
Enacting a Decentralised Workflow

Management System on a Multi-agent Platform

Li Guo

Doctor of Philosophy

Artificial Intelligence Applications Institute

School of Informatics

University of Edinburgh

2006

1

Abstract

This thesis presents sets of technologies for enacting multi-agent based decentralised

workflow systems. Its purpose is to tackle some of the existing problems in the con-

ventional workflow research from the system architectural and engineering point of

view. Some of the problems addressed at the beginning of this thesis have affected

the wide deployment of workflow management system in an open environment (inter-

net). This thesis argues that most of these problems are caused by the huge conceptual

gap and design rationale between high level application requirements and low level

system design/implementation. Specifically, it is argued that the conventional system

architecture of workflow management system (client-server) could be replaced by a

multi-agent based platform which is more open, collaborative and can better reflect

workflow’s distributed features in the open environment.

Combining existing workflow design rationale and multi-agent computing technol-

ogy, a multi-agent based decentralised workflow approach is proposed in this thesis.

The architecture of the intended system removes both the centralised data storage and

the centralised workflow engine from the system. To achieve this goal, approaches

that bridge the gap between business process modelling and multi-agent interaction

protocol production are proposed using three different techniques (namely functional

properties based specifications verification, syntax based language mapping and inter-

pretation based communication) according to the different types of business process

models used. Based on such approaches, the mechanisms for decentralised process

execution are explored. Moreover, our system is also able to be extended to support

incompletely/particially specified processes in a distributed manner. The approach for

handling such incomplete/particially specified processes at run-time are presented in

this thesis

The main contributions of this research is to provide approaches for enabling de-

centralised workflow systems in an open environment based on a multi-agent platform

without changing the conventional workflow design rationale and with maximum use

of existing process models and tools.

2

Acknowledgements

I sincerely express my deepest gratitude to my supervisor, Dr. Dave Robertson and Dr.

Yun-Huh Chen-Burger, for their seasoned and valuable supervision and continuous

encouragement throughout the course of this work, and for their careful reading and

appraisal of drafts of this thesis. Without their consistent support, I would not have

been able to complete my research and this manuscript.

I thank the University of Edinburgh and the School of Informatics for offering

me full research facilities throughout my doctoral program. I also thank the Centre

for Intelligent Systems and their Applications of School of Informatics for research

publication funding support and for providing me with financial support to attend con-

ferences.

My thanks also go to staff members, research students and research assistants at

SSP and CISA for their help, suggestions, friendship and encouragement, in partic-

ular, Adam Barker, Paolo Besana, and Jarred McGinnis in Office 4.15. Last but not

least, I am deeply grateful to my parents for their love, understanding, patience, en-

couragement, sacrifice and help.

3

Declaration

I declare that this thesis was composed by myself, that the work contained herein is

my own except where explicitly stated otherwise in the text, and that this work has not

been submitted for any other degree or professional qualification except as specified.

(Li Guo)

Table of Contents

1 Introduction 12

1.1 Introduction to Workflow Management 12

1.2 Key Issues of This Thesis . 14

1.3 Overview of This Thesis . 16

2 Literature Review and Problem Analysis 18

2.1 Research Problems Analysis . 18

2.2 Conventional distributed workflow approaches 22

2.2.1 METUFlow . 22

2.2.2 ADEPT . 23

2.2.3 Web service based approaches 23

2.2.4 Discussion . 25

2.3 Workflow approaches based on multi-agent/peer-to-peer platforms . . 25

2.3.1 Little-Jil . 25

2.3.2 PeCo . 26

2.3.3 An architecture based on WWPD and WWP 27

2.3.4 SwinDeW . 27

2.3.5 Discussion . 28

2.4 Research related to incomplete process support 29

2.4.1 WASA . 29

2.4.2 WORKWARE . 29

2.4.3 Pockets of Flexibility . 30

2.4.4 Discussion . 30

2.5 Requirement Analysis . 31

2.6 Summary . 35

4

TABLE OF CONTENTS 5

3 Using High Level Formal BPMs For MAS Development 36

3.1 Process Model Based MAS Interaction Protocol Modelling Framework 37

3.1.1 How our framework works for IP’s modelling task? 38

3.2 High level Process Model . 39

3.3 MAS Interaction Protocol . 40

3.4 System Modeller . 42

3.5 Property Checking Model . 43

3.6 Formal Representations: FR1 and FR2 44

3.6.1 Deriving representation 1 (FR1) from the process model . . . 45

3.6.2 Deriving formal representation 2 (FR2) from the property check-

ing model . 48

3.7 Performing Property Checking . 49

3.7.1 Issues for role checking . 49

3.7.2 Temporal order checking . 49

3.8 Generating a MAS Interaction Protocol (LCC) From a SPPC Model . 52

3.9 A Simple Case Study . 59

3.10 Prototype Implementations . 61

3.10.1 SPPC modeller . 62

3.10.2 Verifier . 63

3.10.3 LCC protocol generator . 64

3.11 Discussion . 64

3.12 Summary . 65

4 Using Executable Formal BPMs For MAS Development Via Language

Mapping 66

4.1 Background Knowledge Of BPEL4WS 67

4.2 From BPEL4WS Based Conventional Workflow System to LCC Based

Multi-agent Platform . 71

4.2.1 Problem Analysis . 71

4.2.2 Why choose language mapping? 73

4.2.3 Performing language mapping from BPEL4WS to SPPC . . . 74

4.3 A Simple Case Study . 87

4.4 Summary . 90

TABLE OF CONTENTS 6

5 A Novel Approach of Using Executable Formal BPMs For MAS Develop-

ment 91

5.1 Agent Coordination Using LCC Protocol and

BPEL4WS Specification . 91

5.2 Interpreting BPEL4WS specification Using LCC protocol 94

5.2.1 Interpreting BPEL4WS Message Passing Activities Using LCC

Protocol . 97

5.3 A Simple Example . 104

5.4 Agent Design . 105

5.5 Prototype Implementation . 110

5.5.1 JXTA P2P framework . 110

5.5.2 Overall prototype framework 111

5.5.3 Implementation of Key System Components 113

5.6 Discussion . 118

5.7 Summary . 119

6 Extending Our System For Incomplete Process Support 120

6.1 Causes of Incomplete Processes . 120

6.2 Problem Analysis . 122

6.3 Categories Of Incomplete Activities 123

6.4 Incomplete Activity Instantiation . 125

6.4.1 Completing activity properties 127

6.4.2 Instantiation of Controlled Incomplete Composite Activities . 128

6.4.3 Instantiation of Open Incomplete Composite Activities 131

6.5 Summary . 137

7 Experimental Evaluations 138

7.1 Case Study 1: Student Registration Process 138

7.1.1 Experimental evaluation of interpretation based approach . . . 141

7.2 Case Study 2: Shipping Service Process 144

7.2.1 Experimental evaluation of language mapping based approach 144

7.3 Case Study 3: Health Care Process 146

7.4 Summary . 148

8 Discussion 149

8.1 Discussion of the Advantages of This Research 149

TABLE OF CONTENTS 7

8.2 Discussion on the Tradeoffs of the Proposed Approach 151

8.3 Discussion on Suitable Application Domains of MAS Based Workflow

Management System . 152

9 Conclusions and Future Work 154

9.1 Summary of This Thesis . 154

9.2 Contributions of This Thesis . 157

9.3 Future Work . 158

A Algorithm Description Language 160

B Representing BPEL4WS Model in Plain Text 161

C Prolog Definitions For All the Constraints Used in LCC Interpreter 163

C.1 Constraints Used For Rolea(receiver(Role), ID) 163

C.2 Constraints Used For Rolea(interpreter(...), ID) 164

C.3 Constraints Used For Rolea(receive(...), ID) 165

C.4 Constraints Used For Rolea(reply(...), ID) 166

C.5 Constraints Used For Rolea(invoke(...), ID) 167

C.6 Constraints Used For Rolea(assign(...), ID) 168

C.7 Constraints Used For Rolea(throw(...), ID) 171

C.8 Constraints Used For Rolea(sequence(...), ID) 172

C.9 Constraints Used For Rolea(switch(...), ID) 173

D Formal Representations Used For Evaluation 174

D.1 Student Registration Process Described by BPEL4WS 174

D.2 Re-written Student Registration Process Described by BPEL4WS . . 176

D.3 Shipping Service Process Described by BPEL4WS 178

D.4 LCC Protocol Generated for Shipping Service Process 180

D.5 Health Care Process Described by Extended BPEL4WS 181

D.5.1 Initial incomplete health care process model 181

D.5.2 A possible complete health care process instance 182

E Publications List 183

Bibliography 185

List of Figures

1.1 Conventional system architecture for business workflows 15

1.2 Multi-agent based system architecture for business workflows 16

2.1 From conventional workflow architecture to multi-agent architecture . 32

2.2 Three conceptual layers based framework 33

3.1 Bridging high level formal BPMs to IPs 36

3.2 BPM based interaction protocol modelling framework 38

3.3 Rules for rewriting complex linear temporal logic clauses 47

3.4 Basic algorithm for property checking 52

3.5 Algorithm for pre-processing a SPPC model 55

3.6 Inserting connect message for different SPPC structure 56

3.7 Algorithm For pre-processing all the loops defined in a SPPC model . 57

3.8 Algorithm for deriving a LCC protocol from a SPPC model 58

3.9 Sales order printing process . 59

3.10 AUML model for sales order printing process 60

3.11 Business process model based MAS protocol IDE 62

3.12 XML representation of a SPPC Model 63

3.13 Verification of a SPPC model . 64

3.14 LCC protocol generator . 64

4.1 From executable formal BPMs to IPs 66

4.2 Executable loan approval process. 69

4.3 The components of a typical conventional workflow server 71

4.4 Connecting workflow systems and multi-agent systems via language

mapping . 72

4.5 Correspondence between LCC protocol and conventional workflow

server’s components . 72

8

LIST OF FIGURES 9

4.6 Algorithm for deriving a SPPC model from a BPEL4WS< sequence>

activity . 80

4.7 Algorithm for deriving a SPPC model from a BPEL4WS< switch>

activity . 81

4.8 Diagrammatical representation of a< case> in < switch> 81

4.9 Processed diagrammatical representation of the< case> 82

4.10 Algorithm for deriving a SPPC model from a BPEL4WS< f low >

activity . 84

4.11 Diagrammatical representation of a SPPC loop 84

4.12 Diagrammatical representation of a< while> activity 85

4.13 Diagrammatical representation of a SPPC model that is equivalent to

the< while> activity in Figure 4.12 85

4.14 Algorithm for deriving a SPPC model from a BPEL4WS< while >

activity . 87

4.15 Stock lookup process . 88

5.1 The correspondence between the components of the conventional work-

flow server and LCC . 93

5.2 The infrastructure of our generic MAS platform 93

5.3 Algorithm for converting a< f low > activity to< sequence> 101

5.4 Diagrammatic representation of< f low > activity 102

5.5 Agent’s coordination for performing the illustrate example. 105

5.6 The essential components of our message package 106

5.7 The internal structure of an agent . 106

5.8 The components of agent’s Transition layer 107

5.9 The components of agent’s communication layer 107

5.10 The components of agent’s application layer 109

5.11 Overview framework of prototype 112

5.12 Interface for browsing, joining and quitting existing interaction groups 114

5.13 Interface for selecting application role 115

5.14 Interface for browsing existing agents in a Group 115

5.15 Implementation of the components at agent transition Layer 117

5.16 Interface for initialising variables . 118

5.17 Interface for tracking agent’s messages’ passing 118

6.1 The healthy care process . 121

LIST OF FIGURES 10

6.2 The bind of instantiation activity and its associated activity 126

6.3 The healthy care process . 128

6.4 A framework for incomplete activity instantiation 129

6.5 A framework for incomplete activity instantiation 135

7.1 Student registration process . 140

7.2 Virtual organisational structure of student registration process 141

7.3 Substitute of original student registration process deployed on our system142

7.4 The Shipping service process . 144

7.5 The healthy care process . 146

7.6 A possible complete healthy care process instance 147

List of Tables

3.1 Basic Syntaxes of Linear Temporal Logic 45

3.2 Representing link notations with linear temporal logic 46

3.3 Representing SPPC link notations with linear temporal logic 48

3.4 Functional Properties of Primary Activities in Sales Order Printing

Process . 59

5.1 Translations from BPEL4WS activities to LCC messages 98

11

Chapter 1

Introduction

This thesis addresses the limitations of conventional workflow management systems

based on the dominant client-server distributed system architecture. The research re-

ported in this thesis develops a new framework and coordination technologies for a

decentralised workflow systems based on a multi-agent platform, rather than a con-

ventional client-server based distributed system architecture[AWS02]. An innovative

workflow management system development approach based on a multi-agent/peer-to-

peer architecture, is presented in this thesis. A system prototype implementation based

on Sun Microsystems JXTA[JXT] is developed for demonstrating purposes. Moreover,

the corresponding system mechanisms to support complete and incomplete processes

are designed.

The background, motivations and key issues of this research are introduced in this

chapter. First, an introduction to workflow management is given in Section 1.1. Section

1.2 then addresses the key issues of this research. At last, Section 1.3 presents an

structure overview of this thesis.

1.1 Introduction to Workflow Management

At the heart of any organisations is a more-or-less formalised set of processes, which

reflects the way in organisations coordinate and organise work activities, information

and knowledge to produce products or to provide services [LL02]. Typical processes’

examples are credit card application processing process, student registration process

and so on, for example. Support for processes has become crucial to the success

of the organisation as a whole [JBR99]. Over the past years of process support re-

search, paradigms have changed from (hard-wired) office automation systems to work-

12

Chapter 1. Introduction 13

flow management systems. With the success use of internet, Workflow Management

(WfM), as an enabling technology for Business Process Management (BPM), is widely

used by different organisations and becoming an important part of them.

A workflow represents the operational/functional features of a underlying process

of an organisation. It reflects the order of activities and the performers (roles) of them;

the information flow that is used to support all the activities defined within the process;

and the monitoring and reporting mechanisms that measure and control them[Yan00].

A workflow is formally defined as ”the automation of a business process, in whole or

part, during which documents, information or tasks are passed from one participant to

another for action, according to a set of procedural rules to achieve, or contribute to,

an overall business goal”[Coa99]. Although workflow may be constructed manually,

in real life, most workflows are better constructed using a computational system to

support the process automation. Such computer based systems, which also are called

Workflow Management Systems (WfMSs), are designed to improve the effectiveness

and efficiencies of the underlying processes by supporting the automation of the fol-

lowing aspects of the workflow [Coa99]:

• performing work in a proper sequence.

• providing sufficient access to the resources required by the individual work per-

formers, and

• monitoring all aspects of the processes’ execution.

To achieve these, a workflow management system ”consists of software components to

store and interpret process definitions, create and manage workflow instances as they

are executed, and control their interaction with workflow participants and applications”

[Coa99]. At the highest level, all workflow management systems may be classified as

providing support in two functional categories[Yan00]:

• the design-time functions, considered with defining and representing the work-

flow process and its constituent tasks, and data storage issues, and

• the executing-time functions, concerned with creating and managing the work-

flow instances in an operational environment.

Currently, workflow management systems have undoubtedly become the kernel

of organisations, as they are capable of integrating various kinds of resources, such

as heterogeneous systems, existing applications, human beings, and so on [Moh98,

Chapter 1. Introduction 14

Sch99]. It is observed that the proper use of workflow management systems can help

to make procedures more efficient, to reduce costs and flow times, and to increase the

quality of service and productivity.

From the point of views of both research and practical areas, workflow manage-

ment has been one of the most important areas of interest since its appearing. Many

theoretical approaches and research prototypes have been presented and also lots of

contributions have been published [DGS95, JB96, FCP96, Moh97, vdAvH02, Fis02,

DGCIS95]. A huge number of commercial workflow management products are avail-

able, such as ActionWorkflow (Action Technologies Inc., http://www.actiontech.com),

FlowMark (IBM, http://www.ibm.com), InConcert (InConcert Inc.,

http://www.inconcertsw.com), METEOR (Infocosm Inc., http://www.infocosm.com),

Visual WorkFlo (FileNet, http://www.filenet.com), and so on[Yan02b].

1.2 Key Issues of This Thesis

Although workflow research and practice is quite mature, some problems are still

recognised. The state-of-the art in workflow management has been determined by

the functionality provided in workflow systems so far[GAM97]. Problems like system

performance, reliability, scalability, system openness and incomplete process support

are not considered enough in the development of existing workflow systems [DGS95,

AS96, JGM98, Yan02b]. Therefore, workflow systems often suffer from deficiencies

in these areas, such as bad system performance, one point failure of system, unsatisfac-

tory system openness, and lack of incomplete process support. Some significant work

has been done [GAK95, EGD97, ASHT98, SJS02, YY01, LMCM01] to address some

of these problems. In addition, from practical point of view, as E-commerce becomes

more and more complex, the collaboration between different enterprises to provide

appropriate services is required. During the collaboration, each participant should be

able to join the collaboration, contribute its services to it and quit from it on the bases

of on its own needs. Some standards, such as BPEL4WS [BPE03, OWL01] has been

proposed for this purpose. However, with current approaches which are mainly based

on the conventional workflow architecture (client-server), open scale collaboration can

not easily be achieved and most importantly, the participants of the collaboration lose

their own initiative, which means they can only be invoked and required for certain

services passively by the server as shown below:

As many researchers have noted, most of the above problems are mainly, if not

Chapter 1. Introduction 15

Figure 1.1: Conventional system architecture for business workflows

completely, caused by the adoption of a client-server architecture in most conventional

workflow management systems [JGM98, Coo02]. Hence, in order to tackle these prob-

lems properly, a centralised system architecture based on client-server is expected to

be replaced by an open, collaborative, and decentralised architecture that can reflect

increasingly open and distributed features of current workflow more naturally. This

thesis aims at addressing the above problems fundamentally from a point of view of

system architecture without affecting the upper level business rationale, as shown in

Figure 1.1, using the multi-agent based system architecture, which is depicted in Fig-

ure 1.2. Although some work has been done in this area [SPJC97, FK, Yan02b], this

thesis proposes some new solutions to add to and improve on the existing approaches.

A fundamental contribution of this thesis is to adopt new system architecture (multi-

agent) for deploying distributed workflow system in the open environment without

changing existing business rationales that are used by business users. This research

work mainly focuses on the issues of workflow as addressed in Section 1.1, i.e., per-

forming pre-defined tasks in the proper sequence in a decentralised environment through

coordination. Particularly, this thesis starts with the discussion of a coordination mech-

anism using process models for complete processes on multi-agent platforms. The

proposed approaches mainly try to address problems related to performance, reliabil-

ity, scalability, and system openness with existing design rationales, tools and models

of workflow system kept untouched. This research is then extended to discuss the

Chapter 1. Introduction 16

Figure 1.2: Multi-agent based system architecture for business workflows

technologies that support incomplete processes under the proposed multi-agent decen-

tralised architecture. The proposed approaches are expected to be useful for adoption

of workflow systems in some new, non-conventional application domains. The signif-

icance result of our research is to provide a better solution to the existing problems

of conventional workflow research as described above. This can be considered as a

paradigm change because the multi-agent technology provides a new platform.

1.3 Overview of This Thesis

In Chapter 2, research problems existing in conventional workflow system are analysed

and discussed in detail. Some of the main related work is also reviewed, including

workflow management approaches under aspects of client-server based distribution,

decentralised workflow approaches based on other computing technologies, and re-

search regarding incomplete process support. Chapter 2 also analyses the requirements

for workflow management based on a multi-agent architecture.

The design of of a framework for bridging formalised high level business process

models down to MAS interaction protocols (IPs) is illustrated in chapter 3. Checks

of temporal orders between functional properties are performed to make sure that the

functional requirements defined in the formalised high level business process model

Chapter 1. Introduction 17

are achieved by system level specification (MAS interaction protocols), using linear

temporal logic as an intermediate specification.

Chapter 4 describes the language mapping technique that we perform on the trans-

lation between an executable business process modelling language BPEL4WS[BPE03]

and a multi-agent interaction protocol description language LCC[Rob04]. The MAS

interaction protocols thus can be generated automatically from given business process

models and they, later on, can be used directly for multi-agent based workflow enact-

ment.

Chapter 5 presents a novel approach for using an executable business process

model directly for guiding multi-agent coordination. With this approach, no extra work

is needed once the business process models are constructed. The interaction protocol

is not used directly to guide the agents’ coordination but used as a language interpreter

to tell agents during their coordination what to do according to the attached business

process model.

Chapter 6 further extends the approach that is proposed in chapter 5 to enable

multi-agent based workflow management system for incomplete processes. How to

handle incomplete processes incrementally at run-time is presented for different sorts

of incomplete activities.

In chapter 7, three case studies are given to prove the soundness of our system and

corresponding mechanisms from the point of view of both a conventional workflow

domain (complete process) and a non-conventional workflow domain (incomplete

process).

The prototype implementations for the ideas presented in each of the chapters are

also given at the end of each.

In chapter 8, we discuss the advantages and disadvantages of the proposed ap-

proaches, and the suitable application domains of the multi-agent based decentralised

workflow management system proposed in this thesis. The potential tradeoffs of the

proposed approaches are also discussed in this chapter.

The last chapter, Chapter 9, summarises the ideas discussed in this thesis, the main

contributions of this research, and future research work.

Chapter 2

Literature Review and Problem

Analysis

In this chapter, first, an analysis of the research problems existing in conventional

workflow is given in section 2.1. Then section 2.2 introduces conventional distributed

workflow approaches. Section 2.3 introduces some earlier research on decentralised

workflow based on other computing technologies. Section 2.4 introduces research

work related to incomplete process support. Finally, justification is given for choosing

a multi-agent based decentralised workflow system as the most effective line to follow,

and requirements for designing a multi-agent based decentralised workflow system are

given.

2.1 Research Problems Analysis

Workflow processes within organisations often involve a vast number of resources,

people and tools that are distributed over a wide geographic area. Workflow manage-

ment systems are used to coordinate these elements automatically. Thus, in order to

suit the nature of the application environment and the technology adopted, workflow

applications are becoming distributed [GAK95, JGM98, Yan00, CBL05]. Problems

remain unsolved in current research of distributed workflow system however.

These problems are mainly categorised into two groups as addressed in[Yan00]. In

the first group are those directly related to the centralised system architecture, i.e, bad

performance, vulnerability to failures, poor scalability, user restrictions, and unsatis-

factory system openness. The second group concerns flexibility, i.e, support for the

incomplete workflow process.

18

Chapter 2. Literature Review and Problem Analysis 19

Several problems of centralisation are as follows:

• Performance: A workflow management system based on a client-server archi-

tecture heavily relies on a centralised data server for data storage and a cen-

tralised workflow server for control the process logic while the computing capa-

bility at the client end is seldom used. Such a workflow system is heavy-weight.

When the system load increases, for example, when many process instances are

executed at the same moment, the centralised server can be overloaded with

heavy computation and mass amount of communication between participants,

hence becoming a potential bottleneck of the whole system. System perfor-

mance can be hugely affected under such circumstances.

• Robustness:A workflow system based on a client-server architecture lacks ro-

bustness. The centralised server is normally regarded as a single point failure

of the system. The whole system can become completely dead if the server is

unavailable due to hardware or software failures. Although server backup can be

used to improve reliability, it inevitably increases the complexity of the already

sophisticated workflow system since additional mechanisms have to be designed

to backup all the states of a running workflow server on an another server.

• Openness:A workflow system based on a client-server architecture offers lim-

ited capability of openness due to the existence of the centralised workflow

server. As a consequence, lack of openness prevents a workflow system from

coping with the changing workflow environment. In addition, it raises difficul-

ties in system extension. Any extension to the system, (e.g., joining of new

participants) requires modifying and updating the centralised workflow server,

which is inconvenient and inefficient.

Moreover, as web services and Grid services become more popular as the reference

model for business resources, workflow plays a powerful role in composing individual

services into complex ones. However, a client-server architecture is not suitable for

such applications where workflow technology is used together with services. This

is because the client-server architecture is rather closed to facilitate external services

(web services) available on the internet. Thus, it is better to have an open architecture

which allows external services to be used more easily.

Besides the above problems that are caused by the centralised system architecture,

lack of ability to support incomplete processes is also a major problem for conven-

Chapter 2. Literature Review and Problem Analysis 20

tional workflow management system. Workflow research was initially founded on two

assumptions.

• First, a workflow process model is accomplished completely at design-time be-

fore the execution of workflow instances.

• Second, the running instances of process have to remain unchanged during their

execution.

These two assumptions were reasonable originally since workflow technology was

traditionally used in those domains which were classified by pre-determined, routine

based processes. These processes are functionally predictable and repetitive. Recently,

the latter assumption has been undermined, with the argument that workflow processes

are subject to both inside and outside changes [AJ00]. As a result, points of dynamic

workflow change, exception handling and workflow adaptation (some of the today’s

major research topics) have been addressed widely [AJ00, HA00, SLS99]. More re-

cently, the former assumption that workflow processes are always modelled completely

at build time has also been challenged [Wes02, SSO01]. ”There is substantial evidence

of workflow processes for which trying to define (or prescribe) every step may com-

promise the process goal. In many cases, the work practices themselves would not fit

into a prescriptive framework and introducing a technology which imposes it would

result in decreased productivity.”[Yan00]. In other words, the processes do not exclu-

sively belong to the pre-defined class of processes, which are generally not repetitive (

depending on instance data), and either represent an administrative level of complexity

or a very high level complexity which is hard to be fully modelled) [SSO01]. Cer-

tain application areas such as health care, insurance claim and customer relation man-

agement have increased possibility of workflow processes that have both ad-hoc and

prescriptive process requirements. However, most of today’s workflow management

approaches lack the capability to support the processes for such application domains.

Research on multi-agent systems emerged as a new area in the early 1990’s. The

computing paradigm of multi-agent systems (MAS) has its origin in both distributed

artificial intelligence (DAI) and object-oriented distributed systems. There is no con-

sensus on the definition of software agents or of agency. However, the prevailing

opinion is that an agent may exhibit three important general characteristics: autonomy,

adaptation, and cooperation. Cooperation and coordination between agents is probably

the most important feature of multi-agent systems. Unlike those stand-alone agents,

agents in a multi-agent system collaborate with each other to achieve common goals.

Chapter 2. Literature Review and Problem Analysis 21

In other words, these agents share information, knowledge, and tasks among them-

selves. The intelligence of MAS is not only reflected by the expertise of individual

agents but also exhibited by emergent collective behaviour beyond individual agents.

From software engineering point of view, the approach of MAS is also proven to be

an effective way to develop large distributed systems. Since agents are relatively in-

dependent pieces of software interacting with each other only through message-based

communication, system development, integration, and maintenance become easier and

less costly. For instance, it is easy to add new agents into the agent system when

needed. Also, the modification of legacy applications can be kept minimum when they

are to be brought into the system. Aside from adding communication capabilities to a

legacy application, nothing else is required to change.

However, cooperation and coordination of agents in a MAS requires agents to be

able to understand each other and to communicate with each other to achieve their com-

mon goals. This thus requires certain mechanisms to ensure that the agents in MAS

always behave properly and effectively towards the final goal. An interaction proto-

col is used for this purpose, which defines the sequences of message passing that the

agents must follow as well as the constraints on message passing. Many interaction

protocol languages have been defined for describing such protocols, such as, FIPA-

ACL[FIP00], lightweight coordination calculus (LCC)[Rob04]. However, an obvious

problem is that it is almost impossible to get the overall view of the business processes

described by a dialogue protocol since the protocol only specifies the message passing

between different participants at implementation level. For certain MAS based appli-

cation areas (for instance, auction systems) interaction protocol oriented approaches

have few disadvantages. But for other application areas; for example, workflow man-

agement systems, the users care about not only the automation of their work, but also

the underlying processes’ objective understanding and analysis. For those analyti-

cal purposes, interaction protocol based system specifications are not enough since

they involve too much system level information with high level business requirements

being hidden. Business process modelling languages are in contrast recognised for

their value in organising and describing a complex, informal domain in a more precise

semi-formal structure that is intended for more objective understanding and analysis.

Because of these advantages, they have been widely used in conventional workflow

management systems and many mature techniques and tools been developed for sup-

porting business process model based workflow system development.

However, business process modelling languages are designed specifically for con-

Chapter 2. Literature Review and Problem Analysis 22

ventional workflow management architecture, they can not easily be adapted for new

system architectures like multi-agent systems. Therefore, when building a MAS based

workflow management systems, almost all the existing techniques and tools for sup-

porting conventional workflow management system development are wasted as well as

business process models that are described in formalised business process modelling

languages, which means huge amount of repeat work has to be done during the course

of MAS development. For example, verification and validation of formalised system

specifications has to be re-performed even when the existing business process models

have been verified and validated for a conventional system architecture. In addition, the

business process modelling languages used in workflow management systems some-

times are built with specific features. For instance, BPEL4WS[BPE03] is designed for

a web services based distributed workflow system. By using such specific languages,

new platforms can be used to support existing technologies.

2.2 Conventional distributed workflow approaches

Many research efforts have been undertaken on the topic of distributed workflow in

conventional workflow environment. The importance of connecting ”workflow man-

agement” with ”distribution” has been addressed in [PMG98, EP99, PHM99]. Some

conceptual approaches and research prototypes have been proposed and developed,

which try to solve these problems by making conventional distributed workflow man-

agement systems more sophisticated.

2.2.1 METUFlow

METUFlow[EGD97] is a distributed workflow management system developed at Mid-

dle East Technical University. This project tries to design a distributed workflow ser-

vice which involves several schedulers on different nodes of a network. Each scheduler

executes parts of process instances. Therefore, such a system could well fit to the dis-

tributed environments, enhance robustness and improve system performance.

The approach proposed in METUFlow is based on the observation that controlling

the occurrence of events provides the coordination of the tasks. This means depen-

dencies between tasks are represented by event dependencies. To enable distributed

execution of workflow computations, each event in METUFlow is made responsible

for controlling its execution to decide on the right time to occur. Required information

Chapter 2. Literature Review and Problem Analysis 23

for this operation is treated as a guard, which is a temporal expression defined on an

event. Occurrences of events are permitted only if their guards are true. Thus, each

node in the process tree is implemented as a CORBA object with an interface for the

guard handler to receive and send messages. Workflow is deployed by these CORBA

objects, with computed guards controlling distributed execution.[Yan00]

2.2.2 ADEPT

ADEPT stands for Application Development based on Encapsulated pre-modelled Pro-

cess Templates. This project started in 1996 at University of Ulm and the goal of

this project is to build the next generation workflow technology for enterprise-wide

and cross-enterprise workflow management [MRD03]. One important aspect of the

ADEPT project is to perform distributed workflow control in order to avoid over-

loading of the workflow servers and of the communication network. To address the

problems, ADEPT reduces the system load by partitioning workflow definitions and

by migrating the control of workflow instances from one server to another during run-

time, i.e., a workflow instance may no longer be controlled by only one workflow

server but by several shared ones. When performing such a migration, a description of

the instance states is transferred between different servers. This description contains

information about activity states as well as workflow relevant data. To avoid unneces-

sary message transfer between servers, ADEPT allows control of concurrent execution

of workflow instances independently from each other. Its communication actions can

be further enhanced if variable server assignment expressions are used. These expres-

sions could be decided at design-time, allowing the selection of a suitable workflow

server to keep most of the communication inside it, and require very limited additional

effort at run-time. Moreover, ADEPT supports both static and variable server assign-

ments [BD99]. The former means appropriate workflow servers are picked for various

partitions of a workflow definition. In contrast, assignment of variable server allows

for dynamic workflow server assignment in real time, which may improve the system

performance hugely.

2.2.3 Web service based approaches

As web services become more and more popular and widely used as organisational

interfaces, several approaches have been proposed to deploy web services based dis-

tributed workflow systems in which web services are clients and a centralised workflow

Chapter 2. Literature Review and Problem Analysis 24

engine is used to control the whole process that is carried between different web ser-

vices. Two major approaches for such system are business process execution languages

for web services (BPEL4WS)[BPE03] and OWL-S[OWL01].

2.2.3.1 Business Process Execution Language for Web Services (BPEL4WS)

Business Process Execution Language for Web Services[BPE03] provides a means to

formally specify business processes and interaction protocols.

BPEL4WS provides a language for the formal specification of business processes

and business interaction protocols. By doing so, it extends the Web Services inter-

action model and enables it to support business transactions. BPEL4WS defines an

interoperable integration model that should facilitate the expansion of automated pro-

cess integration in both the intra-corporate and the business-to-business spaces.

2.2.3.2 OWL-S

OWL-S is a OWL-based Web service ontology, which supplies Web service providers

with a core set of markup language constructs for describing the properties and capa-

bilities of their Web services in an unambiguous, computer-intepretable form. OWL-S

markup of Web services facilitates the automation of Web service tasks, including au-

tomated Web service discovery, execution, composition and interoperation. Following

the layered approach to markup language development, the current version of OWL-

S builds on the Ontology Web Language (OWL)[OWL04] recommendation produced

by the Web-Ontology Working Group at the World Wide Web Consortium. OWL-S

consists of four main classes that specific services should instantiate. (Alternatively,

service providers may create subclasses of the OWL-S classes and instantiate those

instead).

• Service, with some basic concepts that tie the parts of an OWL-S service de-

scription together and holds a textual description of the service.

• Profile, which has properties used to describe what the service does; what it

provides clients, and what it requires of them.

• Process, which has properties used to describe how the service works, i.e. what

happens when the service is used. Services can be described as a collection

of atomic or composite processes, which can be connected together in various

ways, and the data and control flow can be specified.

Chapter 2. Literature Review and Problem Analysis 25

• Grounding, with properties used to specify how the service is activated, includ-

ing details on communication protocols, message formats, port numbers, etc.

2.2.4 Discussion

The above approaches put some distribution features on workflow systems and do bring

benefits such as improved system performance, increased robustness and enhanced

openness as they claimed. However, these approaches mainly address the concept of

distribution instead of decentralisation. A common characteristic of these approaches

is that they are still based on and confined by the client-server architecture. There-

fore, these approaches either tackle the problems partly, or need complicated languages

and/or complex algorithms to be defined. The remaining centralised services like cen-

tralised process instantiation and work assignment also make them relatively inflexible

in some application domains. In addition, the openness of system are barely concerned.

As a result, the problems that are relevant to the centralised distributed system archi-

tecture have not been or cannot be addressed completely if the whole workflow system

is built on a client-server architecture.

2.3 Workflow approaches based on multi-agent/peer-

to-peer platforms

The appearance of novel computing technologies such as multi-agent system have pro-

vided new platforms to support process management, while conventional distributed

workflow approaches fail to properly address the problems in the first group described

in Section 2.1, some limited research effort has been put into using these collaborative

and decentralised platform to support workflow management systems.

2.3.1 Little-Jil

Little-JIL [AWS00], a language for programming the coordination of agents is an ex-

ecutable, high-level process programming language with a formal (yet graphical) syn-

tax and rigorously defined operational semantics. Little-JIL is based on two main

hypotheses. The first is that the specification of coordination control structures is sep-

arable from other process programming language issues. Little-JIL provides a rich

set of control structures while relying on separate systems for support in areas such

Chapter 2. Literature Review and Problem Analysis 26

as resource, artifact, and agenda management. The second is that processes can be

executed by agents who know how to perform their tasks but can benefit from coordi-

nation support. Accordingly, each step in Little-JIL is assigned to an execution agent

(human or automated): agents are responsible for initiating steps and performing the

work associated with them. This approach has so far proven effective in allowing us to

clearly and concisely express the agent coordination aspects of workflow.

The main features of the language and their justifications are the following:

• Four non-leaf step kinds provide control flow. These four kinds are ”sequential”,

”parallel”, ”try” and ”choice”.

• Requisites are a mechanism to add checks before and after a step is executed to

ensure that all of the conditions needed to begin a step are satisfied and that the

step has been executed correctly when it is completed.

• Exceptions and handlers augment the control flow constructs of the step kinds.

• Messages and reactions are another form of reactive control and greatly increase

the expressive power of Little-JIL.

• Parameters passed between steps allow communication of information necessary

for the execution of a step and for the return of step execution results.

• Resources are representations of entities that are required during step execution.

Resources may include the step’s execution agent, permissions to use tools, and

various physical artifacts.

2.3.2 PeCo

PeCo, which stands for Peer Collaboration, is proposed by Proteus Technologies, LLC.

It is a Java-based collaborative workflow management system that is composed of

peers/agents, core services, applications, and portable plug-ins and enable generic sys-

tem integration. It aims at decentralising workflow management using collaborative

technologies and concepts while providing a pluggable framework for combing busi-

ness process applications and human contributors.

In PeCo, workflow peers are responsible for a particular application role in a work-

flow’s enactment. Core services, i.e., group coordinator factory, role coordinator, de-

ployment tool, data extractor factory and administrator, are used for system initiali-

Chapter 2. Literature Review and Problem Analysis 27

sation and system administration. The important characteristics of the PeCo architec-

ture including agent/peer discovery, fault tolerance, and peer availability awareness are

supported by Jini infrastructure and services. Generally speaking, workflow peers join

enactment groups through the interaction with group coordinators and then peers coor-

dinate and interact with private applications, user inboxes, and other peers to perform

workflow tasks, through the use of portable plug-ins.

2.3.3 An architecture based on WWPD and WWP

Another ongoing p2p-based workflow project is conducted at Manchester Metropolitan

University. This project shows a p2p architecture for dynamic workflow management,

which is based on concepts such as Web Workflow Peers Directory (WWPD) and Web

Workflow Peer (WWP)[FK]. The centralised feature of the system is called WWPD,

which provides a peer registration service and maintains a list of active peers and their

profiles. With support of this architecture, peers are allowed to register with the system

and offer their services and resources to other peers. During the execution of workflow

instances, Workflow process administration is achieved by employing a notification

mechanism. It is claimed that such an approach is adaptive, easily scalable and flexible.

2.3.4 SwinDeW

SwinDeW[J.Y04] is a pure peer-to-peer based system for workflow management. It

removes both the centralised data repository and the centralised workflow engine from

the system. Workflow participants are facilitated by automated peers which are able to

communicate and collaborate with one another directly to fulfil both build-time and

run-time workflow functions. Moreover, SwinDeW is further extended to support

incompletely-specified processes in the decentralised environment. New technolo-

gies for handling incompletely-specified processes at run-time are presented. With

SwinDeW, performance bottlenecks in workflow systems are likely to be eliminated

whilst increased resilience to failure, enhanced scalability, better user support and im-

proved system openness are likely to be achieved with support for both completely-

and incompletely-specified processes. As a consequence, workflow systems will be ex-

pected to be widely deployable to real world applications to support processes, which

was infeasible before. Its extended system SwinDeW-S also supports web services

based service composition based on OWL-S[OWL01].

Chapter 2. Literature Review and Problem Analysis 28

2.3.5 Discussion

The above approaches give up conventional client-server architecture and adopt a novel

and decentralised architecture to support workflow process management. Especially,

the few efforts that combine multi-agent computing paradigm with existing workflow

technology have opened new ground in workflow, and in the process support area in

general. The distinguished features of multi-agent computing paradigm make it suit-

able to tackle the problems that relate to the client-server architecture. These work

reveal the potential of multi-agent based workflow.

However, it is obvious from the literature review of those research on implement-

ing workflow in a multi-agent platform is still quite immature with many problems

addressed inadequately. The work reported on WWPD and WWP, is only some con-

ceptual ideas about linking workflow with p2p system without any concrete analysis

of the potential system. Approaches like PeCo, mainly concentrate on decentralising

workflow process instances in real time in order to remove potential performance bot-

tlenecks of system and offer enhanced system openness. However, some aspects that

are crucial to decentralised workflow enactment have not been addressed sufficiently

by these approaches. For example, it is not really clear that in these approaches how

the data of process definition are managed so that decentralised agents are able to ac-

cess task information in real time. Also, how the processes are instantiated are not

addressed by these approaches. Issues such as dynamic participants selection, work

allocation also have not been addressed sufficiently. Moreover, incomplete process

support in a decentralised environment is only addressed by SwinDeW.

SwinDeW addresses most of the above problems and offers a good platform for

purely decentralised workflow management. However, the problem for SwinDew is

that it builds everything from scratch. The language it uses is a process oriented lan-

guage in which agents’ coordinating mechanisms are embedded. It thus blurs the busi-

ness level requirements and system level requirements. When new technologies come

out, they can not be easily incorporated. It also ignores all the existing technologies

that are used for supporting workflow management system development and all the ex-

isting models that have been created for conventional workflow systems, which means

repeating established work. This is against the basic software engineering principle.

Little-Jil falls into the same problem category as SwinDeW.

Chapter 2. Literature Review and Problem Analysis 29

2.4 Research related to incomplete process support

Flexible workflow support is one of the important research area in the development of

workflow management systems. But only very few work has been performed so far

due to the difficulties inherited from the conventional workflow architecture and not

many approaches can be discovered in the literature.

2.4.1 WASA

WASA workflow [Wes98] is a research project developed at a German University,

Potsdam. This project tries to apply the workflow technology in the domain of scien-

tific application and engineering. A formal language, conceptual design, and prototype

implementation of flexible distributed workflow management systems based on object-

oriented middleware was developed in the WASA project, .

Flexibility is considered as an important research issue in WASA which uses a hier-

archical workflow execution approach based on a set of states and accompanying state

transitions of workflow instances. A composite activity can have a nested structure,

and activity models are created using sets of activity modelling operations. It is also

identified that some unpredictable aspects cannot be modelled completely at design

time. Therefore, incomplete process support should be provided as a new functionality

for a workflow system. Some operations are thus presented to help the workflow meet

the flexible requirements, which contain operations for user intervention and opera-

tions for dynamic change.

2.4.2 WORKWARE

WORKWARE[Hav01]is a project that aims at human-centred solutions. Havard be-

lieves that interactive enactment should be adopted more strongly as a framework to

support flexible workflow modelling. Incomplete workflow models are thus allowed to

emerge.

Their approach shows that the execution of a workflow model should be changed

from completely automated to interactive enactment based, and that interaction can

be a suitable framework for understanding and designing flexible workflow manage-

ment systems. Interactive enactment allows intervened control and activation of an

changing online model so that at the design time the model needs not be completely

accomplished and doesn’t has to be consistent. A general architecture of workflow

Chapter 2. Literature Review and Problem Analysis 30

management system is presented, which has three layers:

• shared workflow models,

• a number of model activators

• and an integrated user interface.

According to the architecture, the model activators adopt the shared workflow models

to provide connecting and activating services using the user interface. This research

also shows the WORKWARE prototype developed, which attempts to re-interpret the

concept of workflow to contain processes with emerging structure.

2.4.3 Pockets of Flexibility

Researchers at the University of Queensland, Australia proposes a concept of ”Pock-

ets of Flexibility”[SSO01, MS02]. Based on this concept, a process modelling and

enactment approach was presented, which allows capture of both complete and in-

complete process requirements using the same framework. Flexibility in this research

is regarded as the capability of the workflow process to be executed on the basis of

a loosely, or partially specified model, which means that the full specification of the

model can be made in real time, and may vary according to different process instances.

In order to provide a modelling framework that provides real flexibility, the issues that

affect the paths of different process instances together with the process definition are

considered. An approach that tries to make the flexible parts of the workflow process

is developed. With their framework, the concept called open instance that is made of

a core process and several pockets of flexibility are explained. The notation ”pocket”

is a distinguished structure within the workflow model, which is consisted of work-

flow fragments, that can represent a single primary business activity, or a complex

sub-process; and a special activity called the build activity, which performs the rules

and constraints with which those fragments can be composed together for a running

instance. Thus, the build activity is the key point of the research and provides the func-

tionality to realise incomplete activities that are defined in the process model at design

time into concrete executable activities for different running process instances.

2.4.4 Discussion

From the above literature, we can see that research on the support of flexible workflow

is at an early stage. The existing approaches discussed above tackle the problems

Chapter 2. Literature Review and Problem Analysis 31

of flexible workflow support mainly from the model construction perspective but say

nothing from the system coordinating point of view. In addition, these approaches are

all based on conventional workflow architectures. Therefore, research in decentralised

workflow environments from the point of view of system coordination might help.

2.5 Requirement Analysis

After analysis of the existing problems in the conventional workflow area and review

of some of the current approaches for workflow management, we believe that solving

the problems that relate to centralised workflow architecture and incomplete process

support has become crucial for the development of future workflow management sys-

tem. Also, ”industry trends such as virtual enterprises and flattening of organisational

structures indicate that the future image of business will include distributed groups of

collaborating teams that combine talents and skill sets to create new methodologies

and processes. Therefore, there is growing need for the next generation of workflow

systems to be built in a truly decentralised manner, providing support for both complete

and incomplete processes.”[Yan02a].

The emergence of multi-agent technology provides a good opportunity for the

decentralisation of workflow systems. The few efforts that replace the client-server

architecture with collaborative and decentralised framework of multi-agent/P2P plat-

form have shown potential benefits. More recently, multi-agent/P2P based workflow

systems have also been considered as one of the most important future directions for

workflow research[MS02]. Therefore, decentralised workflow that is based on multi-

agent/p2p platform might be a valuable solution for future workflow process support.

However, to have a cost-effective and decentralised workflow system based on multi-

agent/P2P, we would expect to adopt the existing work that has been widely used for

conventional workflow systems as much as possible and although a centralised server

is expected to be eliminated, the services conventionally provided by the centralised

data repository and workflow server should remain as shown in Figure 2.1.

To achieve these requirements, a decentralised workflow system should:

• adopt a multi-agent based, loosely-coupled architecture and provide a flexible

framework for integrating workflow process applications and end users with the

needs of neither a centralised workflow engine for coordination nor a centralised

data storage,

Chapter 2. Literature Review and Problem Analysis 32

Figure 2.1: From conventional workflow architecture to multi-agent architecture

• let the distributed nodes (participants) use data that are conventionally stored in

centralised workflow engine when needed,

• distribute the services that are provided uniquely by conventional workflow server

to different participants so that the functionalities of the system would be the

same after the change of system architecture,

• provide ways to help service providers and service consumers to communicate

directly to reduce the network traffic,

• try to adopt service-oriented applications, which is the current standard for open

application systems, as much as possible, and

• provide sufficient support for incomplete workflow process, which allows in-

complete processes to be designed at build-time, and instantiated and executed

at run-time.

In addition, from the engineering point of view, when attempting to achieve the above

requirements, it is wise to use existing technologies, tools and formal business process

models as much as possible to reduce repeated work. It is also easier for the acceptance

of the new system by end users when the whole system is shifted from the conventional

architecture to new architecture seamlessly. As addressed in the literature review, some

existing multi-agent systems can satisfy most of the requirements listed above. How-

ever, the weakness of almost all of the current approaches is that they ignore the useful

Chapter 2. Literature Review and Problem Analysis 33

work already done on conventional workflow systems.

This research, therefore, builds a pure decentralised workflow management system

starting from existing business process models. It connects the workflow management

world and the multi-agent world together in several different ways. In the three layer

conceptual model given in Figure 2.2, we can see that the business process model and

interaction protocol may or may not be at the same conceptual level. A formalised

business process model that describes high level abstract information sits in the logic

layer. A more detailed process model sits in the implementation layer. However, the

interaction protocol for multi-agent system is always located in the implementation

layer. Therefore, there are three possibilities for the production of interaction proto-

cols for enacting a multi-agent based workflow management systems according to the

framework.

Figure 2.2: Three conceptual layers based framework

• Deriving the interaction protocol directly from the informal business require-

ments that is from the top layer in the framework.

• Deriving the interaction protocol from the formally defined abstract business

process model at the logic layer in the framework.

• Deriving the interaction protocol from the formally defined detailed business

process model at the implementation layer in the framework.

Chapter 2. Literature Review and Problem Analysis 34

Since formally defined business process models are widely used in conventional work-

flow management systems, the first possibility is ignored in this research and I focus on

the remaining two. I assume all the given formal business process models are correct

models and are coherent with the informal business requirements.

The key issues of this research are therefore:

• How to use the formal business process models that are defined at different ab-

stract levels for the construction of multi-agent system based workflow manage-

ment systems.

• How to make sure that a multi-agent system that uses the business process model

as its requirement behaves strictly coherently with the BPM.

• How to adapt a multi-agent architecture to solve some of the problems in con-

ventional workflow management systems, for instance, supporting incomplete

processes.

For highly abstract business process models, even for those that are formally de-

fined, it is not always possible to derive interaction protocols from them automatically.

Human intervention is needed. The first part of my research considers how to help the

human modeler produce the interaction protocols given a high abstract and formally

defined process model. A framework for this is defined and a temporal logic is used

as the main tool to ensure the functional equivalence between the input process model

and output interaction protocol of the framework.

For business process models that are defined at the implementation level in the

conceptual framework, because they normally give enough information for system im-

plementation, automatic derivation of an interaction protocol is possible. I use two

approaches to achieve this.

• One is to perform a mapping between the two languages that are used for de-

scribing business process models and interaction protocols.

• Another is to use the business process model (BPEL4WS) directly in the poten-

tial multi-agent system to tell agents what they need to do and the interaction

protocol (LCC[Rob04]) is also used to tell agents how they perform the required

tasks defined in the business process model.

Chapter 2. Literature Review and Problem Analysis 35

2.6 Summary

The motivations of this research have been proposed in this chapter. Some of the

main problems in conventional workflow research, such as bad performance, single

point failure of system, unsatisfactory system openness, and insufficient support for

incomplete process, as well as causes of these problems have been analysed. The

literature on these problems has been reviewed. Based on the problem analysis and

the given literature review, a multi-agent based workflow architecture is suggested to

support both stable and flexible workflow. Detailed requirements for multi-agent based

workflow have also been analysed. To conclude the chapter, we describe the new

platform and approaches that should be able to use existing workflow models and tools

as much as possible and also address possible solution for such requirements according

to a three layer conceptual framework.

Chapter 3

Using High Level Formal BPMs For

MAS Development

As discussed in chapter 2, using formal business process models as requirements to

establish the initial social order of multi-agent system can be performed in several

different ways. In this chapter, the framework for bridging formalised high level busi-

ness process models down to MAS interaction protocols (IPs) is presented. Based

on the three layer conceptual framework, high level business process models and IPs

are located at different conceptual levels (one is at the logic layer and one is at the

implementation layer) as shown in Figure 3.1:

Figure 3.1: Bridging high level formal BPMs to IPs

36

Chapter 3. Using High Level Formal BPMs For MAS Development 37

This approach is based on linking requirements(business process models) to IPs by

matching the formal specifications derived from both of them to make sure that the IPs

designed manually meet the functional requirements strictly and to make sure they will

remain consistent as requirements change.

In section 3.1, we describe our framework in detail including all the components

in our framework and showing how they cooperate with each other in the IP modelling

task. Components of our framework are explained in section 3.2 and through to section

3.6. In section 3.7, we demonstrate the algorithm for verifying the two linear temporal

logic clauses derived. The algorithm for generating a concrete IP (LCC) from a verified

simple protocol properties checking (SPPC) model is discussed in section 3.8. Based

on the mechanism discussed in the earlier sections, a case study is used in section 3.9

to illustrate how the framework supports real word IP production. Implementation and

discussion are given in section 3.10 and 3.11

3.1 Process Model Based MAS Interaction Protocol Mod-

elling Framework

Conventionally, a high level process model describes high level requirements whereas

a MAS protocol is a detailed system specification which should be consistent with both

business level and system level requirements. Thus, automatic workflow enactment by

a multi-agent system is difficult since high level process models don’t necessarily con-

tain any system level information. For example, in a business process model, there

might be an activity calledprint papers. At requirement level, this only means some

papers need to be printed out, but says nothing about what actions should be performed

in unexpected circumstances, say, when a printer is out of paper. Normally, a MAS in-

teraction protocol is produced manually. How can we make sure that all the properties

defined in a process model are preserved by the MAS interaction protocol properly,

since writing a complex protocol by hand is usually error prone. One way of solving

this problem is to undertake model checking or simulation after the MAS protocol is

completed [Wal04a, NOW05]. With the support of formally specified business process

model, we may be able to verify the MAS protocol automatically and thus reduce the

effort and time that we normally spend during the model checking/simulation process.

We propose a process model based interaction protocol modelling framework which is

shown in Figure 3.2. There are six main parts of this framework as shown below. We

Chapter 3. Using High Level Formal BPMs For MAS Development 38

Figure 3.2: BPM based interaction protocol modelling framework

will go through each of them in later sub-sections.

• Business Process Model (depicting a high level business process)

• System Modeller (person who builds the IP)

• Property Checking Model (built by the system modeller)

• MAS Interaction Protocol (define the manner of agents’ interactions)

• Formal Representation 1 (linear temporal logic, FR 1)

• Formal Representation 2 (linear Temporal logic, FR 2)

3.1.1 How our framework works for IP’s modelling task?

With our framework, the IP modelling task consists of the following steps:

• The business process model (high level formal representation) is loaded and then

all the temporal relationships of functional properties defined in it are translated

into a temporal logic (formal representation 1/FR1). These are the temporal

business requirements.

Chapter 3. Using High Level Formal BPMs For MAS Development 39

• The system modeller uses the process model (which in practice may be diagram-

matical, textual or formal descriptions) and produces a property checking model

for the MAS interaction protocol that is composed of sets of dialogues. The tem-

poral relations of functional properties defined in the process model contained

in each dialogue are translated into a temporal logic representation (formal rep-

resentation 2/FR2) later on.

• If FR1 implies FR2(FR1 |= FR2), then the system modeller will get some sug-

gestions from system, which indicate proper actions that the system modeller

should take next or ifFR2 |= FR1 fails, suggestions from the system about why

problems exist(what is the discrepancy between temporal orders of properties)

so that the system modeller can fix the problem as early and quickly as possible.

• After property checking of the model is properly accomplished, it can then be

translated into to a standard MAS protocol.

3.2 High level Process Model

A formalised high level business process model gives a logical description of business

processes that obeys and keeps track of business principles and requirements that have

been described in informal business requirements. It depicts the conditions and actions

of processes, the relationships and constraints between them and the data upon which

the processes operate. This formal representation can be used to check for errors in

the model, and it provides a basis for offering advice and a foundation for forecast-

ing organisational behaviour. Processes described at this abstract level are relatively

independent of the deployed technologies, including software and hardware systems,

and therefore are more robust compared to more detailed business process models (at

implementation level). Furthermore, the business process changes less rapidly than

the system specified to support that process. People usually don’t want to re-write

their requirements only because of the adoption of new technology. Therefore, in our

framework, we use process models as a starting point to avoid unnecessary requirement

re-capture work when we adopt MAS technology for process management.

There are many high level business process modelling languages available to fit

different desires of different organisations. But some common features are required

by almost all business process modelling languages. A high level business process

model is normally composed of sets of activities, which define the basic tasks that

Chapter 3. Using High Level Formal BPMs For MAS Development 40

are undertaken in the process, and sets of links which define the different relation-

ships (sequential, parallel, etc) between the activities. Each activity has several prop-

erties: ID, Role, Input, Preconditions, Postconditions, Outputs, textual descriptions,

which describe both functional information (ID, Role, Input, Predoncitions, Postcondi-

tions, Output) for execution of the activity and non-functional information (textual de-

scriptions) for other purposes. The fundamental business process modelling language

(FBPML)[CBR98], for example, is such a high level process modelling language.

3.3 MAS Interaction Protocol

A MAS interaction protocol is the product of our framework, which is ensured consis-

tent with the given process model(describing the temporal business requirements). Al-

though any standard protocol language is applicable for this framework, the lightweight

coordination calculus(LCC)[Rob04] is used for our work.

The Lightweight Coordination Calculus(LCC) is a language for representing coor-

dination between distributed agents. In a multi-agent system the speech acts conveying

information between agents are performed only by sending and receiving messages.

For example, suppose a dialogue allows an agent a(r1,a1) (r1 represents the role of the

agent and a1 is the ID of it) to send a message m1 to agent a(r2,a2) and agent a(r2,a2)

is expected to reply with message m2. Assuming each agent operates sequentially, the

sets of possible dialogue sequences we wish to allow for the two agents in the example

are as given below, where M1⇒ A1 denotes a message, M1, send to A1, and M2⇐
A2 denotes a message, M2, received from A2.

a(r1,a1) :: (m1⇒ a(r2,a2) thenm2⇐ a(r2,a2))

a(r2,a2) :: (m1⇐ a(r1,a1) thenm2⇒ a(r1,a1))

We refer to this definition of the message passing behavior of the dialogue as thedia-

logue framework. Its syntax is as follows, whereTermis a structured term andConstant

Chapter 3. Using High Level Formal BPMs For MAS Development 41

is constant symbol assumed to be unique when identifying each agent:

Framework ::= {Clause, ...}
Clause ::= Agent:: De f

Agent ::= a(Type, id)

De f ::= Agent|Message|De f thenDe f

|De f orDe f|De f parDe f

Message ::= M ⇒ Agent|M ⇒ Agent←C

|M ⇐ Agent|M ⇐ Agent←C

C ::= Term|C∧C|C∨C

type ::= Term

id ::= Constant

Constant ::= Term

All the notations in this thesis are defined using BNF meta symbols which is explained

in [MM96]. A dialogue framework defines a space of possible dialogues determined

by message passing, so the protocols allow constraints to be specified on the circum-

stances under which messages are sent or received. Two forms of constraints are per-

mitted:

• Constraints under which message, M, is allowed to be sent to agent A. We write

M ⇒ A ← C to attach a constraint C to output message.

• Constraints under which message, M, is allowed to be received to agent A. We

write M ⇐ A ← C to attach a constraint C to input message.

For the earlier example above, to constrain agent a(r1,a1) to send message m1 to

agent a(r2,a2) when condition c1 holds in a(r1,a1) we could write: m1⇒ a(r2,a2)←
c1.

An agent dialogue may also assumecommon knowledge, either as an inherent part

of the dialogue or generated by agents in the course of a dialogue. This knowledge

could be expressed in any form, as long as it can be understood by appropriate agents.

We recognise the importance of preserving a shared understanding of knowledge be-

tween agents but cannot cover this issue in the current paper. As a dialogue protocol

is shared among a group of agents it is essential that each agent when presented with

a message from that protocol can retrieve thestateof the dialogue relevant to it and to

that message [Rob04].

Chapter 3. Using High Level Formal BPMs For MAS Development 42

Pulling all the above elements together, we describe a LCC dialogue protocol as

the term:

protocol(S,F,K)

Where S is the dialogue state; F is the dialogue framework(sets of dialogue clauses);

and K is a set of axioms defining common knowledge assumed among the agents.

To enable an distributed workflow agent to confirm a LCC protocol it is necessary

to supply it with a way of unpacking any protocol it receives; finding the next moves

that it is permitted to take; and updating the state of the protocol to describe the new

state of dialogue. There are many ways of doing this but perhaps the most elegant way

is by applying rewrite rules (more detailed re-write rules can be found in [Rob04]) to

expand the dialogues state. This works as follows:

• An agent receives from some other agents a message with an attached protocol,

P , of the formprotocol(S,F,K). The message is added to the set of messages

currently under consideration by the agent-giving the message setMi .

• The agent extracts fromP the dialogue clause,Ci , determining its part of the

dialogue.

• Applying the rewrite rules in [Rob04] to give an expression ofCi in terms of

protocolP in response to the set of received messages,Mi , producing: a new

dialogue clauseCn; an output message setOn and remaining unprocess messages

Mn (a subset ofMi). These are produced by applying the protocol rewrite rules

exhaustively to produce the sequence:

〈Ci
Mi ,Mi+1,P ,Oi−−−−−−−−→Ci+1,Ci+1

Mi+1,Mi+2,P ,Oi+1−−−−−−−−−−→Ci+2, ...,Cn−1
Mn−1,Mn,P ,On−−−−−−−−→Cn〉

• The original clause,Ci , is then replaced inP byCn to produce the new protocol,

Pn

• The agent can then send the messages in setOn, each accompanied by a copy of

the new protocolPn.

3.4 System Modeller

A system modeller is someone who performs the IP modelling task based on the given

process models. He/She is responsible for understanding the process models and de-

signing appropriate IPs. Since it is difficult to have automatic translation from a process

Chapter 3. Using High Level Formal BPMs For MAS Development 43

model (at least for a high level abstract one) to an IP because the properties defined

in the process model is a subset of that in the IP as we noted earlier and the gap be-

tween the process model and the IP is too huge to be bridged, human intervention in

the process of IP modelling is crucial in this framework.

3.5 Property Checking Model

A property checking model is a product that is produced by a system modeller which

can then be translated to concrete IPs automatically. The reason why a system mod-

eller needs to first produce a property checking model rather than producing concrete

IPs directly is because that not all the protocol describing languages could express

properties or temporal relations between dialogues that are taking place among sets

of agents clearly. For instance, LCC describes dialogues based on the viewpoint of

each agent, which makes it very hard to discover the temporal orders of properties

defined in requirements that often specify temporal relations between agents. In or-

der to facilitate protocol property checking and separate the checking method from a

particular protocol language, we define a simple MAS interaction protocol modeling

language: Simple Protocol Properties Checking(SPPC) Language to help. A SPPC

protocol model is built based on the message passing taking place between two agents

and the constraints associated with the message. The temporal orders of messages can

also be expressed by SPPC.

• Representing a message in SPPC:Any message defined in SPPC model is

defined by a tuple:

– msg(ID,preconditions, message body, postcondition, sender, receiver)

where amessage bodyonly can be sent out from itssenderwhen itsprecondi-

tion holds and can cause certain effects(postcondition) when it is received by its

receiver.

• Temporal order between messages:AthenBmeansBoccurs afterA. Invoke(A)

means thatA occurs while being invoked, which is used to represent loops.

• Junctions: A junction is a control point in SPPC model. There are two types of

junctions:”Par” and ”Or” . The two junctions define a one-to-many relationship

between connected messages and indicate conjunction and disjunction points of

a SPPC model.

Chapter 3. Using High Level Formal BPMs For MAS Development 44

The syntax of SPPC is as follows:

SPPCModel ::= {De f, ...}
De f ::= Message|De f thenDe f|De f orDe f|De f parDe f|invoke(mid)

Message ::= msg(mid, pre(C),mb(Term), post(C),Agent,Agent)

pre(C) ::= Term|pre(C)∧ pre(C)|pre(C)∨ pre(C)

post(C) ::= Term|post(C)∧ post(C)|post(C)∨ post(C)

Agent ::= sender(a(Type, ID))|receiver(a(Type, ID))

C ::= Term

Condition ::= Term

mb(Term) ::= Term

Type ::= Term

mid ::= Constant

lid ::= Constant

ID ::= Constant

SPPC is developed only for the purpose of MAS protocol property checking. In other

words, it is not a protocol language that is intended to use by agents directly. However,

the SPPC protocol can be translated into concrete protocols that are described by other

formal protocol description languages such as LCC etc.

3.6 Formal Representations: FR1 and FR2

Formal representation 1 and formal representation 2 are linear temporal logic represen-

tations derived from the process model and property checking model respectively and

are identical in the phase of SPPC model verification. If they are temporally identi-

cal, we can conclude that the property checking model(system specification) is strictly

consistent with process model(requirement) functionally.

Linear temporal logic is a logic with a notion of time included. The formulas

can express facts about past, present, and future states. Definitions of sets of typical

temporal logic operators are given below:

Chapter 3. Using High Level Formal BPMs For MAS Development 45

ϕ ϕ is true in all future moments

3ϕ ϕ is true in some future moment.

©ϕ ϕ is true in the next moment in time

ϕUψ ϕ is true upuntil some future moment whenψ is true

Table 3.1: Basic Syntaxes of Linear Temporal Logic

3.6.1 Deriving representation 1 (FR1) from the process model

[
primary activity

(
ID,Role, [Precondition1, ...Preconditionm], [Input1, ..., Inputn],

[Out put1, ...,Out putx], [Postcondition1, ...Postconditiony]

)]

⇓

Ai =

[
(
∧m

i=0associate(Role,Preconditioni))∧ (
∧n

i=0associate(Role, Inputi))

→3(
∧x

i=0associate(Role,Postconditioni))∧ (
∧y

i=0associate(Role,Out puty))

]

The notationprimay activityabove defines a primary activity in process model.

• ID, role, preconditions, inputs, postconditions, outputsare properties associated

with it.

• The symbol⇓ means that the term above it can be expressed by the temporal

logic clauses below it.

• Predicateassociate(Role,Properties)defines the association of role and proper-

ties in an activity.

• ∧m
i=0associate(Role,Property) represents the association of an activity’s prop-

erty and the role that should perform this activity.

• For simplicity, all the activities from a business process model are represented

by the symbolAi wherei ∈ [0,∞).

The temporal logic clause shown above indicates that the conjunction ofprecon-

ditions and Inputscan always imply the conjunction ofpostconditions and outputsat

some future time.

Beside the temporal relations between the properties defined for individual activ-

ities, a process model also defines the temporal order of different activities. The no-

tation link indicates how the activities from a process model are connected. Different

Chapter 3. Using High Level Formal BPMs For MAS Development 46

Link Notations Linear Temporal Logic Clauses

link(ID,PrecedenceLink,A1,A2) A1∧3A2

link(ID,or,A1,{A2,A3, ...,Ai}) A1∧3(A2∨A3∨ ...,∨Ai)

link(ID,and,A1,{A2,A3, ...,Ai}) A1∧3(A2∧A3∧ ...∧Ai)

Table 3.2: Representing link notations with linear temporal logic

link types are given in Table 3.2, such asPrecedenceLink which represents a sequen-

tial time order between two activities. Table 3.2 also shows how the temporal rela-

tions defined by links in a business process model can be expressed as temporal logic

clauses.

The linear temporal logic clauses derived for representing the temporal order be-

tween two activities are normally in relatively complex forms as follows, for sim-

plicity, we use
∧n

i=0Pi to represent the properties defined for an activity, whereP ≡
assoicate(Role,Properties):

(
∧n

i=0Pi →3
∧m

j=0P j)∧3(
∧o

k=0Pk →3
∧p

l=0Pl)

In the above clause,
∧n

i=0Pi → 3
∧m

j=0P j on the left hand side of∧3 represents an

activity (A1) and
∧o

k=0Pk → 3
∧p

l=0Pl on the right hand side represents the activity

that is defined in a process model right afterA1 in a sequential order. However, the

above clauses can not be easily used for automated reasoning as basic units. In order

to facilitate the reasoning process, the rules shown in Figure 3.3 are used to re-write

the complex temporal logic clauses into simple ones. SymbolsAi andBi used in the

rules means the conjunctions of properties defined for process activities.

The rewriterule1 is used to represent the sequential temporal relation between two

activities using the temporal relation between certain properties. The basic rationale

underlying this rule is that the temporal order between two activities(LR) on the left

hand side of⇒ can be expressed by the time order between theout put∧ postcondition

of former activity and theinput∧ preconditionof latter activity. The notationID i used

above is important for run time property checking. The order ofi defined for the

clauses’IDs must be in a lexicographical order so that we know where to start when

we perform the property checking. When performing property checking, the three

clauses(RR) derived usingrule1 on the right hand side of⇒ are checked one by one

strictly according to theID i associated with them. The original clause(LR) will be

proved only when all of the three clauses are proved.Rule2 andrule3 defined are used

to represent the parallel and choice relations between sets of activities using relations

Chapter 3. Using High Level Formal BPMs For MAS Development 47

(P →3P1)∧3(P2 →3P3)⇒
[

clause(ID0,P →3P1),

clause(ID1,P2 →3P3)

]
(rule1)

(P →3P0)∧3((P1 →3P2)∧ ...∧ (Pn →3P2n))⇒




clause(ID0,P →3P0),

clause(ID1,P0∧3P1),

clause(...),

clause(IDn,P0∧3Pn),

clause(IDn+1,P1 →3P2),

clause(...),

clause(ID2n,Pn →3P2n)




(rule2)

(P →3P0)∧3((P1 →3P2)∨ ...∨ (Pn →3P2n))⇒




clause(ID0,P →3P0),

clause(ID1,(P0∧3P1)∨ ...∨ (P0∧3Pn)),

clause(ID2,P1 →3P2)

clause(...),

clause(IDn,Pn →3P2n)




(rule3)

Figure 3.3: Rules for rewriting complex linear temporal logic clauses

between properties. The re-writing principles forrule2 andrule3 are the same as for

rule1.

After performing the re-write rules, all the temporal logic clauses derived from a

business process model are of the following form:

LinearTemporal Representations::= {Clause, ...,Clause}
Clause ::= clause(ID,

∧n
i=0 Pi)|

clause(ID,
∧n

i=0 Pi →3
∧m

j=0 P j)|
clause(ID,

∧n
i=0 Pi ∧3

∧m
j=0 P j)|

clause(ID,
∨n

i=0(
∧n

i=0 Pi ∧3
∧m

j=0 P j))

P ::= associate(Role,Property)

ID ::= start|end|Term

start ::= Term

end ::= Term

Role ::= Term

Property ::= Term

A business process model might also contain composite activities that are com-

posed of several primary activities by different links. Using the approach proposed

above, a composite activity can also be represented by linear temporal logic clauses.

Chapter 3. Using High Level Formal BPMs For MAS Development 48

Because after a composite activity is translated into linear temporal logical clauses, the

relationships between its sub-activities are processed in the same way that is used for

processing primary activities.

3.6.2 Deriving formal representation 2 (FR2) from the property check-

ing model

In a SPPC model, each message may have preconditions or post-conditions or both.

The time relation between them is clear. The preconditions of a message must hold

before the message can be sent out and the postcondition cannot effect until the mes-

sage is received. The relationship between two messages is exactly the same as the

relationship between two activities in a process model. Thus, a SPPC model can be

represented by temporal logic clauses using the following mapping:
[

msg(pre([A1, ...,Am]),mb([B1, ...,Bn]), post([C1, ...Cx]),sender(Role), receiver(Role1))
]

⇓

Msgi =




∧m
i=0associate(Role,Ai)

→3







∧n
i=0associate(Role,Bi))

∨
(
∧n

i=0associate(Role1,Bi))


→3

∧x
i=0associate(Role1,Ci)







One point that has to be mentioned here is the association of properties and roles in a

SPPC model. It is clear that the properties defined in the precondition of a message

should be associated with the message sender and the properties in postcondition of a

message should be associated with message receiver, whereas the properties defined in

the message body are associated with both message sender and receiver in the MAS

protocol. Therefore, in the formal representation derived from it, we have to specify

this explicitly to make sure that the right properties are associated with the right roles.

Table 3.3 shows how the temporal relations defined between messages in a SPCC

model can be expressed by linear temporal logic clauses.

SPPC links Linear Temporal Logic Clauses

Msg1 thenMsg2 Msg1→3Msg2

Msg1 parMsg2 Msg1∧Msg2

Msg1orMsg2 Msg1∨Msg2

Table 3.3: Representing SPPC link notations with linear temporal logic

Chapter 3. Using High Level Formal BPMs For MAS Development 49

By applying the above rules, a SPPC model can be expressed by linear temporal

logic in following forms:

LinearTemporal LogicRepresentations::= C

C ::= C1 →3C2|Msg|Msg1 →3Msg2|
Msg1∧Msg2|Msg1∨Msg2

3.7 Performing Property Checking

3.7.1 Issues for role checking

After representing both process model and SPPC model in linear temporal logic clauses,

the relationships between properties can be derived and checked. However, another

issue we have to check in the process model when performing protocol modelling is

whether the right properties are associated with the right roles or not. In a conventional

high level business process model, every activity can only have one role performing

on it for a given business scenario. However, since a MAS interaction protocol model

describes extra system information, which may bring new roles in. Intuitively, if the

role specified in the predicateassociatein requirement is also specified in protocol

specification (or can be matched to the role specified in process model) and the proper-

ties associated with it are the same, we can conclude that the properties are associated

with right role in the final protocol. The assumption we make here is that an ontology

of roles is already available.

3.7.2 Temporal order checking

As explained earlier, both a business process model and a SPPC model can be ex-

pressed by temporal logic clauses. In principle, we can thus prove whether or not the

temporal relationships defined between the properties in a business process model can

be implied by those functional properties that are defined in a SPPC model.

In preparing a problem for our properties checking process, we need to divide our

knowledge into three parts:

• A set of clauses known as thegoals, which defines that goals that need to be

proved. For our problem, the goals are the linear temporal logic clauses (LTL1)

derived from business process model.

• A set of clauses known as theset of support (or sos), which defines the impor-

tant facts about our problem. Every resolution step resolves a member of the set

Chapter 3. Using High Level Formal BPMs For MAS Development 50

of support against another axiom, so the search is focused on the set of support.

For our domain, the set of support it the linear temporal logic clauses (LTL2).

• A set of rewrites applied on SPPC generated linear temporal clauses. Rewrites

are not equations, they are always applied in the left to right direction. The

rewrites that are used for our problem are as follows:

(A→3(A1 →3A2)
A→2A−−−−→ ((A∧A1)→3A2) (Ai ≡∧n

i=1 Pi) (rule1)

(A→3(A1 →3A2)
A1→2A1−−−−−→ (A→3(A1∧A2)) (Ai ≡

∧n
i=1 Pi) (rule2)

(A1 →3((A2∨A3)→3A4))
LTL2|=A2−−−−−→ (A1 →3(A2 →3A4)) (Ai ≡∧n

i=1 Pi) (rule3)

(A1 →3((A2∨A3)→3A4))
LTL2|=A3−−−−−→ (A1 →3(A3 →3A4)) (Ai ≡∧n

i=1 Pi) (rule4)

Rule1 andrule2 eliminate parts of the time relationships between several prop-

erties. IfA1 appears afterA andA2 appears afterA1, by applyingrule1, we can

conclude that after we get propertyA, we will get propertyA1 andA2 in some

future time. On the other hand, by applyingrule2, we can conclude that after we

get propertyA andA1, in some future time we will have propertyA2. These two

rules are used to deal with the circumstances where the conjuncted properties

for a activity defined in a business process model are used separately in SPPC

model for different messages.

For example, if two properties (A andA1) are defined for a primary activity as in-

puts and a propertyA2 is defined as its output, based on our proposed translation

principle in previous sections, we will get:

clause(ID i ,(A∧A1)→3A2)

However, in a manually produced SPPC model, these three properties might be

used in the manner:

msg(pre([...]),mb(A), post([...]),sender(...), receiver)

then

msg(msg(pre([...]),mb(A1), post([...]),sender(...), receiver)

then

msg(pre([...]),mb(A2), post([...]),sender(...), receiver)

which after translation, would give us two clauses as follows:

clause(ID i ,A→3(A1→ A2))

Chapter 3. Using High Level Formal BPMs For MAS Development 51

By applyingRule2, we could say that the functional properties are used consis-

tently in SPPC with way that they are used in a business process model.Rule3

andRule4 are used to deal with the properties’ roles checking.

The algorithm for the functional properties based checking is given in Figure 3.4,

which works in the following manner:

• All the clauses(goal)derived from a business process model are processed one

by one based on theirIDs’ order.

• If a clause is in a form ofgoal1 → 3goal2, goal1 will be proved first using the

clausesderived from the SPPC model and so will begoal2 if goal1 is proved.

• If a clause is in a form of
∨n

i=0goali , all the goali will be proved one by one

using theclausesderived from the SPPC model.

procedurepropertieschecking(sos,goal)

inputs: sos, linear temporal logicclauessderived f romaSPPCmodel

goal,alist that stores linear temporal logicclauessderived f romabusienss processmodel

output: true,false

while(goal isnot empty)

f etchthe f irst element(goal1)

if (goal1 is inthe f ormo f(goal2 →3goal3)or (goal2∧3goal3))

prove(sos,goal2,goal3),

if (goal2 is proved)

prove(sos,goal3,goal3)

if (goal3 is proved)

reture true

else

return false

else

return false

else if(goal1 is inthe f orm
∨n

i goali

for (i inn)

propertieschecking(sos,goali)

Chapter 3. Using High Level Formal BPMs For MAS Development 52

procedureprove(sos,goal1,goal2)

inputs: sos, linear temporal logicclauessderived f romaSPPCmodel

goal1, is inthe f ormo f
∧n

i=0associate(Role,Pi)

goal2, isused tode f end the timeorderbetween properties(
∧n

i=0associate(Role,Qi))

if (goal1 6= goal2)

while(Pi in
∧n

i=0associate(Role,Pi)arenot all proved)

if (sos|= Pi)&& (sos2 anyQi ingoal2)

continue

else

return false

else

while(Qi in
∧n

i=0associate(Role,Qi)arenot all proved)

if (sos|= Qi)

continue

else

return false

Figure 3.4: Basic algorithm for property checking

3.8 Generating a MAS Interaction Protocol (LCC) From

a SPPC Model

Although the main components of both SPPC and LCC aremessages and constraints,

they are built on different concepts. With LCC, the MAS interaction protocol is defined

from the views of different agents where each agent has its own behavior definitions,

whereas with SPPC, the protocol model is built based on the message passing, which

means that the SPPC model is viewed from the aspect of messages but not agents.

However, from the notations of SPPC and LCC we can see that SPPC is eventually

a subset of LCC, so a SPPC model does contain all the information that we need to

construct a corresponding LCC protocol.Message body, sender and receiverfrom

SPPC model together indicate the message being passed and direction of it in LCC.

Junctionsin SPPC can be used as LCCoperators.

The notationinvokein a SPPC model indicates the ending point of the loop and the

parameter of it indicates the the starting point of that loop. When translating a SPPC

model with loops to a LCC protocol, all the messages betweeninvokeand the message

being invoked can be extracted to define the behaviors of a new role for loop, as long

Chapter 3. Using High Level Formal BPMs For MAS Development 53

as the message invoked is not the first message defined for that agent.

One important issue about SPPC modelling is that role dependency between SPPC

clauses must be addressed. Role dependency means that two adjacent SPPC clauses

connected by athenoperator need to have a same role defined in them if such a SPPC

model is expected to be used for the generation of a LCC protocol as shown below:

msg(MID,mb(...),sender(a(Role, ID)), receiver(a(Role2, ID1)))

then

msg(MID1,mb(...),sender(a(Role3, ID3)), receiver(a(Role, ID)))

...

In contrast, the clauses shown below are not translatable, although they might be ratio-

nal:
msg(MID,mb(...),sender(a(Role1, ID1)), receiver(a(Role2, ID2)))

then

msg(MID1,mb(...),sender(a(Role3, ID3)), receiver(a(Role4, ID4)))

...

The issue of role dependency arises due to the coordinating mechanism of LCC and

the potential system architecture that we are trying to achieve. For agents that use

LCC protocol for coordination, as we have explained, they have no knowledge of what

the coordinating process is until they receive the LCC protocol that contains the states

of the whole system. If two messages are sent by two agentsa1,a2 to two different

agentsa3,a4 at the same time respectively, two separate LCC protocols containing

different system states are sent out also. Thus it is quite hard to keep track on the

whole system states later on unless there is a centralised coordinator which is what we

try to eliminate.

To deal with such cases, the SPPC model has to be pre-processed before being

translated to the LCC framework by correcting the role dependencies. For example,

after pre-processing, the above SPPC clauses become:

msg(MID,mb(...),sender(a(Role1, ID1)), receiver(a(Role2, ID2)))

then

msg(MID2,mb(run this),sender(a(Role2, ID2)), receiver(a(Role3, ID3)))

then

msg(MID1,mb(...),sender(a(Role3, ID3)), receiver(a(Role4, ID4)))

...

The messagerun this defined above only serves as a connector. Thus, each message

has role dependencies with its adjacent siblings. For different SPPC junctions, the pre-

processing mechanism is different, the algorithm for pre-processing a SPPC model for

later translating is given in Figure 3.5

Chapter 3. Using High Level Formal BPMs For MAS Development 54

procedureseuqenceprecessor(M1,M2,M3)

inputs: M1,M2, twoelement conencted bya′′then′′operator

outputs:M3,a processed model withall o f itsclausesroledependent oneachother

if (M1 isamessage)&& (M2 isamessage)

if (M1and M2doesn′t containat least onesamerole)

generateanewmessage(TM)usingreceviero f M1assenderand sendero f M2asreceiver

M3 = M1 thenTM thenM2

else

M3 = M1 thenM2

else if(at least oneo f M1and M2 isaor/parstructure)

or/par precessor(M1,M2,M4)

M3 = M4 thenM2

else if(M1 isamessage)&& (M2 isa′′invoke(mid)′′)

f ectchtheSPPCmessage(M4) that identi f ied bymid

if (agents involved inM1don′t containthesendero f M4)

insert anewmessage(M5)betweenM1and invoke(mid)

usingreceivero f M1asitssenderand sendero f M4asitsreceiver

M3 = M1 thenM5 theninvoke(mid)

procedureor/par precessor(M1,M2,M3)

inputs: M1,M2, twoSPPCelement whichcanbeamessageoraor/parstructure

outputs:M3,a processed SPPCelement withall o f itsclausesroledependent oneachother

if (M1 isamessage)&& (M2 isaor/parstructure)

processmsgor/par(M1,M2,M3)

if (M1 isaor/parstructure)&& (M2 isamessage)

processor/par msg(M1,M2,M3)

if (M1 isaor/parstructure)&& (M2 isaor/parstructure)

processor/paror/par(M1,M2,M3)

procedureprocessmsgor/par(M1,M2,M3)

inputs: M1,M2, twoSPPCelementswhich isamessageand aor/parstructurerepectively

outputs:M3,a processed SPPCelement f romM1withall o f itsclausesroledependent oneachother

initiatea list(L)

for (the f irst element(E)o f eachbrancho f M2)

if (M1and E doesn′t containat least onesamerole)

generateanewmessage(TM)usingreceviero f M1assenderand sendero f E asreceiver

put TM inL

M3 = M1

while(Lisnot empty)

f etchthe f irst element(M5) inL

M3 = M4 thenM5

Chapter 3. Using High Level Formal BPMs For MAS Development 55

procedureprocessor/par msg(M1,M2,M3)

inputs: M1,M2, twoSPPCelementswhich isaor/parstructureand amessagerepectively

outputs:M3,a processed SPPCelement f romM1withall o f itsclausesroledependent oneachother

for (eachbranch(B)o f M1)

pre− precessor(B,B1)

retrievethe last element(E)o f B1

if (E isnot a invoke(mid))&& (E and M2doesn′t containat least onesamerole)

generateanewmessage(TM)usingreceviero f E assenderand sendero f M2asreceiver

replaceE inB1with′′E thenTM′′

put B1 inL

f etchthe f irst element(M5) inL

M3 = M5

while(Lisnot empty)

f etchthe f irst element(M6) inL

M3 = M3or/parM6

procedureprocessor/par or/par(M1,M2,M3)

inputs: M1,M2, twoSPPCelementswhicharetwoor/parstructures

outputs:M3,a processed SPPCelement f romM1withall o f itsclausesroledependent oneachother

initiatetwolists(L,L1)

for (eachbranch(B)o f M1)

pre− precessor(B,B1)

retrievethe last element(E)o f B1

for (the f irst element(E1)o f eachbracho f M2)

if (E isnot a invoke(mid))&& (E and E1doesn′t containat least onesamerole)

generateanewmessage(TM)usingreceviero f E assenderand sendero f E1asreceiver

put TM inL

M6 = E

while(Lisnot empty)

f etchthe f irst element(M5) inL

M6 = M6 thenM5

replaceE withM6 inB1

put B1 inL1

f etchthe f irst element(B2) inL1

M3 = B2

while(L1 isnot empty)

f etchthe f irst element(B3) inL

M3 = M3or/parB3

Figure 3.5: Algorithm for pre-processing a SPPC model

Chapter 3. Using High Level Formal BPMs For MAS Development 56

The underlying principles of the above algorithm are:

1 > If two SPPC messages (A and B) are connected by ”then” and they don’t have

at least one same role defined, then a new message (C) is inserted after A and

before B (AthenCthenB) usingrun this as its message body , the receiver of A

as its sender and the sender of B as its receiver.

2 > If a SPPC message (A) and a SPPC or/par structure (B) are connected by ”then”,

the first basic SPPC message(Ci) of each branch of B is compared with A and

according to the roles defined in them, a list of new SPPC messages (Mn) are

generated and put after A (AthenM1 then... thenMn).

3 > If a SPPC or/par structure (A) and a SPPC message (B) are connected by ”then”,

the last basic SPPC message(Ci) of each branch of A are compared with B and

according to the roles defined in them, a list of new SPPC messages (Mn) are

generated and put afterCi (Ci thenMn) and all the branches of A are also pro-

cessed using the algorithm.

4 > If a SPPC or/par structure (A) and a SPPC or structure (B) are connected by

”then”, the last basic SPPC message(Ci) of each branch of A are compared with

the first basic SPPC message (Di) of each branch of B and according to the roles

defined in them, for eachC in Ci , a list of new SPPC messages (Mn) are generated

and put afterC (CthenM1 then... thenMn).

Figure 3.6: Inserting connect message for different SPPC structure

Chapter 3. Using High Level Formal BPMs For MAS Development 57

The diagram shown in Figure 3.6 illustrates the above message insert principles,

where solid cycles represent the existing SPPC message node, arrows representthen

operator and dashed cycles represent the new message nodes that need to be inserted

in the SPPC model.

In LCC, the only way to represent loops is through use of a(Role,ID).

a(Role, ID) :: M ⇒ a(Role1, ID1) thena(Role, ID)

For example, the above LCC clause represents a repeated message sending froma(Role, ID)

to a(Role1, ID1). In this way, everything defined fora(Role, ID) is executed repeat-

edly. However, if we only want parts of the definition of an agent get executed in a

loop manner, a new role must be invented for this purpose as follows:

a(Role, ID) :: M ⇒ a(Role1, ID1) thena(loop(Role), ID)

a(loop(Role), ID) :: M1 ⇒ a(Role2, ID2)

What the above LCC protocol means is that agenta(Role, ID) keeps sending a message

M1 to agenta(Role2, ID2) after it sends a messageM to agenta(Role1, ID1). The role

a(loop(Role), ID) is purely defined for the purpose of repeated message sending of

M1.

In a SPPC model, we use the combination ofinvoke(mid) andmsg(mid, ... to rep-

resent a loop, which has to be translated into a LCC compatible fashion. The loop

processing algorithm in Figure 3.7 shows how to pre-process the all the loops defined

in a SPPC model.

procedureprocessloops(SM,SMn)

inputs: SM,aoriginal SPPCmodel

outputs:SMn,aSPPCmodel that iswithall o f rolesthat arerelativeto loopsreplaced

f ind the f irst SPPCmessage(M1) that leadstoa loopand theinvoke(mid) that pointsto it

extract theSPPCmodel(SM1)betweenthem

all theroles(a(R, ID))de f ined inSM1havetobereplaced witha(loop(R), ID)

processloops(SM1,SMn)

Figure 3.7: Algorithm For pre-processing all the loops defined in a SPPC model

The algorithm for generating a LCC protocol from a processed SPPC model is shown

in Figure 3.8.

Chapter 3. Using High Level Formal BPMs For MAS Development 58

proceduregenerator(SM,List)

inputs: SM,aSPPCmodel that isused toderiveaLCC protocol

outputs:List,aLCC protocol list that storesgenerated LCC protocol f romthegivenSPPCmodel

extract all theagents(a(Ri,iεI , ID i))de f ined intheSM and put theminalist−L = [a(Ri , ID i)]

while(L isnot empty)

f etchthe f irst element(a(Ri , ID)) inL
generate(a(Ri , ID),SM,LMi ,List1)

put LMi inList

List = mergeList1and List

proceduregenerate(a(Ri , ID),SM,LMi ,List)

inputs: a(Ri , ID), isanagent that wearegoingtogenerateaLCC protocol f or

SM,aSPPCmodel that isused toderiveaLCC protocol

outputs:LMi ,aLCC protocol that isgenerated f romthegivenSPPCmodel f ora(Rolei , ID)

List,aLCC protocol list that storesgenerated LCC protocol f romthegivenSPPCmodel

if (SM is inthe f ormo f SMi OPSMi+1)

generate(a(Ri , ID),SMi ,LMn,List)

generate(a(Ri , ID),SMi+1,LMn+1,List)

if (LMn = null && LMn+1 6= null)

LMi = LMn+1

else if(LMn 6= null && LMn+1 = null)

LMi = LMn

else if(LMn 6= null && LMn+1 6= null)

LMi = LMnOPLMn+1

else if(SM isaSPPCmessage(M1))

if (M1containsRi)

LMi = LMn

else if(SM containsaa(loop(Ri), ID))

LMi = a(loop(Ri), ID)

extract the invoke(mid) that pointstoM1and extract the

SPPCmodel de f ined betweeninvokeand M1(SM1)

generator(SM1,LMi ,List)

Figure 3.8: Algorithm for deriving a LCC protocol from a SPPC model

Chapter 3. Using High Level Formal BPMs For MAS Development 59

3.9 A Simple Case Study

We will use a simple example to illustrate how our framework is used to verify an

IP protocol(LCC) based on a business process model. The business process model in

Figure 3.9 shows an very simple printing process from the view of theSalesrole. The

primary activity

(
A1,sales, Input SalesOrder, precondition([getInput(X)]), input([]),

out put([saleOrder(X)]), postcondition([])

)

primary activity

(
A2,sales,Print SalesOrder, precondition([validInput(X)]), input([]),

out put([]), postcondition([printed(saleOrder(X))])

)

link(precedencelink,start,A1)

link(precedencelink,A1,A2)

link(precedencelink,A2,end)

Figure 3.9: Sales order printing process

formal representation of the business process model is defined above. There are two

primary activities in this model which areinput salesorder andprint salesorder and

each of them has several functional properties as shown in table 3.4. The business

Property Input Sales Order Print Sales Order

Precondition getInput(X),validInput(X) null

Input null saleOrder(X)

Postcondition null printed(saleOrder(X))

Output saleOrder(X) null

Table 3.4: Functional Properties of Primary Activities in Sales Order Printing Process

process model is represented as follows using linear temporal logic: A possible multi-

associate(sales,getInput(X)),

associate(sales,validInput(X)),

associate(sales,saleOrder(X))

associate(sales, printed(saleOrder(X))),

clause(A1,associate(sales,getInput(X))∧associate(sales,validInput(X))→3associate(sales,saleOrder(X))),

clause(A2,associate(sales,saleOrder(X))→3associate(sales, printed(saleOrder(X)))),

agent platform that is used to realise the above business process model is illustrated

Chapter 3. Using High Level Formal BPMs For MAS Development 60

Figure 3.10: AUML model for sales order printing process

in Figure 3.10 using an AUML model which expresses the message passing sequence

between several agents.

The SPPC model for this scenario is given below. It might be noticed that in the

msg(m.1,mb(getInput(X)),sender(a(i1, Inputdevice)), receiver(a(s1,Sales)))

then

msg(m.2, pre(validInput(X)),mb(saleOrder(X)),sender(a(s1,Sales)), receiver(a(p1,Printer)))

then


msg(m.3,mb(printed(saleOrder(X))),sender(a(p1,Printer)), receiver(a(s1,Sales)))

or


msg(m.4, pre(err(Y)),mb(askForHelp(Help)),sender(a(p1,Printer)), receiver(a(a1,Admin)))

then

msg(m.5,mb(response(Help)),sender(a(a1,Admin)), receiver(a(p1,Printer)))

then

msg(m.6,mb(f ailed(saleOrder(X))),sender(a(p1,Printer)), receiver(a(s1,Sales)))

then

invoke(m.2)







SPPC model shown above there are several agents which are not defined in the example

business process model. The reason for this is that when we build a multi-agent system

we try to use the existing agents as much as possible instead of building new ones

to fit the input business process models every time. Thus, we have to consider the

availabilities of the agents we needed and the capabilities of those agents. The scenario

we try to handle is that all the agents that coordinate to perform the system are already

available. In our example, agentsInputdevice, Sales, Printer, Adminare picked up by

MAS protocol modeler to perform the intended business process model. The linear

temporal logic clause derived from the above SPPC model is:

Chapter 3. Using High Level Formal BPMs For MAS Development 61

(associate(inputDevice,getInput(X))∨associate(sales,getInput(X)))→3


(associate(Sales,vaildInput(X))→3(associate(Sales,saleOrder(X))∨associate(Printer,saleOrder(X))))→3


(associate(Printer, printed(saleOrder(X)))∨associate(Sales, printed(saleOrder(X))))→3


associate(Pinter,err(Y))→3

(
associate(Printer,askForHelp(Help))∨
associate(Admin,askForHelp(Help))

)
→3

(associate(Adminresponse(Help))∨associate(Printer, response(Help)))→3


(associate(Printer, f ailed(saleOrder(X)))∨associate(sales, f ailed(saleOrder(X))))→3(
associate(Sales,validInput(X))→3

(
associate(Sales,saleOrder(X))∨
associate(Printer,saleOrder(X))

))












The linear temporal logic representations derived from the example business pro-

cess model and SPPC model are then matched using the algorithm proposed in section

3.7. The final LCC protocol derived from SPPC model after the verification is as fol-

lows:

a(i1, Inputdevice) :: getInput(X)⇒ a(s1,Sales) thena(i1, Inputdevice).

a(s1,Sales) :: getInpux(X)⇐ a(i1, Inputdevice) thena(loop(X),Sales).

a(loop(X),Sales) :: saleOrder(X)⇒ a(Printer, p1)← validInput(X) then
 (printed(saleOrder(X))⇐ a(p1,Printer) thena(s1,Sales))or(

f ailed(saleOrder(X))⇐ a(p1,Printer) thena(loop(X),Sales)
)


 .

a(p1,Printer) :: saleOrder(X)⇐ a(loop(X),Sales) then


printed(saleOrder(X))⇒ a(loop(X),Sales)or


askForHelp(Help)⇒ a(a1,Admin) then

response(Help)⇐ a(a1,Admin) then

f ailed(saleOrder(X))⇐ a(loop(X),Sales) thena(p1,Printer)







.

a(a1,Admin) :: askForHelp(Help)⇐ a(p1,Printer) thenresponse(Help)⇒ a(p1,Printer)

3.10 Prototype Implementations

The prototyping system for supporting the proposed framework is demonstrated in this

section. It helps system modellers to build SPPC models, check the relationships of the

functional properties defined in the input process model and then translate the SPPC

model to LCC protocol automatically. The system consists of three parts which are

discussed in the following sub-sections.

Chapter 3. Using High Level Formal BPMs For MAS Development 62

3.10.1 SPPC modeller

SPPC modeller is used for building a SPPC model. It provides a graphical interface,

by which a SPPC model can be build using graphical notation and then can be trans-

lated into linear temporal logic clauses for verification purpose using verifier or can be

translated into a concrete LCC protocol using LCC protocol generator. The snapshot

of it is given in Figure 3.11. This unit is adopted from the general graphical modelling

tool INGENIAShttp://ingenias.sourceforge.net/.

Figure 3.11: Business process model based MAS protocol IDE

Chapter 3. Using High Level Formal BPMs For MAS Development 63

A SPPC model generated as a graph by this definition tool can be converted into

XML format and saved as an XML file automatically as shown in Figure 3.12

Figure 3.12: XML representation of a SPPC Model

3.10.2 Verifier

Verifier is responsible for matching the two sets of linear temporal logic clauses de-

rived. It takes a business process model and a SPPC model as its inputs, translates

them into linear temporal representations respectively and then tries to match them.

The matching process is carried by automated theorem proving. We use SISCtus Pro-

log (http://www.sics.se/isl/sicstuswww/site/index.html) for the implementation of the

verifier. All the linear temporal logic clauses derived from a business process model

and a SPCC model can be directly mapped to the facts in prolog. The verifier interacts

with the SPPC modeller using SISCtus Jasper. Figure 3.13 shows the verification of

the SPPC model that we used in case study section.

Chapter 3. Using High Level Formal BPMs For MAS Development 64

Figure 3.13: Verification of a SPPC model

3.10.3 LCC protocol generator

The LCC protocol generator is used to generate LCC protocols from given SPPC mod-

els. After a SPPC model is verified by the verifier, it can be translated automatically to

a LCC protocol. The snapshot of LCC generator is shown in Figure 3.14.

Figure 3.14: LCC protocol generator

3.11 Discussion

With our framework, the temporal relationships of all the functional properties defined

in a business process model can be checked when those properties are used in the

Chapter 3. Using High Level Formal BPMs For MAS Development 65

property checking model. Therefore, the system modeller no longer needs to worry

about what process the functional properties are associated with, but instead, he/she

only needs to care about the temporal relations between the properties being used in

his/her protocols. Although in the final protocol it is still hard to get an overall view of

the business transactions defined in the given process model, the protocol does perform

the task that the process model intends to do. Thus high level business process models

can be bridged down to IP and can lead to many totally different IP by different system

modellers according their preferences.

With our framework, the process model is used as requirement and all the prop-

erties defined in it will be verified computationally. It helps the system modeller to

generate the right design at the end of the IP modelling process. Thus, in the late test-

ing phase, we only need to concentrate on system level errors without considering any

problems from the requirement level, which largely reduces the amount of properties

that need to be checked and thus promotes the efficiency of IPs construction.

In an evolutional environment (where requirements change), our framework has

an advantage over other software engineering approaches. Any change to the require-

ments(process models) will be immediately reflected in the temporal logical represen-

tation so that inconsistencies between the new process model and old property check-

ing model can be discovered and fixed by a system modeller according to the system’s

suggestions.

3.12 Summary

In this section, We propose a framework for modeling multi-agent system protocols

starting from a high level process model. With our framework, a process model can

be used as a base for protocol properties’ verification. A simple language SPPC is de-

fined for property checking purposes and any protocol model defined by SPPC can be

translated into an existing protocol language(in this case LCC). Using our framework,

much effort can be saved in the process of MAS protocol modeling since requirements

level errors can be discovered using automatic verification, which is different with the

typical protocol modeling engineering method. Furthermore, using our approach, any

revision to an existing protocol can also be checked in real time to make sure all the

business logic level changes are correct and compatible with the former specification.

Chapter 4

Using Executable Formal BPMs For

MAS Development Via Language

Mapping

Chapter 3 discussed how to bridge from high level business process models to multi-

agent interaction protocols so that existing formal business process models can be

adopted in the development of multi-agent system. As well as high level business

process models, executable business process models have been well developed and

used in conventional workflow management system. Based on the three layer con-

ceptual framework introduced, executable business process models and multi-agent

interaction protocols are at the same conceptual level (implementation level) as shown

in Figure 4.1:

Figure 4.1: From executable formal BPMs to IPs

Since executable BPMs are at the same conceptual level as MAS IPs, they con-

66

Chapter 4. Using Executable Formal BPMs For MAS Development Via Language Mapping67

tain enough information on both business level requirements and system level require-

ments to make automatic generation of MAS IPs possible. In this chapter, we will

discuss how to connect executable business process models and MAS IPs via language

mapping technique in detail by performing it between two concrete specification de-

scription languages (BPEL4WS and LCC). In section 4.1, the necessary background

knowledge of BPEL4WS is given. Section 4.2 gives the detailed syntax translation

from BPEL4WS to SPPC using language mapping techniques, in which the main con-

cepts that are involved in almost all conventional business process modelling languages

are considered. A simple case study is given in section 4.3 to help in understanding of

the approach proposed in this chapter. The problems that we encountered during the

language mapping are discussed in section 4.4.

4.1 Background Knowledge Of BPEL4WS

The Business Process Execution Language for Web Services (abbreviated to BPEL4WS)

is a notation for specifying business process behaviour based on Web Services. Pro-

cesses in BPEL4WS export and import functionality by using Web Service interfaces

exclusively. Business processes can be described in two ways. Executable business

processes model actual behaviour of a participant in a business interaction. Business

protocols, in contrast, use process descriptions that specify the mutually visible mes-

sage exchange behaviour of each of the parties involved in the protocol, without reveal-

ing their internal behaviour. The process descriptions for business protocols are called

abstract processes. BPEL4WS is meant to be used to model the behaviour of both ex-

ecutable and abstract processes. It provides a language for the formal specification of

business processes and business interaction protocols. By doing so, it extends the Web

Services interaction model and enables it to support business transactions. BPEL4WS

defines an inter-operable integration model that should facilitate the expansion of au-

tomated process integration in both the intra-corporate and the business-to-business

spaces. BPEL4WS fits into the core Web service architecture since it is built on top

of XML[XML06a], XML Schema[XML06b], WSDL[WSD01], and UDDI[UDD02].

Some of the key BPEL4WS syntax is given and explained below:

• < partners>: contains a list of participants (web services) involved as part of

the BPEL4WS workflow

• < variables>: contains the variables that are used in the workflow

Chapter 4. Using Executable Formal BPMs For MAS Development Via Language Mapping68

• < invoke>: invoke a particular service as requested

• < receive>: receive a service invocation message

• < reply>: reply a message to service requestor

• < assign>: assigns a value that might be from a received message to a variable

• < sequence>: executes the activities nested within it in a sequential order

• < f low >: executes the activities nested within it concurrently

• < switch>: executes the activities nested within one of the branches defined in

it, when the condition for that branch holds during the execution

• < while>: implements a loop when the conditions defined for the loop hold

Currently, BPEL4WS is well accepted by industry and has become a de facto stan-

dard for deploying web services based distributed workflow system and that is way it is

chosen for our work as we try to get our research as close as possible to real life applica-

tions. Some new softwares that are built based on BPEL4WS have been released, such

as BPEL4WS Java Runtime (BPWS4J) (http://www.alphaworks.ibm.com/tech/bpws4j)

platform.

We use a simple example1 to show how a BPEL4WS execution model is con-

structed. In this example (see Figure 4.2), a customer sends a request for a loan; the

request gets processed, and the customer finds out whether the loan was approved. Ini-

tially, the middle step will involve sending the application to a Web services enabled

financial institution and telling the customer what it decided. From the customer’s

point of view, the process will consume his application and then send him an answer.

The diagram below shows this external view of the loan request process.

BPEL4WS compositions rely heavily on WSDL (http://www.w3.org/TR/wsdl) de-

scriptions of the involved services in order to refer to the messages being exchanged,

the operations being invoked, and the portTypes these operations belong to. For any

BPEL4WS process, we will need the description of the appropriate information and

the process itself. After all the requirements are now available for creating the pro-

cess. we begin the definition with the< process> element, and include the names-

paces that will allow it to refer to the required WSDL information, where the message

1This example is taken from http://www-128.ibm.com/developerworks/library/ws-bpelcol1/

Chapter 4. Using Executable Formal BPMs For MAS Development Via Language Mapping69

Figure 4.2: Executable loan approval process.

definitions are defined (http://..../loandefinitions), the target namespace of the loan ap-

prover (http://.../loanapprover), and the target namespace of the process’s own WSDL

(http://.../loan-approval). The process is now able to use the loan approver service as

a component. The next step is to declare the parties involved. Named partners are de-

fined, each characterised by a WSDL serviceLinkType. For this example, the partners

are the customer and the financial institution. The myRole/partnerRole attribute on a

partner specifies how the partner and the process will interact given the serviceLink-

Type. The myRole attribute refers to the role in the serviceLinkType that the process

will play, whereas the partnerRole specifies the role that the partner will play. This is

illustrated in the partner definitions below. The loan approval process offers the func-

tionality of the loanApprovalPT to the customer, and the financial institution in turn of-

fers that functionality to the process. This relationship can be seen in Figure 4.2 above.

A process may contain only one activity, which in this case will be the< sequence> .

< processname= ” loanApprovalProcess”

targetNamespace= ”htt p : //acme.com/simpleloanprocessing”

xmlns= ”htt p : //schemas.xmlsoap.org/ws/2002/07/business− process/”

xmlns: lns= ”htt p : //loans.org/wsdl/loan−approval”

xmlns: loande f= ”htt p : //tempuri.org/services/loande f initions”

xmlns: apns= ”htt p : //tempuri.org/services/loanapprover” >

< partners>

< partnername= ”customer”

serviceLinkType= ” lns : loanApproveLinkType”

myRole= ”approver”/ >

< /partners>

The sequence contains a receive activity that can take the customer’s message. The

Chapter 4. Using Executable Formal BPMs For MAS Development Via Language Mapping70

definition of a receive activity must include the partner that will send it its message,

and the port type and operation of the process to which the partner is targeting this mes-

sage. Based on this information, once the process gets a message, it searches for an

active receive activity that has a matching partner-portType-operation triplet and hands

it the message. In order to avoid confusion, the specification states that there may not

be multiple received activities with the same partner-portType-operation triplet that are

active at the same time. We start the sequence activity, and add the receive to it. The

next step is to ask the Web services-enabled financial institution whether or not it will

accept the loan. This is done with a regular Web services invocation, defined in the

process by an Invoke activity. When this activity runs it will make the specified in-

vocation to the Web service using the message in its input container, put the answer

it gets into its output container, and end. Note that the call will be made on the ”ap-

prover” partner to perform the approve operation. In order for the process to respond

to the customer’s request, it uses a Reply activity. Once a reply activity is reached, the

partner-portType-operation triplet it contains is used to figure out whom to send the re-

ply to. Therefore, in order to reply to the message that arrived through the< receive>

activity, we would need a Reply activity with the same triplet. In this case, we want to

tell the customer what the financial institution decided, so the message to be sent will

be found in the output container of the invoke: approvalInfo.

< sequence>

< receivename= ” receive1” partner= ”customer” portType= ”apns: loanApprovalPT”

operation= ”approve” container= ” request” createInstance= ”yes”/ >

< invokename= ” invokeapprover” partner= ”approver”

portType= ”apns: loanApprovalPT” operation= ”approve”

inputContainer= ” request” out putContainer= ”approvalIn f o”/ >

< replyname= ” reply” partner= ”customer” portType= ”apns: loanApprovalPT”

operation= ”approve” container= ”approvalIn f o”/ >

< /sequence>

< /process>

Chapter 4. Using Executable Formal BPMs For MAS Development Via Language Mapping71

4.2 From BPEL4WS Based Conventional Workflow Sys-

tem to LCC Based Multi-agent Platform

4.2.1 Problem Analysis

If we consider the interaction described in a BPEL4WS process model from the multi-

agent point of view, it involves two sorts of agents: service providing agents (substi-

tutes/proxies of web services) that is in the role of< myRole> or < partnerRole>

and a coordinating agent (substitute for a workflow server) that is defined implicitly in

BPEL4WS.

Although a conventional BPEL4WS process model based system can be under-

stood as a multi-agent system, the responsibility given to the coordinating agent (work-

flow server) as addressed in the previous section is too heavy and, correspondingly, is

too light on service providing agent on the contrary. This is understandable because

BPEL4WS was initially designed for the coordination of web services which only

have very limited computing capabilities. However, with agents that have stronger

computing capabilities, the burden on the coordinating agent can be shared, which

gives us the possibility of eliminating the coordinating agent. If we can dispatch the

tasks that are performed by the workflow server (coordinating agent) based on con-

ventional client-server architecture to service providing agent, the process models that

are used in conventional workflow system then can be used in multi-agent based sys-

tem. Thus, to enable the MAS based distributed workflow system, the first step is to

decide what sorts of tasks are performed by the workflow server and how they can be

dispatched to agents. Figure 4.3 shows the minimum components that are required

by a BPEL4WS based conventional workflow server and those components should

have correspondences in new system. As introduced earlier, the main concern of LCC

Figure 4.3: The components of a typical conventional workflow server

Chapter 4. Using Executable Formal BPMs For MAS Development Via Language Mapping72

protocol based MAS is the production of protocol rather than the design of agents (ac-

tually, in a LCC based MAS, the agents are usually dummy agents). If we can find a

approach that keeps those components in the LCC protocol, BPEL4WS model based

workflow systems can then be deployed on a functionally equivalent MAS platform.

This mechanism is illustrated in Figure 4.4:

Figure 4.4: Connecting workflow systems and multi-agent systems via language map-

ping

Figure 4.5 shows the correspondences between conventional workflow server com-

ponents and the LCC framework, from which we can see that all the components of

Figure 4.5: Correspondence between LCC protocol and conventional workflow server’s

components

a conventional workflow server are retained in a LCC based multi-agent system. The

correspondence of ”workflow engine program” is the program that each agent uses

for processing the received LCC protocols. The states of running business process in-

stances is corresponding to the states of LCC protocol instances. BPEL4WS model

and the data used for the running workflow instance can be replaced by LCC protocol

Chapter 4. Using Executable Formal BPMs For MAS Development Via Language Mapping73

framework and common knowledge. From the above analysis, we can see that it is

possible to use a LCC based MAS for distributed workflow deployment.. We will then

discuss how to connect this two systems that are based on different architecture.

4.2.2 Why choose language mapping?

The most widely used technique for connecting two different specification based sys-

tems is through syntax based language mapping. After the two languages, which are

used for describing the specifications in different system, are mapped, specifications

that are written in one language can be translated into another automatically and can

thus be used in another system.

A BPEL4WS process model defines four main concepts which are:

• Partners: define the roles that participate the interaction. It should be noticed,

partner notation in BPEL4WS defines the partner from the point of view of cen-

tralised workflow server. All the participants that can interact with workflow

server are defined as partners (< partnerRole>) of it and workflow server is

able to change its role (< myRole>) in order to interact with different partici-

pants.

• Message passing activity: defines the message that takes place between two par-

ticipants. Such activities are:< receive>, < invoke> and< reply>.

• Computing activity: carries the real workflow computation. Such activities are:

< assign>, < terminate> etc.

• Structure activity: controls the execution order of message passing activities and

computing activities. Such activities are:< sequence>, < switch>, < while>

etc.

Except forPartners, execution of all these sorts of activities are all undertaken by

the workflow server. When executing a message passing activity, what the workflow

server does is simply to pass and to forward the messages from/to participants (P1

andP2). Actually, if P1 andP2 know the information of each other and know the in-

tended order of messages being passed, the workflow server is not required at all for the

message forwarding purpose since as agents, they could communicate directly. Struc-

ture activities define only the execution order of basic activities and if the IP protocol

language (such as LCC) has the syntax to describing such information, the workflow

Chapter 4. Using Executable Formal BPMs For MAS Development Via Language Mapping74

server can also be removed since the control of time order is built in the protocol. When

the protocol is passed between agents, such information is also transferred. However,

problems arise for computing activities. In a BPEL4WS specification based workflow

system, the computing activities must be executed by the workflow server and such

activities cannot easily be dispatched to distributed agents. The following BPEL4WS

partial model shows the problem, for simplicity, it is expressed using plain text:

sequence

{
a = b,

P1send M1 toP2,

c = d

}

Three roles are defined in the above chunk (P1, P2 are defined explicitly and the work-

flow server is defined implicitly). If we want to eliminate the role of the workflow

server in the desired MAS, the assign clauses,a = b andc = d have to be executed

by P1/P2 wholly or separately. To decide deterministically which agent should execute

what computing activity is impossible without more information. Therefore, in order

to translate a BPEL4WS specification to a LCC protocol, the BPEL4WS model must

be specified in a more stylised way, say, the computing activities must be defined be-

fore at least one message passing activity so that the sender of the message passing

activity can perform the computing activities before sending a message out.

Based on the above analysis, we can see that all the tasks performed in a BPEL4WS

based conventional workflow system can be completely or partially realised by a MAS

also if the BPEL4WS specification is represented by the MAS interaction protocol

especially in LCC. In the following sections, we will discuss in detail how to perform

the language mapping from BPEL4WS to LCC.

4.2.3 Performing language mapping from BPEL4WS to SPPC

We observe that syntactically, a BPEL4WS model is close to a SPPC model but is rel-

atively far away from LCC protocol. We have designed algorithms in chapter 3 to gen-

erate LCC protocols from SPPC models. Therefore, if we can translate a BPEL4WS

model into a SPPC model first, it can be then translated into LCC protocol directly

using our existing algorithms. We will discuss in this section how to translate the

notations, as classified above, from BPEL4WS to SPPC.

Chapter 4. Using Executable Formal BPMs For MAS Development Via Language Mapping75

4.2.3.1 Translation from partners defined in BPEL4WS to SPPC roles

All the participants defined in< partnerLinks> in a BPEL4WS model can be directly

mapped to the agents (sender and receiver) no matter whether they are< myRole>

or < partnerRole>. For example, for the loan approval scenario that we used, the

definition of all participants involved in process is:

< partners>

< partnername= ”customer”

serviceLinkType= ” lns : loanApproveLinkType”

myRole= ”approver”/ >

< /partners>

From the above definition, we know there are two roles participating in the interac-

tion and in the derived SPPC protocol, we will have two agents (a(customer, ID),

a(approver, ID1)) directly related to them.

4.2.3.2 Translation from message passing activities defined in BPEL4WS to SPPC

message

BPEL4WS message passing activities as classified are< receive>, < invoke> and

< reply>. The translating principles for them are different.

• The activity< receive> in BPEL4WS means that a web service operation will

not be invoked until certain requests (inputVariable of web service operations)

arrive. The complete definition for it from BPEL4WS is:

< receive partnerLink= ”ncname” portType= ”qname” operation= ”ncname”

variable= ”ncname”?createInstance= ”yes|no”?

< /receive>

From multi-agent point of view, the semantic of this activity is quite simple: a

message sender (partnerRole) sends a message to a service provider (myRole).

Thus this activity leads to a basic SPPC message that is:

mb




mid, pre([]),mb(portType: operation: inputVariable),

post([update(inputVariable),store(portType: operation: inputvariable, ID)])

sender(a(partnerRole, ID1)), receiver(a(myRole), ID)




One point that needs to be mentioned here is that in a conventional BPEL4WS

based workflow system, the variable values are stored in the centralised work-

flow server and can be used and updated at any time needed. However, in a LCC

based multi-agent system, there is no centralised data store, thus, the values of

Chapter 4. Using Executable Formal BPMs For MAS Development Via Language Mapping76

all the variables have to be passed together with the LCC protocol (defined in

LCC common knowledge) and messages between the agents.

The post-conditionupdate(inputVariable) defined in the above SPPC message

is used to record/update the value of the variable involved in the incoming mes-

sage in LCC common knowledge. It used as a constraint for all the incom-

ing messages for receivers. We will not specify it in every SPPC message

for simplicity. The post-conditionstore(partnerRole: protType: operation:

inputVariable, ID) is used to record the the ID of the message sender so that

later on, proper response will be sent back to the right agent. This constraint is

used to represent the relation between< receive> and< reply> activities in

BPEL4WS.

• The< reply> construct allows the business process to send a message in reply

to a message that was received through a< receive>. The combination of a

< receive> and a< reply> forms a request-response operation on the WSDL

portType for the process.

< reply partnerLink= ”ncname” portType= ”qname” operation= ”ncname”

variable= ”ncname”? f aultName= ”qname”?

< /reply>

The SPPC message for< reply> derived is

mb




mid, pre([f etch(partnerRole: portType: operation: variable, ID1)]),

mb(portType: operation: variable), post([]),

sender(a(myRole, ID)), receiver(a(partnerRole), ID1)




The constraintf etch(partnerRole: portType: operation: variable, ID1) is used

to find the properID of the agent that sent request, which, together with con-

straint f etch(partnerRole: protType: operation: inputVariable, ID), are used

to keep the semantic of combination of< receive> and< reply > activities

defined in BPEL4WS.

• The < invoke> construct allows the business process to invoke a one-way or

request-response operation on a portType offered by a partner.

< invokepartnerLink= ”ncname” portType= ”qname” operation= ”ncname”

inputVariable= ”ncname”?out putVariable= ”ncname”?

< /invoke>

The corresponding SPPC might be one message or two messages connected by

”then”, which depends on wether or not theout putVariableis defined. If it isn’t

Chapter 4. Using Executable Formal BPMs For MAS Development Via Language Mapping77

defined, the corresponding SPPC message is:

mb

(
mid, pre([f etchvariable(inputVariable)]),mb(portType: operation: inputVariable),

post([]),sender(a(myRole, ID)), receiver(a(partnerRole), ID1)

)

If the out putVariableis defined, the SPPC messages are:

mb

(
mid, pre([f etchvariable(inputVariable)]),mb(portType: operation: inputVariable),

post([]),sender(a(myRole, ID)), receiver(a(partnerRole), ID1)

)

then

mb




mid, pre([f etchvariable(out putVariable)]),

mb(portType: operation: inputVariable: out putVariable),

post([update(out putVariable)]),sender(a(partnerRole, ID)), receiver(a(myRole), ID1)




From the above analysis, we can see that all the message passing activities (< receive>,

< invoke>,< reply>) in BPEL4WS can be translated into SPPC messages.

4.2.3.3 Translation from computing activities defined in BPEL4WS to SPPC con-

straints

The computing activities defined in BPEL4WS are< assign>, < wait > etc. Since

the translating principle for all of them are the same, we only discuss the translation of

< assign> in detail. The activity< assign> in BPEL4WS specification defines in-

ternal variables assignation in the BPEL4WS workflow engine and it gives BPEL4WS

computational ability.
< assign>

< copy> +

f rom−spec

to−spec

< /copy>

< /assign>

In SPPC, constraints (post-conditions and pre-conditions) are the places where the con-

crete computation takes place. Therefore, the computation carried by the centralised

server, as addressed earlier, should be dispatched to the agents in the multi-agent sys-

tem as constraints. Eventually, which agent execute what constraints doesn’t matter too

much. The only issue is how the execution order between the computing activities and

the other activities is kept in the generated SPPC model, which requires consideration

of the translation of structure activities also.

Chapter 4. Using Executable Formal BPMs For MAS Development Via Language Mapping78

4.2.3.4 Translation from structure activities defined in BPEL4WS to SPPC model

BPEL4WS structure activities control the execution orders between the activities (mes-

sage passing activities, computing activities and structure activities) that are nested

within them explicitly from the point of view of activities. SPPC, however, uses oper-

ators to control the temporal orders between message clauses and the temporal order

between computing clauses and message clauses is represented by the relation between

messages and their constraints. Therefore, a BPEL4WS structure activity might be rep-

resented by two SPPC notations together:1 >SPPC operators and2 >combinations

of constraints and messages. The principles of when the content of a structure activity

should be translated into SPPC using operators and when they should be represented

by the combinations of messages and pre-conditions/post-conditions in SPPC, are dif-

ferent for different BPEL4WS structure activities.

• The < sequence> activity allows us to define a collection of activities to be

performed sequentially in lexical order in BPEL4WS.

< sequencestandard−attributes>

standard−elements

activity+

< /sequence>

If we only consider message passing activities and structure activities, it is quite

simple to derive a SPPC model from it since BPEL4WS and SPPC have simi-

lar notation for sequence. However, it becomes much more complex when the

computing activities are considered since we have to decide how the computing

activities should be used as pre-conditions/post-conditions of SPPC messages

during the translation with the initial time order defined in< sequence> kept.

Using the SPPC ”then” operator, the relation between message passing activities

and structure activities can be kept without changing anything. To represent rela-

tions between message passing activity/structure activity and computing activity

in a< sequence>, certain re-write rules have to be applied:

Chapter 4. Using Executable Formal BPMs For MAS Development Via Language Mapping79

(A1 thenA2)⇒ (E1 →C) i f A1
A1 isamessage passingactivity−−−−−−−−−−−−−−−−→ E1, (rule1)

A2
A2 isacomputingactivity−−−−−−−−−−−−−→C

(A1 thenA2)⇒ (C1∧C2) i f A1
A1 isacomputingactivity−−−−−−−−−−−−−→C1 (rule2)

A2
A2 isacomputingactivity−−−−−−−−−−−−−→C2

(A1 thenA2)⇒ (C1 → E2) i f A1
A1 isacomputingactivity−−−−−−−−−−−−−→C1 (rule3)

A2
A2 isastructureactivity−−−−−−−−−−−−−→ E2

(A1 thenA2)⇒ ((E1 thenE2)orE2) i f A1
A1 is<while>activity−−−−−−−−−−−−→ E1 (rule4)

A2
A2 isnot acomputingactivity−−−−−−−−−−−−−−−→ E2

(C1 → (E1 or/par...or/parEn))⇒ (Ei or/par...or/parEi+n) i f (C1 → E1)⇒ Ei , ...,(C1 → En)⇒ Ei+n (rule5)

((E1 or/par...or/parEn)→C1)⇒ (Ei or/par...or/parEi+n) i f (E1 →C1)⇒ Ei , ...,(En →C1)⇒ Ei+n (rule6)

C1→A1 andA1→C1 in the above rules meansC1 is used as the precondition/post-

condition ofA1. Rule1 andrule2 means that a computing activity that is defined

before/after a message passing activity in a< squence> can be used as the

pre-condition/post-condition of the SPPC message that is derived from the mes-

sage passing activity.E represents the possible SPPC clauses that are derived

from non-computing BPEL4WS activities. The re-write rules for dealing with

the computing activity defined before/after a structure activity are expressed in

rule3. Rule4 is used to deal with a special case where a< while> activity is in-

volved in a< sequence>. The time relation between< while> and the activity

defined after it in< sequence> is not a sequential order but is a exclusive ”or”

order. Theconditionspecified for the< while> activity actually controls the

execution of it. If theconditionholds, the< while> activity is executed repeat-

edly and only when theconditionfails, the activity specified after< while> can

get executed.Rule5 andrule6 are used to assign the pre-condition/post-condition

to the SPPC messages which are connected by ”or”/”par”.

The algorithm for translating a< sequence> into SPPC clauses is shown in

Figure 4.6.

Using the algorithm, it should be noticed that a computing activity can never be

used as the last element of a< sequence> activity as discussed earlier. Other-

wise, the translation is not possible. Therefore, not all the existing BPEL4WS

models can be directly translated into SPPC models using this language mapping

approach.

• The<switch> construct allows you to select exactly one branch of activity from

Chapter 4. Using Executable Formal BPMs For MAS Development Via Language Mapping80

proceduretranslatesequence(Sequence, CLSPPC)

input: Sequence, theBPEL4WS< sequence> activity

CL, alist that storesall un−assigned conditions

output:SPPC, SPPCclausesderived f romgiven< sequence> activity

initiatea, pointer(P1),and let it point tothe f irst element o f SequenceandCL

while(P1 isnot pointingtothe last element o f Sequence)

f etchtheactivity(A) that P1 is pointingto inSequence

if (Aisacomputingactivity)

translateAintoconditionsand put it at theend o f CL

makeP1 point tonext activity

else if(Aisamessage passingactivity)

f etchall thecondition inCLusethemas pre−conditionso f theSPPCmessage(S)

drived f romA

emptyCLand makeP1 point tonext elment o f CL

SPPC= SPPCthenS

else if(Aisastructureactivity)

translatestructureactivity(A,CL,SPPC1)

SPPC= SPPCthenSPPC1

Figure 4.6: Algorithm for deriving a SPPC model from a BPEL4WS < sequence>

activity

a set of choices.
< switchstandard−attributes>

standard−elements

< casecondition= ”bool−expr” > +

activity

< /case>

< otherwise>?

activity

< /otherwise>

< /switch>

In < switch>structure, each< case> can possibly has four kinds of direct child

elements: basic activities (message passing activities and computing activities),

< sequence> structure,< switch> structure,< f low> structure and< while>

structure. The execution of each branch is controlled bycondition(Co) defined

for each< case>. A < switch> activity can be represented using SPPC ”or”

notation in the following format,

(Co1 → A1)or (Co2 → A2)or ...

whereCi means the conditions defined for< case> in < switch> andAi rep-

Chapter 4. Using Executable Formal BPMs For MAS Development Via Language Mapping81

resents the activities that are defined as the content for each< case> which

could be basic activities or structure activities. The translation of the content of

each< case> is depended on the types of them. Theconditiondefined for each

< case> can be translated using the following re-write rule together with the

rules defined for< sequence>:

(Co1 → A1)⇒ (Co1 → E) i f A1 ⇒ E (rule7)

The algorithm for translating a BPEL4WS< switch> activity to a SPPC model

is given in Figure 4.7.

proceduretranslateswitch(Switch, CL, SPPC)

input: Switch, theBPEL4WS< switch> activity

CL, alist that storesall un−assigned conditions

output:SPPC,SPPCclausesderived f romgiven< switch> activity

for (eachbranch(B)o f switch)

extract theconditionsde f ined f oreachbranchand put inCL

extract thecontents(C)o f B

translatestructureactivity(C,CL,SPPC1)

SPPC= SPPCorSPPC1

Figure 4.7: Algorithm for deriving a SPPC model from a BPEL4WS < switch> activity

Figure 4.8: Diagrammatical representation of a < case> in < switch>

Figure 4.8 shows the diagrammatical representation of a< case> defined in

a < switch> activity. After applying our algorithm, the diagrammatical rep-

resentation of the generated SPPC model is shown in Figure 4.9 in which pre-

conditions are translated from the conditions and message A, B and C are trans-

lated from the activity A, B and C defined in< case> in Figure 4.8.

Chapter 4. Using Executable Formal BPMs For MAS Development Via Language Mapping82

Figure 4.9: Processed diagrammatical representation of the < case>

• The < f low > construct allows us to specify one or more activities to be per-

formed concurrently. Links can be used within concurrent activities to define

arbitrary control structures.

< f lowstandard−attributes>

< links>?

< linkname= ”ncname” > +

< /links>

activity+

< / f low >

A < f low > activity creates a set of concurrent activities directly nested within

it. It further enables expression of synchronisation dependencies between activ-

ities that are nested directly or indirectly within it. The link construct is used

to express these synchronisation dependencies. A link has a name and all the

links of a flow activity must be defined separately within the flow activity. The

standard source and target elements of an activity are used to link two activities.

The source of the link specifies a source element specifying the link’s name and

the target of the link specifies a target element specifying the link’s name. The

following example shows that links can cross the boundaries of structured activ-

ities. There is a link named ”CtoD” that starts at activity C in sequence Y and

ends at activity D, which is directly nested in the enclosing flow. This synchro-

nisation link confines the execution order of activity C and activity D. Under its

Chapter 4. Using Executable Formal BPMs For MAS Development Via Language Mapping83

control, activity D must be executed after the execution of activity C.

< f low >

< links>

< linkname= ”CtoD”/ >

< /links>

< sequencename= ”Y” >

< receivename= ”C” ... >

< sourcelinkName= ”CtoD”/ >

< /receive>

< invokename= ”E” .../ >

< /sequence>

< invoke partnerLink= ”D” ... >

< target linkName= ”CtoD”/ >

< /invoke>

< / f low >

In a conventional client-server based workflow system, the execution of con-

current activity and control of the synchronisation link are possible because the

workflow server can control the state of all the branches in a concurrent activity.

However, in a multi-agent based open environment, the centralised coordinator

is eliminated. Thus the only way for agents to coordinate with each other is

again, through message passing, which means all the synchronisation links have

to be controlled by message passing between agents as well.

Figure 4.10 shows the algorithm that we use to turn all the synchronisation links

defined in a< f low > activity into SPPC messages. Using this algorithm, a

< f low > activity can be represented by a SPPC model. It should be noticed

that when a SPPC model is translated into a LCC protocol, the SPPC messages

generated for synchronisation links are only partially translated. The message

that is derived for the ”source” of a synchronisation link in SPPC is only used

for the message sender’s LCC protocol generation. In contrast, the message that

is derived for the ”target” of a synchronisation link in SPPC is only used for the

message receiver’s LCC protocol generation. Thus the algorithm for generating

LCC protocols from SPPC models have to be revised to be used for dealing with

SPPC models derived from BPEL4WS specifications.

• The< while> construct allows us to indicate that an activity is to be repeated

Chapter 4. Using Executable Formal BPMs For MAS Development Via Language Mapping84

proceduretranslate f low(Flow,CL,SPPC)

input: Flow, theBPEL4WS< f low > activity

CL, alist that storesall un−assigned conditions

output:SPPC, theSPPCclausesderived f romgiven< f low > activity

initiatea public list(L) //public list canbeaccessed byany procedure

extract all linksde f ined inFlowand put theminL

for (All the links(L1) inL)

scanthewholeFlowand f ind out theactivity(A) that de f inesthe< source> o f L1

scanthewholeFlowand f ind out theactivity(A1) that de f inesthe< target> o f L1

replaceAwith′′AthenA′′2inwhichA2 isamessagesended f romthereceivero f Atosendero f A1

replaceA1with′′A3 thenA′′1inwhichA3 isamessagesended f romthereceivero f Atosendero f A1

for (All thebranches(B)o f FLow)

translatestructureactivity(B,CL,SPPC1)

SPPC= SPPC parSPPC1

Figure 4.10: Algorithm for deriving a SPPC model from a BPEL4WS < f low > activity

until a certain success criteria has been met.

< whilecondition= ”bool−expr” standard−attributes>

standard−elements

activity

< /while>

The notation that is used in SPPC for repeated execution of messages is the com-

bination ofinvoke(mid) and the SPPC message (M1) that theinvokepoints to as

shown in Figure 4.11. Whether the loop is executed is controlled by the precon-

dition defined for theM1. However, a BPEL4WS< while> activity represented

Figure 4.11: Diagrammatical representation of a SPPC loop

loop might start with a message passing activity, a computing activity or a struc-

ture activity and the execution of the its content is controlled by thecondition

associated with it as illustrated in Figure 4.14.

Chapter 4. Using Executable Formal BPMs For MAS Development Via Language Mapping85

Figure 4.12: Diagrammatical representation of a < while> activity

Figure 4.13: Diagrammatical representation of a SPPC model that is equivalent to the

< while> activity in Figure 4.12

The SPPC model that is semantically equivalent to the< while > in Figure

4.12 is shown in Figure 4.13 in which the pre-conditions for message A,B and

C are derived from the condition define for< while > and message A,B and

C correspond to the activity A,B and C in Figure 4.12. In addition, at the

end of message A, B and C in the SPPC model, three invokes are added (in-

voke(A),invoke(B) and invoke(C)) to represent the repeated execution of the

three messages. The above example shows the basic idea of translating a<

while> into SPPC clauses, which involves two parts: the translation ofcondition

defined and the re-write of content of< while>. The principle of processing the

conditionsdefined for< while> structure activity is complete same with that

Chapter 4. Using Executable Formal BPMs For MAS Development Via Language Mapping86

of < switch>. The re-writing of< while> highly replies on the first and last

elements defined for it. Several re-write rules are thus defined for different sorts

of content

(A1 then...thenAi)⇒ i f A1 ⇒ E1, ...,Ai ⇒ Ei (rule8)

(E1 then...thenEn) (Ei → generateinvoke(E1))⇒ En

(A1 or/par...or/parAi)⇒ i f A1 ⇒ E1, ...,Ai ⇒ Ei , (rule9)

(Ei+1 or/par...or/parEi+n) (E1 → generateinvoke(E1))⇒ Ei+1, ...,

(Ei → generateinvoke(Ei))⇒ Ei+n

(Ei → generateinvoke(E1))⇒ (Ei thenE2) i f generateinvoke(E1)⇒ E2 (rule10)

generateinvoke(E1)⇒ i f the f irst element o f E1 (rule11)

(generateinvoke(E2)or/par...or/pargenerateinvoke(En)) is(E2 or/par...or/parEn)

generateinvoke(E1)⇒ invoke(E2) i f the f irst element(E2)o f E1 (rule12)

isasingleSPPCmessage

By applying the above re-write rules, a< while > activity can be represented

using SPPC notations. The algorithm for< while> activity translation is given

in Figure 4.14.

proceduretranslatewhile(While, CL, SPPC)

input:While, theBPEL4WS< while> activity

CL, alist that storesall un−assigned conditions

output:SPPC, SPPCclausesderived f romgiven< while> activity

extract theconditionsde f ined f orWhileand put it at theend o f CL

extract thecontents(C)o f While

translatedstructureactivity(C,CL,SPPC1)

invokegenerator(SPPC1, Invoke)

loop generator(SPPC1, Invoke,SPPC2)

SPPC= SPPC2

procedureinvokegenerator(SPPC, Invoke)

input: SPPC,SPPCclauses

output: Invoke,ainvokeorsetso f invokesconnected by′′or/par′′

extract the f irst element(E)o f SPPC

if (E isaSPPCmessage)

Invoke= invoke(E)

else

for (eachbranch(B)o f E connected by′′or/par′′)

invokegenerator(B, Invoke1)

Invoke= Invokeor/par Invoke1

Chapter 4. Using Executable Formal BPMs For MAS Development Via Language Mapping87

procedureloop generator(SPPC1, Invoke,SPPC2)

input: SPPC1,SPPCclauses

Invoke,ainvokeorsetso f invokesconnected by′′or/par′′

output:SPPC2,SPPCclausesthat represent loop

SPPC2 = SPPC1

extract the last element(E)o f SPPC2

if (E isaSPPCmessage)

replace it with′′E thenInvoke′′

else

for (eachbranch(B)o f E)

loop generator(SPPC2, Invoke,SPPC3)

SPPC2 = SPPC3

Figure 4.14: Algorithm for deriving a SPPC model from a BPEL4WS < while> activity

4.3 A Simple Case Study

In the previous sections, we discussed how the fundamental notations of a business

process model (basic activity and temporal order between basic activities(sequence, or,

parallel and loop)) can be translated into SPPC clauses using some of the BPEL4WS

syntaxes through language mapping. We use a simple example to show how a SPPC

can be derived from a BPEL4WS specification, which starts from a example workflow

encoded in BPEL4WS. The example workflow described below consumes two param-

eters, a stock symbol and a country name. The result of the workflow is a quote for

the stock localised into the currency of the given country. It has been simplified by

removing attributes that do not help clarify the example.2

< process>

< partners>

< partnername= ” requestor”/ >

< partnername= ”stockProvider”/ >

< partnername= ”currencyProvider”/ >

< partnername= ”simpleProvider”/ >

< /partners>

< variables>

< variablename= ” request”/ >

< variablename= ” response”/ >

< variablename= ”stockRequest”/ >

< variablename= ”stockResponse”/ >

< variablename= ”currencyRequest”/ >

< variablename= ”currencyResponse”/ >

2The original scenario for this example is taken from [BV04].

Chapter 4. Using Executable Formal BPMs For MAS Development Via Language Mapping88

< variablename= ”simpleRequest”/ >

< variablename= ”simpleResponse”/ >

< /variables>

< sequence>

< receive portType= ” request” partner= ” requestor” operation= ” requestLookup” variable= ” request” >

< /receive>

< assign>

< copy>< f romvariable= ” request”/ >< tovariable= ”stockRequest”/ >< /copy>

< copy>< f romvariable= ” request”/ >< tovariable= ”currencyRequest”/ >< /copy>

< /assign>

< f low >

< invoke, portType= ”getStockQuote” partner= ”stockProvider” operation= ”getQuote”

inputVariable= ”stockRequest” out putVariable= ”stockResponse” >

< /invoke>

< invoke portType= ”getExchangeRate” partner= ”currencyProvider” operation= ”getRate”

inputVariable= ”currencyRequest” out putVariable= ”currencyResponse” >

< /invoke>

< / f low >

< assign>

< copy>< f romvariable= ”stockResponse”/ >< tovariable= ”simpleRequest”/ >< /copy>

< /assign>

< invoke portType= ”multiplyFloat” partner= ”simpleProvider” operation= ”multiply”

inputVariable= ”simpleRequest” out putVariable= ”simpleResponse” >

< /invoke>

< assign>

< copy>< f romvariable= ”simpleResponse”/ >< tovariable= ” response”/ >

< /copy>

< /assign>

< reply portType= ” request” partner= ” requestor”

operation= ” requestLookup” variable= ” response” >

< /reply>

< /sequence>

< /process>

Figure 4.15, provides a graphical view of the structure of the workflow. Internally,

Figure 4.15: Stock lookup process

the workflow definition coordinates the interaction of the five participants named: re-

questor, stockProvider, currencyProvider, simpleProvider the role of workflow engine

itself (called mainServiceProvider for simplicity). The SPPC model derived from it is:

Chapter 4. Using Executable Formal BPMs For MAS Development Via Language Mapping89

msg(mid1, pre([]),mb(request: requestLookup: request),sender(a(requestor, ID)), receiver(a(mainServiceProvider, ID1))

then





msg




mid2, pre([stockRequet= request,currencyRequest= request]),

mb(getStockQuote: getQuote: stockRequest),

sender(a(mainServiceProvider, ID1)), receiver(a(stockProvider, ID2))




then

msg




mid3, pre([stockRequet= request,currencyRequest= request]),

mb(getStockQuote: getQuote: stockRequest: stockReponse),

sender(a(stockProvider, ID2)), receiver(a(mainServiceProvider, ID1))







par


msg




mid4, pre([stockRequet= request,currencyRequest= request]),

mb(getExchangeRate: getRate: currencyRequest)

sender(a(mainServiceProvider, ID1)), receiver(a(currencyProvider, ID3))




then
 msg




mid5, pre([stockRequet= request,currencyRequest= request]),

mb(getExchangeRate: getRate: currencyRequest: currencyReponse)

sender(a(currencyProvider, ID3)), receiver(a(mainServiceProvider, ID1))













then


msg

(
mid6, pre([simpleRequest= stockResponse]),mb(multiplyFloat : multiply : simpleRequest),

sender(a(mainServiceProvider, ID1, ID1)), receiver(a(simpleProvider, ID4))

)

then

msg

(
mid7, pre([]),mb(multiplyFloat : multiply : simpleRequest: simpleResponse),

sender(a(simpleProvider, ID4)), receiver(a(mainServiceProvider, ID1,)

)




then

msg

(
mid8, pre([response= simpleResponse]),mb(request: requestLookup: response),

sender(a(mainServiceProvider, ID1)), receiver(a(requestor, ID))

)

This SPPC model can thus be translated into LCC protocol using the algorithm pro-

posed in chapter 3.

a(mainServiceProvider, ID1) :: request: requestLookup: request⇐ a(requestor, ID)

then







getStockQuote: getQuote: stockRequest⇒ a(stockProvider, ID2)

← (stockRequest= request)and(currencyRequest= request)

then

getStockQuote: getQuote: stockRequest: stockResponse⇐ a(stockProvider, ID2)




par


getExchagneRate: getRate: currencyRequest⇒ a(currencyProvider, ID3)

← (stockRequest= request)and(currencyRequest= request)

then

getExchagneRate: getRate: currencyRequest: currencyResponse⇐ a(currencyProvider, ID3)







then




multiplyFloat : multiply(simpleRequest)⇒ a(simpleProvider, ID4)← (simpleRequest= stockResponse)

then

multiplyFloat : multiply : simpleResponse⇐ a(simpleProvider, ID4)




then

response⇒ a(,)← (response= simpleResponse)

Chapter 4. Using Executable Formal BPMs For MAS Development Via Language Mapping90

a(stockProvider, ID2) :: getStockQuote: getQuote: stockRequest⇐ a(mainServiceProvider, ID1)

then

getStockQuote: getQuote: stockRequest: stockResponse⇒ a(mainServiceProvider, ID)

a(currencyProvider, ID3) :: getExchangeRate: getRate: currencyRequest⇐ a(mainServiceProvider, ID1)

then

getExchangeRate: getRate: currencyRequest: currencyResponse⇒ a(mainServiceProvider, ID1)

a(simpleProvider, ID4) :: multiplyFloat : multiply : simpleRequest⇐ a(mainServiceProvider, ID1)

then

multiplyFloat : multiply : simpleRequest: simpleResponse⇒ a(mainServiceProvider, ID1)

a(requestor, ID) :: request: requestLookup: request⇒ a(mainServiceProvider, ID1)

then

request: requesetLoopkup: request: response⇐ a(mainServiceProvider, ID1)

4.4 Summary

In this chapter, we discussed how to develop protocol based multi-agent systems us-

ing executable business process models. Language mapping is performed between a

business process modelling language (BPEL4WS) and a IP (LCC) to generate the pro-

tocol used in a MAS from a business process model. Since the gap between them is

large, we use a another modelling language (SPPC) as an intermediary. Thus a SPPC

model derived from a BPEL4WS specification can be translated into LCC protocol

automatically using the existing algorithm.

During the language mapping process, we found that although most of the main

concepts from business process modelling language (BPEL4WS) and SPPC match,

some particular notations from the business process modelling language cannot be

seamlessly represented by a another modelling language which is based on different

paradigm. For example, the computing activities nested at the end of a< sequence>

activity in BPEL4WS can not be easily translated in to SPPC clauses as addressed

earlier and also, the translation for the synchronisation links defined in< f low > re-

quires the revision of LCC protocol generation algorithm from SPPC. Such restrictions

mean only some BPEL4WS specifications (those conforming to the language mapping

rules) can be used for interaction protocol guided MAS development, which makes

the approach discussed in this chapter incomplete. In fact, such language mapping

based completeness is very hard to achieve (even for particular business process mod-

elling languages) since different business process modelling languages and protocol

modelling languages may be based on different computing paradigms.

Chapter 5

A Novel Approach of Using Executable

Formal BPMs For MAS Development

In chapter 4, we discussed the automatic generation of LCC protocol from BPEL4WS

specification using syntax based language mapping technique and concluded that such

an approach can only provide partial solution for the problem (using executable busi-

ness process model for MAS development) because of missing of a implicit role work-

flow server in MAS and also the gap between the computing paradigms of two different

languages is too great.

Therefore, in this chapter we propose another approach for our work: producing a

LCC protocol, which acts as BPEL4WS interpreter. The BPEL4WS specification and

the LCC protocol (BPEL4WS interpreter) are passed together between the agents to

enable their coordination. BPEL4WS specification defines the tasks that agents need to

perform and the LCC protocol tells agents how to interpret BPEL4WS specifications

received. Based on this idea, a BPEL4WS specification that is defined in any fashion

can be interpreted neatly by LCC protocol when they are passed together in the multi-

agent system.

5.1 Agent Coordination Using LCC Protocol and

BPEL4WS Specification

From the purely technical point of view, a BPEL4WS model is nothing but a XML

document that is composed by certain syntaxes which can be understood by comput-

ing software. The BEPL4WS workflow engine is software that is designed and imple-

91

Chapter 5. A Novel Approach of Using Executable Formal BPMs For MAS Development92

mented to understand the syntax used in a BPEL4WS specification and is used process

them to perform tasks described. In a MAS, if each agent is given the knowledge of

how to process the BPEL4WS document and if the states of running process instance

are provided, the centralised workflow server is not needed any more at least for exe-

cuting the business process model. There are two ways to give an agent capability to

perform task:

1. embedding the business process model processing capability inside the agent

which means the agent knows how to do things when it is initially created. This

is the way of how the conventional workflow is implemented and we are not in-

terested in this approach since making each agent additive to particular business

process modelling language loses generality.

2. assigning the capability to the agent dynamically, which means the agent can

only has the ability of performing certain tasks, for instance, processing BPEL4WS

models, when it is given such knowledge at run time. This approach, compared

with the first one, is more generic because MAS is simply used as a platform to

provide pure distributed architecture and is separated from particular application

(workflow management) deployed on it. Therefore, for our work, we concentrate

on this approach.

The crucial issue that we need to consider for the second approach then is how we can

dynamically assign capability to agent. It is noticed that one of the design principles

of LCC is to specify and to tell agents what to do and how to do the tasks speci-

fied. Therefore, if we can use LCC protocol to tell agents in MAS how to process

BPEL4WS, BPEL4WS specifications can be used directly in MAS. In this way, LCC

protocol acts as a language interpreter, which understands all the BPEL4WS syntaxes

and their semantics, and this interpreter is given to each agent dynamically during their

interaction. In agents’ interactions, BPEL4WS is used to tell agents what are the cur-

rently requested tasks and LCC protocol tells how to perform the tasks specified by

BPEL4WS. In addition, the states of the BPEL4WS model attached in a LCC protocol

are also recorded. Figure 5.1 shows the new correspondences between the components

of a conventional workflow server and a LCC protocol, from which we can clearly see

that all the components that compose a workflow server can be assumed by a LCC

protocol. In the other words, with these correspondences, the LCC protocol passed

between agents gives agents the ability of acting as a ”conventional workflow server”

at the moment when they hold the received message packages.

Chapter 5. A Novel Approach of Using Executable Formal BPMs For MAS Development93

Figure 5.1: The correspondence between the components of the conventional workflow

server and LCC

The infrastructure of the system based on the new idea is given in Figure 5.2. Based

on this infrastructure, the multi-agent interaction protocol, BPEL4WS specification

and interacting messages are packed and passed together between the agents. Once an

agent receives the package, it processes: the incoming message (initiating appropriate

behaviours), interaction protocol and BPEL4WS (resolving the next action it needs to

take), then it sends out a new package to the next agent to continue the coordination.

Besides LCC protocol, BPEL4WS model and messages, the package that is passed

between agents in MAS also contains all the values of the variables that are used for

the attached BPEL4WS model, which means the storage of data is also decentralised.

Figure 5.2: The infrastructure of our generic MAS platform

Chapter 5. A Novel Approach of Using Executable Formal BPMs For MAS Development94

5.2 Interpreting BPEL4WS specification Using LCC pro-

tocol

Normally, a LCC protocol framework is written based on the roles (a(Role, ID)) in-

volved in the potential interaction. TheRoledefined reflects the semantic of real role

in the application domain (customer, seller etc.). When an agent receives a LCC pro-

tocol, it checks for the LCC clauses defined for its role (Role) and extracts the next

action it needs to perform from the LCC definition. However, for a BPEL4WS spec-

ification based MAS interaction, the way of writing LCC protocol is quite different.

Each role defined in the LCC protocol framework does not correspond to theapplica-

tion role anymore but to a BPEL4WS syntax that is named itsBPEL4WS syntax role.

Theapplication roleof agent is used as one of the arguments ofBPEL4WS syntax role

defined in the forma(BPELSyntax(Arguments), ID), whereBPELSyntaxcorresponds

to the BPEL4WS syntax andArgumentsrepresents five arguments that are used for

everyBPELSyntaxrole:

• Model: is a part of BPEL4WS model and represents the tasks that need to be

processed.

• MList: stores all the unprocessed parts of a BPEL4WS model.MList is used to

mark the states of the BPEL4WS model being processed. The BPEL4WS speci-

fication is organised in a tree structure with its branches formed by the structure

activities and nodes formed by the basic activities (message passing activities

and computing activities). The tree structure is processed using a depth first

search algorithm from left to right when it is passed between agents. Once a

BPEL4WS message passing activity (leaf of a tree) is reached while an agent

processes the BPEL4WS model (treated as a tree), the agent starts a new dia-

logue based on the activity and all of the unprocessed BPEL4WS model stored

in MList has to be passed to the next agent.

• VList: is the place where all the concrete values of the variables that are used

in workflow enactment are stored. In the centralised environment, all the infor-

mation about the variables are controlled by the central server, whereas in the

distributed environment, all such information has to be passed around.

• IDList: is used to connect a receive activity and its corresponding reply activity.

This parameter is designed to fit the BPEL4WS in particular to keep to semantic

Chapter 5. A Novel Approach of Using Executable Formal BPMs For MAS Development95

of the pair of< receive> and< reply> activities.

• Role: represents the participants (application roles) in the interaction defined by

< partnerLink> from BPEL4WS.

From the coordination point of view, each agent in our system is a generic agent.

When an agent receives a BPEL4WS model from the others, it doesn’t know the type

of the BPEL4WS model; neither can it choose the rightBPELSyntaxrole to process

the received model. Therefore, we must provide a mechanism to help agents recognise

the type of received BPEL4WS model that is requested to be processed. To serve this

purpose, two general rolesa(receiver(Role), ID) anda(interpreter(Arguments), ID)

are defined in LCC protocol besidesBPELSyntaxroles. Rolea(receiver(Role), ID) is

taken by an agent whenever it receives a package from the others. When an agent is

in the rolea(receiver(Role), ID) the incoming messages that it can recognise can only

be of two forms:

message(run this,Model,MList,VList, IDlist ,Role) (f orm1)

message(webservice invocationmessage, Model,MList,VList, IDList,Role) (f orm2)

The only difference between these two forms is the first element defined. For form

one, the first element ”run this” means the receiver of this message should process the

model that is defined by the second element (Model) of this message while for form

two, the first element of it contains all the information for a web service’s invocation.

Agent should perform a web services invocation before starting process theModel.

According to the different incoming messages, the agent may perform two type of

operations in rolea(receiver(Role), ID):

• It provides a service to the requestor if the incoming message is a service re-

quest message (contains information for web services’ invocation) and may also

process the received BPEL4WS model. The only case for this operation is the in-

coming message is from an agent that is in the role ofa(invoke(Arguments), ID).

Since according to the BPEL4WS definition,< invoke> activity is the one and

the only one that carries real web service computation and may generate re-

sponse on the service provider side.

• It processes the received BPEL4WS model (Model) only.

Chapter 5. A Novel Approach of Using Executable Formal BPMs For MAS Development96

The LCC definition fora(receiver(Role), ID) is given as follows:

a(receiver(Role), ID) ::

message(M,Model,MList,VList, IDList,Role)⇐ a(AnyRole, ID1)

then


a(interpreter(Model,MList,VList, IDList,Role), ID)←M =′′ run this′′

or


message(M1,Model,MList,VList1, IDList,AnyRole)⇒ a(AnyRole, ID1)

←
(

AnyRole=′′ invoke′′ and hasout put(Model)

and per f orm(M1,M2)and updatevariable(M2,VList,VList1)

)

or

a(interpreter(Model,MList,VList1, IDList,Role), ID)←
(

per f orm(M1,M2)

and updatevariable(M2,VList,VList1)

)







The above LCC clauses indicate that when an agent receives a package in the role of

receiver, it first processes the message (M) in the package. IfM is ”run this”, the agent

then changes its role tointerpreterto process the attached BPEL4WS model. IfM is a

web service invocation message from the others, the agent first performs the required

service and then forwards the result of service invocation to the service requestor if

there is a returned result from the web services that was just invoked. Otherwise, the

agent changes its role tointerpreter and starts processing the BPEL4WS model it

currently holds.

Several constraints are defined in the above clauses also.

• Per f orm(M1,M2): performs the real service invocation on the requested ser-

vices according to the incoming messageM1 by agent and returns the resultM2

from the service.

• hasout put(Model): checks if the BPEL4WS activity (indicated byModel) has

aout putVariable. It is usually used with< invoke> activity only.

• updatevariable(M,VList,VList1): is used to update the value of the variable

involved inM in VList.

The complete definitions for all the constraints written in Prolog that we defined for

our LCC interpreter can be found in appendix C and in later discussion, we will ignore

the low level technical details of them.

Role interpreter is used to help agent recognise the type of BEPL4WS model

it received and accordingly make it change its role properly to process the current

BPEL4WS model.

Chapter 5. A Novel Approach of Using Executable Formal BPMs For MAS Development97

The LCC definition fora(interpreter(Model,MList,VList, IDList,Role), ID) is

a(interpreter(Model,MList,VList, IDList,Role),A1) ::


a(invoke(Model,MList,VList, IDList,Role),A1)← is invoke(Model,Role)

or

message(run this,Model,MList,VList, IDList,Roel1)⇒ a(receiver(Role1),A2)

← is invoke(Model,Role1)




or


a(receive(Model,MList,VList, IDList,Role),A1)← is receive(Model,Role)

or

message(run this,Model,MList,VList, IDList,Roel1)⇒ a(receiver(Role1),A2)

← is receive(Model,Role1)




or


a(reply(Model,MList,VList, IDList,Role),A1)← is reply(Model,Role)

or

message(run this,Model,MList,VList, IDList,Roel1)⇒ a(receiver(Role1),A2)

← is reply(Model,Role1)




or

a(sequence(Model,MList,VList, IDList,Role),A1)← is sequence(Model)

or

a(f low(Model,MList,VList, IDList,Role),A1)← is f low(Model)

or

...

The constraintsis receive/reply/... play important roles ininterpreter’s definition.

They are the real functions that perform BPEL4WS model recognition. If the BPEL4WS

model being processed is a message passing activity, the agent also needs to check if

its own application role matches the role required by the activity. If so, the agent starts

processing the activity or, if not, the agent forwards the BPEL4WS model to another

agent whose application role matches the required role. The mechanism by which the

agents search/locate each other is not a research issue of this thesis and is assumed to

be available. In the following sub-sections, we will explain in detail how to use LCC

protocol for interpreting the main BPEL4WS syntax.

5.2.1 Interpreting BPEL4WS Message Passing Activities Using LCC

Protocol

The only way for the agents to coordinate with each other in a multi-agent system is

through message passing. Therefore, when adopting a BPEL4WS specification in a

multi-agent system, the first thing we need to do is to relate the BPEL4WS syntax to

Chapter 5. A Novel Approach of Using Executable Formal BPMs For MAS Development98

message passing. The relations between BPEL4WS message passing activities and

LCC messages are shown in table 5.1. The rationale for the the translations in table

BPEL4WS Message Passing Activities LCC Messages

< receive partner=′′ R′′ portType=′′ P′′ operation=′′ O′′ variable=′′ V ′′/ > message(P : O : V, ...)⇐ a(R, ID)

< invokepartner=′′ R′′ portType=′′ P′′ operation=′′ O′′ message(P : O : IV, ...)⇒ a(R, ID)

inputVariable=′′ IV ′′ out putVariable=′′ OV′′/ > then

message(P : O : IV : OV, ...)⇐ a(R, ID)

< reply partner=′′ R′′ portType=′′ P′′ operation=′′ O′′ variable=′′ V ′′/ > message(P : O : V, ...)⇐ a(R, ID)

Table 5.1: Translations from BPEL4WS activities to LCC messages

5.1 is clear. All the agents in our system act as the proxies for web services. Thus

all the information that relates web services’ invocation needs to be contained in the

messages that are passed between agents also. The way that agents process the incom-

ing/outgoing message is different according to different BPEL4WS message passing

activities. There are three sort of message passing activities (< receive>,< inovke>

and< reply> in BPEL4WS as classified earlier in chapter 4. The LCC clauses for

interpreting them are given below respectively.

5.2.1.1 Interpreting < receive> activity Using LCC

a(receive(Model,MList,VList, IDList,MyRole),A1) ::

processreceivemessage

(
PartnerRole,PortType,Operation,Variable,

ID,VList, IDList,VList1, IDList1

)

← PortType: Operation: Variable⇐ a(PartnerRole, ID)

then


(
a(receive(Model,MList,VList, IDList,MyRole),A1)

←¬checkreceive(Model,PortType,Operation,Variable,PartnerRole)

)

or




a(interpreter(Head,Rest,VList1, IDList1,),A1)

← checkreceive(Model,PortType,Operation,Variable,PartnerRole)

and MList= [Head|Rest]




or

null ←MList = []




If the BPEL4WS model that an agent needs to process is a< receive> activity, the

agent waits for an incoming message and checks if this message is the right one (A

message is a right one only if it is sent from the rightpartner of current agent and it

is defined with the right message type). If the message is not what the agent is waiting

for, the agent keeps waiting until it receives the proper one. After an agent receives a

right message, it changes its role tointerpreterto process the unprocessed BPEL4WS

Chapter 5. A Novel Approach of Using Executable Formal BPMs For MAS Development99

model in MList (the checking for the right incoming message is performed by the

constraintcheckreceive(...)).

The update ofIDList is used to record the information about the service requestor

and the service they invoke, so that later on, the result of service invocation will be sent

to the right agent.

5.2.1.2 Interpreting < invoke> activity Using LCC

a(invoke(Model,MList,VList, IDList,Role1),A1) ::

message(PortType: Operation: InputVariable,Model,MList,VList, IDList,Role2)⇒ a(receiver(Role2),A2)

← processinvoke(Model,PortType,Operation, InputVariable,Role2)

then


null ←Model= ..[, partnerLink(), portType(),operation(), inputVariable(),

out putVariable(null),sourceLink(), targetLink()]

or


message(PortType: Operation: InputVariable: Out putVariable,Model,MList,VList, IDList,Role1)

⇐ a(receiver(Role2),A2)

then


null ←MList = []

or

a(interpreter(Head,Rest,VList3, IDList,Role),A1)

←MList = [Head|Rest]andVList1 = [Out putVariable, InputVariable|VList]










When an agent is of the roleinvoke, it extracts the necessary information:PortType,

OperationandInputVariablefrom the current BPEL4WS< invoke> activity (Model)

and sends it out to the next agent that is in the role ofa(receiver(...), ID) for web ser-

vice’s invocation. If theout putVairableis defined in the current< invoke> activity, it

will be a response from the message receiver later on. After the sender receives the re-

sponse, it will changes its role tointerpreterto continuously process the unprocessed

BPEL4WS model. The constraintprocessinvoke(...) is used to extract the necessary

information from< invoke> activity that needs to be processed.

5.2.1.3 Interpreting < reply> activity Using LCC

a(reply(Model,MList,VList, IDList,myRole),A1) ::


Variable1 => a(Partner, ID)←




processreply(Model,Partner,PortType,Operation,Variable,)

and

get ID(Partner,PortType,Operation, IDList,Variable, ID)

and

look up(VList,Variable,Variable1)







or
 Fault => a(Partner, ID)←




processreply(Model,Partner,PortType,Operation,Variable,Fault)

and

get ID(Partner,PortType,Operation, IDList,Variable, ID)







Chapter 5. A Novel Approach of Using Executable Formal BPMs For MAS Development100

An agent sends a message in reply to a message that was received froma(Partner, ID).

The Partner and ID is stored inIDList to make sure that the message is sent to

the right partner. Constraintprocessreply is used to extract the necessary informa-

tion from < reply > activity andget ID(...) is used to find out the corresponding

service requestor’s information that is previously stored in the LCC common knowl-

edge to make sure that the result (Variable1) will be sent to the right receiver. Con-

straintloop up(VList,Variable,Variable1) fetches the value (Variable1) of the outgo-

ing variable (Variable) defined in< reply>.

5.2.1.4 Interpreting < sequence> activity Using LCC

a(sequence(Model,MList,VList, IDList),A1) ::

a(interpreter(Model1, [Model2|MList],VList, IDList,Role),A1)

← processsequence(Model,Model1,Model2)

a(sequence(Model,MList,VList, IDList),A1) corresponds to the BPEL4WS< sequence>

activity. When an agent is in this role, it first gets the first child elementModel1 of

Model, stores the left children elementsModel2 in MList and then changes its role to

interpreterto processModel1 recursively. In this way, the elements of a< sequence>

activity can be processed one by one in a sequential order thus keeps the semantic of

< sequence> from BPEL4WS.

5.2.1.5 Interpreting < switch> activity Using LCC

a(switch(Model,MList,VList, IDList), ID) ::

a(interpreter(Model 1,MList,VList, IDList,Role), ID)← processswitch(Model,Model1)

The underlying principle for processing a< switch> activity using a LCC protocol

is all the branches (< case>) defined are processed one by one from the most left

one to the right by the constraintprocessswitch(Model,Model1). The branch whose

condition is true (depending on current process instance) is extracted asModel1 for

further processing.

5.2.1.6 Interpreting < f low > activity Using LCC

The< f low> activity represents the concurrent execution of several activities that are

nested in it. In a system that has a centralised server, it is not difficult to implement

Chapter 5. A Novel Approach of Using Executable Formal BPMs For MAS Development101

this since all the states of the activities that are enclosed in a< f low > activity can

be recorded such that the time order between them can be controlled properly. But

in a multi-agent system, all the activities have to be executed in a sequential order

because there is no way to collect the states of all the activities without a centralised

controller. So if we want to use BPEL4WS in a pure decentralised manner, we first

need to represent concurrent structure activities (like< f low >) in sequential order

without affecting the result of the process.

The algorithm for converting a flow structure to a sequence structure is based on

the breath-first search. We implement this search using lists:openandclosed, to keep

track of progress.open lists states that have been generated but whose children have

not been examined. The order in which states are removed fromopen determines

the order of the search.closedrecords states that have already been examined. The

complete algorithm is given in Figure 5.3.

procedureconvert f low2sequence(Flow,FS)

inputs: Flow,a < f low > activitythat needstobeconverted

outputs:FS,a < sequence> activitygenerated f romtheinput< f low >

initiatestwolists: open= [Start],closed= []

while(open6= [])

if (thecurrent nodeisastructureactivity(S))

expandsthecurrent nodeand putsall itsnested activities in list open

else if(thecurrent nodeisabasicactivity(B))

if (B hasneither< sourceLink> or < targetLink>)

removesit f romthelist openand putsB inthe list closed byFIFO principle

else if(B has< targetLink>)

updatethecommonknowledgetomakethe< targetLink> public

and putB inthe list closed

else if(B has< sourceLink>)

check f or thecorresponding< targetLink> incommonknowledge

if (thecorresponding< targetLink> exists)

removesit f romthelist openand putsB inthe list closed byFIFO principle

else if(thecorresponding< targetLink> doesn′t exist)

ignoresthecurrent node, goesbackto its parent level and

triesthesiblingo f its parent inopen

Figure 5.3: Algorithm for converting a < f low > activity to < sequence>

Figure 5.4 shows the structure of a simple< f low > activity, in which solid box

represents the basic activity, dashed box represents the sequential structure activity and

solid arrow indicate the synchronisation link defined between activities. Applying our

Chapter 5. A Novel Approach of Using Executable Formal BPMs For MAS Development102

Figure 5.4: Diagrammatic representation of < f low > activity

algorithm to the flow example:

1. The flow activity is expended and all its nested activities are putted intoopen ([A then

B then C,H,D then E then F]).

2. The leftmost element is taken out fromopenand because it is a sequence activity and

first element is then extracted and all the remaining elements are used to form a new

sequence activity (B then C). The new sequence activity is then appended at the end of

open(H,D then E then F, B then C). Because the extracted element A is a basic activity

and has neither source link nor target link, it is put intoclosed([A]).

3. H is taken out fromopen. However, it has a incoming source link. It has to be appended

at the end ofopen(D then E then F, B then C, H).

4. Repeating the step 2, the contents ofopenare [B then C, H, E then F]. The content of

closedis [A,D].

5. Repeating the step 2, because B has a incoming source link from H. There is no new

element ofclosedat this stage.

6. Repeating step 3.

7. open:[B then C, H, F],closed:[A,D,E]

8. Repeating the step 2.

9. Repeating the step 3.

10. open:[B then C,H],closed:[A,D,E,F]. 11> Repeating the step 2.

11. open:[B then C],closed:[A,D,E,F,H].

12. open:[C], closed:[A,D,E,F,H,B]

Chapter 5. A Novel Approach of Using Executable Formal BPMs For MAS Development103

13. open:[], closed:[A,D,E,F,H,B,C]

The LCC protocol for interpreting a< f low > activity is thus:

a(f low(Model,MList,VList, IDList,Role), ID) ::

a(interpreter(Model1,MList,VList, IDList,Role), ID)← processf low(Model,Model1)

where constraintprocessf low(Model,Model1) performs the above converting algo-

rithm and generate a< sequence> activity Model1.

5.2.1.7 Interpreting < while> activity Using LCC

a(while(Model,MList,VList, IDList,), ID) ::

a(interpreter(Model1,MList1,VList, IDList,), ID)

←




extract activity(Model,Activity)and

Activity= ..[,Condition,Model1]andCondition istrue

and MList1 = [Model|MList]




or

a(interpreter(Head,Rest,VList, IDList,), ID)←MList = [Head|Rest]

When an agent processes a< while> activity using the above LCC protocol, it first

checks if the conditions associated with< while > are satisfied and if so it extracts

the direct nested activity defined in the< while>, changes its role tointerpreterand

starts processing it. TheMList also has to be updated using current< while> activity

as its first element. The reason for this is because the child element of< while> has to

be processed repeatedly until the conditions no longer hold. Thus, the next agent that

receives the package also has to check the conditions to decide if< while> activity

has to be performed again. If the conditions don’t hold, the agent starts processing the

first element stored in the un-processed BPEL4WS model list (MList).

Chapter 5. A Novel Approach of Using Executable Formal BPMs For MAS Development104

5.3 A Simple Example

We use a simple example to illustrate how our approach works. The definition for the

input BPEL4WS specification is given as follows with all the irrelevant parts ignored:

< processname= ” loanApprovalProcess” >

< /variables>

< variablename= ” request” messageType= ”CreditIn f oMessage”/ >

< variablename= ”approvalIn f o” messageType= ”approvalMessage”/ >

< /variables>

< partnerLinks>

< partnerLinkname= ”customer” partnerLinkType= ”LinkType” myRole= ”approver”/ >

< partnerLinkname= ”approver” partnerLinkType= ”LinkType” partnerRole= ”approver”/ >

< /partnerLinks>

< sequence>

< receivename= ” receive” partner= ”customer” portType= ”approvalPT”

operation= ”approve” variable= ” request” >

< /receive>

< invokename= ” invokeapprover” partner= ”approver” portType= ”approvalPT”

operation= ”approve” inputVariable= ” request” out putVariable= ”approvalIn f o” >

< /invoke>

< replyname= ” reply” partner= ”customer” portType= ” loanApprovalPT”

operation= ”approve” variable= ”approvalIn f o” >

< /reply>

< /sequence>

< /process>

The basic steps for the agents in our system to coordinate using the above BPEL4WS

model and LCC protocol are illustrated in Figure 5.5 and are explained below:

• An agent,A1, receives the BPEL4WS specification,B together with the LCC

protocol,P . It takes the role ofa(interpreter(B, [], [], [],),A1). It then tries the

clauses that are defined inP to find the type of theB by using the constraints

is sequence/is invoke/...) to determine the next BPEL4WS operator. For our

example, the dominant operator inB is asequenceactivity. A1 changes its role

to a(sequence(B, [], [], [],),A1).

• A1 processesB in the role ofa(sequence(B, [], [], [],),A1) by using the con-

straintprocesssequence(B,B1,B2) and gets the first element,B1, of B and the

left elementsB2 and then changes its role toa(interpreter(B1, [B2], [],),A1) to

repeat the first step.

Chapter 5. A Novel Approach of Using Executable Formal BPMs For MAS Development105

Figure 5.5: Agent’s coordination for performing the illustrate example.

• By repeating the first step,A1 changes its role toa(receive(B1, [B2], [],approver),A1)

and waits for the messagePortType: Operation: request. OnceA1 receives the

message, following the instructions inP , it changes its role to

a(interpreter(B3, [B4], [request], [PortType: Operation: Customer: CustomerID],),A1) in which B3 is the

first child element ofB2 andB4 contains the remaining child elements ofB2.

• By repeating the previous steps,A1 changes its role toa(invoke(...),A1) and

sends a appropriate messageM to an agentA2 together withP1. A2 starts pro-

cessing theB4 after it receives theP1 andM . The coordination continues, until

the processing ofB is finished.

5.4 Agent Design

The agents that participate the interaction on the BPEL4WS model based MAS plat-

form are proxy agents, which means the agents themselves don’t need to make complex

decision making processes but simply follow what the LCC protocol asks them to do

and perform some of the computational functions. Therefore, the design issues of such

agents are mainly about how to enable the agent conform to the protocol received and

to perform proper actions. The contents of the package passed between agents have to

be discussed before we get into the agent’s design since the rationale of agent design

Chapter 5. A Novel Approach of Using Executable Formal BPMs For MAS Development106

relies on this. Figure 5.6 shows the inside structure of the message package that is

used between agents based on our approach. For simplicity, the diagram only shows

the essential components of the message package. The components located at the com-

Figure 5.6: The essential components of our message package

munication layer have been discussed earlier. The transition layer contains two forms

of agent verification information. ”Physical agent address” defines the real location of

the agents in the system, which might be a URL etc. ”Agent capability description”

describes the intend message receiver’s capability. Thus when an agent receives a mes-

sage package, it is able to decide if it can process this package before further expanding

it.

According to the message package contents, the internal structure of the agents

based on our approach is shown in Figure 5.7:

Figure 5.7: The internal structure of an agent

• Transition layer: is responsible for the underlying message passing between

different agents. It controls the message passing at the lowest level of our sys-

tem. It receives the processed outgoing messages from communication layer and

forwards the received messages from other agents to communication layer. The

basic components of transition layer is shown in Figure 5.8 The ”incoming mes-

Chapter 5. A Novel Approach of Using Executable Formal BPMs For MAS Development107

Figure 5.8: The components of agent’s Transition layer

sage queue” and ”outgoing message queue” are used to store the the message re-

ceived and the messages that are going to be sent out. These two message queues

are operated by ”message receiver” and ”message sender” in a first in first out

manner and are used as a channel for the communication between the transition

layer and communication layer. Once a ”message receiver” receives a message

package from others, it puts it in in the end of ”incoming message queue” while

”message sender” fetches the first message in the ”outgoing message queue” and

sends it out. The main task that ”message receiver” needs to perform is filtering

transition level information of the received package such as the if this message is

intended for it or if the agent it represents for matches the agent’s capability de-

scription attached in the message package. In contrast, ”message sender” adds

transition layer to the outgoing message package according to the information

derived from communication layer.

• Communication layer: is responsible for unpacking the received messages

from the transition layer and producing the outgoing messages according to the

protocol attached with the received messages. Figure 5.9 gives the inside look

of the communication layer. ”Incoming message processor” is used to judge

Figure 5.9: The components of agent’s communication layer

whether the message that is fetched from ”incoming message queue” is the one

Chapter 5. A Novel Approach of Using Executable Formal BPMs For MAS Development108

that is required by the ”protocol expander”. If so, it passes it to ”protocol ex-

pander”. Otherwise, ”incoming message processor” put this message and every-

thing that is attached with it at the end of ”incoming message queue” for later

processing. ”Outgoing message processor ” receives information from ” pro-

tocol expander” and puts them at the end of ”outgoing message queue”. Proto-

col expander” communicates with ”incoming message processor” and ”outgoing

message processor” in following ways:

– If it doesn’t hold a LCC protocol at the moment, it asks the ”incoming mes-

sage processor” for a message package. Once it receives it, it unpacks the

message package, performs the required tasks, re-generates a new message

package and sends it to ”outgoing message processor” using the following

protocol expanding and re-write rules[Rob04]:

A :: B
Mi ,Mo,P ,O−−−−−−→ A :: E i f B

Mi ,Mo,P ,O−−−−−−→ E (rule1)

A1 orA2
Mi ,Mo,P ,O−−−−−−→ E i f ¬closed(A2)∧A1

Mi ,Mo,P ,O−−−−−−→ E (rule2)

A1 orA2
Mi ,Mo,P ,O−−−−−−→ E i f ¬closed(A1)∧A2

Mi ,Mo,P ,O−−−−−−→ E (rule3)

A1 thenA2
Mi ,Mo,P ,O−−−−−−→ E thenA2 i f A1

Mi ,Mo,P ,O−−−−−−→ E (rule4)

A1 thenA2
Mi ,Mo,P ,O−−−−−−→ A1 thenA2 i f closed(A1)∧A2

Mi ,Mo,P ,O−−−−−−→ E (rule5)

A1 parA2
Mi ,Mo,P ,O1

⋃
O2−−−−−−−−−−→ E1 parE2 i f A1

Mi ,Mo,P ,O1−−−−−−−→ E1∧A2
Mi ,Mo,P ,O2−−−−−−−→ E2 (rule6)

C← A⇐M
Mi ,Mi−M⇐A,P ,φ−−−−−−−−−−→ c(M ⇐ A) i f (M ⇐ A) ∈Mi ∧satis f y(C) (rule7)

M ⇒ A←C
Mi ,Mo,P,M⇒A−−−−−−−−→ c(M ⇒ A) i f satis f ied(C) (rule8)

a(R, I)←C
Mi ,Mo,P,φ−−−−−−→ a(R, I) :: B i f clause(P ,a(R, I) :: B)∧satis f ied(C) (rule9)

Rule1 means the definition for a given agent may be re-written by re-writing

the components of that definition.Rule2 andrule3 means that if any branch

of a ′′or′′ operator is properly expanded, processed and closed, the process-

ing of ′′or′′ operator is then accomplished. In order to expand a′′then′′

operator according to its sequential semantic,rule4 andrule5 together in-

dicate that the clauses defined before a′′then′′ operator must be expanded

before the expansion of the clauses defined after the′′then′′ operator. Paral-

lel execution in LCC in controlled by operator ”par” for which the re-write

rule is defined byrule6. Rule7 andrule8 are used to tell agent how to be-

have when it receives a message and sends out a message. When dealing

with message passing, each agent has to process the constraints associated

with the messages according torule7 (checks if the received message is

the message that it waits for and then processes the constraints) andrule8

(checks if the constraints are satisfied before it sends out the message and

close the clause).Rule9 defines the re-write procedure for agent role’s

Chapter 5. A Novel Approach of Using Executable Formal BPMs For MAS Development109

changing. According to it, if the constraints defined for agent role’s chang-

ing is satisfied, agent then fetches the clauses defined for new role and

starts executing them according to the other re-write rules. A protocol term

is decided to be closed as follows:

closed(c(X))

closed(AorB)← closed(A)∨closed(B)

closed(AthenB)← closed(A)∧closed(B)

closed(A parB)← closed(A)∧closed(B)

closed(X :: D)← closed(B)

satis f ied(C) is true if C can be solved from the agent’s current state of

knowledge. satis f y(C) is true if the agent’s state of knowledge can be

made such thatC is satisfied.clause(P ,X) is true if clauseX is the dialogue

framework of protocolP , as defined earlier.

– If it holds a protocol and is waiting for a message, it asks ”incoming mes-

sage processor” for the message and blocks itself until it receives the re-

quired message.

During the process of protocol expansion, all the constraints involved are sent to

”constraints solver” in the application layer for further processing.

”Outgoing message processor” simply forwards the message package that it re-

ceives from ”protocol expander” to ”outgoing message queue” currently. It is a

place holder for outgoing message processing. For example, the message pack-

age may have priorities. In such case, the ”Outgoing message processor” is

responsible for sorting the messages in ”outgoing message queue” accordingly.

• Application layer : is the place where the constraints defined in LCC protocol

are solved. It contains at least two components, web services invoker and con-

straints solver, as shown in Figure 5.10 ”Web services invoker” takes care of all

Figure 5.10: The components of agent’s application layer

the issues of web services invocation including: invoking a web service accord-

ing to the received messages; handling the returned message from invoked web

Chapter 5. A Novel Approach of Using Executable Formal BPMs For MAS Development110

service and converting them into agent’s messages. ”Constraint solver” provides

a container for executing the constraints that are requested by the ”protocol ex-

pander”. The way for solving the constraints might be attached to the LCC

protocol or purely solved by the local methods.

5.5 Prototype Implementation

5.5.1 JXTA P2P framework

The JXTA project (http://www.jxta.org) is a project proposed by Sun Microsystems,

which is used to tackle current problems existing in the p2p world and provides a basic

P2P platform. JXTA provides sets of open, generalised p2p protocols and services that

help devices on the network to communicate and coordinate with each other. For the

purpose of inter-operability, the project does not limit itself to any particular company,

programming language, system or network infrastructure and tries to provide platform-

independent solutions for p2p applications.

For developers, it provides a set of constructing components that support funda-

mental infrastructure for distributed applications. JXTA promises to support common

functions that are required by all the p2p applications such as discovery, message rout-

ing i.e.. Therefore, users can concentrate on the high level application itself rather than

low level system infrastructure. On the JXTA platform, a peer may be any networked

device that implements one or more of the JXTA protocols. Peers decide to join peer

groups on their own initiatives. A peer group is a collection of peers that have agreed

on a common set of services and want to collaborate with each other to chase some

common goals. To enable peers to advertise themselves and discover each other, to

communicate and route messages to proper target, six JXTA protocols are supported

by the current JXTA standard, which are:

• Peer Discovery Protocol (PDP) is the protocol that is used by peers to advertise

their own resources and discover resources from other peers within a peer group.

• Peer Information Protocol (PIP) is the protocol provides a set of messages for

peers to use to obtain the other status.

• Peer Resolver Protocol (PRP) is the protocol that enables peers to send a generic

query to one or more peers and receive a response.

Chapter 5. A Novel Approach of Using Executable Formal BPMs For MAS Development111

• Pipe Binding Protocol (PBP) is the protocol that is used by applications and

services in order to communicate with other peers. It helps peers to build up a

virtual communication channel with others for message exchanging.

• Endpoint Routing Protocol (ERP) is the protocol by which a peer can discover a

route (sequence of hops) to send a message to another peer potentially traversing

firewalls and NATs

• Rendezvous Protocol (RVP) is the protocol that is used for propagation of mes-

sages within a peer group. The Rendezvous Protocol provides mechanisms

which enable propagation of messages to be performed in a controlled way

JXTA is a popular, open-source, royalty- and license-free p2p framework which

has a large number of registered members of the development community. Actively

supported by a growing community of p2p developers, JXTA technology has seen

strong growth in its adoption, and some commercial applications are now emeraging.

For these reasons, our prototype system is built up adopting the JXTA framework.

5.5.2 Overall prototype framework

The current prototype is produced in the Java using J2SE version 1.4 API. This proto-

type uses the JXTA grouping feature for virtual community management. Communi-

cation between agents relies on JXTA messaging protocols such as advertisement and

pipe. The messages that are passed between peers are in XML format. This prototype

consists of two main components which perform business workflow functions and p2p

functions, respectively as illustrated in Figure 5.11.

The core services of JXTA include the group service, the peer service, the pipe

service, the discovery service and the advertisement service. A summary of the core

services is as follows:

• Group service: this service deploys the grouping concepts of p2p applications.

Each group can have policies of membership. For example, all the participants

involved in a BPEL4WS interaction model is a group and actually, in our proto-

type, each BPEL4WS process model is used to organise a JXTA group, which

means a JXTA group is built up according to given BPEL4WS model. The group

service provides peers with the capability to discover groups, fetch information

about all the participants in a group, create a pipe to communicate with others in

a group, join a group and leave a group, etc.

Chapter 5. A Novel Approach of Using Executable Formal BPMs For MAS Development112

Figure 5.11: Overview framework of prototype

• Pipe service: this service has capabilities of managing the communication be-

tween peers. The service can help peers search for a pipe advertisement using

the discovery service. This service consists of two sub-services:

– the InputPipe service that is used to enable peers to send messages to others

and

– the OutputPipe service that is used to help peers to receive messages from

others.

Also, pipes offer two sorts of communication styles, point-to-point and broad-

cast, which can be used for different circumstances. For our prototype, each

agent has a binding input pipe for receiving messages. The connection between

an agent and its input pipe is through the connection of the agent’s advertisement

and the input pipe’s advertisement.

• Advertisement service: this service is used to publish resources in the JXTA

virtual network. There are several different advisement types defined in JXTA

such as:

– peer advertisement: describes the basic information of a peer/agent, in-

cluding its physical JXTA ID, its application role, its capabilities and the

Chapter 5. A Novel Approach of Using Executable Formal BPMs For MAS Development113

information of its incoming pipe that is used receive message from others.

– peer group advertisement: describes the basic information of existing peer

group, including its JXTA ID, its name and the information of its associated

BPEL4WS model.

– pipe advertisement: describes the basic information of the pipes created

within a peer group for sending and receiving messages.

• Discovery service: this service is used to help peer search for advertisements in

the so that resources associated with advertisements can be used.

5.5.3 Implementation of Key System Components

The implementation of the key components of the LCC based decentralised workflow

management system are described in the following sections.

5.5.3.1 Implementation of agents group

Our prototype system uses the concept of an agent group to enable agents’ interaction

in an organised manner. Each agent group, as explained, is organised according to its

associated process model. Any agent that is willing to participant in the interaction

specified by a process model can join or quit its group. Once an agent joins a group, it

must take one of the application roles defined in the process model. In order to carry a

valid interaction, each group should be composed of at least one agent for each of the

application roles that are required by the process model. More agents that act for an

individual application role are allowed in our system, since any of them can be selected

as interaction partner by others for a particular process instance during the interaction.

The agent group in our prototype is realised by JXTA group service. When an agent

joins a group, it needs to publish its peer advertisement and its input pipe advertisement

so that other agents in the group can discover and communicate with it.

Figure 5.12, 5.13 shows the web interface for browsing,joining and quitting exist-

ing interaction groups.

Chapter 5. A Novel Approach of Using Executable Formal BPMs For MAS Development114

Figure 5.12: Interface for browsing, joining and quitting existing interaction groups

Chapter 5. A Novel Approach of Using Executable Formal BPMs For MAS Development115

Figure 5.13: Interface for selecting application role

After joining in an agent group, an agent is allocated with an application role as

shown in Figure 5.14

Figure 5.14: Interface for browsing existing agents in a Group

5.5.3.2 Implementation of agent kernel

At the heart of our prototype, the agent kernel of each of the distributed agents col-

laborates with others to achieve their common goal (automation of workflow process).

In general, each agent works independently in the system, according to the workflow

definition, and contributes to the operation of the whole workflow system. In the pro-

totype, the interaction between two agents is realised through message exchange and

the implementation of each layer inside an agent is discuss as follows:

Chapter 5. A Novel Approach of Using Executable Formal BPMs For MAS Development116

• Transition layer : provides the message passing mechanism at the lowest as

explained earlier. When an agent is first created, it has two fixed properties:

– a JXTA Peer ID. Each agent/peer in JXTA can only have one unique physi-

cal ID. However, this unique ID can be mapped to multi IDs that are adver-

tised for the JXTA peer in different peer advertisement in a JXTA group.

Thus, it gives us the flexibility of using one physical agent to realise many

agents that are defined in a LCC protocols since when the agents in our sys-

tem communicate with each other, they locate each other solely using the

IDs that are published in the peers’ advertisement rather than their physical

one.

– a JXTA input pipe. Each agent/peer in our prototype has a unique JXTA

input pipe which is used to receive messages from others. In JXTA, if a

peer tries to send a message to another, it must know how to connect with its

partner’s input pipe using its output pipe. This is the common way in JXTA

for agents/peers to communicate with each other. However, in LCC, agents

don’t care how the underlying message passing is done. All they need to

know for the message passing is the recipient’s ID. Therefore, when using

JXTA to realise LCC protocol based agents’ communication, the agents’ ID

must be associated with the concrete message transferring mechanism (pipe

service). The simplest way to realise such association in JXTA is using

its advertisement service. In our prototype, each agent’s ID is published

also in its input pipe advertisement. Thus, when an agent tries to send a

message to its partner, it fetches its partner’s ID in the message package

and according to the ID, it uses JXTA discovery service to discover the

proper input pipe that is associated with the ID and then it creates its own

output pipe to connect with the input pipe discovered. After the connection

is built, messages are then passed through the channel.

Figure 5.15 shows the construction of message channel between two agent’s

transition layers on JXTA platform.

• Communication layer: handles all the LCC protocol related operations. The

LCC protocol interpreter is based on the logic programming language Prolog.

Although any LCC protocol can be mapped directly to Prolog syntax and thus

can be easily processed by Prolog engine. Prolog is little used by industry at

Chapter 5. A Novel Approach of Using Executable Formal BPMs For MAS Development117

Figure 5.15: Implementation of the components at agent transition Layer

present. Therefore, we develop a JAVA based engine which only understands

the concepts that are from LCC. This engine is the core component, namely a

protocol expander in communication layer. It processes the LCC protocol in the

same way as the Prolog engine. It is able to process the predicates with multiple

arguments that are designed for LCC and returns multiple results accordingly.

Thus, the existing mechanisms and algorithms that are used for Prolog based

LCC processor, can be adopted in directly for the JAVA based version.

• Application layer : is responsible for handling the execution of computational

functions. In our system prototype, the computational functions are implemented

in three ways:

– web services;

– locally stored functions;

– and functions that are passed from the others.

Web services provide the business application functions that are required by the

BPEL4WS process model. Locally stored functions; the functions passed from

the others are used for LCC protocol constraint solving. The reason for us to

design both local functions and communicated functions is because some of

the functions, especially for those that are independent on any of the particu-

Chapter 5. A Novel Approach of Using Executable Formal BPMs For MAS Development118

lar agents, can be re-used if they can be passed between agents and thus reduce

the complexity of individual agents.

Figure 5.16 and Figure 5.17 show the interface for the variables’ instantiation and for

tracking the messages’ passed between agents.

Figure 5.16: Interface for initialising variables

Figure 5.17: Interface for tracking agent’s messages’ passing

5.6 Discussion

Our approach provides an opportunity to build a multi-agent based distributed work-

flow system starting from a business process model rather than from a interaction pro-

tocol, which narrows the gap between the high level requirement and system specifi-

cation in the development of multi-agent system and connects the business workflow

community and multi-agent community. Thus, business users can produce their own

Chapter 5. A Novel Approach of Using Executable Formal BPMs For MAS Development119

business process models that can be used directly in the multi-agent system. Fur-

thermore, since there are many available techniques and tools for business process

modeling, these can be adopted directly for building multi-agent systems based on our

approach.

The LCC protocol used to interpret BPEL4WS models is independent of any spe-

cific message passing infrastructure, although we have described it with respect to a

distributed and multi-agent based system infrastructure, it could equally well be de-

ployed in a more traditional server based style. Different styles of deployment are

described in detail in [Rob04]. Furthermore, the protocol can be used prior to deploy-

ment in order to predict behaviours and possible errors in interaction[Wal04b]. An-

other advantage is that the workflow engine built using our approach is a real generic

server. The only specific knowledge it contains is how to process the LCC protocol and

how to invoke the web services but not how to process the particular business process

modelling language, which gives us a very efficient and lightweight way for system

re-design and re-implementation.

5.7 Summary

In this chapter, we proposed a novel approach for using BPEL4WS specification to

guide multi-agent interactions. In this approach the LCC protocol is used as a language

interpreter to enable agents to understand the BPEL4WS syntaxes.

A system prototype based on the proposed approach is shown. It uses JXTA as the

underlying infrastructure and uses our proposed coordination mechanism for agents’

interaction. Web services are also conscripted as computing units to enable real appli-

cations to be accessed our system.

Chapter 6

Extending Our System For Incomplete

Process Support

6.1 Causes of Incomplete Processes

Workflow management systems that support traditional application domains (office

work, banking industry, etc.) are usually mature and fixed. Processes’ goals, the ac-

tivities that lead to each goal and the details of each activity are normally pre-defined.

Hence, process modellers often can completely see and formally specify the bound-

ary of a process in advance. As a result, traditional workflow management systems

conform to the principle of defining first and executing thereafter.

The execution mechanism adopted conventionally is known as lazy execution where

the workflow system starts the execution of the instances of a workflow process only

after the process is modelled and specified completely. The build-time functions that

act on process modelling, representation and storage issues and the runtime functions

that perform the execution of process instances are conducted respectively. However,

in some application domains such as scientific computing, health care, the process

specification obtained before-hand only describes the workflow process in a rough and

incomplete manner. Main activities, products, roles and the structure of the process

model can normally be articulated. However further elaboration and eliciting of the

process are required to be accomplished during the execution of process based on pro-

cess instance data [SJT97, Sie99]. These sorts of processes are known as incomplete

processes. A simple but typical incomplete process scenario is illustrated in Figure

6.1.

The process model in Figure 6.1 shows a incomplete process representing a typical

120

Chapter 6. Extending Our System For Incomplete Process Support 121

Figure 6.1: The healthy care process

diagnostic process for investigation of patients in hospital. A new patient coming into

the center will first be created a profile according to his/her current status by using

registration service. All patients then consult with an attending physician for the first

diagnose, who will determine what tests need to be performed, on a case-by-case ba-

sis. This brings the flexibility for the process. After the tests, the patient is called again

by the attending physician who explains the results of the tests and makes a diagnosis.

The patient is then required to report to accounts to make the required payments before

leaving the center. In this process, the activity that is depicted in the gray box is an

incomplete activity. It can not be pre-defined until the physician sees the real situation

of the patient. For such flexible workflows, conventional client-server workflow archi-

tecture is not perfectly suitable. Because the execution of the workflow relies highly

on the individual decision making process of each participant.

Normally, incomplete processes exists because of the following:

1. Processes in some new domains are much more complicated than those in normal

ones. The increased complexity makes a process very difficult to be completely

designed before its execution. At design-time, only the main process structure

and few activities can be determined, while others remain unsolvable and need to

be accomplished during process execution. For example, in the domain of health

care where the entire task is modelled as a complex process, some instance data

based activities may not be finalised until that information is fetched. Normally,

this part of the process is modelled generally as composite activities (with some

of is sub-activities missing) during the process modelling period. These com-

posite activities need to be further articulated to concrete activities at run time

when process execution reaches a certain level, considering the result of some of

the completed activities.

2. Also in some new domains, processes are more flexible than those in conven-

Chapter 6. Extending Our System For Incomplete Process Support 122

tional ones. Different instances may not follow pre-defined process rules pre-

cisely but have small deviations. In particular, the possibilities to complete a

task in various cases may be vary different. To foresee and to model of all these

possibilities is either impossible or at least not necessary. Therefore, it is hard

to define a complete process model in advance which describes all the situa-

tions that the instances may fall in. A typical example of this case is still the

health care process, where inpatient treatments are prescribed uniquely for each

case[SSO01].

3. In some cases, it is hard to get essential information to model processes com-

pletely before-hand, especially in application domains like scientific research,

invention and the laboratory environment. Modelling such exploratory work is

a difficult task because that very limited information is available and can be

used for reference[JWB96, SV96]. In particular, some modelling information is

completely unknown until the process instances are executed to a certain stage.

Therefore, the complete process definition of tasks at a later stage cannot be pre-

defined because the outcomes of tasks at early stages are unclear. As a result, a

complete workflow process cannot be obtained at the design time.

6.2 Problem Analysis

Incomplete process support is the capability of a workflow system to execute a pro-

cess model before it is complete specified, where the full specification of the process

can made at runtime, and may vary for different instances. Some requirements have

been described for workflow management systems that support incomplete models as

follows, which are not fulfilled in conventional workflow research[JYR04].

1. Incomplete parts of workflow processes have to be specified explicitly as incom-

plete at build-time.

2. A workflow management system uses a different execution mechanism, where

execution of the process instances is able to be performed even if the process is

not specified completely.

3. An automated run-time facility should be provided, which enables further ar-

ticulation of the workflow processes at run time without affecting the current

running instances.

Chapter 6. Extending Our System For Incomplete Process Support 123

In a decentralised workflow management environment, for instance, a MAS based

workflow system, some extra requirements are needed:

4. An incomplete process definition can be divided into task partitions and task

partitions can be distributed to relevant agents appropriately.

5. Real time incomplete process support can be carried out in a decentralised envi-

ronment so that process elaboration can be performed at the right time and the

right place by the right participant.

For the above sorts of requirements, a conventional centralised workflow architecture

(client-server) cannot easily be adopted since all the client end participants can only

be invoked passively and have no authority to revise the workflow model. Of course,

to fulfill the first three requirements, the process modelling language that is used to

describe the process models used in conventional workflow management system can be

revised. However, the fourth and fifth requirements can not be satisfied easily anyway

because the fulfillment of incomplete activities has to be carried in a distributed manner

since the private knowledge of each participant is needed.

On the contrary, our approach proposed in chapter 5 could satisfy all the above

requirements perfectly with minor extension. Based on our proposed architecture (

a decentralised multi-agent platform), all the participants (agents) are equal and have

their own initiatives. Each activity in the pre-defined workflow model is executed by

a corresponding agent and the whole process model is passed between agents in a se-

quential order, which means that the agents can instantiate the incomplete activities

defined in the process model appropriately since all the states of the running process

instance are clear to the agent when it holds the process instance. In the following sec-

tions, we will discuss different sorts of incomplete activities in incomplete processes

and how they can be instantiated by our agents.

6.3 Categories Of Incomplete Activities

As discussed earlier, the reason processes are incomplete is because some of the ac-

tivities/infomation inside/of the processes are missing. Those missing activities or

activities with some of their properties missing are known as incomplete activities.

Incomplete activities in incomplete process can be of two sorts:

• A property missing activity: is an activity that has some of their properties unde-

fined at build time and those missing properties have to be decided at run time.

Chapter 6. Extending Our System For Incomplete Process Support 124

A properties missing activity can be either a basic activity in process model or a

composite activity as shown in the following example:

basicactivity({role, role},activity name,{unknown},{postconditions})

In the definition of the above activity, only therole and thepostconditionsare

pre-defined and the information of all the other properties are missing (input,

pre-conditions and outputs). These attributes need to be articulated before the

execution of activity instances starts.

• A component missing activity or an incomplete composite activity: is a com-

posite activity with some/whole of its sub-activities missing. For example, a

sequence activity might be defined with some unknown activities as its elements

shown as follows:

process(sequence(name,unknownactivity,basicactivity(...),unknownactivity, ...)

For an incomplete composite activity, some/all of its sub-activities are missing

at the design time and have to be fulfilled at run time. An incomplete com-

posite activity is a ”black-box” defined in the process model. Each composite

activity represents a piece of work which is filled by executing a set of sub-

activities. These sub-activities, each of which can be either atomic or composite,

can also be partially specified, forming a sub-process. A composite activity has

a predictable contribution to the whole process. In other words, the objective

of a composite activity, its position within the process, and its input and output

should be all pre-defined. But the details about how to fulfil composite activities,

i.e., how to convert input parameters into output parameters remain uncertain be-

forehand. The full specification of the composite activity needs to be made in

real time. The construction of a composite activity will not affect those activities

which feed it with inputs or use its outputs. According to the ways in which

an incomplete composite activity is instantiated, incomplete composite activities

can be further classified into two categories:

– An open composite activity: intergrates pre-determined and open activities

within a single workflow [NH94]. In this case, a pre-determined workflow

is used as the main process structure but some of the composite activities

of it are unknown completely. What we mean by ”unknown” here is most

of its information is not available and needs to be built up at run-time.

Chapter 6. Extending Our System For Incomplete Process Support 125

At a particular step of the execution of the process, several participants

will coordinate with each other for the completion of unknown composite

activities.

– A controlled composite activity: ”is characterised by integrating some types

of activities into predefined workflows that are somewhat more pre-determined

than completely open process elements”[NH94]. In particular, a controlled

composite activity has a set of components, where each component may

consist of either an atomic activity or is a composite activity. Normally, the

fulfilment of a controlled composite task requires the execution of some of

the components in a certain sequence. However, this sequence remains un-

certain beforehand and needs to be determined in real time by the activities’

performer.

Other sorts of incomplete activities that are more complicated and are more difficult

to address can exist. For instance, an activity that may have both missing properties

and unclear relationships with other activities. However normally, a process model

that contains such incomplete activities are not considered as incomplete. It is almost

impossible to start executing such incomplete processes with expectation to elicit them

properly later on. Therefore, we believe that support for the above incomplete activities

is enough for real life applications.

6.4 Incomplete Activity Instantiation

The instantiation of incomplete processes in general, can be performed in one of the

following ways:

• Semi-automated or manual support: The instantiation task requires an agent to

define new activities or adapt some information and then build the sub-activities

from the new/existing activities.

• Fully automated support: The instantiation task automatically makes a complete

specification of an incomplete composite task by composing the existing activi-

ties based on the instance data and given constraints.

Several questions have to be answered in order to instantiate incomplete activities

at the run-time regardless of the underlying system architecture:

1. When will an incomplete activity be instantiated?

Chapter 6. Extending Our System For Incomplete Process Support 126

2. Where will the instantiation of an incomplete activity occur?

3. How will an incomplete activity be instantiated?

For different incomplete activities that have different information missing at build time,

the answers for the above questions are different. For those incomplete activities that

have some of its properties missing (inputs, performers, outputs, etc..), the information

of the missing properties must have to be fulfilled before the processing of themselves.

However, for those incomplete composite activities which have all their properties

defined properly but say nothing about how to achieve the transition between the prop-

erties, they can be instantiated during the execution time.

To fulfill the incomplete activities that are with some of the properties missing, a

special managerial activity, known as a instantiation activity, is designed. What the

instantiation activities do in an incomplete workflow process model is that they are

used to instantiate particular incomplete activities that are associated with it as depicted

in Figure 6.2:

Figure 6.2: The bind of instantiation activity and its associated activity

An instantiation activity is only used to complete the missing properties of the

incomplete activities but doesn’t care about how the incomplete activity is made com-

plete. The description of an instantiation activity is as follows:

• Responsibility: An instantiation activity is carried out by a certain participant

who offers special services to model processes, such as a process engineer or a

project manager.

• Inputs: The inputs of an instantiation activity are the existing information of the

incomplete activities that it needs to instantiate as well as the information about

the current states of the whole process. Given this information, the instantia-

tion activity is able to decide how to complete missing properties of incomplete

activities.

• Output: The single output of an instantiation activity is a complete specification

of the properties of its associated incomplete activities. If output activities are

Chapter 6. Extending Our System For Incomplete Process Support 127

incomplete basic activities, they can then be executed directly while being in-

voked. If output activities are composite activities, their sub-activities have to be

completed before execution.

By using instantiation activities, the instantiation questions of′′whereand when′′ for

properties missing activities can be answered. An incomplete basic activity is instanti-

ated by the execution of an instantiation activity that is defined before it in the process

model. Such instantiation takes place in the space of the instantiation activity’s per-

former’s space. For incomplete composite activities, instantiation is achieved in two

phases. In phase one, the missing properties are instantiated by the instantiation activ-

ity with which they are associated and in phase two, the components of them and the

orders between them are decided by all the participants involved.

Technically, there are many ways of indicating the notations of both incomplete

activity and instantiation activity in a process model; the simplest way might be the

revision of the process modelling languages. New syntax is adopted to distinguish

complete and incomplete activities so that when the workflow participants are execut-

ing activities, they know what actions need to be performed accordingly. We use the

following notation:

activity(Name, ID, Instantiation Activity ,Associated Incomplete Activity,Out puts)

activity(Name, ID, Incomplete Activity , Inputs,Out puts)

In the following sub-sections, we will explain for different sorts of incomplete

activitieshowthey are instantiated.

6.4.1 Completing activity properties

Completion of missing properties of activities , as we have discussed earlier, is per-

formed by instantiation activities. We assume that if an instantiation activity is reached

during process execution, the missing information at build time for the completion of

its associated activity is all available. Thus, the agent that executes the instantiation ac-

tivity can use such information to complete the missing properties of the activity. An

instantiation activity can be understood as a place holder to tell when the information

for completing incomplete activities’ properties is available.

How the agent that processes the instantiation activity completes the missing prop-

erties is domain specific and varies for different applications so is not the issue that

we address in this thesis. The more general point that we address is that how missing

properties articulating a process are undertaken based on our existing decentralised

Chapter 6. Extending Our System For Incomplete Process Support 128

platform. In general, the instantiation activity performing agent might use its own

knowledge and the available information to instantiate incomplete activities or it can

communicate with other agents to make the decision together.

As explained in the previous chapter, the whole process model is passed between

agents and is processed in a linearised manner. Thus, after an instantiation activity is

executed, the result of the execution (an activity with all its missing properties com-

pleted) is fully available to the following agents who are going to process the incom-

plete activity. Whenever an agent executes a property missing activity, it looks up in its

received package for the completed replacement of this activity and executes it. Figure

6.3 shows the basic process

Figure 6.3: The healthy care process

6.4.2 Instantiation of Controlled Incomplete Composite Activities

A controlled incomplete activity, as explained earlier has already got all of its sub-

components available at design phase. Normally, the performer of this sort of in-

complete composite activity instantiation is pre-defined and all we need to do during

Chapter 6. Extending Our System For Incomplete Process Support 129

the instantiation process is to decide the proper sequence between those components.

When a designated agent receives such an activity, it starts processing it using its own

knowledge according to the existing evidence. A critical question however is, how we

can ensure that the composition of the selected sub-activities for the incomplete com-

posite activity is a valid one, where validity relates to the semantic correctness of the

composition in relation to the process under consideration. Valid composition must

be ensured through the build rules captured that are associated with the instantiating

activities.

In order to tackle the problem addressed above, a framework is proposed as shown

in Figure 6.4. In this framework, after the agent receives a message and an attached

Figure 6.4: A framework for incomplete activity instantiation

instantiating activity,

1. It first requires the end users to select activities from the available basic activities

(webservices) according to the run-time instance information.

2. Then it checks whether theselected activitiesconform to theselectingrulesde-

fined associated with the instantiating activity.

3. If the selection is valid, the activities are composed into a sub-process manually

by end users or automatically by algorithm.

Chapter 6. Extending Our System For Incomplete Process Support 130

4. After the agent checks whether the composition complies with thecompositionrules,

it sends the instantiated activities to next agent.

The basic elements that are used in the framework are:

• Web Services(W): is a set of web services that are available to the agent inside

an organisation, which is expressed in the form ofW = {w1,w2, ...,wn}.

• Selected Activities(A): is a set of activities that are made up by the agent using

the existingW , which is expressed in the form ofA = {a1,a2, ...,an}. The

activities in A can be a basic activity, composite activity or even incomplete

activity.

• Events(E): is the information about the data that is created by the instantiating

activity (inputs/outputs). It may come from the messages captured and inter-

preted by the agent. For example, two possible events of the invocation on a

BPEL4WS invoke activity can be interpreted by an agent as the facts below:

event(activity type,PortType: Operation: InputVariable)

event

(
activity type,PotyType: Operation:

InputVariable: Out putVariable

)

Each event enacts at least an action that determines/helps the users to determine

the sub-activities of the incomplete activity:

event(A,E)⇒ A = {selected(a1),selected(a2), ...,selected(an)}

• Selecting rules:defines the basic principles for agents to pick appropriate activ-

ities for fulfilling the incomplete activities. The selecting rules are constructed

from the following basic operations (OP):

– selected(a): activity a is selected for the instantiation of the incomplete

activity.

– ¬selected(a): activity a cannot be selected for the instantiation of the in-

complete activity.

– selected(a)∨selected(b): only one of the activities a and b can be selected

for the incomplete activity’s instantiation.

– selected(a)∧ selected(b): both of the activities a and be can be selected

for the incomplete activity’s instantiation.

Chapter 6. Extending Our System For Incomplete Process Support 131

A Selecting rule is defined as:

OP[∧OP[,∨OP[, ...]]]⇒OP[∧OP[,∧OP[, ...]]]

For example, the following selecting rules

selected(a)∨selected(e)⇒ (¬selected(b))∧ (selected(c)∧selected(d))

means if activity a or e is selected, activity b cannot be selected, and there should

only one activity between c and d be selected.

• Composition rules: indicates how the selected activities are composed for the

incomplete activities (sequences among selected activities).

– or(a,b): If both activity a and b are selected, a can be executed before or

after b no matter whether they are adjacent or not.

– be f ore(a,b): If both activity a and b are selected, a must be executed before

b no matter whether they are adjacent or not.

– sequence(a,b): If both activity a and b are selected, a must be executed

before b and the two activities must be adjacent.

We can’t explicitly define parallel structure in the composition rule because the

architecture of our system. Both of the selecting rules and the composition rules

can be defined manually or generated automatically based on the information of

activities, for example, data dependence between two activities. The automatic

composition of a given set of selected activitiesA = {a1,a2, ...,an} using a set

of composition rulesCR = {cr1,cr2, ...,crn} that are relative toA is possible.

6.4.3 Instantiation of Open Incomplete Composite Activities

As termed earlier, an open incomplete composite activity is the activity that involves

several different participants as its instantiators. In a multi-agent based environment,

like ours, the process for instantiating open incomplete activities can be understood as

a negotiation process among different participants. A negotiation process is viewed as

a distributed search through potential compromises where each agent brings into the

negotiation specific constraints on what it considers an acceptable resolution. For our

system, the input to the negotiation process is an incomplete composite activity (with

some of its properties or sub-activities missing) and the final output is a completed

composite activity (with all its properties and sub-activities fulfilled). In order to enable

Chapter 6. Extending Our System For Incomplete Process Support 132

such a negotiation process, the definition of the open incomplete composite activity at

least needs to have the following three properties:

• Inputs/pre-conditions that are used for staring the activity.

• Outputs/post-conditions that this activity should produce.

• Agents that should be involved in the instantiation process for the incomplete

activity. Also it has to be ensured that these agents have the ability to contribute

to the activities’ instantiations.

After the open incomplete activities are equipped with the above properties, the in-

stantiation problem then becomes a distributed planning problem. The final goal of the

system is to produce a complete plan for executing the required task. Much research

has been done for distributed planning problem but most of them reply on a centralised

planner, which is what we try to take off for an open system. Therefore, a decen-

tralised distributed planning mechanism has to be used. To build such a cooperative

distributed planning system in an open manner, some of the key questions we must

address include:

• How is the overall planning problem decomposed and allocated to the agents?

• How are the sub-plans of individual agents concatenated to produce the overall

plan that can be executed coherently and effectively?

• How do agents communicate with one another during planning?

With the approach proposed in chapter 5, all the above questions can be answered. For

the problem/goal decomposition and allocation question, the simplest solution might

be using goal transformation, where a given goal is transformed into the another that

is similar to the first or that is a sub-goal of the given goal. For example, if an agent

in our system cannot achieve a goal by itself, it can transfer the goal into one that is

achievable through coordination with others. In the other words, to solve a goalG ,

solve instead a goalG ′ that generates a sub-solution, and then pass the remainder of

the goal (i.e.,G minusG ′) to another agents. To achieve a particular goal stateG ,

an agent must have an appropriate operator (internal functions or valid web services

in our case). Thus, all the goals/sub-goals that are passed between agents are split

into two sets. Set one contains the states for which the agent has an operator, and set

two contains those states for which it does not. The agent solves all the states in set

Chapter 6. Extending Our System For Incomplete Process Support 133

one, and then it requests other agents to solve each state of set two. In the following

sub-sections, we will explain in detail how our distributed planning mechanism works.

6.4.3.1 Round Table Coordination For Distributed Planning

Basically, for almost all the planning system, there are three necessary elements, which

are:

• Initial State: describes what we have to start a plan. For our work (instantiating

incomplete activities), the initial state of the planning system is the inputs of the

activities.

• Goal State: describes what the final plan needs to achieve. Similarly with the

initial state for our system, the outputs of the incomplete activities are the goal

state.

• Operators: is a set of activations that make up the plan that leads us from initial

state to goal state.

However, despite of the above common features of planning system, there is a clear

difference between conventional planning systems and distributed planning systems,

which is that the operators in distributed planning systems although are assumed to be

there but only are available to those agents who own it. For our work, such operators

are the complete activities that each agent knows and are represented as follows for

later planning purposes:

Op(Action: activity name,Precondition: activities inputs,E f f ect: activitiesout puts)

The selection of proper operators (activities that each agent owns) for particular states

are not possible since the operators are distributed and located in different agents. Al-

though a centralised planner works as discussed in others’ work [Geo88][NRdW05] for

solving distributed planning problem, this violates our initial idea of building an open

system. Therefore, for our system, to undertake the planning task without adopting

a coordinator, it must select appropriate operators among all the participating agents.

As we know, the planning process can be viewed as a search process for finding out

the paths that connects the initial state and goal state in a tree structure. States are the

nodes of the tree and the operators are the links that connect the states. A complete

plan can be achieved as long as we can build up the complete tree structure using all

Chapter 6. Extending Our System For Incomplete Process Support 134

the operators. According to this, we propose a mechanism called ”round table coordi-

nation”. The general idea of this approach is that a plan package that contains all the

un-solved states for a plan is passed between all the agents in a cyclical manner. Dur-

ing the process, all the agents look up each of the un-solved states and try to contribute

their operators to make them evolve to new states. The basic representation of a plan

package is given below:

Plan





Current State: {state(AgentID,S1), ...,state(AgentID,Sn)}
Final State: {Sn}
Operators: {O1 : Op(...),O2 : Op(...), ...,On : Op(...)}
Links: {S1

O1−→ S2, ...}





In the above representation, a plan package is composed of four child elements:

• Current state: defines a set of states that currently need to be solved. Each state

is of the form:state(AgentID,S1) in which agentIDindicates that which agent

generates this state and can not make further evolvement on it. This concept is

used to record the evolving process of the un-solved states. For our work, the

un-solved states here indicate those inputs/outputs of certain activities that have

no matches from other activities’ outputs/inputs.

• Final state: defines the last state that indicates the completion of the plan.

• Operators: define a group of operators that can be used for the solution of the

un-solved states.

• Links: defines a set of causal links. A causal link is written asSi
On−→ Sj . Causal

links serve to record the purposes of operators in the plan: here a purpose ofOn

is to achieve the states changing fromSi to Sj .

By passing around the plan package, a complete plan can be generated by the agents if

it is obtainable. Whenever an agent receives the plan package from the others, it first

checks the current state list and deletes all the states that are marked by itself. Then

it checks all the remaining states that are generated by other agents and tries to use its

own operators to make them evolve. All the new states after the evolvement should be

marked by itself and added into the current state list. Also the operators and links’ list

are updated. One the agent has nothing more to do, it passes the updated plan package

to the next agent for further processing. This process continues until the goal state is

solved. An example distributed planning process is illustrated in the diagram below:

Chapter 6. Extending Our System For Incomplete Process Support 135

Figure 6.5: A framework for incomplete activity instantiation

In the example shown in Figure 6.5, there are threes agentsA1,A2 andA3 that are

involved in the planning process. The initiate state of the whole planning process is the

existence of a variableI1 and the goal state of it is the existence of variablesOm∧On.

The ”round table coordination” process starts fromA1. BeforeA1 contributes anything

to the plan, the plan package’s content is as follows:

Plan





Current State: {state(Start, I1)},
Final State: {Om,On},
Operators: {},
Links: {}





and onceA1 receives the package, it tries to evolve the states in current state list using

its own operator,

Op : {Action: action1,Precondition: I1,E f f ect: O1}

Chapter 6. Extending Our System For Incomplete Process Support 136

and update the current state list, operators list and links list in the plan package. The

content of the new plan package afterA1’s processing is:

Plan





Current State: {state(A1,O1)},
Final State: {Om,On},
Operators: {action1},
Links: {I1 action1−−−−→O1}





A1 then passes the plan package toA2 to solve the remaining states.A2 then updates the

plan package using its operators and after its processing, the plan package becomes:

Plan





Current State: {state(A1,O1),state(A2,O2),state(A2,O3)},
Final State: {Om,On},
Operators: {action1,action2,action3},
Links: {I1 action1−−−−→O1,O1

action2−−−−→O2,O2
action3−−−−→O3}





OnceA3 grabs the above plan package, it finds that it can only contribute its operators

to state(A1,O1) to make it evolve and can not nothing to for those two states that are

generated byA2. The content of plan package is thus updated to: after its processing,

the plan package becomes:

Plan





Current State: {state(A1,O1),state(A2,O2),state(A2,O3),state(A3,O4)},
Final State: {Om,On},
Operators: {action1,action2,action3,action4},
Links: {I1 action1−−−−→O1,O1

action2−−−−→O2,O2
action3−−−−→O3,O1

action4−−−−→O4}





The round that is lead byA1 of the coordination terminates afterA1 receives the plan

package again.A1 deletes all the states that are marked by itself in the current state

list to make sure that these states will not be making evolved again since all the other

agents in the planning process have processed them already. It then starts adding op-

erators to make those states that are generated by others evolve. In this way, we can

see that a search tree for a complete plan is grown during its passage between those

agents and we can ensure that the final plan that we get after the coordination is a

complete plan since with the ”round table coordination” mechanism, all the possible

states during the planning process are checked and are evolved if possible by all the

planning participants. The simple LCC chunk given below is used to ensure that the

plan package is passed between agents in a cyclical manner.

a(planner(Plan package, [Head, role1|Rest], role), ID) ::

solveit (Plan package1, roleList1)⇒ a(planner(, roleList1, role1), ID1)

← update(Plan package,Plan package1)and roleList1 = [role1,Rest|Head]

How the agents choose to contribute their actions/opeartors to make a complete plan

relies completely on their internal design and in this thesis, we are only interested

Chapter 6. Extending Our System For Incomplete Process Support 137

in the architectural and communication issues. We don’t discuss the agents internal

intelligent decision making issues here.

6.5 Summary

In this chapter, our decentralised multi-agent platform has been extended to support

incomplete processes. The causes of incomplete processes have been identified and

conventional workflow system’s inability to support incomplete processes has been

analysed.

By introducing the instantiation activities, run-time instantiation of properties miss-

ing activities is modelled as an essential step in the process and integrated into the de-

centralised architecture. The missing components can then be filled up using agent’s

internal intelligence or the cooperation of a group of agents. From a system coordina-

tion viewpoint, the instantiation tasks are distributed, instantiated and scheduled to be

executed as an ordinary task. Thus, process modelling at run-time can be performed

with the support of the mechanisms for completing processes, at either instance or

process level.

Chapter 7

Experimental Evaluations

Based on the system design and the corresponding mechanisms discussed in Chapters

4, 5 and 6, we use several real-world workflow applications in this chapter to illus-

trate how our approaches and system support workflow processes in a decentralised

manner for evaluation purposes. The first case, discussed in Section 7.1, is a pro-

cess for handling university student registration service, which can be considered as a

conventional, complete workflow process and is used to test our interpretation based

approach. The second case describes a shipping service process, which contains almost

all the important BPEL4WS syntax and thus can be used to test our language mapping

based approach. The third case discusses how our approach supports a heath care pro-

cess that is first given in Chapter 6 , which is normally viewed as a non-traditional,

incomplete workflow process.

7.1 Case Study 1: Student Registration Process

The student registration service processes the registration of students, which may in-

clude the activities of courses’ registration, changing of schedule, quitting a course,

paying tuition fees, and so on. This process is normally well defined and can be seen

as a fixed activity process. Thus, workflow solutions are well suitable for this scenario.

A typical scenario of the student registration process would be of the following:

• A student submits a completed registration form to the student’s course advisor

for approval. The course advisor views the information in the registration form

and starts approving it. If the request is approved, the registration information

will be sent to an enrolment officer for recording and if the request is rejected,

the registration form will be sent to an enrolment officer to close this request.

138

Chapter 7. Experimental Evaluations 139

• The enrolment officer updates the student’s course information if the request is

approved and sends a payment form to the financial section for billing. The

registration information is also sent to university technical staff to setup up a

computer account for the student.

• The officer in the financial section and the technical staff deal with the payment

and computer account and inform an enrolment officer who doesn’t have to be

the same person that sent them the student’s registration form.

• The enrolment officer collects notifications from both the financial section and

the technical staff to complete the present registration service request.

• Finally, an enrolment officer advises the student the outcome of the request and

closes this request.

Three characteristics of the student registration service which need to be addressed

properly are illustrated in this thesis:

• First, as we can see that the student registration service is physically distributed.

To carry out the whole registration process, staff from different departments

are involved. For example, course advisors approve the registration requests

of courses, technical staff sets up the computer accounts of students, financial

section handles payment, and enrolment officers carry out all paper and some

of the coordination work. These distributed staff, in terms of physical location

and administration, should be able to collaborate with each other efficiently to

provide the registration service to the student without the need of a centralised

coordination mechanism.

• Second, due to the large number of the students, the student registration service

would experience a heavy load. Students, may send their registration requests

at anytime during the time period (just before the deadline for example). Thus,

performance has to be considered as a main issue when the system is designed.

The system is expected to handle a large amount of requests in a relatively short

period of time. A pure decentralised coordination mechanism is clearly helpful

for this purpose.

• Finally, although this scenario can be modelled as a workflow process and repre-

sented as a process model easily as shown in Figure 7.11(the formal BPEL4WS

1All the diagrams depicted in this chapter use FBPML[CBR98] notations

Chapter 7. Experimental Evaluations 140

process model specified for this example can be found in appendix D.1), to rep-

resent it using a multi-agent interaction protocol is hard or almost impossible for

non-technical users.

Figure 7.1: Student registration process

The above characteristics of student registration service, make the approaches de-

scribed in this thesis attractive. This process consists of a set of tasks which need to

be executed in a certain order. Also, this process involves participants such as enrol-

ment officers, course advisors, technical staff and treasurers. The virtual organisational

structure based on a multi-agent point of view is given in Figure 7.2.

Chapter 7. Experimental Evaluations 141

Figure 7.2: Virtual organisational structure of student registration process

Once a new registration request is received, a process instance following the pro-

cess model depicted in Figure 7.3 is created to handle this request. Various agents col-

laborate with one another to create a process instance, using the mechanisms described

in Chapter 5. Each agent in this virtual organisation has no overall knowledge of how

the coordination process is organised and only performs the tasks when requested.

Five agents, namelystudent, enrolment officer, course advisor, treasurer and tech-

nical staff, are created to deploy the process for evaluation purpose.

7.1.1 Experimental evaluation of interpretation based approach

When this example process is deployed on our system using interpretation based ap-

proach proposed in Chapter 5, it is first re-written into a substitute (as shown in Figure

7.3 that has no concurrent computation structure defined (see Chapter 5 for detail).

With support of the system developed in chapter 5, this re-write process is generated

automatically (formal representation is listed in appendix D.2):

With the substitute process, when

• triggered by an approvable student registration form, the scenario is enacted by

our decentralised and LCC interpretation based system as follows:

– After enrolment officerreceives a registration form fromstudent(execut-

ing activityA.0), it first: performs the activity defined in the process model

Chapter 7. Experimental Evaluations 142

Figure 7.3: Substitute of original student registration process deployed on our system

internally; re-forms the registration form; and then passes the revised reg-

istration form and un-processed model tocourse advisorfor further pro-

cessing (executing activityA.1).

– Course advisorkeeps processing the received document and process model.

After it finishes its processing, it returns the result and process model toen-

rolment officer.

– Since the given data at the beginning is an approvable registration form,

enrolment officerwill execute task sequences forAccount−management

andPayment handling(A.2,A.4,A.6,A.5,A.7,A.8). The un-processed ac-

tivities defined in the process model are passed betweenenrolment offi-

cer,treasurerand technical staffaccordingly in a sequential order and at

the last of the coordination process, a message (registrationSuceed) is sent

back to the student.

• it is triggered by an un-approvable student registration form, the scenario is en-

acted by our decentralised and LCC interpretation based system as follows:

– After enrolment officerreceives a registration form fromstudent(execut-

ing activityA.0), it first: performs the activity defined in the process model

internally; re-forms the registration form; and then passes the revised reg-

istration form and un-processed model tocourse advisorfor further pro-

cessing (executing activityA.1).

– Course advisorkeeps processing the received document and process model.

After it finishes its processing, it returns the result and process model toen-

rolment officer.

– Since the given data at the beginning is an un-approvable registration form,

Chapter 7. Experimental Evaluations 143

enrolment officerwill execute taskA.3 and a message (registrationFailed)

is then sent back to the student.

From this experiment, we can see that based on the two different sort of inputs (ap-

provable student registration form and un-approvable stduent registration form), our

system the intended task (defined by the original process model) well. Comparing

with the execution performed by conventional workflow system, the only difference

is that our system has to execute the parallel structure in the process model in a fixed

manner, which is not as flexible as a conventional workflow system although the results

of execution are the same.

In this case study, an unavailable agent (staff) exception can be detected and han-

dled automatically. For example, if the delegatedofficer of financial sectionbecomes

unavailable before executing the payment function for billing, this task instance can

be re-allocated to anotherfinancial officerquickly if there is one available, using the

mechanism discussed in chapter 5.

Some benefits of our interpretation based approach and decentralised system are

reflected using this case study.

• First of all, direct interaction between different agents would decrease commu-

nication delay, reduce the traffic of network and thus may achieve good per-

formance. With conventional workflow system, the messages between all the

participants have to be forwarded to each other through the centralised work-

flow server. As addressed previously, when the number of registration students

increased during busy period, the server will be overloaded and thus the perfor-

mance of the whole system is affected.

• Secondly, system robustness is likely to be enhanced because failure of any agent

would not cause the failure of the whole system. For example, when an agent that

represents an enrolment officer is broken, the work assigned to this agent can be

quickly reassigned to another enrolment officer for execution using certain fault

discovery mechanisms. With conventional workflow, once the workflow server

is down, the whole system is dead and maybe not recoverable.

• Thirdly, the system is much more open as new staff members can join the system

more easier to offer better processing capacity. For a centralised workflow sys-

tem, this feature is not quite easy to achieve because once the workflow server

Chapter 7. Experimental Evaluations 144

is designed, the capabilities of the system is fixed and the dynamic extension of

the system’s capacity during run time is hard.

• Finally, our system may satisfy staff members better. For example, enrolment

officers can be involved in different process instances. They are not required

to stick to any particular process and what they are requested to do completely

relies on the messages they receive from others and their own initiative. In a

conventional workflow system, all the staff members are only allowed to be allo-

cated tasks and invoked for providing their services passively. In addition, they

have very limited capability to take part in the management of the whole process

during run time once the execution of some process instances have started.

7.2 Case Study 2: Shipping Service Process

7.2.1 Experimental evaluation of language mapping based approach

This case study uses a rudimentary shipping service described by BPEL4WS (formal

model is given in appendix D.3) as a test bench to prove the soundness of our language

mapping based approach. This service handles the shipment of orders offers two types

of shipment as shown in Figure 7.4: shipments where the items are held and shipped

together and shipment where the items are shipped piecemeal until all of the order

is accounted for. Two participants (shipping service customerandshipping service

Figure 7.4: The Shipping service process

Chapter 7. Experimental Evaluations 145

providerare involved in the process and interact in following way:

• After a shipping service providerreceives a ship order from ashipping service

customer, it starts processing the shipping request.

• Theshipping service providerships the items away and keeps sending ship no-

tices toshipping service customersuntil all the items are done.

This process is chosen for the test of our language mapping based approach is be-

cause that it covers most of the important BPEL4WS syntax (< receive>,< invoke>

,< assign>,< sequence>,< switch>,< while>) although it is not complicated and

it is well written (it is translatable according to the principles give in Chapter 4. The

automatically generated LCC protocol using our system is given in appendix D.4. The

generated LCC protocol is tested on Linda server[Rob04] that is a Prolog based multi-

agent simulation platform (message passing is performed locally). Two types of testing

are undertaken:

• One-to-One based interaction: Only two agents, namelyshipping service provider

andshipping service customer, are created and different data instances are used

to prove the correctness of the LCC protocol generated when it is used to guide

the interaction. Branches and iterations as defined in the original BPEL4WS

process model are all well performed by the two agents. Desired outputs are

through the agents’ interaction based on different inputs.

• Many-to-one based interaction: Oneshipping service provideragent and many

shipping service customeragents are created. Differentshipping service cus-

tomeragents send shipping requests toshipping service provideragent randomly

(shipping service provideragent may receive requests from different customer

simultaneously). Results of the interactions that takes place betweenshipping

service providerand eachshipping service customerare also proved to be cor-

rect.

From this case study we can conclude that for those translatable BPEL4WS process

models, using our language mapping based approach, the LCC protocols derived can

be finely used to guide multi-agent interactions.

Chapter 7. Experimental Evaluations 146

7.3 Case Study 3: Health Care Process

In Section 7.1, we discusses how our system supports complete workflow processes.

In this section, support for incomplete workflow processes is demonstrated using a

case of health care process, which is also used as an example to explain the concept of

incomplete process in Chapter 6.

Figure 7.5: The healthy care process

Figure 7.5 shows an incomplete process representing a typical diagnostic process

for investigation of patients in hospital (the initial BPEL4WS model with the syntax

that supports incomplete process of scenario can be found in appendix D.5. A new

patient coming into the centre will first be created a profile according to his/her current

status via a registration service. All patients then consult with an attending physician

for the first diagnosis, which will determine what tests need to be performed, on a

case-by-case basis. This introduces the flexibility into the process. After the tests, the

patient is called again by the attending physician who explains the results of the tests

and makes a diagnosis. The patient is then required to report to accounts to make the

required payment before leaving the centre. In this process, the activity that is depicted

in the gray box is an incomplete activity. It can not be pre-defined until the physician

sees the real situation of the patient. Our system can serve as an effective platform for

the health care process for the following reasons:

• First, this health process aims are normally achieved through the accomplish-

ment of individual services, which have inherently logical relationships and

should be performed in a certain order. Thus, the conduct of healthy care can be

easily modelled as a process and our system can provide automated support for

deployment of such a process. As this process can be modelled, it is supported

by conventional workflow management system as well once the process model

is formalised.

Chapter 7. Experimental Evaluations 147

• Second, most of the non-trivial health care process are based on collaborative

work. A number of health care departments, who focus on various health care

tasks, are involved. These departments, sometimes geographically distributed,

should be coordinated properly so that health care process can be passed from

one department to another, according to a set of defined rules. Obviously, such

coordination can be well supported by our system to improve efficiency and

productivity as addressed in previous case study.

• Third, there is a vast amount of communication amongst patients and medical

departments for coordination purposes. Our system also reflects this feature well

with automatic coordination.

• Finally, there are uncertain activities that are not clear at the process design time

(examine patient) and their executions fully reply on instance data of previous

activity (initial diagnose). Our approach and system can support this feature

well since they fully exploit individual agent’s knowledge and capabilities.

Obviously, at the early stage of health care process, although the goals and expected

outcomes ofexamine patientare expressed, the activities of achieving it through a set

of steps remains uncertain. The particular patient examine tasks can be gained only

afterfirst diagnosehas been completed. In other words, the decomposition ofexamine

patient into sub-processes should be performed on-the-fly at run-time. In the view of

this situation, the execution of health care process falls into the category of controlled

incomplete composite activity’s instantiation (see Chapter 6 for detail) since the sub-

activities ofexamine patientand their composition depend on activityinitial diagnose

and the instantiating process is performed by one agent (attending physician). For

example, one of the possible complete process instance might be as depicted in Figure

7.6 (its formal representation can be found in appendix D.5.2) ifexamine patientis

instantiated by two concrete activities (X Ray checking, ultra sound checking) that are

executed in sequential order after the initial diagnosis is made.

Figure 7.6: A possible complete healthy care process instance

Chapter 7. Experimental Evaluations 148

In this example, whenpatient interacts withattending physicianfor initial diag-

nose, it knows nothing about what examination it needs to take or technically speak-

ing, it knows nothing about the un-process process model. Therefore, at the time point

when thepatientagent processes theinitial diagnoseactivity, whether the whole pro-

cess is complete or incomplete doesn’t matter. After theattending physicianreceives

the un-processed model from thepatient, it instantiates the incomplete activity in the

unprocessed model and sends it back according to the definition in the completed pro-

cess model. Agentpatient then processes the received process model and makes the

whole process continue. We can see in this process, thepatientagent is totally unaware

of the incompleteness of initial process model. In addition, since in our system, the

process model is distributed amongst agents, different instantiations of the incomplete

process instance will not affect the consistency.

7.4 Summary

Three case studies are used in this chapter to demonstrate the applicability of the key

ideas presented in this thesis. The studies have shown that the design rationale of our

multi-agent based workflow clearly. The analysis also demonstrates that the multi-

agent based workflow approach proposed in this thesis is applicable for supporting

both conventional (complete), and non-conventional (incomplete processes).

Chapter 8

Discussion

This chapter discusses the both of the positive and negative sides of our work, multi-

agent based decentralised workflow enactment mechanisms proposed in this thesis.

The advantages of our approach are suggested in Section 8.1 and the tradeoffs of us-

ing the multi-agent computing paradigm in comparison to the conventional system

architecture (client-server architecture) are discussed in Section 8.2. A discussion

of application domains in which the multi-agent based workflow management system

might be adopted and might perform better than others is given in Section 8.3.

8.1 Discussion of the Advantages of This Research

It has been well recognised that business processes are important and crucial in all

organisations. Workflow management for business processes is becoming a more and

more important part of organisational information systems. However, the current situ-

ation is that most workflow systems suffer from problems of poor performance, single

point failures, limited openness and lack of sufficient incomplete process support. Fur-

thermore, as inter-enterprise e-commerce becomes more and more complex, require-

ments emerge for open systems, in which each participants can join, contribute to and

leave the interaction on their own will. With conventional workflow systems, such

requirements can not achieved easily.

The approaches presented in this thesis treats all the above problems from a novel

point of view. We believe that most of those problems, if not all, are caused by the mis-

match between system requirements and system realisation. Therefore, a centralised

management architecture that is not well suitable for decentralised workflow applica-

tions needs to be replaced by an open, collaborative, and decentralised one while the

149

Chapter 8. Discussion 150

existing business rationales for building workflow management systems should not be

affected by the change of the system architecture.

Based on this observation, the target of this research is to address these unsolved

problems by exploiting features of multi-agent technology that provide a decentralised

architecture to support workflow. As a result, a new framework and corresponding

process coordination technologies are presented. The advantages of our proposed ap-

proach are summarised as follows:

• Two different computing paradigms, namely workflow management systems and

multi-agent systems are linked. With our approaches, multi-agent based work-

flow management systems can be constructed faster than before since the exist-

ing work (modeling tools, existing business process models etc) can continue

to be used in the larger design process and the possibility of acceptance of new

system is largely improved.

• Our system enables better system performance because within our framework,

both data and process control are cleanly distributed and the computing and stor-

age capabilities of each agent are well utilised. The decentralised coordination

mechanism proposed is very light weight and cost effective. In addition, the

dynamic work assignment based on message passing, which is another distin-

guishing feature, also contributes to achieving better system performance and

increasing agility as addressed in chapter 5.

• Multi-agent based workflow system avoids some of the risks of client-server

approaches. It is more stable in the circumstances where the whole system fails

simply because some individual points (bottlenecks) fail. The possibility of one

point failure of individual agent is reduced in our system since the computation

and communication are relatively better balanced between all the participants;

Dead agents in the system can be discovered by others and the system can then

be made alive by replacing the dead point.

• System openness is also improved as agents represent a loosely coupled comput-

ing paradigm. Virtual communities should be open and dynamic so that work-

flow participants can join and leave on their own initiative. Our approach loosens

restrictions on workflow participants. Workflow participants, represented by

agents, are autonomous in the system. With essential data, agents are able to

participate in workflow systems more actively and the behaviours of workflow

Chapter 8. Discussion 151

agents do not require updating the centralised workflow server as with a con-

ventional workflow system architecture. New agents can join the system at any

time and through any existing agent without affecting the current status of whole

system.

• Our approach utilises novel techniques involving multi-agent execution of work-

flow processes. This research shows useful results for research topics such as

Web service based workflow and Grid workflow. Certain requirements such

as agent based service interaction were found lacking in the existing Web ser-

vices and Grid services technologies [SKL02]. With our approach, computing

units like web services can be used to provide external behaviours for agents,

thus can be adopted into our existing system. This further increases the open-

ness of system and support service-oriented workflow well. In addition, the

composition and execution of Web services can also be facilitated properly by

agents.[BBN02, GPW03].

• Our approach provides possible support for incomplete processes. By using de-

centralised task decomposition, support for incomplete processes is embedded

within the system framework. This extended feature makes our system capable

of supporting processes in some of the non-conventional workflow domains in

which processes cannot be completely designed in advance.

8.2 Discussion on the Tradeoffs of the Proposed Ap-

proach

Change from conventional workflow architecture to multi-agent based system archi-

tecture brings some tradeoffs which show potential limitations. Some of the tradeoffs

of the proposed approaches in this thesis are summarised as follows:

• The execution of the workflow process is decentralised while the ability of con-

current computing that is supported by conventional workflow management sys-

tem is no longer supported by our multi-agent based platform. Business process

models have to passed between agents and are executed in sequential order. As

explained in chapter 5, all the parallel structures defined in a process model need

to be converted into sequence structures which execution are the sub-set of the

parallel structures’ execution set.

Chapter 8. Discussion 152

• Management and monitoring of workflow execution may become more diffi-

cult in a multi-agent based workflow system. Extra agents (say administrating

agents) need to be developed for administrating purpose in order to collect the

related information (current states of agents.) by communicating with work-

flow agents. If the administrating agent has to be designed as a special agent, it

would become a new bottleneck of the whole system, which is what we try to

avoid. However, if any common workflow agent in the system has the functions

of managing and monitoring, the complexity of individual agent design will be

largely increased.

• The ability to handle exceptions and erroneous situations may be difficult with

multi-agent based workflow system. Unlike conventional workflow systems with

which errors and exceptions can be detected and solved by centralised servers,

more complicated mechanisms such as how to detect and handle unexpected

exceptions are required. These are future work.

• Multi-agent based open systems enable networked access to resources. This can

bring security problems [VAM01]. In particular, with our approaches, every

agent has the right to access the activities defined in the process model being

passed no matter whether they are designated for those activities. Therefore,

issues of authentication and security are a major concern for particular applica-

tions.

8.3 Discussion on Suitable Application Domains of MAS

Based Workflow Management System

With the discussion of the advantages and some of the possible disadvantages of our

approaches presented in Sections 8.1 and 8.2, we can see that multi-agent based work-

flow systems may perform better for some application domains but not for all. There-

fore, an analysis of the application domains where our approaches and system are more

suitable can provide a better understanding of multi-agent based workflow systems.

In general, our approach is capable of providing better support for standard work-

flows providing the advantages outlined in Sections 8.1. Also, it is capable of provid-

ing certain support for incomplete processes based application. In particular, with the

widespread deployment of wireless technologies, the next phase of electronic business

Chapter 8. Discussion 153

growth will be in the area of wireless and mobile e-commerce. The existing mobile

network infrastructure provides an open environment for running large scale applica-

tions. Such applications can be viewed as multi-agent systems in which each mobile

device is viewed as an agent from technical point of view.

Multi-agent technology is thus recommended as a well-suited software paradigm

for such mobile devices based system. Mobile agents are able to travel between plat-

forms to fulfil their tasks at different locations. Decentralisation helps to cope with the

complexity problem of service infrastructures. However, when adopting the research

result from existing multi-agent world to the mobile agents based system, new prob-

lems emerge due to the features of mobile devices (limited computing ability, high

mobility, huge numbers, etc). With our work, the mobile devices can be used to deploy

workflow system. The mobile agents can be completely dummy agents because the

issues of how they are about to communicate with each other and perform business

functions at the right time are pre-defined in the message package. Consequently, no

complex functions for controlling the coordination between mobile agents need to be

designed inside each mobile agent. The mobile agent thus can be used to deploy work-

flow management system with more mobility. Another possible application direction

of our approaches is the extension of web services. Currently, web services can only

be invoked passively as service provider without any initiative. Possible extension can

be made using our approaches to add very lightweight layers on top of web services to

enable them work initiatively.

For those application domains that require heavy parallel computation, our system

doesn’t fit so well since agents in our system can only perform the designated tasks in

sequential order, which might reduce the overall system performance.

Chapter 9

Conclusions and Future Work

9.1 Summary of This Thesis

The objective of this thesis was to develop an innovative system architecture and pro-

cess coordination mechanism for multi-agent based, decentralised, workflow manage-

ment systems with high level business rationale kept. The thesis was organised as

follows:

• Chapter 1 introduced workflow concepts as well as the state-of-the-art of work-

flow. It also described the purposes of this work, the key issues addressed in this

thesis and the structure of this thesis.

• Chapter 2 analysed the some of the existing research problems in conventional

workflow system in detail. Based on the problems analysis, we observed that

most, if not all, of these problems are caused by the conventional system archi-

tecture (client-server based architecture) in open environment like the internet.

After reviewing the some of major related work, we believe that workflow’s in-

creasingly distributed nature in open environment can be reflected better by a

multi-agent based, decentralised and collaborative system architecture. Also it

is argued that underlying system architecture change should not affect the upper

level business rationale. This is the philosophy of this research.

• Chapter 3 proposed a framework for modelling multi-agent system protocols

starting from a high level process model. With this framework, a process model

can be used as a basis for protocol property verification. A simple language

SPPC is defined for property checking purposes and any protocol model defined

by SPPC can be translated into an existing protocol language(in this case LCC).

154

Chapter 9. Conclusions and Future Work 155

Using this framework, much effort can be saved in the process of MAS pro-

tocol modelling since some requirements level errors can be discovered using

automatic verification, which is different from the typical protocol modelling

engineering method. Furthermore, using this approach, any revision to an ex-

isting protocol can also be checked quickly to make sure all the business logic

level changes are correct.

• Chapter 4 discussed how to develop protocol based multi-agent systems using

executable business process models. Language mapping is performed between

a business process modelling language (BPEL4WS) and an interaction protocol

language (LCC) to generate the protocol used in MAS from business process

model. Since the gap between them is quite huge, we use another modelling

language (SPPC) as an intermediary. First we perform a language mapping be-

tween BPEL4WS and SPPC, then the derived SPPC model can be translated

into a LCC protocol automatically. During the language mapping process, we

found that, although most of the main concepts from business process mod-

elling language (BPEL4WS) and SPPC match, some particular notations from

certain business process modelling language cannot be seamlessly represented

by another modelling language which is based on different paradigm. For ex-

ample, the computing activities defined at the end of a< sequence> activity

in BPEL4WS can not be easily translated in to SPPC clauses as addressed ear-

lier and also, the translation for the synchronisation links defined in< f low >

requires the revision of LCC protocol generation algorithm from SPPC. Such

restrictions mean that only some BPEL4WS specifications (those conforming

to the language mapping rules) can be used for protocol based MAS develop-

ment, which makes the approach discussed in this chapter incomplete. In fact,

language mapping based completeness is very hard to achieve (even for particu-

lar business process modelling languages) since different business process mod-

elling languages and protocol modelling languages may be based on different

computing paradigms.

• Chapter 5 provided an approach to build a multi-agent based distributed work-

flow system starting from a business process model rather than from a interac-

tion protocol, which narrows the gap between the high level requirement and

system specification in the development of a multi-agent system and connects

the business workflow community and multi-agent community. The LCC pro-

Chapter 9. Conclusions and Future Work 156

tocol used to interpret BPEL4WS models is independent of any specific mes-

sage passing infrastructure, although it has been described with respect to a

distributed and multi-agent system infrastructure, it could equally well be de-

ployed in a more traditional server based style. Furthermore, the protocol can

be used prior to deployment in order to predict behaviours and possible errors

in interaction[Wal04b]. Another advantage is that the workflow engine built us-

ing our approach is a generic server. The only specific knowledge it needs is

about how to process the LCC protocol and how to invoke the web services,

but not about how to process the particular business process modelling lan-

guage. This gives us a very efficient and direct way for system re-design and

re-implementation. Even more generally, this approach can be in particular used

to adopt any functional requirement, as long as the requirement is operational

and can be represented by message passing, on a multi-agent platform.

• Chapter 6 extends our decentralised multi-agent platform to support incomplete

processes. The causes of incomplete processes have been identified and con-

ventional workflow system’s inability to support incomplete processes has been

analysed. By introducing the instantiation activities, run-time instantiation of

properties missing activities is modelled as an essential step in the process and

integrated into the decentralised architecture. The missing components can then

be completed using agents’ internal intelligence or the cooperation of a group of

agents. From an engineering point of view, this approach is justifiable because

the ordinary workflow participants may and should not be given an interface to

specify a composite task using a complex workflow modelling language. From

a system coordination viewpoint, the instantiation task is distributed. Thus, pro-

cess modelling at run-time can be performed with the support of mechanisms for

completing processes, at either instance- or process-level.

• Chapter 7 presents three case studies to demonstrate the applicability of the key

ideas presented in this thesis. The studies shows the design rationale of our

multi-agent based workflow. The analysis also illustrates how the multi-agent

based workflow approach proposed in this thesis is applicable for supporting

both conventional (complete), and non-conventional (incomplete processes).

• Chapter 8 discusses the both of the positive and negative sides of our work,

multi-agent based decentralised workflow enactment mechanisms proposed in

this thesis.

Chapter 9. Conclusions and Future Work 157

9.2 Contributions of This Thesis

The significance of this research is that it tackles some of the unsolved problems in

the workflow area from the system architecture point of view. Based on existing work

from multi-agent world, this research combines a new system architecture (multi-agent

based) and process coordination technologies for deploying workflow systems compre-

hensively, which can be considered as a paradigm change. This new framework and

corresponding technologies exploits the features provided by multi-agent computing

technology in order to better reflect the distributed nature of current workflow. This

research contributes to the challenging research area of multi-agent based workflow,

which opens new ground in workflow research, and the process support area in general.

The main outcome of this research is using a decentralised, open and multi-agent ar-

chitecture to deploy distributed workflow systems without affecting the existing work-

flow constructing rationale (starting from a business process model). Therefore, this

research shows that emerging technologies such as multi-agent system for workflow

system support provide critical features. Moreover, the new system architecture pro-

posed in this research changes the way that all the participants are involved in coordi-

nation in conventional workflow management (from contributing their services to the

coordination passively to providing their own services to the workflow initiatively).

The major contributions of this thesis are:

• Identifying the causes of the existing problems in conventional workflow

management systems. We have analysed that most of the existing problems

in conventional workflow management systems are caused by the mismatch be-

tween application nature and underlying system architecture. Based on this ar-

gument, it has been found that multi-agent computing technology can be used as

a underlying infrastructure to support workflow applications better.

• Approaches for adopting existing work for conventional workflow system

development on multi-agent platformAlthough multi-agent system has shown

more valuable and natural features for distributed workflow system’s enactment,

it can be hardly accepted by end users if everything existed has to be re-designed/re-

implemented to fit the new computing features. The approaches proposed by us

in this thesis finely bridge the gap between conventional workflow developing

rationale and multi-agent system. Therefore, almost all the existing work can be

adopted for the development of multi-agent based workflow management sys-

tem.

Chapter 9. Conclusions and Future Work 158

• A multi-agent based system architecture and design for decentralised work-

flow management systems.Using multi-agent based computing technology to

support distributed workflow is considered as a paradigm shift. However, the

system designs of the few existing so called multi-agent/p2p based workflow ap-

proaches are normally incomplete, or even not complete multi-agent based. The

proposed approaches, have contributed a relative complete, concrete, and fully

decentralised system design methods for deploying multi-agent based workflow

applications.

• A prototype implementation of a multi-agent based distributed workflow

management system.A multi-agent based pure decentralised workflow man-

agement system prototype is developed for the proof of concept purpose. It can

read two types of system specifications namely LCC protocol and BPEL4WS

model to direct the interaction of the agents (participants). The system is also

able to adopt external web services thus can help to realise service-oriented ar-

chitecture. This prototype we believe serves as a fine basis for future extension

for real world workflow management systems.

9.3 Future Work

In future, further investigation into multi-agent based decentralised workflow will be

carried out. Future research includes adopting agents’ intelligence into the whole

workflow system. At present, all the agents in our system as explained are dummy

agents which can only perform required tasked following the instruction in the process

model/interaction protocols. More intelligent agents that are adaptive and are aware of

the changes of state of environment/context can be very helpful for performing work-

flow management and monitoring tasks.

As indicated in Chapter 6, our system prototype is for the purpose of demonstration

and proof of concept only. After certain extension and improvement, more real-world

applications should be developed based on this prototype in order to collect more con-

crete results. Thus, a more sophisticated comparison of different workflow systems,

either centralised or decentralised can be performed.

Some other crucial factors such as organisational management, run time verifica-

tion of workflow instances in a decentralised manner, security of multi-agent based

workflow are currently ignored to make the problem simpler. In order to have a practi-

Chapter 9. Conclusions and Future Work 159

cal workflow solution, more research should be carried out on all of the above issues.

Appendix A

Algorithm Description Language

The syntax of the language that we use to describe the algorithm in the thesis is ex-

plained here. All the algorithms are defined as procedures.

procedure ::= Name,Arguments,Body

Name ::= String

Arguments ::= Inputs,Out puts

Inputs ::= Anylegal Term

Out puts ::= Anylegal Term

Body ::= DeclarationSequence|StatementsSequence

DeclarationSequence ::= Declarationo f theargumentsused

StatementsSequence ::= i f statement|while statement|
f or statement|anycomputingclause

i f statement ::= i f (booleanexpression)

StatementsSequence[
else i f(booleanexpression)

StatementsSequence

]

while statement ::= while(booleanexpression)

StatementsSequence

f or statement ::= f or (list o f element)

StatementsSequence

160

Appendix B

Representing BPEL4WS Model in

Plain Text

Model := {Scope}
scope ::= {description([Description, ...]),Structure}

Description ::= partnerLink

(
name(Constant), parnterLinkType(Constant),

myRole(Constant), partnerRole(Constant)

)

|variable(name(Constant),messageType(Constant))

| f aultHandlers

([
catch(f aultName, f aultVariable,Activity),

...,catchAll(Activity)

])

|compensationHandler(Activity)

Structure ::= scope([Description, ...],Structure/Activity)|
f low(Activity/Structure,Activity/Structure, ...)|
switch(condition(Condition,Activity/Structure), ...)|
while(condition(Condition,Activity/Structure)|
Structure/ActivitythenStructure/Activity|

pick




onMesssage(partnerLink(Constant), portType(Constant),

operation(Constant),variable(Constant),Activity),

onAlarm(f or(duration−expr),

until(deadline−expr),Activity)




161

Appendix B. Representing BPEL4WS Model in Plain Text 162

Activity ::= invoke




partnerLink(Constant),

portType(Constant),

operation(Constant), inputVariable(Constant),

out putVariable(Constant),sourceLink(Constant),

targetLink(Constant))




|receive




partnerLink(Constant), portType(Constant),

operation(Constant),variable(Constant),

sourceLink(Constant), targetLink(Constant)




|reply




partnerLink(Constant), portType(Constant),

operation(Constant),variable(Constant),

f aultName(Constant),

sourceLink(Constant), targetLink(Constant)




|assign




f rom

(
expression/opaque/variable(Constant),

property(Constant)

)
,

to(variable(Constant), property(Constant)),

sourceLink(Constant), targetLink(Constant)




|throw

(
f aultName(Constant), f aultVariable(Constant),

sourceLink(Constant), targetLink(Constant)

)

|wait

(
f or(Constant),until(Constant),

sourceLink(Constant), targetLink(Constant)

)

|terminate(sourceLink(Constant), targetLink(Constant))|
empty(sourceLink(Constant), targetLink(Constant))

Condition ::= Term|Condition∧Condition|Condition∨Condition

Constant ::= Term

Appendix C

Prolog Definitions For All the

Constraints Used in LCC Interpreter

C.1 Constraints Used For Role a(receiver(Role), ID)

extract activity(Model,Activity) :−
Model= ..[scope, ,Model1],

extract activity(Model1,Activity).

extract activity(Model,Model).

updatevariable(M, [Head|Rest],VList1) :−
comparevariable(M,Head),

VList1 = [M|Rest].

updatevariable(M, [Head|Rest],VList1) :−
updatevariable(M,Rest,VList1).

updatevariable(M, [],VList1).

163

Appendix C. Prolog Definitions For All the Constraints Used in LCC Interpreter 164

C.2 Constraints Used For Role a(interpreter(...), ID)

is receive(Model,Role) :−
extract activity(Model,Activity)

Activity= ..[receive,myRole(Role)|]

is reply(Model,Role) :−
extract activity(Model,Activity)

Activity= ..[reply,myRole(Role)|]

is invoke(Model,Role) :−
extract activity(Model,Activity)

Activity= ..[invoke,myRole(Role)|]

is assign(Model) :−
extract activity(Model,Activity)

Activity= ..[assign|]

is throw(Model) :−
extract activity(Model,Activity)

Activity= ..[throw|]

is sequence(Model) :−
extract activity(Model,Activity),

Activity= ..[then|].

is switch(Model) :−
extract activity(Model,Activity)

Activity= ..[switch|]

is while(Model) :−
extract activity(Model,Activity)

Activity= ..[while|]

Appendix C. Prolog Definitions For All the Constraints Used in LCC Interpreter 165

C.3 Constraints Used For Role a(receive(...), ID)

processreceivemessage

(
PartnerRole,PortType,Operation,null,

ID,VList, IDList,VList, IDList1

)
:−

append(PartnerRole: PortType: Operation: null : ID, IDList, IDList1).

processreceivemessage

(
PartnerRole: PortType,Operation,Variable,

ID,VList, IDList,VList1, IDList1

)
:−

append(Variable,VList,VList1),

append(PartnerRole: PortType: Operation: Variable: ID, IDList, IDList1).

checkreceive(Model,PortType,Operation,Variable,PartnerRole) :−
extract activity(Model,Activity),

Activity= ..




receive, , partnerLink(PartnerLink), portType(PortType),

operation(Operation),variable(Variable),

sourceLink(), targetLink()


 ,

partnerLink(name(PartnerLink),, myRole(), partnerRole(PartnerRole)).

Appendix C. Prolog Definitions For All the Constraints Used in LCC Interpreter 166

C.4 Constraints Used For Role a(reply(...), ID)

processreply(Model,Partner,PortType,Operation,null,Fault) :−
extract activity(Model,Activity)

Activity= ..[, partnerLink(PartnerLink), portType(PortType),

operation(Operation),variable(null), f aultName(Fault), ,],

partnerLink(name(PartnerLink), ,myRole(), partnerRole(Partner)).

processreply(Model,Partner,PortType,Operation,Variable,) :−
extract activity(Model,Activity)

Activity= ..[, partnerLink(PartnerLink), portType(PortType),

operation(Operation),variable(Variable), , ,],

partnerLink(name(PartnerLink), ,myRole(), partnerRole(Partner)).

get ID([], , , ,) .

get ID([Head|Rest],Partner,PortType,Operation,Variable, ID) :−
Head= Partner: PortType: Operation: Variable: ID.

get ID([Head|Rest],Partner,PortType,Operation,Variable, ID) :−
get ID(Rest,Partner,PortType,Operation,Variable, ID).

loop up([], ,).

look up([Head|Rest],Variable,Head) :−
Head iso f thesametypeand samevariablenamewithVariable.

look up([Head|Rest],Variable,Variable1) :−look up(Rest,Variable,Variable1).

Appendix C. Prolog Definitions For All the Constraints Used in LCC Interpreter 167

C.5 Constraints Used For Role a(invoke(...), ID)

processinvoke(Model,PortType,Operation,null,VList,Role) :−

Model= ..

[
invoke, partnerLink(PartnerLink), portType(PortType),

operation(Operation), inputVariable(null), , ,

]
,

partnerLink(PartnerLink, , , parterRole(Role)).

processinvoke(Model,PortType,Operation, InputVariable,VList,Role) :−

Model= ..

[
invoke, partnerLink(PartnerLink), portType(PortType),

operation(Operation), inputVariable(Variable), , ,

]
,

look up(Variable,VList, InputVariable),

partnerLink(PartnerLink, , , parterRole(Role)).

Appendix C. Prolog Definitions For All the Constraints Used in LCC Interpreter 168

C.6 Constraints Used For Role a(assign(...), ID)

processassign(Model,VList,VList1) :−
extract activity(Model,Activity),

Activity= ..[copy,List],

processassigncopy(List,VList,VList1).

processassigncopy([], ,).

processassigncopy([Head|Rest],VList,VList1) :−
Head= ..[Type,From,To],

processf rom(From,Value),

updatedataSet(VList,Variable1,Part,To, ,VList2),

processassigncopy(Rest,VList2,VList1).

processassigncopy([Head|Rest],VList,VList1) :−
Head= ..[Type,From,To],

processf rom(From,Value),

updatedataSet(VList,To,Value,VList2),

processassigncopy(Rest,To,Value,VList1).

processassigncopy([Head|Rest],VList,VList1) :−
Head= ..[Type,From,To],

processf rom(From,Value),

To= ..[to, partnerLink(PartnerLink),],

partnerLink(PartnerLink, , , partnerLink(Value)),

processassigncopy(Rest,To,Value,VList1).

processf rom(From,Value) :−From= ..[,variable(Variable), part(Part)],

lookupdataSet(VList,Variable,Part,Value).

processf rom(From,Value) :−From= ..[,variable(Variable), property(Property)],

lookupdataSet(VList,Variable,Property,Value).

Appendix C. Prolog Definitions For All the Constraints Used in LCC Interpreter 169

processf rom(From,Value) :−From= ..[,expression(Value)].

processf rom(From,Value) :−From= ..[,opaque(Value)].

processf rom(From,Value) :−
From= ..[, partnerLink(PartnerLink),endpointRe f erence(myRole)],

partnerLink(PartnerLink, ,myRole(Value),).

processf rom(From,Value) :−
From= ..[, partnerLink(PartnerLink),endpointRe f erence(partnerRole)],

partnerLink(PartnerLink, , , partnerRole(Value)).

lookupdataSet([Head|Rest],Variable,Part,Value) :−
check i f Head andVariableareo f thesamemessagetype,

get theValueo f Head′sPart.

lookupdataSet([Head|Rest],Variable,Part,Value) :−
lookupdataSet(Rest,Variable,Part,Value).

lookupdataSet([Head|Rest],Property,Value) :−
check i f Head andVariableareo f thesamemessagetype,

get theValueo f Head′sProperty.

lookupdataSet([Head|Rest],Property,Value) :−
lookupdataSet(Rest,Property,Value).

updatedataSet(VList,To,Value,VList1) :−
To= ..[variable(Variable,null)],

update(VList,Variable,null,VList1).

updatedataSet(VList,To,Value,VList1) :−
To= ..[variable(Variable, part(Part))],

update(VList,Variable,Part,VList1).

Appendix C. Prolog Definitions For All the Constraints Used in LCC Interpreter 170

updatedataSet(VList,To,Value,VList1) :−
To= ..[variable(Variable, property(Property))],

update(VList,Variable,Property,VList1).

update([Head|Rest],Variable,null, ,VList1) :−
I f Head andVariableareo f thesamemessagetype,

VList1 = [Variable|Rest].

update([Head|Rest],Variable,null, ,VList1) :−
update(Rest,Variable,null, ,VList2),

VList1 = [Head|VList2].

update([Head|Rest],Variable,Part,Value,VList1) :−
I f Head andVariableareo f thesamemessagetype,

updatetheValueo f Head′sPart,

VList1 = [Variable|Rest].

update([Head|Rest],Variable,Part,Value,VList1) :−
update(Rest,Variable,Part,VList2),

VList1 = [Head|VList2].

update([Head|Rest],Variable,Property,Value,VList1) :−
Head= ..[variable(Variable, property(Property,))],

VList1 = [Variable|Rest].

update([Head|Rest],Variable,Property,Value,VList1) :−
update(Rest,Variable,Property,VList2),

VList1 = [Head|VList2].

Appendix C. Prolog Definitions For All the Constraints Used in LCC Interpreter 171

C.7 Constraints Used For Role a(throw(...), ID)

processthrow(Model,FaultHandlingActivity) :−
extract activity(Model,Activity)

Activity= ..[throw, f aultHandler(FaultHandler), f aultVariable(FaultVariable)],

f ind f ault handler(Model,FaultHandler,FaultVariable,FaultHandlingActivity).

f ind f ault handler(Model,FaultHandler,FaultVariable,FaultHandlingActivity) :−
extract description(Model,List),

processdescriptionlist(List,FaultHandler,FaultVariable,FaultHandlingActivity).

extract description(Model,List) :−
Model= ..[scope,DList,Model 1],

extract description(Model 1,List 1),

List = [DList|List 1].

extract description(, []).

processscopelist([], , ,null).

processscopelist

(
[Head|Rest],FaultHandler,

FaultVariable,FaultHandlingActivity

)
:−

processdescriptionlist(Head,FaultHandler,FaultVariable,null),

processscopelist(Rest,FaultHandler,FaultVariable,FaultHandlingActivity).

processdescriptionlist

(
[Head|Rest],FaultHandler,

FaultVariable,FaultHandlingActivity

)
:−

Head= ..[f aultHandlers,catchList],

processcatch list(catchList,FaultVariable,FaultHandlingActivity).

Appendix C. Prolog Definitions For All the Constraints Used in LCC Interpreter 172

processcatch list([], , ,null).

processcatch list([catchAll(FaultHandlingActivity)], , ,FaultHandlingActivity).

processcatch list([Head|Rest],FaultHandler,FaultVariable,FaultHandlingActivity) :−
Head= ..[catch, f aultHandler(FaultHandler), f aultVariable(FaultVariable),

FaultHandlingActivity].

processcatch list([Head|Rest]) :−processcatch list(Rest).

C.8 Constraints Used For Role a(sequence(...), ID)

processsequence(Model,Model1,Model2) :−
Model= ..[scope,DList,Activity],

composeactivity(Activity,Activity1,Activity2),

Model1 = ..[scope,DList,Activity1],

Model2 = ..[scope,DList,Activity2].

processsequence(Activity,Activity1,Activity2) :−
Activity= ..[,Activity1,Activity2).

Appendix C. Prolog Definitions For All the Constraints Used in LCC Interpreter 173

C.9 Constraints Used For Role a(switch(...), ID)

processswitch(Model,Model1) :−
Model= ..[scope,DList,Activity],

processswitch(Activity,Model2),

Model 1 = ..[scope,DList,Model2].

processswitch(Model,Model1) :−
Model= ..[switch, [Head|Rest]],

processcondition([Head|Rest],Model1).

processcondition([Head|Rest],Model1) :−
Head= ..[condition(Condition),Activity],

Condition istrue,

Model 1 = Activity.

processcondition([Head|Rest],Model1) :−
Head= ..[condition(Condition),Activity],

Condition isnot true,

processcondition(Rest,Model1).

Appendix D

Formal Representations Used For

Evaluation

D.1 Student Registration Process Described by BPEL4WS

< processname= ”studentRegistrationProcess” >

< variables>

< variablename= ” regisForm”/ >

< variablename= ”approvalResult”/ >

< variablename= ” paymentForm”/ >

< variablename= ” paymentCon f irmation”/ >

< variablename= ”accountCon f irmation”/ >

< /variables>

< sequence>

< receivemyRole= ”enrolmentO f f icer” parnterRole= ”student”

portType= ” registrationPT” operation= ” receiveRegistration”

variable= ” regisForm”/ >

< invokemyRole= ”enrolmentO f f icer” parnterRole= ”courseAdvisor”

portType= ”approvalPT” operation= ”approval”

inputVariable= ” regisFom”out putVariable= ”approvalResult”/ >

< switch>

174

Appendix D. Formal Representations Used For Evaluation 175

< casecondition= ”approvalResult= TRUE” >

< sequence>

< f low >

< sequence>

< invokemyRole= ”enrolmentO f f icer” partnerRole= ” treasurer”

portType= ” paymentPT” opeartion= ” pay”

inputVariable= ” paymentForm”/ >

< receivemyRole= ”enrolementO f f icer” partnerRole= ” treasurer”

portType= ” paymentCon f irmPT” opeartion= ”con f irmPayment”

variable= ” paymentCon f irmation”/ >

< /sequence>

< sequence>

< invokemyRole= ”enrolmentO f f icer” partnerRole= ” technicalSta f f”

portType= ”computingAccountPT” opeartion= ”setupAccount”

inputVariable= ” regisForm”/ >

< receivemyRole= ”enrolementO f f icer” partnerRole= ” technicalSta f f”

portType= ”accountCon f irmPT” opeartion= ”con f irmAccount”

variable= ”accountCon f irmation”/ >

< /sequence>

< receivemyRole= ”enrolemetnO f f icer” portType= ” recordRegisPT”

operation= ” recordingRegis” variable= ” regisForm” >

< / f low >

< replymyRole= ”enrolmentO f f icer” portType= ” registrationPT”

operation= ” receiveRegistration” variable= ” registrationSucced”/ >

< /sequence>

< /case>

< casecondition= ”approvalResult= FALSE” >

< replymyRole= ”enrolementO f f icer” portType= ” registrationPT”

operation= ” receiveRegistration” variable= ” registrationFailed”/ >

< /case>

< /switch>

< /sequence>

< /process>

Appendix D. Formal Representations Used For Evaluation 176

D.2 Re-written Student Registration Process Described

by BPEL4WS

< processname= ”studentRegistrationProcess” >

< variables>

< variablename= ” regisForm”/ >

< variablename= ”approvalResult”/ >

< variablename= ” paymentForm”/ >

< variablename= ” paymentCon f irmation”/ >

< variablename= ”accountCon f irmation”/ >

< /variables>

< sequence>

< receivemyRole= ”enrolmentO f f icer” parnterRole= ”student”

portType= ” registrationPT” operation= ” receiveRegistration”

variable= ” regisForm”/ >

< invokemyRole= ”enrolmentO f f icer” parnterRole= ”courseAdvisor”

portType= ”approvalPT” operation= ”approval”

inputVariable= ” regisFom”out putVariable= ”approvalResult”/ >

< switch>

< casecondition= ”approvalResult= TRUE” >

< sequence>

< invokemyRole= ”enrolmentO f f icer” partnerRole= ” treasurer”

portType= ” paymentPT” opeartion= ” pay”

inputVariable= ” paymentForm”/ >

< receivemyRole= ”enrolementO f f icer” partnerRole= ” treasurer”

portType= ” paymentCon f irmPT” opeartion= ”con f irmPayment”

variable= ” paymentCon f irmation”/ >

< invokemyRole= ”enrolmentO f f icer” partnerRole= ” technicalSta f f”

portType= ”computingAccountPT” opeartion= ”setupAccount”

inputVariable= ” regisForm”/ >

Appendix D. Formal Representations Used For Evaluation 177

< receivemyRole= ”enrolementO f f icer” partnerRole= ” technicalSta f f”

portType= ”accountCon f irmPT” opeartion= ”con f irmAccount”

variable= ”accountCon f irmation”/ >

< receivemyRole= ”enrolemetnO f f icer” portType= ” recordRegisPT”

operation= ” recordingRegis” variable= ” regisForm” >

< replymyRole= ”enrolmentO f f icer” portType= ” registrationPT”

operation= ” receiveRegistration” variable= ” registrationSucced”/ >

< /sequence>

< /case>

< casecondition= ”approvalResult= FALSE” >

< replymyRole= ”enrolementO f f icer” portType= ” registrationPT”

operation= ” receiveRegistration” variable= ” registrationFailed”/ >

< /case>

< /switch>

< /sequence>

< /process>

Appendix D. Formal Representations Used For Evaluation 178

D.3 Shipping Service Process Described by BPEL4WS

< processname= ”shippingService” >

< partnerLinks>

< partnerLinkname= ”customer”

partnerLinkType= ”shippingLT”

partnerRole= ”shippingServiceCustomer”

myRole= ”shippingService”/ >

< /partnerLinks>

< sequence>

< receive partnerLink= ”customer”

portType= ”shippingServicePT”

operation= ”shippingRequest”

variable= ”shipRequest” >

< /receive>

< switch>

< casecondition= ”getVariableProperty(′shipRequest′,′ shipComplete′)” >

< sequence>

< assign>

< copy>

< f romvariable= ”shipRequest”/ >

< tovariable= ”shipNotice”/ >

< /copy>

< /assign>

< invoke partnerLink= ”customer” portType= ”shippingServiceCustomerPT”

operation= ”shippingNotice” inputVariable= ”shipNotice” >

< /invoke>

< /sequence>

< /case>

< otherwise>

< sequence>

< assign>

< copy>

< f romexpression= ”0” / >

< tovariable= ” itemsShipped”/ >

< /copy>

< /assign>

Appendix D. Formal Representations Used For Evaluation 179

< whilecondition= itemsShipped< itemsTotal>

< sequence>

< assign>

< copy>

< f romopaque= ”yes”/ >

< tovariable= ”shipNotice” property= ” itemsCount”/ >

< /copy>

< /assign>

< invoke partnerLink= ”customer” portType= ”shippingServiceCustomerPT”

operation= ”shippingNotice” inputVariable= ”shipNotice” >

< /invoke>

< assign>

< copy>

< f romexpression= itemsShipped+ itemsCount/ >

< tovariable= ” itemsShipped”/ >

< /copy>

< /assign>

< /sequence>

< /while>

< /sequence>

< /otherwise>

< /switch>

< /sequence>

< /process>

Appendix D. Formal Representations Used For Evaluation 180

D.4 LCC Protocol Generated for Shipping Service Pro-

cess

a(shippingServiceCustomer(loop(m 4)),A1) ::

(shippingServiceCustomerPT: shippingNotice(shipNotice)

<= a(shippingService(loop(m 4)),A2))

then(
a(shippingServiceCustomer(loop(m 4)),A1) <−−
(itemsShipped< itemsTotal)and itemsShipped= itemsShipped+ itemsCount

)
ornull

a(shippingServiceCustomer,A3) ::

shipRequest=> a(shippingService,A4)

then


shippingServiceCustomerPT: shippingNotice(shipNotice) <= a(shippingService,A4)

or

(a(shippingServiceCustomer(loop(m 4)),A1) <−−
(itemsShipped= 0)and itemsShipped< itemsTotal)

ornull




a(shippingService(loop(m 4)),A2) ::(
shippingServiceCustomerPT: shippingNotice(shipNotice) =>

a(shippingServiceCustomer(loop(m 4)),A1) <−−shipNotice= yes

)

then(
a(shippingService(loop(m 4)),A4) <−−
(itemsShipped< itemsTotal)and(itemsShipped= itemsShipped+ itemsCount)

)
ornull

a(shippingService,A4) ::

shipRequest<= a(shippingServiceCustomer,A3)

then(
shippingServiceCustomerPT: shippingNotice(shipNotice) => a(shippingServiceCustomer,A3)

<−− (shipNotice= itemsCount)and getVariableProperty(shipRequest,shipComplete)

)

or

(a(shippingService(loop(m4)),A2) <−− (itemsShipped= 0)and(itemsShipped< itemsTotal))

ornull).

Appendix D. Formal Representations Used For Evaluation 181

D.5 Health Care Process Described by Extended BPEL4WS

D.5.1 Initial incomplete health care process model

< processname= ”healthCareProcess” >

< variables>

< variablename= ” patientPro f ile”/ >

< variablename= ”examineResult”/ >

< variablename= ” patientDetail”/ >

< variablename= ” f inalDiagnose”/ >

< /variables>

< sequence>

< invokemyRole= ” patient” parnterRole= ” registrationService”

portType= ” registrationPT” operation= ”createPatientPro f ile”

inputVariable= ” patientDetail” out putVariable= ” patientPro f ile”/ >

< invokemyRole= ” patient” parnterRole= ”attendingPhysician”

portType= ”diagnosePT” operation= ”makeFirstDiagnose”

inputVariable= ” patientPro f ile” instantiating=TRUE

instantiated= ”examine patient”/ >

< incompletename= ”examine patient” out putVariable= examineResult”/ >

< invokemyRole= ” patient” partnerRole= ”attendPhysician”

portType= ”diagnosePT” operation= ”makeFinalDiagnose”

inputVariable= ”examineResult” out put= ” f inalDiagnose”/ >

< invokemyRole= ” patient” partnerRole= ” treatingPhysician”

portType= ” treatingPT” operation= ”makeTreatment”

inputVariable= ” f inalDiagnose”/ > < /sequence>

< /process>

Appendix D. Formal Representations Used For Evaluation 182

D.5.2 A possible complete health care process instance

< processname= ”healthCareProcess” >

< variables>

< variablename= ” patientPro f ile”/ >

< variablename= ”examineResult”/ >

< variablename= ” patientDetail”/ >

< variablename= ” f inalDiagnose”/ >

< /variables>

< sequence>

< invokemyRole= ” patient” parnterRole= ” registrationService”

portType= ” registrationPT” operation= ”createPatientPro f ile”

inputVariable= ” patientDetail” out putVariable= ” patientPro f ile”/ >

< invokemyRole= ” patient” parnterRole= ”attendingPhysician”

portType= ”diagnosePT” operation= ”makeFirstDiagnose”

inputVariable= ” patientPro f ile” instantiating= TRUE

instantiated= ”examine patient”/ >

< invokemyRole= ” patient” partnerRole= ”XRayExaminer”

portType= ”XRayPT” inputVariable= ”examineResult”

out putVariable= ”examineResult”/ >

< invokemyRole= ” patient” partnerRole= ”UltraSoundExaminer”

portType= ”UltraSoundPT” inputVariable= ”examineResult”

out putVariable= ”examineResult”/ >

< invokemyRole= ” patient” partnerRole= ”attendPhysician”

portType= ”diagnosePT” operation= ”makeFinalDiagnose”

inputVariable= ”examineResult” out put= ” f inalDiagnose”/ >

< invokemyRole= ” patient” partnerRole= ”accountant”

portType= ” paymentPT” operation= ”makePayment”

inputVariable= ” f inalDiagnose”/ > < /sequence>

< /process>

Appendix E

Publications List

Journal Papers:

• L.Guo, Dave Robertson, Yun-Heh Chen-Burger,”Using Multi-agent Platform

For Pure Decentralised Business Workflows”. Submitted to journal of Web In-

telligence and Agent Systems.

Conference Papers:

• L.Guo, Dave Robertson, Yun-Heh Chen-Burger, Jianquan Wang”Conducting

The Agile Negotiation Process Involved in The BPEL4WS Model on the Multi-

agent Platform”.CNAIS2005.

• L.Guo, Dave Robertson, Yun-Heh Chen-Burger”A Novel Approach For Enact-

ing Distributed Business Workflow on the Peer-to-Peer Platform”.The proceed-

ings of 2005 IEEE Conference on E-Business Engineering. (ICEBE 2005) (SCI

and EI Indexed).

• L.Guo, Dave Robertson, Yun-Heh Chen-Burger”A Generic Multi-agent Sys-

tem Platform For Business Workflows Using Web Services Composition”.The

proceedings of 2005 IEEE Intelligent Agent Technology (IEEE/WIC/ACM IAT-

2005) (SCI and EI Indexed).

• L.Guo, Dave Robertson, Yun-Heh Chen-Burger”Enacting the Distributed Busi-

ness Workflows Using BPEL4WS on the Multi-Agent Platform”.The proceed-

ings of the MATES 2005 conference, volume number 3550 of (LNAI).

• L.Guo, Dave Roberston and Yun-Heh Chen-Burger”Mapping a Business Pro-

cess Model to a Web Services Model”.Proceedings of the Third IEEE Interna-

tional Conference on Web Services, (ICWS 2004) (SCI and EI Indexed).

183

Appendix E. Publications List 184

Workshop Papers:

• L.Guo, Dave Roberston and Yun-Heh Chen-Burger.”Business Process Model

Based Multi-agent System Development”.Proceedings of The Second Workshop

On Collaboration Agents: Autonomous Agents for Collaborative Environments

, COLA 2004, Beijing, China, September 20-24, 2004.

Bibliography

[AJ00] W.M.P Aalst and S Jablonski. Dealing with workflow change: Identi-

fication of issues and solutions. InInternational Journal of Computer

Systems Science & Engineering, volume 15(5), pages 267–276, 2000.

[AS96] G. Alonso and H. Schek. Research issues in large workflow management

systems. Inin Proc. of NFS Workshop on Workflow and Process Automa-

tion in Information Systems, pages 126–132, May 1996.

[ASHT98] G. A. Bolcer A. S. Hitomi, P. J. Kammer and R. N. Taylor. Distributed

workflow using http: Example using software pre-requirements. InThe

20th International Conference on Software Engineering, Appril 1998.

[AWS00] Barbara Staudt Lerner Eric K. McCall Leon J. Osterweil Alexander Wise,

Aaron G. Cass and Stanley M. Sutton. Using little-jil to coordinate agents

in software engineering. InAutomated Software Engineering Conference

(ASE 2000), pages 155–163, September 2000.

[AWS02] Barbara Staudt Lerner Eric K. McCall Leon J. Osterweil Alexander Wise,

Aaron G. Cass and Stanley M. Sutton. Peep-to-peer technologies and col-

laborative work management: The implications of napster for document

management. InWorkflow Handbook, pages 81–94, 2002.

[BBN02] Q. Z. Sheng B. Benatallah, M. Dumas and A. H. Ngu. Declarative compo-

sition and peer-to-peer provisioning of dynamic web services. InProceed-

ings of the 18th International Conference on Data Engineering (ICDE02),

pages 297–308, 2002.

[BD99] T. Bauer and P. Dadam. Efficient distributed control of enterprise-wide

and cross-enterprise workf. InThe Workshop Informatik99: Enterprise-

wide and Cross-enterprise Workflow Management: Concepts, Systems,

Applications,, pages 25–32, Oct 1999.

185

Bibliography 186

[BPE03] Bpel4ws v1.1 specification. Technical report, May 2003.

[BV04] P. Buhler and J. M. Vidal. Enacting bpel4ws specified workflows with

multiagent systems. InProceedings of Workshop on Web Services and

Agent-Based Engineering, 2004.

[CBL05] Yun-Heh Chen-Burger and Fang-Pang Lin. A semantic-based workflow

choreography for integrated sensing and processing. InProceedings of

The 9th IEEE International Workshop on Cellular Neural Networks and

their Applications (CNNA), May 2005.

[CBR98] Yun-Heh Chen-Burger and Dave Robertson. Formal support for an infor-

mal business modeling method. InConference proceedings of The Tenth

International Conference on Software Engineering and Knowledge Engi-

neering, June 1998.

[Coa99] Workflow Management Coalition. Workflow management coalition ter-

minology & glossary, Feb 1999.

[Coo02] M. D. Coon. Peer-to-peer workflow management white paper. 2002.

[DGCIS95] Mark Hornick1 Diimitrios Georgakopoulos1 Contact Information and

Amit Sheth2. An overview of workflow management: From process mod-

eling to workflow automation infrastructure. InDistributed and Parallel

Databases, pages 119–153, April 1995.

[DGS95] M. Hornick D. Georgakopoulos and A. Sheth. An overview of workflow

management: From process modelling to infrastructure for automation. In

Journal on Distributed and Parallel Database Systems, pages 3(2):119–

153, April 1995.

[EGD97] R. Cingil E. N. Tatbul P. Koksal E. Gokkoca, M. Altinel and A. Do-

gac. Design and implementation of a distributed workflow enactment

service. InThe 2nd IFCIS Conference on Cooperative Information Sys-

tems (CoopIS97), pages 89–98, June 1997.

[EP99] J. Eder and E. Panagos. Towards distributed workflow process manage-

ment. InWorkshop on Cross-Organisational Workflow Management and

Coordination, Feb 1999.

Bibliography 187

[FCP96] B. Pernici F. Casati, S. Ceri and G. Pozzi. Workflow evolution. In15th

International Conference on Conceptual Modeling (ER’96), pages 438–

455, Oct 1996.

[FIP00] Fipa acl message structure specification. Technical report, 2000.

[Fis02] L. Fischer. Lighthouse point, fla.: Future strategies. InWorkflow Hand-

book 2002, 2002.

[FK] G. J. Fakas and B. Karakostas. A peer to peer (p2p) architecture for dy-

namic workflow management. InJournal of Information and Software

Technology.

[GAK95] R. Guenthoer D. Agrawal A. El. Abbadi G. Alonso, C. Mohan and M. Ka-

math. A persistent message-based architecture for distributed workflow

management. InIFIP WG8.1 Working Conference Decentralized Orga-

nizations,Trondheim, August 1995.

[GAM97] A. El Abbadi G. Alonso, D. Agrawal and C. Mohan. Functionality and

limitations of current workflow management systems. InResearch Re-

port, IBM Almaden, Research Center, 1997.

[Geo88] M. P. Georgeff. Communication and interaction in multi-agent planning.

In Distributed Artificial Intelligence, 1988.

[GPW03] A. Finkelstein G. Piccinelli and S. L. Williams. Service-oriented work-

flow: The dysco framework. InProceedings of 29th Euromicro Confer-

ence (EUROMICRO03), pages 291–297, 2003.

[HA00] C. Hagen and G. Alonso. Exception handling in workflow management

systems. InIEEE Transactions on Software Engineering, volume 26(10),

pages 943–958, Oct 2000.

[Hav01] J. D. Havard. Interaction as a framework for flexible workflow modelling.

In The 2001 International ACM SIGGROUP Conference on Supporting

Group Work, pages 32–41, Sept-Oct 2001.

[JB96] S. Jablonski and C. Bussler. Workflow management - modelling concepts,

architecture and implementation. InInternational Thomson Computer

Press, September 1996.

Bibliography 188

[JBR99] M. z. Muhlen J. Becker, C.v. Uthmann and M. Rosemann. Identifying the

workflow potential of business processes. Inin Proceedings of the 32nd

Hawaii International conference on System Sciences, Jan 1999.

[JGM98] J. Hosking J. Grundy, M. Apperley and W. Mugridge. A decentralised

architecture for software process modelling and enactment. InIEEE In-

ternet Computing,, Sep/Oct 1998.

[JWB96] G. Vossen J. Wainer, M. Weske and C. Bauzer. Medeiros scientific work-

flow systems. InThe Proceeding of NSF Workshop on Workflow and

Process Automation in Information Systems: State-of-the-Art and Future

Directions. May 1996.

[JXT] Jxta platform. Technical report. http://www.jxta.org/.

[J.Y04] J.Yan. A Framework and Coordination Technologies for Peer-to-peer

based Decentralised Workflow Systems. PhD thesis, School of Informa-

tion Technology, Swinburne University of Technology, 2004.

[JYR04] Y. Yang J. Yan and G. K. Raikundali. Critical issues in extending p2p-

based swindew p2p-based swindew system for incomplete process sup-

port. In Proceeding of the 8th International Conference on Computer

Supported Cooperative Work in Design (CSCWD04). May 2004.

[LL02] K C. Laudon and J P. Laudon.Management information systems. London:

Prentice Hall International, seventh edition, 2002.

[LMCM01] Hamideh Afsarmanesh Lui M. Camarinha-Matos. Virtual enterprise

modeling and support infrastructures: applying multi-agent system ap-

proaches. InMutli-agents systems and applications, pages 335–364,

2001.

[MM96] H. Ledgard M. Marcotty. The world of programming languages.

Springer-Verlag, 1996.

[Moh97] C. Mohan. Recent trends in workflow management products, standards

and research. Inin Proc. of NATO Advanced Study Institute (ASI) on

Workflow Management Systems and Interoperability, August 1997.

Bibliography 189

[Moh98] C. Mohan. Workflow management in the internet age, advances in

databases and information systems. In2nd East-European Symposium

on Advances in Databases and Information Systems (ADBIS’98), volume

1475, pages 26–34, Sept 1998.

[MRD03] S. Rinderle M. Reichert and P. Dadam. Adept workflow management

system: Flexible support for enterprise-wide business processes (tool pre-

sentation). InInternational Conference on Business Process Management

(BPM’03), volume 2678, pages 371–379, June 2003.

[MS02] P. Mangan and S. Sadiq. On building workflow models for flexible pro-

cesses. In13th Australasian Database Conference (ADC’02), 2002.

[NH94] L. Nastansky and W. Hilpert. The groupflow system: A scalable approach

to workflow management between cooperation and automation. Inin Pro-

ceedings of the 24th Annual Conference of the German Computer Soci-

ety during the 13th World Computer Congress (IFIP94), pages 473–479,

September 1994.

[NOW05] D. Robertson N. Osman and C. Walton. Run-time model checking of

interaction and deontic models for multi-agent systems. InProceedings

of EUMAS, December 2005.

[NRdW05] Roman P.J. van der Krogt Nico Roos, Cees Witteveen and Mathijs M.

de Weerdt. Diagnosis of single and multi-agent plans. InProceedings

of the Fourth International Joint Conference on Autonomous Agents and

Multiagent Systems, 2005.

[OWL01] Owl-s 1.0 release. Technical report, 2001.

[OWL04] Owl web ontology languagereference. Technical report, Feburary 2004.

[PHM99] S. Jablonski J. Neeb K. Stein P. Heinl, S. Horn and M.Teschke. A com-

prehensive approach to flexibility in workflow management systems. In

The International joint Conference on Work Activities Coordination and

Collaboration (WACC99), pages 79–88, Feb 1999.

[PMG98] J. Weissenfels A. K. Dittrich P. Muth, D. Wodtke and G.Weikum. From

centralised workflow specification to distributed workflow execution. In

Bibliography 190

Intelligent Information Systems - Special Issue on Workflow Management,

pages 159–184. Kluwer Academic Publishers, March 1998.

[Rob04] Dave Roberston. A lightweight method for corrdination of agent oriented

web services. InAAAI Spring Symposium on Sematic Web Services, July

2004.

[Sch99] M. T. Schmidt. The evolution of workflow standards. InIEEE Concur-

rency, pages 44–52, July-Sept 1999.

[Sie99] R. Siebert. An open architecture for adaptive workflow management sys-

tems. InTransactions of the SDPS: Journal of Integrated Design and

Process Science, volume 3(3):29-41. Society for Design and Process Sci-

ence, Sept 1999.

[SJS02] C. Hahn S. Horn R. Lay J. Neeb S. Jablonski, R. Schamburger and

M. Schlundt. A comprehensive investigation of distribution in the con-

text of workflow management. Inin Proceedings of 8th International

Conference on Parallel and Distributed Systems, pages 187–192, Jone

2002.

[SJT97] K. Stein S. Jablonski and M. Teschke. Experiences in workflow manage-

ment for scientific computing. InProceeding of 8th International Work-

shop on Database and Expert Systems Application. Sept 1997.

[SKL02] P. Wagstrom S. Krishnan and G. Laszewski. Gsfl: A workflow framework

for grid services. 2002.

[SLS99] A. Goh S. Liu and E. Soong. State-based modelling of flexible workflow

executions in distributed environments. Inournal of Integrated Design

and Process Science, volume 3(2), pages 49–62. Austin: Society for De-

sign and Process Science, 1999.

[SPJC97] E. Park S. Paul and RainMan J. Chaar. A workflow system for the internet.

In Internet, in Proc. of ACM SIGPLAN Conference On Object-Oriented

Programming Systems, Languages and Applications (OOPSLA97) Work-

shop on Business Object Design and Implementation III, Oct 1997.

Bibliography 191

[SSO01] W. Sadiq S. Sadiq and M. Orlowska. Pockets of flexibility in workflow

specifications. InThe 20th International Conference on Conceptual Mod-

elling (ER’01), volume 2224, pages 513–526, Nov 2001.

[SV96] M. Singh and M. A. Vouk. Scientific workflows: Scientific computing

meets transactional workflow. InProceeding of NSF Workshop on Work-

flow and Process Automation in Information Systems: State-of-the-Art

and Future Directions, PART II-Reference Papers. May 1996.

[UDD02] http://uddi.org/pubs/programmersapi-v2.04-published-20020719.htm.

Technical report, 2002.

[VAM01] S. A. Chun V. Atluri and P. Mazzoleni. A chinese wall security model for

decentralised workflow systems. InProceedings of the 8th ACM Confer-

ence on Computer and Communications Security, pages 48–57, 2001.

[vdAvH02] W.M.P. van der Aalst and K.M. van Hee. Workflow management: Models,

methods, and systems. InMIT Press, Cambridge, MA, 2002.

[Wal04a] C. Walton. Model checking agent dialogues. In2004 Workshop on

Declarative Agent Languages and Technologies (DALT), July 2004.

[Wal04b] C. D. Walton. Model checking multi-agent web services. InProceeding

of AAAI Symposium of Semantic Web Services, 2004.

[Wes98] M. Weske. Interaction as a framework for flexible workflow modelling. In

Proceedings of 31st Hawaii International Conference on System Sciences,

1998.

[Wes02] M. Weske. A formal framework to support workflow adaptation. InInter-

national Journal of Software Engineering and Knowledge Engineering,

volume 12(3), pages 245–268, June 2002.

[WSD01] http://www.w3.org/tr/wsdl. Technical report, 2001.

[XML06a] http://www.w3.org/tr/2006/rec-xml-20060816/. Technical report, 2006.

[XML06b] http://www.w3.org/tr/xmlschema11-2/. Technical report, 2006.

[Yan00] Y. Yang. An architecture and the related mechanisms for webbased global

cooperative teamwork support, international. InJournal of Computing

and Informatics,, pages 13–19, Sep/Oct 2000.

Bibliography 192

[Yan02a] Y. Yang. Enabling cost-effective light-weight disconnected workflow for

web-based teamwork support,. InJournal of Applied Systems Studies,

volume 3(2), 2002.

[Yan02b] Y. Yang. Tool interfacing mechanisms for programming-forthe-large and

programming-for-the-small. Inin Proceedings of the 9th Asia Pacific Soft-

ware Engineering Conference (APSEC’s 02), pages 359–365, Dec 2002.

[YY01] Z Weiming Shen Yuhong Yan, Maamar. Integration of workflow and

agent technology for business processmanagement. InPredeedings of

Computer Supported Cooperative Work in Design, pages 420–426, July

2001.

