure 4.12 shows an example of a

persuasion dialogue among seven agents (4, B, C, D, E, F and G):

Chapter 4: Argument Specification Language 105

Bridging the Specification Protocol Gap in Argumentation

s 2 B & 2 B B
'A B E DI 'C F 6 |
| - L]
*
\ |
."- F'Q‘ """""" 1 [e——— Y
A @ &l ¢ Al a8
| B E | | P! D16
! | [. | .= i [H
o 4
| |
iV i B U — .
F @l 2l @sliE)
| B | '8 ! ' E UF D! 16
[N _ I L= __ | L Il Il i lecmaaa :
2
‘ |
W Ia— oy ! g B gy Bl gy
A @l | B &AL A&
! B | ''¢c D | 'E 1 F ! 16 !
] [S 1 L M H L |
4>
“ a :?) ﬁ } » »
A B C D 3 F G

Figure 4.12: Dialogue Among N-agent

(1) Agents A and C accept the main topic, whereas B, D, E, F and G reject the main
topic (note that in this figure the accepted agents are underlined and the rejected

agents are not underlined).

(2) Agents are divided into groups composed of two agents under one condition,
which is that we cannot put two accepted or two rejected agents in one group. In
this example, group one consists of 4 and B and group two consists of C and D
(note that if the number of agents is even, every agent has a partner. If the

number of agents is odd, the last agent lacks a partner).

Chapter 4: Argument Specification Language 106

Bridging the Specification Protocol Gap in Argumentation

= =N = -2 =, = =
A B c D E F S
-
| |
B e -
I A - 2 = =) 5 B
: B E B G c B
O
[\
B R ! (T H
E a & B (2] e 23| |
B E E S o i D |
' |
1. mr e % 7 i—— H T3
A @ B =l e 3 | :
B E E |] D | S
1] ‘ ———————————————
|
- — g | - —— il T
A @ B e -2 | ; | :
B E | ! D | | G |
——_— - - 1 | .. A | I —— [[S —— 1
@
| |
LY 1 3 = m
A @ | e a2 | B IR AR A
B | i D | i E 'V F 16 |
___________] | SN " | [.. | I —— L)
o
a8 a 2 = = 5 >
A B C D E F G

Figure 4.13: Example two of Dialogue Among N-agent.

(3) Within each group, dialogues take place between two agents in order to reach
the argument. In this example, agent A argues with agent B and agent C argues

with agent D.

(4) Within each group (whose members have the same opinion) the system will
randomly select one agent to represent the beliefs of the group. In this example,
since agents A and B accept the main topic, the system will select agent 4 to

represent his group.

(5) Agents are divided into groups composed of two agents under two conditions: 1)
we cannot put two accepted or rejected agents in one group; 2) we cannot put the
agents, who previously argued about the same topic and did not reach a decision,
in one group. Group one now consists of 4, B and E and group two consists of C

and F.

Chapter 4: Argument Specification Language 107

Bridging the Specification Protocol Gap in Argumentation

S a8 2 =2 2 5 >
A B (€ D B I G
@
v = rep— i P =] D 3 >]
1 TRV N (& s =
T I ' B € | 8 8 &8 _=
L T P "
[p— 2 Jf“““- ."4 """ [1 :'+ """"" | :3.
] ! 11] - e » | 1
B I’ U > eS| | @ P :
I A E | fCc 11D ! i B FE | 16 |
[NSNS SN > . [| S-S H | I —]
@
|
e) = R TR T
B Y- 2 a8 2 YR i
i A B | I C D | P E L F Y TG |
[SR] NN, (SN 1 | AP —} | AP —] - _J— 1
S =
S a 2 =2 2 5. >
A B C D E F G

Figure 4.14: Example three of Dialogue Among N-agent.

(6) The system reverts back to step 3 and repeats the same steps over and over again
until agents reach an agreement. In this example, agent 4 argues with agent £

and agent C argues with agent F.

(7) A represents his group and C represents his group. Then, the groups become (4,
B, E, D) and (C, F,G). Lastly, A4 argues with agent D and C argues with G and

the agents reach a conclusion.

Figure 4.13 and Figure 4.14 illustrate different examples of dialogue among N-agent.

In Figure 4.13, the system divides agents into two groups: group one consists of A4
and B and group two consists of C and D. Then, in the second round, the system
divides agents into two groups: group one consists of 4, B and E and group two
consists of C and D. After that, F' becomes a member of group one in the third round
and G becomes a member of group one in the fourth round. Finally, 4 persuades C

and then D.

In Figure 4.14, the system divides agents into groups composed of two agents: group
one consists of 4 and B and group two consists of C and D. Instead of selecting a

representative for each group's belief, each agent reports accepting or rejecting the

Chapter 4: Argument Specification Language 108

Bridging the Specification Protocol Gap in Argumentation

main topic. Following this, the system divides agents into groups composed of two
agents under the same condition (we cannot put two accepted or two rejected agents
in one group): group one consists of 4 and E, group two consists of C and D, and
group three consists of B and F. After that, the system divides agents into groups
composed of two agents: group one consists of B and C, group two consists of £ and
D, and group three consists of " and G. Finally, the dialogue succeeds if all agents

are persuaded.

As mentioned in the beginning of this section, the idea of dividing agents into groups
composed of two agents under certain conditions is mentioned first in the Ito and
Shintani's work [Ito and Shintani, 1996]. In their work they prove (using decision
support system based on multi-agent negotiation) that this is a correct procedure that

will always terminat and produces the correct results.

4.4.4 DID for N-agent

As mentioned in section 4.1, to represent an argument protocol in full, nine concepts
are required (Locutions; Participants Commitment Store and Commitment rules;
Structural rules; Turn Taking rules; Post-condition rules; Pre-condition rules;
Locution types; and Sender and receiver agents roles). However, in N-agents'

dialogue, we need to add more concepts:

(1) Recursion rules (recursive-conditions and recursive-arguments): a set of rules
which, when repeating them over the recursive arguments, can repeat the same
task more than once until the recursive-condition cannot be achieved'®. In N-
agents' systems, an agent's role may need to recurse by sending the same locution
to more than one agent (one-to-many system and one-to-all system) under some
recursive-condition. These conditions are usually done over some recursive

argument.

'8 In agent protocol (e.g. LCC) recursion is accomplished by repeating the same process (or agent
role) a specified number of times (the process or role calls itself) either to process a list or to loop it
until the recursive condition fails.

Chapter 4: Argument Specification Language 109

Bridging the Specification Protocol Gap in Argumentation

(2) Repeated locution: in the case of N-agent, more than one agent could use the same

locution icon.

Therefore, we need to add an extra diagrammatic notation to the DID for N-agent,

which represents recursion rules and repeated locution.

Figure 4.15 illustrates the locution icon for N-agent. A solid red rhombus represents
a recursive-condition (which denotes applying the same part of the role definition

more than once until it reaches a recursive-condition that fails). The red oval shape

represents a recursive argument. The dotted, rounded-corner, rectangle box around

the locution icon represents the recursive use of the locution by more than one agent.

Note that, the dividing agents condition, of the described method for dialogue among
N agents in section 4.4.3, could be a pre-condition, post-condition or recursive-
condition. Therefore, we must use either the solid red rhombus (where dividing rules
= recursive-contentions) or the dotted rhombus (where dividing rules = pre- or post-

conditions) to represent dividing agents condition.

Appendix B presents the DID for N-agent Formal Definition and a detail example of

a persuasion dialogue among N-agent.

4.4.5 Problems and Solutions of DID for N-agent

As we can see from the Figure 4.15, in the case of DID for N-agent, the diagram may
become too complex for the user to create, understand and edit. In other words,
describing DID for N-agent in the diagrammatical way could be unpractical for the

user for two primary reasons:

(1) DID for N-agent overloads the diagrammatic notation with new arrows and
symbols. These notations can confuse the user and make the overall task
(drawing DID for N-agent) more difficult than writing the agent protocol by
hand.

Chapter 4: Argument Specification Language 110

Bridging the Specification Protocol Gap in Argumentation

Locution types Locution

concept concept

\
1 1
: |
. |
: r'e !
: Locution name |
1
! .
1 /Recursive |
|
! [
' argument !
| PREEN
: Role Name Role Name — |
.- Receiver~. !
| . S
1 ~ .. P
| ~ condition,-” |
| Y S
' Role Arguments Role Arguments |
: :
! [
1 1
1 1
]]
]]
| Agent ID Agent ID :
: :
1 1
1 1
]]
]]
' Lo / N\ ~ AN ~ J !
| s s
-7 Sender ~. . '
\ e S Sender Receiver !
S o 4 1
~. condition »~ ’
N L na /
\ N Pd ,
Sender and
Receiver agent's
roles concept
Recursion

Commitment rules Commitment rules

and and

Pre-condition rules Post-condition

concept rules

Figure 4.15: Locution Icon For N-agent.

Chapter 4: Argument Specification Language 111

Bridging the Specification Protocol Gap in Argumentation

Input Black Box Output

Divided conditions

v

DID for N-agent

Agents Groups DID for

In Figure B.2 two agents

Termination conditions

Figure 4.16: Black Box of DID for N-agent

(2) Drawing DID for N-agent is complex since DID for N-agent is too close to agent
protocol. The user needs to understand the notation of recursive, how to set up

the constraint, and must learn how to write an agent protocol.

To solve this problem, we will hide the details of DID diagrams for N-agent in a
black box (reusable diagram) and use parameters, which are transformational, to get
the information needed, in order to do the protocol automated synthesis, from the

user.

Essentially, we will get the divided conditions and termination conditions from the
user. Then, the black box divides agents into groups composed of two agents under
divided conditions and terminates the dialogue between N-agent when the

termination conditions are satisfied (see Figure 4.16).

4.5 Summary

This chapter has presented a new recursive visual high-level language called DID
between AIF (or other argumentation-based formalism) and multi-agent protocol
languages (e.g. LCC). DID provides mechanisms to represent, in an abstract way, the
dialogue game protocol rules by giving an overview of the permitted moves and their

relationship to each. It can model any interaction between two agents (unique-moves

Chapter 4: Argument Specification Language 112

Bridging the Specification Protocol Gap in Argumentation

and immediate-reply protocol) that can be described as a sequence of recursive steps

terminating in a base case.

DID explains the order and type of messages that two or more agents can interchange
and the rules of the message interchange. However, a DID cannot explain how two
or more agents can cooperate and interact with each other in situations where more

complex protocols involving more than turn-taking are required.

In practice, the DID language provides the first step to get from the user the missing
agent protocol concepts. In chapter 5, we will present the next step which allows us
to get the missing development language concepts and perform the automated

synthesis of multi-agent protocol.

Chapter 4: Argument Specification Language 113

Bridging the Specification Protocol Gap in Argumentation

Chapter 5

Synthesis of Concrete Protocols

As mentioned in the previous chapter, to fully generate via automatic synthesis the
agent protocols from any AIF description we need to obtain missing concepts
(information) from both the user and the development language. The previous
chapter provides a detailed description on how to obtain these missing agent protocol
concepts from the user, by using the DID language. DID explains the order and type
of messages that two or more agents can interchange and the rules of the message
interchange. However, it does not explain how two or more agents can cooperate and
interact with each other because it omits essential concepts related to the dynamics of

interaction between agents.

This chapter proposes a mechanism on how to obtain the missing concepts from the
development language as well as to provide a fully automated synthesis method to
generate argumentation agent protocols from DID. In practice, when dealing with the
agent interaction protocol synthesis and the development of an agent protocol,
common codes and relations can be found. These codes can be specified as design
patterns, which are independent from any particular protocol specification problem
and can recur repeatedly across protocols. In this chapter, we put forward some
protocol design patterns that can be embedded in the automated synthesis tools and
used with DID to support agent protocol development activity. The reason for
introducing protocol design patterns in argumentation is that by re-using them it is

possible to reduce the effort of building argumentation agent protocols.

We open this chapter with a description of LCC-Argument protocol design patterns
in Section 5.1. Section 5.2 presents the automated synthesis steps for generating
agent protocols between two-agents and N-agent automatically. Finally, section 5.3
presents a summary of the LCC-Argument protocol design patterns and the

automated synthesis method.

Chapter 5: Synthesis of Concrete Protocols 114

Bridging the Specification Protocol Gap in Argumentation

5.1 LCC-Argument Patterns

By taking a closer look at the LCC protocol in chapter 2, we can see that this
protocol is quite complex, and therefore requires us to consider issues that the
software engineer may not be aware of until later in the implementation process,
such as synchronisation of the role. To overcome this problem, we supply LCC-
Argument patterns, which are re-usable, parameterisable LCC specifications that can
be embedded in automated synthesis tools and used with DID to support agent
protocol development. This allows us to reduce the effort of building more complex
argumentation protocols by re-using design patterns repeatedly to generate
argumentation protocols (see chapter 2 for more information about design pattern).
The set of these more complex design patterns is, in theory, unbounded (for the same
reason that design patterns in traditional software engineering are unbounded) but in

practice families of interaction patterns occur.

In fact, LCC-Argument patterns capture the different relationships and interactions
between LCC agents' roles. These patterns provide common LCC argument code for
developing protocols and their components along with explaining how two or more
agents can interact with each other. They are generic solutions to the common LCC
argumentation protocol development problem that recur across protocols repeatedly

and can be adapted to generate specific protocols.

To explain LCC—Argument patterns, we will use the following seven generic
characterisations (adapted from Appleton, Taylor and Wray works [Appleton,1998;

Taylor and Wray, 2004] to suit the needs of our argumentation domain):

(1) Name: a meaningful unique name which could be used to refer to the pattern's

knowledge and structure;

(2) Problem: a statement or a question that relates to the problem which describes the

problem that the pattern solves;

Chapter 5: Synthesis of Concrete Protocols 115

Bridging the Specification Protocol Gap in Argumentation

(3) Solution: relationship between the pattern's roles, which describes how the
problem is solved, often including a diagram that describes how the problem is

solved;

(4) Context (Pre-conditions): the initial configuration of the protocol before the

pattern is applied;

(5) Consequence (Post-conditions): the configuration of the protocol after the pattern

has been applied;

(6) Structure: identifies the pattern's structure, its roles and their relationship to each

other;

(7) Rewriting methods: a set of rewriting rules based on the semantics of LCC, which
allow generic relationship between roles to be rewritten in a specific way (Note

that, there might be a direct, complex or indirect relation between roles).

Pattern1:

Name: Starting pattern (SP).

Problem: How to start an argument (dialogue).

Solution:
Proposal l.a Starting Locution Audience
2.b
1.b
o Change to
Change to Proposal 2.a | Audience &
Role 1 Role 1
Proposal Audience
Proposal Audience
Role 2 Role 2

Chapter 5: Synthesis of Concrete Protocols 116

Bridging the Specification Protocol Gap in Argumentation

Both agents send/receive a message (locution) and then change their roles to remain

in the dialogue:

(1) Proposal (speaker) agent proposes an action (start a dialogue) by sending a

starting locution (step 1.a) and then changes its role (step 1.b).

(2) Audience agent receives a starting locution (step 2.a) and then changes its role

(step 2.b)

Context (Pre-conditions): Use a Starting Pattern when a proposal agent has not

started a dialogue.
Consequence (Post-conditions):
(1) Both the proposal and audience agents engage in a dialogue.

(2) Both the proposal and audience agents change their roles to remain in the

dialogue.

Structure:

ﬂ{pl(KBp,CSP, Topic, [D),IDp)::= \

SL(TOplC) => a(RAl(KBA,CSA,IDp),IDA) < Cl1

then

a(Rpy (KBp,CSp ,Topic, ID4),IDp).
a(RA1(KBA,CSA,IDp),IDy)::=

C2 < SL(Topic) <= a(Rpi(KBp,CSp, Topic, ID),IDp)

then

\\ a(Ra2(KBa,CSa, Topic ,IDp),ID,) /

Chapter 5: Synthesis of Concrete Protocols 117

Bridging the Specification Protocol Gap in Argumentation

Where SL represents the Starting Locution and CI represents a condition that must
be satisfied in order for a proposal agent IDp to send the Starting Locution SL.
Usually, CI is a condition over Topic. C2 represents a condition that must be

satisfied after audience agent /D, receives the starting locution.

In this LCC code, there are two roles: Rp; and R4;. The Rp; role of the proposal agent
IDp has four input parameters: (1) KBp which represents the agent knowledge base
list (the propositions that the agent believes); (2) CSp which represents the agent
commitment store list (a set of propositions to which the player is committed in the
discussion). Note that CSp is initially empty, since Rp; represents the first role of the
proposal agent in the LCC protocol; (3) Topic to open dialogue; (4) ID, which
represents the audience agent identifier. The Rp; role begins by checking the CI
condition. If the C/ condition is true, then the Rp; role sends a Starting Locution SL

to the R4; role and then it changes its role to the Rp;.

The Ry, role of audience agent /D, has three input parameters: (1) KB, which
represents the agent knowledge base list; (2) CS; which represents the agent
commitment store list. Note that CS, is initially empty, since R,; represents the first
role of the audience agent in the LCC protocol; (3) IDp which represents the proposal
agent identifier. The R,; role begins by receiving a Starting Locution SL from Rp;.

Then, the R4, role satisfies C2 and then it changes its role to the R 4.

Rewriting methods: none

Pattern 2:

Name: Termination-Intermediate Pattern (TIP).

Problem: How to recur or terminate an argument (dialogue) between two agents.

Solution: Both agents send/receive a message(s) (locution) to terminate the dialogue

or to change role.

(1) Dialogue Termination (Termination locution):

Chapter 5: Synthesis of Concrete Protocols 118

Bridging the Specification Protocol Gap in Argumentation

o First agent (sender) sends a locution to terminate the argument.

e Second agent (receiver) receives a locution, which states the sender’s

intention to terminate the argument.
(2) Changing role (Intermediate locution):

e First agent (sender) sends a permitted locution (step 2.a) and then changes its

role (step 2.b).

e Second agent (receiver) receives a permitted locution and then changes its

role.

1 Termination Locution :

= Receiver
Sender >

2b
2a . .
Change to Sender 22 Intermediate Locution o | Receiver Change to

Role 1 Role 1
Sender Receiver
Sender Receiver
Role 2 Role 2

Context (Pre-conditions): Use a Termination-Intermediate Pattern when the

dialogue between the proposal agent and audience agent has already started.
Consequence (Post-conditions):
(1) Dialogue Termination (Termination locution):
e The dialogue between the proposal and audience agents is terminated.
(2) Changing role (Intermediate locution):

e Both the sender and receiver agents change their roles to remain in dialogue.

Chapter 5: Synthesis of Concrete Protocols 119

Bridging the Specification Protocol Gap in Argumentation

Structure:

/ a(RSenderl (K]_?Eenderac SSender, C SReceiver’TopicalDReceiver)alD Sender) w= \

RSenderl ~> RReceiverl
or

IL
RSenderl ~> RReceiverl

a(RReceiverl(KBR%ieiver,CSReceiver, ,CSSender ’TOpic,IDSender)alDReceiver): =
R Receiverl <= R Senderl
or

1L
\R Receiverl <= R Senderl /

This pattern represents a generic recursive clause. The variable R in the definition

above represents the role name. KB and CS are the role arguments and /D is the agent
identifier. 7L represents Termination Locution and /L represents an Intermediate
Locution. '=>' represents outgoing messages from a role, and '<&' represents

incoming messages.

In this LCC pattern, there are two roles: Rsengers and Rpeceiveri- The Rsendgers T0Ole of
sender agent [Ds.n4. has five input parameters: (1) KBsenser Which represents the
agent knowledge base list; (2) CSsenger Which represents the agent commitment store
list; (3) CSreceiver Which represents the receiver agent commitment store list; (4) Topic
to open the dialogue; (5) IDgeceiver Which represents the receiver agent identifier. The
Rsenderr Tole begins by sending either a Termination Locution TL to the Rgeceivers TOl€
or an Intermediate Locution IL. The '=>' symbol indicates that the Rg.nq; role may

send one or more different 7Ls (or ILs) to the Rreceivers TOlE.

The Rpeceivers T0le of the receiver agent IDgeceiver has five input parameters: (1)
KBgeceiver Which represents the agent knowledge base list; (2) CSgecever Which
represents the agent commitment store list; (3) CSsenger Which represents the sender
agent commitment store list; (4) Topic to open the dialogue; (5) IDsenger Which
represents the sender agent identifier. The Rgeccivers TOle begins by receiving either a
Termination Locution TL from the Rggu4., TOle or an Intermediate Locution IL. The
'<=~' symbol indicates that the Rpgeceivers TOle may receive one or more different 71Ls

(or ILs) from the Rseyger; OlE.

Chapter 5: Synthesis of Concrete Protocols 120

Bridging the Specification Protocol Gap in Argumentation

Rewriting methods:
First (Sending Termination Method): Rewriting of the "Rsenger1 Tl Rpeceiver1”

If there is a general relation of "Rgender1 2> Ryeceiver" then it is possible to specialise

it within two different statements:
Rewrite 1: (one termination locution)

We might specialise "Rgender T RReceiver1” tO an interaction statement that sends a
TL(Topic) termination message to agent I[Dgeceiver, Which is achieved by the
constraint C/. In practice, C/ may represent more than one condition that is
connected by or and and operators. Usually, C/ is a condition over the role

arguments (e.g. KB and CS).

TL (TOPIC) => a(RReceiverl(KBReceiveraCSReceivera CSSenderaTopiCa IDSender)alDReceiver

< Cl

Rewrite 2:(multiple termination locution)

We might specialise "Rgenderl Tl RReceiver1 ' 10 an interaction statement that sends a
TL(Topic) termination message to agent /Dp which is achieved by the constraint C1/.

Then, there is another termination relation between Rsenger; and Rreceiveri-

TL (TOPIC) => a(RReceiverl(KBReceiveraCSReceiveraCSSenderaTOpica I])Sender)’IDReceiver)
< Cl

or
TL
R Senderl ~> R Receiverl

Second (Receiving Termination Method): Rewriting of the "Rpeceiver1<< L Reender1”

. . TL
If there 1s a general relation of "Rgeceiver1 <= "~ Rsenders" then it is possible to specialise

it within two different statements:
Rewrite 1: (one termination locution)

. . g TL . . .
We might specialise " Rgeceiveri <<~ Rsenders" to an interaction statement that receives

a TL(Topic) termination message from agent /Dgenger. C2 represents a condition that

Chapter 5: Synthesis of Concrete Protocols 121

Bridging the Specification Protocol Gap in Argumentation

must be satisfied after receiver agent receives the Termination Locution TL. In
practice, C2 may represent more than one condition that is connected by or and and

operators. Usually, C2 is a condition over the role arguments (e.g. KB and CS).

C2 <TL (Topic)

<= a(I{Senderl (KB Sender>C S SenderaC SRCCBiVCI" TOpiC, IDReceiver) 5 ID Sender)

Rewrite 2:(multiple termination locution)

We might specialise "Rgeceivers <~ I Rs.nqer" to an interaction statement that receives
a TL(Topic) Termination message from agent /Dgenger. C2 represents a condition that
must be satisfied after receiver agent receives the Termination Locution TL. Then,

there is another termination relation between Rs,ier; and Rreceiveri-

4 . I
C2 <TL(Topic)
<= a(RSenderl(KBSenderaCSSender, CSReceiver, TOpiC, IDReceiver):le Sender)
or
RReceiverl <= T RSenderl
o %

Third(Sending Intermediate method): Rewriting of "Rsender1 2> Rreceivers”
Rewrite 1: (One intermediate locution)

We might specialise "Rsenders L=> Rreceiver” to an interaction statement that sends
message IL(Topic) to agent I[Dgeceiver Which is achieved by the constraint C3.
Following this, it changes its role. In practice, C3 may represent more than one
condition, which is connected by or and and operators. Usually, C3 is a condition

over the role arguments (e.g. KB and CS).

IL(Toplc) => a(RReceiverl(KBReceivehCSReceiver, CSSenderaTopiCa IDSender)’IDReceiver)
<C3
then

a(l{Sendeﬁ (KBSender,CSSender, CSReceiver; TOPiC, IDReceiver):IDSender)

Chapter 5: Synthesis of Concrete Protocols 122

Bridging the Specification Protocol Gap in Argumentation

Rewrite 2: (multiple Intermediate locutions):

We might specialize "Rgepgers T=> Rpreceivers" to an interaction statement that sends
message IL(Topic) to agent IDgeceiver, Which is achieved by the constraint C3, after
that it recurses. Then, there is then another recursive relation between Rgenser and

RReceiver[.

.)

IL(TOPIC) => a(RReceiverl(KBReceiverocsReceiver’ CSSender’ TOpiC, IDSender)aIDReceiver

< C3
then

a(RSender2 (KB Sender>C S Senders C SReceivera TOPiC, IDReceiver) 5 ID Sender))

(0)

r
k RSenderl ~> RReceiverl j

Fourth(Receiving Intermediate method): Rewriting of '"'Rpeceiver1 << L Rsender1 "'

L2

Rewrite 1: (One intermediate locution)

We might specialise " Rgeceiverr <~ I Rgender; "' to an interaction statement that
receives message [L(Topic) from agent [Dg,,q. Following this, it changes its role.
C3 represents a condition that must be satisfied after receiver agent receives the
Intermediate Locution IL. In practice, C4 may represent more than one condition,
which is connected by or and and operators. Usually, C4 is a condition over the role

arguments (e.g. KB and CS).

C4 <IL(Topic)
<= a(RSenderl(KBSendenCSSender: CSReceivera TOpiC, IDReceiver)aIDSender)
then

a(RReceiver2 (KBReceiverscsReceivers CSSender, TOpiC, I])Sender)aIDReceiver)

Rewrite 2: (multiple Intermediate locutions):

1

We might specialize " Rgeceiveri <~ I Rsonaer " t0 an interaction statement that
receives message IL(Topic) from agent IDs,,q.r, after that it recurses. Then, there is

then another Recursive relation between Rsengers and — Rpeceiver;. C4 represents a

Chapter 5: Synthesis of Concrete Protocols 123

Bridging the Specification Protocol Gap in Argumentation

condition that must be satisfied after receiver agent receives the Intermediate

)

Locution IL.

(~ :
C4 <IL(Topic)

<= a(RSenderl (KB Senderoc S Sender, C SReceivera TOpiC 5 IDReceiver) ,IDSender)

then

a(RReceiverZ (KBReceiverocsReceivero CSSender’ TOpiC, IDSender)aIDReceiver)
N— _/

or

~IL2
RRecei verl <~ RSender]

N /

Pattern3:

Name: Broadcasting Pattern (BP)
Problem: use this pattern to solve four problems at the same time:

(1) How to start an argument (dialogue) for N >= 3 agents, or how to broadcast new

Topic to N >= 3 agents;
(2) How to respond to the broadcasting;
(3) How to divide agents into groups of two;
(4) How to terminate an argument (dialogue) for N>=3 agents.
Solution:

(1) Step one (Start a Dialogue or Broadcast a Topic): (see Figure 5.1)

a) Proposal agent proposes an action (start dialogue) by sending a
proposal(Topic) locution to all agents (step a.1) and then changes its role

to replyToProposalReceiver,oposal (Step a.2).

b) Other agents (all agents except the proposal agent) receive a
proposal(Topic) locution (step b.1) and then change their role to
replyToProposalSender (step b.2).

Chapter 5: Synthesis of Concrete Protocols 124

Bridging the Specification Protocol Gap in Argumentation

Change to

Proposal

a.l

proposal(Topic)

proposalSender

>
b.1

Proposal

Agent,;

b.2

proposalReceiver,

Chan_ge to

Agent,;

replyToProposalSender,

Agent,

b.2
Change to

proposalReceiver,

Agent,

replyToProposalSender,

replyToProposalReceiverroposal-

Agent,

proposalReceiver,

Agent,

replyToProposalSender,

Change to

Figure 5.1: Broadcasting Pattern Solution (Step one)

Chapter 5: Synthesis of Concrete Protocols

125

Bridging the Specification Protocol Gap in Argumentation

(2) Step two (Respond to the Broadcasting): (see Figure 5.2)

a) Other agents send either an accept(Topic) or reject(Topic) locution to the
proposal agent (step a.l) and then changes their role to

replyToProposalSender (step a.2).

b) The proposal agent receives either an accept(Topic) or reject(Topic)
locution (step b.1) and then changes its role to replyToProposalSender
(step b.2).

(3) Step three (Divide or Terminate):
a) Divide: (see Figure 5.3)

i. The proposal agent sends argueWith(Topic,Agentp,Agenty) location
for a pair of agents (step i.1): Agentp and Agento (telling them to
interact together) and then recourses (step 1.2) or changes its role

(step 1.3).

ii. Both Agentp and Agento receive argueWith(Topic,Agentp,Agentg)
location (step ii.1) and then change their roles to startDID role (step
ii.2).

b) Terminate: (see Figure 5.4)

1. The proposal agent sends reachAgreement(Topic) location to all other

agents (step 1.1) and then terminates its role (step 1.2).

ii. All other agents receive reachAgreement(Topic) (step ii.1) and then

terminate their roles (step ii.2).
Context (Pre-conditions):

Use the Broadcasting Pattern when a proposal agent has not already started a

dialogue for N>= 3 agents.

Chapter 5: Synthesis of Concrete Protocols 126

Bridging the Specification Protocol Gap in Argumentation

a2 a.l
Change Agent, accept(Topic)
to or
reject(Topic)
replyToProposalSender; >
b.l
Agent,
ResultReceiver;
Proposal
a.l
a.2 ~ accept(Topic)
Change Agent, or
to reject(Topic)
replyToProposalSender, >
b.1
Agent,;
ResultReceiver;
______________________ > replyToProposalReceiver
______________________ >
a2 al
Change Agent, accept(Topic)
to or
reject(Topic)
replyToProposalSender, >
b.1
b.2
Change t
Agent,
Proposal
ResultReceiver,
ResultSender

Figure 5.2: Broadcasting Pattern Solution (Step two)

Chapter 5: Synthesis of Concrete Protocols 127

Bridging the Specification Protocol Gap in Argumentation

i2

recourses

Prposal

il
argueWith(Topic,Agentp;,Agento;)

—>
ii.l

il
argueWith(Topic, ,Agenty;,Agentp;)

Agentp,

ResultReceiverp,

Agentp,

startDIDp;

Agentg,

i3
Change
to

divideGroup

ii.1

ResultReceiverg,

Agento 1

startDIDg1

il
argueWith(Topic,Agentp, Agentoy)

Agentp;

>

ResultReceiverp,

Agentp,

il

startDIDyp,

argueWith(Topic, Agento, ,Agentp,)
>

Agentoy,

Proposal

ResultReceiverg,

eCUI'Sproposal

Agento,

startDID,

Chapter 5: Synthesis of Concrete Protocols

Figure 5.3: Broadcasting Pattern Solution (Step three:Divide)

128

Bridging the Specification Protocol Gap in Argumentation

Ll .
Proposal reachAgreement(Topic) . Agent, ii.2
il ResultReceiver;
Terminate
il Agent 2
reachAgreement(Topic) &
> 1.2
ii.l | ResultReceiver,
Terminate
|
sendReach-
Argument)
reachAgreement(Topic) -
>
Ll . Agentn
reachAgreement(Topic)
1.2
il ResultReceiver,
Terminate
i.2
Terminate

Figure 5.4: Broadcasting Pattern Solution (Step three:Termination)

Chapter 5: Synthesis of Concrete Protocols 129

Bridging the Specification Protocol Gap in Argumentation

Consequence (Post-conditions):
(1) Step one (Start a Dialogue or Broadcast a Topic):
e Proposal and other agents engaged in a dialogue.

e Proposal agent committed to Topic € CSproposat (updates its commitment store

by adding the Topic to it).

e Proposal and all other agents (receivers) change their roles so as to remain in

dialogue.
(2) Step two (Respond to the Broadcasting):
Both sender and receiver agents change their roles so as to remain in dialogue.
(3) Step three (Divide or Terminate):

¢ Divide: Divide agents into groups of two and start dialogues between two

agents.
e Terminate: The dialogue between N-agent is terminated.
Structure:
Broadcasting Pattern contains 8 roles:

o Two roles to solve the first problem (How to start an arguments (dialogue) for N

>= 3 agents, or how to broadcast new Topic to N >= 3 agents) (see Figure 5.5):
(1) proposalSender roposai (2)proposalReceiverp

e Two roles to solve the second problem (How to respond to the broadcasting?)

(see Figure 5.6):

(1) ReplyToProposalSender;p (2)replyToProposalReceiver ,oposai

Chapter 5: Synthesis of Concrete Protocols 130

Bridging the Specification Protocol Gap in Argumentation

a(proposalSender . posai(AgentList, NAgent,NSupporters,Topic),ID,posa)::=

proposal(Topic) => a(proposalReceiver;p(KBp,CSip,IDroposar)> 1D)
< getAgentIDFromList (AgentList,otherAgents,ID) and addTopicToCS(Topic,CS,roposar)

then

(
a(replyToProposalReceiverpoposal (AgentList, NAgent,NSupporters,Topic,0,[I,[1,0,0), IDproposar)
& agentListEmpty(AgentList)

or

a(proposalSender,yoposal (OtherAgents,NAgent,NSupporters,Topic), IDproposar)
).

a(proposalReceiver (KB p,CSyp,IDoposar), ID)::=
proposal(Topic)<=a(proposalSender,posai(AgentList, NAgent, NSupporters,Topic), IDpoposar)
then

a(replyToProposalSender(KBp,CSp, Topic,IDpoposar), ID).

Figure 5.5 : Structure (proposalSenderyroposar and propsalReceiver sceiver

roles)

e Four roles to solve the third and fourth problems (How to divide agents into
groups of two, and how to terminate an argument (dialogue) for N>=3 agents)

(see Figure 5.7):
(1) resultSender roposal (2) sendReachAgreement proposal
(3) divideGroupp,oposa (4) resultReceiverp

Where DivideC2 represents a condition that must be satisfied in order for a proposal
agent to divide agents into groups composed of two agents. By default, DivideC? is
"less Than(NAccepting, NSupporters) and isNotEmpty(RejectionList) and
isNotEmpty(AcceptingList))". TerminationC1 represents a condition that must be
satisfied in order for a proposal agent to terminate the dialogue between N-agent. By
default, TerminationCIl 1is "greaterThanOrEequal(NAccepting,NSupporters)" a
function which returns true if NAccepting is greater than or equal to NSupporters.
AgentGroupC3 represents a function which divides agents into groups composed of

two agents.

Chapter 5: Synthesis of Concrete Protocols 131

Bridging the Specification Protocol Gap in Argumentation

a(replyToProposalSender (KB p,CSip, Topic,ID o posa), ID) ::=
(

& findTopicInKB(Topic, KBjp) and notFindTopicInCS (Topic,CSp) and
notFindOppTopicInCS (not(Topic),CS;p) and addTopicToCS(Topic,CSip)

or

< notFindTopicInKB(Topic,KBpoposar) and notFindTopicInCS(Topic,CSproposal)
)

then

a(resultReceiver;p(KBp,CSp, Topic,IDpoposal), ID)

a(replyToProposalReceiver,,,..(AgentList, NAgent,NSupporters,Topic,NReply,
AcceptingList,RejectingList,NAccepting,NRejecting), ID ;,posa) ==
(

addIDToList(SendingList,OtherSedingList,ID) and
addToAcceptingList(AcceptingList,AccList,ID) and
increaseAccepting(NAccepting,NAcc) and

RejList= RejectionList and
NRej is NRejection
€ accept(Topic) <= a(replyToProposalSenderp(KB1p,CSip, Topic,IDroposal), ID)

or

addToRejectingList(RejectingList,RejList,ID) and

increaseRejecting(NRejecting, NRej) and
increaseReply (NReply,NRep) and
AccList=AcceptingList and

NAcc is NAccepting

< reject(Topic) <= a(replyToProposalSenderp(KBp,CSip, Topic,IDproposar), ID)
)

then

a(resultSenderp oposal (AgentList, NAgent, NSupporters,Topic,NReply,AcceptingList,
RejectionList, NAccepting,NRejection), IDyoposal) € isSEqual(NRep,NAgent).

accept(Topic) => a(replyToProposalReceiverroposall _ 5 _»_5_ > _»_5_5_5_)sIDproposal)

reject(Topic) => a(replyToProposalReceiverproposat (5 5 > _»_»_»_ s _ > _):IDproposal)

Figure 5.6: Structure (replyToPropsalSender and

reply ToPrposalReceiver,roposal roles)

Chapter 5: Synthesis of Concrete Protocols

132

Bridging the Specification Protocol Gap in Argumentation

a(resultSender . psi(AgentList, NAgent,
NSupporters,Topic,AcceptingList,RejectionList, AgentGroup), IDopal) ::=

a(sendReachAgreement,oposal (AgentList,NAgent, Topic),ID proposal)
& TerminationC1

or

a(divideGroup,oposal (AgentList , NAgent,NSupporters ,Topic,AcceptingList,RejectionList,
[]) 9IDprop()sal) < DivideC2.

a(sendReachAgreementp,qposa (AgentList, Topic),IDpyopesa1) ::=

reachAgreement(Topic) => a(resultReceiver;p(KBip,CSip,IDproposal), 1D)
< getAgentIDFromList (AgentList,otherAgents,ID)

then

null € isAgentListEmpty(AgentList)
or
a(sendReachAgreement,oposal (OtherAgents, Topic), IDproposat)

).

a(divideGroupp,posa (AgentList, NAgent,NSupporters ,Topic,
AcceptingList,RejectionList,AgentGroup), ID oo)::=

(

argueWith (Topic,P,0) => a(resultReceiverp(KB,,CS,, Topic,IDyoposal), P)
& AgentGroupC3

then

argueWith (Topic,0,P) => a(resultReceivero(KB,,CS,,Topic,IDpeposar), O)
)

then

(
a(recursyroposal (AgentList, NAgent,NSupporters ,0 ,Topic),IDroposat)

< RecursC4
or

a(divideGroup,oposal(AgentList ,NAgent,NSupporters, Topic,Ac,Re, AGroup),IDp;oposal)
)

a(resultReceiverp(KBp,CSp,CSo,Topic,IDy;oposa)sP) ::=

reachAgreement(Topic) <= a(sendReachAgreementp,qposal (AgentList, Topic),IDpposar)
or

(

argueWith(Topic,P,0) <=

a(divideGroupp,oposai(AgentList,NAgent,NSupporters, Topic,AcceptingList,RejectionList,
AgentGroup),ID proposar)

then
a(startDID(KBp,CSp, CSp,Topic, IDyroposat, O),P)).

Figure 5.7: Structure (resultSenderpoposal , S€NdReachAgreement proposal,

divideGrouppropesal @nd resultReceiver roles)

Chapter 5: Synthesis of Concrete Protocols 133

Bridging the Specification Protocol Gap in Argumentation

RecursC4 represents a condition that must be satisfied in order for a proposal agent
to recur. By default, RecursC4 is "isListEmpty(Re) or isListEmpty(Ac)"” which

returns true if Re (or Ac) list is empty list.

The meaning of each role argument is shown in Table 5.1. The meaning of each

function is shown in Table 5.2(a) and Table 5.2(b).

In this LCC pattern (Figure 5.5, Figure 5.6 and Figure 5.7), the proposalSenderp;oposai
role of proposal agent IDpposas has four input parameters: AgentList, NAgent,
NSupporters and Topic. The proposalSenderp,,posa TOle begins by sending the
proposal(Topic) message to one agent (at the head of the AgentList list) and then if
the AgentList list is empty, the proposal agent changes its role to
replyToProposalReceiverp,posa T0l€, Otherwise, it recurses over the remaining agents
(recourses over the OtherAgents list. Note that OtherAgents = AgentList - {the head
of the AgentList}). The proposalReceiver;y tole begins by receiving the
proposal(Topic) message from the proosalSenderp,qposar T0le and then the receiver

agent changes its role to the replyToProposalSender role.

By default, AgentGroupC3 is a call to the "creatOneAgentGroup" function which
creates one agent group by getting one agent ID from the RejectingList and one

agent ID from the AcceptingList.

The control then changes to the replyToProposalSender tole. The
replyToProposalSender role of agent ID has four input parameters: KBjp, CSp,
Topic and IDp.qposar. 1t begins by checking if it can accept Topic by checking four
conditions: findTopicInKB, notFindTopicInCS, notFindOppTopicInCS and
addTopicToCS. If all of these conditions is true, the replyToProposalSender sends
the accept(Topic) message to replyToProposalReceiverp,qposar T0le. Otherwise, the
replyToProposalSender tole checks two conditions: notFindTopicInKB and
notFindTopicInCS. If these two conditions are true, it sends the reject(Topic)
message to the replyToProposalReceiverpyqposq T0le. Then it changes its role to the

resultReceiver;p role.

Chapter 5: Synthesis of Concrete Protocols 134

Bridging the Specification Protocol Gap in Argumentation

Argument Meaning

AgentList Agents ID list

NAgent The number of agents (note that the number of agents > = 3)

NSupporters The number of supporters agents which is used to end a dialogue when
agents reach an agreement (when the supporter number is equal to the
number of the acceptance agents)

Topic Main dialogue topic

IDproposal Proposal agent ID

OtherAgents Agents 1D list
Where, OtherAgents =AgentList —{The head of the AgentList}

KBip Agent Knowledge Base

CSpp Agent Commitment Store

AcceptanceList The list of the accepting agents ID (note that When
replyToPrposalReceiverpoposa role is called AcceptanceList is empty)

RejectioList The list of the rejected agents ID (note that When
replyToPrposalReceiverpoposa role is called RejectioList is empty)

NAccAgents The number of accepted agents (note that When
replyToPrposalReceiverp;oposa tole is called NAccAgents equal 0)

NRejAgents The number of rejected agents(note that When
replyToPrposalReceiverpoposa role is called NRejAgents equal 0)

NReply The number of reply agents (note that When
replyToPrposalReceiverpoposa role is called NReply equal 0)

AgentGroup Agent group list. Each element of the agent group list is composed of
two agents ID (P,0)

P Agent ID

(@) Agent ID

Table 5.1 : Broadcasting Pattern Roles Arguments

The replyToProposalReceiverp,,posa 10le of the proposal agent has four input
parameters: AgentList, NAgent, NSupporters and Topic. It also has five output
parameters: NReply, AcceptingList, RejectionList, NAccepting and NRejection. The
values of the output parameters when the role begins are as follows: NReply=0,

AcceptingList=[], RejectionList=[|, NAccepting=0 and NRejection=0.

The replyToProposalReceiver p,oposa begins by receiving either the accept(Topic) or
reject(Topic) from the replyToProposalSender role. If it receives accept(Topic)
message, it: (1) adds the accepting agent ID to the AcceptingList by achieving

Chapter 5: Synthesis of Concrete Protocols 135

Bridging the Specification Protocol Gap in Argumentation

Function

Meaning

getAgentIDFromList
(AgentList,otherAgents,ID)

The getAgentIDFromlList funciton gets one agent ID from the
AgentsList and puts the remainder agents in the otherAgents list.

a,(;dT,O péc;"oCS The addTopicToCS function always returns true and results in

(Topic,CS) the agent adding Topic to its commitment store CS

aientI;sztEtmp Rl The ggentListEmpty function returns true if AgentList is empty

(AgentList) (which means that proposal agent broadcasts the Topic to all
agents)

findTopicInKB

(Topic, KByp)

The findTopicInKB function returns true if the agent is able to
find Topic in its Knowledge Base KB

notFindTopicInCS
(Topic,CSip)

The notFindTopicInCS function returns true if the agent is not
able to find Topic in its Commitment Store CS

notFindOppTopicInCS
(not(Topic),CSp)

The notFindOppTopicInCS which returns true if the agent is not
able to find the opposite of Topic (not(Topic)) in its
commitment store CS

n;tFl.ndIZ]c;pchnKB The notFindTopicInKB function returns true if the agent is not
(Topic.,KB) able to find Topic in its Knowledge Base KB
addToAcceptingList The addToAcceptingList function a always returns true and

(AcceptingList,AccList,ID)

results in proposal agent dding the accepting agent /D to the
AcceptingList (AccList =AcceptingList U {ID}).

addToRejectingList
(RejectingList,RejList,ID)

The addToRejectingList function always returns true and results
in proposal agent adding the rejecting agent /D to the
RejectingList (RejList=RejectingLsit U {ID}).

ulilcll;ee?se?ejelc\;ig‘ The increaseRejecting function increases the number of

(NRejecting,NRej) rejecting agents by adding one to NRejecting (NRej =
NRejecting +1)

increaseAccepting The increaseAccepting function increases the number of

(NAccepting,NAcc) accepting agents (NAcc = NAccepting +1)

i Repl L .

fnereaseieply The increaseReply function increase the number of replying

(NReply,NRep)

agents by adding one to NReply (NRep = NReply +1)

RejList= RejectingList

Assigns the value of RejectingList argument to the RejList
variable

NRej is NRejecting

Assigns the value of NRejecting argument to the NRej variable

Table 5.2 (a): Broadcasting Pattern Functions

Chapter 5: Synthesis of Concrete Protocols

136

Bridging the Specification Protocol Gap in Argumentation

Function Meaning

AccList=AcceptingList Assigns the value of AcceptingList
argument to the AccList variable

NAcc is NAccepting Assigns the value of NAccepting argument
to the NAcc variable

isEqual(NRep,NAgent) The isEqual function returns true if the
number or replied agents NRep is equal to
the number of agents NAgent.

The greaterThanOrEequal function
returns true if the number of accepting
agents NAccepting is greater than or equal
to the number of supporter agents

greaterThanOrEequal(NAccepting, NSupporters)

NSupporters.
(NAccepting >= NSupporters)

The lessThan function returns true if the
number of accepting agents NAccepting is
less than the number of supporter agents

lessThan(NAccepting ,NSupporters)

NSupporters.

creatOneAgentGroup(RejectingList,Re,AcceptinList,Ac, | The creatOneAgentGroup function:

AgentGroup, AGroup,P,0) (1) Creates one agent group by getting
one agent O from the Rejectinglist and
one agent P from the Acceptinglist;
and

(2) Adds the new agents groups to
AGroup list (AGroup = AgentGroup +
{(P,0)}; and

(3) Saves the remained rejection agent in
Re list and saves the remained
accepting agents in Ac.

isListEmpty(Re) or isListEmpty(Ac) The isListEmpty function returns true if Re

(or Ac) list is empty list

Table 5.2 (b): Broadcasting Pattern Roles Functions

addToAcceptingList function; (2) increases the number of accepting agents by
achieving increaseAccepting function; (3) increases the number of replying agents by
achieving increaseReply function; (4) gives default value for the RejList argument
(RejList=RejectingList); and (5) gives default value for the NRej argument (NRej is
NRejecting). 1f the replyToProposalReceiverpyoposai TOle Teceives the reject(Topic)
message, it: (1) adds the rejecting agent /D to the Rejectinglist by achieving

addToRejectingList function; (2) increases the number of rejecting agents by

Chapter 5: Synthesis of Concrete Protocols 137

Bridging the Specification Protocol Gap in Argumentation

achieving increaseRejecting function; (3) increases the number of replying agents by
achieving increaseReply function; (4) gives default value for the AccList argument
(AccList=AcceptingList); and (5) gives default value for the NAcc argument (NAcc is
NAccepting).

The proposal agent then changes the replyToProposalReceiverp,posar 1ole to the
resultSenderoposa. The resultSender, .posqa role has nine input parameters: AgentList,
NAgent, NSupporters, Topic, NReply, AcceptingList, RejectionList, NAccepting and
NRejection. The replyToProposalReceiverpyoposai 10le begins by checking
TerminationC1 condition. If this condition is true, then the proposal agent changes its
role to the sendReachAgreement, posar TOlE. Otherwise, the
replyToProposalReceiverpyoposar role checks DivideC2 condition. If this condition is

true, then the proposal agent changes its role to the divideGroup,,oposa 1ole.

The sendReachAgreement,,,posar T0le has two parameters: AgentList and Topic. It
begins by sending the reachAgreement(Topic) message to one agent (at the head of
the AgentList list) and then it recurses over the remaining agents (recurses over the
OtherAgents list, where OtherAgents = AgentList - {the head of the AgentList}). The
sendReachAgreement,,,posa1 Tole ends once the reachAgreement(Topic) message is

sent to all the agents.

The divideGrouppoposar 1t0le has six input parameters: AgentList, NAgent,
NSupporters, Topic, AcceptingList and RejectionList. It also has one output
parameter: AgentGroup. This role is responsible for dividing the agents in the
AgentList list into a group composed of two agents. It begins by checking
AgentGroupC3. If this condition is true, then this role creates the first agent group by
taking one agent from the head of the AcceptingList and one agent from the head of
the RejectionList. It then sends the argueWith message to the first group (agent P and
agent O) and asks them to start arguing together about the dialogue Topic. Then, if
the RecursC4 condition is true, the proposal agent changes its role to the

recursproposai Tole, otherwise, it recurses.

Chapter 5: Synthesis of Concrete Protocols 138

Bridging the Specification Protocol Gap in Argumentation

Finally, the control changes to the resultReceiver;p role. The resultReceiverp role of
agent [D has four input parameters: KB;p, CSip, Topic and IDpposq. It begins by
receiving either the reachAgreement(Topic) message or the argueWith(Topic,P,0)
message from the proposal agent. The resultReceiver;p role ends once it has received
the reachAgreement(Topic) message. Otherwise, agent /D changes its role to

startDID role.

Rewriting methods: none

Pattern 4.

Name: Move-To-Dialogue Pattern (MTDP).

Problem: How to move from a dialogue for N-agent to a dialogue for two agents.
Solution:

(1) The agent changes its role to the sender starting role of the two agent dialogue, if

it is able to satisfy the conditions of the sender role;

(2) Or the agent changes its role to the receiver starting role of the dialogue between

two agents if it is able to satisfy the conditions of the receiver role;

1 2
Agent Agent =
Change to
Change to | StartDID startDID
Agent Agent
Sender Receiver
Role 2 Role

Context (Pre-conditions): Use a Move-To-Dialogue Pattern to connect the N-agent

dialogue with a two agents' dialogue.

Consequence (Post-conditions): Start the dialogue between two agents.

Chapter 5: Synthesis of Concrete Protocols 139

Bridging the Specification Protocol Gap in Argumentation

Structure:

/a(startDIDID(KBID,CSID, CSpartnerin, Topic, IDproposal, PartnerID),ID) ::=\

a(RSenderl (KBIDaCSIDa CSPartnerlDoTopiCo I]:)Proposala PartnerID),ID) é C1
or
a(RReceiverl (KBIDaCSIDa CSPartnerIDaTOpiCa IDProposal’ PartnerID),ID) é C2.

- /

Where Rsenqer1 Tepresents the first sender role in the dialogue between two agents and

Rreceiver1 represents the first receiver role in the dialogue between two agents. C/
represents a condition that must be satisfied in order for an agent to change its role to
the sender role (the Starting Locution sender role of the dialogue between two
agents). C2 represents a condition that must be satisfied in order for an agent to
change its role to the receiver role (the Starting Locution receiver role of the dialogue

between two agents).

Rewriting methods: none

Pattern 5:

Name: Recurs-To-N-Dialogue Pattern (RTNDP).

Problem: How to inform the proposal about the ending of the dialogue between two

agents.
Solution:

(1) Each agent (in the dialogue between two agents) sends an end message to the

proposal agent when the dialogue between two agents terminates.

(2) The proposal agent sums up the reply and changes its role to the
proposalSender ,,qposa , Only 1f the number of replied agents equals the number of

agents. See Figure 5.8.

Context (Pre-conditions): The dialogue between two agents has terminated.

Consequence (Post-conditions): N-agent dialogue recurs.

Chapter 5: Synthesis of Concrete Protocols 140

Bridging the Specification Protocol Gap in Argumentation

Agent,
1 end(Topic)
>
ROLEAgent,
Agenty 1 end(Topic)
>
ROLEAgent, Proposal
Agen3 1
= end(Topic)
>
ROLEAgent;
Agent —
gents 1 end(Topic)
>
ROLEAgent,
>
...................... >
T€CUTSproposal
Agent, 1
— end(Topic)
>
ROLEAgent,_,
Agent, 1 end(Topic)
>
2
ROLEAgent, Change to
Proposal
proposalSenderyoposal

Figure 5.8: Solution of Recurs-To-N-Dialogue Pattern

Chapter 5: Synthesis of Concrete Protocols 141

Bridging the Specification Protocol Gap in Argumentation

Structure:

a(recursp;oposal (AgentList, NAgent,NSupporters,NReply,Topic),IDp;oposar)

N =NReply +1 € end(Topic)

<= a(Rsender (s >T0piC:IDPr0posala _)7 IDsender)
or

N =NReply +1 € end(Topic)

<= a(Rreceiver (oo oTOpiCaIDProposala _), IDreceiver)

or

. end
IeCUrsSproposal <= RSenderZ

then

(

a(proposalSenderproposal (AgentList, NAgent,NSupporters,Topic), IDproposat)
< isEqual(N, NAgent)

or

a(recurSproposal (AgentList, NAgent,NSupporters, N,Topic),IDproposat))-

In this LCC code, there is one role recursproposai. The recurspoposar role of the
proposal agent IDp,qposqr has five input parameters: AgentList, NAgent, NSupporters,
NReply and Topic. The recurspyqposa role begins by receiving two or more end
locutions from sender agents Rjnq. and receiver agents Rreceiver (Rsender @A Rpeceiver
role in the LCC protocol between two agents). Then, it checks isEqual condition
(isEqual condition returns true if the number of replied agents N is equal to the
number of agents NAgents). If isEqual condition is true, the proposal agent changes

its role to the proposalSenderp,oposaitole, otherwise, it recurses.
Rewriting methods:

Rewriting of the "recursproposat <= Rsender2”’
If there is a general relation of "recursproposat <= Rsender2” then it is possible to

specialise within two different statements:

Chapter 5: Synthesis of Concrete Protocols 142

Bridging the Specification Protocol Gap in Argumentation
Rewrite 1: (one end locution)
We might specialise "recurSproposal « Rsender2 t0 an interaction statement that sends

two end(Topic) messages (one from sender agent and one from receiver agent in the

LCC protocol for two agents) to the proposal agent.

N = NReply +1 €& end(TOPiC) <= a(Riender2 (s ’TopiC’IDProposal _ 9)9 IDgender2)
or
N = NReply +1 €& end(TOPiC)<= a(Rieceiver2 (s ’TopiC’IDProposala _)aIDreceiverZ)

Rewrite 2: (multiple end locutions)

We might specialise " recursproposal <~ Rsender2 " t0 an interaction statement that sends
two end(Topic) messages (one from sender agent and one from receiver agent in the
LCC protocol for two agents) to the proposal agent. Then, there is another relation

between proposal agent and senders (recursproposal << Risender3)-

N =NReply +1 < end(Topic) <= a(Reenderz (_,_, _ ,TOPiC,IDProposal_ »)s IDsender2)
or

N =NReply +1 € end(Topic)<= a(Rreceiver2 (_5_ > _ ,Topic,IDproposal, _)sIDreceiver2)
or

eCUISproposal <~ Rsender3

This section describes in detail five LCC—Argument patterns. In the next section, we

will use these five patterns along with DID to generate an LCC agent protocol.

5.2 Agent Protocol Automated Synthesis Tool

LCC—Argument patterns only provide a general solution to the common agent
argumentation protocol development problems. Even though these patterns include
some LCC codes they are not codes in themselves (final protocol) [Budinsky et.al.,
1996]. Therefore, we need an automated synthesis tool that can be used to translate

the patterns into final code.

Our automated agent protocol synthesis tool ""GenerateLCCProtocol” (see chapter 7

for more details), summarised pictorially in Figure 5.9, can generate agent protocols

Chapter 5: Synthesis of Concrete Protocols 143

Bridging the Specification Protocol Gap in Argumentation

Argument _ Multi-agents
Specification Development
Language - Language
(DID) i (LCC)

Design Patterns
(LCC-Argument Patterns)

Figure 5.9: Agent Protocol Automated Synthesis Tool

Locution Type

Pattern Name

Starting Locution

Starting Pattern

Termination Locution

Termination- Intermediate Pattern

Intermediate Locution

Termination- Intermediate Pattern

Table 5.3: Relationship Between Locution Type and Patterns
from DID diagrams automatically. It receives as input a DID and returns the
corresponding LCC argumentation agent protocol by using LCC—Argument patterns.

In practice, by using this tool, no additional programming is required.

5.2.1 Automated Synthesis Steps for Generating Agent Protocol

between Two Agents

In general, during the automated synthesis process, every time we progress from
level to level in the DID diagram the tool generates a pair of LCC clauses or roles
and switches roles (the sender agent will became the receiver and vice versa). The
automated synthesis process occurs from the top-down and moving left to right. The
synthesis process matches each level of the DID with only one LCC-Argument

pattern.

The automated synthesis process of the two agents' protocol consists of five steps
(The two agents protocol automated synthesis algorithm is illustrated in Figure 5.10.

A worked example is described in detail in appendix C):

Chapter 5: Synthesis of Concrete Protocols 144

Bridging the Specification Protocol Gap in Argumentation

1. Input (DID, LCC-Argument patterns)

2. Select&Save Icon=one DID locution icon (Stepl)
3. Select&Save Pattern= one pattern from the LCC-Argument patterns library (Step2)
4. If (Pattern has rewriting methods) then (Step3)
5. If (level has one locution icon) then

6. Select&Save RewriteMethod=Rewrite 1

7. If (level has more than one locution icon) then

8. Select&Save RewriteMethod=Rewrite 2

9. Match (Icon,Pattern,RewriteMethod) (Step4)
1. Go To line 2 (Step5S)
11. End matching all level in the DID with the corresponding patterns

12. Output LCC protocol

Figure 5.10: Two Agents Protocol Automated Synthesis Algorithm

(1) The tool begins with the locution icon at the top of the DID. Note that if more
than one locution icon appears in one level, then the tool begins with the

locution to the left (since it works from left to right).

(2) Following this, the tool selects one pattern from the LCC-Argument patterns
library. This pattern depends on the locution type. Note that each locution type is
connected to only one LCC-Argument pattern. See Table 5.3.

(3) After that, if the selected pattern has rewriting methods, the tool selects one or
more of the rewriting methods. The number of rewriting methods selected is
dependent on the number of locution icons in this level. If this level has one
locution icon, the tool selects the rewriting method Rewrite 1 (rewriting method
with one locution). If this level has more than one locution icon, the tool selects

the rewriting method Rewrite 2 (rewriting method with multiple locutions).

(4) Finally, the tool applies the selected pattern by matching formal parameters
(variables) with its corresponding values in the locution icon to generate pairs of
LCC clauses or roles (sender and receiver roles). If the selected pattern has
rewriting methods, the tool matches the formal parameters (variables) in the
selected rewriting methods with its corresponding values in the locution icon, to
generate pairs of LCC clauses or roles. The matching process matches one

parameter at a time. It begins with the locution icon and occurs from the top-

Chapter 5: Synthesis of Concrete Protocols 145

Bridging the Specification Protocol Gap in Argumentation

down and left to right. It then moves to the left side conditions and then to the
right side conditions. Finally, if the selected pattern has recursive (changing)
roles, the tool moves to the next level and matches the recursive roles in the

pattern with the recursive roles in the locution icon on the next level.

(5) Moves to the next level in the DID and repeats steps 2, 3 and 4. Note that the
automated synthesis process finishes when the tool matches the last level in the
DID with one of the LCC-Argument patterns. If the selected pattern has
recursive (changing) roles, the tool moves to the locution icon reply level, which
represents the reply rules of the selected locution icon, and matches the recursive

roles in the pattern with the recursive roles in the locution icon on this level.

5.2.2 Automated Synthesis Steps for Generating Agent Protocol for N-

agent

In general, during the automated synthesis process of the N-agents' protocol, the tool
uses Broadcasting, Move-To-Dialogue and Recurs-To-N-Dialogue patterns to divide
agents into groups of two and to generate LCC protocols for N-agent. It then follows
the automated synthesis process of the two agents' protocol (see section 5.4) to
generate the LCC protocol from the DID for two agents, which allows pairs of

groups to communicate with each other.

The automated synthesis process of the N-agents' protocol consists of four steps (The
N-agents' protocol automated synthesis algorithm is illustrated in Figure 5.11. A

worked example is described in detail in appendix C):

(1) The tool begins with the Broadcasting Pattern. It gets TerminationCl,
DivivdeC2, AgentGroupC3, and RecursC4 conditions from the user. Note that if
the user does not specify these conditions, the tool uses the default functions of

these conditions (see section 5.3 pattern 4).

(2) Following this, the tool uses the Move-To-Dialogue Pattern to connect N-agents'

dialogue with the two agents' dialogue. The tool applies this pattern by matching

Chapter 5: Synthesis of Concrete Protocols 146

Bridging the Specification Protocol Gap in Argumentation

1. Tool Input (DID, LCC-Argument patterns)

2. Use Broadcasting Pattern (Stepl)
3. Pattern Input (TerminationC1, DivivdeC2, AgentGroupC3, RecursC4)

4. Use Move-To-Dialogue Pattern (Step2)
5. Match(Starting locution icon in the DID for two agents, Move-To-Dialogue Pattern)

6. Use Recurs-To-N-Dialogue Pattern (Step3)
7. recursNumber = number of Termination locution icon in the DID for two agents -1

8. If (reurseNumber = 0) then //one Termination Locution

9. Select&Save RewriteMethod=Rewrite 1

10. Match (Termination Icon, Recurs-To-N-Dialogue Pattern, RewriteMethod)

11. Else //more than one Termination Locution

12. Loop begin (if i=1)

13. Select&Save RewriteMethod=Rewrite 2

14. Match (Termination Icon, Recurs-To-N-Dialogue Pattern, RewriteMethod)
15. =i+l

16. Loop end (if i = reurseNumber)

17. Go To two agents algorithm (Step4)

18. Add lines to connect N-agents' protocol with two agents' protocol

19. Output LCC protocol

Figure 5.11: N-agents' Protocol Automated Synthesis Algorithm
formal parameters (variables) with its corresponding values in the Starting

locution icon in the DID for two agents to generate one LCC role.

(3) After that, the tool uses the Recurs-To-N-Dialogue Pattern to generate the LCC
role which is used to inform the proposal agent about the ending of the dialogue

between two agents:

a) The tool selects one or more rewriting methods. The number of selected
rewriting methods is the number of the Termination Locution icons in the
DID for two agents, minus one. For example, if the number of Termination
Locution icons is equal to five, then the number of end messages is equal to
5 x 2 = 10 and the number of rewriting methods is equal 5-1= 4. Eeach
rewriting methods has two end messages and by default Recurs-To-N-

Dialogue pattern receives two end messages one from the first Termination

Chapter 5: Synthesis of Concrete Protocols 147

Bridging the Specification Protocol Gap in Argumentation

Locution sender role and one from the first Termination Locution receiver

role.

b) The tool applies this pattern by matching the formal parameters (variables)
with their corresponding values in the Termination locution icons in the
DID for two agents to generate one of the LCC clauses or roles for the

proposal agent.

(4) Finally, the tool follows the steps of the automated synthesis process of two
agents' protocol to generate the LCC protocol from the DID for two agents. Note
that the tool adds two lines after each Termination message (locution) in the
LCC protocol for two agents to connect N-agents' protocol with two agents'

protocol:
e Line one: Sending end message to proposal.

e Line two: Changing agents' role to proposalReceiver;p (agent change from

the LCC protocol for two agents to LCC protocol for N-agent.

a N

TL (Topic) => a(R ID)
then

end(Topic)=>
a(recursproposal(AgentList, NAgent,NSupporters,NReply, Topic),IDproposat)

then

a(proposalReceiverp (KBip,CSip, IDproposat), ID)
)

_ /

5.3 Summary

This chapter has presented a set of LCC—Argument patterns as well as a fully
automated synthesis method to generate LCC argumentation agent protocols by

using DID and LCC-Argument patterns. In practice, the argument LCC protocol is

Chapter 5: Synthesis of Concrete Protocols 148

Bridging the Specification Protocol Gap in Argumentation

quite complex, and therefore requires considering issues that the software engineer
may not be aware of until later in the implementation process, such as
synchronisation of the role. The usage of DID and LCC-Argument patterns can speed
up the protocol development process and help to prevent subtle design issues that can
cause errors in the protocol. It also improves code readability and the efficiency of

role synchronisation mechanisms.

Our automated synthesis tool enables to generate any LCC argumentation agent
protocol for two agents. However, in the case of the dialogue between N-agent (N >=
3), the automated synthesis tool uses a broadcasting method to divide agents into
groups composed of two agents under certain conditions. Then the tool uses DID and
LCC-Argument patterns for two agents to allow pairs of groups to communicate with
each other. Therefore, the user needs to either write a new LCC protocol or define
new patterns to be able to work with different structures concerning how the set of
agents is partitioned. This means that in the case of N-agent there is no finite,

complete set of patterns.

Adding new patterns and writing protocols from scratch requires profound
knowledge of agent protocols, and adding new patterns risks introducing errors into
the synthesiser. It is impractical to ask software engineers to ensure that the protocol
is error-free each time they want to write a protocol or add new patterns or to fully
consider the semantics of the DID. Therefore, the next chapter proposes a
verification model, which is used to ensure that key properties of the DID

specification are preserved by the resulting LCC protocol.

Chapter 5: Synthesis of Concrete Protocols 149

Bridging the Specification Protocol Gap in Argumentation
Chapter 6

Verification Method based on Coloured Petri Nets and SML

Chapter 5 discussed the automatic generation of LCC protocols from DID by using
LCC-Argument patterns and concluded that checking the validity of the generated
protocols is necessary since design patterns introduce greater scope for inaccuracy
and error in the synthesis process (a poorly designed interaction pattern may result in

inappropriate LCC protocols, even with a perfect synthesis mechanism).

This chapter proposes a verification methodology based on CPN and SML language
to verify the semantics of the DID specification against the semantics of the
synthesised LCC protocol. We automatically transform an LCC protocol to a
Coloured Petri Nets (CPNs) model, which is then used to check the validity of
various concurrent behaviour properties of the resulting LCC protocol by using state
space techniques and CPN SML language. The verification process, illustrated in

Figure 6.1, is divided into four steps:

1. Automated transformation LCC protocol to CPNXML file;
2. Construction of state space;

3. Automated creation of DID properties file;

4,

Applying the verification process.

This chapter discusses the details of each of these four steps. Section 6.1 describes
the automated transformation approaches from an LCC protocol to CPNXML file.
Section 6.2 highlights the construction of state space approaches. Section 6.3
describes the automated creation approaches of DID properties file. Section 6.4
details the verification approach for the LCC protocol and Section 6.5 Section 6.6

summarises this chapter.

Chapter 6: Verification Method based Coloured Petri Nets and SML 150

Bridging the Specification Protocol Gap in Argumentation

DID Resulting LCC
Protocol
3 I
Automated 1 Automated
Creation Transformation
\ 4
. CPNXML
DID Properties

2 Construction

A 4

State space

Verification model

A 4
A

(General behaviour
property checking
code in CPN SML)

7

Applying the

4

verification process

A 4

Result

True /False

Figure 6.1: Verification Process

6.1 Step One: Automated Transformation from LCC to
CPNXML

We have developed a step-by-step technique that allows to transform an LCC
protocol into the CPNXML file (see chapter 2 for more details about CPNXML file)

by:

Chapter 6: Verification Method based Coloured Petri Nets and SML 151

Bridging the Specification Protocol Gap in Argumentation

(1) Declaring colour sets and functions.

(2) Generating a CPN subpage for each LCC role. Each subpage represents a role

behaviour.

(3) Connecting all the CPN subpages by generating one CPN superpage, which
describes the interaction between roles, where the messages that are passed
between two roles determine the interaction between the subpages of the two

roles.

In practice, to automate the transformation process from an LCC protocol into
CPNXML file we use LCC-CPNXML tables (Table 6.1, Table 6.2, Table 6.3, Table
6.4, Table 6.5, Table 6.6, Table 6.7, Table 6.8, Table 6.9, Table 6.10, Table 6.11 and
Table 6.12), where transitions and places are connected according to a set of
transformation rules. The use of LCC-CPNXML tables make the transformation
faster and the resulting CPN model can be executed with data and analysed, not only
by our tool, but also by other users (using CPN Tool) since CPN has a

comprehensible graphical representation.

The following sections give more details of the transformation process from an LCC
protocol into CPNXML file. Readers not interested in these details can skip ahead to

section 6.2 for constructing state space step.

6.1.1 Declaration of Colour Sets and Functions
Declaration of Colour Sets
We use three different primary types of colour sets:

(1) Type TOPIC. This type is used to model the main dialogue topic. It is defined as

a string.

colset TOPIC = string;

(2) Type Message. This type is used to model messages. It is defined as the product
of the types Locution, TOPIC, Premise, ID and ID. The types Locution, TOPIC,

Chapter 6: Verification Method based Coloured Petri Nets and SML 152

Bridging the Specification Protocol Gap in Argumentation

Premise and ID are defined as a string. Locution type represents locution
(message) name (e.g. claim). TOPIC type represents the main dialogue topic.
Premise type represents the topic premise. ID type represents agent ID. The first
ID in the Message type represents the message sender agent's ID and the second

ID in the Message type represents the message receiver agent's ID.

colset Message = product Locution * TOPIC * Premise * ID * ID ;

(3) Type Role. This type is used to model role arguments. It is defined as the
product of the types ID, CSlist, KBlist, RoleName, TOPIC, Premise, CSlist and
ID. The types RoleName, TOPIC, Premise and ID are defined as a string. The
RoleName represents the new (recursive) role name. The TOPIC type represents
the main dialogue topic. The Premise type represents the topic premise. The /D
type represents agent ID. The first /D in the Role type represents agent's ID and
the second /D in the Role type represents the other agent's ID. The type CSlist is
defined as a list of CS representing the possible contents of the agent
commitment store at a specific time. The type CS is defined as a string. The first
CSlist in the Role type represents agent's CS and the second CSlist in the Role
type represents other agent's CS. The type KBlist is defined as a list of
FactXPremise representing the possible contents of the agent knowledge base at
a specific time. The type FactXPremise is defined as a product of the types Fact
and Premise. Both Fact and Premise are defined as a string. The Fact type
represents the agent belief and the Premise type represents the agent proposition
or premise which is used to prove that an agent's belief is true (e.g. Fact= "The

car is safe" and Premise="The car has an airbag").

colset FactXPremise= product Fact * Premise;
colset KBlist =list FactXPremise;
colset CS=string;

colset CSlist = list CS;
colset Role =

product ID* CSlist*KBlist*RoleName* TOPIC * Premise* CSlist*ID ;

Chapter 6: Verification Method based Coloured Petri Nets and SML 153

Bridging the Specification Protocol Gap in Argumentation

Declaration of Functions

As mentioned in chapters 3 and 4, each agent has a knowledge base KB (private
knowledge) and a commitment store CS (common knowledge). During the dialogue
game the agents take turns to make moves. Each agent makes his choice between
possible moves depending on its CS and KB. In practice, the CS is continuously

updated at each move by either adding to or subtracting from it arguments.

For that reason, we defined thirteen different basic functions which are used to find,
get, add or subtract an argument from either a CS or KB list. These functions are
written in the CPN SML language [Jensen and Kristensen, 2009; Ullman, 1998]. See

appendix D for a detailed explanation of these functions:

(1) Add an argument 't' to a CS list:
addTopicToCS

(2) Add a premise of an argument 't' to a CS list:
addPremiseToCS

(3) Add a defeat of a premise or an argument to a CS list:
addDefeatToCS

(4) Subtract an argument 't' from a CS list:
subtractFromCS

(5) Find an argument 't' in a CS list:
findTopicInCS

(6) Find a premise of an argument 't' in a CS list:
findPrelnCS

(7) Find an argument in a KB list:

Chapter 6: Verification Method based Coloured Petri Nets and SML 154

Bridging the Specification Protocol Gap in Argumentation

findTopicInKB
(8) Find a premise of an argument in a KB list:
findPrelnKB
(9) Find a defeat of a premise or an argument in a KB list:
findDefeatInKB
(10) Find the opposite of an argument 't' in a CS list:

findOppTopicInCS

(11) Find the opposite of the premise 'p' of an argument 't' in a CS list:
findOppPrelnCS

(12) Return (get) the premise of an argument 't' from a KB list:

getPremiseFromKB
(13) Return (get) the defeat of an argument 't' from a KB list:

getDefeatFromKB

The CPNXML format of the three types of colour sets and thirteen functions are
saved in the Global Declaration file called "CPNmainCode". The user does not need
to know about these colour set types or functions unless he/she needs to define new
types or functions. For more information about how to define new CPN SML colour
set types or functions, please read [Westergaard and Verbeek, 2002; Aalst and Stahl,
2011; Jensen et al., 2007].

6.1.2 Generation of a CPN Subpage

Nine tables are used to automate the transformation process from LCC roles into
CPN subpages.

Chapter 6: Verification Method based Coloured Petri Nets and SML 155

Bridging the Specification Protocol Gap in Argumentation

LCC a(RoleName(Arguments, Topic),AgentID)
(Role)
LCC CPNXML Structure
CPNs Model
non <page id="1D6">
<pageattr name= Role Name />
</page>

Table 6.1: LCC-CPNXML Transformation Table (Role)
Table one: LCC Role

Generate a new subpage for each LCC role where (as shown in Table 6.1):
1) The beginning of a page block is identified by the start tag <page>;
2) The end of a page block is identified by the end tag </page>;
3) The page ID= unique identifier;

4) The page name = role name.

Table Two: LCC Message Sending Statement

The LCC message sending code is transformed into a high-level Petri net by creating

(as shown in Table 6.2):

(1) One new transition where the transition ID = unique identifier, the transition
name= "Send" + Message name, and guard condition = LCC message Boolean

conditions (line 1 to 7 of Table 6.2);

(2) One new place where the place ID = unique identifier, the place name = message
name, place colour set type = Message and place (port) type= Out (line 8 to 19
of Table 6.2);

(3) One arc (output arc), which is used to connect the new transition to the new
place, where the arc ID = unique identifier, the arc type= TtoP (output arc), the
transition ID reference = the new transition ID, the place ID reference = the new

place ID, the arc inscription = (Message arguments) (line 20 to 28 of Table 6.2).

Chapter 6: Verification Method based Coloured Petri Nets and SML 156

Bridging the Specification Protocol Gap in Argumentation

LCC Code Message(Topic) => a(RoleName(Arguments), AgentID)
(Send a Message) < Conditions
CPNs Model CPNXML Structure

Send message symbol 1. <trans id="1D1423689023">
2. <text> [Send"t message name </text>
[Boolean conditions] 3. <cond > .
4, <text tool="CPN Tools "version="2.9.11">
"Send"+ 5. LCC Boolean conditions ~ </text>
Message 6. </cond>
Name 7. </trans>
I 8. <place id="1D1423689035">
(Message 9. <text> Message_name </text>
10. <type id="ID1423689036">
11. <text tool="CPN Tools" version="2.9.11">
12. Message </text>
13. </type>
14. <initmark id="1D1423689037">
15. <text tool="CPN Tools" version="2.9.11"/>

16. </initmark>

17. <port id="1D1424205036" type="OQut">
18. </port>

19. </place>

20. <arc id="1D1423689049"

21. orientation="TtoP" order="1">

22. <transend idref="New transition ID" />

23. <placeend idref="New place ID"/>

24. <annot id="ID1423689050">

25. <text tool="CPN Tools version="2.9.11">
26. Message arguments </text>

27. </annot>

28. </arc>

Table 6.2:LCC-CPNXML Transformation Table (Send a message)

Table Three: LCC Message Receiving Statement

The LCC message receiving code is transformed into a high-level Petri Net by

creating (as shown in Table 6.3):

(1) One new place where the place ID = unique identifier, the place name= message
name, place colour set type = Message and place (port) type = In (line 1 to 12 of
Table 6.3);

(2) One new transition where the transition ID = unique identifier, the transition
name = "Receive" + Message name and guard condition = LCC message

Boolean conditions (line 13 to 19 of Table 6.3);

Chapter 6: Verification Method based Coloured Petri Nets and SML 157

Bridging the Specification Protocol Gap in Argumentation

LCcC Conditions €<
(Receive a Message) Message(Topic) <= a(RoleName(Arguments), AgentID)
CPNs Model CPNXML Structure
Receive message 1. <place id="ID1423689035">
bol
wmve 2. <text> Message name </text>
3 <type id="1D1423689036">
Message 4 <text tool="CPN Tools" version="2.9.11">
Name 5 _Message </text>
In | Message
6. </type>
(Message 7 <initmark id="1D1423689037">
arguments) 8 <text tool="CPN Tools" version="2.9.11"/>
[Boolean ..
conditions] ¢ 9 </initmark>
. 10. <port id="1D1424205036" type="In">
"Receive" +
Message 1. </port>
Name 12. </place>

13. <trans id="1D1423689023">

14, <text> Receive''t message name </text>
15. <cond >

16. <text tool="CPN Tools "version="2.9.11">
17. LCC_Boolean conditions _ </text>

18. </cond>

19. </trans>

20. <arcid="1D1424199627"

21. orientation="PtoT" order="1">

22. <transend idref="New transition ID"/>

24. <annot id="ID1424199628">

25. <text tool="CPN Tools" version="2.9.11">
26. Messages arguments
27. </text>

28. </annot>

29. </arc>

Table 6.3: LCC-CPNXML Transformation Table (Receive a message)

(3) One arc (input arc), which is used to connect the new place to the new transition,

where the arc ID = unique identifier, the arc type= PtoT (input arc), the
transition ID reference = the new transition ID, the place ID reference= the new

place ID, the arc inscription = (Message arguments) (line 20 to 29 of Table 6.3).

Chapter 6: Verification Method based Coloured Petri Nets and SML 158

Bridging the Specification Protocol Gap in Argumentation

LCcC then
(LCC Then keyword a(NewRoleName(Arguments),AgentID)
followed by Changing Role | < ChangeRoleConditions

statement)
LCC CPNXML Structure
CPNs Model
1. <place id="ID1423689035">
Ch //
;Zfle);;) ¢ 2 <text> New Role name </text>
3 <type id="1D1423689036">
4 <text tool="CPN Tools" version="2.9.11">
(Changing 5. Role </text>
role -
conditions 6 </type>
+
New role 7 <initmark id="1D1423689037">
arguments) 8 <text tool="CPN Tools" version="2.9.11"/>
v 9 </initmark>

10. <port id="ID1424205036" type="Qut">

New LCC

Role Name 11. </port>
Out Role 12. </place>
13. <arc id="1D1423689049"
14. orientation=""TtoP" order="1">

17. <annot id="ID1423689050">

18. <text tool="CPN Tools version="2.9.11">
19. Role Arguments
20. </text>
21. </annot>
22. </arc>
Table 6.4: LCC-CPNXML Transformation table (Then keyword and Change
Role)

Table Four: LCC Recursive (Changing Role) Statement

The LCC Recursive code is transformed into a high-level Petri net by creating (as

shown in Table 6.4):

(1) One new place where the place ID = unique identifier, the place name=
"ChangeRoleTo" + new role name, place colour set type = Role and place (port)

type = Out (line 1 to 12 of Table 6.4);

Chapter 6: Verification Method based Coloured Petri Nets and SML 159

Bridging the Specification Protocol Gap in Argumentation

(2) One arc (out arc), which is used to connect the new place to the last message
transition, where the arc ID = unique identifier, the arc type= TtoP (output arc),
the transition ID reference = the last message transition ID, the place ID
reference = the new place ID, the arc inscription = (Role arguments). Note that
if the ChangeRoleConditions represents either add or subtract condition, it will

appear in the Role arguments (line 13 to 22 of Table 6.4).

Table Five: LCC "or" Statement

The LCC "or" code is transformed into a high-level Petri net by creating (as shown in

Table 6.5):

(1) One new place where the place ID = unique identifier, the place name= main
role name, place colour set type = Role and place (port) type = In (line 1 to 12
of Table 6.5);

(2) One or more arcs. The number of arcs depends on the number of messages.
These arcs are used to connect the new place to the message transitions. Each
arc has an arc ID = unique identifier, the arc type= PtoT (input arc), the
transition ID reference = the message transition ID, the place ID reference= the
new place ID, the arc inscription = (Role arguments) (line 13 to 32 of Table
6.5).

Table Six: LCC Dialogue Topic Argument

The LCC Topic argument of the primary role (the first role in the LCC code which is
responsible for opening the dialogue) is transformed into a high-level Petri net by

creating (as shown in Table 6.6):

(1) One new place where the place ID = unique identifier, the place name=
"OpenDialgoue", the place colour set type = Topic and place (port) type= In
(line 1 to 12 of Table 6.6);

(2) One arc, which is used to connect the new place to the role message transition of

the agent first role, where the arc ID = unique identifier, the arc type= PtoT

Chapter 6: Verification Method based Coloured Petri Nets and SML 160

Bridging the Specification Protocol Gap in Argumentation

LCC or
(LCC or keyword)
LCC CPNXML Structure
CPNs Model
Or symbol 1. <place id="1D1423689035">

2. <text> Main role name </text>
3. <type id="ID1423689036">
4. <text tool="CPN Tools" version="2.9.11">
5. Role </text>
6. </type>
7. <initmark id="1D1423689037">
8. <text tool="CPN Tools" version="2.9.11"/>
9. </initmark>
10. <port id="1D1424205036" type="In">
11. </port>
12. </place>
13. <arc id="1D1423689049"
14. orientation="PtoT" order="1">
15. <transend idref="First Message transition ID"/>
16. <placeend idref="/New place ID"/>
17. <annot id="1D1423689050">
18. <text tool="CPN Tools version="2.9.11">
19. Role arguments
20. </text>
21. </annot>
22. </arc>
23. <arc id="1D1423689049"
24. orientation="PtoT" order="1">
25, <transend idref="_Second Message transition ID "/>
26. <placeend idref="_New place ID "/>
27. <annot id="1D1423689050">
28. <text tool="CPN Tools version="2.9.11">
29. Role arguments
30. </text>
31. </annot>
32. </arc>

Table 6.5:LCC-CPNXML Transformation Table (Or keyword)

Chapter 6: Verification Method based Coloured Petri Nets and SML

161

Bridging the Specification Protocol Gap in Argumentation

LCC a(RoleName(Arguments, Topic),AgentID)
(Dialogue Topic Argument)

LCC CPNXML Structure
CPNs Model
Dialogue Topic symbol 1. <place id="1D1423689035">
2. <text> OpenDialogoe </text>
3. <type id="1D1423689036">
4 <text tool="CPN Tools" version="2.9.11">
Open 5. . Topic </text>
Dialogue 6. </type>
Topic 7. <initmark id="ID1423689037">
8 <text tool="CPN Tools" version="2.9.11"/>
(Topic 9. </initmark>
arguments)

10. <port id="1D1424205036" type="In">
1. </port>

12. </place>

13. <arc id="1D1423689049"

14. orientation="PtoT" order="1">

17. <annot id="1D1423689050">

18. <text tool="CPN Tools version="2.9.11">
. Topic arguments

20. </text>

21. </annot>

22. </arc>

Table 6.6: LCC-CPNXML Transformation table (Dialogue Topic)
(input arc), the transition ID reference = the role message transition of agent first

role's ID, the place ID reference= the new place ID, the arc inscription = (Topic

argument) (line 13 to 22 of Table 6.6).

Table Seven: LCC Role Arguments

Each agent in the dialogue has one or more arguments. Our tool supplies these

arguments by creating (as shown in Table 6.7):

Chapter 6: Verification Method based Coloured Petri Nets and SML 162

Bridging the Specification Protocol Gap in Argumentation

LCC Code
(Starter Role Arguments)

a(RoleName(Arguments, Topic),AgentID)

LCC
CPNs Model

CPNXML Structure

Starter Role argument
symbol

Arguments initial

(Role
Arguments)

<place id="1D1423689035">

<type id="1D1423689036">

<text tool="CPN Tools" version="2.9.11">

</type>

<initmark id="1D1423689037">
<text tool="CPN Tools" version="2.9.11"/>

10. </initmark>

1
2
3
4
5. Role </text>
6
7
8
9

11. <portid="ID1424205036" type="In">

12. </port>
13. </place>

14. <arc id="1D1423689049"

15. orientation="PtoT" order="1">

16. <transend idref=Role main transition ID"/>

18. <annot id="ID1423689050">
19. <text tool="CPN Tools version="2.9.11">

21. </text>

22. </annot>

23. </arc>

Table 6.7: LCC-CPNXML Transformation table (Starter Role Arguments)

(1) One new place where the place ID = unique identifier, the place name= agent

ID, the place colour set type = Role and place (port) type = In (line 1 to 12 of

Table 6.7);

(2) One arc (input arc), which is used to connect the new place to the role message

transition of agent first role, where the arc ID = unique identifier, the arc type=

PtoT (input arc), the transition ID reference = the role message transition of an

Chapter 6: Verification Method based Coloured Petri Nets and SML

163

Bridging the Specification Protocol Gap in Argumentation

agent first role's ID, the place ID reference = the new place ID, the arc

inscription = (Role arguments) (line 13 to 22 of Table 6.7).

Table Eight: LCC "." End Statement

The LCC end statement represents the mark "' after sending or receiving a message
statement. It is transformed into a high-level Petri net by creating (as shown in Table

6.8):

(1) One new place where the place ID = unique identifier, the place name= end,
place colour set type = Role and place (port) type = Out (line 1 to 12 of Table
6.8);

(2) One arc (output arc), which is used to connect the message transition to the new
place, where the arc ID = unique identifier, the arc type= TtoP (output arc), the
transition ID reference = the message transition ID, the place ID reference = the

new place ID, the arc inscription = (Role arguments) (line 13 to 22 of Table 6.8).

Table nine: Get an Item from List Condition

The get an item form list condition is transformed into a high-level Petri net by

creating (as shown in Table 6.9(a), Table 6.9(b) and Table 6.9(c)):

(1) One new transition where the transition ID = unique identifier, the transition
name = "getConditionTransition" and guard condition = "true" (line 1 to 7 of

Table 6.9(a));

(2) One new place where the place ID = unique identifier, the place name= the item
name, place colour set type = the item type(by default the place colour set type=

Premise which is defined as a string) (line 8 to 17 of Table 6.9(a));

(3) One new place where the place ID = unique identifier, the place name= "flow",

place colour set type = Role (line 18 to 27 of Table 6.9(a));

Chapter 6: Verification Method based Coloured Petri Nets and SML 164

Bridging the Specification Protocol Gap in Argumentation

Lcce
Message(Topic) => a(RoleName(Arguments), AgentID)

L' After sendi "
(er seading or < Conditions «

receiving message

statement)
Conditions €
Message(Topic) <= a(RoleName(Arguments),AgentID) .
LCC CPNXML Structure

CPNs Model

1. <place id="ID1423689035">
End 2. <text> End </text>
bol
Symbo 3. <type id="ID1423689036">

4. <text tool="CPN Tools" version="2.9.11">

(role 5. Role </text>

arguments) 6. </type>
7. <initmark id="1D1423689037">
8. <text tool="CPN Tools" version="2.9.11"/>
9. </initmark>
) 4
10. <port id="1D1424205036" type="Out">
end 11. </port>

Out Role 12. </place>
13. <arc id="1D1423689049"
14. orientation="TtoP" order="1">

15. <transend idref="Message transition_ID"/>

16. <placeend idref="New place ID"/>

17. <annot id="ID1423689050">

18. <text tool="CPN Tools version="2.9.11">
. Role arguments

20. </text>

21. </annot>

22. </arc>

Table 6.8: LCC-CPNXML Transformation table (End Statement)

Chapter 6: Verification Method based Coloured Petri Nets and SML 165

Bridging the Specification Protocol Gap in Argumentation

LCC Code < GetConditions
(Get condition)
CPNs Model CPNXML Structure
Get Condition symbol 1. <trans id="1D1423689023">
2. <text> getConditionTransition'</text>
3. <cond >
Get)
Condition 4, <text tool="CPN Tools "version="2.9.11">
3. "true” </text>
6. </cond>
7. </trans>
Role 8. <place id="1D1423689035">
Arguments
9. <text> Item name </text>
10. <type id="1D1423689036">
11. <text tool="CPN Tools" version="2.9.11">
Item flow
Name 12. Atem Type </text>
Item Role 13. </type>
Type - .
14. <initmark id="1D1423689037">
15. <text tool="CPN Tools" version="2.9.11"/>
[tem
IArguments 16. </initmark>
17. </place>
Role 18. <place id="1D1423689036">
Arguments 19. <text> flow </text>
t .
[truel} Y 20. <type id="ID1423689036">
getCondition 21. <text tool="CPN Tools" version="2.9.11">
Transition 22, Role </text>
23. </type>
24. <initmark id="1D1423689039">
Message 25. <text tool="CPN Tools" version="2.9.11"/>
Arguments | 26 </initmark>
27. </place>
v 28. <arc id="1D1424199627"
29. orientation="PtoT" order="1">
30. <transend idref="getGonditionTransition ID"/>
31. <placeend idref="Item Place ID"/>
32. <annot id="ID1424199628">
33. <text tool="CPN Tools" version="2.9.11">

Table 6.9 (a):LCC-CPNXML Transformation Table (Get an Argument

Condition)

Chapter 6: Verification Method based Coloured Petri Nets and SML

166

Bridging the Specification Protocol Gap in Argumentation

LCC Code < GetConditions
(Get condition)
CPNs Model CPNXML Structure
34. Item_arguments
35. </text>

36. </annot>

37. </arc>
38. <arc id="1D1424199687"

39. orientation=""PtoT" order="1">

40. <transend idref="getGonditionTransition ID" />

41. <placeend idref="flow Place ID"/>

42. <annot id="ID1424199618">

43. <text tool="CPN Tools" version="2.9.11">
44. Role arguments
45, </text>

46. </annot>

47. </arc>
48. <arc id="1D1424199684"

49. orientation="TtoP" order="1">

50. <transend idref="getGonditionTransition ID"/>

51. <placeend idref="Message Place ID"/>

52. <annot id="1D1424199638">

53. <text tool="CPN Tools" version="2.9.11">
54. Message arguments
55. </text>

56. </annot>

57. </arc>
58. <arc id="1D1424199664"

59. orientation="TtoP" order="1">

60. <transend idref="Message transition ID "/>

61. <placeend idref="1Item Place ID"/>

62. <annot id="1D1424149638">

63. <text tool="CPN Tools" version="2.9.11">
64. Get Condition
65. </text>

66. </annot>

67. </arc>
Table 6.9 (b):LCC-CPNXML Transformation Table (Get an Argument
Condition)

Chapter 6: Verification Method based Coloured Petri Nets and SML 167

Bridging the Specification Protocol Gap in Argumentation

LCC Code < GetConditions
(Get condition)
CPNs Model CPNXML Structure

68. <arc id="1D1424129684"
69. orientation=""TtoP" order="1">
70. <transend idref="Message transition ID "/>

71. <placeend idref="flow Place ID"/>

72. <annot id="1D1424299638">

73. <text tool="CPN Tools" version="2.9.11">
a. Role Arguments

74. </text>

75. </annot>

76. </arc>
Table 6.9 (c):LCC-CPNXML Transformation Table (Get an Argument
Condition)

(4) One arc, which is used to connect the item place to the new transition

("getConditionTransition"), where the arc ID = unique identifier, the arc type=
PtoT, the transition ID reference = the new transition ID, the place ID reference=
the item place ID, the arc inscription = (the item arguments e.g. Premise) (line

27 to 37 of Table 6.9(a) and Table 6.9(b));

(5) One arc, which is used to connect the flow place to the new transition
("getConditionTransition"), where the arc ID = unique identifier, the arc type=
PtoT, the transition ID reference = the new transition ID, the place ID reference=
the flow place ID, the arc inscription = (Role arguments) (line 38 to 47 of Table
6.9(b));

(6) One arc, which is used to connect the new transition ("getConditionTransition")
to the message place, where the arc ID = unique identifier, the arc type= TtoP,
the transition ID reference = the new transition ("getConditionTransition") ID,
the place ID reference= the message place ID, the arc inscription=(Message

Arguments) (line 49 to 57 of Table 6.9(a) and Table 6.9(b));

(7) One arc, which is used to connect the role message transition to the item place,
where the arc ID = unique identifier, the arc type= TtoP, the transition ID

reference = the role message transition ID, the place ID reference= the item

Chapter 6: Verification Method based Coloured Petri Nets and SML 168

Bridging the Specification Protocol Gap in Argumentation

place ID, the arc inscription = (GetConditioin) (line 58 to 67 of Table 6.9(a) and
Table 6.9(b));

(8) One arc, which is used to connect the role message transition to the flow place,
where the arc ID = unique identifier, the arc type= TtoP, the transition ID
reference = the role message transition ID, the place ID reference= the flow

place ID, the arc inscription = (Role arguments) (line 68 to 76 of Table 6.9(c));

See Figure C.14 in appendix C which shows an example of get item from list

condition CPN model.

6.1.3 Generation of a CPN Superpage

The second step for transforming an LCC protocol into the CPNXML file is to
generate one CPN superpage. The CPN superpage is composed of:

(1) More than one substitution transition (see chapter 2, section 2.3.1.2) where each

substitution transition represents one LCC role.

(2) More than one place and arc which is used to connect the CPN subpages
generated in the first step to the CPN superpage and to create the CPN model of
the LCC protocol. These places and arcs represent the interaction relations

between roles (subpages).

The final result of this step, which is used to connect all the CPN subpages, is a high-
level CPN model. The resulting CPN model is the formal representation of the LCC

protocol and can be used to analyse the dynamic behaviour of the LCC protocol.

Generation of a CPN Superpage Steps

Each LCC role is transformed into a high-level Petri net by creating (as shown in

Table 6.10):

(1) One new substitution transition where the transition ID = unique identifier, the
transition name= role name, subpageinfo ID = corresponding subpage ID,

subpageinfo name = corresponding subpage name, and portsock= (socket ID,

Chapter 6: Verification Method based Coloured Petri Nets and SML 169

Bridging the Specification Protocol Gap in Argumentation

LCC Code a(RoleName(Arguments, Topic),AgentID)
(Role)
LCC CPNXML Structure
CPNs Model
1. <transid="1D1414172135">
Role symbol 2. <text> Role Name </text>
3. <subst subpage= "Corresponding subpage ID"
4. portsock="(socket ID, Port ID) "
Role Name 5. <subpageinfo id="1D1414172175"
6. name= Corresponding subpage Name >
Subpage Name 7. <\Subpageinf0>
8. </subst>
9. </trans>
10. <arc id="1D1423689049"
11. orientation="PtoT" order="1"
12. <transend idref="Substitution transition ID"/>
13. <placeend idref="Related socket ID"/>
14. <annot id="1D1423689050">
15. <text tool="CPN Tools version="2.9.11">
16. Socket_arguments (e.g. Role arguments ,
17. Message arguments)
18. </text>
19. </annot>
20. </arc>

Table 6.10: LCC-CPNXML Transformation table (Role in the CPN Superpage)

Port ID). Note that port socket relation (portsock) is used to represent the

hierarchical relation among CPN pages. The socket ID represents the place ID

in the superpages and the Port ID represents the place ID in the corresponding

subpage. (see chapter 2, section 2.3.2.1) (line 1 to 9 of Table 6.10);

(2) One or more arcs. The number of arcs 1s dependent upon the number of related

sockets. These arcs are used to connect the new substitution to the related

sockets. Each arc has an arc ID = unique identifier, the arc type= PtoT or TtoP

(depends on the relation between the transition and the socket), the transition ID

reference = the new substitution transition ID, the place ID reference = the

related socket ID, the arc inscription depends on the socket colour set type (line

10 to 20 of Table 6.10);

(3) If this role is the primary role (the first role in the LCC code which is

responsible for opening the dialogue), then:

a) Create one new place where the place ID = unique identifier, the place name

= "OpenDialgoue", the place colour set type = Topic and place (port) type =
In (line 1 to 12 of Table 6.11);

Chapter 6: Verification Method based Coloured Petri Nets and SML 170

Bridging the Specification Protocol Gap in Argumentation

LCC a(RoleName(Arguments, Topic),AgentID)
(Dialogue Topic Argument)
LCC CPNXML Structure
CPNs Model

Dialogue Topic symbol

Open
Dialogue

Topic

(Topic
arguments)

22

<place id="1D1423689035">
<text> OpenDial
<type id="1D1423689036">
<text tool="CPN Tools" version="2.9.11">
. Topic </text>
</type>
<initmark id="1D1423689037">
<text tool="CPN Tools" version="2.9.11"/>
</initmark>
<port id="1D1424205036"
</port>

type:n!,!ll>

. </place>
. <arc id="1D1423689049"

orientation="PtoT" order="1">
<transend idref="New substitution transition ID" />

<annot id="1D1423689050">
<text tool="CPN Tools version="2.9.11">

</text>
</annot>

</arc>

Table 6.11: LCC-CPNXML Transformation table (Dialogue Topic in the

superpage)

b) Create one arc (input arc), which is used to connect the new place to the new

substitution transition, where the arc ID = unique identifier, the arc type =

PtoT (input arc), the transition ID reference = the new substitution transition

ID, the place ID reference = the new place ID, the arc inscription = (Topic

argument) (line 13 to 22 of Table 6.11).

(4) If this role is the agent's primary role, then:

a) One new place where the place ID = unique identifier, the place name =

agent ID, the place colour set type = Role and place (port) type = In (line 1 to

12 of Table 6.12);

b) One arc (input arc), which is used to connect the new place to the role

message transition of agent first role, where the arc ID = unique identifier,

the arc type = PtoT (input arc), the transition ID reference = the new

Chapter 6: Verification Method based Coloured Petri Nets and SML

171

Bridging the Specification Protocol Gap in Argumentation

LCC Code a(RoleName(Arguments, Topic),AgentID)
(Starter Role
Arguments)
LCC CPNXML Structure
CPNs Model
Starter Role argument 1. <place id="ID1423689035">
symbol 2. <text> AgentID </text>
3. <type id="ID1423689036">
4, <text tool="CPN Tools" version="2.9.11">
3. Role </text>
Arguments initial 6. </type>
7. <initmark id="1D1423689037">
8. <text tool="CPN Tools" version="2.9.11"/>

o
3

b
s
3
Q
I
>
~,
g
~,
Y
3
~
=
g
3
©»

10. </initmark>

11. <portid="ID1424205036" type="In">

12. </port>

13. </place>

14. <arc id="1D1423689049"

15. orientation="Pto7" order="1">

16. <transend idref= New substitution transition ID "/>

17. <placeend idref="New place ID"/>

18. <annot id="1D1423689050">

19. <text tool="CPN Tools version="2.9.11">
20. Role_arguments

21. </text>
22. </annot>

23, </arc>
Table 6.12: LCC-CPNXML Transformation table (Agent's Starter Role
Arguments in superpage)

substitution transition ID, the place ID reference = the new place ID, the arc

inscription = (Role arguments) (line 13 to 23 of Table 6.12)

Appendices A and C illustrate detailed examples of CPN subpages and the

superpage of a negotiation dialogue and a persuasion dialogue, respectively.

6.2 Step Two: Construction of State Space

The second step of the verification method is to construct state space. In the CPN

Tool, state spaces can be constructed by:

(1) Using the following CPN SML functions:

CalculateOccGraph(),

CalculateSccGraph(),

Chapter 6: Verification Method based Coloured Petri Nets and SML 172

Bridging the Specification Protocol Gap in Argumentation

S5 /S8im Hier Aux

Enter L=
¥ 5S ‘@b s o |:|
1 -
Enter r~ . gfg §‘.30 Q;t’
State a - i)

1!_1-_1 [TH =1

Figure 6.2: State Space Tool Palette

(2) Or, using the CPN State Space (SS) tool palette: constricting the state space is
simple. The user needs to:

a) Open the CPN Tool;
b) Select the state space tool palette (as shown in Figure 6.2);

c) Select the Enter State Space (Enter SS) in the SS tool palette, and apply it
to one of the pages in the CPN model.

For more information about using the state space tools see [Jensen et al., 2002]. In
our approach, the user can construct the state space of the generated CPNXML file
(the generated CPN model) using the CPN state space tool palette (see chapter 8§,
section 8.3.2).

Appendices A and C illustrate detailed examples of the State Spaces of the CPN
models corresponding to a negotiation dialogue and a persuasion dialogue,

respectively.

The State Space Explosion Problem in the CPN Tool

In general, verification techniques suffer from state space explosion problem [Ding
and Su, 2008]. The main reason for this problem is running out of memory before

finishing to compute the state space of a complex model.

Chapter 6: Verification Method based Coloured Petri Nets and SML 173

Bridging the Specification Protocol Gap in Argumentation

Ding and Su [Ding and Su, 2008] compares different techniques for dealing with the
state space explosion problem in the CPN Tool. In this thesis we did not deal with

this problem.

However, we cannot guarantee that our verification method will not encounter a state
space explosion problem. In fact, the generated CPN model could obtain an infinite
number of state space nodes which cause the state space explosion. This is because
the CPN model could be defined for finite number of agents (e.g. two agents) but still
the agents could be involved in infinite loops. Consequently, we cannot guarantee
that there will be absolutely no state space explosion in our verification model

process.

6.3 Step Three: Automated Creation of DID Properties Files

The third step of the verification method is to create a DID properties file. The
extraction of the protocol properties from the DID diagram and the creation of DID
properties files are automatic. These files can be used by our tool to obtain all the
information about the behaviour of the DID diagram (e.g. Starting message
information). When the tool dynamically generates each file, it uses the property

name as the file name and stores the file on the tool path.
Nine property files are automatically created by our tool:
(1) Possible Locutions file: contains the set of permitted messages;

(2) Reply Locutions file: contains the set of legal reply locutions in terms of the

available moves that an agent can select to follow on from the previous move;

(3) Starting Locutions file: contains message names which are used to begin the

dialogue;

(4) Intermediate Locutions file: contains message names which are used to remain

in the dialogue,

Chapter 6: Verification Method based Coloured Petri Nets and SML 174

Bridging the Specification Protocol Gap in Argumentation

(5) Termination Locutions file: contains message names which are used to terminate

the dialogue;

(6) Termination Locutions Effect CS and Effective CS files: contain the effect of the

termination message to the sender commitment store CS;

(7) Player Types file: contains dialogue game player types (e.g. opponent or

proponent);
(8) Player IDs file: contains dialogue game player IDs;

(9) Termination Role Names file: contains player termination role names.

6.4 Step Four: Applying Verification Model

In step two we explained how to construct a state space graph and in step three we
explained how to create DID property files. Therefore, the next task is to
automatically verify the DID properties over the synthesised LCC protocol

represented as a state space graph.

Verification Model Properties

The verification process is carried out by checking five basic properties, which are

independent of any dialogue games types:

(1) Dialogue opening property: to check that the LCC protocol begins with a proper

Starting Locution;

(2) Termination of a dialogue property: to determine if the LCC protocol terminates

with a proper Termination Locution;

(3) Turn taking between agents property: to guarantee that in the LCC protocol the

turn-taking switches to the next agent after the current agent sends a message;

(4) Message sequencing property: to check that the LCC protocol message exchange
respects the DID;

Chapter 6: Verification Method based Coloured Petri Nets and SML 175

Bridging the Specification Protocol Gap in Argumentation

(5) Recursive message property: to verify that the LCC protocol recurs when an

agent sends a message with an Intermediate DID Locution.
In general, to verify each property, we use the following approach:

(1) Create a new text file for each property and use the property name as the file

name;

(2) Extract the needed information from the state space graph and write this

information in the property text file;

(3) Get the information of a DID diagram from the DID property file (created in

the previous step three);

(4) Call the CPN SML property function, where the function inputs are the DID
diagram information (DID property file) and the LCC protocol state space
information (property text file);

(5) Create a new text file (property result file) and write the CPN SML property

function result in the property result file;
(6) Repeat steps 1 to 5 for each property;

(7) Present a report to the user indicating which properties are satisfied and which

are unsatisfied.

The following subsections give a detailed description of each of these properties as
well as the corresponding CPN SML function.
Property-1 Dialogue Opening

This property should guarantee that the LCC protocol will start if, and only if, a
proposal agent sends a Starting DID Locution. Figure 6.3 shows the CPN SML
specification of this property:

(1) Line 1: Read the state space graph information from the Propertyl text file and

save this information in the SS variable.

Chapter 6: Verification Method based Coloured Petri Nets and SML 176

Bridging the Specification Protocol Gap in Argumentation

1. Read&Save SS=State Space information

2. Read&Save DIDOpenDialogueMessages =DID information
3. Call CheckPropertyl

4. Imput (SS,DIDOpenDialogueMessages)

5. Extract messagel

6. val checkODM =

7. compare(DIDOpenDialogueMessages,messagel)

8. if (checkODM) then

9. "Property 1(Dialogue opening) is Satisfied"
10. else
11. "Property 1(Dialogue opening) is not Satisfied"
12. end CheckPropertyl
13. Create&Save Propertyl result file

Figure 6.3: Property 1 as an SML Function

'

(2) Line 2: Read the information of a DID diagram from the Starting Locutions
DID property file and save this information in the DIDOpenDialogueMessages

variable.
(3) Line 3: Call CheckPropertyl function.
(4) Line 4: CheckPropertyl function inputs are SS and DIDOpenDialogueMessages.
(5) Line 5: Extract the first message from the SS (messagel)

(6) Lines 6 and 7: Compare the first exchanged message in the state space graph

with the Starting Locution from the DID where:
a) compare function is used to compare the first message;

b) checkODM variable represents the compare function result. It is
considered true if the first message in the state space graph is the

same as the Starting Locution of the DID.

(7) Lines 8 to 11: Check the result of the comparison. A positive (negative) result

indicates that Property 1 is satisfied (unsatisfied).

Chapter 6: Verification Method based Coloured Petri Nets and SML 177

Bridging the Specification Protocol Gap in Argumentation

(8) Line 13: Create a Property] result file and write the result of CheckPropertyl in
this file.

Property-2 Termination of a Dialogue

This property should guarantee that the LCC protocol will end when an agent sends a
DID Termination Locution. It should also check that the agent's commitment store
has changed properly after termination, and that the role of the agent that finishes the
dialogue is the expected one (based on the recorded sequence of moves). Figure 6.4

shows the algorithm of the CPN SML specification of this property:

(1) Line 1: Read the state space graph Termination nodes information from the

Property?2 text file and save this information in 7Nodes variable.

(2) Line 2: Read the DID termination messages information from the Termination
Locutions and the Effective CS DID property files and save this information in

the TDID variable.

(3) Line 3: Call function CheckProperty2.

(4) Line 4: Function inputs are TNodes and TDID.

(5) Line 5: Extract the needed information from 7Nodes where:
a) message represents termination message;
b) topic represents dialogue topic;
¢) premise represents dialogue topic premises;
d) sender represents termination message sender ID;
e) receiver represents termination message receiver ID;
f) sCSrepresents sender commitment store;

g) rCS represents receiver commitment store;

Chapter 6: Verification Method based Coloured Petri Nets and SML 178

Bridging the Specification Protocol Gap in Argumentation

—

[N T N T N T N T N T N N S e e s e Sy
G REOSN 2S5 x5 nkEBL =S

© P N ;AW

Read&Save TNodes = state space termination nodes information

Read TDID =DID termination nodes information

Call

Extract (message, topic , premise, sender, receiver, sCS, rCS)
Extract (DIDTL, DIDEf, DIDAID,DIDS)

val checkSR = checkSenderReceiver(message,sender,receiver,

val csContant = checkTheContantofCS(role, message, rCS,topic,premise,rCSsize,

val lengthofRest= length restStateSpace
if (lengthofRest >= 4) andalso (csContant= true) andalso (checkSR=true) then

End CheckProperty?2
Create&Save Property2 result file

CheckProperty2
Input (TNodes, TDID)

opponent,proponent, DIDAID,DIDS)

topicSize,premiseSize, DIDTL,DIDE()

CheckPropert2(restStateSpace, DID)
else
if (csContant) andalso (checkSR) then
"Property 2(Termination of a Dialogue) is Satisfied"
else
if not (csContant) then
"Property 2(Termination of a Dialogue) is not Satisfied: There is a
problem in the agent's commitment store"
else
"Property 2(Termination of a Dialogue) is not Satisfied: There is a

problem in the who to terminated the dialogue"

Figure 6.4: Property 2 as an SML Function

h) proponent represents the sender agent in the initial node (the sender

agent ID of the first role in the LCC code which is responsible for
opening the dialogue);

opponent represents the receiver agent in the initial node (the
receiver agent ID of the second role in the LCC code which is

responsible for receiving the opening [starting] dialogue message).

(6) Line 6: Extract one termination message information from the 7DID where:

Chapter 6: Verification Method based Coloured Petri Nets and SML

179

Bridging the Specification Protocol Gap in Argumentation
DIDTL represents the expected termination message for the specific

role;

DIDES represents the effect of the termination message to the sender

commitment store CS (e.g. DIDEf= "Add Topic");

DIDAID represents the expected agent ID of the termination

message sender;

DIDS represents the expected agent type (e.g. opponent or

proponent) of the termination message sender.

(7) Lines 7 and 8: Check that the sender and the receiver of the termination

message in the state space are the expected sender and receiver. Then compare

the sender and receiver of the termination message in the state space with the

sender and receiver of the same termination message in the DID where:

a.

checkSenderReceiver function is used to compare the sender and

receiver of the termination message;

b. proponent and opponent variables are used to check the expected

values of the sender and receiver (which agent must send this

message and which agent must receive this message);

checkSR variable represents the checkSenderReceiver function
result. It is considered true if the sender and receiver of the
termination message in the State Space are identical to the sender

and receiver of the same termination message in the DID.

(8) Lines 9 and 10: Compare the content of the CS in the termination message of

the sender agent in the state space with the content of the same termination

message of the sender agent in the DID where:

a.

Chapter 6: Verification Method based Coloured Petri Nets and SML

checkTheContantofCS function is used to compare the content of the

CSs;

180

Bridging the Specification Protocol Gap in Argumentation

b. csContant represents the checkTheContantofCS function result. It is
considered true if the content of the CS in the termination message
of the sender agent in the state space is identical to the content of the

same termination message of the sender agent in the DID.

(9) Lines 11 to 13: Check if there is another termination node in the state space;

then recall the CheckPropert2 function.

(10) Lines 14 to 23: Check the result of the comparison. A positive (negative)
result indicates that Property 2 is satisfied (unsatisfied).

(11) Line 25: Create Property2 result file and write the result of CheckProperty?2
in this file.

Property-3 Turn Taking between Agents

This property checks that in the LCC protocol the turn-taking between agents
switches after each move (after an agent sends a message). Figure 6.5 shows the

algorithm of the CPN SML specification of this property:

(1) Line 1: Read the state space graph information from the Property3 text file and

save this information in SS variable.
(2) Line 2: Call function CheckPropert3AIITN.
(3) Line 3: Function input is SS.

(4) Line 4: Extract the arcs information from the ArcsList. ArcsList represents all

arcs information in the SS.

(5) Line 5: Function CheckPropert3AIlTN calls the function checkProperty3Partl
which is used to check the turn-taking between agents by comparing the state
space nodes information. It compares two nodes at one time. It compares the
odd numbers of the nodes since every two nodes represent the sender and the

receiver function of the same locution (message). It begins by comparing node

Chapter 6: Verification Method based Coloured Petri Nets and SML 181

Bridging the Specification Protocol Gap in Argumentation

1. Read&Save SS= state space graph information
2. Call CheckPropert3AIITN
3. Input (SS)
4. Extract (ArcsList)
5. Call turnTaking = checkProperty3Part1
6. Input (ArcsList)
7. Extract (nl,rolel, senderM1, receiverM1, n2,role2, senderM2, receiverM?2)
8. val restLength= length restArcsList
9. if (restLength >= 3) andalso (not (rolel =role2))
10. andalso (senderM1 = receiverM2) andalso (receiverM1 = senderM?2)
11. then checkProperty3Partl(restArcsList)
12. else
13. if (restLength >= 3) andalso ((rolel = role2))
14. andalso ((senderM1 = senderM2) andalso (receiverM 1 = receiverM2))
15. then checkProperty3Partl(restArcsList)
16. else
17. if (not (rolel = role2)) andalso (senderM1 = receiverM2)
18. andalso (receiverM1 = senderM2)
19. then true
20. else
21. false
22. End checkProperty3Partl
23. Return Back to CheckPropert3AIITN
24. if (turnTaking= true) then
25. "Property 3(Turn Taking) is Satisfied"
26. else
27. "Property 2(Turn Taking) is not Satisfied"
28. end CheckPropert3AIITN
29. Create&Save Property3 result file

Figure 6.5: Property 3 as an SML Function

1 with node 3. Note that the result of function checkProperty3Partl is saved in

the turnTaking variable.
(6) Line 6: Function checkProperty3Partl input is ArcsList.

(7) Line 7: Extract two nodes' information from ArcsList where:

Chapter 6: Verification Method based Coloured Petri Nets and SML 182

Bridging the Specification Protocol Gap in Argumentation

a) nl represents the first node;

b) rolel represents the role name of the first node;

c) senderMI represents the sender agent ID of the first node;

d) receiverM Irepresents the receiver agent ID of the first node;

e) n2 represents the second node;

f) role2 represents the role name of the second node;

g) senderM?2 represents the sender agent ID of the second node;

h) receiverM?2 represents the receiver agent ID of the second node;

(8) Line 8: Get the lengths of the remaining nodes information in the restArcsList

and save it in restLength.
(9) Lines 9 and 21:

a) Compare the first node's information (rolel, senderMIland
receiverM1) with the second node's information (role2, senderM?2

and receiverM?);

b) If there are other nodes in the restdrcsList, then recall the

checkProperty3Part] function (recurs).
(10) Line 23: Return the control back to CheckPropert3AIITN function.

(11) Lines 24 to 27: Check the result of the comparison (turnTaking variable). A

positive (negative) result indicates that Property3 is satisfied (unsatisfied).

(12) Line 29: Create the Property3 result file and write the result of
CheckProperty3AIITN.

Chapter 6: Verification Method based Coloured Petri Nets and SML 183

Bridging the Specification Protocol Gap in Argumentation

Property-4 Message Sequence

This property is used to verify that the LCC protocol message exchange respects the
DID. For instance, for the DID depicted in Figure 4.3 in chapter 4 one thing that
should be checked is that after an agent makes a claim the other agent can only

answer with a "concede" or a "why" locution. Figure 6.6 shows the CPN SML

specification of this property:

(1) Line 1: Read the state space graph information from the Property4 text file and

save this information in the SS.

(2) Line 2: Read the information of the DID diagram from the Possible Locutions
and Reply Locutions DID properties files and save this information in the

DIDPosM and DIDRepM where:
a) DIDPosM represents the set of possible locutions in the DID;
b) DIDRepM represents the set of legal reply locutions in the DID.

(3) Line 3: Call function CheckPropert4 which is used to compare the message
exchange in the SS with the message sequence in the DID (DIDPosM and
DIDRepM).

(4) Line 4: Function inputs are SS, DIDPosM and DIDRepM.

(5) Line 5: Extract the arcs information from SS. AllArcs represents the All arcs

information in the SS.

(6) Line 6: Compare the message sequence in the state space graph (A/lArcs) with
the message sequence in the DID (DIDPosM and DIDRepM) where:

a) checkMessageS function is used to compare messages;

b) messageSeq represents the checkMessageS function result. It is
considered true if the message sequence in the state space graph is

identical to the message sequence in the DID.

Chapter 6: Verification Method based Coloured Petri Nets and SML 184

Bridging the Specification Protocol Gap in Argumentation

—_

Read&Save SS= state space information

Read&Save (DIDPosM,DIDRepM)

Call CheckPropert4

Input (SS, DIDPosM,DIDRepM)

Extract (allArcs)

Val messageSeq = checkMessageS(allArcs,DIDPosM,DIDRepM)
if (messageSeq= true) then

"Property 4(Message Sequence) is Satisfied"

e T A L B o

else

_.
e

"Property 4(Message Sequence) is not Satisfied"
end CheckPropert4

_—
N =

Create&Save Property4 result file

Figure 6.6: Property 4 as an Standard ML Function

(7) Lines 7 to 10 are used to check the result of the comparison. A positive

(negative) result indicates that Property 3 is satisfied (unsatisfied).

(8) Line 12: Create the Property4 result file and write the result of CheckProperty4
in this file.

Property-5 Recursive Message

This property is defined to verify that the LCC protocol recurs when an agent sends a
message with an Intermediate DID Locution. Figure 6.7 shows the CPN SML
specification of this property:

(1) Line 1: Read the state space graph information from the Property5 text file and

save this information in SS.

(2) Line 2: Read the DID recursive locution information from the Intermediate
Locutions DID property file and save this information in

DIDRecursiveMessages.

(3) Line 3: Call function CheckProperty5. This function gets the expected recursive
locutions from DID and attempts to prove that these locutions are also recursive

locutions in the state space by proving the following:

Chapter 6: Verification Method based Coloured Petri Nets and SML 185

Bridging the Specification Protocol Gap in Argumentation

13.
14.
15.
16.
17.
18.
19.
20.
21.
22.
23.
24.
25.
26.
27.

Read&Save SS= state space information

Read&Save DIDRecursiveMessages

Call CheckProperty5

Input (SS, DIDRecursiveMessages)

Extract (Openingmessage, TNodes)

val checkopeningDM = findElementInTheList(DIDRecursiveMessages,

Openingmessage)
val checkTerminationM =
checkAllTeminatedMessags(DIDRecursiveMessages, TNodes)

if (not (checkopeningDM)) andalso (not (checkTerminationM)) then
"Property 5(Recursive Message) is Satisfied"

else
"Property 5(Recursive Message) is not Satisfied"

end CheckProperty5

Create&Save Property5 result file

Figure 6.7: Property 5 as an Standard ML Function

a) The target locution is not the starting or opening locution in the state

space;

b) The target locution is not the terminating locution in the state space.

(4) Line 4: Function inputs are SS and DIDRecursiveMessages.

(5) Line 5: Extract the starting locutions information from SS and save this

information in Openingmessage. Then extract the termination locutions

information from SS and save this information in 7Nodes.

(6) Lines 6 and 7: Check if the recursive locution in the DID is a Starting Locution

in the state space, where:

a) findElementinTheList function is used to check if the recursive

locution in the DID is a Starting Locution in the state space;

b) checkopeningDM represents the findElementInTheList function
result. It is considered true if the recursive locution in the DID is a

Starting Locution in the state space.

Chapter 6: Verification Method based Coloured Petri Nets and SML 186

Bridging the Specification Protocol Gap in Argumentation

(7) Lines 8 and 9: Check if the recursive locution in the DID is a Termination

Locution in the state space, where:

a) checkAllTeminatedMessags function is used to check if the recursive

locution in the DID is a Termination Locution in the state space;

b) checkTerminationM represents the checkAllTeminatedMessags
function result. It is considered true if the recursive locution in the

DID is a Termination Locution in the state space.

(8) Lines 10 to 13: Check the result of the comparison(checkopeningDM and
checkTerminationM) . A positive (negative) result indicates that PropertyS is

satisfied (unsatisfied).

(9) Line 15: Create Property5 result file and write the result of CheckProperty5 in
this file.

These five properties are provided by our verification model system. However, the
system allows users to add and run more properties. Appendix A shows more
properties, which are different from these five properties and are dependent on the

dialogue types.

6.5 Summary

This chapter has explained how we perform the automatic validation of LCC
protocols based on their DID properties. It describes in detail the four stages of the
verification model approach: (1) automatically transforming the LCC specification
into an equivalent CPNXML file; (2) construction of state space graph from the
resulting CPNXML file; (3) automatically creating DID properties; (4) automatically
verifying the satisfaction of the CPN SML specification in the state-space graph
computed from the LCC protocol by applying a verification model. The proposed

validation tool can be used to analyse the correctness of LCC.

As proof of this concept, in the next chapter we will describe the implemented LCC

argumentation protocol automated synthesis and validation tool.

Chapter 6: Verification Method based Coloured Petri Nets and SML 187

Bridging the Specification Protocol Gap in Argumentation

Chapter 7

Design and Implementation

This chapter ties together all of the separate sections of the thesis. It discusses the
architecture of our systems and the implementation of the GenerateL CCProtocol tool
that has been developed as part of this thesis. As explained in chapters 5 and 6, this
tool enables the user to automatically generate LCC protocols from DID
specifications, along with semi-automatically checking the correctness of the

generated LCC protocols.

As shown in Figure 7.1, the GenerateLCCProtocol tool receives a DID as an input

and returns:

(1) The LCC argumentation agent protocol resulting from applying LCC—Argument

patterns over the DID given as input (as explained in chapters 4 and 5).

(2) The result of verifying if the resulting LCC protocol satisfy the DID properties

(as explained in chapter 6).

This chapter begins by providing a brief overview of the system architecture in
section 7.1. Section 7.2 discusses, in detail, an example of use of the tool. Lastly,

Section 7.3 summarises this chapter.

Input Output
1
LCC Protocol -
GenerateLCCProtocol i
DID - 2
g Tool LCC Protocol Verification
model result g

Figure 7.1: GenerateLCCProtocol Tool

Chapter 7: Design and Implementation 188

Bridging the Specification Protocol Gap in Argumentation

7.1 Architecture

The synthesis protocol tool (GenerateLCCProtocol tool) has been designed and
implemented in the Java programing language. The tool constis of two parts, as

shown in Figure 7.2.

7.1.1 Part One: Synthesis of Concrete Protocols Architecture

Part one of the thesis architecture (as shown in Figure 7.2) is used to bridge the gap
between AIF and LCC using transformational synthesis. Part one, explained in detail

in chapters 4 and 5, was built in two stages:

(1) Specification of multi-agent protocols in a new high level control flow
specification language called Dialogue Interaction Diagram (DID), which

extends the AIF. The DID is provided in chapter 4;

(2) Automatic synthesis of concrete LCC protocols from DID specifications by
recursive application of LCC-Argument patterns. The fully automated synthesis

is provided in chapter 5.

7.1.2 Part Two: Verification Model Architecture

Part two of the system architecture (as shown in Figure 7.2) provides a verification
methodology based on CPN and SML language to verify the semantics of the DID
specification against the semantics of the synthesised LCC protocol. The verification

methodology is provided in chapter 6. It was built in four stages:

(1) Automatically transforming the LCC specification (the resulting LCC protocol
from part one) into an equivalent Coloured Petri Net (CPN). The formal
semantics of the CPN model allows us to prove that certain (un)desirable
properties are (un)satisfied in the LCC protocol. The proof of properties in the
LCC protocols mapped into CPNs is supported by a state-space technique,

which is used to compute exhaustively all possible execution states;

(2) Manual construction of the state space by the user (as explained in chapter 6);

Chapter 7: Design and Implementation 189

Bridging the Specification Protocol Gap in Argumentation

=
I
|
|
|
|
|
|
|
I
|
|
|
|
|
|
|
I
|
|
|
|

Pa

t 1(Synthesis of Concrete Protocols)

A 4

»

Automatic
generation

2 By using Design Patterns |, -)
1 —— (LCC-Argument Patterns) | . OQutput 1.
DID : :I.n:pu:t. -] Chapter 5 Resulting LCC
(Argument lzlrfg(()fil
Specification .
Language) Multi-agents
Development
Chapter 4 Language)
- - -
Part 2 (Verifiqation Model) | ____
3 Chapter 6 1
Automatic Automatic
Creation transformation
A 4 A 4
DID
Properties CPNXML
files
2
Construction

State space

Verification model

A

e Result

A 4

(General behaviour
property checking
code in CPN SML) 4

7 —_—

Automatic

."Outpuit.2. " v verification

True /False

—_—_— e =

Figure 7.2: Overall Architecture

Chapter 7: Design and Implementation

190

Bridging the Specification Protocol Gap in Argumentation

(3) Automatically creating DID (DID diagram from part one) property files;

(4) Automatically verifying the satisfaction of the CPN SML specifications in the

state-space graph computed from the LCC protocol.

7.2 An Example Scenario

This section presents an example scenario (Figure 7.3) which demonstrates how, by
using the GenerateLCCProtocol tool, the process of creating a DID diagram, the
process of synthesising concrete LCC protocols and the verification process can be
applied. This sections does not provide details of the underlying implementation. For
more information about the GenerateLCCProtocol tool and to see the options in each

windows, please see appendix E.

1.Creating Dialogue Interaction Diagram Process

In order to create a DID diagram for a persuasion dialogue (see chapter 3, section
3.4), the user needs to use the create new DID diagram screen (as shown in Figure
7.4). Using this screen, the user can create the DID by writing one piece of locution

icon information at a time:

(1) The first step is to identify the persuasion dialogue game locutions: there are five

locutions: claim, argue, why, concede and retract;

(2) The next step is to write one piece of locution icon information beginning from
the locution in the top of the DID. In this example, we must begin with claim (as

shown in Figure 7.4):

a) Locution Type = Starting. Note that if locution Type= Intermediate or
Termination, the user has to select one locuion from the 'reply to' locution list
(structural rules which represent the previous locution name) (as shown in

Figure 7.5);

b) Locution Name= claim(T);

Chapter 7: Design and Implementation 191

Bridging the Specification Protocol Gap in Argumentation

Creating a DID Diagram Process

1. Creates the DID diagram for a —

persuasion dialogue using ‘create new - —
DID diagram' screen in the - —_—

GenerateLCCProtocol tool

Svnthesising Concrete LCC Protocols Process

2. Synthesises the LCC protocol of
the persuasion dialogue using
'Generate concrete LCC protocols’
button in the GenerateLCCProtocol
tool

Generate LCC Protocol

Verification Process

3. Specifies agents Knolwldge Base

(KB) using 'Agents KB' button in the Agents KB
GenerateLCCProtocol tool
4. Transforms the LCC protocol of
the persuasion dialogue into an
Create CPN File

equivalent CPN model as well as
creates the DID properties files using
'Create CPN File' button in the
GenerateLCCProtocol tool

55 | §im Hier Aux

5. Constructs the state space of the . o
CPN model of the LCC protocol of | 4gp| % |
the persuasion dialogue using 'the G| o | 352
CPN state space tool' palette in the o %
CPN Tool ==

6.Applies the verification model ‘
using 'test a Text as ML Code(ML!)’ S5 sim i Aux ;;ah'nutacf;ea-text
icon in the simulation tool palette in |« .|}O| M »|n|.'

the CPN Tool

7. Displays the verificaiton model

result of the five basic properties .)

using 'Verification Model Result’' Verification Model Result

button in the GenerateLCCProtocol
tool

Figure 7.3: An Example Scenario of GenerateLCCProtocol Tool

Chapter 7: Design and Implementation 192

Bridging the Specification Protocol Gap in Argumentation

(2)-b) Locution Name= claim(T) -
(2)-a) Locution Type= Starting

\ / [=dte]

o DID language
File

Locution Type H
Sentler Coitions | Receiver Coditions,
‘ L cl3im(T)
/ Sender Information Recefver Informeation %—1
(2)_0) ¢l ¥ Role hariie dlaimgender? Rolename |claimReceiver0
Role Arguments ~ [KEP, CSF, 050, T)00 Role Arguments. <80, €30, C3F, IDP
Sender / Role D 0P RoleID 0 \ (2)—d)
information Receiver
Level Number [1 v Add Locutionto level k‘ information
Imau/ DID Properties
(3) Level
Number =1 (4) 'Add
‘ SaveDID .
locution to
level
(level 1)

Figure 7.4: Create New Dialogue Interaction Diagram Example (Claim

Locution lcon)

Reply to locution
/’ (structural rules)

= DD languzss

Add Locusion to level

Load DD Image

Save DD

v

| \

Locution Formal definition (DID textual representation)

Figure 7.5: Create New Dialogue Interaction Diagram Example
(Add Locution Formal Definition to DID)

Chapter 7: Design and Implementation 193

Bridging the Specification Protocol Gap in Argumentation

Select an Option @

Iz‘ The DID file has been created, Would you like to open this file

| Yes || Ho ||Cancel|

Figure 7.6: Open DID File Dialogue Box

c¢) Sender information: Role name = claimSenderp; Role arguments = KBp,
CSp,CSo, T, IDp; Agent ID = [Dp and Role conditions=
addTopicToCS(T,CSp).

d)Receiver information: Role name = claimRecivero;, Role arguments = KB,

CSo, CSp, IDp; Agent ID = IDy; and Role conditions = null.

(3) Following this, we must select a locution level number (in this example, select

1);

(4) After that, we click on 'Add locution to level' button. Note that clicking on this
button adds the locution icon's information to the DID textual representation (as
shown in Figure 7.5). See appendix E for more information about the DID

textual representation;

(5) Then, we move to the next locution icon and repeat steps 2, 3 and 4 (section

4.2.3 in chapter 4 describes in detail a persuasion dialogue)
(6) Finally, when adding the last locution icon in the DID (see appendix E):
a) Write the DIDs properties in the properties text field;

b) Load the DID image by clicking on the 'Load DID image' (if there is an

image or graphical representation for this dialogue);

c¢) Click on 'Save DID' button to save the DID. When the user clicks on this
button a dialogue box will appear asking whether the user would like to
open the DID file (see Figure 7.6). The DID file's textual representation

screen will appear when the user clicks on "Yes' button (see Figure 7.7).

Chapter 7: Design and Implementation 194

Bridging the Specification Protocol Gap in Argumentation

& FileViewer: C:\Users\moon\Desktop’ PrologClient\src\basicprolegclient\LCC Diagrams\DIDPersuasion. bt (=)= =
File | LCC | Verification Model

Generate LCC Protocols
Show LCC

Dil

] =
Lod TestLCC Protocols

TITTET JAKBPCEP,CGE0,T,IDO),IDP,addTopicToCS(T,CER)),
Receiver-information[claimReceiver,(KBO,CS0,CSR,IDR),ID0,]
2

Lacution[Recursivewhy (T claim (T,

Sender-informationfreplyToClaimSender, (KBO,CS0,C8P, T IDP),IDC notFindTopicInKE(TKBO) and notFindTopiclnGS(T,CS0)),
Receiver-information(replyToClaimReceiver, (KEP, CSP CS0,T1D0),IDP]
|2

Locution[Termination,concede(T),claim(T)], |
Sender-informationfreplyToClaimSender, (KBO,CS0,C5P,T,1DP) DO findTopicInkKB(T,KBO) and notFindTopicnCS(T,C50) and notFindOppTopicinCS
Receiver-informationfreplyToClaimReceiver, (KBP, CSP,CS0,TID0L,IDR |
3
Locution[Recursive, arguelPre),why(Tl,

d rmationfreplyTowhySender, (KEP,CSP,CE0,TIDOYIDP Pre=iindPremise(T KBP, CSF)and addPreToGE(T,Pre, CSP),
nrorH TavWhyF iver,(KBO,C50,CSP,TIDF),IDO

S
Lacution[Termination,retract{T)whylT],
4] Il

[T

|»

Figure 7.7: The DID Textual Representation of the Persuasion Dialogue

2.Synthesising Concrete LCC Protocol Process

In order to synthesise LCC protocol from the DID of the persuasion dialogue by
recursively applying the LCC-Argument patterns, the user needs to click on the
'Generate LCC Protocol' button (on the LCC menu bar in the DID textual

representation screen of a persuasion dialogue in Figure 7.7). See appendix E for

more information.

In this example, when the user clicks on the 'Generate LCC Protocol' button, the tool
will ask the user for an LCC protocol file name and then generate the LCC protocol.
After that the LCC file dialog box will appear. The user has to click on the 'Yes'
button to display the generated LCC protocol (as shown in Figure 7.8). This process
is fully automatic (requiring no human assistance). The LCC-Argument patterns and
the automated synthesis process are exhibited in chapter 5 and appendix C gives a
detailed description of how to transfer a DID of a persuasion dialogue to an LCC

protocol by using LCC-Argument patterns.

3. Verification Process

In order to verify the generated LCC protocol of the persuasion, the user needs to:

1-Specify agents' Knowledge Base (KB)

In order to verify the generated LCC protocol, the tool needs to work with a specific

example. In other words, the user must provide the tool with the agents Knowledge
Base (KB).

Chapter 7: Design and Implementation 195

Bridging the Specification Protocol Gap in Argumentation

-
rams &= e M-
1.Name of the LCC o
protocol file (save file o
By
dialogue) screen -
=]
= concet_|
LCC file (===
1 The LCC file has been created
2' LCC ﬁle Open dlalog IE' Wrould you like to open this file?
box Yes
S FileViewan G CC Diagrams\PLCCPratocolinst [|| (=) |z

S IDF3I00) < addToplc TOCE(T,06)

CEP,CE0,T,ID0),IDF)

3. The Generated LCC

protocol screen o

0,TIDO),IDP) < BndTopiclnkB(T KKBO) and nolFi

D) <~ nofF IndTopicnkBAT KB0) and notk

I+

Figure 7.8: Synthesises of LCC Protocol of the Persuasion Dialogue

In this example, when the user clicks on the 'Agents KB' button (on the Verification
Model menu bar in the DID textual representation screen of a persuasion dialogue in
Figure 7.9), the tool will show a message dialogue screen which informs the user
when he/she is able to add the agent's KB information. The user has to click on the
'Ok’ button to display the Agent Knowledge Base screen (as shown in Figure 7.9).
Then, the user has to add the knowledge base (add one element at a time to the agent
KB list) for both agents (agent 1 and agent 2). After that, the user has to click on the
'Add Agentl and Agent 2 KB' button to save the KB list for both agents (as shown in
Figure 7.9). In this example, the agentl's KB= [("The car is safe”, "it has an
airbag")] and the agent2's KB= [("it has an airbag"”, "The car is safe")] (see
Appendix C).

Please note that the user can only add agen's KB lists using GenerateLCCProtocol
Tool before creating the CPN file. Otherwise, the user can add the agent's KB list
manually using the CPN Tool (edit the initial marking of the role argument places).
See Jensen et al. [Jensen et al., 2007] for more information about place initial

marking.

Chapter 7: Design and Implementation 196

Bridging the Specification Protocol Gap in Argumentation

2- Click on 'Agent KB' button

&5 FileViewer: C: /V i \basicpr ient\LCC Di i ==
File LCC | Verification Model |:/

- Agents KB

i Create CPNfile

Losutiony{ OPen CPNfile ml

Sender-ir| Verification Model Result SP,GS0,T,ID0j,IDP,adeTopicToGS (T, CSP),

{KED,C50,CSP IDPYIDO],
2

Locution[Recurs e why(T) claim{T],
Sender-information[replyToClaimSender, (KBO,CS0,C5F T, DP)IDO,noFind TapicnkB (T,KBE) and notFind TopicInCGS(T,CE0Y,
Recei Toc W(KBP,CSP,.CE0TID, DR,

2
Locution[Termination,concededT),claim(T)],

Sender-information[replyTaClaimSender, (KBO,CS0,C5P T, DPLIDO indTopicInKB(TKBQ) and notFindTopicInGS (T, CS0) and notFind0ppTopicnCs{ |
Recei Toc (KBP,CSP,CE0 T,1D03,IDP,]

3

Locution[Recursive arguedPre) why(T)],

Sender-infarmatianreplyTowhySender, (KBP,CSP,C50,T,1D03,IDP Pre=findPremise(T,KEP,CSP)and addPreTaCS(T Pre,C5PY,
R T (KBO,CE0,CEP T IDR)LID0,]

3

Locution[T: ratract(T) whyT)],
<

Message

==

@ Please note: You can only add Agents KB before creat CPH Tile

2- Click on 'Ok’ button

3- Add the Knowledge Base for both agents

/]
& Agents Knowledge Base EI@
Agent 1 Knowlegde Base (KB1)
/ /]
/ Vi

Argument | Premise

‘ Add an element to KB / / | | Remave an element fram KB |

The car is safe , has an airbag

Agent 2 Knowlegde Base (KB2)

. . ‘ / | Premise |
Add an glement to KB / | |

Remave an element fram KB |

‘ Add Agentl and Agent 2 KB

X |

\
‘ Cancel \ ‘

4- Click on 'Add Agentl and Agent 2 KB)

Figure 7.9: Specifying Agents Knowledge Base Screens

Chapter 7: Design and Implementation 197

Bridging the Specification Protocol Gap in Argumentation

2- Transform the LCC Protocol into an Equivalent CPN Model

To transform the LCC protocol of the persuasion dialogue into an equivalent CPN
model (CPNXML file), as well as to create the DID properties files, the user must
click on the 'Create CPN File' button (on the Verification Model menu bar in the

DID textual representation screen of a persuasion dialogue in Figure 7.10).

In this example, when the user clicks on the 'Create CPN File' button, the tool will
ask the user for a CPN model file name and then generate the CPN model
(CPNXML) file as well as the DID property files (see chapter 6 and appendix C).
After that the CPN model dialogue will appear. The user has to click on the 'Yes'
button to display the topic input dialogue (as shown in Figure 7.10).

Following this action the user must enter the topic. Then, the CPN model opens a
dialog box. This box asks the user if he/she would like to open the CPN model file.
The generated CPN model file screen will appear when the user clicks on 'Yes'
button. This process is fully automatic. The automated transformation of an LCC
protocol into an equivalent CPN model (CPNXML file) is examined in chapter 6 and
appendix C gives a detailed description of how to transfer an LCC protocol of a

persuasion dialogue to a CPN model.

3- Construct the State Space of the CPN Model

After creating the CPN model file, the user needs to click on the 'Instruction' button
in the Generated CPN model (CPNXML file) screen in Figure 7.10. An instruction
screen (see Figure 7.11) will appear asking the user to perform eight manual steps in

order to construct the state space and to apply the verification model.

In order to construct the state space of the CPN model of the persuasion dialogue,
the user needs to follow the first four steps which appears in the instruction screen

(see chapter 6, section 6.2.1 and appendix C):
(1) Open CPN Tool.

(2) Open CPN file of the generated LCC file.

Chapter 7: Design and Implementation 198

Bridging the Specification Protocol Gap in Argumentation

T ==
File LCC Vesification Moded
[Agerts K2
1. The 'Create CPN File' R ——
Button on the Verification opancorr 59 —
Model Menu Bar
sl Save File (e
Savein LCC Diagrams -] E cr M-
= Name Date modified Type Size |‘|
e 19 april 2012 [
2. Name of the CPN - Lo
Deskiop 1
b ol 1March
model file (save file Eimarehz
L 21 AprilSolveChangEPlacePrpblem
dialogue) screen - = jf,:i‘;‘;‘m ’ ’
Fie name [FCPiiFien o Save
Save as type [All Files () | Cancel |
Dilaog EX=)
3 * CPN mOdel dlalog bOX Please click Yes below if you would like to enter dialogue topic
[Tnput ==
101 3 Please enter Dialogue Topic?
4. Topic input dialog box = Poass smor o |
. CPMAXML file (===
5' CPN mOdel Open dlalog Izl The CPHM file has been created
Wwould you like to open CPNXMLTile?
box
= i i ==
CPHOGL File
< #am version="1 (F encading="is Bl
(<IDOC IDTD CPADOAL 1.QWEN" *hifpyhwwaw daimi. au dki~t pntool sindDTOWGRp . dte"= Il
6. The Generated. CPN N
model (CPNXML file)
screen o
=globbo
=toloric="ID1412461 220>
<stingi =
1 v |
1] i ‘open the CPHICHL file in the CPN Tool and follow the instruction provided in:
Instruction

Figure 7.10: Transforming LCC Protocol into an Equivalent CPN Model
Screens

Chapter 7: Design and Implementation 199

Bridging the Specification Protocol Gap in Argumentation

(s F==[r=m

Instruction
1- Open CPN Tool.

2 Open CPN file of the generated LG file
3 Selectthe state space tool palette

4+~ Selectthe Enter State Spase (Enter 55 in the state space tool palette, and apply itto one of the pages in the CPN mosel

- Selectthe simulation tool palette.

& Selectthe Evaluates atext as ML code (ML) in the simulation tool palette, and apply fto ane ofthe property pages in the GF
7- Repeat step 6 for all properties pages

@8- Belect Bhow Verification Model Result from Verification Model menu bar.

o« I D

Figure 7.11: Instruction Screen

(3) Select the state space tool palette.

(4) Select the Enter State Space (Enter SS) in the state space tool palette, and apply
it to one of the pages in the CPN model.

4- Apply the Verification Model

To Apply the verification model, the user needs to follow the steps numbered 5, 6

and 7 which appears in the instruction screen (see chapter 6 and appendix C):

e Step 5: Select the simulation tool palette.

e Step 6: Select the 'Evaluates a text as ML code (ML!)' in the simulation tool
palette, and apply it to one of the property pages in the CPN model.

e Step 7: Repeat step 6 for all properties pages.

5- Display the Verificaiton Model Result

To display the verificaiton model result, the user needs to follow step numbered 8
which appears in the instruction screen (see chapter 6 and appendix C). The user
needs to click on the 'Verification Model Result' button (on the Verification Model
menu bar in the DID textual representation screen of a persuasion dialogue in Figure

7.12).

In this example, when the user clicks on the 'Verification Model Result' button, the
reminder dialog box will appear to remind the user to construct the state space and to
apply the verification model activities. The user has to click on the 'Yes' button to

display the verification model result screen (as shown in Figure 7.12).

Chapter 7: Design and Implementation 200

Bridging the Specification Protocol Gap in Argumentation

Message ==
1. Reminders dialog box =
'd) Please note: You will see the result if you did the manually Properties Checking by uesing the CPN Tool
& Verification Model Result (=3 EeR| <0

CPNFile [7avatoFrologiBasicFrologGlientiscibasicprologelientlL GG Diagrams\LCC Frotocols.ins]

2 Veriﬁcation Model Verification Model Result

[Termination of a Dialogue Property is Satisfied

Result screen

ety s Satisfian

fied

Dialngue Opening Property is Satisfied

Figure 7.12: Verification Model Result Screen

7.3 Summary

This chapter has given an overview of the architecture of the thesis. It also has
discussed an example which illustrates how the GenerateLCCProtocol tool is used to
create DID diagrams, synthesis the concrete LCC protocols, and verify the
synthesised protocols.

Chapter 7: Design and Implementation 201

Bridging the Specification Protocol Gap in Argumentation

Chapter 8

Evaluation and Discussion

This chapter discusses and summarises the main contributions of this thesis. It is also
points out limitations of the thesis. Discussions on the synthesiser (synthesis of
concrete protocols), the verification method and the GenerateLCCProtocol tool are
given in Sections 8.1, 8.2 and 8.3, respectively. Lastly, Section 8.4 summarises this

chapter.

8.1 Synthesis of Concrete Protocols

The purpose of this thesis, as mentioned in chapter 1, has been to bridge the gap
between argument specification and protocol implementation using an extension of
the Argument Interchange Format (AIF), that we called Dialogue Interaction
Diagram (DID), as the specification language and the Lightweight Coordination

Calculus (LCC) as an implementation language.

Both chapter 4 and 5 as well as appendices A, B and C have demonstrated how
automated synthesis method can connect argumentation to MAS interaction
protocols in a process language. This, potentially, could allow developers of
argumentation systems to use specification languages to which they are accustomed
(in our case AIF/DID) to generate systems capable of direct deployment on open

infrastructures (in our case LCC).

The following subsections discuss the relation between DID and AIF, the difference
between DID and related languages (AIF extensions) and the limitations of the

synthesis methods (including DID and LCC-Argument patterns).

8.1.1 Relation between DID and AIF

The synthesis of concrete protocols approach presented in this thesis began with AIF.

However, as mentioned in chapter 3 and 4, a fully automated synthesis beginning

Chapter 8: Evaluation and Discussion 202

Bridging the Specification Protocol Gap in Argumentation

from the AIF is not possible because AIF is an abstract language that does not
capture dialogue game concepts (e.g. locutions, starting rules and turn taking rules),
neither it captures some protocol implementation concepts (e.g. sender and receiver
agent's roles concept) that are needed to support the interchange of arguments

between agents. An example of AIF obstacle is shown in chapter 3 section 3.8.3.

The only two studies which have attempted to solve the AIF obstacle are Modgil and
McGinnis [Modgil and McGinnis, 2007] and Reed et al. [Reed et al., 2008 ; Reed et
al., 2010]. The limitations of these two approaches are demonstrated with examples
in chapter 3. Modgil and McGinnis' [Modgil and McGinnis, 2007] work extends AIF
to represent argumentation-based dialogues. [Reed et al., 2008] extended AIF to
AIF+ so that it can handle argumentation dialogue games as well as represent the
relation between the locution (in AIF+) and its propositional content (in AIF).
However, similarly to AIF, AIF+ is used to represent data, not to process data. In
fact, both Modgil and McGinnis [Modgil and McGinnis, 2007] and Reed et al. [Reed
et al., 2010; Reed et al., 2008] attempted to solve the dialogue game problem of AIF
(by adding dialogue games concepts to AIF), while failing to address the
implementation problem (adding protocol concepts to AIF). See Section 8.1.2 for

more details.

To remedy this, this thesis proposes a new intermediate language between the AIF
and LCC called DID, which requires additional information that cannot be deduced
from AIF. In practice, DID is a new layer on top of AIF. DID is used to represent
interaction protocol rules between two agents. It has the dialogue games concepts
(locutions, participants commitment store and commitment rules, structural rules,
turn taking rules, pre-condition rules, post-condition and locution types) and protocol
implementation concepts (sender and receiver agent's roles concept). The definition

of DIDs and the example of DIDs are provided in chapter 4.

As mentioned above, this research attempts to close the gap between standard

argument specification and protocol implementation by automating the synthesis of

Chapter 8: Evaluation and Discussion 203

Bridging the Specification Protocol Gap in Argumentation

AIF Hﬁ\ B
e
DID Locution
icon
s -
R4 Locution name (arguments) o
X Sender Role Name Receiver Role S e
L 7 Name A
,,/ Sender \\\\ Sender Role Receiver Role ,,, \\\
<, P Arguments Arguments .7 Receiver ™~
\\Condltl(’}l’, Sender Agent ID Receiver Agent ID “~ Post- >
N (e.g. IDp) (e.g. IDy) *+ conditiop-

~ ’
[N

N7

Figure 8.1:The Relationship between AIF and DID Locutions Icon

protocols in LCC from argument specifications written in the AIF. However, by the

time we get to the DID, little of the AIF remains.

In fact, AIF could be embedded inside the agent and used by agent to express his
knowledge and check the satisfaction of the message constraints. Therefore, DID is
not an extension of AIF. It is important to point out that DID can work with any
argument format (written in the AIF, or in other argumentation-based formalism)
where DID coordinates arguments exchange between agents and the argument

format (such as AIF) express the agent knowledge for the constraints.

DID is more than an argumentation language. It can be used to describe all
argumentation systems that can be described as a sequence of turn taking recursive

steps terminating in a base case.

The Relationship Between the DID and AIF Example
The relationship between DID and AIF is that DID arguments could be expressed in
AIF (see Figure 8.1). The following example in Figure 8.2(a) and Figure 8.2(b)

concerns the flying abilities of birds and penguins (see chapter 3 for more details)

Chapter 8: Evaluation and Discussion 204

Bridging the Specification Protocol Gap in Argumentation

11= flies(Tweety) 0.8

RA1

-V

\

2= bird(Tweety)

3= bird(Tweety) >
0.8 flies(Tweety)

.- ~.
- ~.
. ~

L addTopicToCS(T,CSp). :*

~ R
~.7

A

Argument DID Locutions
L1= claim(Tweety flies)
claimSendery, claimReceiver,,
KBA1,CSA1,CS42,T,ID g, KBa2,CS42,CSar, IDag
. 1Dy, ID,
} \

y

\

L2= why(Why does Tweety fly?)

replyToClaimSender,

replyToClaimReceivery;

KBAZ)CSAbcsAl 9T91DA1

KBAI 9CSA1 nCSA29TnIDA2

Dy

ID4y

J

e

-

~

'~

<“notFindTopicInKB " >. -+~
S+ (T,KBo)

B
el
-

'~

.

- ‘-\’ﬁotFindTopicInCS\ Y

S (TCSo) .-

-
. -

.o

N

4

L3= argue(Tweety flies because Tweety is a bird , birds
generally fly.)

ReplyToWhySender,;

ReplyToWhyReceivery;

KBAI’CSA] ,CSAQ,T,IDAZ

KBAZnCSA27CSA13T71DA1

IDy,

IDas

\

_ '/ﬁndPremise\'\
/\'_(T, KBP,CSP).’. ',-"\'

/

/

/

~

- .
.2 Pre="-(

""'./’addPreToC\S"-\
'*-_(T,Pre,CSp),/’

~ -
~-

\ 4

L4= argue(Tweety does not fly because
Tweety is a penguin, penguins do not fly.)

Figure 8.2 (a): lllustrating the Link between Argument (AIF Nodes) and DID

Locutions

Chapter 8: Evaluation and Discussion

205

Bridging the Specification Protocol Gap in Argumentation

L3=argue(Tweety flies because Tweety is a
bird , birds generally fly.)

I1= flies(Tweety) 0.8

v

¢ L4= argue(Tweety does not fly because Tweety is a
penguin, penguins do not fly.)

_J 14= ~flies(Tweety)

~

" findDefeats "~. .

ReplyToArgueSender,, | ReplyToArgueReceiverery,
KBAz,CSAz,CSAl,T,Pre, KBAlaCSAbCSAZ)TaPre
1 Al 5 DAZ
IDas IDy;
\RAz
~ a ’D;f\i\ .
~

~
~

/
/

¥

(T,Pre,KBo, .-
~._CSo), .7
r-
/

o éd-IdDefeatsToC'S\ '~

v

L5= concede(You are right. Tweety does not fly)

15= penguin(Tweety) /- (noi(T),Def,CSo). -+~
2
16= penguin(Tweety) >
~flies(Tweety)
replyToArgueSender;

replyToArgueReceiverer,,

KBAl ,CSAI,CSAz,T,PrC

nIDAZ

KB2,CS842,CS41,T,Pre,
1Dy

IDay

IDns

~.
~

_+* findPrelKB™ - |
Seo(Pre, KBg) -~

<~

Pt addPreToCS " ~. R
S (TPre,CSp).- ="

~

L.
~ L~

-

.-

AR

.z “fotFindPrelnCS * TPt ’ﬁgtFindOppPreInés S\
"~ (Pre, CSo). - e RN {not(Pre), CS). -

Figure 8.2 (b): lllustrating the Link between Argument (AlIF Nodes) and DID
Locutions

Chapter 8: Evaluation and Discussion 206

Bridging the Specification Protocol Gap in Argumentation

and shows the relationship between DID diagram (in Figure 4.3 in chapter 4) and the
AIF diagram (in Figure 3.3 in chapter 3) (please note that this relationship is not
added automatically):

In this dialogue between A/ and A2, the dialogue game consists of five locutions
which are represented by L1, L2, L3, L4 and L5 icons. The argument consists of six
propositions which are represented by 71, 12, I3, I4, 15 and 16 nodes. The interaction
between the argument (AIF diagram) and the dialogue game (DID diagram) is
described by the thick arrows and the relation between the argument (AIF diagram)
and the constraint in the dialogue game (DID diagram) is described by the dotted
arrows. The LI and L2 have a direct link with the propositional content 7/ (see
Figure 8.2(a)). The links between L3 with 2 and I3 (see Figure 8.2(a)) are
represented by RAI node (the RAI node connects [/ "flies(P)" with its premises 12
and /3).

The RA2 node links L4 and its propositional content /5 and /6 (the RA2 node
connects 14 "~flies(P)" with its premises /5 and /6). Finally, L5 has a direct link with
14 (see Figure 8.2(b)).

In this example:
(1) A1 opens the discussion by sending claim(I1) in LI locution.

(2) DID diagram (in Figure 4.3 in chapter 4) specifies that A2 can reply with why(7)

or concede(T).
(3) 42 sends why(11)in L2.

(4) DID diagram (in Figure 4.3 in chapter 4) specifies the legal replies argue(p)

where f’s conclusion is 7, or retract(T).

(5) Al responds to the challenge by declaring the supporting premises /2 and /3 for
11 [sends argue(12 and 13) in L3 node]. Note that 4/ satisfies the argue message
constraint Pre=findPremise(T, KBp,CSp) using AIF which describes the relation

between A1's argument (7T=Tweety flies in 11) and the its supporting

Chapter 8: Evaluation and Discussion 207

Bridging the Specification Protocol Gap in Argumentation
premises (Pre= Tweety is a bird, birds generally fly in 12 and 13) (see Figure
8.2(a)).

(6) DID diagram (in Figure 4.3 in chapter 4) specifies the legal replies why(p),

argue(f3) where f’s conclusion is 7, or concede(T).

(7) A2 responds by declaring its supporting premises /5 and /6 for /4 [sends
argue(15 and 16) in L4 node]. Note that A2 satisfies the argue message constraint
Def=findDefeats(T,Pre,KBo,CSp) using AIF which describes the relation
between A42's argument (T=Tweety does not flies in 14) and the its supporting
premises (Def= Tweety is a penguin, penguins do not fly in 15 and 16) (see
Figure 8.2(b)).

(8) DID diagram (in Figure 4.3 in chapter 4) specifies the legal replies why(p),

argue(f}) where S’s conclusion is 7, or concede(T).
(9) Al responds by sending /4 [sends concede(14) in L5 node].

This example shows that the DID can work with argument formats written in the

AlF.

8.1.2 The Difference between DID and AIF Extension

As explained in detail in chapter 3 section 3.8.5, two studies have attempted to solve

the AIF problem by extending the AIF to handle some dialogue game concepts:
(1) Modgil and McGinnis [Modgil and McGinnis, 2007];

(2) Reed et al. [Reed et al., 2008; Reed et al., 2010] (Please note that the AIF+ is

still an ongoing work and our research was developed in parallel to this work).

Table 8.1 summarises the major differences between these two studies and DID:
(1) Locution Concept (Figure 8.3):

e DID: locutions are represented in the form of Locution icon (see chapter 4);

Chapter 8: Evaluation and Discussion 208

Bridging the Specification Protocol Gap in Argumentation

DID

Modgil and McGinnis
[Modgil and McGinnis,
2007]

Reed et al.
[Reed et al., 2008]

Represent
Locutions

Locutions are
represented in the form
of Locution icon.

Expands I-nodes content
to represent locution

Locutions are
represented in the form
of L-nodes

Dialogue Games
Concepts

DID has the following
dialogue games
concepts: locutions,
participants
commitment store,
commitment rules
(post-conditions),
structural rules, turn
taking rules, pre-
condition rules and
locution types.

Modgil and McGinnis
work has the following
dialogue games
concepts: locutions, pre-
conditions and structural
rules.

AIF+ has the following
dialogue games
concepts: locutions,
pre and post conditions
and structural rules.

Protocol automated

The user can perform

The user cannot perform

The user cannot

synthesis fully automated fully automated perform fully
synthesis of multi- synthesis of multi-agent | automated synthesis of
agent protocols using protocols multi-agent protocols
LCC—-Argument
patterns
Argument Format .
DID can work with any Only AIF Only AIF

argument format

Table 8.1: Differences between Modgil and McGinnis
[Modgil and McGinnis, 2007], Reed et al. [Reed et al., 2008] and DID

DID Locution icon .

Locution name

Sender role Receiver role
name name
Sender role Receiver role
argument argument
Sender ID Receiver ID

Modgil and McGinnis I-node

I: Locution name

Reed et al. L-node

L: Locution name

Figure 8.3: Locution Concepts

Chapter 8: Evaluation and Discussion

209

Bridging the Specification Protocol Gap in Argumentation

e Modgil and McGinnis [Modgil and McGinnis, 2007] expand Information
nodes (I-nodes) content to represent locution (see chapter 3, section 3.8.5 for

more detail about I-node);

e Reed et al. [Reed et al., 2008]: locutions are represented in the form of
Locution nodes (L-nodes), a subclass of Information nodes (I-nodes) (see

chapter 3, section 3.8.5 for more detail).
(2) Dialogue Game Concepts (Figure 8.4(a) and (b)):

e DID represents eight concepts of the dialogue games [Locutions; Pre-
condition rules; Post-condition rules; Structural rules; Participants
Commitment Store and Commitment rules; Locution types (Starting rules and
Termination rules which are used to specify when the dialogue starts and
when the dialogue ends);Turn Taking rules] using the locution icon (see

chapter 4);

e Modgil and McGinnis [Modgil and McGinnis, 2007] represent three dialogue

game concepts (as shown in Figure 8.4 and Figure 8.5):
a) Locutions: are represented by an I-node;

b) Pre-conditions: are represented by PIA-node (see chapter 3, section 3.8.5

for more detail about PIA-node);
c) Structural rules: are represented by PIA-node;

e AIF+ (by Reed et al. [Reed et al., 2010]) represents four dialogue games

concepts (as shown in Figure 8.4 and Figure 8.6):

a) Locutions: are represented by an L-node;

b) Pre- and post-conditions: are represented by a Locution Description
(LDesc-nodes) nodes [Reed et al., 2010]. In AIF+, for each locution,
represented by an L-node, there is a corresponding LDesc-node. Each

LDesc-node is linked to a corresponding PreCondDesc node (it describes

Chapter 8: Evaluation and Discussion 210

Bridging the Specification Protocol Gap in Argumentation

DID Dialogue Game 6&7
Locution types (Starting rules 1
Concepts and Terl?ination rules
Locution concept
_______ A /
i Locution type X / 2 &5
3&S5 I / Commitment rules and
Commitment rules and | / ..
v ' » Post-condition concept
Pre-condition concept ! \
II Locution name \
.0 Sender Role Name Receiver Role]
L7 \\\V Name N
,/’ Sender ‘\/' Sender Role Receiver Role R .
< Pre- :: Arguments Arguments 7 Receiver .
*. condition -~ Sender Agent ID Receiver Agent ID ~. Po.st.- 2
(e.g. IDp) (e.2.IDy) * conditiop-
e ‘ 4| T~ 2 N ~ 4 4
1 ! - Y
l A~ |
i ! Ja= === 4
1 1
/ / Structural
|
1 ! ’l rules concept
Locution name Il ! Locution name
Sender Role Sender Role | 1 | Sender Role Sender Role
Name Name I 1 Name Name
Sender Role | Sender Role | I | Sender Role | Sender Role
Arguments Arguments I 1/ Arguments Arguments
Sender Sender Agent | 1 Sender Sender Agent
Agent ID ID , 1 Agent ID ID
(e.g. IDy) (e.g. IDp) ! (e.g. IDy) (e.g. IDp)
4 b
X : > <
\ / ! \ /
\ / b \ /
\ / 1 \ Y
\ ! 117 AN
N/ 1 Ny
| * ________ AV4
|
|
Turn Taking rules
8
Modgil and McGinnis 3
Dialogue Game _ Structural
-
rules concept
&
-Structural rules
2 (Pre-condition) 1
Pre-condition - .
_ - Locution concept
concept II
4
Sender Agent ID I: Locution name

Figure 8.4 (a): Dialogue Games Concepts

Chapter 8: Evaluation and Discussion

211

Bridging the Specification Protocol Gap in Argumentation

Reed et al. Dialogue

Game Concepts

p 3 diti Post-condition 1
re-condition Locution concept
concept I
concept ! !
! I
! I
! 4
/
| 2 | 4 .)
L1: Locution name
PreCondDesc PostCondDesc / K
* 7 isa hasStart 4= == =19
hasPreCondDesc hasPostCondDesc \ €= — — _:
Structural rule ;

\ / =7

hasEnd €= = +

| LocutionDesc 1
hasEnd \ is-a { II
asStart] L2: Locution name I
Transitional I
Inference Scheme [has-a |
7y |
] |
| |
e e e e e e e e e e e e - = - — A

A

I

|

Structural rules concept
4
Figure 8.4 (b): Dialogue Games Concepts
Pre-condinon Structural rules
~ < _ -
> 4
~ - arzue(Bla- -
4
(cone(®) =) -
Locution 0

N\
\ T
N\
N\
A

13: argue(Tweety is a bird, birds generally fly)

Al

Figure 8.5: Modgil and McGinnis Example of Dialogue Games Concepts

212

Chapter 8: Evaluation and Discussion

Bridging the Specification Protocol Gap in Argumentation

| Form L— is-a — PresumptionDesc |¢— has
PostCondDesc
PreCondDesc |
' hasStart —| Concedinga
claim claim |
hasPreCondDesc hasPostCondDesc -

hasStart

hasEnd Asking for
. grounds fora | |
is-a hasEnd 7| Claim
is-a
/ hasStart
is-a P Arguing
LocutionDesc |&” /
' — isa concede hasEnd
: P .
o hasStart Starting a
counterargument H
hasEnd
is-a
hasEnd
hasStar Conceding an
\\ argument
hasStart
hasStar

hasEnd
hasEnd

Asking for
grounds foran | |

argument

hasStar
Retracting a

claim N

Transitional
Inference Scheme

|¢————— has-a

Figure 8.6: AlF+ Description of Persuasion Dialogue Games

the pre-conditions of locution) and PostCond-Desc nodes (it describes the
post-conditions of locution). In the AIF+ (Figure 8.6) representation of
persuasion dialogue in chapter 3, there are five LDesc-nodes corresponding

to the five locutions: claim, why, concede, argue and retract;

Chapter 8: Evaluation and Discussion 213

Bridging the Specification Protocol Gap in Argumentation

T
Locution name

! Sender role Receiver role K

. name name !

1 N ~
e < Sender role Receiver role R 7
1
! ' argument argument | '

N 1

! . Sender ID Receiver ID - |
! |
1 1
1 1
_________________________ }_________________________I

|
Sender and Receiver
agent's roles concept

Figure 8.7: DID Protocol Implementation Concepts
¢) Structural rules: the structural rules (the order sequence of locutions) are
represented by a transitional inference schemes node which describes, for
a given locution, the available locutions that a participant can select to
follow from the previous locution. In the AIF+ (Figure 8.6)
representation of persuasion dialogue in chapter 3, there are seven
transitional inference scheme nodes which describe the available
responding persuasion dialogue locutions for an uttered locution (e.g. the

why locution may be followed by either an argue or a retract locution);
(3) Protocol automated synthesis:

e DID: The user can perform a fully automated synthesis of multi-agent
protocols using LCC—Argument patterns since DID represents dialogue game
protocols [it has eight dialogue games concepts as well as protocol
implementation concept (Sender and receiver agents roles) as shown in Figure

8.7] (see chapter 5 for more detail);

e Modgil and McGinnis [Modgil and McGinnis, 2007]: The user cannot perform
a fully automated synthesis of multi-agent protocols. Their work does not
present all concepts which are needed in order to perform the automated
synthesis: (1) Post-conditions (helps to control agent behaviour); (2) Turn
Taking rules (help to control agent behaviour); (3) Starting rules (help to

control the starting of a dialogue); (4) Termination rules (help to control the

Chapter 8: Evaluation and Discussion 214

Bridging the Specification Protocol Gap in Argumentation

ending of a dialogue); (5) Sender and receiver agents roles (help to control the

way the dialogue proceeds).

e AIF+ (by Reed et al. [Reed et al., 2008]): The user cannot perform a fully
automated synthesis of multi-agent protocols. AIF+ does not present all
concepts which are needed in order to perform the automated synthesis: (1)
Turn Taking rules (help to control agent behaviour); (2) Starting rules (help to
control the starting of a dialogue); (3) Termination rules (help to control the
ending of a dialogue); (4) Sender and receiver agents roles (help to control the

way the dialogue proceeds).

(4) Argument Format

e DID can work with any argument format written in the AIF, or in other
argumentation-based formalism such as The Legal Knowledge Interchange

Format (LKIF) [Gordon, 2008]. See section 8.1.1.

e Modgil and McGinnis’s approach [Modgil and McGinnis, 2007] can only
work with AIF.

e AJF+ (by Reed et al. [Reed et al., 2008]) can only work with AIF.

8.1.3 DID Limitation

The DID can model large classes of argumentation systems (dialogue games) that
can be described as a sequence of turn taking recursive steps terminating in a base
case such as persuasion and negotiation dialogues (see chapter 4 and appendices A

and C). However, the DID has two limitations:
(1) Two agents:

We limited the DID diagram to two agents since the DID for N-agent needs more
concepts (e.g. recursive-conditions and recursive-arguments) which could make the

DID too close to an agent protocol and make the drawing of the DID diagram for N-

Chapter 8: Evaluation and Discussion 215

Bridging the Specification Protocol Gap in Argumentation

agent more difficult than writing the agent protocol in LCC notation (see chapter 4,

section 4.4.5).

However, in chapter 4, section 4.4.4 we were able to extend the DID locution icon to
represent N-agent dialogue games (see appendix B for more detail), although this is
not the most elegant solution (it is too complex for the user to create, understand and

edit). In doing so, we showed that it is possible to extend DID diagram.

To overcome the complexity of drawing the DID for N-agent, we hided the details of
DID diagrams for N-agent in a reusable black box and we used parameters to get the
information needed from the user. Besides, we performed automated synthesis of the
protocol and used a specific type of LCC-Argument patterns called broadcasting

pattern (see chapter 5, section 5.2.2). See section 8.1.4 for more detail.
(2) Unique-moves and Immediate-reply:

We restricted an agent's moves to unique-moves (an agent can make a single reply
for each possible move of the other agent. In other words, agents are not able to
send more than one message in one round of turn taking) and immediate-reply
moves (the turn taking between agents switches after each move and each agent

must reply to the move of the previous agent) (see chapter 4, section 4.2).

Although, many current systems [Prakken, 2005] enforce control structure (unique-
moves and immediate-reply), sometimes agents in dialogue games must have
freedom to explore multiple moves and alternative replies in one turn, returning to
earlier choices or to postpone replies. For example, unique-moves and immediate-
reply dialogue games are more appropriate when a quick decision has to be reached,
since this restriction forces agents to move their strongest arguments without wasting
time on other choices [Prakken, 2005]. However, multi-moves (when agents can may
make several moves before the turn taking between agents switches) and non-
immediate-reply (the turn taking between agents may switch after each move or may
switch later) dialogue games are more appropriate when the quality of the outcome is

more important than the time spent on it [Prakken, 2005].

Chapter 8: Evaluation and Discussion 216

Bridging the Specification Protocol Gap in Argumentation

We chose to enforce this restriction in order to be able to perform protocol automated
synthesis directly from a DID specification. However, if we want to use the DID to
model multi-moves and non-immediate-reply dialogue games, we do not need to
change the DID. We need to add new set of LCC-Argument patterns to our library to
allow the synthesiser to generate LCC argumentation protocols for multi-moves and

non-immediate-reply dialogue games. See section 8.1.4 for more detail.

8.1.4 LCC-Argument Patterns Limitations

The LCC-Argument patterns can be used with the DID to generate agent protocols
for many standard types of argumentation systems such as persuasion and
negotiation dialogues (see chapter 5 and appendices A, B and C). However, the

LCC-Argument patterns have some limitations:

LCC-Argument Patterns for Two Agents

Two patterns (Starting pattern and Termination-Intermediate Pattern) were proposed
to synthesise LCC protocols, for two agents, automatically. At this stage we could
claim that we have a full set of patterns to synthesis LCC argumentation protocols
for two agents. However, as explained in section 8.1.3, these protocols are limited to

unique-moves and immediate-reply dialogue games.

We believe that if we want to provide a solution for multi-moves and non-
immediate-reply dialogue games, we will need to add a new set of LCC-Argument
patterns (which may contain a lot of detailed information) to our library. For
example, if we want to allow a Termination-Intermediate Pattern to work with multi-
moves, we have to add a set of Rewriting methods which have the ability to consider

all different collections of possible sequences of moves (locutions).

Let us consider the example in Figure 8.8 (some details are omitted from Figure 8.8
for clarity). In this example, Level 3 has 3 locutions which means there are 15

different collections of possible sequences of reply moves to locution icon argue in

Chapter 8: Evaluation and Discussion 217

Bridging the Specification Protocol Gap in Argumentation

Level 1
e
argue Level 2
| |
why argue retract Level 3
l l
—_— Level 4
Figure 8.8: Partial DID Diagram
One move Agent Send ! Agent Send ! Agent Send
why E argue E retract
Two moves Three moves
Agent Send ! Agent Send Agent Send i Agent Send i Agent Send
why E why why | retract || argue
then i then then i then ! then
argue i retract retract E argue E why
"""""" i"""""" then ! then : then
Agent Send 1+ Agent Send ' '
' argue ! why ! retract
argue || argue ! :
then i then | |
: Agent Send | AgentSend | Agent Send
why ' retract ' '
| why 1| retract argue
Agent Send i Agent Send then i then i then
retract E retract argue ! why | retract
then | then then i then i then
why | argue retract [;| argue |, why

Figure 8.9: Possible Sequence Of Reply Moves

level 2 (Figures 8.9 shows 15 possible sequence of reply moves for locution icon

argue in level 2). This means that the new Rewriting methods must be able to:

(1) Use a specific mathematical function to find the number of possible sequence of

reply moves;

Chapter 8: Evaluation and Discussion 218

Bridging the Specification Protocol Gap in Argumentation

(2) Provide a way (an algorithm) to select the correct next move(s).

(3) Provide a way (an algorithm) to avoid repeating the same sequences of moves

(locutions).

Therefore, it would require adding algorithmic information to this pattern, which

could be very difficult to edit by non-technical users (see chapter 9 for more detail).

LCC-Argument Patterns for N-agent

Part of our research focused on dialogue games involving more than two agents.
However, we generated one type of LCC argumentation protocols for N-agent.
Practically, our automated synthesis method uses an LCC-argumentation
broadcasting pattern to divide agents into groups composed of two agents. Then it
follows the automated synthesis process of two agents' protocols (see chapter 5,
section 5.2.2) to generate the LCC protocols, which allows pairs of group to

communicate with each other.

This means that our tool limits the LCC argumentation protocol for N-agent to a
broadcasting pattern. However, it is interesting to consider what it would be like to
actually build more patterns that can deal with any type of N-agent protocol. Can we
have a full set of patterns to synthesis LCC argumentation protocols for N-agent? To

do this we would need to either:

(1) Create one pattern and add more detail to it (to be able to work with different
types of N-agent protocols), which could make it very difficult for non-technical

users to edit.

(2) Add more detailed patterns to the LCC-Argument patterns library. It is true that
more detailed patterns are more useful than abstract ones, in the sense that they
can model more dialogue games. However, detailed patterns usually become too

specific and are less likely to occur frequently.

(3) Extend the DID diagram to represent N-agent diagrams (be able to represent

recursive concepts) and add more patterns to the library in order to work with

Chapter 8: Evaluation and Discussion 219

Bridging the Specification Protocol Gap in Argumentation

the new notations in the DID diagram which we previously performed (see
appendix B). Although this is not the most elegant solution (it is too complex for
the user to create, understand and edit DID diagram for N-agent), we showed
that it is possible to extend the DID diagram and synthesise N-agent protocols.
However, it would appear that in the case of N-agents, we cannot obtain a
complete set of LCC-Argument patterns. Futhermore, there are some limitation
in the LCC language itself. The LCC language supports only sequential
definitions of roles. For example, if an agent in a given role wants to send the
same message to a group of agents all at exactly the same time, LCC cannot
model that, although it could send a number of copies of the same message in
sequence. In fact, it would appear that, in the case of N-agent, we cannot obtain

a complete set of LCC-Argument patterns.

8.2 Verification Method based on Coloured Petri Net and SML

This thesis explained a verification method based on CPNs and SML (see chapter 6).
Given the DID and the LCC specification, our verification tool could answer the
question: Does the LCC specification satisfy the DID behaviour properties? To

answer this question, the tool performs the following tasks:

(1) Automatically transforms the LCC specification into an equivalent CPNXML
file;

(2) Constructs from the CPNXML file the state space;
(3) Automatically creates DID properties files;

(4) Automatically verifies the satisfaction of the DID properties in the state-space

graph computed from the LCC protocol by applying a verification model.

The next subsections discuss the limitations of the four steps of our verification

method.

Chapter 8: Evaluation and Discussion 220

Bridging the Specification Protocol Gap in Argumentation

8.2.1 Limitations of Transforming the LCC Specification into an
Equivalent CPNXML File

Our verification method generates a hierarchical CPN model from an LCC
specification by using a set of transformational rules. Although many steps of our
approach are automatic, our approach is not able to automatically transform LCC
parameters to colour set types of the CPN model which is a result of LCC being an
untyped language. This means that the user needs to manually supply colour set

types information to the generated CPNXML file.

By default our verification tool defines three types of colour set and thirteen
functions (see chapter 6, section 6.1 for more detail) and saves them in the Global
Declaration file. The user does not need to know about them unless he/she needs to
define new types or functions. That means the user needs to learn CPN colour sets
and function concepts as well as the CPN SML language in order to supply this
information to the generated CPNXML file. However, the user does not need to
become a CPN SML programmer in order to supply this information. He/she needs
only to learn how to declare colour sets (data types) and variables along with

knowing how to compare one data (datum) value with another.

8.2.2 Limitations of Constructing of the State Space

The second step of the verification method is to construct from the CPN model its
state space (directed graph, which represents all possible executions of the CPN
model). The fourth step of the verification method concerns the full state space
analysis which is possible if the state space of the CPN model has a fixed size (i.e.
the state space graph has a finite number of nodes). Although, we have not
experiences a state space explosion problem with the persuasion and negotiation
dialogues examples (appendices C and A) as explained in chapter 6, our verification
method is likely to encounter the state space explosion problem (state space analysis
will be prohibited because of the infinite number of the state space graph nodes).
This is because the CPN model could have a finite number of agents but for instance

it could describe an LCC protocol where agents can be involved in an infinite loop.

Chapter 8: Evaluation and Discussion 221

Bridging the Specification Protocol Gap in Argumentation

8.2.3 Limitations of the Verification Method

Our verification method identifies five basic properties, which are independent of
any dialogue games types (Dialogue opening property, Termination of a dialogue
property, Turn taking between agents property, Message sequencing property and
Recursive message property). See chapter 6, section 6.4 for more detail. If the user
needs to verify different properties than these five properties, the user needs to
manually add the new properties to the generated CPNXML file (Appendix A
describes how to add new properties to the generated CPNXML file with examples).
That means that the user needs to learn the CPN SML language (in other words,

become a CPN SML programmer) in order to write the new property code.

8.3 GenerateLCCProtocol Tool

The GenerateLCCProtocol tool (see chapter 7 for more detail) enables the user to
synthesise LCC protocols automatically from DID specifications and verify the
semantics of the DID specification against the semantics of the synthesised LCC

protocol automatically.

This tool has been designed and implemented to perform two tasks:
(1) Synthesis of concrete protocols;

(2) Model verification.

The next two subsections discuss the limitations of these two tasks.

8.3.1 Task One: Synthesis of Concrete Protocols

The GenerateLCCProtocol tool receives a DID as an input and returns the
corresponding LCC specification protocol. One advantage of the DID is that it is a
high-level graphical language (see chapter 4, section 4.2 for more detail) and people

in the agent community are familiar with high-level language or graphical notation

Chapter 8: Evaluation and Discussion 222

Bridging the Specification Protocol Gap in Argumentation

languages like Agent Unified Modelling Language (UML)" [Bauer et.al., 2001].
Also, specifying argumentation protocols using programming-level protocol
languages is error-prone, and a higher-level graphical language can help avoiding

low-level errors.

Unfortunately, our tool does not have a graphical representation for all DID
diagrams files. In fact, the tool allows the user to create the DID diagram by
providing one locution icon information at a time using locution icon graphical
representation (see chapter 7, Figure 7.14). For each locution icon the tool generates
a textual representation for it and saves it in the DID diagram file (see chapter 7 for
more detail). Then, if the user needs to edit the DID diagram file, the user has to edit
the DID textual representation. This means that the user has to know the formal

representaion of the DID as well as the graphical noation of the DID diagram.

To avoid this problem it would be useful for the user to create, review and edit the
DID diagram in a graphical way which means that more work is needed to improve

our tool (see chapter 9 for more detail).

8.3.2 Task Two: Model Verification

For this task, the Generatel CCProtocol tool receives a DID and the LCC
specification protocol as an input, verifies them and then answers the question: Does
the LCC specification satisfy the DID propertiers? This is explained in chapter 6 and

section 8.2. Four steps are needed to answer this question:

(1) Transforming the LCC specification into an equivalent CPNXML file. This step

is processed by the GenerateLCCProtocol tool in a fully automatic way;

(2) Constructing the state space. Unfortunately, the GenerateLCCProtocol tool is

not able to construct the state space in an automatic way. The user needs to open

" UML is a graphical language which consists of a set of graphic symbols. It is used to create,

process, and model agent-based software, object-oriented software and workflows.

Chapter 8: Evaluation and Discussion 223

Bridging the Specification Protocol Gap in Argumentation

the CPNXML file using the CPN Tool and construct the state space in a manual
way (see chapter 6, section 6.2.1 and chapter 7). In fact, the CPN Tool team
created the Access/CPN [Westergaard and Kristense, 2009] tool to connect the
CPN tool with external applications (e.g. Java applications) which could help to
construct the state space in a fully automatic way. Unfortunately, we were not
able to use the Access/CPN tool to connect the CPN Tool with the
GenerateLCCProtocol because there are some problems in the Access/CPN tool

itself*°.

(3) Creating DID properties files. This step 1is processed by the

GenerateLCCProtocol tool in a fully automatic way;

(4) Verifying the satisfaction of the CPN SML specification in the state-space graph
computed from the LCC protocol by applying a verification model. This step is
processed by the GenerateLCCProtocol tool in a semi-automatic way. The
GenerateLCCProtocol tool generates the CPN SML code of the five basic
properties (chapter 6, section 6.4). To verify these five basic properties, the user

needs to:

Open the generated CPNXML file;

Select in the CPN Tool the simulation tool palette;

Select the Evaluates a Text as ML Code(ML!) icon in the simulation tool

palette and apply it to one of the property pages;

Repeat these steps for all properties pages;

Select Verification Model Result from the verification menu bar in the

GenerateLCCProtocol tool.

2 we spent three months trying to connect the CPN Tool with the GenerateLCCProtocol tool using
the Access/CPN tool. We contacted the CPN tool team and they acknowledged the bugs we found in
the tool.

Chapter 8: Evaluation and Discussion 224

Bridging the Specification Protocol Gap in Argumentation

8.4 Summary

This chapter has discussed the thesis findings and contributions as well as provided
an overview of the limitations of this thesis. Our evaluation also highlighted areas
where more work is needed. The next chapter will discuss how the work could be

improved and outline directions for future research.

Chapter 8: Evaluation and Discussion 225

Bridging the Specification Protocol Gap in Argumentation

Chapter 9

Conclusion and Future Work

This chapter summarises the thesis contributions in Section 9.1 and also outlines

directions for future research in Section 9.2.

9.1 Summary of Contributions

This thesis, as mentioned in chapter 1, has investigated the problem of the gap
between argument specification languages and multi-agent implementation
languages. One way of addressing this issue is through an automated synthesis
method, so the specific question that we asked is whether a generic argumentation
representation (acting as a high-level specification language) could be used to
automate the synthesis of executable specifications in a protocol language capable of
expressing a class of multi-agent social norms. As our argumentation language we
have chosen the Argument Interchange Format (AIF). As our protocol language we

have chosen the Lightweight Coordination Calculus (LCC).

Fully automated synthesis starting only from the AIF, as mentioned in chapter 3, is
not possible because AIF is an abstract language that does not capture some concepts
that are related to the interchange of arguments between agents (e.g. sequence of
argument, locutions and pre- and post-conditions for each argument). An example of

this obstacle is shown is chapter 3.

To remedy this obstacle, in chapter 4, we extended the AIF diagrammatic notation to
give a new, intermediate recursive visual high-level language between the AIF and
LCC called a Dialogue Interaction Diagram (DID). DID provides mechanisms to
represent, in an abstract way, the dialogue game protocol rules by giving an overview
of the permitted moves (messages) and their relationship to each other. It restricts
agent moves to unique-moves and immediate-reply moves. This restriction is quite

strict but it still allows to include a large class of argumentation systems in the

Chapter 9: Conclusion and Future Work 226

Bridging the Specification Protocol Gap in Argumentation

synthesizer, for instance all argumentation systems that can be described as dialogue
games. In general, we can synthesise arguments that can be described as a sequence
of turn taking recursive steps (each of which involves turn taking between the pair of
agents) terminating in a base case. Given the turn-taking assumption, we can
synthesise LCC protocols (which are executable) directly from DID specifications.
However, a DID cannot explain how two or more agents can cooperate and interact
with each other in situations where more complex protocols involving more than turn

taking are required.

To overcome this problem, in chapter 5, we supplied LCC-Argument patterns, which
are re-usable, parameterisable LCC specifications that can be embedded in
automated synthesis tools and used with DID to support agent protocol development.
By re-using design patterns repeatedly it is possible to reduce the effort of building
complex argumentation protocols. The set of these more complex design patterns is,
in theory, unbounded (for the same reason that design patterns in traditional software
engineering are unbounded) but in practice families of interaction patterns occur. We
have focused on those involving more than two agents where synthesized LCC
protocols specify broadcasting methods to divide agents into groups composed of

two agents (with these two-agent dialogues then being specified using DID).

Because design patterns could introduce errors in the synthesis process (since a
poorly designed interaction pattern may result in an inappropriate LCC protocol even
with a perfect synthesis mechanism), in chapter 6, we provided a verification
methodology. The proposed verification strategies are based on SML and CPN to
check the semantics of the DID specification used as a starting point against the

semantics of the synthesised LCC protocol.

In conclusion, although the resulting synthesis and verification system is not an
industry-strength specification tool, it demonstrates how automated synthesis
methods can connect argumentation to MAS interaction protocols in a process
language. This, potentially, could allow developers of argumentation systems to use

specification languages to which they are accustomed (in our case AIF/DID) to

Chapter 9: Conclusion and Future Work 227

Bridging the Specification Protocol Gap in Argumentation

generate systems capable of direct implementation on open infrastructures (in our

case LCC).

9.2 Improvements and Future Work

The results of this thesis point to several interesting directions for future work, in the
hope of introducing further improvements to the DID, the automated synthesis

method and the semi-automated verification method:

9.2.1 DID Future Work

So far, we have developed a high-level dialogue game protocol abstract language
called DID. This language can represent any argument (dialogue game) system that
can be described as a sequence of turn taking recursive steps terminating in a base
case. DID can be used with LCC-Argument patterns for the automatic synthesis of
LCC agent protocols, which means that users do not need to learn LCC language.
But despite this fact, there are still several open issues and we want to point out two

of them:

e Natural Language:

Although the DID language can model a large class of argumentation systems, it
is interesting to consider who is likely to be able to use the DID notation. Will
some users be able to use the DID notation while others cannot? Unfortunately,
we do not know those answers ourselves since we did not test that. However, we
assume that some users may have some problems working with DID notation.
DID diagrams can become complicated simply because of the complexity of the
modelled argumentation system. That means we need to find new ways to make
DID easier to use. One way of addressing this issue is through connecting DID
(formal language) with natural language, which might reduce the effort and time
needed to build a DID diagram. In the future we would like to investigate the use
of the natural language to get the dialogue game protocol information from the

user.

Chapter 9: Conclusion and Future Work 228

Bridging the Specification Protocol Gap in Argumentation

Graphical Representation:

As indicated in Chapter 8, the GenerateLCCProtocol tool does not have a
graphical representation for all DID diagrams files. Although the user creates the
DID diagram by providing one locution icon information at a time in graphical
way, the user needs to learn the formal representaion of the DID in order to be
able to edit the DID digram. In other words, more work is needed to improve the
GenerateLCCProtocol tool to enable the user to create, review and edit the DID

diagram in a graphical way.

9.2.2 Automated Synthesis Method Future Work

Deductive Synthesis:

A DID cannot explain how two or more agents can cooperate and interact with
each other, therefore we cannot go directly form DID to LCC. To overcome this
problem, this thesis used structured synthesis method (pattern based approach).
However, it is interesting to check whether this approach (structure synthesis) is

the right way to address DID problem. Is there another way to solve this problem?

In fact, another way to generate the LCC agent protocol from the DID would be to
use deductive synthesis®' methods, where the protocol generation task is viewed
as a problem of proving a mathematical theorem. As a future work we would like
to investigate the use of the deductive synthesis method to generate the LCC agent
protocols. In other words, we would like to answer the following question: Is a
deductive synthesis method easier and more effective than our structured

synthesis method?

21 A deductive approach [Manna and Waldinger, 1980] "is presented for the construction of recursive
programs. This approach regards program synthesis as a theorem-proving task and relies on a
theorem-proving method that combines the features of transformation rules, unification, and

mathematical induction within a single framework".

Chapter 9: Conclusion and Future Work 229

Bridging the Specification Protocol Gap in Argumentation

e LCC-Argument Pattern Library:

Currently, the LCC-argument pattern library is limited (as explained in Chapter 8)
to two agent dialogue games, unique-moves and immediate-reply dialogue games
and a broadcasting approach for N-agent dialogue games. This means that the
investigation of new LCC-argument pattern is needed to improve our tool. Such
improvements involve a better understanding of dialogue games, the LCC

language and LCC-argument patterns.

One of the common patterns we would like to add is non-immediate-reply
dialogue games (these systems do not typically require agents to reply

immediately to the other agents' messages).

9.2.3. Semi-automated Verification Method Future Work

At this moment, our semi-automated verification method has some limitations (as

explained in Chapter 8). The most important one is a verified properties issue.

The verification has succeeded in verifying five basic properties (Dialogue opening
property, Termination of a dialogue property, Turn taking between agents property,
Message sequencing property and Recursive message property) which are general
properties that may be applied to several dialogue games. However, if the user needs
to verify different properties, the user needs to specify these properties and feed them
to the generated CPNXML file manually. Therefore, we believe further research
needs to be carried out to address this issue. In fact, we intend to investigate three
questions: Can the user modify the available properties to suit their specific dialogue
game using the GenerateLCCProtocol tool? Can the GenerateLCCProtocol tool
specify new properties in an automated manner? Can the GenerateLCCProtocol tool
take the new properties information from the user using a constrained form of natural

language?

Chapter 9: Conclusion and Future Work 230

Bridging the Specification Protocol Gap in Argumentation

9.2.4. Other Future Work

Because we had to extend the AIF to get a language that has enough information in it
to generate the MAS protocols, we ended up with more versatile language called
DID. We believe that the DID can represent things beyond arguments but we have
not investigated this aspect. Perhaps a more immediate direction for future work is
the investigation of applying the automated synthesis and verification method to

different fields (besides argumentation).

Chapter 9: Conclusion and Future Work 231

Bridging the Specification Protocol Gap in Argumentation

Appendix A

Negotiation Dialogue

This appendix presents an example of the negotiation dialogue [Sadri et. al., 2001;
Sadri et. al., 2002]. The summery of the paper is presented in Section A.1. Section
A.2 represents the DID formal definition of the negotiation dialogue. Section A.3
represents the DID of the negotiation dialogue. Section A.4 represents the picture
hanging example of the negotiation dialogue. Section A.5 represents the generated
LCC protocol from the automated agent protocol synthesis tool
"GenerateLCCProtocol”. Finally, Section A.6 represents the CPN model and

verification model properties of the negotiation dialogue.

A.1 Negotiation Dialogue Example

Sadri et. al [Sadri et. al., 2001; Sadri et. al., 2002] work focuses on negotiation
dialogue (see chapter 3 section 3 for more details) which allows two agents to
request resources or knowledge, propose resource exchanges and suggest alternative
resources. Practically, it provides a language as well as a protocol for negotiation
dialogues in the domain of resource exchanging that allows each agent in the

dialogue to achieve his main goal.

In this negotiation dialogue, there are only two agents. Each agent has only one goal
G, one missing resource R, and they have only one plan P to get the missing resource
and to achieve its goal. During the dialogue, both agents will try to get the missing
resources. In order to achieve this they may suggest alternative plans and resources

to each other.

In fact, an agent can open a negotiation dialogue by making a request move with the
topic (missing resource) R. To terminate a negotiation dialogue an agent must send

either accept or refuse moves [Sadri et. al., 2001; Sadri et. al., 2002].

Appendix A: Negotiation Dialogue 232

Bridging the Specification Protocol Gap in Argumentation

A.2 DID Formal Definition of the Negotiation dialogue

(7) Players:

In this dialogue, there are two participant: 'A' and 'B'.

Players={A,B}

(8) There are six locutions (Acts):

Acts ={request(R), challenge(R), accept(R), refuse(R), justify(R,S),

promise(R",R")}

(9) ActType(Act):

Act ActType (Act)
request {Starting}
challenge { Intermediate }
accept {Termination}
refuse {Termination}
justify {Intermediate}
promise {Intermediate}

(10) Replies(Act):

In the persuasion dialogue the Replies rules are as follows:

Act Replies(Act) Note
request(R) {challenge(R), accept(R), refuse(R)} R= missing resource for
the speaker
challenge(R) {justify(R,S)} S= support for R
accept(R) (0]
refuse(R) 0]
justify(R,S) {refuse(R), promise(R",R")} R'= missing resource for

the speaker and R"= new
resource for new plan

for the audience

promise(R",R")

{accept(R",R"), refuse(R",R")}

Appendix A: Negotiation Dialogue

233

an

Let Player = A

Bridging the Specification Protocol Gap in Argumentation

PreC(Act,KB,CS):

In the negotiation dialogue the Pre-conditions are as follows:

Act PreC(Act,KB,CS) Note
request(R) miss(KB,,R) = true miss function returns true if agent
A misses a resource R for a plan P
to achieve a goal G.
challenge(R) (have function returns true if agent
(have(KBy,R) and A has a resource R.
need (KB,R) = true) need function returns true if agent
or A has a resource R needed for a
notHave(KBy,R) = true plan P to achieve a goal G.
or notHave function returns true if
missResource(KBy, P,G) = true agent A does not have a resource
) R.
missResource function returns
true if agent 4 needs R' resource
for a plan P to achieve a goal G.
accept(R) have (KB4,R) = true have function returns true if agent
and A has a resource R.
notNeed (KB,,R) = true notNeed function returns true if
and agent A has a resource R which is
notmissResource(KB,4,P,G) = true not needed for a plan P to achieve
and agoal G.
gaveAway(CSy,R) = true notmissResource function returns
true if agent 4 does not miss a
resource R' for a plan P to
achieve a goal G.
gaveAway function always
returns true and results in agent A
giving away a resource R (agent
A subtract R from its commitment
store CS)).
refuse(R) (These pre-conditions must be
notHave(KB4,R) satisfied in order for 4 to move
or refuse after request move where,
need(KBy,R) = true e notHave function returns true if
) agent 4 does not have a resource
and R.
notmissResource(KB,, P,G) = true need function returns true if agent
A has a resource R needed for a
plan P to achieve a goal G.
notmissResource function returns
true if agent 4 does not miss a
resource R' for a plan P to
achieve a goal G.

Appendix A: Negotiation Dialogue

234

Bridging the Specification Protocol Gap in Argumentation

and

getPlan(KB,,P) = true
and

getGoal(KB4,G) = true

Act PreC(Act,KB,CS) Note
refuse(R) missResource(KBg,P,G) These pre-conditions must be
= true satisfied in order for 4 to move
and refuse after justify move where,
notExistAlternativePlane(G, ¢ missResource function returns
without(R,R")) = true true if agent 4 needs R' resource
for a plan P to achieve a goal G.
notExistAlternativePlane
function returns true if agent 4
cannot find an alternative plan for
agent B's goal without R and R'.
justify(R,S) miss(KBy,R) = true miss function returns true if agent

A needs R resource for a plan P to
achieve a goal G.

getPlan function returns true if
agent A is able to find a plan P in
its Knowledge Base KB, (4
needs R resource for a plan P to
achieve a goal G).

getGoal function returns true if
agent A4 is able to find a goal G in
its Knowledge Base KB, (4
needs R resource for a plan P to
achieve a goal G).

promise(R",R")

missResource (R, P, G) = true
and

have (KB4,R") = true

and

notNeed (KB4,R") = true

and

choosealternativeplane

(KB,,G,NewPlan,without(R,R"),with

(R")) = true

R'= missing resource for the
speaker 4 and R"= new resource
for new plan for the audience B
missResource function returns
true if agent 4 needs R’ resource
for a plan P to achieve a goal G.
have function returns true if agent
A has a resource R".

notNeed function returns true if
agent A has a resource R" which
is not needed for a plan P to
achieve a goal G.
choosealternativeplane function
returns true if agent 4 finds a new
and different plan NewPlan for
other agent B's goal that requires

neither of R and R' and needs R".

refuse(R",R")

miss(KBy4,R) = true

and
notChooseBetterPlan(KB,,G,
NewPlan, oldPlan, without(R,R”),
with(R’”)) =true

These pre-conditions must

be

satisfied in order for 4 to move

refuse after promise move where,

e miss function returns true if agent
A has a resource R needed for a

plan OldPlan (P) to achieve
goal G.

a

Appendix A: Negotiation Dialogue

235

Bridging the Specification Protocol Gap in Argumentation

o notChooseBetterPlan function
compare the OIldPlan and the
NewPlan and returns true if
NewPlan is not acceptable.

accept(R",R")

miss(KBy,R) = true

and

have(KB4,R'") = true
and

notNeed(KBy,R") = true
and

chooseBetterPlan(KB4,G,NewPlan,
OldPlan,without(R,R"),with(R")) =
true

and

gaveaway(CS,, R') = true

and

obtained(CS,,R")= true

These pre-conditions must be
satisfied in order for 4 to move
accept after promise move where,

e miss function returns true if agent
A has a resource R needed for a
plan OldPlan (P) to achieve a
goal G.

e have function returns true if agent
A has a resource R'.

e notNeed function returns true if
agent 4 has a resource R’ which is
not needed for a plan P to achieve
a goal G.

o chooseBetterPlan function
compare the OldPlan and the
NewPlan and returns true if agent
the NewPlan (that requires
neither of R and R' and needs R")
is acceptable.

e gaveAway function always
returns true and results in agent 4
giving away a resource R’ (agent
A subtract R’ from its
commitment store CS,).

e obtained function always returns
true and results in agent 4
obtaining a resource R" (agent A
adding R" to its commitment
store CS).

(12)

PostC(Act,KB,CS):

let Player(M;)= A and NextPlayer =B,

In a negotiation dialogue the Post-Conditions (conditions for receiver player B of My)

are as follows:

Act PostC(Act,KB,CS) Note
request(R) true
challenge(R) true
accept(R) obtained (CSg,R) = true e obtained function always returns true

and results in agent B obtaining a
resource R (agent B adding R to its
commitment store CSp).

Appendix A: Negotiation Dialogue

236

Bridging the Specification Protocol Gap in Argumentation

Act PostC(Act,KB,CS) Note
refuse(R) true
justify(R,S) true
promise(R",R") | true

accept(R",R")

obtained(CSg, R") = true
and
gaveaway(CSg,R") = true

These post-conditions must be satisfied in
order for 4 to move accept after promise
move where,

e gaveAway function always returns true
and results in agent B giving away a
resource R" (agent B subtract R" from its
commitment store CSp).

o obtained function always returns true
and results in agent B obtaining a
resource R’ (agent B adding R’ to its
commitment store CSp).

refuse(R",R")

true

(13)LegalMoves(M, CS4, CSp)

From Figure A.1 the negotiation dialogue, we can see that:

Dialogues open by making a request move

M, = initial move, ActType(Act(M;))= Starting and Act(M;)= {request}

e In the negotiation dialogue, the argument terminates once the agents send

accept or refuse. In other words, both accept and refuse € {Termination}.

There is no reply move to these moves (there are no arrows coming out from

these moves).

e Challenge, justify and promise € {Intermediate}. There are several moves to

these moves (there are arrows coming out from these moves).

e The turn-taking between participants switches after each move:

a) if

b) else

M; then Player=A,

NextPlayer = B iff

Player = A

and NextPlayer=A iff Player =B

Appendix A: Negotiation Dialogue

237

Bridging the Specification Protocol Gap in Argumentation

M;

o D
B, refuse >

Mg

C o D

Mg M9)

Coe > o >

Figure A.1: The Negotiation Dialogue Legal Moves

Appendix A: Negotiation Dialogue

238

Bridging the Specification Protocol Gap in Argumentation

A.3 DID of the Negotiation Dialogue

Figure A.2 illustrates a DID structure of a negotiation dialogue (Note that pre-
conditions and post-conditions for locutions are not shown in this figure. Rather, it is
shown in Figure A.3(a), Figure A.3(b), Figure A.3(c), and Figure A.3(d) .In Figure
A.2, there are six locutions: request, challenge, accept, refuse, justify and promise
locutions (a subset of locutions in [Amogud et.al. 2000]*%). There are three types of
locution: starting (request), termination (accept and refuse), and intermediate

(challenge, justify and promise)) locution.

In this example, a dialogue always starts with a request and ends with an accept or
refuse locution. A can open the dialogue by sending a request(R) locution if he is
able to satisfy the condition which is connected to the sender role of this locution.
Then, turn-taking switches to B. B has to choose between three different possible
reply locutions: challenge(R), accept(R) or refuse(R). B will make his choice using
the conditions which appear in the rhombus shape (for example, in order to choose
challenge (R), B must be able to satisfy the two conditions which connect with
challenge). After that, the turn switches to 4, and so on. The argument terminates

once an agent sends either an accept or refuse locution.

A.4 The Picture Hanging Example

Figure A.4 represents the negotiation dialogue graph of the picture hanging example
(adapted from [Parsons et al., 1998; Maudet et al., 2007]) (see chapter 3 for more
details):

(14) Dialogue takes place between two agents, 4 and B.

(15) A has KB and CSp, and B has KB and CSp (Note that the agent's knowledge

bases are shown at the top of the figure).

?2 In this example, we follows the Commitment rules in Amogud et.al [Amogud et.al. 2000] work).

Appendix A: Negotiation Dialogue 239

Bridging the Specification Protocol Gap in Argumentation

{ Starting Locution

request (R)
requestSender, requestReciver, A
KB, .CS,,CS; ,IDg KBy, CS,, CS, ,IDa
D, D,
3
B
{ Intermediate Locution {"Termination Locution i Termination Locution i
v v \ 4
challenge(R) accept(R) refuse(R)
replayToRequest replayToRequest replayToRequest | replayToRequest replayToRequest | replayToRequest
SenderB Reciver N Sender,, ReciverA SenderB ReciverA
KB,CS,, CS, | KB,.CS,.CS, KB,,CS,, CS, | KB,.CS,.CS, || KB,CS,,CS, | KB,.CS,.CS,
JR,ID, ,R,IDg ,R,ID, ,R,IDg LR, IDA ,R,IDp
D, D, D, ID, D, D,

Intermediate Locution

A 4

justify (R,S) A
replayToChallengeSender, | replayToChallengeRecive,
KB, CS,,CS, .RIDy KB_,CS. CS, RID,

D, D,
B
A 4
Termination Locution ! Intermediate. Logution
refuse(R) promise(R",R")
replayToJustify | replayTolustify replayToJustify | replayToJustify
Sender, Reciver, Sender, Reciver,
KB_CS,.CS, | KB,.Cs,.CS, KB,CS,CS, | KB,.Cs,.CS,
LR, IDA ,R,IDg LR, IDA ,R,IDg
ID, ID, ID, ID,
A 4 -g
) A
Termination Locution i Termination Locution
v
accept(R",R") refuse(R",R")
replayToPromise replayToPromise replayToPromise replayToPromise
Sender, Reciver, Sender, Reciver,
KB, .CS,,CS, R, | KB,CS,CS,R, KB, .CS,,CS, R, | KB.CS,CS, R,
R",R'IDg R",R'IDx R".R',IDg R".R',IDy
D, D, D, D,

Figure A.2: DID Structure of a Negotiation Dialogue

Appendix A: Negotiation Dialogue

240

Bridging the Specification Protocol Gap in Argumentation

Starting Locution

/,~"' \'*._ request (R)
<. miss(KBy,R) IRs requestSender, | requestReciver,
.\\\/_/.\. KB, ,CS,, KBy, CSy,
cs, D, cs,, D,
D, D,

s,
., N
. ~

. ~

/"'(have(KBB,R) and\'\' Intermediate Locution :
i need (KBg,R)) N
27 or . challenge(R)
N, notHave(KBg,R) ka 1 replayToRequest | replayToRequest
A or L \ Sender, Reciver,
~ missResource 4
“ KB, .CS,,
- (KByP.G) .- KB_CS,, CS, 2 CS,
. B,P, . cs
S jiie ,R,IDA 5 RIDs
S D, D,
., have(KBgR) _.<)
AR - 1 i Termination Locution
.. notNeed(KBg,R) It 2 accept(R)
Sl P \ replayToReque | replayToReque
~ stSender,, stReciver,

PR \"-\, /3/ KB,.CS, KB,.CS,, \ .
,,"flotmissResource\' s CS, RID, CS; ,R,IDy Phae R
Ts e D D T ~.

‘-(@B’P’G}.f' B A ~._ obtained(CSs,R) =»

S et 4
<7

PRid '~
. ~
-

-2 "gaveAway(CSg,R .):'.~

S.o .-
~-

~. .
~.
~.

.-
.-

Figure A.3(a): Negotiation Dialogue Locutions Pre-Conditions and Post-

Appendix A: Negotiation Dialogue

Conditions

241

Bridging the Specification Protocol Gap in Argumentation

refuse after request

’\/ getPlan(KBA,P)

-

.~ “notHave(KBg,R) ™'~
< or - R e f
S, .- i Termination Locution
\'\.need(KBB,R)‘,‘/ 1 ..
/,-" \\._) refuse(R)
Lo . S replayToRequest replayToRequest
-, _notmissResource > P genderq P Ig/eciverq
T~ (KBpP,G) .-~ 2 A
N KB,,CS,, CS, | KB, ,CS,,CS,
JR,IDA ,R,IDy
D, D,
e DA {_Intermediate Locution
.- miss e i
T~ (KB4,R) Pt {
s ~._ .7 1 justify(R,P,G)
.. replayToChall | replayToChal
PN . engeSender, lengeRecive,
- A 2 KB,.CS,,CS, | KB CS_, CS
- " getGoal(KB4,G) S » ATTTA B BB A
- .- JR,IDg R.ID,
S D, D,

refuse after justify

.~'" missResource ~-o

Termination Locution

S~ (KBpPG) .-

refuse(R)

‘o .
~ -
‘o .
fo -

-~

- ~

_ .~ TotExist AlternativePlane ~ - _]

replayToJustif | replayTolusti
ySender, fyReciver,
KB,,CS,, CS, KB, .CS,,
JR,ID, CS, ,R,IDg
D, D,

< (KBg,G, without(R , R) .~~~

~ -
'~ o
‘o .
co

Figure A.3 (b): Negotiation Dialogue Locutions Pre-conditions and Post-

conditions

Appendix A: Negotiation Dialogue

242

Bridging the Specification Protocol Gap in Argumentation

gEN

- ~

." '~
_.- " missResource ~-«
S (KByP,G) _.-"

~

-

e i Intermediate Locution :

~-

-~

s promise(R",R")
PR IS replayToJusti | replayTolusti
4\.\I'13Ve(KBB,R ,)»’ - 2 » fySender, fyReciver,
el r KB,,CS,, CS, | KB,.CS,,CS,
. 3 RID, R,IDg
s ID, D,

<7 .notNeed(KBB,R");. =

o~
Lot o~
- ~
- [
P .

R choosealternativeplané " . .
*.” (KBA,G.NewPlan,Without(R,R').
~o 0 With®"Y) .-

~. -
~. -

L "~ Termination Locution

/,.,w ~-\\\ .- \ acoept(R"R)
7. _ have(KBs,R") .
ENTI \ replayToPromise | replayToPromise
- 3

~notNeed(KBoR) T2 Sender, Reciver,

LT 4 KB CS_ CS, R, | KB.CS, CS R,
-7 chooseBetterPlan™ "~ .
.z “(KBj, G, NewPlan, oldPlan, "~

“~. without(R,R"), with(R") .-~

~
~ "’ 5
< .

R",R"IDg R",R"IDy

1D D,

A

. o~
~ \".':'"‘ TS .
. P <
' ~, - N
. - N
. N B _obtalned(CSB,R),.’
7! btained(CSa,R") ~ RN -7
\'\ ./.’ \'\-"
AR N - o~
RN e S
- <

e : RN .
L. _gaveaway(CSgR") >

~.
~-

R
-

Figure A.3 (c): Negotiation Dialogue Locutions Pre-conditions and Post-

conditions

Appendix A: Negotiation Dialogue 243

Bridging the Specification Protocol Gap in Argumentation

"-\,\ (KB4,R) P { Termination Locution _:
e 1
N refuse(R",R")
replayToPromise replayToPromise
Sender, Reciver,
LT T / KB, CS,,CS, R, | KB,CS,CS,R,
- notChooseBetterPlan ™"~ o o
|-*"" (KBA.G, NewPlan, OldPlan, '~.. RERIDs RERIDA
>~ without(RR'), with(R") .~ D, D,

N

Figure A.3 (d): Negotiation Dialogue Locutions Pre-conditions and Post-

conditions

(16) A and B can access CS4 and CSj.

(17) The goal of the dialogue is to exchange knowledge (resources), since an
agent's knowledge is not sufficient to achieve its own goals. The goal of 4 is to
hang a picture and the goal of B is to hang a mirror. 4 has a hammer. However,
to hang the picture 4 needs a nail in addition to the hammer. In contrast, B has a
nail, screw and screw-driver. B needs a hammer, in addition to the nail, to hang

the mirror. A plans to get a nail from B and B plans to get a hammer from A.
(18) A begin the discussion by sending request("Can you please give me a nail?").

(19) B consults its argumentation system ASp (4Ss = {KBjp, CSp}) whether he has a
nail or not, and if he has a nail does he need it. In this example, B finds that he

has a nail and needs to hang a mirror.

(20) B challenges "Can you please give me a nail?". In others words, he asks the
reason behind A4's request of "a nail”. In this example, B will challenge "Can you
please give me a nail?" by sending challenge("why do you need a nail?")

locution.

Appendix A: Negotiation Dialogue 244

Bridging the Specification Protocol Gap in Argumentation

KB,={ ("have", "picture"),(" have","hammer"), ("plan-Obtain","nail"), ("plan-Goal","hang a
picture"), ("goal","hung a picture") , ("missing","nail"), ("better-Plan-Obtain", "screw and
screwdriver"), ("better-Plan-Goal","hang a picture") }
KBg={ ("have","mirror"),(" have","nail"), ("have","screw"), ("have","screwdriver"), ("plan-
Obtain,"hammer"),("plan-Goal","hang a mirror"), ("goal","hung a mirror"), ("missing",
"hammer"), ("promise-Plane-Obtain", "screw and screwdriver"),("promise-Plan-Goal", "hang a
picture")}
1
request(Can you please give me a nail?)
2 .
challenge(why do you need a nail?)
3 justify(Because I want to hang a picture
and for that I need a nail)
4
promise(But you can you use a screw
and a screw driver to hang the picture!
And if you ask me I can provide you
with these in exchange for the hammer.)
5 accept(Really, I guess in that case, I do
not need the hammer. Here you go.)

Figure A.4: The Picture Hanging Example

Appendix A: Negotiation Dialogue

245

Bridging the Specification Protocol Gap in Argumentation

(21) A responds to the challenge by declaring the supporting premises S (S=A's
goal and A's plan) for "Can you please give me a nail?". In this example, 4
offers a reason for the request by sending justify("Because I want to hang a

picture and for that I need a nail") locution.

(22) B checks with its argumentation system A4Sz whether he could provide an
alternate plan for 4 that allows both 4 and B to achieve their goal. In this
example B finds a new plan for 4's goal and sends promise("But you can you use
a screw and a screw driver to hang the picture! And if you ask me I can provide

you with these in exchange for a hammer") locution.

(23) A checks with its argumentation system A4S, whether the new plan is
acceptable (whether the new plan is better than the old plan or not). In this
example, A finds that it is acceptable and accepts the new plan by sending
accept("Really, I guess in that case, I do not need the nail. Here you go")

locution.
(24) The commitment stores of A and B at the end of the dialogue are:

o CSa={(" gaveAway","hammer"), ("obtained", "screw and screwdriver")}

nn

o CSg={("obtained","hammer"), ("gaveAway", "screw and screwdriver")}

A.5 LCC Synthesis Protocol of the Negotiation Dialogue

This section represents the generated LCC protocol from the automated agent
protocol synthesis tool "GenerateLCCProtocol”. In this example, the tool receives
as input the DID of the negotiation dialogue, which is shown in Figure A.2, and then
the tool generates the negotiation dialogue LCC protocol by using LCC-Argument
patterns. The final LCC protocol is illustrated in Figure A.5(a) and Figure A.5(b):

(1) The tool begins with the locution icon at the top of the DID of the negotiation
dialogue, which is request(R).

Appendix A: Negotiation Dialogue 246

Bridging the Specification Protocol Gap in Argumentation

Agent A

Agent B

a(requestSender , (KBA,CSA,CSg ,IDg),IDA)::=
request(R) => a(requestReceiverg(KBg,CSg,
CSA’IDA)JDB)

< miss(KBA,R)

then

a(replyToRequestReceiver, (KB4,CSA,CSg,
R,IDg),ID,).

a(requestReceiverg(KBg,CSg, CS5,ID,),IDg)::=

request(R) <= a(requestSender A(KBa,CSy, CSg,
IDg),ID4)

then

a(replyToRequestSenderg(KBg,CSg, CSy
aR:IDA)alDB) .

a(replyToRequestReceiver, (KB4,CS,,CSg,
R,IDg), ID,)::=

obtained(CS,,R) €accept(R) <=
a(replyToRequestSenderg(KBg,CSg, CSy
;R,ID4),IDp)

or

refuse(R) <=
a(replyToRequestSenderg(KBg,CSg, CSa
’R,IDA),IDB)

or

(

challenge(R) <=
a(replyToRequestSenderg(KBg,CSg, CSy
[R,ID,),IDy)

then

a(replyToChallengeSender,(KB4,CS,, CSg,
R’IDB)’ IDA))'

a(replyToRequestSenderg(KBg,CSg, CS, LR,
ID,),IDg) ::=

accept(R) =>

a(replyToRequestReceiver, (KB4,CSA,CSg,
R,IDg),ID,)

< have(KBg,R) and notNeed(KBg,R) and
notmissResource(KBg,P,G) and
gaveAway(CSg,R)

or

refuse(R) =>
a(replyToRequestReceiver,(KB,,CS5,CSg,
R,IDg),ID,)

< (notHave(KBg,R) or need(KBjg,R)) and
notmissResource(KBg,P,G)

or

(

challenge(R) =>
a(replyToRequestReceiver,(KB,,CS5,CSg,
R,IDg),ID,) € ((have(KBg,R) and need (KBg,R))
or notHave(KBg,R)) and
missResource(KBg,P,G)

then
a(replyToChallengeReceiverg(KBg,CSg, CSy

5R3IDA)9 IDB)
).

a(replyToChallengeSender ,(KB4,CS,,CSg,
R,IDg), ID,) ::=

justify(R,P,G) =>
a(replyToChallengeReceiverg(KBg,CSg, CSy
,R,ID,), IDR) € miss(KB,,R) and
getGoal(KB,, G) and getPlan(KB,,P)

then

a(replyToJustifyReceiver,(KBA,CS,, CSg, R,IDg),
ID,).

a(replyToChallengeReceivero(KBg,CSg, CS, LR,
ID,), IDg)::=

justify(R,P,G) <=
a(replyToChallengeSender,(KB4,CS,, CSg,
RsIDB)a IDA)

then

a(replyToJustifySenderg(KBg,CSg, CS, ,R,ID,),
IDg).

Figure A.5(a): Generated LCC Protocol

Appendix A: Negotiation Dialogue

247

Bridging the Specification Protocol Gap in Argumentation

Agent A

Agent B

a(replyToJustifyReceiver,(KB,,CS4,CSg,
R,IDg), ID,)::=

refuse(R) <= a(replyToJustifySenderg(KBg,CSg,
CSA 7R’IDA)’ IDB)

or
(

addToCS(CS4,R") € promise(R",R") <=
a(replyToJustifySenderg(KBg,CSg, CSy ,R,ID,),
IDg)

then

a(replyToPromiseSender,(KB,,CS,, CSg, R,
R",R',IDg),ID,)
).

a(replyToJustifySenderg(KBg,CSg, CS, LR,
ID,), IDg)::=

refuse(R) => a(replyToJustifyReceiver,(KB4,CSy,

CSB: R’IDB)s IDA)
e

(
missResource(KBg, P,G)

and
notExistAlternativePlane(KBg,G, without(R,R"))
)

or

(
promise(R",R") =>

a(replyToJustifyReceiver,(KB,,CS,, CSg, R,IDg),

ID,)
e

(

missResource (KBg,P, G)

and have(KBg,R")

and notNeed(KBg,R") and choosealternativeplane
(KBg,G,NewPlan, Without(R,R"), With(R"))

)

then

a(repltToPromiseReceiver,(KBg,CSg, CSy R,
R",R',ID,),IDg)
).

a(replyToPromiseSender,(KB,,CS,,CSg, R,
R'",R%IDg),ID,)::=

(

accept(R",R") =>
a(repltToPromiseReceiver,(KBg,CSp, CSy R,
R",R',ID,),IDg)

é

(
miss(KB4 ,R) and
have(KB, ,R") and notNeed(KB, ,R') and
chooseBetterPlan

(KB 4,G,NewPlan,oldPlan,without(R,R"),with(R"))
and gaveaway(CS,,R") and obtained(CS,,R")
)

or

(

refuse(R",R") =>
a(repltToPromiseReceiver(KBg,CSg, CSy R,
R".R',ID,),IDg) € miss(KBo,R) and
notChooseBetterPlan

(KB, ,G,NewPlan,OldPlan,without(R,R"),with(R"))

).

a(repltToPromiseReceiver ,(KBg,CSg, CS4 ,R,
R",R.ID,), IDg)::=

(

(obtained(CSg,R'") and gaveaway(CSg,R"))
< accept(R",R") <=
a(replyToPromiseSender,(KB4,CSy, CSg, R,
R",R',IDg),ID,)

)

or

(

refuse(R",R")<=
a(replyToPromiseSender,(KB4,CSy4, CSp, R,
R".R',IDg),ID,)

).

Figure A.5(b): Generated LCC Protocol

Appendix A: Negotiation Dialogue

248

Bridging the Specification Protocol Gap in Argumentation

(2) The tool then selects the Starting Pattern (since the locution type is the

Starting Locution).

(3) Applies the Starting Pattern by matching formal parameters in the Starting
Pattern with its corresponding values in the request(R) icon, starting from the

top-down and moving left to right.
(4) Moves to the next level (level two of the DID of the negotiation dialogue).
(5) Following this, the tool selects the Termination- Intermediate Pattern.
(6) Applies the Termination- Intermediate Pattern.

(7) Moves to the next level in the DID and repeats steps 4 and 6. Note that the
automated synthesis process finishes when the tool matches the last level (level
five) in the DID of the negotiation dialogue with the Termination- Intermediate

Pattern.

A.6 Verification Model of the LCC Synthesis Protocol of the

Negotiation Dialogue

In this section, we will give a brief description of how to verify the semantics of the
DID of a negotiation dialogue (shown in Figure A.2) against the semantics of the
synthesised LCC protocol (shown in Figures A.5(a) and A.5(b)). In this example, the

initial marking of:

_n

(1) OpenDialogue place request a nail". This place represents dialogue game

topic.

(2) A4 place = ("IDA",[], [("have", "picture"), ("have", "hammer"), ("planObtain",

non

"nail"),("planGoal","hang picture"), ("goal", "hung picture"), ("missing", "nail")

,("betterPlanObtain", "screw"), ("betterPlanGoal", "hang picture") |,
"requestSenderA","","",[],"IDB","","",""). This place represents agent A
arguments.

(3) B place = ("IDB".[[],[("have","mirror"),("have", "nail"),("have","screw"),
("have","screwdriver"),("planObtain", "hammer"),("planGoal", "hang mirror"),

Appendix A: Negotiation Dialogue 249

Bridging the Specification Protocol Gap in Argumentation

”n 1

("goal"”,"hung mirror"),("missing", "hammer"),("promisePlanObtain", "screw"),
("promisePlanGoal", "hang picture”)], '"requestReceiverB", "", "", [],
"IDA","","", ""). This place represents agent B arguments.

Step One: Automated Transformation from LCC to CPN/XML

The generated LCC protocol for negotiation dialogue in Figures A.5(a) and A.5(b)
was used as input to the verification tool. The verification tool generated a

negotiation dialogue CPN/XML file which has:

(1) Ten CPN subpages generated by the GenerateLCCProtocol tool (subpage for
each LCC role in the Figures A.5(a) and A.5(b)). See Figures A.6, A.7, A.8, A.9,
A.10, A.11, A.12, A.13, A.14 and A.15.

(2) One CPN superpage generated by the GenerateLCCProtocol tool. This page
connects the ten CPN subpages (requestSenderA, requestReceiverB,
replyToRequestSenderB, replyToRequestSenderB, replyToChallengeSenderA,
replyToChallengeReceiverB, replyToJustifySenderB, replyToJustifyReceiverA,
replyToPromiseSenderA and replyToPromiseReceiverB) together and describes

the interaction between these ten subpages. See Figure A.16.

The CPN model generated by the verification tool for the negotiation dialogue was
not completed. It needed manual translations of LCC protocol message conditions to
guards (SML conditions) in the CPN model. These translations had to be done
manually because the LCC conditions code is not in the LCC protocol file

[Robertson, 2004; Hassan et.al., 2005].

Step Two: Construction of State Space

After finishing manual translations of the LCC protocol message in the last step, the
state space (shown in Figure A.17) for the CPN model of an LCC protocol for a
negotiation dialogue was generated using the SS tool palette in CPN Tools (see

chapter 6, section 6.2).

Appendix A: Negotiation Dialogue 250

Bridging the Specification Protocol Gap in Argumentation

1°("IDA"[I,

[("have", "picture"), ("have", "hnammer"),

("planObtain”, "nail"),("planGoal","hang picture"),

("goal”, "hung picture"), ("missing","nail"),("betterPlanObtain", "screw"),
("betterPlanGoal", "hang picture")],"requestSenderA"," " ["IDB",",",")

1°("IDA"[1[("have" "picture"),("have
1" "nail" " "hammer"),("planObtain","nail"),("p!

@ -1 anGoal","hang picture"),("goal”,"hung
° . @ @ @ icture"),("missing","nail"),("betterP!
] | Topic by

(s,sCSL,sKB,sR,", goal rCSL,r,plan,rD,rDD)

[miss(sKBt)=true]

t ("request"tgoal,s,r,plan,rD,rDD)
»_Sendrequesti @
[Out] Message

(s,sCSL,sKB,"replyToRequestReceiverA" tgoal rCSL,r,plan,rD,rDD)

changeRoleToreplyToRequestReceiverAl

Role

Figure A.6: The requestSenderA CPN Subpage

1°("IDB"[1,[("have","mirror"),("have","nail"),("have","screw"),
ave","screwdriver"),("planObtain", "hammer"),("planGoal","hang mirror"),

("h
("goal","hung mirror"),("missing","hammer"),("promisePlanObtain", "screw"),
("promisePlanGoal", "hang picture")],'requestReceiverB"," " [J,"IDA",",",")

1°("IDB"[1,[("have","mirror"),("have",
@ @ "nail"),("have","screw"),("have","scre
wdriver"),("planObtain”,"hammer”),("
Role planGoal","hang mirror"),("goal”,"hun
g mirror"),("missing","hammer"),("pro
misePlanObtain","screw"),("promisePI
anGoal","hang picture")],"requestRec
eiverB","," ['IDA"""")

(r,rCSL,rKB,IR," goal,sCSL,s,plan,rD,rDD)

(Itgoal,s,rplan,rD,rDD) A
@ P Receiverequest2

Message
fin]

(r,rCSL,rKB,"replyToRequestSenderB" t,goal,sCSL,s plan,rD,rDD)

A
changeRoleToreplyToRequestSenderB2

Role

Figure A.7: The requestReceiverB CPN Subpage

Appendix A: Negotiation Dialogue 251

Bridging the Specification Protocol Gap in Argumentation

Role
(Inave(skB)alse

orelse

negd(sHB - fue)
andalso
missResource(sKB)-alse]

5,5CSL KB eplyToRequestSender t goal CSL rplanyD0D)

Sendrefused

('efuse"tgoal s planyDy0D) @
refused

[batesKBetue 55399
andalso

negd(sKB,)= fue)

5,5C3L sKBsR {goal CSLyplanyDy0D) orese

have(skB false

orelse

missResource(sKB)- tue]

changeRoleToreplyToRequestSenderB3
Role

(5,5CSLsKBsR tgoalCSLrplan/D,0D) R (‘challenge"tgoal s plan,D,10D)
Sendchallenged challenged

Nessage

5,5C8LsKBsR £ goal CSLyplanyD0D)
5,5CSL KB, replyToChallengeRecever0 goal CSLsplanDy0D)

have(sKB)-rue

andalso changeRoleToreplyToChallengeReceiver03
need(skB- alse Qut
andalso Role

missResource(sKB)false
] ('accept'tgoal s,rplanyDy0D)

Sendacoeptd

s gaveAnay(sCSL) sKB sR goal CSLyplanyDy0D)

Figure A.8: The replyToRequestSenderB CPN Subpage

Appendix A: Negotiation Dialogue

252

Bridging the Specification Protocol Gap in Argumentation

Out ™ Role challenge8

In
M
(1CSLKB R £ goalsCSLs plansD,0D) essege
|,tgoal,s,rplan,D,rDD
Ll) ﬁzl
Message] (Itgoal,s r,plan,D,1DD)
(rrCSL,KB,IR tgoal2,sCSL s plan2,rD,1DD)
(r.rCSL,1KB IR tgoal2,sCSL,s plan2,rD,rDD)
4
changeRoleToreplyToRequestReceiverAg Receivechallenge8
Role
(r7CSL,1KB,"replyToChall derA"t goal, sCSL,s plan,D,1DD)
(r7CSL,KB,R tgoal2,sCSL,s plan2,D,1DD)
(Itgoal,s,rplan,D,/DD) y J
acceptt A Recei changeRoleToreplyToChallengeSenderA8
Message Role

r,0btained(rCSL t),rKB,1R t,goal sCSL.s plan,iD,\DD)

Role

Out

Figure A.9: The replyToRequestSenderB CPN Subpage

[miss(sKB,t) =true]

(s,sCSL,sKB,sRt,goal,rCSL,rplan,rD,rDD)

Role

REmrerwree| ('justify"t,getGoal(sKB),s,r,getPlan(sKB),rD,rDD)

¥

| e i A

(s,5CSL,sKB,"replyToJustifyReceiverA"t getGoal(sKB),rCSL r.getPlan(sKB),'D,rDD)

changeRoleToreplyToJustifyReceiverA9

Role

[OutMessage

Figure A.10: The replyToChallengeSenderA CPN Subpage

(I,tgoal,s r,plan,rD,rDD)
justify10

[In Jlessage

(r,rCSL,iKB,1R t,goal2,sCSL,s,plan2,rD,rDD)

changeRoleToreplyToChallengeR
[In] Role

(r,rCSL,KB,"replyToJustifySenderB" t goal,sCSL,s plan,rD,rDD)

A
changeRoleToreplyToJustifySenderB10

Role

Figure A.11: The replyToChallengeReceiverB CPN Subpage

Appendix A: Negotiation Dialogue

253

Bridging the Specification Protocol Gap in Argumentation

getAlternativePlane

A

(s,5CSL,sKB,sR tgoal,

rCSL,r,plan,rD,rDD)
@D

changeRoleTorepltToPromiseReceiverB12

[missResource(skB)=true

andalso

have(sKB,rDD) =true

andalso

need(skB,rDD) =false]

(s,5CSL,sKB,sRtgoal rCSL r,getAPlan(sKB),D,
getAternativePlanResource(sKB))

A
Out Role

(s,5CSL KB, repltToPromiseReceiverB",
tgoal,rCSLr,plan,D,\DD)

("promise" t,goal,s,r,plan,rD,rDD)

Sendpromise12
A

(s,5CSL,sKB,sR tgoal rCSL,r,plan,rD,rDD)

A Role

(5,5CSL,sKB,sR t,goal rCSLr,

[missResource(sKB)=true]

getRDresource

A

(s,sCSL,sKB,sRtgoal rCSL
rplan,rD,rDD)

changeRoleToreplyToJustifySenderB11

Role

plan,getMissingResource(sKB),rDD)

[missResource(skB)=true
andalso

notExistAlternativePlane(rDD)=true]

resource

Role

(s,5CSL,sKB,sR tgoal rCSL,r,plan,rD,rDD)

\ /
("refuse" t,goal,s,r,plan,rD,rDD)
Sendrefuse11

(s,5CSL,sKB, "replyToJustifySenderB" t goal rCSL,
r,plan,rD,rDD)

Role

refuse11

b promiset2 >

Message

Message

Figure A.12: The replyToJustifySenderB CPN Subpage

(Itgoal,s,r,plansD,rDD)

(r,rCSL KB, "replyToPromiseSenderA'{ goal,sCSL,s,plan,iD,r0D)

. ToP;

promise14

[nMessage

Role
n]

(r,rCSLKB,R tgoal2,sCSL,s plan2,D2,DD2)

changeRoleToreplyToJustifyReceiverA13

(r,rCSLKB,R tgoal2,sCSL,s plan2,1D2,DD2)

(rCSLKB,R t goal,sCSL,s plan,D,rDD)

RoleT
9 loreplylor

R0|E

end13

1,tgoal,s,r,plan,rD,rDD;
refuse13 (o) % Receiverefuset3

Message
9

Role

Figure A.13: The replyTodJustifyReceiverA CPN Subpage

Appendix A: Negotiation Dialogue

254

Bridging the Specification Protocol Gap in Argumentation

end16
eIy

(s,sCSL,sKB,sRt,goal,rCSL,r,plan,rD,rDD)

[miss(sKB,t)=true
andalso

notChooseBetterPlan(sKB,plan)=true] ("refuse”t,goal lan,rD,rDD)
refuse” tgoal,s,r,plan,rD

Sendrefuse16 P _refuse16
oF 0
A [Out |
Message

(s,sCSL,sKB,sR,t,goal,rCSL,r,plan,rD,rDD)

changeRoleToreplyToPromiseSenderA15

Role

(s,sCSL,sKB,sR,t,goal,rCSL,r,plan,rD,rDD)
[miss(sKB,t)=true
andalso
have(skKB,rD)= true
andalso
notNeed(sKB,rD)=true]

| ("accept"t,goal,s,r,plan,rD,rDD)

Sendaccept15 ‘ » accept15
Message

(s,gaveAwayAndObtained(sCSL,rD,rDD),sKB,sR t,goal,rCSL,r,plan,rD,rDD)

Figure A.14: The replyToPromiseSenderA CPN Subpage

(r,yCSLrKB,rR t,goal,sCSL,s plan,rD,rDD)

sels (Itgoal,s,r,plan,rD,rDD) N Receiverefuse 3 ‘ R m
refuse eceiverefuse en

g | ¢ \-
e 4 Out | Role

(r,rCSLrKB 1R tgoal2,sCSL,s plan2,rD,rDD)

changeRoleTorepltToPromiseReceiverB17

Role

(r,rCSLrKB 1R tgoal2,sCSL,s,plan2,rD,rDD)

(r,gaveAwayAndObtained(rCSL,rDD,rD),rKB,

(Itgoal,s,rplan,rD,rDD) rR,tgoal,sCSL,s,plan,rD,rDD)
accept!7 ‘n Receiveaccept!? »_end17
.essage Qut] Role
Figure A.15: The replyToPromiseReceiverB CPN Subpage
255

Appendix A: Negotiation Dialogue

Bridging the Specification Protocol Gap in Argumentation

changeRoleToreplyToRequestReceiverAt

Role

replyToReques RecenerA

changeRoleToreplyToChallengeSenderA8

Role

replyToChallengeSenderA

replyToChallengeSenderA

Message

changeRoleToreplyToJusfifyReceiverAd

Role

replyToJustifyReceiverA

replyToJustifyReceiverA

Message

changeRoleToreplyToPromiseSenderAl4

Role

replyToPromiseSenderA

|

[replyToPromis¢

Message

Message

Message

requesiReceiverB

requesiReceiverB

Role

uestSenderB2
[replyToRequestSenderB

changeRoleToreplyToChallengeReceiverO5

Role

replyToChallengeReceiverB

geReceiverB

changeRoleToreplyTodustifySenderB10

Role

changeRoleTorepltToPromiseReceiverB12

Role

Yy v

end

N Y

Role

Figure A.16: The protocol CPN Superpage

Appendix A: Negotiation Dialogue

256

Bridging the Specification Protocol Gap in Argumentation

Figure A.17: The State Space Graph

"] PossibleMessage - Notepad

File Edit Format View Help

request
request
request
accept
refuse
challenge
Justify
Justify
refuse
promise
promise

Figure A.18: Possible Locutions File

“]| ReplyMessage - Notepad

File Edit Format View Help
challenge

accept

refuse

Justify
refuse
promise

accept
refuse

Figure A.19: Reply Locutions File

Mj Starting - Notepad =HECIE X

[File Edit Format View Help |
request -

Figure A.20: Starting Locutions File

Step Three: Automated Creation of DID Properties

In this step, the verification tool succeeded in automatically creating the nine

property files. See Figures A.18, A.19, A.20, A.21, A.22, A.23, A.24, A.25 and A.26.

Appendix A: Negotiation Dialogue 257

Bridging the Specification Protocol Gap in Argumentation

"J Intermediate - Motepad

o | B)
‘FI|E Edit Format View Help ‘
challenge
justify
promise

Figure A.21: Intermediate Locutions File

" TerminationLocution - Notepad

= |5 |
[File Edit Format View Help |
accept
refuse

Figure A.22: Termination Locutions File

] TerminationLocutionEffectCS - Notepad

=RaEnx
[File Edit Format View Help |
accept B
refuse E
refuse —
accept

Termination Locutions Effect CS File

"] EffectCS - Notepad

(5,
File Edit Format View Help |
hon

non

Effective CS Files

Figure A.23: Termination Locutions Effect CS and Effective CS Files

| Player Type - Notepad E@éj
[File Edit Format View Help |
opponent -

proponent

Figure A.24: Player Types File

| PlayerD - Notepad
¥ p

= | O e
| File Edit Format View Help |
IDB
IDA

Figure A.25: Player Ids File

Appendix A: Negotiation Dialogue 258

Bridging the Specification Protocol Gap in Argumentation

| Termination Role Names - Notepad o [[
[File Edit Format View Help |

replyToRequestReceiverA -
replyToRequestReceiverA
replyToJustifyReceiveraA =
repltToPromiseReceiverB
repltToPromiseReceiverB

3

Figure A.26: Termination Role Names File

& FileViewer: C:\Users\moon\Desktop\j\avatoProlag\BasicPrologClient\src\basicprologclient\LCC Diagrams\nt.inst o |[E][=
File LCC Verification Model

o < Verification Model Result [E=S[FoR(Ex3|

=2uml version="1
SIDOCTYPE worl

CPN File |]um\Desan\JUavalnPrn\ug\Eas\EF‘rn\ugcI\ennsrn\hasmpm\nguhent\LCC Ciagramsiinn.cpn
=workspaceEler

=generatortoolH Verification Model Result
wergion="4
farmat="6" Termination of a Dialogue Property is Satisfied
=cpnets e
=glabbox=
=colorid="ID1
=id=ID=iid=
=stringi=
<layout=cals
=fcolor=
=calarid="ID1
=idINT=/id=|
<int/=
=layout=cals

perty is Satisfied

4

Figure A.27: The Verification Result of the Five Basic Properties

Step Four: Applying the Verification Process

The verification of the negotiation dialogue LCC protocol CPN Model (verifying of
the five properties: Dialogue opening property, Termination of a dialogue property,
Turn taking between agents property, Message sequencing property and Recursive
message property) was done using the steps explained in chapter 7 and the results
obtained were corresponding to the expected behaviour of the system (Figure A.27
shows the verification result of the five basic properties).

Step Five: Adding and Verification of New Properly

Paper [Sadri et. al., 2001] explains two properties:

(1) Successful request dialogue property: a negotiation dialogue between agents A

and B is consider to be a successful if (see Figure A.28):
a. Agent B accepts a request of agent 4;

b. Agent A accepts a promise of agent B;

Appendix A: Negotiation Dialogue 259

Bridging the Specification Protocol Gap in Argumentation
c. Agent B accepts a promise of agent 4.

(2) C-Successful request dialogue property: a negotiation dialogue between agents

A and B is consider to be a c-successful if (see Figure A.29):

a. Agent A4 accepts a promise of agent B and commits to give R’ resource

in exchange for R";

b. Agent B accepts a promise of agent 4 and commits to give R"

resource in exchange for R'.

The CPN model generated by the verification tool for the negotiation dialogue was
not able to verify these two properties. It needed manual translations of the textual
explanation of these properties to SML functions in the CPN model. These
translations had to be done manually by creating new pages in the CPM model and
then writing the SML functions in the new page. The following two subsections

explain the SML functions of successful and c-successful dialogue properties.

Successful Request Dialogue Property SML Representation
Figure A.30 shows the algorithm of the CPN SML specification of this property:

(1) Line 1: Read the state space graph Termination nodes information from the

Property6 text file and save this information in 7Nodes variable.
(2) Line 2: Call function CheckProperty6.
(3) Line 3: Function inputs are TNodes.

(4) Line 4: Extract the message information from 7Nodes (message represents

termination message).

(5) Lines 5: Check that the termination message in the state space is equal to the

"accept" where:

a. SuccessfulRequestChecking function is used to compare the termination

message in the state space with "accept" ;

Appendix A: Negotiation Dialogue 260

Bridging the Specification Protocol Gap in Argumentation

Successful Dialogue (1)
M,

M,

Successful Dialogue (2)

M;

A 4

B, challenge

M,
A, justify > B, promise
M;
Unsuccessful Dialogue (3)
M,

B, challenge

M;

My

v

A, justify B, promise

M:s

Figure 2.8: Successful and Unsuccessful Dialogue Examples

Appendix A: Negotiation Dialogue 261

Bridging the Specification Protocol Gap in Argumentation

C-successful Dialogue

M1 M2

A, request B, challenge

M,

> B, promise(R",R")

A, justify

M;

A, accept(R",R")

The commitment stores of agents 4 and B at the end of the dialogue are:
CS,={("obtained",R"), ("gaveAway", R")}
CSg={("obtained",R"), ("gaveAway", R")}

Figure 2.9: C-successful Dialogue Example

26. Read&Save TNodes = state space termination nodes information
27. Call CheckProperty6

28. Input (TNodes)

29. Extract (message)

30. val mResult= SuccessfulRequestChecking(message)

31. if (mResult >= 0) then

32. "Property 6(Successful request dialogue) is Satisfied"

33. else

34. "Property 6(Successful request dialogue) is not Satisfied"

35. End CheckProperty6
36. Create&Save Property6 result file

Figure A.30: Property 6 (Successful Dialogue) as an Standard ML Function

Appendix A: Negotiation Dialogue 262

Bridging the Specification Protocol Gap in Argumentation

b. mResult represents the SuccessfulRequestChecking function result. It is
considered true if the termination message in the state space is equal to

the "accept".

(6) Lines 6 to 9: Check the result of the comparison. A positive (negative) result
indicates that Property 6 is satisfied (unsatisfied).

(7) Linel1: Create Property6 result file and write the result of CheckProperty6 in
this file.

C-successful Request Dialogue Property SML Representation

Figure A.31 shows the algorithm of the CPN SML specification of this property:

(1) Line 1: Read the state space graph Termination nodes information from the

Property6 text file and save this information in 7Nodes variable.
(2) Line 2: Call function CheckProperty?.
(3) Line 3: Function inputs are TNodes.
(4) Line 4: Extract the needed information from 7Nodes where:
j) message represents termination message;
k) sender represents termination message sender 1D;
1) receiver represents termination message receiver ID;
m) sCS represents sender commitment store;
n) rCS represents receiver commitment store;

(5) Lines 5: Check that the termination message in the state space is equal to the

"accept" where:

a. SuccessfulRequestChecking function is used to compare the termination

message in the state space with "accept" ;

Appendix A: Negotiation Dialogue 263

Bridging the Specification Protocol Gap in Argumentation

—_—

Read&Save TNodes = state space termination nodes information
Call CheckProperty7
Input (TNodes)
Extract (message, sender, receiver, sCS, rCS)
val mResult= SuccessfulRequestChecking(message)
val csContant = checkTheContantofCS(message, sCS,rCS)
if (mResult >= 0) andalso (csContant= true) then

"Property 7(C-successful request dialogue) is Satisfied"

PN AW

else

[S
S

"Property 7(C-successful request dialogue) is not Satisfied"
End CheckProperty7

—_—
N =

Create&Save Property7 result file

Figure A.31: Property 7 (C-successful Dialogue) as an Standard ML Function

b. mResult represents the SuccessfulRequestChecking function result. It is
considered true if the termination message in the state space is equal to

the "accept".

(6) Lines 6: Check that the content of the CS in the termination message of the
sender agent in the state space have ("obtained",R") and ("gaveAway", R') items.
This line also checks the content of the CS in the termination message of the
receiver agent in the state space have ("obtained",R') and ("gaveAway", R")

items where:

a. checkTheContantofCS function is used to compare the content of the

CSs;
b. csContant represents the checkTheContantofCS function result.

(7) Lines 7 to 10: Check the result of the comparison. A positive (negative) result
indicates that Property 7 is satisfied (unsatisfied).

(8) Linel2: Create Property7 result file and write the result of CheckProperty7 in
this file.

Appendix A: Negotiation Dialogue 264

Bridging the Specification Protocol Gap in Argumentation

22+ CPN Tools (Version 2.9.11, September 2010)

Tool box

Help

Options

CPNNeq.cpn Binder 0
Step: 0 Protocal - SuccessfulProperty _ _

VG S U 2 Do) <

Time: 0 Ioop ins befora Taxtl0.closeIn it ya| aF ; string * (Arc > bool) -> A

»Options valTr: A

»History val FF i A

¥ Dedlarations “5} TR A

¥Monitors fun INdeXOTSUbSEINg ((S1 ¢ SETING ya) OR + A~ A 15 A
TurnTakingBetweanAga) if 51 = substring (s2,i, J) then i els 3| Ex1eT NEXT : A > A
MessagasequencePropt if ((strSize -5) > 1) then e = A T C e

TerminationOFabialogug indexofSubstrina(s1,52,5trSize.l ya| EXIST_UNTIL: A* A -> A

DialogusOpaninaPrapar g'se val FORALL_UNTIL i A* A-> A
RecursiveMessagePropg d valvooaLiA R
+Protocol fun extractString ((ms : string), (5 o i 52
requestsendera i val FORALL_MODAL 1 A* A > A

val POS | A-> A
val INV: A > A
val EV:A-> A
val ALONG : A-> A
val eval_node : A -> Node > bool
val eval_arc ; A -> Arc -> baol
valit = ()¢ unit
val FindTerminationNode = fn : string -> unit
val getTNodelnf = fn : string -> string list
val indexQfSubstring = fn ; string * string * int * int * int -> int
val extractString = fn : string * string * string * int * int -> string

requestRecaivers
replyToRequastSends
replyToReguastRacaiv
replyToChallengeSent
replyToChallengeRecs
replyTolustifySenderd
replyTolustifyReceiver
replyToPromiseser gjn
repltToPramiseRed ref
SuccessfulProperty

val sindex= indexofSubstring(s1,
val elnd. indexGfSubstring(s2,
val Index = elndex - sindex -3 -1

in
substring(ms,(sindex+3), Index)
end;

fun extractstringIndex ((ms : strit
let

val extractStringIndex = fn : string * string * string * int * int -> int
val CheckPropert6 = fn : string list -> string
valit=() ¢ unit
val Thodes =
s
"repltToPromiseReceivert'Receiveaccept17 1 {plan=\"screw!",goal=\"hang pi#",
POt ol S e “scrawh)],

val sndex= index0fSubstrina(s1,

in
indexOfsubstring(s2 ms strsize ¢
nd;

way\,\ serewy’),(\"obtained\” \"hammer

string list .
roperté = "Property 6(Successful request dialogue) is Satisfied" : string
= 1extl0 outstream

fun CheckPraperts(TNodes)=
let

val lengthTN=length TNodes

- valic=(): unm
1 valit=() : unit
val TN= substring(hd Todes,0,2
val rest = tl TNodes
val messagelnf— hd rest
Nane

o+ CPN Tools (Version 2.9.11, September 2010)

TurnTakingBetweenAgentsProperty

then FindInCS(t, cs, tSize, csSize,(inde
else

Tool box
» Auxiliary
» Create ginder 0
» Hierarchy Protocol | SucsessfulProperty - CSuccessfulProparty
n val 1T s
I enTERRE] indexofsubstring(s2,ms strsize,sIndé val FF : A
2 end, val NOT 1 A-> A
»Simulation val AND i A A > A
» State space fun FindInCS((t : string), (cs : string),(val OR: A* A-> A
»Style if (csSize >= tSize) andalso (indexOf§ val EXIST_NEXT : A -> A
[y andalsa (t = substring(cs, 1,{index0fS val FORALL_NEXT : A-> A
» Help clse X val EXIST_ONTIL : A ® A > A
» Options if (cssize Size) andalso (indexOfs val FORALL_UNTIL: A* A-> A
andalsa (t = substring(cs, 1tSize)) | val MODAL : A-> A
¥ CENNeg.con then true val EXIST_MODAL : A* A -> A
Step: 0 val FORALL_MODAL : A* A > A
Time: 0 if (csSize >= tSize) andalso (indexOfé val POS : A—> A
» Options andalso (t = substring(cs,i tSize)) al INV A -> A
» History then true AEViA>A
val TA->
:E,Iicﬂ‘;;:uns if (indexOfSubstring(", " cs,csSize,i,1) | val eval_node : A -> Node -> baol

wval eval_arc : A > Arc -> bool

val it = () ; unit
MessageSequenceProperty val FindTerminationNode = fn : string -> unit
TerminationOFaDialogueProperty
Dialogu=0paningProparty
RecursiveMessageProperty
¥ Protocal
requestSenderA
raquastRacaivark
replyToRequastSenders

false;
val getTNodelInf = fn : string -> string list
fun ehackTheCantantafCS((messageh val indexOfSubstring = fn @ string * string * int * int * int -> int
(resSize:int),(scsSize:int))= val extractString = fn : string * string * string * int * int -> string
val extractStringIndex = fn : string * string * string * int * int -> int
if (FindInCS("gaveAway", ses, 8, sesSi val FindInCs = fn : string * string * int * int * int -> baal
andalsa (FindInC5("obtained”, scs, 8, val checkTheContantof€s = fn : string * string * string * int * int -> bool
andalso (FindInCS("gaveAway", rcs, 8 val CheckPropert? = fn : string list -> string
andalso (FindInCS("obtained", res, 8, val it = () : unit

replyToRequestReceivera val TNodes =
replyToChallengeSendera else 13’
replyToChallengeReceivers false; "repltToPromiseReceiverd'Receiveaccept17 1: {pla

replyTolustifySendere "Protg

replyTolustifyReceiverA

replyToPromiseSendsrA

repltToPromiseReceivare
SuccessfulProperty
CSticcessfulPraperty

fun CheckPropert7(TNodes)=
let

val lengthTi= length Thodes
val Property7Res
val it = () : unit
val it g

val TN= substring(hd TNodes,0.,2)
val rest = tl TNodes
val messagelnf= hd rest

None

C-Successful property is satisfied

Figure A.33: Property 7 (C-successful Dialogue) Verification Result

Applying the Verification Process

After finishing manual translations of the textual explanation of these properties to
SML functions in the CPN model, the verification of the negotiation dialogue LCC
protocol CPN Model (verifying of the successful and c-successful properties) was
done using the steps explained in chapter 7 and the results obtained were
corresponding to the expected behaviour of the system (Figures A.32 and A.33 show

the verification result of the these two properties).

Appendix A: Negotiation Dialogue 265

Bridging the Specification Protocol Gap in Argumentation

Appendix B

N-agent Dialogue

To handle N-agent dialogue games, we extended DID diagram. This appendix
presents the formal definition of DID for N-agent in Section B.1. An example of the
persuasion dialogue between N-agent is presented in Section B.2. A description of
LCC-Argument protocol general N-agent design patterns is presented in Section B.3.

B.1 DID for N-agent Formal Definition

In this section we extend the formal definition of DID for two agents to handle N-
agent. Readers not interested in such details are encouraged to skip ahead to section
"DID for a persuasion dialogue between N-agent" for an example of the DID or skip

ahead to section B.3 for the general N-agent design patterns.
Definition 14: N-agent Players

A multi-agent system consists of a finite set of players (agents).
Players = {A}, Ay, ...An},

Where,

e AjePlayers, wherei=1,2,3, ,n

e Each player A; has its own commitment store set CS; < s (Args(L)), which
contains a set of propositions to which the player is committed in the

discussion.

e Each player A; has its own knowledge base or beliefs set KB; < ¢ (Args(L)),

which represents the propositions on which the agent believes.

Appendix B: N-Agent Dialogue 266

Bridging the Specification Protocol Gap in Argumentation
Definition 15: N-agent Act Type

'ActType' is a function which determines the type of 'Act'.
ActType: Acts > o (Types)
Where,
e Types ={ RecursiveStarting, Intermediate, RecursiveTermination, Divided },
e RecursiveStarting: this type can be used to open a dialogue,
e Intermediate: this type can be used to remain in the dialogue,
e RecursiveTermination: this type can be used to terminate the dialogue,

e Divided: this type can be used to divide agents into groups and then to change
the multi agent dialogue to two agents dialogue.
Definition 16: Recursive-conditions

'ReC’ is a function which specifies the move recursive-conditions according to the
dialogue protocol. It takes as input parameters an act and the recursive arguments

and returns a Boolean and new recursive arguments.
ReC: Acts * g (args(L)) = Boolean

Definition 17: Divided conditions

'DC' is a function which specifies the agent divided conditions according to the
dialogue protocol. It takes as input parameters an act, players, the commitment store

of all players and the knowledge based of all players and returns a Boolean.
DC: Acts X g (Players) x (args(L))" % (args(L))" = Boolean

Definition 18: Next Player in N-agent dialogue

'NextPlayer ' is a function which determines the next players to move at specific

moment of a dialogue.

Appendix B: N-Agent Dialogue 267

Bridging the Specification Protocol Gap in Argumentation

NextPlayer: Move = @ (Players)
Definition 19: N-agent Dialogue Move
In the N-agent dialogue, there are three types of move:
(1) One sender and more than one agent will take the next turn (N-receiver):

A move M; € Moves, t >= 1, is defined as:
M= (player, act;, SetMy.1, setPlayer;, sender;, rSetRole,),

Where,
e player; € Players represents the player of the move,
e player; ¢ setPlayer;
e act; € Acts represents the speech act performed in the move,

o SetMi; € p(Moves) U {null} represents the previous moves (M; is a reply

to SetMy.),
o setPlayer; € g (Players) represents the next players in the dialogue,
e sender; eRoles represents the role identifier of player (sender agent),

e rSetRole. € g (Roles) represents the role identifiers of the setPlayer;

(receiver agents),
(2) One sender agent and one receiver agent:
A move M;esMoves, t >= 1, 1s defined as:
M= (player, act;, SetM..;, player;, sRole, rRolepjayer),
Where,

e player; € Players represents the player of the move,

Appendix B: N-Agent Dialogue 268

Bridging the Specification Protocol Gap in Argumentation

act; € Acts represents the speech act performed in the move,
player; # player;,
player; € Players represents the next player in the dialogue,

SetM¢; € g (Moves) U {null} represents the previous moves (M; is a reply

to SetMy.),
sRole. eRoles represents the role identifiers of the player; (sender agent),

rRoleyayer €Roles represents the role identifier of the player; (receiver agent).

(3) More than one sender (N-sender) and one receiver agent:

A move M; € Moves, t >= 1, is defined as:

M

Where,

L 4

= (setPlayer, act;, SetMyi, player;, sSetRole;, rRole),

setPlayer; € ¢ (Players) represents the players of the move,
act; € Acts represents the speech act performed in the move,

SetM.; € o (Moves) U {null} represents the previous moves (M; is a reply

to SetMt_]),
player; € Players represents the next player of the move,
player; ¢ setPlayer;

sSetRole. € @ (Roles) represents the role identifiers of the player; sender

agents,

rRole; eRoles represents the role identifier of the player; (receiver agent).

Appendix B: N-Agent Dialogue 269

Bridging the Specification Protocol Gap in Argumentation

Definition 20: Legal move for N-agent

'legalMoveNAgent' is a function which specifies the legal moves at a particular
moment in the N-agent dialogue. It takes the dialogue history at a particular moment

and the commitment store of all players:
LegalMovesNAgent: MoveSeq X (g(args(L)) X g (args(L)))" = @ (Moves)

Rule 4: (Start N-agent Dialogue)

This rule says that a N-agent dialogue always starts with a RecursiveStarting act by

proposal agent:

LegalMovesNAgent([], CS;, CS,,........ CSy) = { M}

Where,
e M= (proposal, act;, null, setPlayer;, sRoleproposai1, rSetRole;) ,
e proposale setPlayer;
e ActType(act;) = {RecursiveStarting},

e PreC(act;,KBproposal, CSproposal) = true, where KBproposal TEpresents proposal
agent's knowledge base and CS,oposal r€presents proposal agent's commitment

store.

e PostC(act; KB;, CS;) = true (for each player € setPlayer;), where KB;

represents agent knowledge base and CS; represents agent commitment store.

Rule 5: (Reply to a Proposal Agent's Move)
This rule says that more than one move will reply to a proposal agents' move:

LegalMovesNAgent ([M|,M,,....... M], CSy, CS,, CS,)= SetMy.
if
e M= (proposal, act;, SetM\.;, setPlayer;, sRoleproposal, rSetRoley) ,

Appendix B: N-Agent Dialogue 270

Bridging the Specification Protocol Gap in Argumentation
e proposalg setPlayer;
o PreC(act,KBproposal, CSproposal) = true, where KByproposal represents proposal

agent's knowledge base and CS;posal TEpresents proposal agent's commitment

store.

e PostC(act,KB;, CS;) = true (for each player € setPlayer;), where KB;

represents agent knowledge base and CS; represents agent commitment store.
e M. 1= (setPlayer;, acti; , My, proposal, sSetRole, rRoleproposal),
e M eSetMyg
o ActType(acty) = {Intermediate},
e acty € Replies(acty) (M4 replies to M),

e PreC(acty+1,KB;, CS;) = true (for each player € setPlayer;), where
KB;represents agent knowledge base and CS; represents agent commitment

store.

e PostC(acti+1,KBproposal, CSproposal) = true, where KByproposal T€presents proposal
agent's knowledge base and CS;oposal TEpresents proposal agent's commitment

store.

With this rule we are specifying also the turn-taking restriction. The sender of move
M; is the receiver of all the move from the SetM.+; and the receiver of move M; is the
sender of all the move from the SetM4;.

Rule 6: (N-agent Dialogue Termination)

This rule says that a N-agent dialogue always terminates with a

RecursiveTermination act by the proposal agent:

LegalMovesNAgent ([M|,M,,....... M], CSy, CS,, CS,)=0

Appendix B: N-Agent Dialogue 271

Bridging the Specification Protocol Gap in Argumentation
if
e M= (proposal, act;, M1, null, sRolepoposal, rSetRoley) ,

o ActType(act)) = {RecursiveTermination},

o PreC(act,KBproposal, CSproposal) = true , where KB roposal represents proposal
agent's knowledge base and CS;posal TEpresents proposal agent's commitment

store.

e PostC(act,KB;, CS;) = true (for each player € setPlayer;, setPlayer;
represents the previous players and proposalg setPlayer;), where KB;

represents agent knowledge base and CS; represents agent commitment store.
Rule 7: (Divide Agents in to Groups)

This rule says that proposal agent is responsible of dividing agents into groups
composed of two agents and sending Divided act to all other agents to inform them
about the groups. Once agents are divided in the group, dialogues take place between

two agents (the next move is a move in dialogue between two agents):

LegalMovesNAgent ([M|,M,,....... M, CSy, CS,, CS)) = {My}
e M= (proposal, act;, M1, setPlayer;, SRoleyroposal, rS€tRoOley),
e ActTypes(act;) = {Divided},
e proposal¢ setPlayer;,

e M, is a move in dialogue between two agents (Note that My;; must be a

legal move in the two agents dialogue. See Definition 14),

o PreC(act,KBproposal, CSproposal) = true, where KBproposal represents proposal
agent's knowledge base and CS,oposal r€presents proposal agent's commitment

store,

Appendix B: N-Agent Dialogue 272

Bridging the Specification Protocol Gap in Argumentation

e PostC(act,KB;, CS;) = true (for each player € setPlayer;), where KB;

represents agent knowledge base and CS; represents agent commitment store,
e D((act;, Players, SetKB, SetCS) = true, where
o each player; € Players has KB; € SetKB and has CS; € SetCS
o KBijrepresents agent knowledge base

o and CS; represents agent commitment store

Rule 8: (Return Back to Dialogue Between N-agent)
This rule says that :

LegalMovesNAgent ([M,M,,....... Mi+1], CSy, CS,, CSp)= {Muy}
If

e M, is a move in dialogue between two agents

e M, = (player;, acty1, M, null, sRole;, rRole),

o ActType(acty) = {Termination},

e PreC(acty:1,KB;, CS;) = true, where KB; represents agent I's knowledge base

and CSj represents agent /'s commitment store.

e PostC(act,KBg, CSix) = true, where KBy represents agent K's knowledge

base and CSy represents agent K's commitment store.
e M= (proposal, actu2, M1, setPlayer;, sRoleproposal, ISetRole 1+2),
e M, is a move in dialogue between N-agent

e ActTypes(acti2) = { RecursiveStarting }

Appendix B: N-Agent Dialogue 273

Bridging the Specification Protocol Gap in Argumentation
e proposalg setPlayer;
o PreC(acti+2,KBproposal, CSproposal) = true, where KByproposal represents proposal

agent's knowledge base and CS,roposal represents proposal agent's commitment

store.

e PostC(act2,KB;j, CS;) = true (for each player € setPlayer;), where KB;

represents agent knowledge base and CS; represents agent commitment store.

B.2 DID for N-agent Example

Figure B.1, which was adapted from [Ito and Shintani, 1997], illustrates an example

of a persuasion dialogue between N-agent:
e The system will randomly select a proposal agent

e A proposal agent sends (broadcasting) a proposal(Topic) locution to all other

agents.

e FEach agent who receives the proposal(Topic) reports acceptance of the
proposal(Topic) by sending an accept(Topic) locution or rejection of the

proposal(Topic) by sending a reject(Topic) locution.

e [f the agents reach an agreement (if Acceptance number >= The number of
supporter agents), the proposal sends reachAgreement(Topic) to all other

agents.

e [If the agents could not reach an agreement on the proposal(Topic), the
proposal divides agents into groups composed of two agents and sends

argueWith locution to all other agents to inform them about the groups.

DID formal definition for a persuasion dialoque between N-agent

(1) Players: Players={Agent;, Agent,,.......... Agent,}
Each player has its own KB and CS such that:

Appendix B: N-Agent Dialogue 274

Bridging the Specification Protocol Gap in Argumentation

Randomly select proposal agent

\ 4

> Proposal agent sends a proposal to all other agents

Each agent, who receives the proposal, sends the

acceptance or rejection of the proposal

Proposal agent sums up the acceptance and rejection

Acceptance number

o Yes

The number of supporter agents

Proposal agent divided agents into groups composed of
two agents (one rejection agent and one accepting

agent)

Persuasion take place between two agents

(e.g. agent A and agent B)

'

Acceptance number
>=
The number of supporter agents

A

Reach an agreement

Where the termination conditions is
Acceptance number >= The number of supporter agents

Figure B.1: Persuasion Dialogue Between N-agent

Appendix B: N-Agent Dialogue

275

Bridging the Specification Protocol Gap in Argumentation

Agent; argumentation system ASagenti (ASAgent1 = {KBagenti » CSagent1})

(2) There are five locutions (Acts):

Acts ={proposal(Topic), accept(Topic), reject(Topic), reachAgreement(Topic),

argueWith(Topic,Agentp,Agentp)}

(3) ActType(Act):

Act ActType (Act)
proposal {RecursiveStarting}
accept { Intermediate }
reject {Intermediate}
reachAgreement {RecursiveTermination}
argueWith {Divided}

(4) Replies(Act):

Act

Replies(Act)

Note

proposal(Topic)

{ accept(Topic),
reject(Topic)}

accept(Topic)

{

argueWith(Topic)}

reachAgreement(Topic),

reject(Topic)

{

argueWith(Topic)}

reachAgreement(Topic),

reachAgreement(Topic)

%)

argueWith(Topic,Agentp,Agenty) | {claim(Topic)}

Replies(Act) for argueWith
locution represents the Starting
Loctuion icon in the DID for two
agents (e.g. Replies(Act)=
claim(Topic) which represents the
Starting Loctuion icon in the
persuasion dialogue between two
agents in section 4.2.1). In other
words, we need to connect
argueWith ~ with the Starting
Locution icon in the DID for two
agents.

Appendix B: N-Agent Dialogue

276

(5) PreC(Act,KB,CS):

Lets Player = Proposal

Bridging the Specification Protocol Gap in Argumentation

Act PreC(Act,KB,CS) Note
proposal(Topic) addTopicToCS(Topic,CSproposal)=
true
accept(Topic) findTopicInKB(Topic, KBjp) =
true
and
notFindTopicInCS (Topic,CSp) =
true
and
notFindOppTopicInCS
(not(Topic),CSp) = true
and
addTopicToCS(Topic,CSpp) =
true
reject(Topic) notFindTopicInKB(Topic,KBproposat)
= true
and
notFindTopicInCS(Topic,CSproposal)
= true
reachAgreement(Topic) | greaterThanOrEequal(NAccepting, | greaterThanOrEequal function
NSupporters) = true returns true if the number of
accepting agents NAccepting is
greater than or equal to the
number of supporter agents
NSupporters.

(NAccepting >= NSupporters)
argueWith(Topic, lessThan(NAccepting,NSupporters) o JessThan function returns true
Agentp,Agentp) = true if the number of accepting

and agents NAccepting is less
than the number of supporter

isNotEmpty(RejectionList) = true agents NSupporters.

and (NAccepting <NSupporters)

isNotEmpty(AcceptingList)) = o isNoEmpty function returns

true true if the list is not empty.

Appendix B: N-Agent Dialogue

277

Bridging the Specification Protocol Gap in Argumentation

(6) PostC(Act,KB,CS):

let Player(M)= Proposal

Act PostC(Act,KB,CS)

Note

proposal(Topic) true

accept(Topic) addToAcceptingList
(AcceptingList, AccList ,ID)
= true

and

increaseAccepting
(NAccepting,NAcc)

= true

and
addIDToList(AgentList,
SendingList, ID) = true

o addToAcceptingList function always

returns true and results in proposal
agent adding the accepting agent /D
to the AcceptingList

(AccList =AcceptingList U {ID}).

increaseAccepting function increases

the number of accepting agents

(NAcc = NAccepting +1)

addIDTolList function always returns
true and results in proposal agent
adding the agent /D to the
SendingList

reject(Topic) addToRejectingList
(RejectingList,RejList,ID)
= true

and
increaseRejecting
(NRejecting,NRej)
= true

and
addIDToList(AgentList,
SendingList, ID) = true

addToRejectingList function always
returns true and results in proposal
agent adding the rejecting agent /D
to the RejectingList

(RejList=RejectingLsit U {ID}).

increaseRejecting function increases

the number of rejecting agents

(NRej =NRejecting+1)

reachAgreement true

(Topic)

argueWith(Topic, | true
Agentp,Agentp)

(7) ReC(Act,KB,CS):
let Player(M;)= Proposal

Appendix B: N-Agent Dialogue

278

Bridging the Specification Protocol Gap in Argumentation

otherAgents)=true

Act ReC(Act,KB,CS) Note

proposal(Topic) getAgentIDFromList getAgentIDFromList function gets agent ID
(AgentList, from the AgentsList and puts the remainding
otherAgents,ID) agents in the otherAgents list
= true (OtherAgents = AgentsList — {ID})

accept(Topic) notEqual(AgentList, notEqual function compare the AgentList with
SendingList) the Sending and returns true if these two lists

are equal

reject(Topic) notEqual(AgentList,
SendingList)

reachAgreement(Topic) | getAgentIDFromList
(AgentList,

argueWith(Topic, creatOneAgentGroups | creatOneAgentGroups function:
Agentp,Agentp) (RejectingList,Re, (4) creates one agent group by getting one
AcceptingList,Ac, agent O from the Rejectinglist and one
AgentGroup, agent P from the Acceptinglist.
AGroup,P,0) = true (5) adds the new agents groups to AGroup list
(AGroup = AgentGroup + {(P,0)}.

(6) Saves the remained rejection agent in Re
list and saves the remained accepting
agents in Ac.

(8) LegalMovesNAgent(M; , CSagent1s CSagent2seesees- CSagentN)

From Figure B.2, we can see that:

e Dialogues open by making a proposal move

e In this

reachAgreement.

dialogue,

the argument terminates once one agent sends

e Both accept and reject € {Intermediate}. There are several moves to these

moves. (there are arrows coming out from these moves).

e After argueWith € {Divided}, the dialogue between two agents begins.

Appendix B: N-Agent Dialogue

279

Bridging the Specification Protocol Gap in Argumentation

M;
Proposal Agent, proposal

<Proposal Agent, reachAgreement>

M,
M;
N\ Others, reject /

M;

My Proposal Agent, argueWith

7
Dialogue Interaction Legal Moves

for two agents

(See Figure 4.5)

Figure B.2: The Persuasion Dialogue Between N-agent Legal Moves

The turn-taking between participants switches after each move (the agents
take it in turns to make moves):

o if M; then Player = Proposal,

o else NextPlayer = All other agents iff Player = Proposal

and NextPlayer = Proposal iff Player = All other agents

Appendix B: N-Agent Dialogue 280

Bridging the Specification Protocol Gap in Argumentation

DID for a persuasion dialogue between N-agent

The DID of this example is shown in Figure B.3 (Note that pre-conditions and post-
conditions for locutions are not shown in this figure since they are shown in Figures
B.4(a), B.4(b), and B.4(c).) In Figure B.3, a dialogue always starts with a proposal
and ends with a reachAgreement locution. Proposal Agent can open the discussion
by sending a proposal(Topic) locution, if it is able to satisfy both the pre-condition
and the recursive condition that are connected to the sender role of this locution: /)
getAgentIDFromList(AgentList,otherAgents,ID) that returns true if AgentList is not
empty, gets agent ID from the AgentsList and puts the remaining agents in the
otherAgents list; 2) addTopicToCS(Topic,CSproposal) that returns true if Proposal
Agent is able to add Topic to its commitment store CSproposal (1f Topic 1s not already
in the CSproposal), Which is always returned true. Then, turn-taking switches to All
other agents. Each of them has to choose between two different possible reply
locutions: accept(Topic) or reject(Topic). Each agent will make its choice using the
pre-conditions which appear in the rhombus shape. An agent sends accept(Topic), if
it is able to satisfy:1) findTopicInKB(Topic, KB|p) that returns true if the agent is
able to find 7opic in its knowledge base KBjp; 2) notFindTopcilnCS(Topic,CSip)
that returns true if the agent is not able to find Topic in its commitment store CSjp;
3) notFindOppTopicInCS(not(Topic),CSip)) that returns true if the agent is not able
to find the opposite of Topic in its commitment store CSp; 4)
addTopicToCS(Topic,CSyp) that returns true if the agent is able to add Topic to its
commitment store CSip which always returns true. An agent sends reject(Topic), if it
is able to satisfy:1) notFindTopicInKB(Topic,KBp) that returns true if the agent is
not able to find Topic in its knowledge base KB;p; 2) notFindTopcilnCS(Topic,CSip)

that returns true if the agent is not able to find Topic in its commitment store CSp.

After that, the turn switches to Proposal Agent, and so forth. The argument

terminates when Proposal Agent sends reachAgreement locution to all other agents.

Note that in this example, each dialogue game between two agents has four input
parameters: 1) Topic (which represents the main topic of the dialogue between N-

agent); 2) IDpyoposal (Which represents the proposal agent ID);

Appendix B: N-Agent Dialogue 281

Bridging the Specification Protocol Gap in Argumentation

RecursiveStarting Locution
Output: Proposal
A 4
proposal(Topic TopiC)IDPrapasal
proposalSender proposalReciver
AgentList, NAgent,NSupporters,Topic IDproposal
Imepoaal N ID
All otheragents | | ______ Others
- ~ N
RecursiveReceiving RecursiveReceiving \\
/ Locution Locution A
| : 5 |
| I
I v \ 4 |
| accept(Topic) reject(Topic) I
| | replyToProposal- CollectResp- replyToProposal- replyToProposal- |
| Sender Receiver Sender Receiver |
[|
| AgentList, NAgent,NS AgentList,NAgent,N |
| upporters, Topic, Supporters, Topic,N |
| NReply, Reply, |
: KB,CS, IDyroposar | AcceptingList, KB,CS, IDproposar | AcceptingList, |
| RejectionList, RejectionList, |
| NAccepting, NAccepting, :
I NRejection NRejection, |
| ,SendingList SendingList I
l D Imepusal ID IDproposal ’
\ /
\ /
N s
~ ~ e .- _ -
Agentl
i RecursiveTermination Locution i Divided Locution
‘ \ 4 4 _
reachAgreement(Topic) argueWith(Topic,Agentp,Agento)
ResultSender ResultReciver ResultSender ResultReciver
AgentList,NA .
Eent st gent,NS AgentList,NAgent,NSupport KB.CS
upporters,Topic, . O Bl
A . . KB,CS, ers,Topic, AcceptingList, 1D
cceptingList, D ReiectionList. AgentG proposal
RejectionList, broposal ejectionList, AgentGroup
AgentGroup IDproposal D
IDyproposal ID
All agents
s T T T T T T T T T T T T T T ~
¢ Input: Topic, ID,,,posu IDp, IDg \\
|
I |
I |
. . . |
: Dialogue Interaction Diagram for two agents I
. |
: (See Figure 4.3) I
I |
‘)
\ N _7

Figure B.3: Dialogue Interaction Diagram for N-agent (DIDN)
Appendix B: N-Agent Dialogue 282

Bridging the Specification Protocol Gap in Argumentation

RecursiveStarting Locution

getAgentIDFromList 1
(AgentList,otherAgents,ID proposal(Topic)
proposalSender proposalReciver
. . KB ID,CS[D,
AgentList, NAgent,NSupporters, Topic D
proposal
IDproposal ID

AgentList >
otherAgents

-
-

P 5ddTopicToCS Tsl
N _(TOpiC,CSPmposal), e

~
~

Sol.-
~-

notEqual(AgentList,
SendingList),

RecursiveReceiving
B Locution
i ﬁndTopicInKE\‘\. - SendmgL} st 9
.. (Topic, KByp).- B accept(Topic) OtherSendingLis
ST 2 replyToProposal- replyToProposal-
PR S Sender Receiver
/"T. .‘\"-\ AgentList, NAgent,N
< notFindTopcilnCS ~ » Supporters, Topic, AcceptingList >
~-(Topic,CSm) ., -~ NReply, AccList
s KBip,CSip, AcceptingList
e - ~ee IDproposal RejectionList,
e e NAccepting, NRejection >
._ \r?(itFmeppTopchn(ES/ - NRejection, NRej
~«(not(T),CSyp)-- SendingList
1D IDproposa

Lo
-

e ZladTopicToCS' R
"~.. (Topic,CSip) Pid

~.
~

NAccepting >
NAcc

-

3

~ . Py
< -
“.

P addID_ToL_ist \\.\ ,,-’1hcreaseAccepting\'~.\
< (SendingList, o>\ "~._ (NAccepting,NAcc) .-~
~.. OtherSendingList, .- N [Phid
.. I o7 -l ST

Pt ElddToAcceptingLis‘t\ ~.
*~._ (AcceptingList, AccList, .-
Sl . ID) Piie .

o

~

-
.-

Figure B.4 (a): DIDN Locutions Pre-conditions and Post-conditions

Appendix B: N-Agent Dialogue

283

Bridging the Specification Protocol Gap in Argumentation

notEqual(AgentList,
SendingList),

"-\OtherSendingList,,.f" L. "\\'(NRejecting,NRej)/,-"
S D) . -7 T ~. P

-_,."’ _.-""addToRejectingList '~.. "~--*~

~.. (RejectingList,RejListID) . - =

iES .-
T~

- i RecursiveReceiving
P N - LOletiOH SendingList >
.-~ notFindTopiclnKB™ "~ ., i OtherSendingLis
RS (IopicsKB[’mposa < :
T~ VR 1 reject(Topic)
- replyToProposal- replyToProposal-
Sender Receiver AcceptingList >
AgentList,NAgent,N AccList
2 Supporters, Topic,
R NReply,
P s KBip,CSip, AcceptingList, NRejection >
_,\-" notqudTopchnCS S IDyroposal RejectionList NRej
~. .(T.OpIC,CSPmpaTal), - JNAccepting,
s NRejection
SendingList N
D D, ronosal NAccepting
PR NAcc
. / X
~*“addIDToList ~-. 2 PR
-~ (SendingList, S .-~ increaseRejecting '~ _

{ RecursiveTermination Locution ;

getAgentIDFromList

(AgentList,otherAgents,ID) reachAgreement(Topic)
resultSender resultReciver
AgentList 2> AgentList,NAgent,NSupporters, KBin,CSin
OtherAgent ’
eragents 1 Topic, AcceptingList, D proposal
,~", .\'\ RejectionList, AgentGroup
7 e IDproposal ID
..-7 greaterThanOrEequal "~._

o (NAccepting,NSupporters) .- .

~
. -
~ .
-
-
-

N
~
~-

Figure B.4(b): DIDN Locutions Pre-conditions and Post-conditions

Appendix B: N-Agent Dialogue

284

Bridging the Specification Protocol Gap in Argumentation

Divided Locution

creatOneAgentGroups
(RejectingList,Re,AcceptingList,
Ac,AgentGroup, AGroup 4 - -
P,0) argueWith(Topic,Agentp,Agento)
’ ResultSender ResultReciver
RejectingList> AgentList, NAgent,NSupporters,
Re Topic,AcceptingList, KBip,CSip,
Imeposal
RejectionList, AgentGroup
AcceptingList—>
Ac IDproposal ID

AgentGroup~>
AGroup

LT "'\'.';:..\ isNoEmpty(RejectionList), .-~ .--~" sl
--"7" lessThan(NAccepting, "~*~.~"~. =77 w2 isNotEmpty(dcceptingList) e
~ NSupporters) ~ _.-"" IR sl _“.~"'

~

Figure B.4(c): DIDN Locutions Pre-conditions and Post-conditons

3) IDp (which represents the first agent ID in the current group); 4) IDo (which
represents the second agent ID in the current group). Each of the dialogue games
between two agents has two output parameters: 1) Topic (which represents the main
topic of the dialogue between N-agent); 2) IDp.gposa (Which represents the sender

agent ID).

The basic Scenario of Interaction Protocol of Persuasion Dialogue between N-agent

An example (see Figure 4.14) of the persuasion dialogue among seven agents is
shown in Figure B.5 (note that the DID between two agents is not shown in this
diagram). The goal of the dialogue is to persuade all agents that 4's car is safe. In this

example:

(1) A opens a discussion by sending a proposal("My car is safe”) to all other
agents(B,C,D,E,F and G).

(2) Each agent checks with its argumentation system AS (A4S = {KB, CS}) whether

"A's car is safe" is acceptable:

Appendix B: N-Agent Dialogue 285

Bridging the Specification Protocol Gap in Argumentation

e Ifan agent finds that " A's car is safe”, it sends accept("My car is safe”)

to A,

e [fan agent does not find " A's car is safe" , it sends reject("My car is

safe") to A,
In this example, C accepts the proposal and B ,C, D, E, F and G reject the proposal.
(3) 4 sums up the acceptance and rejection locutions.

e [f the acceptance number is equal to the number of agents (termination
condition), the agents have reached an agreement and 4 sends a

reachAgreement("My car is safe”) locution to all other agents.

e If the number of rejections is equal or greater than one (Divided
condition), A divides agents into groups of two under the condition that it
cannot put two accepting agents or two rejection agents together in one
group (note that if the number of agents is even, every agent has a
partner. If the number of agents is odd, the last agent lacks a partner).
Then, 4 sends an argueWith locution to all other agents to inform them

about the groups.

In this example, group one consists of 4 and B and group two consists of C and
D (note that £, I and G have rejected the proposal so we cannot put them

together in one group.)

(4) Within each group, dialogues take place between two agents. In this example,

each group will use the DID between two agents given in Figure 4.3.

(5) Each agent in the group sends either an accept("My car is safe") or reject("My car

is safe") locution to A.

(6) Then, A repeats step 3. The following are the new groups: group one consists of 4
and E, group two consists of B and F. Within each group, dialogues take place

between two agents.

Appendix B: N-Agent Dialogue 286

Bridging the Specification Protocol Gap in Argumentation

A 4

1- proposal("My car is safe") 2- reject("My car is safe")
3- argueWith(A)

5- accept("My car is safe")

B
6- argueWith(F)
7- accept("My car is safe")
8- argueWith(C)
i 9- accept("My car is safe") g
1- proposal("My car is safe") -
2- accept("My car is safe") i
3- argueWith(D) >
5- reject("My car is safe") C
8- argueWith(B)
9- accept("My car is safe")
1- proposal("My car is safe") -
le 2- reject("My car is safe") g
A 3- argueWith(C) D

5-reject("My car is safe")

8- argueWith(E)

A\ 4

9- accept("My car is safe")

1- proposal("My car is safe")

Y

2- reject("My car is safe") E

6- argueWith(A)

7- accept("My car is safe")

8- argueWith(D)

v

9- accept("My car is safe")

1- proposal("My car is safe")

A 4

2- reject("My car is safe")

6- argueWith(B)

A 4

7- accept("My car is safe")

8- argueWith(G)

\ 4

9- accept("My car is safe")

1- proposal("My car is safe")

v

2- reject("My car is safe") G
8- argueWith(F)

\ 4

9- accept("My car is safe")

Figure B.5: The Complex Car Safety Example Among N-agent

Appendix B: N-Agent Dialogue 287

Bridging the Specification Protocol Gap in Argumentation

(7) Each agent in the group sends either an accept("My car is safe") or reject("My car

is safe") locution to 4.

(8) Then, A repeats step 3. The following are the new groups: group one consists of B
and C, group two consists of £ and D, and group three consists of /' and G. Within

each group, dialogues take place between two agents.

(9) Each agent in the group sends either an accept("My car is safe") or reject("My car
is safe") locution to 4. Finally, 4 sums up the acceptance and rejection locutions
and finds that the acceptance number is equal to the number of agents, which
means that the agents have reached an agreement. 4 sends reachAgreement("My

car is safe") to all other agents.

B.3 General N-agent Patterns

As mentioned in chapter 4 and 5, we have focused on those involving more than two
agents where synthesized LCC protocols specify broadcasting methods to divide
agents into groups composed of two agents (with these two-agent dialogues then
being specified using DID). That means our tool limited the LCC argumentation
protocol for N-agent to a broadcasting notation. However, we believe that we are
able to extend it to work with different types of N-agent protocols by adding more
general patterns to the library. These new patterns must be able to work with
recursive concepts of DID for N-agent (since recursive concept is considered the

most important concepts of N-agent protocols).

B.3.1 General LCC-Argument N-agent Patterns

This section describes three general LCC recursive patterns:

Pattern6:

Name: Recursive Starting (Sending) pattern (RSP)

Problem: How to start an argument (dialogue) for N>= 3? or how to send a message

to more than one agents.

Appendix B: N-Agent Dialogue 288

Bridging the Specification Protocol Gap in Argumentation

Solution: Both agents send/receive a message (locution) and then change their roles

so0 as to remain in the dialogue (Figure B.6).

(1) Sender (speaker) agent proposes an action (start dialogue) by sending a

Recursive Starting locution to all agents and then changes its role.

(2) Other agents (all agents except the sender agent) receive a Recursive Starting

locution and then change their role
Context (Pre-conditions):

e Use this pattern when a sender agent has not already started a dialogue for

N>= 3 agents;

e Or, use this pattern when one agent wants to send a message to more than one

agents.
Consequence (Post-conditions):

e Sender and other agents engaged in a dialogue.

e Sender and all other agents (receivers) change their roles to remain in the

dialogue.
Structure:
ﬂ(l sender(AgentList, NAgent,Topic),IDgenger)::= \
Rsender RS> RReceiver
then
(

a(R24ender (OtherAgents, NAgent, Topic),IDgenger) € FailureRecursiveC
or
a(R1enger (OtherAgents, NAgent, Topic),IDgenger)

).

a(Rl Recevier(KBID’CSID’IDSender)’ ID) o=

. RSL
<= R Sender

then
a(Rchccivcr(KB IDaCSIDs I]:)Scndcr)a ID) .

Appendix B: N-Agent Dialogue 289

R Receiver

Bridging the Specification Protocol Gap in Argumentation

Change to

Sender

1

RSL (Topic)

Sender Role 1

Sender

Sender Role 2

Agent,;

2

Audience Role 1

Change to

Agent,;

Audience Role 2

Agent,

2

Change to

Audience Role 1

Agent,

Audience Role 2

Agent,

Audience Role 1

Agent,

Audience Role 2

2

Change to

Appendix B: N-Agent Dialogue

Figure B.6: Recursive Starting(Sending) Pattern Solution

290

Bridging the Specification Protocol Gap in Argumentation

This pattern represents a generic recursive clause. In this pattern, and in the rest of
the patterns, RRL represents Recursive Receiving Locution, '=>' represents outgoing
messages from a role, and '<&' represents incoming messages. FailureRecursiveC
represent a condition when it is true the recursive end (usually, FailureRecursiveC is

a condition over AgentList).

In this LCC code, there are two roles: RIgender and RI geceiver- The R1genqer role of the
sender agent /Dy, has three input parameters: (1) AgentList which represents the
agents ID list; (2) NAgent which represents the number of agents (note that the
number of agents is > = 3). (3) Topic to open dialogue. The R/seuq.- T0le begins by
sending a Recursive Starting locution RSL to the RIgeceiver role (the '=>' symbol
indicates that the R/g.,4.- role may send one or more different RSLs to the R7geceiver
role.). Then, the R/seuqer role check FailureRecursiveC. If this condition is true, the

R1senger changes its role to the R2s.,q.r, Otherwise, it recurse.

The R1geceiver Tole of receiver agent IDgeceiver has three input parameters: (1) KB receiver
which represents the agent knowledge base list; (2) CSgeceiver Which represents the
agent commitment store list. Note that CS, is empty, since R/Ipgeceiver T€presents the
first role of the audience agent in the LCC protocol; (3) IDsenser Which represents the
sender agent identifier. The RIg.c.iver TOle begins by receiving a Recursive Starting

locution RSL from RIse,q.-- Then, it changes its role to the R2g.ceiver-
Rewriting methods:
First (Sending method): Rewriting of the ""Rsonger RSL> Ripeceiver”"

The main function of rewriting is to allow generic relations between the R4 and
the Rgeceiver t0 be rewritten in a specific way. There might be a direct, complex or
indirect relation between them. If there is a general relation "Rgenger RSL> RRreceiver'»

then it is possible to specialise it within two different statements:
Rewrite 1: (one locution)

. .. RSL, . .
We might specialise "Rgender L RRreceiver 10O an interaction statement that sends a

RRL(Topic) message to agent [Dgeceiver, Which is achieved by the RecursiveC and C1
Appendix B: N-Agent Dialogue 291

Bridging the Specification Protocol Gap in Argumentation

constraints. In practice, RecursiveC represents a recursive condition (usually,
RecursiveC is a condition over AgentList), CI represents a condition (C/ may
represent more than one condition that is connected by or and and operators) that
must be satisfied in order for a sender agent to send the Recursive Starting locution

(usually, C1 is a condition over Topic).

RSL(Topic) => a(Riecevie KB1p,CSip,IDsender), ID) € RecursiveC and C1

Rewrite 2:(multiple locution)

We might specialise "Rgender RSL—> Rreceiver” tO an interaction statement that sends a
RSL(Topic) message to agent IDpgecciver Which is achieved by the constraints

RecursiveC and C1. Then, there is another relation between Rsenger; and Rreceiveri-

RSL(Topic) => a(Recevier(KBp,CS1p,IDsenger), ID) € RecursiveC and C1
or

RSL,_
R Sender ~>

R Receiver

Second (Receiving method): Rewriting of the "' Rpecoiver << RSL Reonder "'

<:RSL

If there is a general relation "Rgeceiver Rsender'', then it is possible to specialise it

within two different statements:
Rewrite 1: (one locution)

We might specialise " RReceiver<zRSL Rsender" tO an interaction statement that receive a
RSL(Topic) message from agent [Dsenger- C2 represents a condition that must be
satisfied after receiver agent receives the Recursive Sending locution. In practice, C2
may represent more than one condition that is connected by or and and operators.

Usually, C2 is a condition over the role arguments (e.g. KB and CS).

C2 éIQSL(TOPIC) <= a(Rlsender(KBSender i CSSender, IDReceiver)aleender)

Rewrite 2:(multiple locution)

We might specialise " RReceiver<zRSL Rsender” t0 an interaction statement that receive a
RSL(Topic) message from agent /Ds,q.,. Then, there is another relation between
RSenderI and RReceiver] .

Appendix B: N-Agent Dialogue 292

Bridging the Specification Protocol Gap in Argumentation

C2 GRSL(TOPIC) <= a(Rlsender(I<BS(:nder 5 CSSendera IDReceiver),IDsender)

or
RSL

RReceiver <= RSender

Pattern7:

Name: Recursive Receiving Pattern (RRP)
Problem: How to receive a message from more than one agents

Solution :

(1) One or more agents send(s) the same RRL to the receiver agent and then

change(s) their role(s).

(2) Receiver receive RRL from all other agents (senders) and then change its role to

remain in the dialogue.

Context (Pre-conditions): Use this pattern when more than one agents want to send a

message to one agent.

Consequence (Post-conditions): Receiver and all other agents (senders) change their

roles to remain in the dialogue.

Structure:
ﬂRISender (KBacsaTopicalDReceiver)a IDSender) o= \
RSender RRLz> RReceiver
then

a(stender (KB,CSaTOpiC,IDReceiver): IDsender)

a(R1geceiver (AgentList, SendingList, NAgent, Topic),IDgecciver) ::=
R Receiver <= RRL R Sender

then

(
a(R1receiver (AgentList, OtherSendingLists, NAgent, Topic),ID receiver)

< RecursiveC
or

\a(R2 Rreceiver (AgentList,OtherASendingLists, NAgent,Topic),ID receiver)
).

Appendix B: N-Agent Dialogue 293

Bridging the Specification Protocol Gap in Argumentation

RecursiveC represents a recursive condition (usually, RecursiveC is a condition over

AgentList and SendingList e.g. RecursiveC= notEqual(AgentList,SendingList)).

In this LCC code, there are two roles: RIgender and R geceiver- The R1genqer Tole of the
sender agent /D4 has three input parameters: (1) KB which represents the agent
knowledge base list; (2) CS which represents the agent commitment store list; (3)

IDpgeceiver Which represents the receiver agent identifier.

The RIgeceiver tole of audience agent ID, has four input parameters: (1) AgentList
which represents the agents ID list.; (2) SendingList which represents the sender
agents ID list. Initially, SendingList is empty; (3) NAgent which represents the
number of agents (note that the number of agents is > = 3). (4) Topic which
represents the dialogue game topic. The R1gecener role begins by receiving RRL from

R1 Sender-

The RIRgeceiver T0le begins by receiving a RRL message from the R/ g4, role (the '<<'
symbol indicates that the R/ geceiver role may receive one or more different RRLs from
the R1senger role). Then, the R1geceiver role check RecursiveC. If this condition is true,

the RIgeceiver recurse, otherwise, it changes its role to the R2gqceiver-
Rewriting methods:
First (Sending method): Rewriting of the ""Rsonger RRL~> Rireceiver”

: . RRL, g .
If there is a general relation "Rsenger =~ Rreceiver'» then it 1s possible to specialise it

within two different statements:
Rewrite 1: (one locution)

We might specialise "Rsender RRL > Rreceiver tO an interaction statement that sends a
RRL(Topic) message to agent IDgeceiver, Which is achieved by the constraint C/. In
practice, C/ may represent more than one condition that is connected by or and and

operators. Usually, C/ is a condition over the role arguments (e.g. KB and CS).

RRL(Topic) => a(R Receiver(AgentList, NAgent, N, Topic),IDgeceiver) € C1

Appendix B: N-Agent Dialogue 294

Bridging the Specification Protocol Gap in Argumentation
Rewrite 2:(multiple locution)
We might specialise "Rgender RRL > Rreceiver| tO an interaction statement that sends a

RRL(Topic) message to agent IDpecciver Which is achieved by the constraint C/. Then,

there is another relation between Rsenger; and Rpeceiveri-

RRL(Topic) => a(R geceiver(AgentList, NAgent, N, Topic),IDgeceiver) €C1

or
RRL:>

R Sender R Receiver

Second(Receiving method): Rewriting of the "' Rpgeceiver << RRL Reender "'

If there is a general relation "Rpeceiver<=" "~ Rsender’> then it is possible to specialise it

within two different statements:
Rewrite 1: (one locution)

We might specialise " RReceiver << F Rgenger” t0 an interaction statement that receive a
RRL(Topic) message from agent [Dsenger. C2 represents a condition that must be
satisfied after receiver agent receives the Recursive Receiving locution. In practice,
C2 may represent more than one condition that is connected by or and and operators.
Usually, C2 is a condition over the recursive arguments. (Note that if C2 does not
work with all recursive arguments, the tool will write the recursive argument as the

C2 condition automatically. See section B.2.2 for more a detailed example).

C2 & RRL(TOPIC)<: a(RSenderl(KBIDaCSIDaIDReceiver)a IDSenderl)

Rewrite 2:(multiple locution)

We might specialise " RReceiver<zRRL Rsender" tO an interaction statement that receive a
RRL(Topic) message from agent [Dg,q.. Then, there is another relation between

RSenderl and RRecez’verl .

C2 ¢ RRL(TOPIC)<: a(RSender](KBIDaCSIDaIDReceiver)a I]:)Senderl)

or
_RRL
RReceiverl <= RSenderl

Appendix B: N-Agent Dialogue 295

Bridging the Specification Protocol Gap in Argumentation
Pattern8:

Name: Recursive Termination-Sending Pattern (RTSP)

Problem: How to send and change roles or terminate an argument (dialogue) for

N>=3 agents.
Solution :
(1) Dialogue Termination (Recursive Termination locution) (Figure B.7):

e The sender agent sends Recursive Termination locution to all other agents and

then terminates its role.

e All other agents receive Recursive Termination locution and then terminate

their roles.
(2) Sending and Changing roles (Figure B.6):

e Sender agent sends a Recursive Starting locution to all agents and then

changes its role .
e All receiver agents receive a Recursive Starting and then change their roles.

Context (Pre-conditions): Use Recursive Termination-Sending pattern to send a
message and change roles, or to terminate a dialogue between 3 or more agents

(when agents reach an agreement).
Consequence (Post-conditions):
(1) Dialogue Termination :
e The dialogue between N-agent is terminated
(2) Sending and Changing roles:

e The sender agent and all receiver agents change their roles to remain in the

dialogue.

Appendix B: N-Agent Dialogue 296

Bridging the Specification Protocol Gap in Argumentation

Sender RTL(Topic) > Agent, 2
Receiver Role
Terminate
1 Agent 2
RTL(Topic) &en
> 2
Receiver Role
Terminate
|
Sender Role 1 ><
1 RTL(Topic)
opic —
>
1) Agentn
RTL(Topic)
> 2
Receiver Role
Terminate
1
Terminate

Figure B.7: Recursive Termination-Sending Pattern (Termination) Solution

Appendix B: N-Agent Dialogue 297

Bridging the Specification Protocol Gap in Argumentation

Structure:

a(l(sender(AgentLiSts TOpiC),lD sender): =

RTL.
RSender ~> RReceiver

then

(

null € FailureRecursiveCl

or

a(Reender (OtherAgents, Topic),IDgenger)
)

RSL .
RSender ~> RReceiver

then
(
a(R2enger (OtherAgents, Topic),IDgenger)
< FailureRecursiveC2
or
a(Rgender (OtherAgents, Topic),IDgenger)
)

).
a(l(Recevier(l<BlD7CSleIl)Sender)5 ID)- =

<~ RTL

R Receiver R Sender

or

(

<~ RSL

R Receiver R Sender

then

a(RzReceiver(KBlDaCSle IDSender)a ID)
).

This pattern represents a generic recursive clause. RTL represents the Recursive
Termination locution and FailureRecursiveC represents a condition that when it is
true forces the recursion to end (usually, FailureRecursiveC is a condition over

AgentList).

In this LCC code, there are two roles: Rsendger anNd Rpeceiver- The Rsenger r0le of the

sender agent /D4, has two input parameters: AgentList and Topic. It begins by

Appendix B: N-Agent Dialogue 298

Bridging the Specification Protocol Gap in Argumentation

either: (1) sending a Recursive Termination locution. Then, the Rg.uq.- role checks
FailureRecursiveCl1. If this condition is true, the Rg.,q terminates, otherwise, it
recurse; (2) sending a Recursive Starting locution RSL to the Rgeceiver 1ole (the '=>'
symbol indicates that the Rse,q role may send one or more different RSLs to the
Rpeceiver T0l€.). Then, the Rgeuqer role check FailureRecursiveC2. If this condition is

true, the Rsenqer changes its role to the R2g.,4.,, Otherwise, it recurse.

The Rpgeceiver Tole of audience agent ID has three input parameters: (1) KB receiver
which represents the agent knowledge base list; (2) CS geceiver Which represents the
agent commitment store list.; (3) /Dseqq.r Which represents the sender agent identifier.
The Rpeceiver TOle begins by either receiving: (1) a Recursive Termination locution
from Rgenger (the '<=' symbol indicates that the Rgeceiver Tole may receive one or more
different RTLs from the Rge,q- role); or (2) a Recursive Starting locution RSL from

Rsenger- Then, it changes its role to the R2gqceiver-
Rewriting methods:
First (Sending Termination method): Rewriting of the ""Rsenger RTL %> Rreceiver"

If there is a general relation "Rgenger RTL~> RReceiver'', then it is possible to specialise it

within two different statements:
Rewrite 1: (one termination locution)

We might specialise "Rgender RTL > RReceiver 10 an interaction statement that sends a
RTL(Topic) Recursive Termination message to agent /Dgeceiver, Which is achieved by
the RecursiveC and CI constraints. In practice, RecursiveC represents a recursive
condition (usually, RecursiveC is a condition over AgentList), CI represents a
condition (C/ may represent more than one condition that is connected by or and and
operators) that must be satisfied in order for a sender agent to send the Recursive

Termination locution (usually, C1 is a condition over Topic).

RTL(Topic) => a(Recevier(KBD,CSip,IDsenger), ID) € RecursiveC and C1

Appendix B: N-Agent Dialogue 299

Bridging the Specification Protocol Gap in Argumentation

Rewrite 2:(multiple termination locution)

We might specialise "Rgender RTL > Rreceiver” tO an interaction statement that sends a
RTL(Topic) Recursive Termination message to agent /Dgeceiver Which is achieved by
the RecursiveC and CI constraints. Then, there is another termination relation

between RSender and RReceiver-

RTL(Topic) => a(Recevier(KB1p,CS1p,IDsenger), ID) € RecursiveC and C1
Or

RTL.
R Sender ~>

R Receiver

Second (Receiving Termination method): Rewriting of the "Rreceiver << RTL Reonder”’

<zRTL

If there is a general relation "Rgeceiver Rsender”', then it is possible to specialise it

within two different statements:
Rewrite 1: (one locution)

We might specialise " RReceiver<zRTL Rsender” t0 an interaction statement that receive a
RTL(Topic) message from agent [Dsenger. C2 represents a condition that must be
satisfied after receiver agent receives the Recursive Termination locution. In
practice, C2 may represent more than one condition that is connected by or and and

operators. Usually, C2 is a condition over the role arguments (e.g. KB and CS).

C2 é1{’-[‘1—4(’1-‘01310) <= a(lzlsender(KBSender i CSSender, IDReceiver)aleender)

Rewrite 2:(multiple locution)

We might specialise " RReceiver<zRTL Rsender" tO an interaction statement that receive a
RTL(Topic) message from agent /Ds.,q.-. Then, there is another relation between

RSenderl and RRecez’verl .

C2 éIKTL(TOPIC) <= a(Rlsender(KBSender i CSSender, IDReceiver)aleender)
or

_RSL2
RReceiver <=

RSender

Third (Sending method): Rewriting of the ""Rgenger RSl~> R Receiver’

See rewriting method of Recursive Sending Pattern (Rewriting of the "Rsender RSL~>
RReceiveru)-

Appendix B: N-Agent Dialogue 300

Bridging the Specification Protocol Gap in Argumentation

Fourth(Receiving method): Rewriting of the " Rpeceiver << °* Rsender "'

See rewriting method of Recursive Sending Pattern (Rewriting of the " Rpgeceiver <~

RSL
RSender ") .

Pattern9:

Name: Recursive Termination-Divided Pattern (RTDP)

Problem: How to divide agents into groups of two or terminate an argument

(dialogue) for N>=3 agents.
Solution :
(1) Dialogue Termination (Recursive Termination locution) (Figure B.7):

e The sender agent sends Recursive Termination locution to all other agents and

then terminates its role.

e All other agents receive Recursive Termination locution and then terminate

their roles.
(2) Divide agents (chapter 5, Figure 5.3):

e The sender agent sends argueWith(Topic,Agentp,Agent) locution for a pair
of agents: Agentp and Agento (telling them to interact together) and then

recurses or changes its role.

e Both Agentp and Agento receive argueWith(Topic,Agentp,Agent) locution

and then change their roles to startDID role.

Context (Pre-conditions): Use Recursive Termination-Divided pattern to divide
agents into groups or to terminate a dialogue between 3 or more agents (when agents

reach an agreement).

Appendix B: N-Agent Dialogue 301

Bridging the Specification Protocol Gap in Argumentation

Consequence (Post-conditions):
(1) Dialogue Termination :
e The dialogue between N-agent is terminated
(2) Divide agents:
¢ Divide agents into groups of two and start dialogues between two agents.
Structure:

Figure B.8 illustrates the structure of this pattern. This pattern represents a generic
recursive clause. FailureRecursiveC represents a condition when it is true the

recursive end (usually, FailureRecursiveC is a condition over AgentList).

In this LCC code, there are four roles: Rsender, terminaitonRsenger, divideGroupsenger
and Rpeceiver- The Rgenger 0le of the sender agent /Dy 4. has nine input parameters:
AgentList, NAgent, NSupporters, Topic, NReply, Acceptinglist, RejectionList,
NAccepting and NRejection. The Rsenger role begins by checking TerminationC
condition. If this condition is true, then the proposal agent changes its role to the
TerminationRenqer r0le. Otherwise, the Rgenger role checks DivideC condition. If this
condition is true, then the sender agent changes its role to the divideGroup, oposai

role.

The TerminaitonRsenqer role of the sender agent IDg.,q. has two input parameters:
AgentList and Topic. It begins by sending a Recursive Termination locution (the '=>'
symbol indicates that the TerminaitonRgsenq.r role may send one or more different
RTLs to the Rpgeceiver tole). Then, the TerminaitonRsenq.r 10le check
FailureRecursiveCl. If this condition is true, the TerminaitonRs.,q4., terminates,

otherwise, it recurse;

The divideGroupsenqer tole of the sender agent [Dg,q. has six input parameters:
AgentList, NAgent, NSupporters, Topic, AcceptingList and RejectionList. It also has

one output parameter: AgentGroup. This role is responsible for dividing the agents in

Appendix B: N-Agent Dialogue 302

Bridging the Specification Protocol Gap in Argumentation

a(Rgenger(AgentList, NAgent,NSupporters,Topic,AcceptingList,
RejectionList, AgentGroup),IDepger)::=

a(TerminationRg.,q.; (AgentAgents, Topic),IDgenger) € TerminationC

or

a(divideGroupgenqer (AgentList , NAgent,NSupporters,Topic,
AcceptingList,RejectionList, []),IDpoposat) € DivideC.

a(TerminaitonRg,,q4..(AgentList, Topic),IDepger)::=

RTLz>

TerminaitonRgender Rreceiver

then
(null € FailureRecursiveCl
or

a(Rsender (OtherAgents, Topic)aIDsender))

a(divideGroupsenger (AgentList, NAgent,NSupporters,Topic,
AcceptingList,RejectionList,AgentGroup), IDgepger)::=

(

argueWith (Topic,P,0) => a(Rrecevier (KBp,CSp,IDsender), P)

< RecursiveC

then

argueWith (TOpiC,O’P) = a(RReceVier (KBO»CSO:IDSender): O)

)

then

(
a(recursgenge(AgentList, NAgent,NSupporters ,0 ,Topic),IDgenger)

< FailureRecursiveC2
or

a(divideGroupsenge(AgentList ,NAgent,NSupporters, Topic,Ac,Re,AGroup),
IDSender))
).

a(RRecevier(KBlDac SIDaI]) Sender), ID): =

RTL

R Receiver <= TerminationR Sender

or

(
argueWith(TopicﬁlDalDz) <= a(diVideGroupSender(s v 5 _ > _),IDSender)

then
a(StartDID(KBID,CSID ,TOpiC, IDScndcrs IDz),ID)

).

Figure B.8: Recursive Termination-Divided Pattern Structure

Appendix B: N-Agent Dialogue

303

Bridging the Specification Protocol Gap in Argumentation

the AgentList list into a group composed of two agents. It begins by checking
RecursiveC. If this condition is true, then this role creates the first agent group by
taking one agent from the head of the AcceptingList and one agent from the head of
the RejectionList. It then sends the argueWith message to the first group (agent P and
agent O) and asks them to start arguing together about the dialogue Topic. Then, if
the FailureRecursiveC2 condition is true, the sender agent changes its role to the
recurSproposal Tole (see chapter 5, Recurs-To-N-Dialogue Pattern), otherwise, it

recurses.

The Rpeceiver T0le of audience agent ID has three input parameters: (1) KBgeceiver Which
represents the agent knowledge base list; (2) CSgeceiver Which represents the agent
commitment store list.; (3) /Ds.nq.r Which represents the sender agent identifier. The
Rreceiver TOle begins by either: (1) receiving a Recursive Termination locution from
TerminaitonRse,q.- (the '<=' symbol indicates that the Rgecciver role may receive one
or more different RTLs from the TerminaitonRs.q., role); (2) receiving an argueWith
message from divideGroupsenq.,. Then, it changes its role to the startDID role(see

chapter 5, Move-To-Dialogue Pattern).
Rewriting methods:

First (Sending Termination method): Rewriting of the "' TerminaitonR s, 4o, RTL >

Rreceiver”"
Receiver

See rewriting method of Recursive Termination-Sending Pattern (Rewriting of the

" RTL. '
RSender ~> RReceiver ')

Second (Receiving Termination method): Rewriting of the "Rgoceiver <~ RTL

TerminaitonRsenger "'

See rewriting method of Recursive Termination-Sending Pattern (Rewriting of the

" ~ RTL Il
RReceiver <= RSender ,)

Pattern10:

Name: Receiving/Sending Recursive Pattern (RSRP)

Appendix B: N-Agent Dialogue 304

Bridging the Specification Protocol Gap in Argumentation
Problem: How to send and receive more than one message?
Solution :
(1) Sender agent sends a RSL to more than one agent and then changes its role.
(2) Receiver agent receive RRL from more than one agent (senders) and then
change its role.
Context (Pre-conditions):
e Use this pattern when one agent wants to send a message to more than one
agent and more than one agent want to send a message to one agent.
Consequence (Post-conditions):
e All other agents (senders and receivers) change their roles to remain in the
dialogue.

Structure: This pattern is a combination of Pattern 6 and 7 (see pattern 6 and pattern

7).

a(R1gsepger(AgentList,NAgent, Topic),IDgenger)::=

RS

L
RSender ~> RReceiver

then

a(R24ender (OtherAgents, NAgent, Topic),IDgenger) € FailureRecursiveC
or
a(R1enger (OtherAgents, NAgent, Topic),IDgender)

).
a(R1geceiver (AgentList, SendingList, NAgent, Topic),IDgecciver) ::=

<~ RRL

R Receiver R Sender

then
(
a(R 1 receiver (AgentList, OtherSendingLists, NAgent,Topic),ID geceiver)
< RecursiveC
or
a(R2 geceiver (AgentList,OtherASendingLists, NAgent,Topic),ID geceiver)

Appendix B: N-Agent Dialogue 305

Bridging the Specification Protocol Gap in Argumentation
Rewriting methods:

RS,

First (Sending method): Rewriting of the ""Rgsonger L Rroceiver”"

See rewriting method of Recursive Sending Pattern (Rewriting of the "Rsener -~>

i
RReceiver ,)

Second(Receiving method): Rewriting of the "' Rpeceiver << RRL p Sender

See rewriting method of Recursive Receiving Pattern (Rewriting of the " Rpgeceiver <=

RRL
RSender ") .

B.3.2 Automated Synthesis Steps for Generating Agent Protocol for

General N-agent Automatically

The N-agents' general protocol automated synthesis algorithm is illustrated in Figure

B.9:

(1) The tool begins with the locution icon at the top of the DID. Note that if more
than one locution icon appears in one level, then the tool begins with the

locution to the left (since it works from left to right).

(2) Following this, the tool selects one pattern from the LCC-Argument patterns for
general N-agent protocol library. This pattern depends on the locution type. Note
that each locution type is connected to only one LCC-Argument pattern. See

Table B.1.

(3) After that, if the selected pattern has rewriting methods, the tool selects one or
more of the rewriting methods. The number of rewriting methods selected is
dependent on the number of locution icons in this level. If this level has one
locution icon, the tool selects the rewriting method Rewrite 1 (rewriting method
with one locution). If this level has more than one locution icon, the tool selects

the rewriting method Rewrite 2 (rewriting method with multiple locutions).

Appendix B: N-Agent Dialogue 306

Bridging the Specification Protocol Gap in Argumentation

1. Input (DID, LCC-Argument patterns)

2. Select&Save Icon= one DID locution icon (Stepl)

3. Select&Save Pattern= one pattern from the LCC-Argument patterns for general N-agent
protocol library (Step2)

4. If (Pattern has rewriting methods) then (Step3)

5. If (level has one locution icon) then

6. Select&Save RewriteMethod=Rewrite 1

7. If (level has more than one locution icon) then

8. Select&Save RewriteMethod=Rewrite 2

9. Match (Icon,Pattern,RewriteMethod) (Step4)

10. If (Pattern =Recursive Termination-Divided) then (Step5S)

11. Use Recurs-To-N-Dialogue Pattern

12. recursNumber = number of Termination locution icon in the DID for two agents -1

13. If (reurseNumber = 0) then //one Termination Locution

14. Select&Save RewriteMethod2=Rewrite 1

15. Match (Termination Icon, Recurs-To-N-Dialogue Pattern, RewriteMethod?2)

16. Else //more than one Termination Locution

17. Loop begin (if i=1)

18. Select&Save RewriteMethod2=Rewrite 2

19. Match (Termination Icon, Recurs-To-N-Dialogue Pattern, RewriteMethod2)

20. i=it+1

21. Loop end (if i = reurseNumber)

22. Go To two agents algorithm

23. Add lines to connect N-agents' protocol with two agents' protocol

24. Go To line 2 (Step6)

25. Output LCC protocol

Figure B.9: N- Agents Protocol Automated Synthesis Algorithm

Locution Type

Pattern Name

Recursive Starting Locution

Recursive Starting (Sending) Pattern

Recursive Receiving Locution

Recursive Receiving Pattern

Recursive Termination Locution and Divided
Locution

Recursive Termination-Divided

Recursive Termination Locution and
Recursive Starting Locution

Recursive Termination-Sending Pattern

Table B.1 Relationship Between Locution Type and Patterns

Appendix B: N-Agent Dialogue

307

Bridging the Specification Protocol Gap in Argumentation

(4) Then, the tool applies the selected pattern by matching formal parameters
(variables) with its corresponding values in the locution icon to generate pairs of
LCC clauses or roles (sender and receiver roles). If the selected pattern has
rewriting methods, the tool matches the formal parameters in the selected
rewriting methods with its corresponding values in the locution icon to generate
pairs of LCC clauses or roles. The matching process matches one parameter at a
time. It begins with the locution icon and occurs from the top-down and left to
right. It then moves to the left side conditions and then to the right side
conditions. Finally, if the selected pattern has recursive (changing) roles, the tool
moves to the next level and matches the recursive roles in the pattern with the

recursive roles in the locution icon on the next level.

(5) After that, the selected pattern is the Recursive Termination-Divided pattern.
The tool uses the Recurs-To-N-Dialogue Pattern to generate the LCC role which
is used to inform the proposal agent about the ending of the dialogue between

two agents:

a) The tool selects one or more rewriting methods. The number of selected
rewriting methods is the number of the Termination Locution icons in the
DID for two agents, minus one. For example, if the number of Termination
Locution icons is equal to five, then the number of end messages is equal to 5
x 2 =10 and the number of rewriting methods is equal 5-1= 4 (each rewriting
methods has two end messages and by default Recurs-To-N-Dialogue pattern
receives two end messages, one from the first Termination Locution sender

role and one from the first Termination Locution receiver role).

b) The tool applies this pattern by matching the formal parameters with their
corresponding values in the Termination locution icons in the DID for two

agents, to generate one of the LCC clauses or roles for the proposal agent.

c) Finally, the tool follows the steps of the automated synthesis process of two
agents' protocol to generate the LCC protocol for DID for two agents. Note

that the tool adds two lines after each Termination Locution (message) in the

Appendix B: N-Agent Dialogue 308

Bridging the Specification Protocol Gap in Argumentation

LCC protocol for two agents to connect N-agents' protocol with two agents'

protocol:

o Line one: Sending end message to proposal.
o Line two: Changing agents' role to the receiver role of the locution

icon at the top of the DID of the dialogue between N-agent.

(N
TL (Topic) => a(R ID)
then
end(Topic)=>
a(recurSproposal(AgentList, NAgent,NSupporters,NReply, Topic),IDproposat)
then
a(FirstReceiverRolerp (KBip,CSip, IDproposar), ID)

\ Y,

(6) Moves to the next level in the DID for N-agent and repeats steps 2, 3,4 and 5.

Note that the automated synthesis process finishes when the tool matches the last
level in the DID with one of the LCC-Argument patterns. If the selected pattern
has recursive (changing) roles, the tool moves to the locution icon reply level,
which represents the reply rules of the selected locution icon, and matches the
recursive roles in the pattern with the recursive roles in the locution icon on this

level.

B.3.3 An Example of an LCC Protocol begin generated for General N-

agent Dialogue

This section represents the generated LCC protocol from the automated agent
protocol synthesis tool ""GenerateLCCProtocol”. In this example, the tool receives
as input the DID of a persuasion dialogue between N-agent, which is shown in
Figure B.3. Then the tool generates the LCC protocol by using LCC-Argument
patterns (N-agent general patterns). The final LCC protocol is illustrated in Figures
B.10(a), B.10(b), B.10(c), and B.10(d). Please see appendix C for a detailed
description of how to transfer a DID to an LCC protocol by using LCC-Argument

patterns:

Appendix B: N-Agent Dialogue 309

Bridging the Specification Protocol Gap in Argumentation

Prposal Other Agents

a(propos alSenderproposal(AgentLiSt5NAgent5Nsup a(propsalReceiverlD(KBu),CSID,Imeposal),
porters,Topic),IDyqp05a1)::= ID)::=

proposal(Topic) =>
a(proposalReceiver;p(KBip,CS p,IDproposar), ID)
&getAgentIDFromList(AgentList,otherAgents,ID)

proposal(Topic)<=
a(proposalSender,oposa(AgentList, NAgent,NS

and addTopicToCS(Topic,CS poposal) upporters, Topic), IDyoposal)

then then

(. _ a(replyToProposalSender(KBp,CSp,
a(replyToProposalReceiver,;oposal (AgentList, Topic,IDproposal)s ID).

NAgent,NSupporters,Topic,[1,[1,0,0, [1), IDproposat)
< agentListEmpty(AgentList)

or
a(proposalSenderyoposal (OtherAgents,

NAgent,NSupporters,Topic), IDyoposal)
).

Figure B.10(a): Generated LCC Protocol for N-agent Dialogue

(1) The tool begins with the locution icon at the top of the DID (See Figure B.2) of

the persuasion dialogue between N-agent, which is proposal(Topic).

(2) The tool then selects the Recursive Starting (Sending) Pattern (since the locution

type is the Recursive Starting Locution).

(3) The tool applies the Recursive Starting (Sending) Pattern by matching formal
parameters in the Recursive Starting (Sending) Pattern with its corresponding
values in the proposal(Topic) icon, starting from the top-down and moving left

to right.

(4) The tool moves to the next level (level two of the DID of the persuasion

dialogue).

(5) Following this, the tool selects the Recursive Receiving Pattern (since the

locution type is the Recursive Receiving Locution).
(6) The tool applies the Recursive Receiving Pattern.

(7) Moves to the next level (level three of the DID of the persuasion dialogue).

Appendix B: N-Agent Dialogue 310

Bridging the Specification Protocol Gap in Argumentation

Prposal Other agents

a(replyToPropsalSenderp(KBp,CS)p,

a(replyToPrposalReceiver (AgentList,NAge ¥
ply P proposal g g g TOplC,lemposa1), ID) =

nt,NSupporters,Topic,AcceptingList,

RejectionList,NAccepting,NRejection,SendingLi
st)’ IDproposal) o= (
accept(Topic) =>

()
addIDToList(SendingList,OtherSedingList, D) | 2(replyToPropsalReceiveryposa (_,

and IR N NN N N).9IDpr0posal))
addToAcceptingList(AcceptingList,AccList,ID) 6. ﬁndTQplcanB(TQplc, KByp) and
and increaseAccepting(NAccepting,NAcc) notFdeopchn(.?S (Topic,CSip) . and

notFindOppTopicInCS (not(Topic),CSp)
and RejList= RejectionList and NRej is and addTopicToCS(Topic,CSp)

NRejection€ accept(Topic)

<=a(replyToProposalSender;n(KBp,CS;p, Topic,ID
proposal)a ID) or
or . .
reject(Topic) =>

a(replyToPropsalReceiver (s s s
addToRejectingList(RejectingList,RejList,ID) and Py pID PR =
5 _ s): proposal)

increaseRejecting(NRejecting,NRej) and < notFindTopicInKB(Topic,KBpyoposar)

increaseReply (NReply,NRep) and and notFindTopicInCS(Topic,CSproposal)

AccList=AcceptingList and NAcc is NAccepting then
< reject(Topic)

<=a(replyToProposalSender;(KBp,CSp, Topic,ID a(resultReceiverp(KBip,CSin, Topic, IDproposa),

proposa])a ID) ID) .

)
then

(

a(replyToPrposalReceiveryoposa(AgentList, NAgent,
NSupporters, Topic,AccList,RejList, NAcc,NRej,
OtherSendingList), IDpoposar)

< notEqual(AgentList,SendingList)

or

a(resultSenderp qposal (AgentList,NAgent,
NSupporters, Topic,NReply,AcceptingList,
RejectionList,NAccepting,NRejection), IDpoposal)

Figure B.10(b): Generated LCC Protocol for N-agent Dialogue

Appendix B: N-Agent Dialogue 311

Bridging the Specification Protocol Gap in Argumentation

Prposal

Other agents

a(resultSenderp,posai(AgentList,NAgent,
NSupporters,Topic,AcceptingList,RejectionList,
AgentGroup), ID qp05a) 2=

a(sendReachAgreement,;oposal
(AgentList,Topic),IDroposar)
€ greaterThanOrEequal(NAccepting,NSupporters)

or
a(divideGrouppoposal (AgentList ,
NAgent,NSupporters
,Topic,AcceptingList,RejectionList, []) ,IDproposar)
< lessThan(NAccepting,NSupporters) and
isNotEmpty(RejectionList) and
isNotEmpty(AcceptingList)

a(sendReachAgreementp,qpos. (AgentList,
TOPiC)aIDProposal) o=

reachAgreement(Topic) =>
a(resultReceiver;p(KBip,CS p,IDproposar), ID)

e
getAgentIDFromList(AgentList,otherAgents,ID)

then

null € isAgentListEmpty(AgentList)

or

a(sendReachAgreement,;qposal (OtherAgents,
Topic)a Imeposal)

).

a(divideGroupp,qy.sa(AgentList,NAgent,
NSupporters,Topic,AcceptingList,RejectionList,
f?gentcmul’)a IDpropusal):::

argueWith (Topic,P,0) =>
a(resultReceiverp(KB,,CS,,, Topic,IDyroposan)> P)

é
creatOneAgentGroup(Rejecting,Re,Accepting,Ac,
AgentGroup, AGroup,P,0)

then

argueWith (Topic,0,P) =>
a(resultReceivero(KB,,CS,, Topic,IDyroposal), O)

)

then

(

a(recursyroposal (AgentList, NAgent,NSupporters ,0
,Topic)9IDproposal)

< isListEmpty(Re) or isListEmpty(Ac)

or

a(divideGrouppoposai(AgentList ,NAgent,
NSupporters,Topic,Ac,Re,AGroup),IDp;op0sa1)-

a(resultReceiverp(KBp,CSp,Topic,IDg.4c.),P
)=

reachAgreement(Topic) <=
a(sendReachAgreementp,qposal (AgentList,
TOpiC)aIDProposal)

or

(
argueWith(Topic,P,0) <=
a(divideGroupsenge(AgentList,
NAgent,NSupporters, Topic,AcceptingList,
RejectionList,AgentGroup),IDsender)

then

a(StartDID(KBPaCSPaTopicalDSendera O)’P)
).

a(resultReceivero(KBg,CSo,Topic,IDgseder)s
0) =

reachAgreement(Topic) <=
a(sendReachAgreementp,qposal (AgentList,
TOPiC):IDProposal)

or

(
argueWith(Topic,0,P) <=
a(divideGroupgenge(AgentList,
NAgent,NSupporters, Topic,AcceptingList,
RejectionList,AgentGroup),IDsender)

then

a(startDID(KB,CSq, Topic, [Dsenger, P),0)
).

Figure D.10(c): Generated LCC Protocol for N-agent Dialogue

Appendix B: N-Agent Dialogue

312

Bridging the Specification Protocol Gap in Argumentation

Prposal

Other agents

a(recurspypos. (AgentList,

NAgent,NSupporters ,replyN,Topic),IDp,,posa1)
(
N =replyN +1 € end(Topic) <=

a(replyToClaimSenderg
(KBO:CSOJCSP:TDIDProposaI:IDP)9IDO)

or

N =replyN +1 € end(Topic)<=
a(replyToClaimReceiverp
(KBP:CSPaCSO:TDIDProposalaIDO)alDP)

or

N = replyN +1 € end(Topic)
<=a(replyToWhySenderp(KBp,CSp,CS0, T,IDpropo
salaIDO)aIDP) or

N = replyN +1 <-- end(Topic)

<= a(replyToWhyReceiverq
(KBODCSOJCSP:TDIDPrOpOSahIDP)sIDO)

or

N = replyN +1 € end(Topic) <=
a(replyToArgueSenderg
(KBP:CSPaCSO:T»PreaIDPmposalaIDO)aIDO)

or

N =replyN +1 <-- end(Topic) <=
a(replyToArgueReceiverp
(KBo,CSO,CSP,T,PI‘C,Imeposal,IDp),IDp)
)

then

(

a(proposalSenderroposal
(AgentList,NAgent,NSupporters,Topic),
I])proposal)

< isEqual(N, NAgent)

or

a(TeCUTSproposal (AgentList, NAgent,NSupporters,
NaTopic)JDProoosa]))

a(startDIDp(KBp,C SP,C So,T,Imeposal,IDo),IDp) =

a(claimSender
(KBPaCSPaCSOaTaIDPmposalaIDO)a IDP)
< addTopicToCS(T,CSp)

or
a(claimReceiver
(KBPacSPaCSOaT’IDPrupusalalDO), IDP)

a(startDIDo(KBo,C So,C Sp,T,Imeposal,IDp),IDo) o

a(claimSender
(KBOaCSOaCSPaTaIDPmposalaIDP)a IDO)
< addTopicToCS(T,CSp)

or
a(claimReceiver
(KBOsCSO7CSP>T>IDPr0posal>IDP)7 IDO)

Figure B.10(d): Generated LCC Protocol for N-agent Dialogue

(8) Following this, the tool selects the Recursive Termination-Divided Pattern

(since this level has two locution types :

Termination and one locution type is Divided Locution).

(9) Applies the Recursive Termination-Divided Pattern.

Appendix B: N-Agent Dialogue

one locution type is the Recursive

313

Bridging the Specification Protocol Gap in Argumentation

(10) Selects and Applies the Recurs-To-N-Dialogue Pattern to connect N-agents'

dialogue with two agents' protocol.

(11) Finally, the tool follows the steps of the automated synthesis process of two
agents' protocol to generate the LCC protocol for DID for two agents. Note that
the tool adds two lines after each Termination Locution (message) in the LCC
protocol for two agents to connect N-agents' protocol with two agents' protocol

(See Figure C.8(d), Figure C.8(e) and Figure C.8(f) in appendix C).

Appendix B: N-Agent Dialogue 314

Bridging the Specification Protocol Gap in Argumentation

Appendix C

Persuasion Dialogue

This appendix presents a detailed description of how to transform a DID of a
persuasion dialogue [Parkken, 2000] to an LCC protocol by using LCC-Argument
patterns. It also presents a detailed example of the CPN model, the State Space and
the Verification Model Properties of a CPN persuasion dialogue model. We open
this appendix with a detail example which illustrates how the agent protocol
automated synthesis tool "GenerateLCCProtocol” works to build a persuasion
dialogue protocol between two agents in Section C.1. Section C.2 represents a detail
example which illustrates how the agent protocol automated synthesis tool
"GenerateLCCProtocol” works to build a persuasion dialogue protocol between N
agents. Finally, Section C.3 represents the CPN model and the verification model

properties of the persuasion dialogue.

C.1 An Example of an LCC Protocol begin generated for Two

Agents

This section represents a detailed description of how to transform a DID of a
persuasion dialogue, which is shown in Figure 4.3, to an LCC protocol by using
LCC-Argument patterns. The final LCC protocol is illustrated in Figures C.1(a) and
C.1(b). Below we explain the algorithm followed by the tool:

(1) Begins with the locution icon at the top of the DID of the persuasion dialogue,
which is claim(T).

(2) Selects the Starting Pattern (since the locution type is the Starting Locution).

(3) Applies the Starting Pattern by matching formal parameters in the Starting
Pattern with its corresponding values in the claim(T) icon, starting from the top-

down and moving left to right (See Figure C.2(a)):

Appendix C: Persuasion Dialogue 315

Bridging the Specification Protocol Gap in Argumentation

a) Starting from the top of the locution icon, the tool matches SL with claim(T).

b) Moving to the left side of the locution icon, the tool matches gp; with
claimSenderp,, role parameters with (KBp, CSp,CSo, T,IDy), and role id with
IDp.

c¢) Moving to the right side of the locution icon, the tool matches Rp; with
claimReceivero;, role parameters with (KB, CSo,CSp,IDp), and role id with

IDo,

d) Moving to the left side conditions, the tool matches C/ with
addTopicToCS(T,CSp).

e) Moving to the next level (See Figure C.2(b)), because the Starting Pattern
has recursive roles, the sender agent will become the receiver and vice versa
in the next level. The tool matches agent P recursive role with the right side
of the locution icon. It matches Rp, with replyToClaimReceiverp, role
parameters with (KBp, CSp,CSo,T,IDo), and role id with /Dp. Then, the tool
matches agent O recursive role with the left side of the locution icon. It
matches Rp, with replyToClaimSenderp, role parameters with (KB, CSo,

CSp,T,IDp), and role id with IDy,

(4) Note that the next level in this example (level two of the DID of the
persuasion dialogue) contains two locution icons: why(T), which is located in
the left of the DID, and concede(T), which is located in the right. The tool

starts from the locution in the left of the persuasion dialogue, which is

why(T).

(5) Following this, the tool selects the Termination-Intermediate Pattern (since

locution type is Intermediate Locution).

(6) Since the selected Termination-Intermediate Pattern has rewriting methods,
the tool selects two rewriting methods(one for why(7T) and one for
concede(T)). It is important to note in this example that level two has: (1) one

Intermediate Locution (why(T)) and the tool selects the rewrite method I of

Appendix C: Persuasion Dialogue 316

Bridging the Specification Protocol Gap in Argumentation

one intermediate locution; (2) one Termination Locution (concede(T)) and the
tool selects the rewrite method 1 of one termination locution. See Figure

C.3(a).

(7) Applies the Termination-Intermediate Pattern by matching formal parameters
in the selected rewriting methods of the Termination-Intermediate Pattern
with its corresponding values in the why(T) icon (on the left side of the DID),
starting from the top-down and moving left to right (See Figure C.3(b)):

a) Starting from the top of the locution icon, the tool matches /L with why(T).

b) Moving to the left side of the locution icon, the tool matches gsengers With
replyToClaimSende,o, role parameters with (KBo, CSo, CSp,T,IDp), and role
id with Ipo

¢) Moving to the right side of the locution icon, the tool matches Rgceivers With
replyToClaimReceiverp, role parameters with (KBp, CSp,CSo, T,IDo), and role
id with IDp

d) Moving to the left side conditions, the tool matches C2 with
(notFindTopicinKB(T,KBg) and notFindTopicInCS(T,CSp)). Note that in this
example C4 equals null because no condition is connected to the right side of

the locution.

e) Moving to the next level, because the Termination-Intermediate Pattern has
recursive roles, the sender agent will become the receiver and vice versa in
the next level. The tool matches agent P recursive role with the left side of
the locution icon. It matches Rsengerz With replyToWhySenderp, rtole
parameters with (KBp,CSp,CSo,T,IDg), and role id with IDp. The tool then
matches agent O recursive role with the right side of the locution icon. It
matches Rpeceiver2 With replyToWhyReceiverp, role parameters with (KB,

CSo, CSp,T,IDp), and role id with Do (See Figure C.3(c))

(8) Moves right to the concede(T) locution. It applies the Termination-Intermediate

Pattern by matching formal parameters in the selected rewriting methods of the

Appendix C: Persuasion Dialogue 317

Bridging the Specification Protocol Gap in Argumentation

Termination-Intermediate Pattern with 1its corresponding values in the
concede(T) icon (on the right side of the DID), starting from the top-down and
moving left to right (See Figure C.3(d)):

a) Starting from the top of the locution icon, the tool matches 7L with
concede(T).

b) Moving to the left side of the locution icon, the tool matches Rgenger; With
replyToClaimSender o, role parameters with (KBo, CSo, CSp, T,IDp), and role id
with IDo

¢) Moving to the right side of the locution icon, the tool matches Rgeceivers With
replyToClaimReceiverp, role parameters with (KBp,CSp,CSo,T,KIDo), and
role id with IDp

d) Moving to the left side conditions, the tool matches CI/ with
(findTopicInKB(T,KB) and notFindTopicInCS(T,CSo) and
notFindOppTopicInCS(not(T),CSo) and addTopicToCS (T,CSp)). Note that in
this example C3 equals null because no condition is connected to the right

side of the locution.

(9) Moves to the next level in the DID and repeats steps 4 and 8. Note that the
automated synthesis process finishes when the tool matches level four in the

DID (in Figure 4.3) with one of the LCC-Argument patterns.

Appendix C: Persuasion Dialogue 318

Bridging the Specification Protocol Gap in Argumentation

Agent P

Agent O

a(claimSenderp(KBp,CSp,CSq,T,IDg),IDp) ::=
claim(T) =>

a(claimReceiverg(KBg,CSo, CSp,IDp),IDg)

€ addTopicToCS(T,CSp)

then

a(replyToClaimReceiverp(KBp,CSp,CSo,T,IDy),
IDp).

a(claimReceivero(KBg,CSq,CSp,IDp),IDg) ::=

claim(T) <=
a(claimSenderp(KBp,CSp,CS, T,IDg),IDp)

then

a(replyToClaimSendero(KBo,CSo,CSp,T,IDp),IDo).

a(replyToClaimReceiverp(KBp,CSp CS,
T,IDg), IDp) ::=

concede(T) <=
a(replyToClaimSendero(KBo,CSo,
CSP’TJDP),IDO)

or

why(T) <=

a(replyToClaimSenderq (KBo,CSo,
CSp,T,IDp), Do)

then

a(replyToWhySenderp (KBp,CSp CSo,
T,IDg),IDp).

a(replyToClaimSendero(KBg,CSq, ,CSp
T,IDp),IDy) ::=

concede(T) =>
a(replyToClaimReceiverp (KBp,CSp,CSo,
T,IDg),IDp)
& (findTopicInKB(T,KB) and
notFindTopicInCS(T,CSg) and
notFindOppTopicInCS(not(T),CSp) and
addTopicToCS (T,CSp))

or

why(T) =>
a(replyToClaimReceiverp (KBp,CSp, CSo,
T,IDo),IDp)
< (notFindTopicInKB(T,KBo) and
notFindTopicInCS(T,CSq))

then

a(replyToWhyReceiverg(KBo,CSo CSp,T,IDp),IDg) .

a(replyToWhySenderp
(KBp,CSp, CSo T,IDy), IDp) ::=

retract(T) => a(replyToWhyReceiverg
(KBo,CSo, CSp, T,IDp),IDo)

< (notFindPreInKB(T, KBp) and findTopicInCS
(T, CSp) and subtractFromCS(T, CSp))

or

(

argue(Pre,T) => a(replyToWhyReceiver,

(KBo,CSo, CSp, T,IDp),IDo)

& (Pre= findPremise (T,KBp, CSp) and
addPreToCS(T,Pre,CSp))

then

a(replyToArgueReceiverp
(I(BP,CS]')~ CSO’ T,pre,]Do),]Dp)
).

a(replyToWhyReceiverq
(KBo,CSo, CSp,T,IDp),IDg) ::=

retract(T) <=
a(replyToWhySenderp (KBp,CSp, CSp_ T,IDo),IDp)

or
(

argue(Pre,T) <=

a(replyToWhySenderp(KBp,CSp CSo, T,IDg),IDp)
then

a(replyToArgueSenderg

(KBo,CSo, CSp, T,Pre,IDy),IDy)
).

Figure C.1(a): Generated LCC Protocol for Persuasion Dialogue (Part 1)

Appendix C: Persuasion Dialogue

319

Bridging the Specification Protocol Gap in Argumentation

Agent P

Agent O

a(replyToArgueReceiverp(KBp,CSp,

CSo,T,Pre,IDg),IDp) ::=
concede(T) <=
a(ReplyToArgueSenderg
(KB09CSO, CSP’ T,Pre,IDP), IDo)

or

argue(Def,T") <=
a(replyToArgueSenderg
(KBo,CSo, CSp, T,Pre,IDp), IDg)

then

a(replyToArgueSenderp
(KBp,CSp, CSq, T,Pre,Def,IDg), IDp)
)

or

(

why(Pre) <=
a(replyToArgueSenderg
(KBo,CSo, CSp, T,Pre,IDp), IDo)

then
a(replyToWhySenderp

(KBp,CSp, CSo, T,Pre,IDe),IDy)
).

a(replyToArgueSendero(KB(,CSo, CSp,
T,Pre,IDp), IDg) ::=

concede(T) =>

a(replyToArgueReceiverp

(KBPaCSP, CSO, T,Pre,IDo),IDP)

&(findPreInKB(Pre, KBg) and notFindPreInCS(Pre,
CSo)

and notFindOppPreInCS(not(Pre), CSp) and
addPreToCS(T,Pre, CSo))

or

(

argue(Def, T") =>
a(replyToArgueReceiverp
(KBP,CSP! CSO,T,Pre,IDo),IDp)

& (Def =findDefeats(T,Pre,KBg, CSp) and
addDefeatToCS(Def, CSg))

then

a(replyToArgueReceiverg
(KBo,CSp, CSp, T,Pre,Def,IDp), ID)
)

or

(
why(Pre) =>

a(replyToArgueReceiverp

(KBP,CSP, CS()ﬁT,Pre,IDo),IDP)

< (notFindPreInKB(Pre,KB) and
notFindPreInCS(Pre,CSp))

then

a(replyToWhyReceiverg
(KB(),CSO, CSpﬁ T,Pre,IDp),IDo)
).

Figure C.1(b): Generated LCC Protocol for Persuasion Dialogue (Part 2)

Appendix C: Persuasion Dialogue

320

Bridging the Specification Protocol Gap in Argumentation

1 ' ' Locution
= i Starting Locution
6 icon at the
TS : top of the
.= "addTopicToCS "~ \ Clalm(T). i p
Sl (TCSp) .7 claimSenderp | claimReceiverg 3 DID
g KBP; KB09C807 _C
CSp,CS0,T,IDg CSp,IDp
3 1Dp 1Dg
b
< [\ 2
b Starting
AN u 1 Patt
attern
[\
a(RPl(KBPaCSPa CSO aTa IDO)?IDP)::=
< SL(T) => a(Ro(KB(,CSp, CSp, IDp),IDg) € Cl1
\ & w J

then

a(RP2 (KBPaCSP 5 CSO7 T7 IDO),IDP)~
a(ROl(KBo,CSO, CSO IDP),IDo):::

e —
C2¢ SL(T) <= a({{pl(KBp,CSP,CSO,T, IDA),IDj

P then Y
\ a(Rpa(KBo,CSo, CSp, T, IDp),IDo) /

l LCC Agent
Protocol

a(claimSenderp (KBp,CSp, CSq, T, IDg),IDp)::=

claim(T) => a(claimReceivero(KBo,CSo, CSp, IDp),IDg) <<

P <addTopicToCS(T, CSp)

a(claimReceivero(KBo,CSo, CSp, IDp),IDg)::= <«

claim(T) <= a(claimSenderp (KBp,CSp, CSo, T, IDg),IDp)

4

Figure C.2 (a): Step 3 of Protocol Generation (Matching the Starting Pattern)

Appendix C: Persuasion Dialogue 321

Bridging the Specification Protocol Gap in Argumentation

Locution icon at the next

level of the DID
why(T) concede(T)
replyToClaimSendero replyToClaimReceiverp replyToClaimSender, replyToClaimReceiverp
KBo,CSo, CSp KBp,CSp, CSo, T,IDp KBo,CS0,CSp T,IDp KBp,CSp,CSo, T,IDp

,T,IDp Do IDp

IDO IDP I

3 . Starting
e a(Rp (KBp,CSp, CSp ,Topic, IDg),IDp)::=
W Pattern
SL(T) => a(ROI(KB09C807 CSP 9IDP)9ID0)
< Cl
then
< = @
a(RP;, (KBp,CSp , CSo ,T, IDg),IDp).
a(Ro1(KBo,CSo, CSp ,IDp),IDo)::=
C2 éSI—’(’T) <= a(RPI(KBP7CSP7 CSO 9T1 IDO)?IDP)
then
a(ROZ(KB05C809 CSP 9T9 IDP)JDO)
\ J
< v

l LCC Agent
Protocol

a(claimSenderp (KBp,CSp, CSq, T, IDg),IDp):: =

claim(T) => a(claimReceiverg(KBg,CSq, CSp,IDp),IDo)
<addTopicToCS(T, CSp)

then

= a(replyToClaimReceiverp(KBr,CSp, CSp, T,IDo),IDp).
a(claimReceivero(KBo,CSp, CSp,IDp),IDg)::=
claim(T) <= a(claimSenderp (KBp,CSp, CSq, T, IDg),IDp)

then

ey 3(replyToClaimSender o(KBo,CSo, CSp, T, IDp),IDo).

Figure C.2 (b): Step 3 of Protocol Generation (Completing the Recursive
Roles)

Appendix C: Persuasion Dialogue 322

Bridging the Specification Protocol Gap in Argumentation

5

Locution

Termination Locution |

icon on level

{ Intermediate Locution
F : two
why(T) concede(T)
replyToClaimSender, | replyToClaimReceiverp replyToClaimSender | replyToClaimReceiverp
KBo,CSo, CSp,T,IDp| KBp,CSp, CSo.T,IDo KBo,CSo, CSP,T IDp| KBp,CSp,CSo,T,IDg
Do Dy ,_/ Dy
1 -z ﬁndTopchnKB
*~(TKBq) . -
o N, 2
StFindTopiclnKB 'S 7"~ -
no I?T 12]];5 t . ot N 4'\ notFlndTopchnCS T r' addToplcToCS)
notFdeopchnCS S (T CSO) - (T CSo) ’/
e S (TCSo) T S notFlndOppTopchnCS ’,/
ST (not(T) CSo)_.
TI
Pattern
a(RSenderl(l(l?'Sendera(:SSender ’ CSReceiveraTOpicaIDReceiver)leSender) o=
TL
RSenderl ~> RReceiverI
or
IL_
RSenderl ~> RReceiverI 6
a(RReceiverl(I<1?'Receivera(:SReceiven(:SSender TOpicaIDSender)aIDReceiver)::=
~TL
R Receiverl <= R Senderl
or
~IL
R Receiverl <= R Senderl
N
a(l{Senderl (KBSendenCSSender’ CSReceivenTopicalD Receiver)’IDSender) o=
TL (Toplc) => a(RReceiverl(KBReceiver’CSReceiver 7CSSender’ TopicaIDSender)’IDReceiver)
< Cl
or
IL(TOPIC) => a(RRcccivcrl(KBRcccivcraCSRcccivcra CSScndcra TopicsIDScndcr)aIDRcccivcr) < C2
=

then
a(RScndcr2 (KBScndcraCSScndch SRcccivchOpicle Rcccivcr)alDScndcr))

a(RReceiverl(KBReceivenCSReceivera CSSenders Topic,IDSender)aIDReceiver)::=

C3<TL (TOplC) <= a(RScndcrl(KBScndcraCSScndcr CSRcccivcraTopiCJDRcccivcr):IDScndcr) I
or

C4GIL(TOPIC) <= a(RSenderl(KBSender>CSSendcr: CSReceiveraTopiCJDReceiver)a I])Sender)

then
la(RReceiveﬁ(KBRcceiveraCSRcceivcr CSSendera TopiCyIDSendcr):IDRecciver)

_ /

Figure C.3 (a): Step 5 and 6 of Protocol Generation

Appendix C: Persuasion Dialogue

323

Bridging the Specification Protocol Gap in Argumentation

Locution icon on

' level two
i Intermediate Locution (on the left side of
ﬁ\ DID)
why(T) N
replyToClaimSender, | replyToClaimReceiverp 1 u /7\
KBo,CSo, CSp,T,IDY KBp,CSp,CSo,T,IDo — g
T)
’ \ /TN _
o\ [4 >

~

< hotFindTopiCanB SeetT s

.. (TKBg) .2o” s
N .~ notFindTopicInCS ~ -,
TN (TCSo) Lt

~ -

A—
a(l{Senderl (KBSendersCSSenden CSReceiversTOpicleReceiver)JDSender) o=

TL (Toplc) => a(RReceiverl(KBReceiveroCSReceiver 7CSSendera TopicaIDSender)aIDReceiver)

«cCl R

or I . - r
r N\

IL(TOPIC) => a(RReceiverl(KBReceiveraCSReceivera CSSendera TopicaIDSender)aIDReceiver)

< C2

then
a(RSenderQ (KBSenderaCSSendenC SReceivenTOpiCsID Receiver)aIDSender))
P —

A

\ 4

L 3 X)
a(llReceiverl (KBReceiveraC SReceiven C SSenders Toplc’ID Sender)sIDReceiver) e

C3€TL (Topic)
<= a(RSenderl(KBSendenCSSender CSReceiver7T0piCaIDReceiver)7IDSender)
or I

C4€IL(Topic) P ~

<= a(l{Scndcrl(IQBScndchSScndcra CSRcccivcraTOplcalDRcccivcr)a I])Scndcr)

&hen a(RReceiverZ(KBReceiveracSReceiver CSSender’ TopicaIDSender)’IDReceiver)
7\
b ‘AJ

\//f , — - ~~ N
a(replyToClaimSender o(KBo,CSo,CSp ,T,IDp),IDg) ::=
-
— ~
why(T) => a(replyToClaimReceiverp (KBp,CSp CSo,T,IDg),IDp)
. <=
S . . N
< (notFindTopicInKB(T,KBg) and notTopicFindInCS(T,CSo))

.
‘ a(replyToClaimReceiverp(KBp,CSp, CSpo, T,ID¢), IDp) ::= >

_ /

Figure C.3 (b): Step 7 of Protocol Generation (Matching the Termination-

v

A

[

e N
hy(T) <=%plyToClaimSendero (KBo,CSo, CSO,T,IDP),HQ

Intermediate Pattern)

Appendix C: Persuasion Dialogue 324

Bridging the Specification Protocol Gap in Argumentation

Locution
icon on level
{ Intermediate Locution _: Termination Locution : three
argue(pre) retract(T)
replyToWhySenderp | replyToWhyReceiverg replyToWhySenderp replyToWhyReceiverg
KBp,CSp,CSq,T,IDg | KBo,CSo,CSp,T,IDp KBp,CSp,CS0,T,IDo| KBo,CSo,CSp,T,IDp
IDP ID() IDP I]DO

/a(RSenderl(KBSendenCSSender, CSReceiver,Topic,IDReceiver)aIDSender) o= \

TL (Toplc) => a(RReceiverl(KBReceiveraCSReceiveraCSSendera ToplcaIDSender)aIDReceiver)

< Cl

or

IL(TOPIC) => a(KBReceiveraCSReceiveraCSSendera TopiCsIDSender)aIDReceiver) < C2

then

\ 4

.~
~ : —
a(RSenderZ (KB Sender:CSSendera CSReceiver»TOplc:IDReceiver):IDSender)-

a(llReceiverl(I<BReceiveraCSReceiven CSSender’ TopicsIDSender)sIDReceiver): =

C3<TL (TOPiC)<= a(RSenderl(KBSendenCSSender»CSReceivenTOpicaIDReceiver)>IDSender
or

C4 GIL(TOPW) <= a(RSenderl(KBSendenCSSender»CSReceivenTOpicaIDReceiver)>IDSender
then

a(RReceiverZ(KB Receiverac SReceivera CSSendera TopicaIDSender)aIDReceiver) .
N— 7
e

s

ﬁ(replyToClaimSenderO(KBO,CSO,CSP,T,IDP),IDO) =

why(T) => a(replyToClaimReceiverp (KBp,CSp,CSp T,IDg),IDp)

'

< (notFindTopicInKB(T,KBg) and notFindTopicInCS(T,CSo))

then

S
' g] N\
a(replyToWhyReceiverg(KBo,CSo, CSp,T,IDp),IDg) .

a(replyToClaimReceiverp(KBp,CSp CSo,T,IDo), IDp) ::=

why(T) <= a(replyToClaimSendery (KBo,CSg, CSp,T,IDp),IDg)

then
\@plyTOWhySenderp (KBp,CSp, CSo, T,IDO),IDb /

Figure C.3 (c): Step 7 of Protocol Generation (Complete the Recursive Roles)

Appendix C: Persuasion Dialogue 325

Bridging the Specification Protocol Gap in Argumentation

Locution icon
on level two

(on the right {Termination Locution }
side of DID) @
\/

concede(T)

r replyToClaimSenderg | replyToClaimReceiverp

@ KBo,CSo0,CSp,T,IDr | KBp,CSp,CSo,T,IDo 8
L

IDo IDp c
RN /—‘ ; >
r <
£ 'ﬁndTopchnKB v
(T KBO) PRig \ »
‘N /’ o L
<'\ notFlndToplclnCS PR addToplcToCS -,
(T CSo) .77 -:j\,\ (T, CSO)
See 7 ’IlOtFlIldOppTOplCIl’lCS R]
~ (n0t(T),CSo). - - 3
— . -

/a(RSenderl(KBSendenCSSender, C SReceivenTopic9lDReceiver)le Sender) o=

‘ .2 .
TL (TOPIC) => a(RReceiverl(KBReceivenCSReceivenCSSender» Toplc:IDSender)aIDReceiver)
“— —

< Cl
or
IL(TOPIC) => a(KBReceiver:CSReceiver:CSSenden TopicaIDSender)aIDReceiver) < C2
then a(RSenderZ (KBSenderaCSSendera CSReceiveraTopic:IDReceiver)aIDSender)~
a(RReceiverl(KBReceivenCSReceiven CSSendera TopicaIDSender)5IDReceiver)::=

C3<TL (Topic)

<= a(RSenderl(KBSenderaCSSenderaCSReceiveraTopiCaIDReceiver)aIDSender)

4 —

or

C4 GIL(TOPIC) <= a(RSenderl(KBSendenCSSender»CSReceiver»TOpicaIDReceiver)>IDSender)
Qlen a(RReceiverZ(KBReceiveraCSReceiver:CSSenden ToplcaIDSender)7IDReceiver)-

ﬂ l

a(replyToClaimSendero(KBg,CSo,T,IDp),IDo) ::=
A -

\ 4

r ”~ . . —
concede(”l’) => a(replyToClaimReceiverp(KBp,CSp CSo T,1D),IDp)

& (findTopicInKB(T,KB) and notFindTopicInCS(T,CSy) and
notFmeppTopchnCS(not(T) CSo) and addTopicToCS (T, CSo))

or :
why(T) => a(replyToClaimReceiverp (KBp,CSp,CSo T,1Dg),IDp)
< (notFindTopicInKB(T,KBg) and notFindTopicInCS(T,CSo))

then a(replyToWhyReceivero(KBo,CSo, CSp,T,IDp),IDo) .
a(replyToClaimReceiverp(KBp,CSp CSo,T,ID¢), IDp) ::=

concede(T) <= a(replyToClaimSendero(KBq,CSq,CSp,T,IDp),IDo)
~— _J

or i
why(T) <= a(replyToClaimSenderg (KBo,CSp, CSp,T,IDp),IDo)
Qen a(replyToWhySenderp (KBp,CSp, CSo, T,IDg),IDp). /

Figure C.3 (d): Step 8 of Protocol Generation (Matching the Rewriting
Methods of the Termination-Intermediate Pattern)

Appendix C: Persuasion Dialogue 326

Bridging the Specification Protocol Gap in Argumentation

C.2 An Example of LCC Protocol begin Generated for N-agent

In this section, we will give a detailed description of how to generate the LCC
protocol of the persuasion dialogue between N-agent by using the black box of DID
for N-agent (see chapter 4, section 4.4.5), LCC-Argument patterns and DID for two
agents (the DID for two agents is shown in Figure 4.3). The final LCC protocol is
illustrated in Figures C.8(a), C.8(b), C.8(c), C.8(d), C.8(¢e) and C.8(f):

(1) Begins with the Broadcasting Pattern. The tool uses the default functions of the
TerminationCl, DivivdeC2, AgentGroupC3, and RecursC4 conditions (See

chapter 5 for more detail).
o TerminationC1l= greaterThanOrEequal(NAccepting, NSupporters)

o DivideC2 = lessThan(NAccepting, NSupporters) and
isNotEmpty(RejectionList) and isNotEmpty(AcceptinglList)

o AgentGroupC3 = creatOneAgentGroup
(RejectingList,Re,AcceptinList,Ac, AgentGroup, AGroup,P,0)
o RecursC4 = isListEmpty(Re) or isListEmpty(Ac)
(2) The tool then selects the Move-To-Dialogue Pattern and applies this pattern
twice (to generate one role for P agent and one role for O agent) by matching
formal parameters in the Move-To-Dialogue Pattern with their corresponding

values in the claim(T) icon (the Starting locution icon in the DID of the

persuasion dialogue for two agents):

e Agent Prole:

a) Starting from the left side of the locution icon, the tool matches Rgsengeri

with claimSenderp;.

b) Moving to the right side of the locution icon, the tool matches Rgreceiveri

with claimReceiverp;.

Appendix C: Persuasion Dialogue 327

Bridging the Specification Protocol Gap in Argumentation

c) The tool matches C/ with its default functions (addTopicToCS(T,CSp)).
Note that in this example C2 equal null because no condition is connected

to the right side of the locution.

d) The tool matches roles parameters with (KBp,CSp,CSo,T,IDp;oposai, ID0),
and role id with IDp Note that the tool add IDp,oposas and T to the role
parameters (See Figure C.9(a) and Figure C.8(c)).

e Agent O role:

a) Starting from the left side of the locution icon, the tool matches Rsender

with claimSendero;.

b) Moving to the right side of the locution icon, the tool matches Rgeceiveri

with claimReceivero;.

c) The tool matches C/ with its default functions (addTopicToCS(T,CSp)).
Note that in this example C2 equals null because no condition is

connected to the right side of the locution.

d) The tool matches roles parameters with (KBo,CSo, CSp, T,1Dproposai, IDp),
Do), and role id with /Do Note that the tool adds IDp,posar and T to the
role parameters (See Figure C.9(b) and Figure C.8(c)).

(3) After that, the tool selects the Recurs-To-N-Dialogue Pattern:

a) Since the selected Recurs-To-N-Dialogue Pattern has rewriting methods, the
tool selects the Rewrite 2 (multiple end locution) rewriting methods and
repeats this method twice because the Termination locution icons occurs

three times in the DID of persuasion dialogue for two agents.

b) The tool applies this pattern by matching formal parameters (variables) with
their corresponding values in the Termination locution icons in the DID for
two agents. As a result it generates one LCC role for the proposal agent (See

in Figure C.8(c) the LCC role in the left side):

Appendix C: Persuasion Dialogue 328

Bridging the Specification Protocol Gap in Argumentation

1. Starting from the first Termination locution icon in the DID (See

chapter 4, Figure 4.3) concede(T) on level two (See Figure C.9(c)):

e Starting from the left side of the locution icon, the tool matches
Rsendert with claimSenderp,, role parameters with
(KBp,CSp,CSo, T.IDproposai, ID0), and role id with IDp Note that the

tool adds IDpyoposai to the role parameters.

e Moving to the right side of the locution icon, the tool matches
RReceiver1 ~ With claimReceiverp;, role parameters with
(KBo,CS0,CSp, T,IDproposa IDp), and role id with /Do Note that the

tool adds IDpoposa to the role parameters.

ii. Starting from the second Termination locution icon in the DID(See

chapter 4, Figure 4.3) retract(T) on level three (See Figure C.9(d)):

e Moving to the left side of the locution icon, the tool matches
Rsender2 with replyToWhySenderp, role parameters with
(KBp,CSp,CS0,T,IDproposa, ID0), and role id with IDp Note that the

tool adds IDp,oposa to the role parameters.

e Moving to the right side of the locution icon, the tool matches
Rpeceiverz With — replyToWhyReceiverp, tole parameters with
(KBo,CS0,CSp, T,IDproposai IDp), and role id with /Do Note that the

tool adds /Dp,oposa to the role parameters.

i Starting from the third Termination locution icon in the DID(See

chapter 4, Figure 4.3) concede(T) on level four (See Figure C.9(e)):

e Moving to the left side of the locution icon, the tool matches
Rsenders With replyToArgueSendeop, role parameters with (KBo
KBo,CSo,CSp,T,Pre,IDpyoposai IDp), and role id with /Do Note that

the tool adds IDp.oposa to the role parameters.

Appendix C: Persuasion Dialogue 329

Bridging the Specification Protocol Gap in Argumentation

e Moving to the right side of the locution icon, the tool matches
Rpeceivers With replyToArgueReceiverp, tole parameters with
(KBp,CSp,CSo,T,Pre,IDpyoposai IDo), and role id with IDp Note that

the tool adds IDpyqposai to the role parameters.

(4) The tool applies the automated synthesis process of the two agents' protocol
to the generate persuasion dialogue LCC protocol for two agents (see section

C.1).

(5) The tool adds the "sending end message line" and "changing agents' role line"
after each Termination message (locution) in the LCC protocol for two agents
to connect the N-agents' protocol with the two agents' protocol. The final

LCC protocol between two agents is illustrated in Figures C.8(d), C.8(e) and
C.8(9).

C.3 Verification Model of the Persuasion Dialogue

In this section, we will give a detailed description of how to verify the semantics of
the DID of a persuasion dialogue (shown in Figure 4.3) against the semantics of the
synthesised LCC protocol (shown in Figures C.1(a) and C.1(b)). In this example, the

initial marking is defined in the following way:

(4) OpenDialogue place = "The car is safe”. This place represents the dialogue

topic.

(5) Pplace=("P",[],[("The car is safe", "it has an airbag")], "cliamSender"”, "", "",
[],"O")). This place represents the arguments of agent P.

(6) Oplace = ("O",[], [("it has an airbag", "The car is safe")], "claimReceiver" ,""
" [],"P")). This place represents arguments of agent O.

Appendix C: Persuasion Dialogue 330

Bridging the Specification Protocol Gap in Argumentation

Proposal

Other Agents

a(proposalSender . p.s(AgentList, NAgent,
NSupporters,Topic),ID;oposa1)::=

proposal(Topic) => a(proposalReceiverp
(KBIDscleleproposal)a ID)

&getAgentIDFromList
(AgentList,otherAgents,ID) and
addTopicToCS(Topic,CSroposal)

then

(

a(replyToProposalReceiver,yoposal (AgentList,
NAgent,NSupporters,Topic,0,[1,[1,0,0),
IDproposal) € agentListEmpty(AgentList)

or

a(proposalSenderroposal
(OtherAgents,NAgent,NSupporters,Topic),
IDproposal)

).

a(proposalReceiver,p(KBp,CSip,IDyoposal)s
ID)::=

proposal(Topic)<=
a(proposalSender,oposa(AgentList, NAgent,NS
upporters,Topic), IDyroposat)

then

a(replyToProposalSender(KBp,CSp,
TOpic;leroposal)a ID)

a(replyToProposalReceiver o.s.(AgentList,
NAgent,NSupporters,Topic,NReply,
AcceptingList,RejectingList,NAccepting,N
Rejecting), ID 1 posa) =

(
addIDToList(SendingList,OtherSedingList,ID) and
addToAcceptingList(AcceptingList,AccList,ID)
and increaseAccepting(NAccepting,NAcc) and
RejList= RejectionList and NRej is NRejection
< accept(Topic)

<= a(replyToProposalSender;p
(KBIDaCSlDaTopicsIDproposal)a ID)

or

addToRejectingList(RejectingList,RejList,ID) and
increaseRejecting(NRejecting, NRej) and
increaseReply (NReply,NRep) and
AccList=AcceptingList and NAcc is NAccepting

& reject(Topic) <=
a(replyToProposalSenderp
(KBIDaCSlDaTopicsIDproposal)a ID)

)

then

a(resultSenderproposal (AgentList,NAgent,
NSupporters, Topic,NReply,AcceptingList,
RejectionList,NAccepting,NRejection),
IDproposat) € isEqual(NRep,NAgent).

a(replyToProposalSenderp(KBp,CSip,
TOpic,IDproposal)5 ID) L=

accept(Topic) =>
a(replyToProposalReceiveroposal (_ > _ 5 _ 5 _
o> 5 _)sIDproposal)
< findTopicInKB(Topic, KBjp) and
notFindTopicInCS (Topic,CSyp) and
notFindOppTopicInCS (not(Topic),CSip)
and addTopicToCS(Topic,CSip)

5 b}

or

reject(Topic) =>
a(replyToProposalReceiveroposal (_ > _»_ 5 _
5):IDproposal)

> > > S __ v

< notFindTopicInKB(Topic,KBpopos1) and
notFindTopicInCS(Topic,CSproposal)
)

then

a(resultReceiveryp
(KBID;CSID;TopiCaIDproposal)s ID) .

Figure C.8(a): Generated LCC Protocol for Persuasion Dialogue (Part 1)

Appendix C: Persuasion Dialogue

331

Bridging the Specification Protocol Gap in Argumentation

Proposal

Other agents

a(resultSender . posa(AgentList, NAgent,
NSupporters,Topic,AcceptingList,RejectionL
ist, AgentGroup), ID,4p05a) 2=

a(sendReachAgreement,oposal
(AgentList,NAgent, Topic),IDpoposal)
& greaterThanOrEequal(NAccepting, NSupporters)
or
a(divideGroup,roposal
(AgentList , NAgent,NSupporters
,Topic,AcceptingList,RejectionList, [])
9Imeposal)
& (lessThan(NAccepting ,NSupporters)
and isNotEmpty(RejectionList)
and isNotEmpty(AcceptingList)).

a(sendReachAgreementp, .y, (AgentList,
Topic)’IDProposal) =

reachAgreement(Topic) =>
a(resultReceiver;p(KBip,CSip,IDproposar), ID)
& getAgentIDFromList (AgentList,otherAgents,ID)

then
(null € isAgentListEmpty(AgentList)

or

a(sendReachAgreement,oposal
(OtherAgents, Topic), IDyroposa) -
a(divideGroupp,posal (AgentList,
NAgent,NSupporters ,Topic,
AcceptingList,RejectionList,AgentGroup),
IDproposal):::

argueWith (Topic,P,0) => a(resultReceiverp
(KBpaCSpa CsoaTopicsIDproposal)a P)

< creatOneAgentGroup(Rejecting,Re,Accepting,Ac,
AgentGroup, AGroup,P,0)

then

argueWith (Topic,O,P) => a(resultReceiverg
(KB(»CSL» Cspa Topicoleroposal)a O)

)
then
(
a(recursSproposal (AgentList, NAgent,NSupporters
:0 :Topic)’IDproposal)

< isListEmpty(Re) or isListEmpty(Ac)

or

a(divideGroup,roposal(AgentList
,NAgent,NSupporters, Topic,Ac,Re,AGroup),
ID Proposal))

).

a(resultReceiverp(KBp,CSp,CSo,Topic,
IDproposal)aP) i=

reachAgreement(Topic) <=
a(sendReachAgreementp oposal
(AgentList, Topic),IDproposar)
or

(
argueWith(Topic,P,0) <=
a(divideGroupproposal
(AgentList,NAgent,NSupporters,Topic,Acce
ptingList,RejectionList,

AgentGroup),ID roposal)

then
a(startDID
(KBPaCSPa CSO,TOPiC, IDproposaln O)aP)

).

Figure C.8(b): Generated LCC Protocol for Persuasion Dialogue (Part 2)

Appendix C: Persuasion Dialogue

332

Bridging the Specification Protocol Gap in Argumentation

Proposal

Other agents

a(recursp;op.sa (AgentList,
NAgent,NSupporters
,;replyN,Topic),IDp, 1) :=
(

N = replyN +1 € end(Topic) <=
a(replyToClaimSenderg
(KBO:C807CSP9T71DPr0posabIDP)9IDO)

or

N =replyN +1 €& end(Topic)<=
a(replyToClaimReceiverp
(KBPsCSP:CSO,T9IDProposalsIDO)91DP)

or

N =replyN +1 € end(Topic)
<=a(replyToWhySenderp(KBp,CSp,CSo, T,IDp,
oposal:IDO):IDP) or

N = replyN +1 <-- end(Topic)

<= a(replyToWhyReceiverg
(KBOaCSO:CSP:TaIDProposalaIDP):IDO)

or

N =replyN +1 € end(Topic) <=
a(replyToArgueSender
(KBPaCSPaCSOaTaprenIDPrOposabIDO)alDO)

or

N = replyN +1 <-- end(Topic) <=

a(replyToArgueReceiverp
(KBOaCSO:CSP,TaPre:IDProposalaIDP)alDP)
)

then

a(proposalSenderpyoposal
(AgentList,NAgent,NSupporters,Topic),
Imeposal)

< isEqual(N, NAgent)

or

a(recursproposal (AgentList,
NAgent,NSupporters, N,Topic),IDproposar))-

a(StartDIDP(KBPaCSP’CSOsTaIDProposalsIDO)s
IDp)::=

a(claimSender
(KBPaCSP»CSOaTalDPrOposabIDO)a IDP)
< addTopicToCS(T,CSp)

or
a(claimReceiver
(KBPsCSPsCSO»TsIDProposalsIDO)s IDP)

a(startDIDo(KBO,CSO,CSP,T,Imeposal,IDp),
IDg)::=

a(claimSender
(KBOaCSO)CSPaTaIDPrOpOSabIDP)n IDO)
< addTopicToCS(T,CSp)

or
a(claimReceiver
(KBO9CSO:~CSP5T?IDPrOpOSahIDP)’ IDO)'

Figure C.8(c): Generated LCC Protocol for Persuasion Dialogue (Part 3)

Appendix C: Persuasion Dialogue

333

Bridging the Specification Protocol Gap in Argumentation

Agent P Agent O
a(claimSenderp(KBp,CSp,CSq,T,IDg),IDp) ::= a(claimReceivery(KBg,CSg,CSp,IDp),IDg) ::=
claim(T) => claim(T) <=
a(claimReceiverg(KBg,CSgo, CSp,IDp),IDg) a(claimSenderp(KBp,CSp,CSo, T,IDg),IDp)
< addTopicToCS(T,CSp)

then
then
a(replyToClaimSenderg(KBo,CSq,CSp,T,IDp),IDg).
a(replyToClaimReceiverp(KBp,CSp,CSo,T,IDy),
IDp).
a(replyToClaimReceiverp a(replyToClaimSenderg
(KBp,CSp CSp, T,IDy), IDp) ::= (KBg,CSg, ,CSp T,IDp),IDg) ::=
concede(T) <= a(replyToClaimSenderg concede(T) =>
(KB,CSp, CSp,T,IDp),IDg) a(replyToClaimReceiverp (KBp,CSp,CSo,
T,IDo),IDp)
then &(findTopicInKB(T,KB) and
notFindTopicInCS(T,CSp) and
. notFindOppTopicInCS(not(T),CSp) and
end(Topic)=> a(recursprposal addTopicToCS (T,CSo)) 0
(AgentList,NAgent,NSupporters,NReply, Topic), then
IDProposal)
then end(Topic)=> a(recurSpyoposal
(AgentList,NAgent,NSupporters,NReply, Topic),
a(proposalReceiverp TDproposa)
(KBIDaCSIDaIDproposal)s ID)
) then
or a(proposalReceiverp
(KBIDsCSIDsIDproposal)a ID)
()
why(T) <=
a(replyToClaimSenderg (KBo,CSo, or
CSp,T,IDp),IDo)
(
then why(T) =>
a(replyToClaimReceiverp (KBp,CSp, CSo,
a(replyToWhySenderp (KBp,CSp CSo, T,IDo),IDp)
T,IDo),IDp) < (notFindTopicInKB(T,KB() and
). notFindTopicInCS(T,CSy))
then
a(replyToWhyReceivero(KBo,CSo CSp,T,IDp),ID)
).

Figure C.8(d): Generated LCC Protocol for Persuasion Dialogue (Part 4)

Appendix C: Persuasion Dialogue 334

Bridging the Specification Protocol Gap in Argumentation

Agent P

Agent O

a(replyToWhySenderp
(KByp,CSp, CSo T,ID), IDp) ::=
(

retract(T) => a(replyToWhyReceiverq
(KB,CSo, CSp, T,IDp),IDo)

€< (notFindPreInKB(T, KBp) and findTopicInCS
(T, CSp) and subtractFromCS(T, CSp)

then

end(Topic)=> a(recursp;oposal
(AgentList,NAgent,NSupporters,NReply, Topic),
1Dproposal)

then

a(proposalReceiveryp
(KBID:CSID:ImeposaI)a ID)
)

or

(

argue(Pre,T) => a(replyToWhyReceiver

(KB,CSo, CSp, T,IDp),IDy)

& (Pre= findPremise (T,KBp, CSp) and
addPreToCS(T,Pre,CSp))

then

a(replyToArgueReceiverp
(KBp,CSp, CSq, T,Pre,IDg), IDp)
).

a(replyToWhyReceiverg
(KBo,CSop, CSp,T,IDp),IDg) ::=

retract(T) <=
a(replyToWhySenderp (KBp,CSp, CSq, T,IDo),IDp)

then
end(Topic)=> a(recurSpyoposal
(AgentList,NAgent,NSupporters,NReply, Topic),

IDProposal)
then

a(proposalReceiverp
(KBlDaCSIDaIDproposal)a ID)
)

or
argue(Pre,T) <=

a(replyToWhySenderp(KBp,CSp, CSo, T,IDg),IDp)
then

a(replyToArgueSenderg

(KBo,CSO‘ CSp, T,Pre,IDp),IDO)
).

Figure C.8(e): Generated LCC Protocol for Persuasion Dialogue (Part 5)

Step One: Automated Transformation from LCC to CPN/XML

The generated LCC protocol of the persuasion dialogue in Figures C.1(a) and C.1(b)
was used as input to the verification tool. The verification tool generated a

persuasion dialogue CPN/XML file which has:

(1) The declaration of three colour sets (Topic, Message, Role) and thirteen

functions. (see chapter 6 section 6.1.1)
(2) Eight CPN subpages generated by the GenerateLCCProtocol tool (one subpage

for each LCC role in the Figures C.1(a) and C.1(b)).

Appendix C: Persuasion Dialogue 335

Bridging the Specification Protocol Gap in Argumentation

Agent P Agent O

lyToArgueReceiverp(KB
a(replyToArgueReceiverp(KBy.CSr, a(replyToArgueSendero(KBo,CSo, CSp.

T,Pre,IDg),IDp) ::=

CSoT,Pre,IDo),IDy) T,Pre,IDy), ID,) ::=
((

concede(T) <=

a(ReplyToArgueSender,, concede(T) =>

(KBo,CSo, CSp, T.Pre,IDp), IDo) a(replyToArgueReceiverp

(KBP,CSP’ CSO) T,Pre,IDo),le)

then &(findPreInKB(Pre, KBo) and notFindPreInCS(Pre,
. CSo)

end(Topic)=> a(recursproposal and notFindOppPreInCS(not(Pre), CSp) and
(AgentList,NAgent,NSupporters,NReply, Topic), | addPreToCS(T,Pre, CSo))
IDPmpcsal) then
then

end(Topic)=> a(recurSproposal
a(proposalReceiveryp (AgentList,NAgent,NSupporters,NReply, Topic),
§KBID9CSID91DprOp05al)’ ID) IDPmposal)

then
or a(proposalReceiverp

KBp,CSip,IDproposar), 1D
argue(Def,T') — g 1D 1D propos: l))
a(replyToArgueSenderg
(KB(),CSO‘ CSP, T,Pre,IDp), IDo) or
then (
a(replyToArgueSenderp argue(Def,T') =>
(KBp,CSp, CSo, T,Pre,Def,IDg), IDp) a(replyToArgueReceiverp
) (KBp,CSp, CSo T,Pre,ID;),IDp)
- & (Def =findDefeats(T,Pre,KBg, CSp) and

N addDefeatToCS(Def, CSo,))
(

then
why(Pre) <= a(replyToArgueReceiverg
a(replyToArgueSenderg (KBo,CSo, CSp, T,Pre,Def,IDy), IDo)
(KB07CSO, CSP’ T,pre,IDp), IDo))
then or
a(replyToWhySenderp (
(KBp,CSp, CSo, T,Pre,ID),IDp) why(Pre) =>
).

a(replyToArgueReceiverp

(KBP,CSP’ CS()ﬁT,Pre,IDo),IDP)

< (notFindPreInKB(Pre,KB) and
notFindPreInCS(Pre,CSy))

then

a(replyToWhyReceiverg
(KB,CSo, CSp, T,Pre,IDp),IDo)
).

Figure C.8(f): Generated LCC Protocol for Persusaion Dialogue (Part 6)

Appendix C: Persuasion Dialogue 336

Bridging the Specification Protocol Gap in Argumentation

2) Locution
= i Starting Locution
icon at the
2 ,./"A"'\\ . top of the
C)~ addTopicToCS - : claim(T) :
TN (TS TN claimSenderp | claimReceiverg DID
0 R KBP9CSP9C809 KB09CSO > z
9 T,IDg CSp, IDp b
5 IDp IDg 2
a Move-
To-
Dialogue
a(startDIDp(KBip,CS1p,CSpartnerips TOPic,ID pyoposar, PartnerID),ID)::= Pattern
S _—
—
< A
-~ —
a(RSenderl (KBIDaCSIDa CSPannerlDaTopiCa II)Proposala PartnerID),ID)
< or 1
~ —
al RReceiverl (KBID:CSID: CSPannerIDaTOpiC: IDProposal» PartnerID),ID)
>
a(StartDIDP(EBhCSP’CSOﬁT’IDProposabIDO),IJDP):::
S -
a(claimSenderp (KBp,CSp,CSo, T,[DproposatsIDo), [Dp)
» & addTopicToCS(T,CSp)
or
DAL
”~ N
a(claimReceiverp(KBp,CSp,CSo, T,IDpoposal, ID0), IDp).
LCC Agent
Protocol

Figure C.9 (a): Step 2 of Protocol Generation (Matching the Move-To-
Dialogue Pattern)

Appendix C: Persuasion Dialogue 337

Bridging the Specification Protocol Gap in Argumentation

2
c

A

2) Locution
= i Starting Locution
icon at the
,./"A"'\\ . top of the
- addTopicToCS - _ Clalm(T). i %
T (TCSy) o claimSenderp | claimReceiverg \ DID
T KBP9CSP9C809 KB09CSO > 2
T,IDO CSP, IDP -
, D, D, d)
a Move-
To-
Dialogue
a(startDIDp(KBip,CS1p,CSpartnerips TOPic,ID pyoposat, PartnerID),ID)::= \. Pattern
— 7
& . <
D~ q
'l N
a(RSenderl (KBIDaCSIDa CSPannerlDaTopiCa II)Proposala PartnerID),ID)
or | >
~ N
a RReceiverl (KBID:CSID: CSPannerIDaTOpiC: IDProposal» PartnerID),ID)
¥
a(startDIDP(KBo,CSO,CSP,T,IDProposal,IDP),IDo) =
~=
WV - !
a(claimSendero,{KBo.CS0.CSp. T.IDproposar-IDp).IDD)
» & addTopicToCS(T,CSp)
or
= »
7~ N
a(claimReceivero(KBo,CS,CSp,T,1Dproposat,1Dp),1Do).
LCC Agent
Protocol

Figure C.9 (b): Step 2 of Protocol Generation (Matching the Move-To-

Dialogue Pattern)

Appendix C: Persuasion Dialogue

338

Bridging the Specification Protocol Gap in Argumentation

Termination Locution
icon on level two

(on the right side of {Termination Locution }

DID for two agents) 5

concede(T)
replyToClaimSenderg | replyToClaimReceiverp
KBo,CSo, CSp,T,IDp | KBp,CSp,CSo,T,IDo
IDo 1Dp

ﬁ(recurspmposﬂl (AgentList, NAgent,NSupporters ,NReply,Topic),IDpmposal)\

~—

N = NReply +1 € end(Topic) <=

TeCUISproposal « RSenderZ

then

(a(proposalSenderroposal (AgentList, NAgent,NSupporters,Topic), IDpoposat)
< isEqual(N, NAgent)

or

Q(recurspmposal (AgentList, NAgent,NSupporters, N,Topic),IDpoposat))- /

ﬁrecurspmposm (AgentList,NAgent,NSupporters ,replyN,Topic),IDp,posa1) ::=

N =replyN +1 €& end(Topic)
<= a(replyToClaimSendero(KBo,CSo,CSp,T,IDproposat, IDp),1Do)
“— g
—

or

N =replyN +1 €& end(Topic)
<= a(replyToClaimReceiverp(KBp,CSp,CSo,T,IDproposat, Do), 1Dp)
N— e’

&(Rsender (o a_aTopiC:_olDProposala_)a IDsender)J
< ~' g

or
N =NReply +1 € end(Topic) <=
a(RReceiver (> _:TopicaIDProposal o_)7 IDReceiver)

— —

X —t

or

then ¥

(
a(proposalSenderoposal (AgentList, NAgent,NSupporters,Topic), IDproposal)

< isEqual(N, replyN)
or

Qrecurs (AgentList, NAgent,NSupporters , N,Topic),IDpoposal))- /

Figure C.9 (c): Step 3 (Part 1) of Protocol Generation (Matching the Rewriting

Methods of the Recurs-To-N-Dialogue Pattern)

Appendix C: Persuasion Dialogue

339

Bridging the Specification Protocol Gap in Argumentation

Termination Locution
icon on level three
(on the right side of
DID for two agents)

Termination Locution |

retract(T)

r replyToWhySenderp | replyToWhyReceiverg
1 KBp,CSp,CS(),T,IDo KBO,CSO7CSP7T71DP

IDp Do

or

or

ﬁ'ecurspmmal (AgentList, NAgent,NSupporters ,NReply,Topic),IDp;qpsa) ::=
N= NReply +1 é end(Topic) <= a(Rsenderl (_ s _7T0piCaIDProposal a_)a IDsenderl)

N= NReply +1 é end(Topic) <= a(RReceiverl (> _aTopiCaIDPmposal o)a IDReceiverl)

N= NReply +1 & end(Topic) <= a(RsenderZ (_ s _:TopicleProposal a_)a IDsenderZ)
N -

—

or

or

then

or

N= NReply +1 e end(TOpiC) <= a(RReceiverZ (, s 79T0piC9IDPr0 osal 97)9 IDReceiver2)
. : _J

recurs Proposal RSenderZ

(a(proposalSender,yqposal (AgentList,NAgent,NSupporters,Topic), ID,yoposar)
< isEqual(N, NAgent)

a(recursSpyposal (AgentList, NAgent,NSupporters, N,Topic),IDproposal))-

~""

’ s

.
-

or

a(recursp,, s, (AgentList, NAgent,NSupporters ,replyN,Topic),IDp;qp051) ::=
N = replyN +1 €& end(Topic) <=
a(replyToClaimSendero(KBo,CSo,CSp, T,IDproposa, IDp),IDg)

N = replyN +1 € end(Topic)<=
a(rep]yTOClaimReCeiVerp(KBp,CSP,CSO,T,IDPmposal,IDo),IDp)

N = replyN +1 € end(Topic)
<=a(replyToWhySenderp(KBp,CSp,CS0, T,IDproposa, Do), 1Dp)

/
A

y 3

—

or

N —

N = replyN +1 <-- end(Topic)
<= a(replyToWhyReceivero(KBo,CSo,CSp, T,IDproposai, | Dp),1Do)

—

then

or

recursproposal « RSenderZ

(a(proposalSender,,posal (AgentList,NAgent,NSupporters,Topic), IDyroposal)
< isEqual(N, NAgent)

&(recurspmpml (AgentList, NAgent,NSupporters, N,Topic),IDpgposar))- /

—

Figure C.9 (d): Step 3 (Part 2) of Protocol Generation (Matching the
Rewriting Methods of the Recurs-To-N-Dialogue Pattern)

Appendix C: Persuasion Dialogue 340

Bridging the Specification Protocol Gap in Argumentation

Locution icon
on level four

(on the right {Termination Locution }
side of DID)
concede(T)
+ r replyToArgueSendero| replyToArgueReceiverp
- KBo,CSo,CSp,T,Pre,IDp| KBp,CSp, CSp, T,Pre, IDo
1 Do 1Dp
/a(recurspmpasal (AgentList, NAgent,NSupporters ,NReply,Topic),IDp.qpos.1) x
N= NReply +1 é end(Topic) <= a(Rsenderl (_ s _7T0piCaIDProposal a_)a IDsenderl)
or
N = NReply +1 é end(TOpiC) <= a(RReceiverl (o _aTopiCaIDPmposal o)a IDReceiverl)
or
N= NReply +1 é end(TopiC) <= a(RsenderZ (_ o _7T0piCaIDProposal a_)a IDsenderZ)
or
N= NReply +1 é end(Topic) <= a(RReceiverZ (_ o _aTopicaIDPmposal a_)a IDReceiverZ)
or
N= NReply +1 e end(Topic) <= a(Rsender3 L s 7:T0piC71DProposa] ’7)3 IDsender3)
~— 7
< or —

N N = NReply +1 e end(TopiC) <= a(RReceiver3 (7 s 79T0piC9IDProposal 97)7 IDReceiVer3)
then S —— -
(a(proposalSender,oposal (AgentList, NAgent,NSupporters,Topic), IDpoposar)
< isEqual(N, NRreply)
or a(recurs (AgentList, NAgent,NSupporters , N,Topic),IDpoposat))-

/

8

a(recurspyposal (AgentList, NAgent,NSupporters ,replyN,Topic),IDpposal) ::=
N = replyN +1 & end(Topic) <=
a(replyToClaimSendero(KBg,CSo,CSp, T,IDprqposa, I Dp),IDo) or
N = replyN +1 & end(Topic)<=
a(replyToClaimReceiverp(KBp,CSp,CSo, T, IDpoposais [Do),1Dp) or
N = replyN +1 € end(Topic)
<=a(replyToWhySenderp(KBp,CSp,CS0, T,IDproposat, Do), 1Dp) or
N = replyN +1 <-- end(Topic)

<= a(replyToWhyReceivero(KBo,CSo,CSp, T,IDpoposai, Dp),IDo) or
N = replyN +1 €& end(Topic) <=
a(replyToArgueSendero(KBp,CSp,CSp,T,Pre,IDproposa, Do), 1Do)

— —

or I
N =replyN +1 <-- end(Topic) <=

a(replyToArgueReceiverp(KBg,CSo,CSp, T,Pre,IDp;oposais IDp),IDp)
N— 4
~—~

then

(a(proposalSenderroposal (AgentList, NAgent,NSupporters,Topic), IDproposar)
< isEqual(N, replyN)

or

a(recurs (AgentList, NAgent,NSupporters , N,Topic),IDproposat))-

Figure C.9 (e): Step 3 (Part 3) of Protocol Generation (Matching the
Rewriting Methods of the Recurs-To-N-Dialogue Pattern)

Appendix C: Persuasion Dialogue 341

Bridging the Specification Protocol Gap in Argumentation

1 ("P[LI("The car is safe","it has an
airbag")],"diamsender","","",[1,"0")
17 "Th e 1° (P[],
w [("“The car is safe","it has an airbag")],
1" "The car is safe’ “diamsender”, ™™ [1,"0")

P 1
OpenDialogue 1 C

Role
TOPIC

(s,5CSL,5KB, SR, p,rCsL,r)

r

t . ("daim",t,p,s,r) .
| SendClaim St P claiml
Message

(s,addTopicToCS(sCSL,t),sKR, replyToClaimReaceiver” t,p,rCSL,r)

r

changeRoleToReplyToClaimReceiver

) Role

Figure C.10: The claimSenderr CPN Subpage

e Figure C.10 shows the claimSenderp role CPN subpage. This subpage has
one input place OpenDialogue which represents the dialogue topic (In this
example, the initial marking of this place = "The car is safe”) . The place P
represents the role arguments (In this example, the initial marking of this
place is equal to ("P",[].[("The car is safe", "it has an airbag")],
"cliamSender", "", "", [],"0O")). When the SendClaim transition occurs
(when places OpenDialogue and P are active), claimSenderp role CPN
subpage sends claim message using claiml output place and change its role
to ReplyToClaimSender using ChangeRoleToReplyToClaimSender output

place.

e Figure C.11 shows the claimReceiverp role CPN subpage. In this page, the
place O represents the role arguments (In this example, the initial marking of
this place is equal to ("O",[], [("it has an airbag", "The car is safe")],
"claimReceiver" ,"" ,"", [],"P")). This subpage receives the claim message
using claiml input place. Then, when the ReceiveClaim transition occurs
(when places claiml and O are active), it changes its role to
ReplyToClaimReciver using ChangeRoleToReplyToClaimReceiver — output

place.

Appendix C: Persuasion Dialogue 342

Bridging the Specification Protocol Gap in Argumentation

(l.t.p,s.r) |
claiml ""-I ReceiveClaim

1o, .
[("it has an airbag","The car is safe")],
“diamReceiver’,"," [1,"P")

G\l

_/RCI|E 17 ("O",[LI("it has an airbag","The car

is safe")],"cliamReceiver","","" [1."P")

(r,rCsL,rkBe,re,"",p,sCsL,s)

h 4

Message

(r,rCsL,rkB," " replyToClaimSender"” t,p,sC5L,5)

h 4

changeRoleToReplyToClaimSender
[Cut] Role

Figure C.11: The claimReceivero CPN Subpage

) (5,5C5L,SKB SR,E,p,rC5L.r) ("why"t,p,5.r)
changeRoleToReplyToclaimsender » sendwhy w{ whyz
Role [Message

[findTopicInKB(SKE. £)
andalso
findTopicInCS(sCSL t)=false]

[findTopiclnkB(sKE t)= false
andalso

findTopicInCS(sCSLt)= false
andalso

findOPRTERICINCS(sCSL t)=false]

(s,5CSL,SKB,"replyTavvhyReceiver" t,n,rcsL,r)

(5,5CSL,5KB SR t,p,rCSL,r) » ChangeRaleToreplyTowhyReceiver

Role

("coneade" t,p,s.r)
SendConceda w{ Concede2
Meassage

(s,addTopicToCS(SCSL t),SKB, SR, t,p,rCSL,r)
p{ end
i Role

Figure C.12: The replyToClaimSendero CPN Subpage
Figure C.12 shows the replyToclaimSendero role CPN subpage. This subpage
sends two messages: (1) sends why message using why3 output place and
changes its role to ReplyToWhyReceiver using ChangeRoleToWhyReceiver
output place; (2) sends concede message using concede? output place and

then ends the dialogue using end output place.

Figure C.13 shows the replyToclaimReceiverp role CPN subpage. This
subpage receives two messages (why or concede) and generates responses
depending on some conditions. If it receives the concede message using
concede? input place, it responses by ending the dialogue using end output

place. Otherwise, if it receives the why message using why3 input place, it

Appendix C: Persuasion Dialogue 343

Bridging the Specification Protocol Gap in Argumentation

|\t r,rCSL,rKB,rR,t,p,sCSLs
Concede?] L) # ReceiveConcede eI B L

end

b 4

Message Rale

[r,FCSL,IKB, IR t,p,5C5L,8)

changeRoleToReplyToClaimReceiver

Role

(r,rCSL,rKB, Rt p,5CSL,5)

l,ntp.s.r 1,rCSL KB, replyTaWhySender" t,p,sCSL,s
Why3 fintp.s;) P ReceiveWhy e el u it): ChangeRoleTareplyTaWhySender
Message [tk Role

Figure C.13: The replyToClaimReceiverp CPN Subpage

(s.5CEL KB sREpICELY)
(5,5C5LsHB <R tprCSL)

[findPremiseInKB[sKB,t)=true]

(stSLakB. R epacsiy)| getPre mise FramKB(<KE.¢) " ("argue’ t,np.s.)
ChangeRole TareplyTo W hySender | SendArgue P Premise argueAboutTopicSincePremise
—/ |——| Premise i
Rale

Message

[true]

(s,ad dPremiseToC5(sCSL t.np),sKB, "replyToArg ueReciod & " tnp,rC5L)

(s:5C5LKBsRtprCSL)

¥

ChangeRoleTaRe plyToArqueRe

Role

[findTopicIn€5(sCSLA)= true
andalso
findBremiseln KB[sk Bt)=false]

retract’ 5.1 ; :
SendRetract (B o retractd
(ut} Message

(5.5 btractFromC(CSL.t),sKB, Ryt p.rCSL)
M end
Rale

Figure C.14: The replyToWhySenderp CPN Subpage
responses by changing its role to ReplyToWhySender using

ChangeRoleToWhySender.

e Figure C.14 shows the replyToWhySenderp role CPN subpage. This subpage
sends two messages: (1) sends argue message using argue5 output place and

changes its role to ReplyToArgueReceiver using ChangeRoleToArgueReceiver

Appendix C: Persuasion Dialogue 344

Bridging the Specification Protocol Gap in Argumentation

ChangeRoleToreplyToWhyReceiver

Ltp,5.r, r,rCSLKB,IR,t,p,SCSL,S
retract4 Utps) » ract { 2) » end

Message I Role
(r,rCSL, KB, R t,p,5C5L,5)

(r,rCSLIKB, IR t,p,sCSL,5)

(Lt,np.s.r) (r,rCSLrKB, replyToArgueSender t,np,sCSL,s)
argues P Receiveargue » ChangeRoleToReplyToArgueSender
M
lessage l—l T

Figure C.15: The replyToWhyReceivero CPN Subpage

[findPreInKB(skB,p) =true
andslso

findPrelnCS(sCELp)= false
andalso

find Op pPreInCS(sCSLp)=false]

(5,5C5L. KB, R, p1CSLT) ("concedetp,s.r)

(3:3ddPre mise ToCS(SCSLtp) . SKB, SR, prCSL)

[find PreInKB(=KB,p) =false
andalso

findPraln CS(aCSL p)= fales

nKB(sKB D)=false

an
fi nKB(sKB,p)=false |

n
——‘\ 5, 5C5LSKB, SR t.p,1C5L. 1 " by, p. 5]
gw L i b endenhy L apa0) why?

Rale

(5,5C5L.5KB, “re plyTo W hyRece ive r".t.p. CSL.r
! bl = g RoleTarep lyTo W hyRe ceiver

(s.sCSLsKB.sR.t.p.1C5Lr)
[findDefeatinkB(sk8,g=true |(55CSLsKB =R tp.rC5LT)
ferue] v

arelse
findDafa atInkB(sKB,p)=truu] i fin dDefe s Ink B(sKB,{) =true
then getDefeatFramKB(sKB,t)

's,5CSL sKB,sR t.p.rCSLr else getDefeatFramKB(skB nl "argue”,tnp, 5.1)
L LN - g : '!,.@_". cueh Comuienes) (7S
| E— Premis Message

remise

Figure C.16: The replyToArgueSendero CPN Subpage

output place; (2) sends retract message using retract4 output place and then

ends the dialogue using end output place.

Figure C.15 shows the replyToWhyReceiverpo role CPN subpage. This
subpage receives two messages (argue or retract) and generates responses
depending on some conditions. If it receives the retract message using
retract4 input place, it responses by ending the dialogue using end output
place. Otherwise, if it receives the argue message using argue5 input place, it
responses by changing its role to ReplyToArgueSender using

ChangeRoleToArgueSender.

Appendix C: Persuasion Dialogue 345

Bridging the Specification Protocol Gap in Argumentation

(r,rCSL KB, rRt,p,sC5L5)
w e
sl Role

(1rCSLrKB, rR.t.p.5C5Ls)

(1 rCSL kB, iR, p,5CSLs)

ChangeRoleToReplyToArgueReceiver
Rale

(r.rCSL rKB,rR.t,p,5CSLs)

Figure C.17: The replyToArgueReceiverp CPN Subpage

e Figure C.16 shows the replyToArgueSendero role CPN subpage. This
subpage sends three messages: (1) sends concede message using concede6
output place and then ends the dialogue using end output place; (2) sends why
message using why7 output place and changes its role to ReplyToWhyReceiver
using ChangeRoleToWhyReceiver output place; (3) sends argue message using
argue8 output place and changes its role to ReplyToArgueReceiver using

ChangeRoleToArgueReceiver output place;

e Figure C.17 shows the replyToArgueReceiverp role CPN subpage. This
subpage receives three messages (argue, why or concede) and generates
responses depending on some conditions. If it receives the concede message
using concede6 input place, it responses by ending the dialogue using end
output place. If it receives the why message using why7 input place, it
responses by changing its role to ReplyToWhySender using
ChangeRoleToWhySender. If it receives argue message using argue8 input
place, it responses by changing its role to ReplyToArgueSender using
ChangeRoleToArgueSender.

(3) One CPN superpage generated by the GenerateLCCProtocol tool. This page
connects the eight CPN subpages (claimSenderp, claimReceivero,

replyToclaimSendero, replyToclaimReceiverp, replyToWhySenderp,

Appendix C: Persuasion Dialogue 346

Bridging the Specification Protocol Gap in Argumentation

1"The cg ! "The car s safe"

OpenDialogue (1

TOPIC

claimReceiver

Message

[claimRecefver

changeRoleToReplyToClaim Sender

Role

changeRoleToReplyToClaimReceiver

|

Yy
47 teplyToClaimSender end
replyToClaimReceiver Message e
re?\¥ToCIa\mSender A
replyToClaimReceiver

Message

Ch

geRoleToreplyToWhySender

ChangeRole’

Role Role

4’@

Message

freplyToWhySender

P! ¥

Message replyToWhyReceiver

ChangeRoleToReplyToArg

ChangeRoleToReplyToArgueSender

4‘
essage

RepljToArg " ¢ ReplyToAg
Message
ReplyToArgueReceive . ReplyToArgueSender

Message

Figure C.18: The protocol CPN Superpage

Appendix C: Persuasion Dialogue

347

Bridging the Specification Protocol Gap in Argumentation

Figure C.19: The State Space Graph

replyToWhyReceiverp, replyToArgueSenderp and replyToArgueReceiverp)
together and describes the interaction between these eight subpages. See Figure

C.18.

Step Two: Construction of State Space

The state space (shown in Figure C.19) for the CPN model of an LCC protocol for a
persuasion dialogue is generated using the SS tool palette in CPN Tools (see chapter 6,

section 6.2). Figure C.19 has ten nodes and nine arcs.

Step Three: Automated creation of DID properties files

In this step, the verification tool creates ten property files automatically:

(1) Possible Locutions file:

) PossibleLocutions - Notepad = | 5 ||
[File Edit Format View Help |
claim

claim

concede

why

why

retract

argue

argue

argue

In this example, Possible Locutions file contains the following set of permitted
messages: claim, concede, why, retract and argue. Please note that, this file is

connected with Reply Locutions file (see Reply Locutions file).

(2) Reply Locutions file:

" ReplyLocutions - Notepad = | B ||
[File Edit Format View Help |

lconcede
why

argue
retract

why
argue
concede

Appendix C: Persuasion Dialogue 348

Bridging the Specification Protocol Gap in Argumentation

In this example, Reply Locutions file contains three sets of legal reply
locutions: 1) concede and why (legal reply to claim); 2) argue and retract
(legal reply to why); 3) why, argue and concede (legal reply to argue). Please
note that, this file is connected with Possible Locutions file where each line in
the Reply Locutions file represents the legal reply of the locution in the same
line in the Possible Locutions file (e.g. concede in the first line of the Reply
Locutions file represents the legal reply of the claim locution in the first line in

the Possible Locutions file) .

(3) Starting Locutions file:

| StartingLocutions - Notepad

[File Edit Format View Help
kc1aim

In this example, Starting Locutions file contains one message name claim which

is used to begin the persuasion dialogue.

(4) Intermediate Locutions file:

| IntermediateLocutions - Notepad

[File Edit Format View Help

fhy
argue

In this example, Intermediate Locutions tile contains two message names why

and argue which are used to remain in the dialogue.

(5) Termination Locutions file:

7 TerminationLocutions - Notepad ==
[File Edit Format View Help |

lconcede
retract

In this example, Termination Locutions file contains two message names

concede and retract which are used to terminate the persuasion dialogue;

(6) Termination Locutions Effect CS and Effective CS files:

"] TerminationlocutionEffectCS - Notepad S| B ||
[File Edit Format View Help |

concede
concede
retract

Appendix C: Persuasion Dialogue 349

Bridging the Specification Protocol Gap in Argumentation

"] EffectiveCS - Notepad

[File Edit Format View Help
Add Topic

Add Topic and Promises
subtract Topic|

In this example, the tool creates two connected files Termination Locutions
Effect CS which contains the termination messages (concede after claim,
concede after argue and retract after why) and Effective CS Locutions file which
contains the effect of the termination message to the sender commitment store
CS (concede after claim =Add Topic to CS, concede after argue= Add Topic and

Promises to CS and retract after why= subtract Topic from CS).

(7) Player Types file:

mj PlayerTypes - Notepad @E&J

|F|Ie Edit Format View Help ‘

pponent
proponent

In this example, Player Types file contains opponent (the audience) and
proponent (the speaker who is responsible for opening the persuasion dialogue)

as player types.

(8) Player IDs file:

j PlayerIDs - Notepad @E&J
‘FME Edit Format View Help ‘

p

p

In this example, Player IDs file contains O and P as player IDs. Please note that,
this file is connected with Player Types file (O represents the ID of the opponent
and P represent the ID of the proponent).

(9) Termination Role Names file:

"] TerminationRoleNames - Notepad =S
[Fle Edit Format View Help |

replyToClaimReceiver
replyToArgueReceiver
replyTowhyReceiver

Appendix C: Persuasion Dialogue 350

Bridging the Specification Protocol Gap in Argumentation

PN Tools (Version 2911, September 2010)

[F=3EcR ~~]

use (agpath~"ASKCTL/ASKCTLIoadsr.sml");

fun getTNedaInf() =
lat

valins = Taxtl.op. I

fun loop ins = cas: O.inputLina(ins) of
SOME lina == lina i loop ins
INONE ==11;

in
loop ins bafars Textlo dossln ins

* (Noda = baol) -= A
® {are > bool) == A

ReplyToArguasandar

ReplyToArgusRacaiver

(ms,{sIndex+3), Index)

bstr]
raata’ View e
| - fun extractStringtndex ((ms § string), (s1: strina),(s2 : s
2| m| el|e=> et
CNEWES val sindex= indexOfSubstring(s1,ms,strsize,s,2)
Sl = | g
v

in
IndaxOfSubstrinals2,ms,strsiza sindax+3,1)
and;

fun gatDIDMassage(fullM, msiza , i) =
if) the

wEsgiE
ord vai ft = () uni

» Tool box Binder 0
» Halp caimSer TurnTakingBetweenAgentsProp JenceProp TerminationOF, logueProp claimRece Prot Dial :0peninaProperty ir
F Cptions Vol FORACL UNTLL 1A ™ & = A
v LCCProtacol-the car is safa(simplg CalculateOceGraph(); e e =
e Calculatascearaph(); o BXIST MOBAL A * A A
Tim

Figure C.20: Dialogue Opening Property Page

In this example, Termination Role Names file contains three role

replyToClaimReceiver, replyToArgueReceiver and replyToWhyReceiver

names

. Please

note that, this file is connected with Termination Locutions Effect CS file

(replyToClaimReceiver role receives concede after claim, replyToArgueReceiver

role receives concede after argue and replyToWhyReceiver role receives retract

after why).

Step Four: Applying Verification Model

The generated CPN model from step two has five properties CPN pages (Dialogue

opening property, Termination of a dialogue property, Turn taking between agents

property, Message sequencing property and Recursive message property). To verify

these five basic properties the following actions were perfomred:

(1) Open the CPN model by using the CPN Tool;

(2) Select the Evaluates a Text as ML Code(ML!) icon in the simulation tool palette

and apply it to these five basic properties pages (Figures C.20, C.21, C.22, C.23

and C.24 show the properties pages after applying the ML/ to them);

(3) Select the Show Verification Result from the verification menu bar in the

GenerateLCCProtocol tool to show the verification result (Figure C.25 shows

the verification result of the five basic properties).

Appendix C: Persuasion Dialogue

351

Bridging the Specification Protocol Gap in Argumentation

s CPN Tools (Version 2011, September 2010)

» Tool box Binder 0
» Halp
* Option:
¥ val openDialogue: t_BE(ACTORE(1))
'LC;::?“S‘D‘ the caris safersimpld /2 SR 0 0 SN A L A i)
Time: 0 val proponent=extractstring(openbialoguelnf, "s=",",",oDInfSize n)

*»Options val prolndex=extractStringIndex(opentialoguelnf, "s 00! A0)

» Histary Val GppnanE- Xt actSEING(opanCIalogUAINT, nre'', " obinfiza praindex)

» Daclarations Bindsl

wMonitor: aply val checkSR =checkSenderReceiver(mes sage,sender receiver,opponent,propanent,

wDrekrenl

langth rasta
Taxt

val langthofRast=

in

\f Uan\ithDFREst) 4) andalso (esContant= true) andalso (chackSR=trua) thel
(rest4, DIDT Seution BIDSandar, DIDTL affectcs, BIDRUIaN|

ReplyToArgueSender
ReplyToArguaRacaivar
claimSender

TurnTakingastwasnagant

ss

(s{ ealse
if (csContant) andalso (checkSR) then
“Proparty 1(Termination) is Satisfied"

alse

MassagaSequancePrapan if_not {csContant) then
TerminationGFabialogusf “Property 1(Termination) is not Satisfiad: There is a prablem in the agent's commit

DialogusOpeningProperty o
RacursiveMassagaPropar "Pruperty ATermination) is not Satisfied: There is a problem in the who terminatet ¥

=nd;
FindTerminationNode("Propearty 1 bet");

val THodas= gatTNodelnf("Proparty1 bt

val DIDTerminationLocution = ["conceda”, "retract"];
val BIDSender =["oppanent, “proponent”];

Create View Net
[.

val DIDTLeffactCs | cm'\cnd onceds
val

val DIDEffactCs

Rap plyToAN
= ["add mpm“ 7AGd Topic and Promasiasts

aplyToWhyRi
et Tope,

val proparti= ChackProparti(THNodas,GIDTarminationlocution, DIDS e nder,DIDTLaf
val Property 1Result =Text10 openut("Proparty 1Result.tet");
TXHIO OULALE (Property LResUIt properti);

None Taxtlo,closeOut Proparty 1Rasult ;

claimSer TurnTakinggstwasnAgentsProf MassageSequancaProp TerminationOF abialogugProperty iRecaiver Scol igusGpaningProp RecursiveMessagaProparty

(= E=n =]

Val EXIST_MODAL | A* A-> A
val FORALL_MODAL i A ™ A -> A
val POS : A-> A
val
val
val ALONG : A& > A
val aval_noda ; A -> Noda -> bool
val eval_arc : A -> Arc -> bool
val it uni
val FindTarminationiode = fn 1 string -» unic
al gatThodelnf a > string list
val H'\dexc}fsul:s:w'\g =+ Sring * sting * in * int = int - int
val extractString string ¥ string * string * int ¥ int > string
val extractStringIndex = fn i string * string * string * nt * int > in
val FindIncs = in 1 string * string * int * int * int > bo

al chacl ntantof
U string * string * string * string * string * it * int * it * string list
* string Tt % tring ot
> b
va\:hackﬁendErREcawar n
e T "b * "a list * string list -> bool

val ChackProparts =
Ftring I8t ¢ string list * string list * string list * string list *
string st

wal it = ﬂ
2l THodas =
[0\n"

(\" [y
Tha ke s

¢ string list
val BIDTerminationLocution
val DIDSendar = ["opponsant

i) el Ut
string
etract’]

i

['ReplyToClaimRaceiver",
i string lis
VAl DID LS = ["Add topic',
i string lis
al propert] = "Property L{Termination) is Satisfied" : string

ReplyToArgueRecaive

RaplyTowhyReceiver

‘Add Topic and Promasies”,"subtract Topic"]

va\ PropertylResult = - : TextlO.outstream
alit=() unit
ValiE= 8 bnie

Figure C.21: Termination of a Dialogue Property Page

U CRN Taols (Version 29,11, September 2010)

» Tool box Binde:
» Help
T
¥LCCProtacol-the car s safa(simpla
Stepi 0 Gk valle= 0
Tma; 0 opzning A ASKCTL
e e fun ChackPropert2AllTH((THod=s))= at:
» History ot 2 () val NF i ing § fniode
» Daclarations Binde : strin
¥ Manitars Reaply val T= substrinathd Thodas,0,2)
¥ Protacol val rast = t| TNods

val rast2 = tl rest

claimRacaivar
val resta = tl rasta

replyToWhyReceiver val allarcs = ArcsInPath(1,TNAUmber)

Proparty 2(TurnTaking) Is not Satisfied R Re e e

and;

o
aimser TumTak\HgEe:Weer\Ageh:sWopeﬂ:y wossanUsncerroparty inatonoraplalogusPron calmRacslvar beol igUsOpeningRron RecurslvaMassagaProparty
Fals
A

* (Arc -> baal) -

replyTaClaimSandar LU val OR: A% A -5 A
raplyToClaimRacaivar valrestis tirasty val EXIST_NEXT : A -> A
raplyTawhySandar val TNRumber= valof(Int fromstring(Th)) e T e

ReplvTAAraacandar val mymberofares = length allares ::} FURAL&TUNEL A A > ﬁ
Rey
I E“ Sirm JEISELIRS FriTaking = chackProparty2rarti(allarcs) val EXIST_MODAL 1 A™ A > A
Tt | »o H | h |» n val FORALL_MODAL 4 " & > A
ngthofRest = length rest4 val POS : A ->
o 3 . VA i A A
MassagasaguanceaPropen T | EV A
TarminationOFabialogue® if (lengthofRest >= 4) andalso (turnTaking= true) thy ¥al ALONG : A -> A
DialogueOpeningProperty ChackPropart2AllTN(rest4) a} EVE} HDdeA L Nadeh->‘|:co\
RecursivaMessagaProper alsa val eval_arc: A > Arc >
4 ‘t“"‘m'"“' e Val FindfarminationNods - : sting oo unie
"Proparty 2 Turr!Takm is Satisfiad" & = H &
T B ”) val getTNodeTnf = fn 0 <> strin
val indexOfSubstring = fﬂ H t\ ing * string * int *int * int = int

= = f i string - string

(VPN The car is safel” \'it has an aribag\"LL(\"The car is safa\”,\‘wt #]

Ulk = "Proparty 2(Tur

Creats View et val gatagento = fn : string * 9.8 e o
- L 2 bt val chackProparty2partl = fn 1 Arc list ->
= - 5| 2 FindTarminationNoda(“Property2.bt); e Gl
val TNodes= getTNadeInf("Proparty2 txt"); valit=():
&, g CFTEET B val Thadh
“13 " — val TurnTakingResult= ChackPropartzAlTN(TNOdes);
o ply’ TD‘AI gueRacei ”a\ RE:EWECDHEBU
1 val Praparty2Rasult =Textio.openoutl" Froparty2ral Pmmm"‘“d 1 1 OOV [\ The
—R TextlO.output (Property2Result TurnTakingResult); ‘Isﬂ"‘:"?.r“j‘m o
TextlO.clasaOut Proparty 2Rasult ; pralfel DD(T‘W R:ESU‘t =
val it = () ¢ unit
Nona

o e ES

oo = A

string * string * string * Int * int - string
*strina " string * int * int -> int

n 1 string
string * int * int - string

= fn string list - string

The car is #",
Uit has!,

ade’
o Bata\ e s e S Tbee

Satisfie

aking)
TextlO outstream

Figure C.22: Turn Taking between Agents Property Page

arAux

val resti= t Thodas PR R
val N1 =hd rast1
PO M [B | mu e yalavarare
TERTY TEIYREESTVEr W sl Val [Firtafy hana e
ReplyToArauasandar (5 valn2 = he resta
ReplyToArgueRecaiver (%
daimsan
TurnTakingBetweanAgent val arcMoval=st_BE(ArcToBE(N1)) - -
s5 val arcMova1§iza = String.siza(arcMavall 52} S?;ﬁs;fnﬁi,.ﬂg@‘s;g‘;_ f,f“””
MassageSequancaProper 2
TerminationGFaDialogusq val massagaMi= axtractstrino(arcMavai, ", arct |
DialogusOpaningPropart
e | val arcMovaz=st_BE(ATCTOBE(N2))
val arcMovazsiza = String siza(arcMavaz) Vel gt
val index2 = indexOfSubstrina(”l=",ar cMD\lEE;a\'cMDVE
val m2 = indaxz.arcMovaz,ard
val massagaM2=changEmptyMassaaa(indax2,m2, rag “SSI'SSE'E;E
Craata’ View Net Ll
[£ = getArc(indesa, rests,rast3)
3 2zl | o= vl Temathoteast < Tanath ast
b =1 b b
val ms= DIDMassagas (DIDPGSM,DIDREAM, massagan
—3 in
it (Ragt - rest2) andalea (sngthafrest = 5) andalsq o Q\";W‘;’,E:,’?,j'f;’j;"ﬁ'_
chackMessages (Rest,OIDPosM,DIDREPM) vaile =G
Nona als al
¥ {Raat = rasca) andalso (Janathofiast == 3) andalsd
1 ehackMassages (Rest,BIDP osk,DIDRe

o CPN Tools (Version 29.11, September 2010) E=SE=)
» Tool box inda
> Halp P TurnTakingBetweanAgentsProf Messagesaquensepmgemy v\nat\unﬂFaDla\uguaPrup beol igueOpeningPrap Reeul party
* Options i al OR : >
¥ LCCProtocol-tha car is safe(simplg R | EX!ST NEXT A e
tap: val Ft = A
e) V3 ERTeT TR A R A
e end; val FORALL_UNTIL ;A A > A
» Options [t
» History VAl EXIST MODAL | A ®
| » Daciarations Binds| Vel FoRaT MobaL Ta T &8 A
ML) g | {un chackMassagss (THodes DIDPOSM DIBREPM)= alnasl o
at

valEV A > A
val ALONG © A = A

A > Noda <> bool
i A > Arc > boal

N ¢ string -> unit

strin *ink * ink * int > int
: string * string * swna it * int 2 string
= fn ¢ string. *int - it

Wk Sring * Ave et = string

£ v,'a o> bool
a*int > i

SRR i o string list R
a ns: e * int - al

Tt e VS it = e
ch e Eenna st S st et 1 baol

string hs: % s\:m'\n list > string

Ficlaim® | claim" concada’,why","why",ratract","srgus", "argus" "argua"]

argue” retract”, " why" "argue” "concade"

Proparty 3(Mas:
TaxtlO outstra a

age Sequence) is Satisfied" | string

Figure C.23:Message Sequencing Property Page

Appendix C: Persuasion Dialogue

352

Bridging the Specification Protocol Gap in Argumentation

s CPN Taols (Version 29,11, September 2010)

ReplyToArguesender
ReplyToArgusRacsivar
claimsandaer

TurnTakingBetwesnagent

EE

(s

MassagesaquancePropar
TerminationOFabialoguef
DialogusOp=ninaProparty
RecursiveMaessagePropert

Creata View Net
% =%
Wy | [

e

==

val arcMovelSiza = String size(arcMove1)

val Opaninomassage= extractStrinalarcaval,

val chackopaningBM = findElementinTheList (D1DR

val checkTerminationM = chackallTeminatedMessal

in
If (not (chackopaningDm
“Property S(Recursive) is Satisfiad

alsa
“Property S(Recursive) is not Satisfisd"

and;

val DIDRacursivaMassages =gatThodaelnf{"Recurs) va\ chﬂcW\Tem\natﬂdMsssaus n

FindTarminationNeda(" Proparty5.txt");

val TNodes= gatThadelnf('Propertys txt');

andalso (nat (checkTar

» Tool box Bindar
* Halp Claimsar TumT a ¢ BT i PIop dlaimiacs Prat DialogueOp=nNGProp RecursivaMassageproparty
» Options - | val aval_node : A -> Node > bo
vLCCPratacal-the car is safe(simple alse val aval_arc: A > ar = boal
if (chackTarminationM) then Land
true al it = () 1 unit
Tima: 0 apel'\nm AsKCTL
» Options aro taty
» History false va\ F 1 string * (Node > bool) -> A
» Daclarations Binda) val AF ; string * (arc -> baol) -> A
¥Manitors Reply and; val T+ A
- Brataral val FF
fun Cl P IDR&cu L, Thod val NOT ;A -
Aux lat 3l AND | A% A > A
OR : A™ A
R AL VAl BST NEXT (A - A
val arcMoval=st_BE(AcToBE(2)) val FORALL MEXT: 4> A
TPl TaWRyRECalVar | EXIST_UNTIL 147 8-> &

Node -» boal
- bool

val eval_node

= () unit

Val FindTarminationiode = fn : string -> unit

al getTNodelnf = i : string -» string list

val IndexofsUbstring = f & strng * string * it i * k- it

val extractString = fn : string * string * string * “= string
fh ; string * string * sering = The = IAE w2 Int

Q% int *

fs
VAl AndElamentnTnaList = fn 1
it a P (g lst > boal
a list * strin

raue

al ChackPropartys =
5| GIBRacUrE v amassa
val o= O unit
i et =

tri
o= P,

i string list

“concada\"rCs
has an aribag\"],[
LI The car is safey

eplyTo ArguaRacaivar Racaivacanceds 1
Protocol'en: 1 N'The car is safe’
RENEY e car 12 2afo\ 'R as B Srlbagt

]

val prop. c P IDRecu ol
g |is
val PropartySRasult =TextI0.openout(” pmpmyssva\ D‘DD rtys erty S(Recursive) is Satisfied” : string
al Pr pen:ysResuI:- - | TAXLIO.outstre.
TaxtlO.output (PropartySRasult .propartys); V al i unit
nond el

Text10,closaOut PropartySRasult ;

g; FileViewer: C:/Users/moon/Desktop/j/JavatoProlog/BasicPrologClient/src/basicprologelient/LEC Diagrams/LCCT.inst [= (===

le Dialogue Interaction Diagram LCC Model checking

DID of Persuasion Dialogue for 2 Agents

The turn Taking between agents

anent 1

£» Model Checking Result

B3|

CPH File |UF|\JUEVE|DPI’D‘UQ\Ea‘SiEPfEﬂD"f\

CC Diagrams\CPNLCCFile Epn‘ Show Result

Model Checking Result

argy

Termination of a Dialogue Property is Satisfied

Froperty is Sa(l‘sﬂed

Dialogue Opening Froperty is Satisfied

[Turn Taking Between Agents F‘rDDEﬂV is Satisfied

I s

Termination Locution (used to end a dialogue) |

Figure C.25: The Verification Result of the Five Basic Properties

Appendix C: Persuasion Dialogue

353

Bridging the Specification Protocol Gap in Argumentation

Appendix D

CPN Functions

This appendix presents basic CPN functions code, where™:
ins_new = Inserts an item into the list

mem = return true if it is able to find an item in the list
union = Inserts more than one item into the list

rmall = removes an item from the list

CPN Functions

(14) Add an argument 't' to a commitment store list 'sCSL'":

fun addTopicToCS(sCSL,t) = ins_new sCSL t;

(15) Add a premise of an argument 't' to a commitment store list 'sCSL":

fun addPremiseToCS(sCSL,t,p) =
if (mem sCSL t) then ins_new sCSL p

else union sCSL [t,p] ;

(16) Add a defeat of a premise or an argument to a commitment store list 'sCSL":

fun addDefeatToCS(sCSL,def) = ins_new sCSL def;

3 http://cpntools.org/documentation/concepts/colors/declarations/colorsets/implementation_of list_fu

Appendix D: CPN Functions 354

Bridging the Specification Protocol Gap in Argumentation

(17) Subtract an argument 't' from a commitment store list 'sCSL":

fun subtractFromCS(sCSL,t) =rmall t sCSL;

(18) Find an argument 't' in a commitment store list 'sCSL":

fun findTopicInCS(sCSL,t) = mem sCSL t;

(19) Find a premise of an argument 't' in a commitment store list 'sCSL":

fun findPreInCS(sCSL,t) = mem sCSL t;

(20) Find an argument in a knowledge base list '"KBlist' where 'f' represents a fact

and 'pre' represents a premise:

fun findTopicInKB((f,pre)::KBlist,t)=
if (f=1)) then true
else if (length KBlist >=1) then findTopicInKB(KBlist,t)

else false;

(21) Find a premise of an argument in a knowledge base list 'KBlist' where 'f

represents a fact and 'pre' represents a premise:

fun findPreInKB((f,pre)::KBlist,t)=
if (f=t) then true
else if (length KBlist >=1) then findPremiseInKB(KBlist,t)

else false;

(22) Find a defeat of a premise or an argument in a knowledge base list 'KBlist'

where 'f' represents a fact and 'def' represents a defeat of a premise "pre':

Appendix D: CPN Functions 355

Bridging the Specification Protocol Gap in Argumentation

fun findDefeatInKB((f,def)::KBlist,t)=
if (substring(f,0,3)="not") andalso (substring(f,4,(String.size t))= t)
then true
else if (length KBlist >=1) then findDefeatinKB(KBlist,t)

else false;

(23) Find the opposite of an argument 't' in commitment store list 'sSCSL":

fun findOppTopicInCS(sCSL,t)}=mem sCSL ("not ""t);

(24) Find the opposite of the premise 'p' of an argument 't' in commitment store list

'sCSL":

fun findOppPreInCS(sCSL,p)=mem sCSL ("not ""p);

(25) Return (get) the premise of an argument 't' from a knowledge base list 'KBlist'

where 'f' represents a fact and 'pre' represents a premise:

fun getPremiseFromKB((f,pre)::KBlist,t)=
if (f=t) then 1 pre

else getPremiseFromKB(KBlist,t);

(26) Return (get) the defeat of an argument 't' from a knowledge base list 'KBlist'

where 'f' represents a fact and 'def' represents a defeat of a premise "pre':

fun getDefeatFromKB((f,def)::KBlist,t)=
if (substring(f,0,3)="not") andalso (substring(f,4,(String.size t))=t)

then 1 'def

else getDefeatFromKB(KBlist,t);

Appendix D: CPN Functions 356

Bridging the Specification Protocol Gap in Argumentation

Appendix E

GenerateLCCProtocol Tool Graphical User Interface

This appendix explains how the user can intercat with the GenerateLCCProtocol
tool. It begins by a description of the graphical user interface for synthesis of
concrete protocols screens in Section E.1. A description of the graphical user
interface for verification model screens is represented in Section E.2. This appendix

does not provide details of the underlying tool implementation.

E.1 Graphical User Interface for Synthesis of Concrete
Protocols (Part One)

E.1.1 Dialogue Interaction Diagram

Generate LCC Protocol Tool Main Screen

A screenshot of the GenerateL CCProtocol tool main screen is shown in Figure E.1:

(1) The first button is used to open the DID library screen (as shown in Figure E.2).
The DID library screen displays a set of current DID diagrams.

(2) The second button is used to create a new DID diagram screen (as shown in

Figure E.3).

Dialogue Interaction Diagram Library Screen

Chapter 4 describes the DID language in detail. DID is used to specify the dialogue

game protocol in an abstract way. It provides mechanisms to represent interaction

Appendix E: GenerateLCCProtocol Tool Graphical User Interface

357

Bridging the Specification Protocol Gap in Argumentation

£ Generate LCC Protocol Tool
File

[E=m|Em]]

Exit

Dialogue Interaction Diagram Library

Create new Dialogue Interaction Diagram

Figure E.1: Generate LCC Protocol Tool Main Screen

> DID Library
File

Mame

Dialigue Interaction Diagram Library

File Location

[E=N | EoH ==

Properties

DID Persuasion Dialogus

NDID Persuasion Dialogue
DID Inguiry Dialogue
DID Deliberation Dialogue

Has graphical representation
Has graphical ntation
Has no graph ntation

Has no graphical representation

Figure E.2: Dialogue Interaction Diagram Library Screen

& DID language
File

Sender Coditions

|

Lacuion e g

Locution name

Sender Information

Role name
Role |

Receiver Information|

Role name []

Role I

Role ID

Role ID

Level Number |1

‘ - ‘ ‘ Add Locution to level ‘

Image

DID Properties

Load Dialogue Interaction Diagram L..

[E=S(ECR/EC

Receiver Coditions

|

Save DID

Figure E.3: Create New Dialogue Interaction Diagram Screen

Appendix E: GenerateLCCProtocol Tool Graphical User Interface

358

Bridging the Specification Protocol Gap in Argumentation

protocol rules between two agents, by allowing the designer to specify the permitted

messages (moves or locutions) and their relationship to each other.

A screenshot of the DID library screen is shown in Figure E.2. It contains all current

DID diagram information:

(1) Name: the name of the DID file has no formal meaning. However, expressive
DID names have a positive impact on the human reader; consequently, providing

a name that the human reader can understand is important.

(2) File location: specifies the DID file directory name. It specifies a unique location

in the user file system.
(3) Diagram: specifies whether or not the DID has a graphical representation.

(4) Properties: specifies the DID properties which could indicate the number of
players and the dialogue game rules. These properties of the DID file have no

formal meaning. These properties enable a better understanding of the DID file.

The four pieces of information presented above are provided by the designer during

the creation process of DID diagram (see next section for more information).

Open DID

To open an existing DID diagram, the user needs to double click on the DID file

name:

(1) If the DID file has a graphical representation, a simple graphical representation
version of the DID will be displayed. For example, if the user double clicks the
DID persuasion dialogue (in Figure E.2), the DID of a persuasion dialogue
screen will open with a simple graphical representation version of the DID
diagram reply structure rules (as shown in Figure E.4). Figure 4.3 in chapter 4

illustrates the full DID graphical representation of this persuasion dialogue.

Appendix E: GenerateLCCProtocol Tool Graphical User Interface

359

Bridging the Specification Protocol Gap in Argumentation

& DID of Persuasion Dialogue for 2 Agents
File Dialogue Interaction Diagram LCC Model checking

DID of Persuasion Dialogue for 2 Agents

=e e

The turn Taking between agents

| Agent 1
| I

Agent 2

I
| |
I
[[!
| whna¥) | | arque(Def) | | concede(X) | Agent 2

Intermediate Locution

Il

Starting Locution (used to open a dialogue)

Termination Locution {used to end a dialogue)

Figure E.4: Simple DID Graphical Representation of a Persuasion Dialogue

File LCC Model checking

& FileViewer: C:\Users\moon\ Desktop\j\JavatoProlog)\BasicPrologClient\src\basicprologelient\L CC Diagrams\DIDinquary.bt

= e

[1]1)]

1.
Locution(Starting, apeny) null],

Sender-Infarmation[OpenSender (KBpp, C3pp, ©3p A8, 1), [0pp indinkBiy KBPFY and emplyCECERF) and addToCuenStorely 051 and addToOpe
Raceiver-Infarmation[OpenReciver (KBp, CSp, C3pp, &5, v)100].

1
Locution[Recursive assertF i opend],
Sender-InfarmationrenhTaOpenSender iy KB, C3p, Caap, A5) D0 indinQSa) and notFindinCSF,Cap) and findi(F) KBp CSpp) and asaToC5(F,
Receiver-Information[repkToOpenReciver (y, KBpp, CEpp, ©8p,08) 10pp).
s
LacutionRecursive, apen(a),apeniyll,

Sender-Information[rephToCpenSender (v KBp, C8p, CEpn, G8)0p isRelationshing y) and indin Q08 1) and indinkB(g KB) and notFindin@&(03,
Receiver-InformationrephToOpenReciver iy, KBpp, CSpp, C8p,A5) Dpp).

2.
Locution[Recursive, closedy), openiyl,

Sender-Infarmation]rephToOpenSender iy KBp, C3p, CApp, 5] IDp findinOpenCialoguedy, OpenD) indindpenDialoguefy Openl) and allSubDialog
Raceiver-InformationrephTaOpenReciver iy KBpp, CSpp, ©5p,05) 0pop).

3
Locution[Recursive, close(y) openi)], E

3

(| I | [

-

Figure E.5: DID Formal Representation of an Inquiry Dialogue

Appendix E: GenerateLCCProtocol Tool Graphical User Interface

360

Bridging the Specification Protocol Gap in Argumentation

(2) If the DID file has no graphical representation, a formal representation version
of the DID will be displayed. For example, if the user double clicks the DID
inquiry dialogue(in Figure 7.2), the DID of an inquiry dialogue screen will open
with a formal representation version of the DID diagram reply structure rules (as
shown in Figure E.5). Figure 4.9 in chapter 4 illustrates the DID graphical

representation of this inquiry dialogue.

Simple Version of DID Graphical Representation Screen

This screen displays a simple version of the DID graphical representation of a
dialogue game (as shown in Figure E.4). This graph represents the permitted
messages (moves or locutions) and their relationship to each other and the turn-
taking between agents. However, to make it simple for a human reader, both pre-

conditions and post-conditions for messages are not shown in this screen.

The lower part of this screen shows the messages (locutions) types (see section 4.2.1

in chapter 4 for more detail).
The upper part of this screen shows four menu bars:

(1) File menu bar: this menu has an exist button which it is used to exist the

GenerateLCCProtocol tool;

File
Exist

(2) Dialogue Interaction Diagram menu bar: this menu shows the DID button which

is used to display the full DID diagram (as shown in Figure E.6).

Dialogue Interaction Diagram

Show DID

(3) LCC menu bar: this menu has three buttons:

LCC
Generate LCC Protocol

Show LCC Protocol

Appendix E: GenerateLCCProtocol Tool Graphical User Interface 361

Bridging the Specification Protocol Gap in Argumentation

1 & Persuasion Dialogue Interaction Diagram E=REn |
File How to read this diagram Add New items to diagram LCC Model checking
5] Starting Loctution Tun Taking
claim(T)
AddTopiCTaCS(T.CAP) ulaimBender? Hcla\mRecei\terO
3F,CEP,CE0,TIDD 'BO,USOCSP, IDP Agent 1
IDP D0 z
[Intermediate Locution / fndTapicinke (T KEO) 5] Termination Loctuion
whyT) nofFindTopicinCS (7,050} concede(T)
{' nofFindTopiclnie (T a0y | TERToClaimSender0 HrepIyTuC\a\mRecewerP replyTaClaim3ender0 \|emvTuC\aimRecewerP
KBOCSOCSRTIDP KEP C37.080T D0 nofndOpTopenCS TS0 o oo caPTIOF KBR.CSP GS0T/00 Agent2
notFindTopichCS (T,C50;
PGSR0 | po IoP addTopicToCET.C50) g IbP °
Intermediate Loctuion :: E Terminaiton Locuation -
argue(Pre) nFingPreiniB (T, KEO) retract{T)
Pre=fndFremise (T KEP C5F) renhTolthySenderP Hrep\yTuWhyReceiverO replyTolhySenderP Hrep\yTuWhyReceiverO
KEPCSPOSOTIDP KEO,CS0CSPTIDO findTopicinC&(T, G0} KBP.CSPCSOTIDP KBO,CS0,C5P.T,00 Agent 1
addPreToCS(T Pre,CSP
ULE o subbactFramCS(T, C50) IDR 1o z
£ Intermeiate Locutio : - 5 Itermediate Locution 1110 : (5] Termination Locutio
why(Pre) argue(Def) concede(T)
replyToArgueSenderd HreplyTuArgueReceivererP repliToArgueSendert HreplyTuArgueReceiuererF replyTaArgueSenderd Hrep\yTuArgueReceivererP Ayent2
KBO,C50CER, T, Pre|DP KBR,CEF, CEOT, Pre, IDO KBO,CBOCER, T, PreDP KBP CEF, CEOT, Pre, IDO KBO,C50CER, T, Pre,|DP KBP,CSP, CSOT, Pre, 1D0 Q
100 0P iy} OP Do 0P
titFindPrelnke (Pre KBO) Dief= finiDefeats (T,Pre,KBO, C50) findPrelnkE (Pre, KBO)
notFindPrainCs {Pre,C50) addDefaatsToCs (Def, C50) notFindPreinCs (Pre, C50)
notFindOppPreinCs (Not(Pre), C50)
addPraTaoCs (T Pre, 0501

Figure E.6: Full DID Graphical Representation of a Persuasion Dialogue
a) Generate LCC Protocol: used to generate an LCC protocol from a DID

diagram;
b) Show LCC Protocol: used to display the generated LCC protocol.

Section E.1.2 explains these three buttons in more detail.

(4) Verification Model menu bar: this menu has four buttons:

Verification Model
Agents KB
Open CPN File
Create CPN File

Verification Model Result

Appendix E: GenerateLCCProtocol Tool Graphical User Interface

362

Bridging the Specification Protocol Gap in Argumentation
a) Agents KB: used to get the agents Knolwldge Base (KB) from the user;

b) Create CPN File: used to create a CPN file from the generated LCC

protocol;
¢) Open CPN File: used to display the created CPN file;

d) Verification Model Result: used to display the verificaiton model result
of the five basic properties (Dialogue opening property, Termination of
a dialogue property, Turn taking between agents property, Message

sequencing property and Recursive message property).

Section E.2 explains these four buttons in more detail.

Full Version of DID Ghraphical Representation Screen

This screen desplays a full version of the DID graphical representation of a dialogue
game (as shown in Figure E.6). This graph represents the permitted messages (moves
or locutions) and their relationship to each other, the turn-taking between agents, pre-
conditions and post-conditions for the messages. Figure 4.3 in chapter 4 illustrates

the same DID graphical representation of the persuasion dialogue.
The upper part of this screen shows five menu bars:
(1) File menu bar (see above explanations of file menu);

(2) How to read this diagram: this menu has the DID button which is used to display
how to read DID screen (as shown in Figure E.7 (a) and (b)).

How to read this diagram

DID

How to read the DID screen (Figure E.7 (a) and (b)) has five tabs. If the user
selects a tab by clicking it, the tabbed panel displays the information

corresponding to the tab:

Appendix E: GenerateLCCProtocol Tool Graphical User Interface

363

Bridging the Specification Protocol Gap in Argumentation

How to read DID

E=HECE =5

wed to change | Meaning of varibale | Meaning of color | Locution type |

Locuation icon | Users are al

Recursive candition Fllifccowoniipelisises e
L
Recursive arguments | v ocution name
Sender Role name Receiver Role name
Sender Role arguments Receiver Role arguments 5
Sender Conditan Receiver Conditon
Sender ID Receiver ID

[% 1ocution icon is simaly a rectangle divided into three sections

[The topmost section contains the name ofthe [ocution (LOCULoNs agant protacol cancept)

The left hand section contains sender attributes (Role name, Role arguments, and Agent 109,

and the right hand section contains receiver attributes (Role name, Role arguments, and Agent 10)
TThe left hand section and the right hand section contain Sender and Receiver agents roles agent priw |
<]] []

Locution icon tab

s How to read DID.

v | Uk s are allowed (o changs | Mo

or v

rale | Moo

a of color | Locution tvoe |

by allovwed to ©

T vormmmion Lo
articmn nome: y

Role name
[reer are anowmnd 1o au now anr

Add new item to diagram
| Argument

Condition

Users are allowed to change Tab

sl How to read DID

[Locuation icon | Usors are allowed to chango | Meaning of varibals | Meaning of color | Loscution type |

Pey n D

varibale Meaning

(55 the domain of discou

cs

tions to which the pla srnrnitted in the discu

Pre

Dol claim |

P gue Interac

Diagram

I va—
varibate Meaning
Tanle [aisiogs topic

Acceptance [

ped the claim
Rejection v
MACeAgents
rMReiADENts [Mumber of agents that have reiected the ciaim
AgentGroup [Group of agents

the

[MurmB8rcf #gants thai nave accested the claim

Meaning of Variable Tab

Figure E.7 (a): How to Read DID

Appendix E: GenerateLCCProtocol Tool Graphical User Interface 364

Bridging the Specification Protocol Gap in Argumentation

£ How to read DID == ess]

(L ionicon | Users are allowed to change |” Meaning of varibale | Meaning of color | Locution type |

Tex field with the same color contain the same information all the time -
when user changes text field the text fleld with the same calor will chanoe =

Meaning of color tab

[Locuation icon | Users are allowed o change | Meaning of varibale | Moaning of color || Lacution pe |

(e to opan & dislogus)

[Starting Loctution

[1 mtermodiate Locution cean b usod to remain in the dislogs

Locution Types tab

Figure E.7 (b): How to Read DID
a) Locution icon tab: explains a locution icon (see section 4.2 in chapter 4 for

more details about the locution icon);

b) The users are allowed to change tab: it explains that the current user is allowed
to change the locution icon information and to add new arguments and

conditons;

c)Meaning of variables tab: displays a brief description of each variable

(argument) in the DID;

d)Meaning of color tab: the sender (or receiver) role name, arguments and agent

ID with the same colours have the same values and therefore the role

Appendix E: GenerateLCCProtocol Tool Graphical User Interface 365

Bridging the Specification Protocol Gap in Argumentation

information must be the same for all locutions (with the same colours) at the

same level since each level has one role. In other words, text fields with the

i
Argument L
) Add to all roles ® Add to specific roles
claimSender™ -
elect roles |claimReceivers
renhToClaimSender(i

Figure E.8: Add New Argument Subscreen

|
Locwion ot [=]
Roe ctamioceero |~
Condition addiT, 50

Figure E.9: Add New Condition Subscreen

same color contain the same information all the time. When the user changes

one text field, text fields with the same color will change;

e) Locution types tab: displays the three locution icon types (see section 4.2 in

chapter 4 for more detials about locution types).

(3) Add new item to diagram menu: this menu has two buttons:

Add new item to diagram

Argument

Condition

a) Argument: used to add a new argument to either a specific role or all roles.
When the user clicks on the argument button, a new subscreen appears (as
shown in Figure E.8). For example, if the user want to add an argument 'L’ to
'claimSenderP' role, he/she needs to write the argument name 'L' in the
argument text field, then select 'Add to specific roles', and then select the
'claimSenderP' role from roles list and finally click on the apply button which

adds the argument 'L' to the 'claimSenderP' role.

Appendix E: GenerateLCCProtocol Tool Graphical User Interface 366

Bridging the Specification Protocol Gap in Argumentation

b) Condition: used to add new conditions to a specific role. When the user clicks
on the condition button, a new subscreen appears (as shown in Figure E.9).
For example, if the user wants to add the conditon 'add(T,CSO)' to the
'claimReceiverO' role, he/she needs to select the locution name 'claim(T)'
from the locution list, then select the role name 'claimReceiverOQ' from the
roles list, and then write the new condition 'add(T,CSO)' in the condition text
field and finally click on the apply button which adds the condition
'add(T,CSO)' to the 'claimReceiverP' role.

(4) LCC menu bar (see above explanations of LCC menu);

(5) Verification Model menu bar (see above explanations of Verification Model

menu);

Textual Version of DID Screen

Unfortunately, some DID files have no graphical representation (see section 8.3 in
chapter 8 and chapter 9 for more details). However, all the DID specifications have a
textual representation. Figure E.5 illustrates an example of the DID formal
representation of an inquiry dialogue (Figure 4.9 in chapter 4 illustrates the DID
graphical representation of this inquiry dialogue). The user does not have to learn the
formal representaion of the DID, unless he needs to edit it (e.g. user needs to add

new condition to a specific locution icon).

1. Level number:
2. Locution[Locution Type,Locution, Structural rules],

3. Sender-Information[Role Name,Role arguments,Agent ID,Conditions],

4. Receiver-Information[Role Name,Role arguments,Agent ID,Conditions].

Figure E.10: DID Textual Representation

DID Textual Representaion

The DID textual representation describes each locution icon by using 4 lines (as

shown in Figure E.10):

Appendix E: GenerateLCCProtocol Tool Graphical User Interface 367

Bridging the Specification Protocol Gap in Argumentation

(1) Line 1: represents the DID level. The DID levels are ordered by number,

begining with level number 1.
(2) Line 2: represents the locution icon information where:

a) Locution Types: there are only three types of locutions: Starting,

Intermediate and Termination;

b) Locution name: represents the locution (message or move) name (e.g.

claim(T));

c¢) Structural rules: represents the previous locution (message or move) name.

Note that if the locution type is Starting, the Structural rules = null.

(3) Line 3: represents sender role information (sender role name, sender role

arguments, sender agent ID and sender role pre-conditions).

(4) Line 4: represents receiver role information (receiver role name, receiver role

arguments, receiver agent ID and receiver post-conditions).

Figure E.11 illustrates this with an example of a textual definition of claim locution

of a persuasion dialogue which is shown in Figure E.6:
(1) Line 1: represents DID level / (since claim is the first locution in the DID).
(2) Line 2: represents locution icon information where:

a) Locution Type = Starting;
b) Locution name = claim(T),
c¢) Structural rules = null (since Locution type= Starting).

(3) Line 3: represents the sender role information where:

a) Role name = claimSender;,
b) Role arguments = KBp, CSp, CSo, T,IDo;

c) Agent ID = IDp;

Appendix E: GenerateLCCProtocol Tool Graphical User Interface

368

Bridging the Specification Protocol Gap in Argumentation

2. Locution[Starting,claim(T),null],
3. Sender-Information[claimSenderp,(KBp, CSp, CSp, T,IDo),IDp,addTopicToCS(T,CSp)],

4. Receiver-Information[claimReceiverq,(KBq, CSo, CSp, IDp),IDo,].

Figure E.11: DID Textual Representation of Claim Locution

d) Sender conditions= addTopicToCS(T,CSp).

(4) Line 4: represents the receiver role information where

a) Role name = claimReceiver;
b) Role arguments = KBy, CSo, CSp, IDp;
c) Agent ID = IDy;

d) Receiver conditions = null.

Create Dialogue Interaction Diagram Screen

This screen allows the user to create new DID diagrams (as shown in Figure E.12) by
writing one locution icon information (locution type, locution structural rules
locution name, sender information, receiver information and locution level number)
at a time beginning from the locution in the top of the DID (see chapter 4). This
screen also allows the user to describe the DID diagram by writing some of its
properties in the properties text field as well as loads the DID image by clicking on
the 'Load DID image' (if there is an image or graphical representation for this

dialogue). Please note the following:

(1) Clicking on the 'Add locution to level' button adds the locution icon's to the DID

textual representation (see DID Textual Representaion section).

(2) Clicking on the 'Save DID' button saves the DID file and shows a dialog box
which asks the user if he/she would like to open the DID file (see Figure E.13).
The DID file textual representation screen will appear when the user click on

"Yes' button (see Figure E.5).

Appendix E: GenerateLCCProtocol Tool Graphical User Interface

369

Bridging the Specification Protocol Gap in Argumentation

Locution Name Locution Type= Starting Reply to locution
(structural rules)
N\ \ 7
Lo DD inguage ==k
| Fe
Sender locwimType Wemedde | |v| Repylo clam) -
information \

Feceier Codtin
- Receiver
Number \ information
Level Humber 1 v Add Locusion 10 level
[e DD Prpetes
Load DID's Lot e \
grapiCh /—
repr’esentiaon - DID
image description
(properties)

\

\

Locution Formal definition
(DID textual representation)

Figure E.12: Create New Dialogue Interaction Diagram Screen

Select an Option ===

El The DID file has been created, Would you like to open this file

| Yes || Ho ||Cance||

Figure E.13: Open DID File Dialog Box

E.1.2 Synthesising Concrete LCC Protocols from DID Specifications

Generate LCC Protocol

Show LCC Protocol

LCC

Appendix E: GenerateLCCProtocol Tool Graphical User Interface

370

Bridging the Specification Protocol Gap in Argumentation

From the LCC menu bar (the LCC menu bar appears on the simple DID graphical
representation screen, on the full DID graphical representation screen and also on the

DID formal representation screen) the user can:

(1) Generate concrete LCC protocols from the DID specifications automatically, by
clicking on the 'Generate LCC Protocol' button. Synthesise LCC protocols from
the DID specifications process by recursively applying the LCC-Argument
patterns. This process will be fully automatic (requiring no human assistance).
The LCC-Argument patterns and the automated synthesis process are exhibited
in chapter 5. When the user clicks on the 'Generate LCC Protocol' button (for
instance, in the simple DID graphical representation screen of a persuasion
dialogue in Figure E.4), the tool will generate the LCC protocol and the LCC file
dialog box will appear. The user has to click on the 'Yes' button to display the
generated LCC protocol (as shown in Figure E.14). Appendix C gives a detailed
description of how to synthesise a DID of a persuasion dialogue to an LCC
protocol by using LCC-Argument patterns. In the case of N-agent, the user
needs to select the DID for two agents, then select the divided group condition
and finally click on the 'Generate LCC Protocol' button (as shown in Figure

E.15).

(2) Display the generated LCC protocols by clicking on the 'Show LCC Protocol'
button. For example, if the user wants to see the generated LCC protocol of a
persuasion dialogue, he/she needs to click on the 'Show LCC Protocol' button
and then load the LCC persuasion dialogue file by clicking on the 'Load file'
button (as shown in Figure E.16);

E.2 A Graphical User Interface for Verification Model (Part
Two)

From the Verification Model menu bar (the Verification Model menu bar appears on:
the simple DID graphical representation screen, on the full DID graphical

representation screen and also on the DID formal representation screen) the user can

(see Figure E.17):

Appendix E: GenerateLCCProtocol Tool Graphical User Interface 371

Bridging the Specification Protocol Gap in Argumentation

& DID of Persuzsion Dialogue for 2 Agents EEIF
| File Dialogue Interaction Diagram LCC Model checking

DID of Persuasion Dialogue for 2 Agents The turn Taking between agents
claimi¥)
| hgent 1

| I
I
| I
"

| | | LCC file dialog
box

Agent 2

| why(X) | | argue(Def) | | concede(X) | Agent 2

LCC file =

Starting Locution used to open a dialogue)

The LCC file has been created

Intermediate Locution Would you like to open this file?

Termination Locution (used to end a dialogue)

UL

Simple DID Graphical Representation of a Persuasion Dialogue after
Clicking on Generate LCC Protocol Button

& FileViewer: C:\Users\moon'\Desktop!j\JavatoProlog\BasicPrologClient\src\ basicprologclient\LCC Diagrams\B.inst | = || = | [5£5]

LCC File

aiclaimSenderP{KBR CEP T 100, IDFY:=

claim(T) == afclaimReceiverO{KBO CEO DR IDO) = addToC (T, CEP)
hen

airephToClaimReceierP(KBRP CSP T,1D0) IDF).

[»

aitlaimReceiverO(KBO, CEO DR IDOY =

claim(Ty == aiclaimSenderP (KEP CSP, T DO DM
hen

afreplyToClaimSenderO(KBO CS0 T DR}, IDO). —

aireplToClaim3enderd(KBO,CE0 T IDF) |D0):=

concede(T) == ajreplToClaimReceiverPKER CSP TID0) D) «- (findinkB(T KEDQ) and notFindinCS{T 500 and notFindl
or

(whyi Ty == alreplyToClaimReceierP (KBP, CSP T IDOY, IDP) = { notFindinkB{T,KBC} and notFindinCS{T G500)

hen

airephToWhReceiverQKBO CE0, TIDP),IDON.

airephToClaimReceierP(KBR CEP T,1D0) IDF):=

concede(T) == aireplToClaimSender{kKBO CS0 T IDP),IDO)

or

(whyiTh == alreplyToClaimSenderO(KBO CS0 T 1D 10O}

(] Ii [»

[«]

Generated LCC Protocol

Figure E.14: Generate a Concrete LCC Protocol for the Persuasion
Dialogue

Appendix E: GenerateLCCProtocol Tool Graphical User Interface 372

Bridging the Specification Protocol Gap in Argumentation

g Reply Structure of Dialogue for N Agents

| Reply Structure of Dialogue for N Agents

lFiIe Dialogue Interaction Diagram LCC Model checking

=508)

The turn Taking between agents

proposal{Topic)

reject{Topic)

reachfgreement{Topic)

1
argueith{Topic)

Dialogue Interaction Diagram among 2 Agents

|DID Persuasion Dialogue ‘ v

Intermediate Locution (used ft

Recursive Termination Locuti

U

Recursive Starting Locution (YpiD Inquiry Dialogue

Divided Locution (used to divide agents into groups)

NDID Persuasion Dialogue

IDID Deliberation Dialogue
IDID Negotiation Dialogue

I“"" Persuasion Dialogue —

Proposal Agent

Other Agents

Proposal Agent

All Agents

Please select the divide group condition
) Proposal agent with Rejection Agents

® Accepting Agents with Rejection Agents

\

//

1- Select DID among two agents

2- Select the divide group condition

3- Click on Generate LCC Protocol

N

& Reply Structure of Dialogue for N Agents
File Dialogue Interaction Diagram |LCC | Model checking

Generate LCC Protocols

Reply Structure of Dialogue for

o=

The turn Taking between agents

Show LCC Protocols

|
TestLCC Protocols J
]

reject({Topic)

reachAgreement(Topic)

1
|
1
arguedith(Topic)

Dialogue Interaction Diagram among 2 Agents

‘DID Persuasion Dialogue

|"

Proposal Agent

Other Agents

Proposal Agent

All Agents

O

Recursive Starting Locution {used to open a dialog...
Intermediate Locution {used to rephy the proposal agent)
Recursive Termination Locution (used to end a dialogue)

Divided Locution (used to divide agents into groups)

Please select the divide group condition
() Proposal agent with Rejection Agents

{® Accepting Agents with Rejection Agents

Figure E.15: Generate a Concrete LCC Protocol for the Persuasion Dialogue

among N-agent

Appendix E: GenerateLCCProtocol Tool Graphical User Interface

373

Bridging the Specification Protocol Gap in Argumentation

o FileViewer Binst (===

LCC File [ioomDe sktopavatoP rolo i asit PrologClienns el 3sicprologelienn_CC DiagramsUg.inst Load file

[a(claimenderP (KEP GSP T DO IDF)= [<]
claim(T) == atelaimReceiverO(KB0,C50,IDP), DO} <-- addTaCS(T, C5P)
hen

lalrephyToClaimReceierP (KBP,GEP T DO} IDP).

la(claimReceiverO(KEO, CEOIDP)ID0) =
claim(T) <= atelaimSenderP (KBP,CSP.TIDC)IDP)
hen

alrepyToClaimSenderO(KBO,CS0,T,IDP),ID0) =

lalrephyToClaimSender 0 (KBO,GE0, TIDP)ID0) =
concede(T) == areplyToClaimReceiverP(KBP CSP T,ID03,1DF) < (indInkB(T,KBO) and notFindinCS(T,C50) and notFindl
jor

Cwb(Ty == alrephyToClaimReceiverP(KBP,CSP T IDOLIDP) <= (natFindinkB(T KBO) and notFindinCS(T,C50))

hen

lalrephyTolWhyReceivero(KBO,CE0, TIDP IDO).

lalreplyToC aimReceerP (KBR,CEP T,1D0) IDP):=
concede(T) <= alreplyToClaimSenderO(KBO,CS0,TIDP}IDO}

[4]

jor
(kT == alrephToClaimSenderO (KBO,C50,T,IDP),IDO)
L] I 1

Figure E.16: Show Generated LCC Protocols Screen

(1) Specify agents Knolwldge Base (KB) by clicking on the 'Agents KB' button (see
chapter 7).

(2) Create a CPN model (CPNXML) file from the generated LCC protocol and
create the DID properties files by click on the 'Create CPN File' button (see
chapter 7).

(3) Display the created CPN model file by click on the 'Open CPN File' button (see
chapter 7).

(4) Display the verificaiton model result of the five basic properties (Dialogue
opening property, Termination of a dialogue property, Turn taking between
agents property, Message sequencing property and Recursive message property)

by click on the 'Verificaiton Model Result' button (see chapter 7).

Appendix E: GenerateLCCProtocol Tool Graphical User Interface 374

Bridging the Specification Protocol Gap in Argumentation

Appendix F

Published Papers

The published papers of this research are:

(1) MAGHRABY ASHWAG, ROBERTSON DAVE, GRANDO ADELA and
ROVATSOS, MICHAEL. Automated Deployment of Argumentation Protocols.
In VERHEIl BART, SZEIDER STEFAN and WOLTRAN STEFAN,
Computational Models of Argument. Vienna, Austria IOS Press, 201.
http://homepages.inf.ed.ac.uk/mrovatso/papers/maghrabyetal-comma2012.pdf
http://homepages.inf.ed.ac.uk/s0961321/AshwagMagharby-PaperCOMMA.pdf

(2) MAGHRABY ASHWAG, ROBERTSON DAVE, GRANDO ADELA and
ROVATSOS, MICHAEL. Bridging the specification protocol gap in

argumentation. Argumentation in Multiagent Systems (ArgMAS), Valencia,

Spain, June 2012.

http://www.mit.edu/~irahwan/argmas/argmas12/

http://homepages.inf.ed.ac.uk/s096132 1/AshwagMagharby-PaperArgMAS.pdf
(3) MAGHRABY ASHWAG. Automatic Agent Protocol Generation from

Argumentation. 13th European Agent Systems Summer School (EASSS 2011),

Girona, Catalonia (Spain), July 2011.

http://eia.udg.edu/easss201 1/resources/docs/paper1.pdf

http://homepages.inf.ed.ac.uk/s0961321/AshwagMagharby-PaperEASSS.pdf
(4) MAGHRABY ASHWAG, ROBERTSON DAVE, GRANDO ADELA and

ROVATSOS, MICHAEL. Bridging the Specification-Protocol Gap in

Argumentation. 5th Saudi International Conference (SIC2011), The University
of Warwick, Coventry, June 2011.
http://homepages.inf.ed.ac.uk/s0961321/AshwagMaghaby-Paper2011.pdf

Appendix F: Published Papers 375

http://homepages.inf.ed.ac.uk/mrovatso/papers/maghrabyetal-comma2012.pdf
http://homepages.inf.ed.ac.uk/s0961321/AshwagMagharby-PaperCOMMA.pdf
http://www.mit.edu/~irahwan/argmas/argmas12/
http://homepages.inf.ed.ac.uk/s0961321/AshwagMagharby-PaperArgMAS.pdf
http://eia.udg.edu/easss2011/resources/docs/paper1.pdf
http://homepages.inf.ed.ac.uk/s0961321/AshwagMagharby-PaperEASSS.pdf
http://homepages.inf.ed.ac.uk/s0961321/AshwagMaghaby-Paper2011.pdf

Bridging the Specification Protocol Gap in Argumentation

Bibliography

[Aalst, 2005] AALST, WIL VAN DER. Pi Calculus Versus Petri Nets: Let Us Eat
Humble Pie Rather Than Further Inflate the Pi Hype. BPTrends, 3(5): May 2005:1-
11.

[Aalst and Stahl, 2011] AALST, Wil Van Van Der and STAHL, Christian. Modeling
Business Processes: A Petri Net-Oriented Approach. Cambridge, Mass./US,MIT
Press, 2011.

[Alexander et.al,1977] ALEXANDER, Christopher, ISHIKAWA Sara and
SILVERSTEIN Murray. A pattern language: towns, buildings, construction. New
York, Oxford University Press,1977.

[Amogud et.al.2000] AMOGUD, LEILA, PARSONS, SIMON and MAUDET,
NICOLAS. Arguments, dialogue, and negotiation. Journal of Artificial Intelligence
Research, (23):August 2000:338-342.

[Appleton,1998] APPLETON, BRAD. Patterns and Software: Essential Concepts
and Terminology. Object Magazine Online, 3(5):May 1998:20-25.

[Aridor and Lange, 1998] ARIDOR, YARIV and LANGE, DANNY. Agent Design
Patterns: Elements of Agent Application Design. AGENTS '98, In Proceedings of
the second international conference on Autonomous agents. New York, ACM Press,

1998.

[Atkinson et al., 2005] ATKINSON, KATIE, BENCH-CAPON, TREVOR and
MCBURNEY, PETER. A Dialogue Game Protocol for Multi-Agent Argument over
Proposals for Action. Autonomous Agents and Multi-Agent Systems, 11(2):2005:153—
171.

[Baeten,2005] BAETEN, J.C.M.. A Brief History of Process Algebra. Theoretical
Computer Science, 2-3(335):23 May 2005:131-146.

Bibliography 376

Bridging the Specification Protocol Gap in Argumentation

[Bauer et.al., 2001] BAUER, BERNHARD, MULLER, JORG and ODELL, JAMES.
Agent UML: A Formalism for Specifying Multiagent Interaction. Software
Engineering and Knowledge Engineering, (11): 2001: 91-103.

[Besana, 2009] BESANA, PAOLO. Comparison between choreography languages.
Edinburgh, The university of Edinburgh, 2009.

[Besana and Barker, 2009] BESANA, PAOLO and BARKER, ADAM. An
Executable Calculus for Service Choreography. In MEERSMAN ROBERT,
DILLON THARAM and HERRERO PILAR, On the Move to Meaningful Internet
Systems: OTM 2009. Confederated International Conferences, CooplS, DOA, IS, and
ODBASE 2009, Vilamoura, Portugal, Springer Berlin Heidelberg, 2009.

[Besnard and Hunter, 2008] BESNARD, Philippe and HUNTER, Anthony. Elements
of Argumentation. Cambridge, Massachusetts London, England, MIT Press, 2008.

[Billington et al., 2003] BILLINGTON, JONATHAN, CHRISTENSEN, SOREN,
HEE, KEES, KINDLER, EKKART, KUMMER, OLAF, PETRUCCI, LAURE,
POST, REINIER, STEHNO, CHRISTIAN and WEBER, MICHAEL. The Petri Net
Markup Language: Concepts, Technology, and Tools. In AALST WIL and BEST
EIKE, Applications and Theory of Petri Nets 2003. The Netherlands, 24th
International Conference, ICATPN 2003 Eindhoven, 2003.

[Black and Hunter, 2009] BLACK, ELIZABETH and HUNTER, ANTHONY. An
inquiry dialogue system. Autonomous Agents and Multi-Agent Systems,
2(19): 2009:10-1007.

[Black and Hunter, 2007] BLACK, ELIZABETH and HUNTER, ANTHONY. A
generative inquiry dialogue system. In Proceedings of the Sixth International
Conference on Autonomous Agents and Multi-Agent Systems (AAMAS 2007). New
York, ACM, 2007.

[Bowles et al., 1994] BOWLES, ANDREW, ROBERTSON, DAVE,
VASCONCELOS, WAMBERTO, VARGAS-VERA, MARIA, and BENTAL,

Bibliography 377

Bridging the Specification Protocol Gap in Argumentation

DIANA. Applying prolog programming techniques. International Journal of
Human-Computer Studies, 41(3):1994:329-350.

[Bowles, 1994] BOWLES, ANDREW. A4 ftechniques editor for Prolog novices.
Internal software report, available by the author, 1994.

[Bradfield and Stirling, 2006] BRADFIELD, JULIAN and STIRLING, COLIN.
Modal mu-calculi. In BLACKBURN, PATRICK, BENTHEM, JOHAN and
WOLTER, FRANK , The Handbook of Modal Logic. Oxford, Elsevier Science,
2006.

[Budinsky et.al., 1996] BUDINSKY, FRANK, FINNIE, MARILYN, YU, PATSY
and VLISSIDES, JOHN. Automatic Code Generation from Design Patterns. /BM
Systems Journal, 2(35):1996:151-171.

[Chesnevar et al.,2007] CHESNEVAR, CARLOS, MCGINNIS, JARRED,
SANJAY, MODGIL, IYAD, RAHWAN, CHRIS, REED, GUILLERMO, SIMARI,
MATTHEW, SOUTH, GERARD, VREESWIJK and WILLMOTT, STEVEN.
Towards an argument interchange format. The Knowledge Engineering Review,

4(21):2007:293-316.

[Deugo and Weiss, 19991 DEUGO, DWIGHT and WEISS, MICHAEL. A Case for
Mobile Agent Patterns. In PAPAIOANNOU TODD and MINAR NELSON, Mobile
Agents in the Context of Competition and Cooperation (MAC3) Workshop Notes.
Seattle, at Autonomous Agents'99, 1999.

[Dignum and Vreeswijk, 2003] DIGNUM, FRANK and VREESWIJK, GERARD.
Towards a test bed for multi-party dialogues. In DIGNUM FRANK, Advances in
Agent Communication. Melbourne, Australia, International Workshop on Agent

Communication Languages, 2003.

[Dijkman and Dumas, 2004] DIJKMAN, REMCO and DUMAS, MARLON.
Service-oriented Design: A Multi-viewpoint Approach. International Journal of

Cooperative Information Systems, 4(13): 2004:337-378.

Bibliography 378

Bridging the Specification Protocol Gap in Argumentation

[Dimopoulos et. al., 2005] DIMOPOULOS, YANNIS, KAKAS, ANTONIS and
MORAITIS, PAVLOS. Argumentation based Modelling of Embedded Agent
Dialogues. In PARSONS, SIMON, MAUDET, NICOLAS, MORAITIS, PAVLOS
and RAHWAN, IYAD, Argumentation in Multi-Agent Systems. Second International
Workshop, ArgMAS 2005 Utrecht, The Netherlands, Springer Berlin Heidelberg,
2005.

[Ding and Su, 2008] DING, YANLAN and SU, GUIPING. A Reduction method for
Verification of Security Protocol through CPN. In process of IEEE International
Conference on Networking, Sensing and Control. Sanya, China, IEEE, 2008.

[Doutre et. al.,2005] DOUTRE, SYLVIE, MCBURNEY, PETER, WOOLDRIDGE,
MICHAEL, and BARDEN, WILLIAM. Information-seeking agent dialogs with
permissions and arguments. Technical Report ULCS-05-010, Department of
computer science, Uinversity of Liverpool, Liverpool, UK. 2005,
www.csc.liv.ac.uk/research/techreports/tr2005/tr05010abs.html.

[Eemeren et al., 1987] EEMEREN, Frans, GROOTENDORST, Rob and KRUIGER,
Tjark. Handbook Argumentation Theory: A critical survey of classical backgrounds

and modern studies. Dordrecht, Foris Publications, 1987.

[Eunice, 2005] EUNICE, Marta. Model transformation support for the analysis of
large-scale systems. Texas Tech University Electronic Theses and Dissertations,

Master Thesis in Software Engineering, 2005.

[Floreani et al.,1996] FLOREANI, DANIEL, BILLINGTON, JONATHAN, and
DADEJ, AREK. Designing and Verifying a Communications Gateway Using
Coloured Petri Nets and Design/CPN. In BILLINGTON JONATHAN and REISIG
WOLFGANG, Application and Theory of Petri Nets 1996. Osaka, Japan, 17th
International Conference on Application and Theory of Petri Nets, 1996.

[Fox et.al, 2006] FOX, JOHN, GLASSPOOL, DAVID, MODGIL, SANJAY,
TOLCHINKSY, PANCHO and BLACK, LIZ. Towards a canonical framework for
designing agents to support healthcare organizations. In Proceedings of ECAI-06

Bibliography 379

Bridging the Specification Protocol Gap in Argumentation

Workshop on Agents Applied in HealthCare, 17th European Conference on Artificial
Intelligence. Italy, 2006.

[Gamma et.al, 1995] GAMMA, Erich, HELM, Richard, JOHNSON, Ralph, and
VLISSIDES, John. Design patterns: elements of reusable object-oriented software.
Canada, Addison Wesley, 1995.

[Goldfarb and Prescod, 2003] GOLDFARB, Charles and PRESCOD, Paul. XML
Handbook (5th Edition). Prentice Hall PTR, the University of Virginia, 2003.

[Gordon, 2008] GORDON, THOMAS. Constructing Legal Arguments with Rules in
the Legal Knowledge Interchange Format (LKIF). In CASANOVAS, POMPEU,
SARTOR GIOVANNI, CASELLAS, NURIA and RUBINO, ROSSELLA,
Computable Models of the Law. Berlin, Heidelberg, Springer-Verlag, 2008.

[Grivas, 2005] GRIVAS, Argyrios. A Structural Synthesis System for LCC Protocols.
PhD thesis, University of Edinburgh, 2005.

[Hamblin, 1970] HAMBLIN, Charles. Fallacies. London, Methuen young books,
1970.

[Hassan et.al., 2005] HASSAN, FADZIL, ROBERTSON, DAVE and WALTON,
CHRIS. Addressing Constraint Failures in Agent Interaction Protocol. In
Proceedings of the 8th Pacific Rim International Workshop on Multi-Agent Systems.
Kuala Lumpur, Malasia, 2005.

[Ito and Shintani, 1997] ITO, TAKAYUKI and SHINTANI, TORAMATSU. An
Agenda-scheduling System Based on Persuasion Among Agents. /n Proceedings of
the International Symposium on Information Systems and Technologies for Network

Society. World Scientific, 1997.

[lto and Shintani, 1996] ITO, TAKAYUKI and SHINTANI, TORAMATSU.
Persuasion among Agents: An Approach to Implementing a Group Decision Support
System Based on Multi-agent Negotiation. In Proceedings of the 5th International
Joint Conference on Artificial Intelligence. Morgan Kaufmann, 1996.

Bibliography 380

Bridging the Specification Protocol Gap in Argumentation

[Jensen and Kristensen, 2009] JENSEN, Kurt and KRISTENSEN, Lars. Coloured
Petri Nets Modelling and Validation of Concurrent Systems. Berlin, Springer Verlag,
2009.

[Jensen et al., 2007] JENSEN, KURT, KRISTENSEN, LARS, and WELLS, LISA.
Coloured Petri Nets and CPN Tools for modelling and validation of concurrent

systems. International Journal on Software Tools for Technology Transfer (STTT),
3(9): 2007:213-254.

[Jenson et al., 2006] Jensen, Kurt, Christensen, Soren and Kristensen, Lars, CPN
Tools State Space Manual, University of Aarhus, Department of computer science,

20006, retrieved 2013, http://cpntools.org/ media/documentation/manual.pdf.

[Jensen et al., 2002] Jensen, Kurt, Christensen, Soren and Kristensen, Lars, CPN
Tools State Space Manual, University of Aarhus, Department of computer science,

2002, retrieved 2013.

[Jensen, 1992] JENSEN, Kurt. Coloured Petri Nets. Basic Concepts, Analysis
Methods and Practical Use. Berlin, Springer Verlag, 1992.

[Jennings et al.,1998] JENNINGS, NICHOLAS, SYCARA, KATIA and
WOOLDRIDGE, MICHAEL. Roadmap of agent research and development. Journal
of Autonomous Agents and Multi- Agent Systems, 1(1):1998:7-38.

[Krauss,2008] KRAUSS, Alexander. Defining Recursive Functions in Isabelle/HOL,
2008, URL: http://isabelle.in.tum.de/doc/functions.pdf.

[Kristensen et. al., 1998] KRISTENSEN, LARS, SOREN, CHRISTENSEN, and
KURT, JENSEN. The Practioner’s Guide to Coloured Petri Nets. International
Journal on Software Tools for Technology Transfer, 2(2): 1998:98-132.

[Kirschenbaum at.al, 1989] KIRSCHENBAUM, MARC, LAKHOTIA, ARUN, and
STERLING, LEON. Skeletons and Techniques for Prolog Programming. Centre for
automation and Intelligent System Researches, Case Western Reserve University,

Technical Report, 1989.

Bibliography 381

Bridging the Specification Protocol Gap in Argumentation

[Lloyd, 1994] LLOYD, JOHN. Practical advantages of declarative programming. In
Joint Conference on Declarative Programming, GULP-PRODE'94, 1994.

[Luo et. al., 2001] LUO, XUDONG, MIAO CHUNYAN, JENNINGS NICHOLAS,
HE MINGHUA, SHEN ZHIQI, and ZHANG MINJIE. KEMNAD: A Knowledge
Engineering Methodology for Negotiating Agent Development. Computational
Intelligence, 1(28):2012:51-105.

[MANNA and WALDINGER, 1980] MANNA ZOHAR and WALDINGER
RICHARD. A Deductive Approach to Program Synthesis. ACM Transactions on
Programming Languages and Systems (TOPLAS), 1(2):1980:90-121.

[Maudet et al., 2007] MAUDET, NICOLAS, PARSONS, SIMON, and RAHWAN,
IYAD. Argumentation in multiagent system: context and recent developments. In
Proceedings of Argumentation in MultiAgent Systems (ARGMAS06). Japan,
Springer-Verlag, 2007.

[McBurney et.al., 2007] MCBURNEY, PETER, HITCHCOCK, DAVID, and
PARSONS, SIMON. The eightfold way of deliberation dialogues. International
Journal of Intelligent Systems, 1(22):2007: 95-132.

[McBurney and Parsons, 2003] MCBURNEY, PETER and PARSONS, SIMON.
Dialogue Game Protocols. In HUGET MARC-PHILIPPE, Communication in
Multiagent Systems. Germany, Springer Verlag,Berlin, 2003.

[Mcburney et. al., 2003] MCBURNEY, PETER, EIJK, ROGIER, PARSONS,
SIMON and AMGOUD, LEILA. A Dialogue-Game Protocol for Agent Purchase

Negotiations. Journal of Autonomous Agents and Multi-Agent Systems,
3(7):2003:235- 273.

[McBurney and Parsons, 2002] PETER, MCBURNEY and PARSONS, SIMON.
Games that agents play: A formal framework for dialogues between autonomous

agents. Journal of Logic, Language and Information, 3(11):2002:315-334.

[McBurney et.al., 2002] MCBURNEY, PETER, PARSONS, SIMON and
WOOLDRIDGE, MICHAEL. Desiderata for agent argumentation protocols. In

Bibliography 382

Bridging the Specification Protocol Gap in Argumentation

Proceedings of the first international joint conference on Autonomous agents and

multiagent systems part I AAMAS 02. New York, ACM, 2002.

[Milner e et al., 1997] MILNER, Robin, TOFTE, Mads, HARPER, Robert, and
MACQUEEN, David. The Definition of Standard ML. Cambridge, MA, USA, The
MIT Press, revised edition, 1997.

[Modgil and Amgoud, 2008] MODGIL, SANJAY and AMGOUD, LEILA. Agents
and Arguments. 10th European Agent Systems Summer School (EASSS 2008).
Portugal, New University of Lisbon, 2008.

[Modgil and McGinnis, 2007] MODGIL, SANJAY and MCGINNIS, JARRED.
Towards Characterising Argumentation Based Dialogue in the Argument
Interchange Format. In RAHWAN, IYAD, PARSONS, SIMON AND REED
CHRIS, Argumentation in Multi-Agent Systems. Honolulu, HI, USA, 2007.

[Murata, 1989] MURATA, TADAO. Petri nets: Properties, analysis and applications.
Proceedings of the IEEE, 4(77): 1989:541-580.

[Nielsen and Simpson, 2000] NIELSEN, MOGENS and SIMPSON, DAN.
Application and Theory of Petri Nets 2000. In Proceedings of 21st International

Conference on Application and Theory of Petri Nets, Aarhus, Denmark, Springer,

2000.

[Norman et al.,2004] NORMAN, TIMOTHY, CARBOGIM, DANIELA, KRABBE,
ERIK and WALTON, DOUGLAS. Argument and Multi-Agent Systems. In REED,
CHRIS and NORMAN, TIMOTHY, Argumentation Machines: New Frontiers in
Argument and Computation. Dordrecht, Kluwer Academic Publishers, 2004.

[Nwana et.al., 1996] NWANA H S, LEE L and JENNINGS N R. Co-ordination in
software agent systems. British Telecom Technical Journal, 4(14):1996: 79-88.

[Odell, 2002] ODELL, JAMES. Objects and Agents Compared. Journal of Object
Technology, 1(1):2002:41-53.

Bibliography 383

Bridging the Specification Protocol Gap in Argumentation

[Odifreddi and Cooper, 2012] ODIFREDDI, PIERGIORGIO and COOPER,
S.BARRY, Recursive Functions, The Stanford Encyclopedia of Philosophy, ZALTA
EDWARD, 2012, retrieved 2013,

http://plato.stanford.edu/archives/fall2012/entries/recursive-functions.

[O'Keefe,1990] O'KEEFE, Richard. The Craft of Prolog (Logic Programming).
Cambridge, MA, USA, The MIT Press,1990.

[Osman, 2007] OSMAN, NARDINE. 4 Contextualised Trust Model for Distributed
Open Systems. In ~ AKHGAR BABAK, ICCS 2007, Proceedings of the 15th

International Workshops on Conceptual Structures. London, Springer-Verlag, 2007.

[Osman et al., 2006] OSMAN, NARDINE, ROBERTSON, DAVID and
WALTON, CHRISTOPHER. Run-Time Model Checking of Interaction and Deontic
Models for MultiAgent Systems. In KLUSCH, MATTHIAS, ROVATSOS,
MICHAEL and PAYNE, TERRY, Cooperative Information Agents X: 10th
International Workshop. Edinburgh, UK, Springer, 2006.

[Parsons and McBurney, 2003] PARSONS, SIMON and MCBURNEY, PETER.
Argumentation-Based Communication between Agents. In HUGET, M.-P,
Communication in Multi-Agent Systems: Agent Communication Languages and
Conversation Policies, Lecture Notes in Artificial Intelligence 2650. Berlin,

Germany, Springer, 2003.

[Parsons et al., 2003] PARSONS, SIMON, WOOLDRIDGE, MICHAEL and
AMGOUD, LEILA. Properties and Complexity of Some Formal Inter-agent
Dialogues. Journal of Logic and Computation, (13):2003:347-376.

[Parsons et al., 1998] PARSONS, SIMON, SIERRA, CARLES and JENNINGS,
NICK. Agents that's reason and negotiate by arguing. Journal of logic and
computation 3(8):1998:261-292, 1998.

[Prakken, 2006] PRAKKEN, HENRY. Formal systems for persuasion dialogue. The
Knowledge Engineering Review, 2(21):2006,163-188.

Bibliography 384

Bridging the Specification Protocol Gap in Argumentation

[Paschke et.al, 2006] PASCHKE, ADRIAN, KISS, CHRISTINE and AL-HUNATY,
SAMER. NPL: Negotiation Pattern Language- A Design Pattern Language for
Decentralized (Agent) Coordination and Negotiation Protocols. In BANDA R, E-
Negotiation - An Introduction. ICFAI University Press, 2006.

[Prakken, 2005] PRAKKEN, HENRY. Coherence and flexibility in dialogue games
for argumentation. Journal of logic and computation, 6(15):2005:1009-1040.

[Prakken and Vreeswijk, 2002] PRAKKEN, HENRY and VREESWIJK GERARD.
Logics for defeasible argumentation. In GABBAY, DOV and GUNTHNER, F.,
Handbook of Philosophical Logic. Dordrecht, Kluwer Academic Publishers, 2002.

[Prakken, 2000] Prakken, Henry. On dialogue systems with speech acts, arguments,
and counterarguments. In OJEDA-ACIEGO, MANUEL, GUZMAN, INMA,
BREWKA, GERHARD and PEREIRA, LUIS, Logics in Artificial Intelligence.
Malaga, Spain, Springer Verlag, 2000.

[Rahwan and Moraitis, 2009] RAHWAN, Iyad and MORAITIS, Pavlos.
Argumentation in Multi-Agent Systems: Fifth International Workshop, ArgMAS
2008. Berlin, Germany, Springer-Verlag, 2009.

[Rahwan, 2006] RAHWAN IYAD. Guest Editorial: Argumentation in Multi-Agent
Systems. Autonomous Agents and Multiagent Systems, 2(11):2006:115-125.

[Reed et al., 2008] REED, CHRIS, DEVEREUX, JOSEPH, WELLS, SIMON and
ROWE ,GLENN. AIF+: Dialogue in the Argument Interchange Format. In
BESNARD, PHILIPPE, DOUTRE, SYLVIE and HUNTER, ANTHONY,
Computational Models of Argument. Toulouse, France, Proceedings of COMMA-
2008, I0S Press, 2008

[Reed et al, 2010] REED, CHRIS, WELLS, SIMON, BUDZYNSKA,
KATARZYNA and DEVEREU, JOSEPH. Building arguments with argumentation:
the role of illocutionary force in computational models of argument. In Proceedings

of the Third International Conference on Computational Models of Argument
(COMMA 2010). Amsterdam, The Netherlands, 10S Press, 2010.

Bibliography 385

Bridging the Specification Protocol Gap in Argumentation

[Reed, 1998] REED, CHRIS. Dialogue Frames in Agent Communication. In

DEMAZEAU, YVES, the Third International Conference on Multi-Agent Systems.
Washington, DC, USA, IEEE Computer Society Press, 1998.

[Robertson, 2004] ROBERTSON, DAVE. Multi-agent coordination as distributed
logic programming. In DEMOEN, BART and LIFSCHITZ, VLADIMIR, Logic

programming. Saint-Malo, France, 20™ International Conference, 2004.

[Robertson, 1991] ROBERTSON, DAVE. A simple prolog techniques editor for
novice users. In WIGGINS, GERAINT, MELLISH, CHRIS and DUNCAN, TIM,
3rd UK Annual Conference on Logic Programming. Berlin, Springer-Verlag, 1991.

[Sadri et. al., 20017 SADRI, FARIBA, TONI, FRANCESCA, and TORRONI
PAOLO. Logic Agents, Dialogues and Negotiation: An Abductive Approach. In
STATHIS, KOSTAS and SCHROEDER, MICHAEL, the Symposium on
Information Agents for E-Commerce AISB-01.York, United Kingdom, AISB, 2001.

[Sadri et. al., 2002] SADRI, FARIBA, TONI, FRANCESCA, and TORRONI,
PAOLO. Dialogues for negotiation: Agent varieties and dialogue sequences. In
MEYER, JOHN and TAMBE, MILIND, Intelligent Agents VIII, 8th International
Workshop on Agent Theories, Architectures, and Language (ATAL 2001). Seattle,
ATAL 2001 ,2002.

[Sagonas et al., 1994] SAGONAS, KONSTANTINOS, SWIFT, TERRANCE and
WARREN, DAVID. XSB as an efficient deductive database engine. In Proceedings
of the SIGMOD '94 Proceedings of the 1994 ACM SIGMOD international
conference on Management of data. New York, ACM Press, 1994.

[Sauvage, 2004] SAUVAGE, SYLVAIN. Design Patterns for Multiagent Systems
Design. In MICAI'04: Advances in Artificial Intelligence, Third Mexican

International Conference on Artificial Intelligence. Mexico, Springer-Verlag, 2004.

[Shin et. al., 2005] SHIN, MICHAEL, ALEXANDER, LEVIS and LEE,
WAGENHALS. Analyzing Dynamic Behavior of Large—Scale Systems through

Bibliography 386

Bridging the Specification Protocol Gap in Argumentation

Model Transformation. The International Journal of Software Engineering and

Knowledge Engineering (IJSEKE), 1(15):2005:35-60.

[Shin et. al., 2003] SHIN, MICHAEL, ALEXANDER, LEVIS, LEE, WAGENHALS
and DAESIK, KIM. Mapping of UML-based System Model to Design/CPN Model

for System Model Evaluation. In Proceedings of the Workshop on Compositional
Verification of UML’03. San Francisco, CA, 2003.

[Suriadi et al.,2009] SURIADI, SURIADI, YANG, CHUN, SMITH, JASON and
FOO, ERNEST. Modeling and Verification of Privacy Enhancing Security Protocols.
In BREITMAN KARIN and CAVALCANTI, ANA, Formal Methods and Software
Engineering, 11th International Conference on Formal Engineering Methods

ICFEM. Janeiro, Brazi, ICFEM, 2009.

[Sycara, 1989] SYCARA, KATIA. Argumentaion: planning other agents' paln. /n
Proceeding of the 11th international joint conference on Artificial intelligence. San

Francisco, CA, USA, Morgan Kaufmann Publishers,1989.

[Tang and Parsons, 2006] TANG, YUQING and PARSONSL, SIMON.
Argumentation-Based Multi-agent Dialogues for Deliberation. In PARSONS,
SIMON, MAUDET, NICOLAS, MORAITIS, PAVLOS and RAHWAN, IYAD, The

Second international conference on Argumentation in Multi-Agent Systems (ArgMAS

2005). Heidelberg, Springer, 2006.

[Taylor and Wray, 2004] TAYLOR, GLENN and WRAY, ROBERT. Behavior
Design Patterns: Engineering Human Behavior Models. In Proceedings of the 13th
Conference on Behavior Representation in Modeling and Simulation Conference

(BRIMS). Arlington, Virginia, Curran Associates, 2004.

[Tolksdorf ,1998] TOLKSDORF ROBERT. Coordination Patterns of Mobile
Information Agents. In KLUSCH, MATTHIAS and WEIB, GERHARD, Cooperative
Information Agents II. Heidelberg, Germany, Springer-Verlag, 1998.

Bibliography 387

Bridging the Specification Protocol Gap in Argumentation

[Walton, 1998] WALTON, Douglas. The New Dialectic: Conversational Contexts of
Argument. Canada, University of Toronto Press, Scholarly Publishing Division,

1998.

[Walton and Krabbe, 1995] WALTON, Douglas and KRABBE, Erik. Commitment
in Dialogue: Basic concept of interpersonal reasoning. Albany, NY, USA, State
University of New York Press, 1995.

[Walton, 1990] WALTON, DOUGLAS. What Is Reasoning? What Is An
Argument?. The Journal philosophy, (87):1990: 399-419.

[Westergaard and Kristense, 2009] WESTERGAARD, MICHAEL AND
KRISTENSEN, LARS.The access/CPN Framework: a Tool for Interacting with the
CPN Tools Simulator*. In FRANCESCHINIS, GIULIANA and WOLF, KARSTEN,
the 30th International Conference on Applications and Theory of Petri Nets (Petri
Nets 2009). Heidelberg, Springer-Verlag, 2009.

[Westergaard and Verbeek, 2002] WESTERGAARD, MICHAEL AND VERBEEK
H.M.W, CPN Tools, Eindhoven University of Technology, 2002, retrieved 2013,

http://cpntools.org/.

[Willmott et al., 2006] WILLMOTT, STEVEN, VREESWIJK, GERARD,
CHESNEVAR, CARLOS, SOUTH, MATTHEW, MCGINNIS, JARRED,
MODGIL, SANJAY, RAHWAN IYAD, REED CHRIS AND SIMARI,
GUILLERMO. Towards an Argument Interchange Format for Multi-Agent Systems.
In MAUDET, NICOLAS, PARSONS, SIMON and RAHWAN IYAD,
Argumentation in Multi-Agent Systems, the 3™ International Workshop on

Argumentation in Multi-Agent Systems (ArgMAS2006). Japan, Springer, 2006.

[Ullman, 1998] ULLMAN, Jeffrey. Elements of ML Programming. Englewood Cliffs
Prentice-Hall, 1998.

Bibliography 388

http://cpntools.org/

