
Thinking Outside the TBox

Multiparty Service Matchmaking as

Information Retrieval

David J. Lambert

School of Informatics

University of Edinburgh

T
H

E

U N I V E R
S

I
T

Y

O
F

E
D I N B U

R
G

H

Doctor of Philosophy

Centre for Intelligent Systems and their Applications

School of Informatics

University of Edinburgh

2009

Abstract

Service oriented computing is crucial to a large and growing number of computational

undertakings. Central to its approach are the open and network-accessible services

provided by many different organisations, and which in turn enable the easy creation

of composite workflows. This leads to an environment containing many thousands of

services, in which a programmer or automated composition system must discover and

select services appropriate for the task at hand. This discovery and selection process is

known as matchmaking.

Prior work in the field has conceived the problem as one of sufficiently describing

individual services using formal, symbolic knowledge representation languages. We

review the prior work, and present arguments for why it is optimistic to assume that

this approach will be adequate by itself. With these issues in mind, we examine

how, by reformulating the task and giving the matchmaker a record of prior service

performance, we can alleviate some of the problems. Using two formalisms—the

incidence calculus and the lightweight coordination calculus—along with algorithms

inspired by information retrieval techniques, we evolve a series of simple matchmaking

agents that learn from experience how to select those services which performed well in

the past, while making minimal demands on the service users. We extend this mechanism

to the overlooked case of matchmaking in workflows using multiple services, selecting

groups of services known to inter-operate well. We examine the performance of such

matchmakers in possible future services environments, and discuss issues in applying

such techniques in large-scale deployments.

i

Declaration

I declare that this thesis was composed by myself, that the work contained herein is my

own except where explicitly stated otherwise in the text, and that this work has not been

submitted for any other degree or professional qualification except as specified.

(David J. Lambert

School of Informatics

University of Edinburgh)

ii

Acknowledgements

Thanks are due to my supervisor Professor David Robertson for his patient guidance,

and to my second supervisor Dr Stephen Potter, who got me interested in the subject of

brokering and matchmaking by telling me not to touch it.

This research was sponsored by the Advanced Knowledge Technologies (AKT)

project, a six-year collaboration between groups at the universities of Aberdeen,

Edinburgh, Sheffield, Southampton, and the Open University. AKT was funded by the

United Kingdom’s Engineering and Physical Sciences Research Council.

PhD dissertation acknowledgements usually conclude with a long list of friends

who nursed the patient through their illness. In my case that list is very nearly, but not

quite, ’(). To the members of that list (you know who you are): thank you.

iii

Table of Contents

1 Introduction 1

1.1 Services oriented computing . 2

1.2 Finding services . 3

1.3 The modern service ecology . 5

1.4 Thesis . 10

1.5 Publications . 12

2 Background 13

2.1 Distributed computing . 13

2.2 The connection problem . 16

2.3 Requirements for matchmaking . 20

2.4 Service description . 25

2.5 Related fields . 31

2.6 Summary . 33

3 Matchmakers 34

3.1 Distributed AI . 34

3.2 Multi-agent systems . 37

3.3 Web services . 44

3.4 Grid and workflow systems . 51

3.5 Semantic web services . 55

3.6 Our nearest neighbours . 69

iv

3.7 Summary . 73

4 Critique 75

4.1 Expectations for matchmaking . 76

4.2 Limits of logic . 78

4.3 Services themselves . 87

4.4 Interactions . 89

4.5 Summary . 96

5 Tools 98

5.1 Lightweight Coordination Calculus 99

5.2 Incidence calculus . 106

5.3 Summary . 111

6 Monogamy 113

6.1 Matchmaking and LCC . 113

6.2 A random matchmaker . 120

6.3 Adding the incidence calculus . 123

6.4 Comparison to Zhang and Zhang . 128

6.5 Discussion . 132

6.6 Summary . 135

7 Polygamy 137

7.1 Building a team . 137

7.2 Better than (naive) Bayes . 146

7.3 Selecting roles . 155

7.4 Connections . 161

7.5 Summary . 167

8 Scaling 168

8.1 Simulation . 169

v

8.2 Tuning . 173

8.3 Experiments . 178

8.4 Discussion . 182

8.5 Summary . 184

9 Conclusion 185

9.1 Contributions . 185

9.2 Future work . 188

Bibliography 194

vi

List of Figures

2.1 Types of middle-agent . 20

2.2 Description logic features . 28

2.3 Description logic operations . 29

3.1 LCCM agent capability advertisements 45

3.2 Two performative sequences for calculating body mass indices 46

3.3 Service providers, consumers, and UDDI 49

3.4 Semantic web layer cakes old and new 56

3.5 Evolution of the world wide web . 57

3.6 OWL-S process model . 59

3.7 Service subsumption algorithm from (Li and Horrocks 2004) 63

3.8 Domain ontology for MX example 72

4.1 OWL reasoners disagree . 92

5.1 Grammar for the LCC dialogue framework 102

5.2 Standard LCC interaction model rewrite rules. 103

5.3 An LCC interaction model . 104

6.1 LCC rewrite rules for monogamous matchmaking 117

6.2 LCC interaction model for service advertising 120

6.3 MATCHMAKEONE-RANDOM algorithm 121

6.4 LCC interaction model for WEB-SEARCH scenario 122

6.5 Intrinsic abilities of hypothetical web search engines 123

6.6 WEB-SEARCH success: individual services and random matchmaking 124

vii

6.7 MATCHMAKEONE-IC algorithm (ε-greedy) 126

6.8 WEB-SEARCH selection under different policies 127

6.9 Zhang and Zhang algorithm on the WEB-SEARCH task 133

7.1 A Grid workflow in the astronomical domain 138

7.2 LCC interaction model for the Astrogrid scenario 139

7.3 Astrogrid services’ network bandwidth 140

7.4 MATCHMAKEALL-IC algorithm . 142

7.5 Astrogrid selection . 145

7.6 MATCHMAKEONE-BAYES and MATCHMAKEALL-BAYES algorithms 148

7.7 Astrogrid selection with Naive Bayes 150

7.8 Astrogrid service selection patterns 151

7.9 Astrogrid with preselected computation server 153

7.10 Astrogrid service selection with preselected compute server 154

7.11 LCC rewrite rules for role selection 157

7.12 Booking a trip with LCC . 158

7.13 Alternative travel agent role definitions 159

7.14 Role selection . 160

8.1 Zipfian probability distributions . 171

8.2 Set intersection operations . 175

8.3 Boltzmann probability distributions 178

8.4 Simulations with two-role models 180

8.5 Simulations with three-role models 181

viii

Chapter 1

Introduction

Once upon a time, computer technology was described in terms of generations. Towards

the end of that phase, popular opinion held that the fifth generation would be endowed

with artificial intelligence through logical inference (Moto-oka and Kitsuregawa 1985;

Feigenbaum and McCorduck 1983). Those machines never materialised, and people

tired of counting. The logico-deductive, closed-world view gave way to the more open

and messy one of the Internet. It is fair to call the real fifth generation the networked

computer, and we could now speak of a sixth generation where computation itself is

migrating into the network. A key element of this networked computation is the pervasive

use of services. An essential element of service oriented architectures (SOA) (Singh and

Huhns 2005) is the mechanism for connecting agents requiring services with those able

to provide them. When automated, this task is known as ‘matchmaking’, and approaches

to it remain rooted in the fifth generation’s exclusively logical Weltanshauung. The

lesson of the Web has been that openness and some sloppiness leads to scalability,

and that the resulting size in turn can enable the exploitation of emergent structure

and statistical wisdom. In this thesis, we re-examine matchmaking through the lens of

the open, messy Web, and investigate the utility of an information-retrieval inspired

approach to selecting appropriate services.

1

Chapter 1. Introduction 2

1.1 Services oriented computing

Distributed computing is the practice of constructing and operating systems of logi-

cally connected programs on physically distinct computer systems and having them

communicate through networking hardware. Such systems can range from parallel

computers running thousands of identical processing nodes in a single machine room to

wildly heterogeneous ones like those found on the Web. The full promise of ubiquitous,

distributed computation can only be realised if the various components can be mustered

as a coherent system in a flexible and inexpensive way. The creation of such a framework

has long been an aim of software engineering research, and the many attempts have

appeared in various guises, from distributed computing standards like CORBA (Object

Management Group 2004), DCOM (Microsoft Corporation 1996) and Jini (Arnold

2000), to multi-agent systems (Wooldridge and Ciancarini 2000). While such systems

have met with some success, they have failed to achieve a critical mass, principally due

to their complexity and a lack of openness.

In the last few years, ‘service oriented computing’ (Papazoglou 2003), implemented

as ‘web services’ (Booth et al. 2004), has attracted sufficient attention for it to become

an established part of the computing landscape. Today, there are many such services

available, and increasing pressure to coordinate them in adaptable ways. Service-oriented

computing is already a cornerstone technology for e-Science, business, government,

and other large organisations. Services are software entities—possibly fronting for

real-world end-effectors—which are accessible across the Internet via standard protocols.

Services obviate the difficulties of distributing, installing, and ensuring currency of

software that must otherwise be deployed on users’ machines. And, because they can

expose functionality across organisational boundaries, they enable easier establishment

of contracts and the construction of virtual organisations constructed between distinct

organisations.

The principle reason for this sudden surge in use of services is the success of the

Chapter 1. Introduction 3

HyperText Transfer Protocol (HTTP) (Fielding et al. 1999) which underlies the Web,

and XML (Bray et al. 2008). Using HTTP to carry service requests and results instead

of web browser data, engineers have found a light-weight, widely understood and

ubiquitously deployed platform for distributed computing. XML, being just text, is easy

to inspect and manipulate, removing the need for complex tool sets and making cross-

platform and inter-language operation more easily achievable by working programmers.

Because of this, web services (Gottschalk et al. 2002) offer a compelling vehicle

for distributing software functionality, providing a common platform for replacing

traditional remote procedure call approaches. They enable access to distributed resources

like bioinformatics databases and algorithms (Wilkinson and Links 2002), virtual

observatories (Walton, Lawrence, and Linde 2003), and web-based storage facilities

(Palankar et al. 2008). This success has made web services an object of interest to three

other major research threads: the Grid, the semantic web, and multi-agent systems.

The resulting convergence of these fields impacts on a key aspect of service oriented

computing: finding the right services.

1.2 Finding services

To use services one must be able to find them (both the Platonic existence of abstract,

task-achieving processes, and the actual, invokable implementations), reason about how

to compose them to solve tasks, and invoke them. And this must be done in the web

world: huge scale in terms of number of providers and clients requesting access; variety

of services that will be offered; the inevitable sloppiness of implementation and partial

adherence to standards; and variability in intrinsic quality of individual services.

Today, when programmers manually construct systems using the service-oriented

paradigm, they often simply use the services they have been told to use by an employer

or colleague. If they have to discover a new service themselves, they typically do so by

browsing or searching the human-readable web. In particular domains, there may be web

Chapter 1. Introduction 4

sites which record useful services, such as the simple web page in bioinformatics1. There

are also web services search engines like startup company Seekda2. However the services

are found, their integration still proceeds in the traditional mold of software development:

crafting single-provider/single-user linkages using traditional programming languages.

Most of these software interactions are hard-coded: programs interact with other

software systems at predetermined network addresses, using predetermined sequences

of calls.

Expectations in academia and industry are that the number of web services will

grow into the hundreds of thousands, and possibly into billions. At the same time,

ubiquitous services providing for every need will draw in many non-programmers—

beginning with scientists—who will construct distributed computations using work-flow

oriented graphical programming suites or automated compositions derived from formal

specifications. A common assumption behind much research in middleware and semantic

web services is that manual service selection will not suffice. In any case, it would

be better to use more sophisticated middleware to at least aid humans in the process

(Bernstein 1996).

Tools like Taverna (Oinn et al. 2004) make it possible for users to construct

workflows without programming, and to select the services which enact them. However,

the available services are generally either hard-coded into the tools, or manually acquired

from web pages or UDDI registries. The invoker of a service must have some way of

identifying that service. It is usually undesirable, and often not possible, for the various

systems involved to know of each other’s existence before the need for interaction

occurs.

Service selection can often be done automatically, in a process called ‘matchmaking’.

The problem has been addressed in the multi-agent community, and before that in the

distributed computing field where the challenge of service discovery was first identified

as the ‘connection problem’ (Smith 1980). The solution taken by most of these has

1http://www.ebi.ac.uk/Tools/webservices/
2http://seekda.com/

http://www.ebi.ac.uk/Tools/webservices/
http://seekda.com/

Chapter 1. Introduction 5

been the introduction of ‘middle-agents’ (Decker, Sycara, and Williamson 1997) which

provide a meeting point for service providers and clients. Middle agents can also solve

related problems like load-balancing, and the dynamism of agents joining and leaving

communities.

Most of this matchmaking research happened in the multi-agent field (Martin,

Cheyer, and Moran 1999; Sycara, Klusch, and Widoff 1999; Kuokka and Harada 1995;

Singh 1993) and continued into semantic web services (Paolucci et al. 2002b; Li and

Horrocks 2003). The general procedure for these matchmakers is always the following:

any agent offering a service lodges an advertisement of it with a matchmaker. The advert

takes the shape of a formal description, in a ‘capability description language’. In the

past, this was often simply a set of keywords. Recently, it has become popular to use

description logics (Nardi and Brachman 2003)—a core technology of the semantic

web—to classify the service. Clients requesting a service similarly generate a description

of their preferred service, and submit it to the matchmaker. The matchmaker compares

the requested service description against its advertisement database, and selects the most

appropriate, which it then names to the client.

These matchmaking schemes have worked well in laboratory settings where the

services are relatively few in number and designed by small, homogeneous teams, but

there is a real question of whether their purist logical nature is appropriate for the much

larger, more open and less predictable web service environments we face now.

1.3 The modern service ecology

Matchmaking has traditionally focused on agents in homogeneous, in-lab scenarios. The

environment of service oriented computing is considerably more hostile: there are more

services from more providers, the descriptions will be apt to be less accurate, and the

results less rigorously checked. In this section, we look at three areas of the the service

oriented computing environment, and what they mean for matchmaking. We cover the

Chapter 1. Introduction 6

pragmatics of web services, the semantic web, and the impact of search engines.

1.3.1 The pragmatics of web services

Multi-agent systems research assumes a model of agency in which individual agents

reason in a very rich way about how to achieve goals in a social setting, with insight

into their own beliefs desires and intentions (BDI), and those of others (Wooldridge

2000). They create plans and request behaviours of other agents in order to achieve their

goals. Doing this is hard, and still a research exercise, rather than a software engineering

approach ready for large-scale deployment. In contrast, the success of service oriented

architectures is largely attributable to their more pragmatic, less technically ambitious

approach. Web services piggy-back on the standardised, widely deployed and understood

standards of URLs, the HTTP protocol, and XML. Instead of automated planning, humans

can design fixed workflows for execution (Andrews et al. 2003; Oinn et al. 2004). Web

services can be easily glued together with simple programming tools, without retraining

engineers in BDI models or artificial intelligence.

Agency presents a large jump in complexity from current technology, so there

is a high barrier to entry. Web services provide a low-cost way to enter, by using a

large number of existing and familiar technologies, adding distributed computing in

a straight-forward way, and permitting layering of more expressive methods on top.

Web services can provide the low-level infrastructure for communication, message

passing, security and so on. Agents may be layered on top by some actors to provide

flexibility, planning, or intelligent error recovery and compensation, but their presence

will probably be hidden behind a normal web-services front (Payne 2008; Foster,

Jennings, and Kesselman 2004).

It is this openness and low entry barrier that introduces perhaps the biggest change

to the way matchmaking might be done. When systems were closed, those building

them could be sure of the circumstances of their use, and those using them could be well

trained or simply prevented from accessing them. In contrast, the natural consequence

Chapter 1. Introduction 7

of openness is heterogeneity and loss of control.

The situation mirrors the early Web. Although technically unsophisticated compared

to other hypertext systems of the time, it has nevertheless revolutionised the way we

deal with information. The key to the web seems to have been the low technical and

social barriers to entry. Writing HTML is easy, and although writing correct HTML

is more difficult than it might be, browsers and other technologies are forgiving by

design and necessity. Tim Berners-Lee’s injunction to “be liberal in what you require

but conservative in what you do” lies behind the robustness and popularity of the web.

The web did not, for example, enforce link integrity, which allowed conventional tools

ignorant of links to be used. And anyone could create a link, since they did not need

access to some centralised link database (Berners-Lee 1992). Such openness has led to

problems beyond the technical domain, in terms of law and governance: spam, phishing

and malware all cause users great inconvenience, but it is precisely this openness which

has created the Web we value.

1.3.2 The semantic web

The Semantic Web augments the current Web with formal knowledge representation

mechanisms, so that machines can understand and reason with more of the knowledge it

contains. There are already several popular applications of semantic web technology,

including ‘friend-of-a-friend’ (FOAF) (Brickley and Miller 2007) for describing social

networks, and RDF Site Summary (RSS) (Beged-Dov et al. 2000) used for syndicating

news and blog feeds. But the semantic web vision (Berners-Lee, Hendler, and Lassila

2001) clearly places services front and centre:

. . . an agent coming to the clinic’s Web page will know not just that
the page has keywords such as ‘treatment, medicine, physical, therapy’ (as
might be encoded today) but also that Dr. Hartman works at this clinic on
Mondays, Wednesdays and Fridays and that the script takes a date range in
yyyy-mm-dd format and returns appointment times. And it will ‘know’ all
this without needing artificial intelligence on the scale of 2001’s Hal or Star
Wars’s C-3PO. Instead these semantics were encoded into the Web page
when the clinic’s office manager (who never took Comp Sci 101) massaged

Chapter 1. Introduction 8

it into shape using off-the-shelf software for writing Semantic Web pages
. . .

The effort to make available semantic descriptions of web services is known as

‘semantic web services’ (Burstein et al. 2005; McIlraith, Son, and Zeng 2001). The

hope is that by describing formally the kind of task a service performs, its inputs and

outputs, message formats, and its possible interactions with other services, it will be

possible to automate to a large extent the discovery, selection, composition, execution

and monitoring of the large-scale systems possible with distributed computing. There

are several major frameworks, including OWL-S (Martin et al. 2004), WSMO (Lausen,

Polleres, and Roman 2005), and SWSF (Battle et al. 2005). However, there has been no

take-up so far by users.

Although the semantic web seems to promise a new golden age for formal knowledge

representation and multi-agent systems, pragmatism is again a central theme. James

Hendler’s slogan that ‘a little semantics goes a long way’ is widely repeated, and the

most successful deployment of RDF has been re-branded more prosaically as ‘linked data’

(Bizer, Heath, and Berners-Lee 2008). Heavy-weight semantics—careful engineered

ontologies with rich constraints—are not only difficult to provide, they are difficult to

reason with. Thus, if semantic web services are accepted, it may be in a lightweight

form like WSMO-Lite (Vitvar et al. 2008) and SA-WSDL (Farrell and Lausen 2007),

where the limited expressiveness will lead to problems with integration.

Much of the scepticism (Shirky 2003) of the semantic web comes from a misun-

derstanding that it ever intended to provide a single, global ontology. Instead, many

different ontologies will be knitted together as needed. There will not even be a single

standard for expressing those ontologies: OWL, the primary language for ontologies on

the Web, already exists in three ‘species’, and the major semantic web services efforts

(WSMO and SWSF) have defined their own, more expressive languages (Bruijn et al.

2005; Bernstein et al. 2005). Another Hendler coinage, ‘semantic webs’, illustrates the

growing acceptance that there will be many ontologies, and ontology languages, used

Chapter 1. Introduction 9

in various corners of the Internet. Ontology mapping (Kalfoglou and Schorlemmer

2003) is imperfect, and mapping from more to less expressive formalisms is, in general,

impossible. This heterogeneity will make it necessary to consider how services are

chosen as a group, because the interactions of the agents will be as important as their

individual performance.

1.3.3 Search engines

Web search engines are now such an essential element of the Internet experience that it

is hard to remember how recent an arrival they are. Alta Vista, the first such engine to

provide a full-text index of a large part of the web, opened to the public in late 1995.

Prior to this, two methods were used to find relevant pages: subject-based hierarchies of

links; and the use of author-chosen keywords embedded in the pages themselves.

In the early days of the world wide web, page authors would embed an HTML

construction like

<meta name="keywords" content="matchmaking multi-agent">

in their page to enable search engines to index it. These keywords were often chosen

ineptly due to obvious ambiguities or lack of precision, or malevolently so as to

increase a page’s visibility unjustly, and the technique has fallen into disuse. The

other early navigational tool was the hierarchical, ontology-like directory, such as

Open Directory3 or Yahoo!—the name itself an acronym of ‘Yet Another Hierarchical

Officious Oracle’—and these have now all but died out.

They have given way to search engines using vector-space based information retrieval

methods, augmented by studying the interconnections between the billions of pages.

Such analysis uncovers the statistical patterns which show the more influential, and

prized pages, in the eyes not of those who create them, but those who use and therefore

link to them (Brin and Page 1998). We could say that modern search engines make

the community the arbiter of the semantics of a page, not the author. In a similar vein,

3http://www.dmoz.org/

http://www.dmoz.org/

Chapter 1. Introduction 10

recommender systems like those at Amazon can pool the collected preferences of the

community to highlight the better offerings (Resnick and Varian 1997; Schafer, Konstan,

and Riedl 1999).

1.4 Thesis

How might these themes from the Web and web services reshape our view of match-

making? To recap, web services, like the Web itself, are open to anyone, and thus less

likely to implement standards fully and correctly. With thousands of services, there are

bound to be the usual problems of bugs and incompatibilities. Since money is involved,

many services will be described less than honestly. Lightweight semantics for services

may well take off, but provide insufficient information for good matchmaking. The

interactions between agents become important, due in part to agents using different

ontologies or logics behind the scenes.

Just as search engines with their statistical approach have largely superseded carefully

edited topic-based directories like the original Yahoo! or OpenDirectory, we hypothesise

that a similar approach might help in service selection. There are certainly parallels.

The hierarchical directory approach of the early Web is reminiscent of the use of

description logics to classify services. The use of in-page keywords is similar to the

use of service advertisements, and faces a similar problem of accuracy and honesty.

In search engines, pages are described by keywords, where services are described by

concepts, and registered and found accordingly. But pages also link to and from other

pages. Services can be said to ‘link’ when they collaborate successfully in a interaction

initiated by a client, and the linkages can be exploited to better select groups of services

which interact better with each other than with a random grouping. By considering the

services as keywords, and the interactions as documents, we can apply information

retrieval techniques to find the correlations between successful services.

At present, a matchmaker gets no feedback about the quality of its service selection.

Chapter 1. Introduction 11

If, instead, each client registered with the matchmaker their satisfaction with the end

result of a match-made interaction, the matcher can, over time, construct a database

of which agents work best. Moreover, traditional matchmaking focuses on selecting

single agents at a time. With workflows connecting many services, we should be able to

consider the effects of interactions between services, and select groups of agents which

work best with each other.

We use two key tools in our investigation. The Lightweight Coordination Calculus

(LCC) (Robertson 2004) is a simple, logic-programming style workflow language. It has

been used as to implement BPEL workflows in a peer-to-peer manner (Guo, Robertson,

and Chen-Burger 2005), for supporting model-checking based verification of deontic

constraints in agent dialogues (Osman, Robertson, and Walton 2005), and for studying

on-demand ontology matching (Besana and Robertson 2007). LCC provides a simple

means for handling multi-service compositions, which are central to our argument about

the centrality of service interactions to matchmaking. The second tool is the Incidence

Calculus (IC) (Bundy 1985). Incidence calculus provides a clean mathematical model

for dealing with the probabilities that emerge when we consider the sets of interactions.

Using these, we construct several proof-of-concept matchmakers which learn from

experience to find those groupings of agents which work not only work well individually,

but as collaborators.

The remainder of this dissertation is structured as follows: chapter 2 outlines the

problem of service selection in distributed systems, and surveys approaches from

other fields that parallel our own, while chapter 3 examines the previous research on

service matchmaking, covering both architectures and the matchmakers designed to

operate within them. Chapter 4 examines the problems that we feel have been glossed

over by mainstream matchmaking research, and justifies the addition of probabilistic

techniques to matchmaking. Chapter 5 reviews the Lightweight Coordination Calculus

and Incidence Calculus. In chapter 6 we build a matchmaker for simple client-server

interactions, where the historical data about past interactions is used to improve service

Chapter 1. Introduction 12

selection, and in chapter 7 we extend the approach to support multi-party matchmaking,

providing experimental results demonstrating its efficacy. Chapter 8 looks at how

the approach would scale in a moderately large scenario, using simulations based

on plausible service interaction properties. Chapter 9 concludes by reviewing the

contributions, and looking to possible future directions for the work.

1.5 Publications

Several publications have resulted from the work presented in this thesis:

• Key ideas from chapters 4, 6, and 7 were first published in Accounting for

Valency in Service Composition (Lambert 2005) at the first Advanced Knowledge

Technologies doctoral symposium.

• A refinement of that paper appeared as Matchmaking and Brokering Multi-Party

Interactions Using Historical Performance Data (Lambert and Robertson 2005)

at the fourth international joint conference on autonomous agents and multi-agent

systems (AAMAS 2005).

• The work on selecting roles in chapter 7 was published in the paper Selecting Web

Services Statistically (Lambert and Robertson 2006) at the tenth international

workshop on cooperative information agents (CIA 2006). This was later reprinted

in a collection of selected papers from the Advanced Knowledge Technologies

project (Advanced Knowledge Technologies 2007).

• This approach to matchmaking formed part of a compendium paper of work on

the Lightweight Coordination Calculus, Models of Interaction as a Grounding for

Peer to Peer Knowledge Sharing (Robertson et al. 2009) in (Dillon et al. 2009).

Chapter 2

Background

In this chapter, we cover the background of matchmaking. We first examine the

emergence, more than once, of distributed computation (section 2.1), and the ‘connection

problem’ it poses (section 2.2). We examine the requirements for solving the connection

problem (section 2.3), and in particular the conceptual approaches to describing service

capabilities (section 2.4). We defer detailed examination of particular matchmaking

frameworks and matchmakers until chapter 3.

2.1 Distributed computing

Distributed computing is the use of multiple physical computers to perform a task.

The degree of physical separation between the computing nodes may be minimal in

the case of parallel supercomputers or computer clusters, or globe-spanning, as in the

SETI@home project. Likewise, the tasks engaged in by each node may be homogeneous,

which each node running an identical algorithm on a parcel of data, or heterogeneous,

where a node may offer a globally unique service.

Distributed computing has a long history, with its most famous early example being

the development of the ARPAnet (Licklider 1963; Licklider and Taylor 1968). The

ARPAnet’s raison d’etre was providing cross-continent sharing of precious computing

resources, which it achieved through a novel packet-switched network and applications

13

Chapter 2. Background 14

including file transfer, electronic mail, and remote access to machines. These services

were tied to specific application protocols and the programs that implemented them,

making it difficult to integrate functionality for new uses. This lead to the idea of generic

protocols, based on the notion of remote procedure calls (RPC), and the first explicit

mention of RPC seems to be in the Internet Engineering Task Force’s ‘Request For

Comment’ 707 (White 1975). RPC707 highlighted the problems inherent with the early

ARPA¡net protocols which were designed for interactive use by humans. These protocols

frustrated the programmatic use of remote computers: more effective resource sharing

depended on making programmatic remote use easier, and this could be achieved by

creating a general abstraction at the level of function invocation, so that individual

applications did not need to implement, document and publicise a new protocol for each

new application. Instead, programmers could simply offer an application programming

interface (API) that could be trivially invoked with the same toolset. It could be

hoped that the availability of such a generic interface would spur the provision of such

functionality through it, since application developers would be encouraged to build their

programs so that they could be invoked by RPC. Two other insights from White were that

RPC protocols “permit the server process to invoke commands in the user process, that is,

eliminate entirely the often inappropriate user/server distinction”; and the statement of

agency’s central notion of autonomy, making clear that a server was under no obligation

to fulfil a request if it were unwilling to do so. By the 1980s, two main streams of

distributed computing were apparent: systems based on remote procedure call, which

were then developing into distributed object-orientation, and distributed AI, which itself

morphed into the field of multi-agent systems.

RPC systems, so called because they resembled the familiar and simple abstraction

of the procedure call, achieved widespread adoption. The Open Network Computing

Remote Procedure Call (ONC/RPC) (Srinivasan 1995) still underpins modern systems

like Sun’s Network File System. Just as fashionable object orientation was replacing

the procedural programming model on the desktop, distributed object mechanisms

Chapter 2. Background 15

were a natural development for the network. The principle standards in this field were

the Common Object Request Broker Architecture (much better known as CORBA),

and Distributed Component Object Model (DCOM). CORBA was a cross-platform,

multi-vendor standard driven by the Object Management Group, while DCOM was a

proprietary one, tied to the Microsoft Windows platform. Both schemes were object-

oriented, and made object method invocations, from the programmer’s perspective,

independent of the object’s location, whether it lay in the same application, in a logically

separate address space on the same machine, or most profoundly, on another machine.

An ‘interface definition language’ (IDL) is used to specify the object’s structure and

methods, and which is then compiled to language specific bindings, called stubs (for the

client) and skeletons (in the provider). Both CORBA and DCOM saw significant use, but

were not universally accepted: they were complex, and CORBA suffered problems of

incompatibility between different vendors’ tools.

Distributed AI (DAI) investigated the use of distributed computation to solve AI

problems, principally in the sense of managing parallel computing. DAI’s parallel

problem solving model is now commonplace: systems like SETI@home1 and BOINC2

allow anyone to participate in searching for extra terrestrial intelligence, climate

modelling, or other projects, by running a client program on their machine. Multi-agent

systems, in contrast, emphasise the autonomy of agents, and their ownership and fealty

to different actors with diverse goals, and a multiplicity of tasks and abilities. Because

agents are goal-driven, they have options in which services to invoke to achieve a goal,

and could only request other agents to perform actions, rather than demand them, as in

RPC.

The greater dynamicity, sociability, and intelligence of such agents created a

buzz about software agents that went unrealised in real applications. In the last few

years, attention has switched back from the agency approach to the less sophisticated

approaches of RPC, this time realised as web services and the Grid, themselves now

1http://setiathome.ssl.berkeley.edu/
2http://boinc.berkeley.edu/

http://setiathome.ssl.berkeley.edu/
http://boinc.berkeley.edu/

Chapter 2. Background 16

converging on underlying technologies. No attempt is made in these systems to model

beliefs, or negotiate. The format of the messages passed between client and service

is strictly defined. Neither clients nor servers need any intelligence to interpret the

messages or reason about the consequences of fulfilling requests, since the thinking was

done by the programmers when they wrote the service. This simplification has meant,

however, that open, distributed computation services are now becoming commonplace,

with both web services and the Grid having achieved a critical mass of implementers

and users. Agency researchers can now piggy-back on some of these services, rather

than construct their own. And the notion of ‘semantic web services’ has now appeared

as a research topic, occupying a space somewhere between dumb RPC and intelligent

multi-agent systems.

2.2 The connection problem

Distributed computation is concerned with the decomposition of problems, and the

subsequent distribution and coordination of the sub-problems. Subsequently, there is a

need to locate appropriate services and invoke them. This task of locating appropriate

agents has become known as the ‘connection problem’ (Smith 1980). This entails

communication with external entities, and thus some mechanism for discovering their

identity and how to communicate with them. Further, since service providing entities will

differ in their abilities—most obviously because they cannot all implement all possible

behaviours, but also because providers will face individual and different resource

limitations, security concerns, economic constraints and so on—we must identify our

needs and select only those agents capable of fulfilling them. There are three principle

ways of identifying agents:

1. apriori knowledge The client agent is endowed by its creator with knowledge

about other agents and their abilities. This may be done through hardwired code,

or in data files that are configured by the user or an administrator.

Chapter 2. Background 17

2. broadcast discovery A client broadcasts a service requirement, which is responded

to by agents in a position to fulfil the request. The ‘contract net’ protocol is the

best known example of this style (Smith 1980).

3. matchmaking agents The client queries a known middle-agent for a set of agents

which can fulfil the request. The matchmaker has a database of capabilities, which

stores the capability advertisements sent to it by service providers.

The use of apriori knowledge is the easiest to implement initially, but fails to solve

several problems. The information can become dated very quickly, especially in dynamic

environments. It is difficult to scale, since every client must know about many, and

perhaps all, the possible servers: for instance, a mobile email device might need to

know about mail servers in every geographical location. There is no intrinsic support for

balancing load between the servers. And hard coded references to particular services

leave the system prone to downtime, or the modification or movement of the service.

The broadcast approach is common in smaller systems, where the level of broadcast

communication does not overwhelm the members.

Matchmaking is generally considered the most appropriate for large systems.

Because binding between clients and servers happens at a late stage, without involving

large numbers of queries passing around, it can be more efficient than broadcasting.

The overall process of enabling matchmaking involves the following actions:

1. Service providers send advertisements, listing their capabilities, to some match-

making middle agent

2. The matchmaker receives and stores the advertisements

3. A client constructs a description of a service it requires, and sends it to a

matchmaker

4. The matchmaker applies some selection algorithm to find suitable providers, and

forwards the list to the client.

Chapter 2. Background 18

Some matchmakers offer the client a list of suitable services, leaving the client the

final choice. Some systems might carry the interaction further, for instance by executing

the client’s request and returning the final result.

These three classes are not exhaustive, and there are variations and hybrids. The

distributed file transfer system ‘BitTorrent’3, for example, by default uses central lists of

peers (called ‘trackers’), but has been extended to support operation using distributed

hash tables to find peers.

2.2.1 Terminology

Before proceeding, we should pause to consider the various terms used in matchmaking

research, which are sometimes vague or have multiple meanings. There is no firm

agreement on what constitutes an agent (or more fully, a ‘software agent’), but one

commonly accepted definition is given in (Wooldridge and Jennings 1995), according to

which agents are software-based computer systems possessing four properties: autonomy,

social ability, reactivity, and pro-activeness. This goes somewhat further than we need:

we will call an agent any entity—software, human, or organisation—which owns and

controls a set of services which it provides to others, or any entity which makes use

of such services offered by another agent. Since matchmaking, even in multi-agent

systems, is principally about the services, the precise definition of agency itself is of no

great importance.

A ‘middle-agent’ is a software program that mediates between other agents, providing

infrastructural assistance. There are many classes of middle-agent, but we are concerned

only with those that match service-requesters with service-providers. There are several

typologies of such agents (Klusch and Sycara 2001; Decker, Sycara, and Williamson

1997), but there seems to be no acknowledged term for the general class of ‘matcher’

agents. Conventionally, the term ‘broker’ is used to cover the general term, as well as a

more specific one which we look at next.

3http://www.bittorrent.com/

http://www.bittorrent.com/

Chapter 2. Background 19

Figure 2.1 shows the middle agent taxonomy introduced in (Decker, Sycara, and

Williamson 1997). Following this classification we define the following: A ‘requester’

agent has ‘preferences’, specific characteristics by which it will evaluate offers of

service. It may not want to disclose these, and so will make a ‘request’—which will

hide some aspects of its preferences—that will cause a middle-agent to generate a

response consisting of a number of possible ‘provider’ agents. The requester is then free

to evaluate those according to its preferences. Provider agents offer ‘capabilities’ in

‘advertisements’ to brokers. Providers are required to fulfil (or ‘honestly’ attempt to

fulfil) any request made to them that they have advertised they can fulfil.

The table in figure 2.1 shows nine types of middle agent, but only three are much

discussed in the literature. The first is the ‘matchmaker’, which stores advertisements

from providers, and replies to clients by offering them the names of provider agents:

it acts like a ‘for-sale’ section in a newspaper, or indeed, a Yellow Pages directory.

The ‘blackboard’ performs the inverse function of storing requests, and giving them

to providers which contact the middle-agent. This acts like a newspaper’s ‘wanted’

section. A broker hides the client’s preferences and the provider’s existence—requester

and provider remain ignorant of each other’s ignorance throughout. In addition, the

broker may translate requests across ontologies, ensuring anonymity for client and/or

provider, or judge that a not-quite-exact match between request and capability will

be acceptable. In common use of the term, a broker is seen as being a more general

purpose agent capable of performing several actions on behalf of the requester, such as

dealing with invoking several services in a workflow, or managing the choreography

of a single agent’s several services. We focus in this thesis on matchmakers in the

‘matchmaker/yellow-pages’ category, but the contribution of our approach can be applied

to the others.

Chapter 2. Background 20

Figure 2.1 Types of middle-agent

preferences initially capabilities initially known by

known by provider only provider+middle-agent requester

requester only broadcaster front-agent
matchmaker/
yellow-pages

requester
+middle-agent anonymizer broker recommender
requester
+middle-agent
+provider blackboard introducer arbitrator

The well-known taxonomy of middle agents presented in (Decker, Sycara, and

Williamson 1997).

2.3 Requirements for matchmaking

What must be provided in order for a matchmaker to operate? From a client’s point of

view, a matchmaking infrastructure should provide the following:

• Describe service capability for both the provider (the advertisement), and the

requester (query).

• Discover services. ‘Discovery’ refers to the identification of services and their

abilities. Much semantic web services literature uses the term to mean the

‘discovery’ by a client via a query. We prefer to reserve ‘discovery’ to the

matchmaker when it gains knowledge about services. This can be done by having

services send advertisements to the matchmaker, or by having the matchmaker

proactively search the Internet for descriptions.

• Query When the client, with a description of a required service, makes a query

to the matchmaker. The response may be list of suitable agents, or the direct

invocation of the service by the matchmaker (acting as a broker) of the selected

service.

In addition, the matchmaking process may support the following:

Chapter 2. Background 21

• Requirements formulation Often, we are not sure of what exactly it is we want to

do. By examining the services offered, we constrain and direct our search for our

own requirements.

• Service ranking In which the matchmaker rates services in a more precise manner

than a simple appropriate/inappropriate decision. This might be done by the

proximity of the requested and proffered services as determined by the selection

mechanism, or by another means, such as quality of services information stored

in the services’ non-functional properties, or based on feedback from previous

users. In recent literature, the terms ‘selection’ and ‘ranking’ have appeared

to differentiate the selection a set of possibly applicable services (using, say,

subsumption reasoning) from the ordering of those services (e.g. by declared

quality of service).

• Compose component services to meet the requirement Such a facility is separable

from the selection process, but as this thesis suggests, the interaction between

service composition and selection may be more important than a simple division

of labour would suggest. Having a broker which considered both simultaneously

could be beneficial.

• Invoke services Many matchmakers only identify a suitable services, while others

will perform the invocation on behalf of the client (the recruit-*/broker-*

performatives in KQML/FIPA-ACL). A broker may need to alter the client’s

requirements in order to find suitable service providers.

• Monitor invocations Particularly in long-running Grid processes, we wish to know

how far a request has progressed, and how long it will take to complete.

(Burstein et al. 2005) enumerates a three-part process of discovery, engagement,

and enactment. ‘Candidate service discovery’ is the search for a service which may

satisfy an agent’s current goal. This may be done through peer-to-peer search, querying

Chapter 2. Background 22

a matchmaker or a registry. ‘Service engagement’ is the checking of constraints against

candidates, and negotiation with candidates with regard to the possible costs of the

operation, quality of service and so on. ‘Service enactment’ is the actual carrying out of

the requested service. The enactment may be monitored, subject to ‘compensation’ in

the event of faults or the client being unhappy with the resulting transaction. In this

work, we are concerned principally with the first stage of finding (possibly) appropriate

services. We will cover the other two task only when they impinge on the first.

The service description language is central, and we discuss several approaches in the

next section, and particular frameworks in chapter 3. At this stage, we can simply say

that it must permit the labelling of the purpose of a service, and its parameter types. In

recent years, web services descriptions have made moves towards including issues of

grounding, choreography, and orchestration in the service capability descriptions. The

language used to must fulfil several criteria. (Sycara et al. 2002) lists four dimensions

through which a language can be evaluated:

1. Expressiveness The more information clients and servers can provide, the better

the match. But overly-rich descriptions can be hard to reason with, and may

exclude possibly functional matches. They may also conflict with the ‘ease of use’

goal.

2. Inference Brokers should be able to perform inference on the descriptions.

3. Ease of use Engineers who offer services, and clients who wish to use them, must

be able to do so without unnecessary difficulty.

4. Applicability on the web The web has become the overwhelmingly important

venue for agent-like systems, and hence capability description mechanisms should

be portable to this environment.

Another viewpoint is provided in (Wong and Sycara 2000), where the authors lay

out several dimensions along which middle agents can differ. They define ‘end-agents’

Chapter 2. Background 23

as being clients and servers, and ‘middle-agents’ as those parts of the infrastructure that

facilitate end-agents. Their dimensions are:

1. Who sends information to the middle agent?

2. How much information is sent to the middle agent? In which the options seem

binary: either the capability/requirement or the parameters/preferences.

3. What happens to the information middle agents receive? Is it broadcast to

subscribers, or kept in a database?

4. How is the content of the database used? Is it queried or browsed?

5. How much information is specified in a query to the middle agent? Does the client

divulge its private preferences, or only a very general description of the required

service?

6. Does the middle agent intermediate transactions between end-agents?

We can also consider a capability description through the various kinds of metadata

about a service. (Wroe et al. 2004) identifies seven varieties:

1. Concept based notion of service, which explains what the service does (as per a

yellow pages).

2. Configuration metadata Which enumerate properties on the service which can

tweak behaviour. One example is selecting a database for a protein comparison

operation.

3. Provenance Information about how others have used the service in the past,

such as the task/workflow or workflow which engaged the service. (Wroe et al.

2004) mentions hand written annotations to the descriptions, but also automatic

aggregation.

Chapter 2. Background 24

4. Operational description Information such as the cost, access rights, and quality of

service provided.

5. Invocation model A description of the choreography of a service, such as the

ordering of calls to a stateful service.

6. Interface Describing the low-level message format, such as provided by WSDL.

7. Format The format of the input and output data, again as might be provided

through WSDL.

We could add several more dimensions of our own:

1. Does the middle agent understand multi-party interactions? As multi-service

workflows become commonplace, should the matchmaker attempt to deal explicitly

with the collaborations of several services?

2. Does the middle agent collect performance data? That is, might the client

inform the middle agent during or after an interaction, of its satisfaction with the

recommended agents?

3. Does the middle agent behave deterministically? That is, can a matchmaker be

regarded as an inert repository of advertisements with known and predictable

behaviour, or is it performing computations which are not transparent to the user.

4. Does the middle agent collaborate with other middle agents? Is matchmaking

somehow distributed?

In this thesis, we argue for matchmakers which do understand multi-party interac-

tions, record performance data, and behave in a (somewhat) non-deterministic fashion

to explore possibilities. We do not investigate distribution or interaction amongst

matchmakers, but we do discuss it as further work in section 9.2.3.

Chapter 2. Background 25

2.4 Service description

So, how are services described? The literature is full of many approaches, and we

remain far from agreeing on a language for capability representation. There are too

many trade-offs, and some of the issues are too poorly understood to allow for an

optimal, multi-domain solution. For instance, the software design language Z (Spivey

1992) is suitable for describing interfaces and processes in software, but it is too rich

or complicated to support the needs of on-demand brokering. Conversely, planning

languages are easier to reason with, but impose restrictions on expressiveness. In this

section, we survey the more prominent styles of capability description that have been

used in matchmaking systems.

Strings

Ultimately, almost all means of identifying anything come down to strings. The simplest

service description language, then, is one in which we simply name, with a string,

a service’s type. Agreement on the meaning of a service identified by a string can

be achieved by having a global ontology of such types. Such a system is used in the

Lightweight Coordination Calculus, on which we build our matchmakers, as well as the

Open Agent Architecture (Martin, Cheyer, and Moran 1999). Using strings is simple,

and often effective. Because the strings express little structure over which to reason,

matchmakers are unable to find approximate matches for requested service functionality.

Vector spaces

Vector space models are one approach to introducing approximate matches. A service is

represented by a point in a vector space of terms describing the service offering. The

vectors are typically derived from a controlled vocabulary or ontology, and nearness is

determined using some metric like cosine distance. For example, a request for a service

“weather forecast Birmingham” might match against services described as “weather

Chapter 2. Background 26

forecast Birmingham Alabama” and “weather forecast Birmingham England”, and

have near misses with “weather report Birmingham”. The more terms which match,

the more appropriate the service. The notion of boolean matches can be extended to a

more general concept of distance between services in some kind of space, so that the

“Birmingham” weather service could be selected if the user had requested a service for

the physically nearby town of “Telford” which did not have its own service, as long as

“Telford” and “Birmingham” are nearby in the location dimension of the vector space.

This approach provides a basis for systems based on nearest neighbour selection, such

as that found in the IMPACT system (Subrahmanian et al. 2000) and the information

retrieval inspired MX matchmaker for semantic web services (Klusch, Fries, and Khalid

2005).

Subsumption

By subsumption, we mean the hypernym-hyponym relationship, or more prosaically,

is-a. Thanks to object orientated software engineering’s concept of sub-classing, this

notion is probably the dominant model of thinking in software development. It is also the

most prominent form of reasoning on today’s semantic web, because of the dominance

of description logics (Baader et al. 2003).

Description logics are a fragment of first order logic, selected to provide a balance

between computational performance and expressiveness. Expressive DLs are decidable,

but computationally intractable in the worst case—in the EXPTIME to NEXPTIME

complexity classes. Modern implementations offer good average case performance

(Tobies 2001; Horrocks and Patel-Schneider 1999). Description logics underpin the

more sophisticated current applications of the semantic web, in particular the OWL

family of languages (Smith, Welty, and McGuinness 2004). Because of the Semantic

Web’s use of OWL, and the availability of reliable subclass relationship reasoning, most

semantic web services frameworks use a subsumption model as a basis for service

selection (Sycara et al. 2003b).

Chapter 2. Background 27

Description logics split their knowledge base into a ‘terminological box’ (or ‘TBox’)

and an ‘assertion box’ (‘ABox’), and often written KB = 〈T ,A〉. The TBox holds the

definitions of classes and relationships between, while the ABox holds assertions of

particular individuals. Subsumption reasoning works in the TBox to decide the is-a

relation.

DLs use a specialised syntax intended to be suggestive of the first order logic

statements they map to. Concepts (that is, classes) are strings, usually capitalised, such

as Person or Car. These can be combined using a variety of operators, which vary

between logics, and commonly include equivalence ≡, conjunction u, disjunction t,

negation or complement ¬, and the relations for subsumes v and properly subsumes

<. A concept A subsumes a concept B, written A = B, if all possible instances of

B are also members of A. The ‘top’ concepts, which subsumes all other concepts is

written >, and the unsatisfiable concept is ⊥. Relations between concepts are defined by

‘roles’, and role restrictions on concepts which are written . roleName. Other features

from the OWL DL are shown in figure 2.3. DLs are frequently referred to by acronyms

which identify the features used in the language (table 2.2). OWL-DL is effectively

SHOIN (D).

The following is a simple ontology about pizzas:

Chapter 2. Background 28

Figure 2.2 Description logic features

S A shorthand for ALC with transitive roles. ALC is a fundamental DL

which allows complementation of complex concepts, not just atomic

ones

H role hierarchy: roles can have super- and sub-roles, and subsumption,

like concepts

O Enumerated classes (e.g. a week as the union of the days in it)

I Inverse properties

N Cardinality restrictions on roles

Q Qualified cardinality restrictions (OWL 1.1)

(D) Indicates support for data types, such as strings or integers

Pizza ≡ hasBase .PizzaBaseu hasTopping .PizzaTopping

PizzaBase < >

DeepPanBase < PizzaBase

ThinBase < PizzaBase

Vegetable < >

Tomato < Vegetable

Olive < Vegetable

Fish < >

Anchovy < Fish

FishuVegetable ≡ ⊥

VegetarianPizza ≡ Pizzau∀ hasTopping.Vegetable

Quibbles about the vegetable status of certain fruits aside, the TBox above shows how

Chapter 2. Background 29

a vegetarian pizza can be defined. We need to state explicitly that Fish and Vegetable

are disjoint, so we define their intersection to be empty (⊥). If we then talk about a

pizza type

Pizzau hasBase .ThinBaseu hasTopping .Anchovy

we can infer that is not a vegetarian pizza: it violates the definition of VegetarianPizza in

having Anchovy as a topping. The role VegetarianPizza . hasTopping must always have

a value of type Vegetable, according to the last line in the TBox, and we know that since

Anchovy < Fish and Fish and Vegetable are disjoint, Anchovy cannot be a vegetable.

In this way, subsumption can be used to determine if a requested service can be

satisfied by an advertised service by checking if the former is a sub-concept of the

latter. This is explored in greater detail when we explore semantic web matchmakers in

section 3.5.

Figure 2.3 Description logic operations

Operation DL Syntax First order logic

Atomic concept C C(x)

Top or universal concept > true

Bottom or unsatisfiable concept ⊥ false

Concept equivalence C1 ≡ C2 ∀x.C1(x)↔ C2(x)

Concept intersection C1 u . . . u Cn C1(x) ∧ . . . ∧ Cn(x)

Concept union C1 t . . . t Cn C1(x) ∨ . . . ∨ Cn(x)

Concept complement ¬C ¬C(x)

Value restriction P .C ∀y.P (x, y)→ C(y)

DL concepts map to unary predicates in first order logic, while roles correspond to

binary predicates.

Chapter 2. Background 30

Horn clauses

Horn clauses, or Prolog goals, are a common way to represent capabilities. Because

Prolog (Clocksin and Mellish 2003) is a popular language in AI, and its notion of goals

approximates the notion of service, it is a natural approach. Using this, we can very

quickly build a service composer, matchmakers and so on. In the simplest scenario, a

service is described simply as a predicate, perhaps with typing information:

send -email(Recipients : setof (EmailAdress),Message : Text)

or, alternatively, using explicit predicates to describe the types:

send -email(Recipients ,Message)←

type(Recipients , setof (email -address)) ∧ type(Message, text)

A more sophisticated language would allow constraints to be expressed as part of

the Horn clause. We will see several examples of systems based on Horn clauses in

section 3.2.

Problem solving methods

Problem solving methods are a unique approach with the area. The notion of ‘problem

solving methods’ (PSM) emerged when first-generation expert systems matured and

researchers discovered common patterns of inference in them. Such patterns include

‘heuristic classification’ (Clancey 1985) and ‘propose and revise’ (Marcus and

McDermott 1989). Once identified, these implicit behaviours can be made explicit in the

knowledge base, by recording them as goals to be achieved, and knowledge required to

fulfil them. In so doing, the PSM becomes reusable across tasks. According to (Studer,

Benjamins, and Fensel 1998), a PSM must specify:

• The inferences required to implement the method

• The ordering of those inferences

Chapter 2. Background 31

• The domain knowledge inputs to the method in terms of domain independent

knowledge roles

‘Bridges’ are used to connect the generic PSMs to ‘tasks’ in specific problem domains.

The PSMs can then be reused across many knowledge based systems, and in different

domains.

The principles of PSMs have been used directly in the web services field, in (Teije,

Harmelen, and Wielinga 2004) developed from earlier work in pure PSMs (Teije et al.

1998), and in the IBROW project (Benjamins et al. 1998). PSMs are alleged to underpin

the WSMO approach (Fensel et al. 2006), but the link can appear tenuous: WSMO

retains the clear separation of goal (task) from service (PSM), and the notion of placing

mediators (bridges) between the goal and service, but the equation of services with

PSMs themselves is not so clear. PSMs are more similar to general-purpose algorithms,

requiring configuration to a task, while typical web services are more special-purpose,

state-altering, and are composed together rather than refined to achieve particular tasks

(Teije, Harmelen, and Wielinga 2004).

2.5 Related fields

Since our approach to matchmaking is to look beyond the purely logical and symbolic

machinery, we now briefly look at approaches which border on our own. These

include recommender systems, self-organising agent systems, and autonomic computing.

Because of the close coupling of our approach to information retrieval and reinforcement

learning, we cover both those topics later, in section 7.4, after we have introduced the

matchmakers.

Recommender systems collect individuals’ ratings of items into a collective valuation

of objects (Resnick and Varian 1997) that can be used by a community. Recommender

systems emerged from work on ‘collaborative filtering’, such as the GroupLens work on

Usenet articles (Konstan et al. 1997). Simple aggregations policies may value items

Chapter 2. Background 32

based on the average of users’ ratings, while more sophisticated ones can characterise

the preferences of individuals, and by clustering those preferences, suggest particular

items to individuals based on the the intersection of their own recommendations and

those of others. Such systems are becoming common in e-commerce settings (Schafer,

Konstan, and Riedl 1999), where users’ preferences for books or films, for instance,

can be processed to discover groupings of like-minded users who can then have the

recommendations of their cohort forwarded to them.

In multi-agent systems, distributed mechanisms have been developed to enable

agents to build a team or coalition of peers with which to work. Such ‘agent organised

networks’ (AONs) are set of agents which have chosen a set of peers with which they

directly interact, based on local decisions made by the individual agents (Gaston and

desJardins 2005). Such systems are often used to perform network management, where

the networks can be for computer communications, logistics, or social networks. For

example, in sensor networks or ‘pebble-nets’, physically small devices with limited

communication range must collaborate with their peers to provide the community with

communications. Their options are limited by the physical connectivity of the individual

units, but the agents can reason over their individual goals such as power conservation

and task achievement, and their own appraisal of local network structure, to perform

network formation and routing (Glinton, Scerri, and Sycara 2008). The agents in

AONs are typically homogeneous, interact on an ongoing basis, and have some kind of

reciprocity.

Autonomic computing is an attempt to instill computers, particularly distributed

ones, with the ability to regulate themselves in the same way that humans and other

animals automatically manage their own complex internal state through their autonomic

nervous system (Horn 2001). The concerns of autonomic computing focus on taming

the complexity of contemporary computer systems, and the complexity of integration is

one of their key concerns. Since humans are struggling to cope, they argue that machines

themselves should shoulder more of the responsibility for their own robust operation.

Chapter 2. Background 33

They invoke notions of ‘self-configuring’, ‘self-optimising’, and ‘self-healing’ systems,

but anticipate an evolutionary approach rooted in improved engineering, rather than one

based on artificial intelligence (Ganek and Corbi 2003).

2.6 Summary

In this chapter we looked at the background to service matchmaking: its setting in

distributed systems, the identification of the connection problem, and the typical

approaches to solving it. Key points from this chapter are:

• The notion of agents or services which can be invoked over the network by other

services or users is common to a number of fields including distributed problem

solving, multi-agent systems, web services, Grid computing.

• In heterogeneous systems or autonomous systems, the agents involved need a

way to both describe their abilities and to locate other agents which can provide a

required service.

• Service capability languages are used by service providers and requesters to define

a service’s competence. Such languages have taken many forms, including free

text descriptions, Prolog-like goals, and description logics.

Chapter 3

Matchmakers

The previous chapter outlined the background against which matchmaking happens.

In this chapter, we advance to the foreground, studying specific frameworks for

matchmaking and brokering, and several implemented matchmakers. We take a

historical approach, proceeding through distributed AI (section 3.1), multi-agent systems

(section 3.2), web services (section 3.3), and the workflow systems built on web services

(section 3.4). Finally, we look at semantic web services in section 3.5.

3.1 Distributed AI

As noted earlier, distributed AI (or distributed problem solving) was the first field to

encounter and formalise the connection problem as we now know it. Two early systems

were ETHER and the much better known Contract Net.

ETHER

ETHER (W A Kornfeld 1979; William A. Kornfeld 1979; William A. Kornfeld 1981) is

a language and platform for writing distributed applications. ETHER is based on the

notion of a distributed database of logical assertions. The statement (broadcast φ)

asserts the fact φ, while the corresponding (when φ) can read such assertions. These

are used by so-called ‘sprites’, which are analogous to daemons in frame languages. For

34

Chapter 3. Matchmakers 35

example, consider the following sprite code which deals with information about the

location of objects using the in relation:

(when (in ?x ?y)
(when (in ?y ?z)

(broadcast (in ?x ?z))))

This sprite updates the distributed database with relations resulting from the transitivity

of in: upon discovering ?x is in ?y and that ?y is in ?z, assert the fact that object ?x

is in ?z. In this manner, the sprites operate as forward-chaining rules. To implement

goal-solving behaviour, ETHER simply marks the patterns with an additional goal

predicate:

(when (goal (in ?x ?y))
(when (in ?x ?z)

(broadcast (goal (in ?z ?y))
(when (in ?z ?y)

(broadcast (in ?x ?y))))))

By delegating goal solving to ‘activities’ (processes) running in parallel, and using

goal matching to communicate, a primitive form of matchmaking is achieved. This

style of matchmaking makes for a simple programming model, but does not leave much

space for decision-making by client agents. While not commonly used as a model for

matchmaking, it is a fore-runner not only of Linda-like systems (Carriero and Gelernter

1989), but of a proposed but unimplemented matchmaker system based on triple spaces

(Toma et al. 2005).

Contract Net

Contract Net was developed in the context of a distributed sensing application (Smith

and Davis 1978), and more recently, a standardised version of Contract Net for the

FIPA-ACL agent language has emerged (Foundation for Intelligent Physical Agents

2002).

A contract net is a collection of nodes which engages in a protocol of issuing tenders

and contracts to one another for services. The nodes have a shared objective (the solving

of the distributed problem), and cooperate to share computational resources by handing

Chapter 3. Matchmakers 36

off tasks to the most appropriate nodes. This is done through the creation of tenders,

bids, and contracts between the nodes. A ‘manager’ is a node which requires a task to

be done, and which initiates an invitation for tenders, appoints the successful winner,

and monitors task completion. The ‘contractor’ is a node which bids for the task, and

performs the required computation. Nodes can be managers or contractors as needs

dictate, and can be both simultaneously (if, for instance, a task can be split into sub-tasks

which are in turn put out to tender to other nodes). Tenders can be sent to specific nodes,

groups of named nodes, or broadcast. Nodes with tasks to achieve need to find nodes

which are best suited to achieving them: the node must not only be able to carry out the

task, it should also be less heavily loaded than those nodes which lose the tender.

A ‘task announcement’ message is sent (often as a broadcast message), detailing the

work required by the manager node. A simple announcement requesting a temperature

reading might be:

To: *
From: 43
Type: TASK ANNOUNCEMENT
Contract: 12345
Task abstraction: TASK TYPE SENSE-ENVIRONMENT
Eligibility: MUST-HAVE THERMOMETER

MUST-HAVE LOCATION LONDON
Bid specification: POSITION LAT LONG

EVERY SENSOR NAME TYPE
Expiration time: 0930 1 May 2009

The ‘eligibility’ criteria state that only bids from environment sensors with a thermometer,

located in London, are of interest. Any node responding must meet the ‘bid specification’

by supplying its position in latitude and longitude, and a list of its sensors. Those

nodes which satisfy the criteria, and which find themselves underutilised, construct

a bid according to the specification and send it to the manager node. The manager

node considers incoming bids, and whenever it is sufficiently happy with a bid, can

award the contract by issuing an ‘announced award’ message. Contract Net defines the

slot/attribute framework used to describe tasks, but the actual terms and format of the

task definitions are left to the designers of domain specific Contract Nets.

Chapter 3. Matchmakers 37

3.2 Multi-agent systems

The deepest well of matchmaking research is to be found in the multi-agent systems

domain. Because of their heterogeneous nature, and the high degree of self-reflective

knowledge available to an agent, these systems have a richer set of formalisms to build

on, and thus more scope for exploring the matchmaking design space. We begin with a

look at the widely used agent communication language KQML (which later became

FIPA-ACL) since many of the matchmakers use it.

KQML and FIPA-ACL

Agent communication languages (ACLs) are used by agents to communicate with one

another. Of the many ACLs invented, one in particular has been widely adopted: the

Knowledge Query and Manipulation Language (KQML) (Labrou and Finin 1997).

KQML was developed as part of the DARPA Knowledge Sharing Effort programme,

and was later adopted—with modifications—by the Foundation for Intelligent Physical

Agents (FIPA) as the FIPA Agent Communication Language (FIPA-ACL). The differences

between KQML and FIPA-ACL are relatively small, and for our present purpose we will

treat them as interchangeable.

KQML is based on the notion of ‘speech acts’ (Austin 1976), (also known as

‘illocutionary acts’) a theory in which an agent effects an action or change in the world

by the mere action of saying something. For instance, my saying ‘I will meet you for

lunch’ is not ‘stating a fact’ in the sense of a sentence in traditional logic, since I may be

run over by a bus on the way there. I am, instead, establishing a contract between us that

I will endeavour to meet you for lunch. Such statements are said to have ‘illocutionary

force’. Agents’ messages are labelled with ‘performatives’, such as tell, ask, and

request, but KQML does not specify the content of those messages, and is instead

a wrapper around statements made in a ‘content language’, such as the Knowledge

Interchange Format (KIF) or Prolog.

Chapter 3. Matchmakers 38

KQML defines several performatives related to facilitation1. The first allows an agent

to advertise its ability to accept a performative:

(advertise :sender <advertiser> :receiver <facilitator>
:content (<performative> <form>))

Where <performative> and <form> together define a message that can be handled

by the <advertiser>. For example

(ask (weather-in spain ?weather))}

where the <performative> is the ask. Similarly, an agent can subscribe to updates

on another agent’s knowledge base:

(subscribe :sender <tourist> :receiver <weather-agent>
:content (weather-in spain ?weather))

whereupon the <weather-agent> will send a tell message to the tourist each

time the weather agent’s knowledge about the weather-in relation changes. Agents

can query a facilitator’s knowledge of advertisements with the recommend-one

performative:

(recommend-one :sender <requester> :receiver <facilitator>
:content (ask (weather-in spain ?weather)))

If the facilitator can unify the value in the content slot of the message with that from

a prior advertise, it will forward to the <requester> the original advertising

message. The <requester> can then process that advertisement, and engage with

the advertiser directly. A similar performative called recommend-all results in the

facilitator notifying the client of all matching adverts. Alternatively, the client can

use the broker-one or broker-all performatives, which cause the facilitator to

communicate with the advertisers directly, on behalf of the client, and to forward the

results back to the client. Finally, recruit-one and recruit-all behave like

their broker- equivalents, but the results from the service providers are sent directly

to the client.

We will see some of these in use later in this section. Note that although KQML

imposes the severe restriction that advert and request must unify syntactically, most

1We simplify the syntax of the operations somewhat, to draw attention to the essentials. Details can be
found in (Labrou and Finin 1997).

Chapter 3. Matchmakers 39

matchmakers—including those reviewed here—go beyond this to offer richer behaviour.

ABSI

ABSI (Agent-Based Software Interaction) (Singh 1993) was one of the first brokering

systems. It extended the basic KQML brokering model with the capability of matching

requests and advertisements that are not exact matches, using unification over the

queries and adverts. An interesting, arguably fatal, limitation on ABSI brokering is the

requirement that service providers are not allowed to fail when requested to fulfil a

capability they have advertised.

SHADE and COINS

Developed by the same researchers, SHADE (Kuokka and Harada 1995), and COINS

(Kuokka and Harada 1996) were used in information management systems. Both use

KQML to convey the matchmaking operations, but while COINS uses a weight similarity

measure from information retrieval, SHADE uses logic rules and unification. A typical

SHADE service advert is

(advertise :sender inf.ed.ac.uk :receiver mm
:language kqml :content

(ask-one :language kif :content (supervises ?x ?y)))

which offers an information providing service which determines if two individuals have

a supervisor/supervisee relationship. A corresponding query is of the form

(recruit-all :sender c :receiver mm :language kqml :content
(ask-one :language kif :content (supervises dave ?y)))

SHADE uses unification over the KIF query form to determine suitable matches:

in this case, dave is unified with ?x and the service inf.ed.ac.uk can be re-

cruited. The unification is done only at a syntactic level, so an equivalent request like

(supervised-by ?y dave) would not match, even if it is known the relations

supervised-by and supervises are inverses.

In contrast, the COINS matchmaker works on free-text services capability descrip-

tions. Clients subscribe to the matchmaker using a query which can be either a text

Chapter 3. Matchmakers 40

document or a weighted term vector. For example, a query for documents related to the

subject of this thesis might be described by the following:

(subscribe :sender student4 :receiver mm :language kqml :content
(stream-all :language document-vector :content

(?document matchmaking 5 service 4 information 3 retrieval 3)))

A library agent could advertise documents to the matchmaker as they become available:

(tell :sender library :receiver mm :language kqml :content
(stream-all :language document-vector :content

(matchmaking-thesis.pdf matchmaking 5 service 4
information 3 retrieval 3)))

On receiving such an advert, the matchmaker would send a notification to student4

about the new document which matched their query. Query matching is done by a vector

similarity computation, as typically found in information retrieval systems.

IMPACT

IMPACT is an agent architecture detailed in (Subrahmanian et al. 2000). For service

description, it primarily relies on a naming convention where services are named in

the form ‘verb:noun’: e.g. forecast:weather or plan:flight. The verbs and

nouns are both drawn from controlled taxonomies. Subclass relations in the taxonomies

have attached weights, indicating the conceptual difference between direct super- and

sub-concepts. Using the weights, a distance metric is defined over all pairs of verbs, and

all pairs of nouns. From this, a distance is defined between service descriptions, and a

nearest neighbour algorithm used to match queries to services.

RETSINA/LARKS

RETSINA (Sycara et al. 2003a) is a major multi-agent architecture, based on KQML and

using middle agents. RETSINA’s capability description language is known as LARKS

(Sycara et al. 2002), for ‘Language for Advertisement and Request for Knowledge

Sharing’.

A LARKS specification is a frame with slots specifying context, typed input and

output variables, constraints on the inputs and outputs, conceptual descriptions for

Chapter 3. Matchmakers 41

ontological definitions, and a textual description of the advertisement. Constraints

are written as Horn clauses, while the optional conceptual descriptions are used to

link other elements in the specification to an ontological representation. Terms used

without an explicit conceptual description are required to be known to the matchmaker

already. Both advertisements and requests are communicated as specifications, and

KQML performatives must be used to distinguish them. Since requester and provider

need not share an ontology, the broker attempts to map between ontologies, maintaining

a global ontology of all concepts contained in service advertisements, and assuming

certain basic concepts are shared between all ontologies. RETSINA’s ontology language,

ITL, is specific to it, but is similar to KL-ONE (Brachman et al. 1990).

RETSINA defines several classes of ‘match’, a classification which is a precursor to

that which now dominates matchmaking in semantic web services. The matches, in

decreasing precision, are:

• exact match where the request and advertisement are identical, modulo variable

renames or some other equality preserving inferences.

• plugin match, where the request is essentially a subconcept of an advertisement.

For example, a request to hire a small car is a plugin match with a company which

hires out all kinds of vehicles.

• relaxed match, where the logical subsumption matches have failed, and an

approximate match is made by measuring numerical similarity between request

and service.

Unusually, LARKS uses a series of techniques to match queries. The exact set

and order of application can be determined by the client. Most of these filters

make use of a measure of semantic distance between concepts, using notions of

generalisation, specialisation, and general positive association. LARKS generates these

scores by comparing terms through subsumption reasoning and WordNet. In increasing

computational cost, the filters are:

Chapter 3. Matchmakers 42

1. Content matching

2. Profile comparison

3. Similarity matching

4. Signature matching

5. Constraint checking

The context filter discards adverts which do not match the query context (for example,

a ‘travel’ context would not be of use in a query looking for television schedules).

Context labels are compared using the semantic similarity score. Profile comparison

treats adverts and queries as documents, and applies a TF-IDF2 metric to compare

them, just as in an information retrieval system, and the COINS matchmaker. Similarity

scoring compares the inputs and outputs pairwise, ensuring a tighter check than the

profile comparison, which does not distinguish input from output. Signature matching

applies subsumption reasoning to the inputs and outputs to determine the exact/plugin

relationship. Finally, constraint checking applies an inference engine to the Horn clauses

which specify the pre- and post-condition constraints.

Open Agent Architecture

The Open Agent Architecture (OAA) (Martin, Cheyer, and Moran 1999) was developed

at the Stanford Research Institute. It uses a Prolog style syntax, but like KQML, makes a

distinction between the communication language and the content language. Services are

represented as Prolog goals in the form

solvable(Goal,Parameters,Permission)

The Goal is a Prolog term, such as

get_weather_report(+Location,-Report)

2Term frequency inter-document frequency, which weights terms in proportion to their frequency in a
single document, and that term’s frequency in the corpus as a whole.

Chapter 3. Matchmakers 43

while Parameters adds information about the service (such as whether it returns

information or carries out an action, and whether the service is synchronous or

asynchronous). These solvables are advertised to a facilitator. A service requester

invokes a goal using a library goal ooa Solve, which will request the facilitator to find

an appropriate provider and invoke the required goal. Matching is done by unification of

the goal form with advertised forms: no approximate matching is done.

LCCM

Another system using Prolog goals to describe capabilities is the Lightweight Capability

Communication Mechanism (Robertson et al. 2000). The objective of LCCM was to

provide a lightweight description language using the well-understood formalism of Horn

clauses. Agent capabilities are expressed as Horn clauses, with an agent asserting it has

a capability when it can satisfy a goal head provided certain preconditions (the ‘goal

body’) are met. For instance, the Internet Domain Name Service might advertise its

primary function of domain name lookups as

capability(dns , ip-address(Ip,Name)← domain-name(Name))

indicating that the DNS agent would provide an IP address given a valid domain name.

The preconditions for a capability may be provided by the same agent, or another the

broker is aware of. An advantage of LCCM descriptions is that they combine naturally

with Prolog’s backtracking search to provide service composition. That is, by invoking a

meta-interpreter over LCCM descriptions, which are essentially Prolog goals, a solution

to the search results in a broker structure which captures the necessary tree of actual

service invocations. In response to a client query, the broker ‘solves’ the problem in

terms of advertisements, producing from the resulting goal tree a list of the required

interactions and dependencies amongst the real agents.

By way of example, we will look at the case of a dietitian who calculates the body

mass index (BMI) of patients. The dietitian performs this by dividing the patient’s

Chapter 3. Matchmakers 44

weight by the square of their height. This gives a number that should be in the

range 19 to 25. But this must be applied to measurements in metric units. Should

an American patient use this service, they would need a converter. The conversion

can be done before or after the dietitian performs the calculation. This gives us the

capability advertisements in figure 3.1. The LCCM broker, in response to the request

broker(bmi(george,BMI metric, -), will supply two performative sequences, shown in

figure 3.2. The LCCM broker incorporates a mechanism for dealing with ontological

alignment. This operates by agents specifying explicit correspondences with other

agent’s capabilities.

3.3 Web services

Web services have become the most popular means for providing distributed computing

functionality. They operate using open standards, primarily the widespread HTTP

protocol (Fielding et al. 1999), the URL (Berners-Lee, Fielding, and Masinter 2005),

and XML (Bray et al. 2008). There are three principle flavours of web services: SOAP,

XML-RPC, and RESTful, which we discuss over the next few pages. For vanilla web

services, unadorned with semantic descriptions, the means for ‘matchmaking’ are

three-fold:

1. Implicit knowledge, where the developer knows about the service already, or

discover it through soft means like documentation.

2. Web search, where a developer finds a service through standard web search

engines, or browsing.

3. UDDI directories, the officially sanctioned mechanism for registering and discover-

ing SOAP services described with WSDL, the Web Service Description Language

(Christensen et al. 2001).

Chapter 3. Matchmakers 45

Figure 3.1 LCCM agent capability advertisements

capability(dietitian, (imperial -bmi(Person,BMI ,Height ,Weight)←

height(Person, imperial ,Height , -)∧

weight(Person, imperial ,Weight , -)))

capability(dietitian, (metric-bmi(Person,BMI ,Height ,Weight)←

height(Person,metric, -,Height)∧

weight(Person,metric, -,Weight)))

capability(dietitian, (bmi(Person,BMI ,BMI)←

metric-bmi(Person,BMI ,Height ,Weight)))

capability(converter , (height(-,metric,Height imperial,Heightmetric)←

height(-, imperial ,Height imperial , -)))

capability(converter , (weight(-,metric,Weight imperial ,Weightmetric)←

weight(-, imperial ,Weight imperial , -)))

capability(converter , (bmi(Person,BMI metric,BMI imperial)←

imperial -bmi(Person,BMI ,Height ,Weight)))

capability(american, height(george, imperial ,H , -))

capability(american,weight(george, imperial ,W , -))

capability(european, height(jacques ,metric, -,H))

capability(european,weight(jacques ,metric, -,W))

Chapter 3. Matchmakers 46

Figure 3.2 Two performative sequences for calculating body mass indices

ask(american, height(george, imperial ,Height imperial , -))

ask(converter , height(george,metric,Height imperial ,Heightmetric))

ask(american,weight(george, imperial ,Weight imperial , -))

ask(converter ,weight(george,metric,Weight imperial ,Weightmetric))

ask(dietitian,metric-bmi(george,BMI metric,Heightmetric,Weightmetric))

ask(dietitian, bmi(george,BMI metric,BMI metric))

⇒ BMI metric = 23.8

ask(american, height(george, imperial ,Height imperial , -))

ask(american,weight(george, imperial ,Weight imperial , -))

ask(dietitian, imperial -bmi(george,BMI imperial ,Height imperial ,Weight imperial))

ask(converter , bmi(george,BMI metric,BMI imperial))

⇒ BMI metric = 23.8

Chapter 3. Matchmakers 47

For XML-RPC and RESTful services, the third is not an option, since there are no

accepted means for describing such services in any formal language. First, we look at

SOAP and UDDI.

3.3.1 SOAP

Originally an abbreviation for Simple Object Access Protocol, SOAP is no longer an

acronym: it was never an ‘object access protocol’, and is now not so simple. SOAP is

based on XML messages formatted in ‘envelopes’ with a core message inside. The idea

of the envelope is to allow intermediate services which the message encounters en-route

to be instructed by the envelope to perform certain tasks. The core of a soap message is

in the Body element:

POST http://weather.org/soap
SOAPAction: WeatherForecast

<?xml version="1.0"?>
<soap:Envelope

xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns:w="http://weather.org/soap/">

<soap:Body>
<w:GetWeatherForecast>

<w:Country>Spain</w:Country>
<w:City>Madrid</w:City>

</w:GetWeatherForecast>
</soap:Body>

</soap:Envelope>

In this example, we see an invocation of a hypothetical weather forecasting service.

The structure of the message is tightly defined, and may be described in a document

containing ‘WSDL’. The Web Services Description Language (WSDL) (Christensen

et al. 2001) and its later incarnation 2.0 (Booth and Liu 2007) is an XML vocabulary for

describing SOAP services. It is essentially an interface definition language, and a file of

WSDL defines the web equivalent of a function library in a conventional programming

language. Bindings are provided to various extant data transport mechanisms, including

SOAP, HTTP, and email3.
3The justifiability of calling these services over non-HTTP transports web services has been questioned

(Richardson and Ruby 2007). In practice, SOAP is used over HTTP.

Chapter 3. Matchmakers 48

Owing to the WSDL definition, SOAP is the most discoverable of the web services

styles. Not only does WSDL provide a syntactic interface, the content itself is identifiable

as WSDL, and there is a framework for registering it: UDDI.

UDDI (Universal Description, Discovery, and Integration) (OASIS UDDI Specifica-

tion TC 2005)4 was created through the OASIS standards group5. UDDI is a registry-based

scheme, where service providers lodge three types of information with a registry:

• white pages holding the contact information for the provider, such as the business

name, phone numbers, and email address.

• yellow pages which describe the the nature of the service provided, by reference

to a taxonomy.

• green pages containing technical information, including, but not limited to, WSDL

descriptions.

This UDDI registry is then queried, either through a web browser interface, or

programmatically through SOAP, to find an appropriate service provider (figure 3.3).

However, UDDI relies on human intervention, and inflexible patterns of service provision.

The taxonomies used to classify services under UDDI tend to be difficult to navigate.

UDDI was created as a key component of the Web Services stack, but initial optimism

about its use has waned. The large public UDDI repositories (known as ‘Universal

Business Registries’) hosted by IBM, Microsoft and SAP have been shut down (SAP

News Desk 2005). Vendors say that the public registries were created to demonstrate

UDDI’s scalability and inter-operation abilities, which has been achieved. Critics counter

that the public registries have been retired because businesses don’t operate with the

public registry model of dynamic binding of service providers, but instead have private

relationships supported by private UDDI registries. Internal company use of UDDI is hard

to gauge. In semantic web services work, semantic descriptions have been embedded in

UDDI using the green pages ‘TModel’ facility (Paolucci et al. 2002a).
4http://uddi.xml.org/
5http://www.oasis-open.org/

http://uddi.xml.org/
http://www.oasis-open.org/

Chapter 3. Matchmakers 49

Figure 3.3 Service providers, consumers, and UDDI

Graphic from Fujitsu.

3.3.2 XML-RPC

XML-RPC (Winer 1999) was the original inspiration for SOAP, but it has recently gained

some traction in its own right, filling a niche for simple XML RPC over HTTP. The

relation with SOAP is obvious from its appearance:

POST http://weather.org/URL2

<?xml version="1.0"?>
<methodCall>

<methodName>WeatherForecast</methodName>
<params>

<param><value><string>Spain</string></value></param>
<param><value><string>Madrid</string></value></param>

</params>
</methodCall>

The biggest difference is the simplicity: XML-RPC does not use XML schemas,

encoding styles, or bindings to different protocols. There is also no service description

language, and no desire for one from users.

Chapter 3. Matchmakers 50

3.3.3 REST

‘Representational State Transfer’ (REST) is an architectural style typical of hypermedia

systems, and epitomised by the Web. REST was formalised in (Fielding 2000), and

has become a popular way to express web services. The core concept is the notion

of resources and using globally unique identifiers for them. In HTTP, the resources

are identified by URIs, which can be accessed through the standard HTTP. In REST, a

request for information becomes a simple HTTP GET request:

GET http://weather.org/weatherForecast/Spain/Madrid HTTP/1.1

Other HTTP methods—most commonly POST, PUT, and DELETE—are used to

effect changes of state. The RESTful or RESTian approach has recently gained mind-

share amongst web services developers and users for two reasons. First, its alignment

with the HTTP protocol makes for a more ‘Webby’ feel, with URIs being used not just to

name an operation in a transient remote procedure call, but to identify resources which

have an ongoing identity. As a consequence, REST takes better advantage of existing

HTTP infrastructure—in particular, many operations benefit from having their results

memoised through the standard distributed caching mechanisms for HTTP. Secondly,

and probably more influential in its popularity, REST is extremely light-weight to work

with, requiring no new tooling as SOAP tends to.

Despite a cultural bias against tooling and therefore machine readable descriptions

for RESTful services, several non-semantic description languages for REST services

have been promoted. WSDL version 2 (Booth and Liu 2007) includes some support for

describing the interface, but it is limited to simple cases of parameter insertion in the

URL, and is constrained to XML representations. The Web Application Description

Language (WADL) (Hadley 2006), a more radical and REST-specific reworking of the

WSDL approach, is more flexible in its modelling, supporting, for instance, MIME types

other than XML. Another scheme is hRESTS (Gomadam and Sheth 2008; Kopecky,

Gomadam, and Vitvar 2008), which embeds descriptions as a ‘microformat’ in HTML

pages. Microformats are data formats that are often (nearly) isomorphic to already

Chapter 3. Matchmakers 51

widely adopted formats such as vCard and iCal and that can be easily embedded in

existent HTML pages. hRESTS is still at an early stage of development, but serves as

a starting point for the semantic efforts of SA-REST and MicroWSMO, discussed in

section 3.5.3.

3.4 Grid and workflow systems

Perhaps the least heralded but most used class of matchmakers is that found in scientific

workflow systems, and in business process execution using the Business Process

Execution Language for Web Services (BPEL4WS) (Andrews et al. 2003). Workflow

systems are typically focused on solving problems for real users, and do not have attempt

intelligent, automatic service selection. They do, however, have to manage service

registration in some fashion, and do so in the wild, for working scientists using the tools

as a means, not an end. In this section, we review some of the more prominent of these

systems.

3.4.1 Grid

Grid computing—an analogy to the distribution grids for utilities for electricity or

gas—is an approach to providing dynamic ‘virtual organisations’ which can share

computational and database resources, on demand and at a global scale (Goble and

Roure 2002). (Foster, Kesselman, and Tuecke 2001) defines a Grid as being for

“flexible, secure, coordinated resource sharing among dynamic collections of individuals,

institutions, and resources—what we refer to as virtual organisations”.

Grids are currently used principally for high-end scientific endeavours, such as the

Network for Earthquake Engineering Simulation (NEESgrid6), Grid Physics Network7,

and the EU DataGrid Project8.

6http://www.nessgrid.org/
7http://www.griphyn.org/
8http://www.eu-datagrid.org/

http://www.nessgrid.org/
http://www.griphyn.org/
http://www.eu-datagrid.org/

Chapter 3. Matchmakers 52

The Grid initially defined its own means for invoking services, but is now converging

on web services standards, as part of the Open Grid Services Architecture9 (Foster et al.

2002). As with web services themselves, the aim is to move the Grid away from a kind

of ARPAnet era level of stove-piped answers such as LDAP and GRIDFTP to an open and

reusable set of web services. Grid services can contain state, which differentiates them

from services, even when they have identical implementations (for example, they may

all be running the version of a bioinformatics algorithm, but have different databases or

parameter setups). This is in contrast to most web services, which at least try to affect a

stance of statelessness.

Triana (Churches et al. 2006) offers an abstraction of services, and can call out

to web services. For managing those web services, it uses UDDI. Another prominent

Grid workflow system is Kepler (Altintas et al. 2004), which also uses UDDI, and

incorporates a harvester component for finding and storing WSDL descriptions.

Two interesting papers by Raman, Livny, and Solomon emerged from the Condor

workflow system (Frey et al. 2001). A Grid-inspired notion of service capability and

matchmaking is introduced in (Raman, Livny, and Solomon 1998), where services are

advertised not on the kind of software service they provide, but the kind of hardware:

available memory, CPU type and power, scheduling availability, and so on. The adverts

are semi-structured database records. This is a strong fit to the Grid, where computational

power is considered the primary resource. In (Raman, Livny, and Solomon 2000), the

same authors introduce the notion of ‘gang matching’: matching several inter-dependent

resources. They give an example of a client requesting use of particular software on a

machine, where the software requires a license, which itself can be obtained from a set

of license resources but which have their own dependencies in terms of which machine

they will run on.

In more of an AI vein, reinforcement learning has been applied to improve resource

allocation in the Grid (Galstyan, Czajkowski, and Lerman 2004). This work modelled

9http://www.globus.org/ogsa/

http://www.globus.org/ogsa/

Chapter 3. Matchmakers 53

individual clients using a simple reinforcement learning technique to gauge to which

Grid resources (computers) they should submit jobs. The reward function was time-to-

completion of a job at a given resource, and individual agents learned which resources

would provide them the quickest turn around. Resources were homogeneous in their

ability to execute a job, but varied in the time taken to do so and the scheduling policy

they used locally.

3.4.2 myGrid

The myGrid project10 (Goble, Wroe, and Stevens 2003) has established informatics tools

enabling bioinformatics scientists to conduct ‘in silico’ experiments using databases of

genetic and proteinomic information, and computational services. The toolkit comprises

three main elements: Soaplab, which presents legacy tools as web services; Taverna

Workbench, which enables the graphical design of scientific workflows which are

represented in the Simple Conceptual Unified Flow Language (SCUFL), which can be

saved and exchanged with other scientists; and Freefluo, the execution engine which

runs the workflow and makes calls to the web services referenced by the flow. Taverna

has been widely adopted by the target user community, and is now maintained as part of

the Open Middleware Infrastructure Institute UK 11 software suite.

The ‘processors’ in SCUFL are principally web services, but can also be inline

code fragments of Java or R. Taverna’s developers invested considerable resources in

making many web services available in Taverna: public UDDI registries can be harvested,

although the developers find them underpopulated and users see them as heavyweight;

myGrid developed its own UDDI registry with additional semantic information; and users

can directly add services they know about by pointing at the WSDL. The developers also

worked on shim services, to mediate data incompatibilities.

Since Taverna was not aiming at automated composition, most attention focused on

10http://www.mygrid.org/
11http://www.omii.ac.uk/.

http://www.mygrid.org/
http://www.omii.ac.uk/

Chapter 3. Matchmakers 54

what OWL-S calls the service profile, while the service process and grounding were dealt

with via service-specific Java programming. Initially, it was intended to use heavyweight

semantics (Wroe et al. 2004), broadly following OWL-S. This approach was eventually

rejected on the grounds that it was difficult to create high quality descriptions of services

due to the very high precision necessary to avoid false matches, and that users were not

benefiting from computationally costly subsumption reasoning. myGrid then moved to

using a simpler classification, using only a subset of the features of RDF and OWL.

The lightweight approach is called FETA (Lord et al. 2005). A core domain ontology

was built and curated using DAML+OIL and (later OWL), but compiled to RDF-S, and

combined with UDDI information, for presentation to the user. Queries can be run at

workflow design time to find service types which operate on particular types or perform

a particular task. When service selection occurs at execution time, automated selection

may take place if only one service is found which matches the required type. Usually,

however, the system selects a range of suitable services, using RDF entailment, leaving

the final selection to the user. Service fail-over is sometimes performed when services

are known to be equivalent, and shim services, which translate between data formats, are

automatically inserted, but only when it is known that they will not affect the experiment

outcome.

Automated selection is the exception, not the rule, and this suits the users, who

tend to distrust fully automatic service selection (Lord et al. 2004). One reason is

that services are not completely described: some services provide far more extensive

provenance information than others, but don’t disclose this in the description. More

importantly, the users are scientists with a lot of experience of the services, and they

must be able to trust the results of computations. They select services based not only on

the service description, but the context of the experiment and their personal experience

with particular services.

Based on myGrid, (Miles et al. 2003) extends UDDI to a system the authors call

UDDI-MT . They add semantic metadata to the UDDI TModels using RDF to the UDDI

Chapter 3. Matchmakers 55

descriptions, and query it using a graph-based RDF query language. The additional

metadata relating to quality of service, cost, semantic description and so on, is stored on

the client, leading to the personalisation of service descriptions.

Throughout, the aim has been to create a usable tool, so the Taverna group’s practical

experiences should be taken seriously. An important part of Taverna’s philosophy is

reaching out to extant users and services by imposing no demand that resources subscribe

to a single ontology. Some other projects, like BioMOBY (Wilkinson and Links 2002)

sidestep many issues by using a single ontology. The Taverna project has therefore

encountered precisely the kinds of problems with automated service selection we are

considering, and has come out in favour of lighter-weight approaches that consider the

user.

Finally, we mention Taverna’s attitude to workflows, which parallels some of the

ideas of LCC and this thesis. In an e-science context, the workflows are the ‘method’ by

which the experiment has been conducted, and should therefore be open for inspection

and peer review (Goble, Wroe, and Stevens 2003). Workflows, which may mention

the services they use, can now be exchanged through the myExperiment12 website

and software (Roure and Goble 2007). myExperiment is based on the principles of

Web 2.0 and social networking sites, and allows users to upload, search, and comment

on their scientific workflows. As noted in (Wroe et al. 2004), scientists sometimes want

to publish their workflow without revealing the services they used, since the services

themselves often hold precisely the data sets which give their owners an advantage.

3.5 Semantic web services

Which brings us neatly to the semantic web and the services that will deploy on it.

The idea of the semantic web is to extend the current web with formal knowledge

representation, to allow machines to interpret the web as information rather than just

12http://www.myexperiment.org/

http://www.myexperiment.org/

Chapter 3. Matchmakers 56

data. The semantic web’s architecture is often represented as a layered cake (see

figure 3.4), and although this has changed over the years, and been criticised for being

unprincipled (Gerber, Merwe, and Barnard 2008), it remains a useful guide. At the

bottom lie existing standards such as URI, HTTP, and others. XML is the fundamental

syntax, along with XML Namespace, and these serve as a serialisation format for the

knowledge representation languages.

Figure 3.4 Semantic web layer cakes old and new

Graphic from W3C.

The Resource Description Framework (RDF) provides a concept-graph model. RDF

Schema adds an ability to define classes and very lightweight ontologies. The Web

Ontology Language (OWL) (Smith, Welty, and McGuinness 2004; Bechhofer et al.

2004) provides a means for specifying much richer ontologies which can still be partially

understood at the RDF level. Semantically, OWL is based on a formalism known as

description logic (DL) (Baader et al. 2003), which developed as a formalisation of

semantic networks. OWL itself is a development of work on the DARPA Agent Markup

Language (DAML) and the European Ontology Inference Layer (OIL) (Fensel et al.

2000; Connolly et al. 2001; Horrocks 2002), programmes. It marries the description

logic formalism13 with a frame-based interface and an RDF/XML serialisation and

upward compatibility with RDF. Description logics provide efficient mechanisms for

reasoning with categories of objects, keeping the computation tractable by placing

various limitations of what can be expressed: the limitations and computational efficiency

13The OWL-Full variant adds features which take it outside the DL space.

Chapter 3. Matchmakers 57

varying with the exact logic in use.

Figure 3.5 Evolution of the world wide web

Static Dynamic

Sy
nt

ac
tic

Se
m

an
tic

Web Web Services

Semantic Web
Semantic

Web Services

HTTP URI

HTMLXML

RDF

OWL

SOAP

WSDLREST

OWL-S

WSMO

The cake described above applies primarily to the ‘static’ semantic web. The web has

also been evolving in its dynamicity, from DHTML and CGI scripts to explicitly service

based functionality. Figure 3.5 shows how semantic web services form a conjunction

of those two major trends on the web: greater dynamicity, in the form of services,

and more semantics. By creating semantic representations of services’ purposes and

interfaces, the intent is to enable the automatic or semi-automatic discovery, selection,

composition, invocation and monitoring of services. The semantic web is unclear with

regard to agents or services. They are certainly mentioned in (Berners-Lee, Hendler,

and Lassila 2001), but they are not central. The semantic web is neutral with regard

to how implementers view their service providers and clients. The software systems

on the semantic web are not expected to adopt the ‘intentional stance’ of agents. Tim

Berners-Lee’s hypothesis for the success of the original web where more advanced

hypertext systems had failed was that it was simple. To that end, semantic web services

Chapter 3. Matchmakers 58

attempt to piggyback on the already established non-semantic web services standards.

Semantic web services are ‘normal’ web services that have additionally been given a

semantic description, often not by the owner or creator of the actual service. In the cake,

semantic web services conceptually sit on top of OWL, where we find OWL-S, the main

web standard for specifying semantic web services. OWL-S, in addition to being built

atop OWL, is also a development of the DAML-Services (DAML-S) work. The other

major semantic web services framework, WSMO, sits in the same place conceptually,

but uses its own more expressive knowledge representation language, including rules,

rather than OWL.

In the rest of this section, we consider the main semantic web services frameworks:

OWL-S (section 3.5.1), WSMO (section 3.5.2), and the new lightweight semantic

annotation standards (section 3.5.3). One other standard in the works is the Semantic

Web Services Framework (Battle et al. 2005), which is similar in approach to WSMO,

but we do not cover it here since we are not aware of any matchmaking work based on it.

3.5.1 OWL-S

The first major, and still the best known and most widely used semantic web services

model, is OWL-S. OWL-S is standardised as a W3C member submission (Martin et al.

2004).

OWL-S is an OWL ontology for describing web services. A service is specified

by three models: the ‘service profile’, ‘service model’, and ‘service grounding’. The

profile is effectively the service’s capability advertisement and specifies who provides

the service and what the service does. This is done by identifying the inputs and outputs

of the service concepts by reference to some domain-specific ontology external to

OWL-S. The process model describes how the service operates, by means of atomic

processes and a workflow-like language to combine those processes into composite

ones. Figure 3.6 shows the key concepts of the process model, including notions of

atomic, simple and composite services, and the flow control operators. Atomic services

Chapter 3. Matchmakers 59

map directly to a single real web service invocation, while composite services represent

a workflow involving multiple service invocations. Simple web services are either

alternative ‘wrappers’ around atomic services, or a simplified, single-step abstraction of

a composite service. The grounding describes how to map between the semantic level

description and the serialised messages in which the services communicate.

Figure 3.6 OWL-S process model

Graphic from W3C.

A service profile describes a service principally in terms of the transformation

between inputs and outputs, and the change of state implied by the pre- and post-

conditions. Collectively, these inputs, outputs, pre-conditions and effects are labelled

‘IOPEs’. Additional information about the service can be supplied:

• An indication of the kind of task it performs: does it search libraries for books, or

Chapter 3. Matchmakers 60

book airline flights?

• Information about the provider such as business contact details.

• Non-functional properties about the service, especially quality of service.

While the use of OWL concepts to type inputs and outputs is straightforward, precon-

ditions and effects do not have a native DL representation. Instead, they are embedded as

string or XML literals (expressionBody in the code below), and labelled with some

representative URI naming the formalism used (expressionLanguage). Because

these expressions are outside OWL, use of them has so far been limited. None of the

matchmakers reviewed here make use of them.

<owl:Class rdf:ID="Expression">
<rdfs:subClassOf>

<owl:Restriction>
<owl:onProperty rdf:resource="#expressionLanguage"/>
<owl:cardinality>1</owl:cardinality>

</owl:Restriction>
</rdfs:subClassOf>
<rdfs:subClassOf>

<owl:Restriction>
<owl:onProperty rdf:resource="#expressionBody"/>
<owl:cardinality>1</owl:cardinality>

</owl:Restriction>
</rdfs:subClassOf>

</owl:Class>

The service profile is created separately from the process model. Since it is the process

model that actually defines how a service is used, the two views should align closely,

but this is not enforced. The OWL-S standard suggests that the profile should expose a

subset of the IOPEs. The process model itself could be used to further decide if a service

met a user’s requirements (cf (Martin et al. 2004)), but to our knowledge no concrete

proposals have been advanced.

OWL-S makes no specific provision for matchmaking: service discovery and

matchmaker querying, while enabled by the ontology’s design, are not defined. There

are several OWL-S matchmakers which have been implemented, and we look at them

now.

Chapter 3. Matchmakers 61

Semantic MatchMaker

Probably the the best known OWL-S matchmaker is Semantic MatchMaker (Sycara

et al. 2003b). The work has three main threads: dealing with service registration, service

selection, and extending OWL-S to handling brokering. Semantic MatchMaker (hereafter

SMM) evolved from the RETSINA/LARKS matchmaker described in section 3.2. In

contrast to the original MatchMaker, which used an involved, multi-stage algorithm to

match client requests to providers, SMM uses subsumption only. The matchmaking

happens over the output types of the requested service R and advertised service A. Each

output type in the request (outR) is compared with a corresponding output from outA,

and a subsumes relationship is determined between them. The subsumption match

specifies four types of match between OWL classes R (requested) and A (advertised):

• exact if outR = outA or outR subClassOf outA

• plugin if outR < outA

• subsumes if outA < outR

• fail if there is no subsumption relation

If the scoring over the outputs results in several candidate services having the

same score, then a similar process is applied to the inputs to break the tie. One might

wonder about the distinction between subClassOf and the subsumes relation <. In this

matchmaker, subClassOf refers to direct subclasses only, while subsumes includes

those, and any subclasses further down the hierarchy. The idea is to give greater weight

to very near misses, but how well this might work in practise is uncertain, since very

rich ontologies may have many levels of subclasses while others might have sparse ones.

The match classes are assigned various numerical values—exact matches are preferred

to plugin, which are in turn preferred to subsumes—and these numerical scores are

used to calculate the total score for each requester-provider match.

Chapter 3. Matchmakers 62

The SMM matchmaking work also led to two other related developments. First,

the use of UDDI repositories to store the OWL-S description (Paolucci et al. 2002a).

OWL-S descriptions are stored in user-defined fields in the TModel (‘technical model’)

of the UDDI record. Semantic matchmakers can then query UDDI registries to recover it.

Secondly, OWL-S was extended to support brokering. Standard OWL-S provides no

means to change the process during execution, nor to replace it. To resolve this ‘broker

paradox’, Semantic MatchMaker introduced an ‘exec’ primitive to OWL-S to indicate

that a new, brokered, process should be substituted in place of the executing one which

negotiated the matchmaking.

Li and Horrocks

(Li and Horrocks 2004) discusses a matchmaker for DAML-S (The DAML Services

Coalition 2003) (it is based on DAML-S 0.6), the precursor to OWL-S. The model is very

similar to that in (Sycara et al. 2003b), in that levels of subsumption between request

and advert determine the matching. The grades of matching have been extended to the

following classes:

exact if A ≡ R

plugin if R v A

subsume if A v R

intersects if ¬(A uR v ⊥)

disjoint if A uR v ⊥

Note the new ‘intersects’ match, which indicates some degree of overlap between advert

and request, and the ‘fail’ match is renamed ‘disjoint’ here. A request matches an advert

if the query q and the advertisement a are compatible:

matches(q) = {a ∈ A|compatible(a, q)}

In turn, two concepts are compatible if their intersection is satisfiable (non-empty):

satisfiable(C1, C2)⇔ ¬(C1 u C2 v ⊥). The algorithm (figure 3.7) checks the query

Chapter 3. Matchmakers 63

every available advertisement, and offers the client the resulting (ranked) list of suitable

advertisements.

Figure 3.7 Service subsumption algorithm from (Li and Horrocks 2004)

DOMATCH(request ,advert-database)

1 for advert ∈ advert-database

2 do

3 input-match ← match-degree(request inputs , advert(inputs))

4 output-match ← match-degree(outputs(request), outputs(advert))

5 match-degrees [advert]← MIN(input-match, output-match)

6 return sort(match-degrees)

Others

The first mention in the literature of using subsumption in semantic web DLs to drive

matchmaking appears to be (Trastour, Bartolini, and Gonzalez-Castillo 2001). Using

the DAML+OIL precursor to OWL, and without using any particular services ontology,

the authors again developed a matchmaker using the exact/plugin/subsume/intersect

taxonomy.

In (Sirin, Parsia, and Hendler 2004), interactive workflow composition is assisted by

filtering of available services according to context. As a user constructs a workflow, the

types of the various data in play are used to determine which services use them as input

or output, and thus to present the user with appropriate services. Further filtering, such

as that based on service location, can be enabled selectively.

A problem with the service profile which has been often been raised is that the types

are not enough to specify the operation. For example, if we have two services S1 and S2

which both take as input p : Person and return a date d : Date, we cannot distinguish

them by signature, but we certainly cannot assume they perform the same task. While S1

Chapter 3. Matchmakers 64

could return the date of birth of p, S2 might return the wedding anniversary. The solution

proposed in (Hull et al. 2006), for stateless services, is to use what are effectively

post-conditions to the inputs and outputs. In the case of the services above, suitable

post-conditions are BornOn(p, d) for S1 and ∃m.Marriage(m) ∧MarriedIn(p,m) ∧

Date(m, d) for S2. The inputs, outputs, and post-conditions are then used to compile

a conjunctive query for the DL reasoner which is known to be decidable for simple

queries, but raises issues in the case of, for example, transitive roles.

3.5.2 Web Services Modelling Ontology

Another major semantic web services effort is the Web Services Modelling Ontology

(WSMO) (Fensel et al. 2006). WSMO originally appeared in the short-lived Web Services

Modelling Framework (WSMF) (Fensel and Bussler 2002). WSMF was heavily based

on the knowledge modelling work done previously by several of the participants, in

particular on the UPML framework (Fensel et al. 1999).

The Web Services Modelling Ontology is simultaneously the term for the overarching

approach, and the name of a top level ontology which describes the key elements in

it. WSMO uses the Web Services Modelling Language (WSML), and has a reference

implementation in the Web Service Execution Environment (WSMX). While WSML does

have an XML serialisation, it is not based on RDF, nor does it use OWL or description

logic. Instead, it is based on F-Logic (Kifer and Lausen 1989; Kifer, Lausen, and Wu

1995). In WSML, as with SWSL, rules are deemed a necessary support for service

description.

The approach’s philosophy is made explicit in the ontology defined by WSMO:

ontologies, goals, mediators, and services.

• ‘Ontologies’ are domain ontologies, much as in OWL-S, and describe the argu-

ments to goals and services.

• ‘Goals’ define tasks users may want to achieve. Goals are means of expressing

Chapter 3. Matchmakers 65

requester intent, distinct from services—OWL-S does not distinguish the two

concepts.

• ‘Web services’ are concrete software implementations, expressed as web services,

along with their semantic descriptions, including choreography and grounding.

• ‘Mediators’ are software components which attempt to bridge incompatibilities

between ontologies, process models, as well as the goals and the services which

implement them.

Goals have preconditions, post-conditions, assumptions, and effects. Preconditions

and assumptions specify what must be true before invocation, post-conditions and

assumptions what should be true afterwards. While pre- and post-conditions can and

should be checked by participants at invocation time (by examining the parameters

and results of the goal), assumptions and effects are world states which may not be

verifiable, especially not directly by the invokers. For instance, in purchasing an item,

one can confirm that a credit card number is supplied (precondition), but not that the

account has been debited correctly (effect). Web services have choreographies which

detail how to interface with them (inputs and outputs), and orchestrations (essentially

workflows composing other services). Because WSMO places mediators between goals

and services, their effects may need be taken account of when selecting suitable services.

The separation of goals from services and the importance attached to mediation

manifest WSMO’s notion of ‘strong decoupling’. By making the individual services and

goals perfectly decoupled, the hope is that their interoperability will be easier to achieve.

WSMX

The Web Services Execution Environment (WSMX) is a reference implementation of

the WSMO approach. The WSMX architecture document (Zaremba et al. 2004) states

that the architecture itself does not define a matchmaking algorithm. It defines only an

interface, whose Java signature is:

Chapter 3. Matchmakers 66

List <WebService> discover(Goal goal)

This returns a list of web services matching the client’s goal.

A WSMO deliverable (Keller et al. 2004) contains a high-level review of service

discovery and matchmaking, and revisits the ‘exact’/‘plugin’/‘subsumes’/‘intersects’/‘no

match’ view, this time from a more abstract set-based view of service descriptions.

The built in WSMX matchmaker uses simple string comparison of requested goal

and advertised goal achievement. This offers only the most basic level of matchmaking,

being unable to deal with approximate matches. For a Semantic Web Services Challenge

event a new matcher was developed which could invoke a special ‘contracting’ method

of suitable services to discover more information about them which was used to rank the

matches for the original request (Zaremba et al. 2006). A peer to peer model of service

discovery in WSMX is presented in (Toma et al. 2005), but offers little technical detail

of the approach.

The Internet Reasoning Service

The Internet Reasoning Service (IRS) is a semantic broker in the WSMO camp. The

development of the semnatic web services field itself is revealed in the IRS’s own history:

IRS-I used the UPML model (Fensel et al. 1999) to support knowledge-intensive systems,

and CORBA to implement the services. IRS-II replaced CORBA with web services

implemented using SOAP, and IRS-III moved from UPML to the explicitly ‘semantic

web services’ model of WSMO.

Orchestration is dealt with by a workflow-like language executed within the IRS,

inside notional ‘mediators’. Choreography has been accomplished using the Cashew

language (Norton and Pedrinaci 2006). Its matchmaking is based on explicit linkage

of services to goals, using mediators. Service selection is done by first finding all the

services that have attached themselves to the required goal, and then computing, using

pre- and post-conditions, which are qualified to fulfil the particular goal. Approximate

matchmaking is avoided.

Chapter 3. Matchmakers 67

Caching queries

Subsumption reasoning can be expensive, and for large scale matchmaking good

performance becomes important. One proposal is to cache results, in a process called

‘Semantic Discovery Caching’ (SDC) (Stollberg, Hepp, and Hoffmann 2007). Once

again, this builds on the notions of matches being exact, subsume, plugin, and intersect.

SDC builds a graph of goal templates (that is, the uninstantiated goal classes) using a

subsumes relation. Each node of the graph is a goal, and a goal Gj has a parent Gi iff

Gi = Gj . For each goal in the graph, the compatible web services W are found and

stored in the node. Using this graph, queries can be answered by finding the query goal

in the graph, and using the rules below to determine the services compatible with it:

exact(Gi,W) ⇒ plugin(Gj,W)

plugin(Gi,W) ⇒ plugin(Gj,W)

subsume(Gi,W) ⇒ exact(Gj,W) ∨ plugin(Gj,W) ∨ subsume(Gj,W)

∨intersect(Gj,W) ∨ disjoint(Gj,W)

intersect(Gi,W) ⇒ plugin(Gj,W) ∨ intersect(Gj,W) ∨ disjoint(Gj,W)

disjoint(Gi,W) ⇒ disjoint(Gj,W)

This is quicker than comparing the query goal with every available service indi-

vidually for every query. The paper claims a near constant query response time as

number of services increases, compared with a linear increase for the normal, uncached

mechanism.

3.5.3 Lightweight semantic annotations

While there is widespread recognition of the insufficiency of purely syntactic definitions

like WSDL, there is neither agreement on how the additional semantics should be

provided (hence the competing works-in-progress of OWL-S, WSMO, SWSL, and other

projects), nor confidence that average service developers will be able to comprehend and

Chapter 3. Matchmakers 68

engineer the heavyweight semantics required by the semantic service frameworks. In

response, several groups have begun development of standards for annotating syntactic

descriptions with the simpler elements of semantic approaches.

The METEOR research group, along with IBM, introduced the WSDL-S (Akkirau

et al. 2005) approach. This offers a set of XML attributes with which to annotate

WSDL files. This developed into the W3C recommendation SA-WSDL—Semantic

Annotations for WSDL and XML Schema (Farrell and Lausen 2007). SA-WSDL offers

two extensions to WSDL, in the form of XML attributes which may decorate WSDL

or XSD elements. The first attribute, modelReference, indicates that the object

identified by the XML element is described in some way by the ontological object pointed

to by the attribute’s URL value. In particular, SOAP operations, messages, and faults can

be annotated. The other extension is the attribute pair liftingSchemaMapping and

loweringSchemaMapping. These are intended to link XSD elements constituting

the messages to some transformation mechanism that can translate between them and

the ontological object suggested by the modelReference.

SA-WSDL deliberately does not specify the content of either the modelReference

or mapping schemas, this being left to particular semantic web service frameworks and

implementations to decide. However, the expectation is that both kinds of annotations

would be dereferencable links to, say, OWL concepts, and the schema mappings

implemented as XSLT.

All the recent semantic web services standards have targeted the WS-* standards.

While popular, they face growing competition from the RESTful approach. Section 3.3.3

covered the non-semantic approaches to RESTful description, and two current approaches

build on those by adding semantics. MicroWSMO (Kopecký et al. 2008) is a semantic

extension to hRESTS (Kopecky, Gomadam, and Vitvar 2008). In essence, it reapplies

SA-WSDL in hRESTS, using WSMO-Lite (described below) as its semantic service model.

The SA-WSDL attributes of modelReference, loweringSchemaMapping, and

liftingSchemaMapping are rendered as HTML rel attributes with names model,

Chapter 3. Matchmakers 69

lifting, and lowering. SA-REST14 is similar, but opts to use RDFa instead of a

microformat to embed the annotations.

Finally, WSMO-Lite (Vitvar, Kopecký, and Fensel 2008), simplifies the semantic

modelling of services. Addressing arguments that current modelling languages are too

heavyweight, it strips down services to a simpler set of notions. Rather than an OWL-type

ontology, an RDFS vocabulary is provided for service representation. WSMO-Lite is

derived from WSMO, but does away with features like choreography, and the notion of

goals.

All of these formalisms are recent, and no implemented matchmakers exist for them.

3.6 Our nearest neighbours

In this section, we single out three recent matchmakers which take novel approaches

to their task. What differentiates them from others considered in this chapter is either

consideration of user feedback or the use of information retrieval techniques even in the

presence of semantics, both of which we advocate in this thesis.

Zhang and Zhang

Our problem conception—matchmaking multiple roles for the same dialogue—appears

novel in the matchmaking literature. Our use of performance histories is predated

by a similar approach found in (Zhang and Zhang 2002), although that, again, only

examines the case of two-party interactions. Because the approach of Zhang and Zhang

is so similar to our own, we present a more thorough review and a comparison later, in

section 6.4. Briefly, their approach is to record a success metric for each matchmade

service invocation. These are recorded and then collated at query time to find those

agents with the best history.

14http://knoesis.wright.edu/research/srl/standards/sa-rest/

http://knoesis.wright.edu/research/srl/standards/sa-rest/

Chapter 3. Matchmakers 70

Luan

Another attempt to introduce performance-based selection of web services to match-

makers is found in the work of Luan (Luan 2004; Luan 2004). It, too, considers the

performance history of a service, based on user feedback. It also attempts to discover

areas of expertise and weakness within services’ advertised capability. For each service,

a record is kept of cumulative user satisfaction, by service request. For instance, a

vehicle manufacturer may advertise itself as producing vehicles, but be considerably

better at producing Cars than Vans. Luan’s matchmaker records the satisfaction ratings

for requests of Van purchasing services separately from Car requests, thus allowing

it to determine expertise within an advertised capability. It does this with a simple

mechanism of averaging customer satisfaction for a service, given the request.

However, it appears that the service classification is treated as a taxonomy. In

OWL-S, as in the description logics it is built upon, concepts are not limited to a

fixed set of named classes in a taxonomy, but can be dynamically defined through

combinations of concrete concepts and logical operations. While a taxonomy may define

PetrolCar and ElectricCar, the notion of a hybrid vehicle may be introduced by a user as

PetrolCaruElectricCar. Or, alternatively, a car might be defined to have an Engine, in

which case a hybrid would be

Caru hasEngine .PetrolEngineu hasEngine .ElectricEngine

These anonymous concepts, constructed on-the-fly, are common in OWL-S systems (see

section 3.5.1), but do not seem to be dealt with in this matchmaker as it stands. Luan

also notes that the matchmaker is very memory intensive.

MX

A recent twist has been the return of keyword matching in an ostensibly description-logic

based matchmaker: MX. The MX matchmaker is available in both OWL-S (Klusch,

Fries, and Khalid 2005) and WSMO (Kaufer and Klusch 2006) flavours. The principle

Chapter 3. Matchmakers 71

behind it is to use keyword matching as a fall back when the subsumption matching

fails, an approach the authors call ‘hybrid’. But they also show experimental results

which appear to place description logic-only matchmakers at a disadvantage not only

with their hybrid approach, but also to a pure keyboard-based method.

The starting point for MX’s DL matching is a tweaked version of the standard ‘exact’,

‘plugin’, ‘subsumes’, ‘fail’ from (Sycara et al. 2003b). In the event of a failure to

find an exact, plugin or subsume match, and before reporting outright failure, MX

resorts to a keyword vector similarity measure like that found in information retrieval

systems. The paper mentions several metrics suitable for computing the inter-service

similarities—extended Jacquard, loss of information, Jenson-Shannon information

divergence, and plain TF-IDF weighted cosine—which each behave slightly differently,

but the simple cosine metric is sufficient to demonstrate the key idea. The cosine metric

is defined in (Klusch, Fries, and Khalid 2005) between a request R and a potential

service provider S:

Simcos(R, S) =
~R · ~S

||~R||22 · ||~S||22
with the expected definitions of ~R · ~S =

∑n
i=1wi,R ×wi,S and ||~V ||2 =

∑n
i=1w

2
i x. The

term wi is the weight of the ith term. A vector ~R represents the requested service, and ~S

a service.

The terms in the vectors are the result of ‘unfolding’ the description logic. We

illustrate with an example. Assume a domain ontology as shown in figure 3.8, and

a car rental service S with input Driver and output MediumCar. If a user requests a

service with input Driver and output SmallCar, the usual subsumption reasoning would

fail since the two concepts are disjoint: SmallCaruMediumCar = ⊥. MX ‘unfolds’ the

terms to their primitive components (denoted CP):

unfold(Driver) = and(DriverP ,PersonP ,ThingP)

unfold(SmallCar) = and(SmallCarP ,CarP ,VehicleP ,ThingP)

unfold(MediumCar) = and(MediumCarP ,CarP ,VehicleP ,ThingP)

Chapter 3. Matchmakers 72

In this example, we will map the primitive concepts to dimensions in vector space thus:

ThingP = 1

PersonP = 2

DriverP = 3

CarP = 4

SmallCarP = 5

MediumCarP = 6

Which means we can finally consider the vector representations of the classes:

vec(Driver) = (1, 1, 1, 0, 0, 0)T

vec(SmallCar) = (1, 0, 0, 1, 1, 0)T

vec(MediumCar) = (1, 0, 0, 1, 0, 1)T

In this scenario, the unfolded MediumCar and SmallCar, when treated as vectors, are

judged as sufficiently similar to merit a match, giving the client a service which, while

logically invalid, is really quite close to their request and possibly good enough.

Figure 3.8 Domain ontology for MX example

Thing

Vehicle

Car

SmallCar MediumCar LargeCar

Person

Driver

The recall, precision, and time costs reported in (Klusch, Fries, and Khalid 2005)

show significant improvements over logic-only approaches:

Chapter 3. Matchmakers 73

• The best performing similarity measure, cosine, outperformed the pure logic

selection on recall and precision.

• Hybrid matchmaking, using any of the similarity measures, outperformed pure

logic selection.

• The extra cost of the similarity computation is around a fifth of the corresponding

DL reasoning (1200ms per query for hybrid matching against 1000ms for DL-only,

with 350 adverts).

3.7 Summary

We reviewed a number of approaches to service matchmaking, covering both general

frameworks and specific matchmakers. If one thing is clear, it is that the best way to find

services is still undecided. The matchmakers surveyed used a number of techniques,

which together cover a design space which varies in terms of its precision and recall.

Some systems require an exact match between request and advert (e.g. bare KQML and

the Open Agent Architecture), but essentially guarantee the the correct service is found

if the various agents have agreed on a shared ontology and precisely implement the

same semantics. Other solutions, like COINS’s free-text keyword search favour a high

recall at the cost of precision. In between, approaches like subsumption try to use extra

structure in the service description and query to achieve a balance between recall and

precision. Key points are:

• Matchmaking has been a central feature of distributed AI, multi-agent systems,

and now web services.

• In most such systems, the mechanism has been the same: services providers

lodge service capability descriptions or adverts with a matchmaker, and service

requesters query the matchmaker for appropriate services.

Chapter 3. Matchmakers 74

• Many schemes for matching query and advert have been tried. Simple string

matching, unification of logic formulae, use of nearest neighbour or vector space

similarity and term frequency, and most recently, subsumption in description

logics.

• Matchmaking has historically been considered as a task of finding one service

provider type at a time, not of finding a set of providers that are compatible for the

whole workflow.

• Feedback from the client on the success of the matchmaking process is mostly

lacking.

• Most of these systems have been small, fairly homogeneous, and closed. Clients

and matchmakers trust that service capability adverts are honest and accurate.

With web services and semantic web services, there is little in the way of prior

agreement or quality control over individual services.

Chapter 4

Critique

The previous chapters have reviewed matchmaking, where the dominant view is that the

right service can be selected based on its description in some constrained variant of first

order logic. While this works well in toy examples, we think it likely that in practice, no

matter how much effort a broker invests in finding a match, messy reality will ensure

that, at least some of the time, those matches will be inadequate. Perhaps a particular

service has poor network connectivity, or has subtle but important semantic mismatches

not evident in the specifications claimed by requester or provider. Some matches that

ought to work, will not. There are three broad reasons for this:

1. Service description languages have hard limits to their expressiveness, and it can

be intellectually challenging for developers to achieve good descriptions even

within those limits. Moreover, in an open web, many providers will have no ability

to provide such descriptions, and others will actively set out to provide misleading

ones.

2. Individual services vary in their innate ability: the algorithms they use, the quality

of data they have access to, and the competence of their implementation all affect

the quality of the service’s performance.

3. Particular groups of agents will operate better with each other than with other

75

Chapter 4. Critique 76

groups, due to shared ontological viewpoints, their owners’ business strategies, or

low-level implementation compatibilities.

The third point in particular is novel with this thesis, since matchmaking has

previously been considered as a binary relationship between a client’s request and a

provider’s offer. In workflows that are commonly encountered in Grid or business

processes, many agents must collaborate. The interaction between the agents becomes

important, and must be considered. Some previous work (Zhang and Zhang 2002;

Luan 2004), covered in the previous chapter, has investigated the use of past agent

performance in selecting agents, but none appears to have examined the problem in

multi-agent settings. In the rest of this chapter, we briefly reconsidering what users might

demand or expect in the way of matchmaking before advancing arguments supporting

each of the three points above.

The intent of this critique is not to savage previous work. The problem of correctly

representing services in a formal manner is hard, and we have no new direct attack on it.

Indeed, many of the problems we note are not technical at all, but arise from human

psychology and economy. Instead, we simply want to point out areas where formal

ontological modelling currently falls short with respect to real-world implementation, and

thereby motivate our introduction in later chapters of selection based on the experience

agents actually have with services.

4.1 Expectations for matchmaking

What do we expect of matchmaking? Because sophisticated matchmakers of the kind

considered in chapter 3 have not seen any widespread adoption outside the laboratory,

the expectations we as researchers have may still be too idealistic. Real users might put

up with a great deal less.

It is far from a foregone conclusion that users will want automated service selection

at every possible opportunity. Scientists are one group who do not necessarily want

Chapter 4. Critique 77

service selection automated fully, or even partially (Lord et al. 2004). In such cases,

the wrong choice of service could invalidate the results of scientific experiments. In

other scenarios, users might want to retain control because the cost of failure is too high,

because they want more control, or because it is too interesting to leave to someone

else or a machine. Many people choose not to buy a package holiday from a human

travel agent today. And few people go on holiday often enough that they would bother

automating it, or learning how to have a broker manage it. We use the web to find cheap

flights or hotels, but are curious about the options. And, as is often the case, we do not

know what we want until we see it: the exploration itself helps determine our goal.

Today, many such tasks go unautomated, even though programmers are capable of

automating them. There is no reason to believe that non-programmers will do so when

and if semantic services make it possible. The tasks that will be automated and left in

the hands of machines are the same as those that have been put there before: mundane

chores that must be repeated by a single agent, where the agent may be an individual

user or an organisational entity. Tasks which are done many times in aggregate, but not

by individuals, do not get automated because the overhead is simply too much to bother

with.

Users will use automatic selection of services only when the benefit exceeds the

costs. This may not happen in, for example, scientific experiments: as the myGrid project

discovered, scientists often did not trust automated selection (Wroe et al. 2007). Since

automatic service selection is an inherently uncertain operation, users will accept it

only if the benefit outweighs the cost. The benefit is that they do not have to spend time

selecting the services, the cost, what they incur if the automated selection is worse than

they would have achieved themselves. So, matchmaking may well be used only when

the user does not really mind a somewhat substandard action, thereby making a sloppy,

good-enough approach to selection acceptable.

Chapter 4. Critique 78

4.2 Limits of logic

The use of logics to describe service functionalities makes many assumptions about

the formalisms, descriptions and services, and the people who construct and use them.

The first issue is the expressiveness of the service description language. Second is the

marked difficulty mortal software engineers have in using formal methods, which is a

close parallel to the use of semantics in web service description. Third, that in practice,

developers and users will find it difficult to correctly capture the behaviour of their

systems or requirements. And finally, the emergence already of a feeling that semantic

web services as construed in OWL-S and WSMO are already too complicated, and that

we must ‘dumb down’ further the already constrained languages we use to describe

services. We consider each in turn through the rest of this section.

4.2.1 Inappropriate formalisms

The semantic web (Berners-Lee, Hendler, and Lassila 2001) is founded on the notion

of the ‘ontology’. The study of ontology belongs to philosophy, where it is viewed

as the study of the kinds of entities which exist in the world, and the relationships

between them. Formal ontology is the “the systematic, formal, axiomatic development

of the logic of all forms and modes of being” (Cocchiarella 1991). The word has

been co-opted (or, in the view of some philosophers, corrupted) by informaticians

to refer to the more limited practice of creating and using formal domain models,

usually written in fragments of first order logic. Perhaps the most often cited definition

of ontology in computing is Gruber’s “an ontology is an explicit specification of an

conceptualisation” (Gruber 1993). Borst modified the definition to highlight the role of

ontologies in sharing knowledge: “An ontology is a formal specification of a shared

conceptualisation” (Borst 1997). This line of developments ends with the definition in

(Studer, Benjamins, and Fensel 1998): “An ontology is a formal, explicit specification of

a shared conceptualisation”. What do these various qualities mean?

Chapter 4. Critique 79

• formal It is machine readable, with a precise grammar, and known semantics.

This explicitly excludes natural language.

• shared There is agreement amongst some community on the meaning, or at least,

the community believes there is.

• explicit The facts of the ontology are recorded precisely and clearly, and are

therefore hopefully unambiguous.

• conceptualisation An abstraction or model of a domain of discourse.

The hope invested in ontologies is hard to overstate. One prominent ontologist has

gone as far as titling a book Ontologies: A Silver Bullet for Knowledge Management and

Electronic Commerce (Fensel 2001). The promise of ontologies is that they enable

a computer to ‘understand’ a domain, when of course they merely provide a domain

theory in which a theorem prover can make deductions. The semantic web in particular

has been aggressively sold as ‘machine understandable’ and ‘machine processable’

(Berners-Lee 1998). The latter claim is nothing more than what has been the case

since at least the Jacquard loom, and the former relies on the achievement of strong AI.

While ontologies certainly help humans build and share knowledge bases, and enable

sophisticated inferences to be made in them, they give no guarantee whatsoever that the

machine will do the right thing:

Current intelligent systems are hard to integrate, maintain, and understand
because their knowledge bases have not been truly educated on the topics
they are supposed to know about.

(Gil 2005)

Ultimately, for ontologies to be useful, the software that deals with them must do

something ‘real’: to send data of a given type, commit to spending money on real

product, or perform robotic surgery. The responsibility for correctly grounding symbols

to real-world behaviour still lies with the human ontologists and programmers.

This kind of symbol-based world view can be fragile, and has attracted criticism

(Shirky 2005; Shirky 2003). Perhaps the best known alternative is Peter Gärdenfors’s

Chapter 4. Critique 80

‘conceptual spaces’ (Gärdenfors 2000), which uses geometrical notions to classify

objects. Properties are defined as convex regions in a subspace defined by a number of

connected dimensions. For example, ‘blue’ becomes a region in the colour space defined

by the hue, saturation and value spaces. Each class is defined as a region in space,

bounded by a convex hull around a prototypical member of the class. A principle benefit

of such approaches (Gärdenfors 2004) is the ability to deal with similarity between

concepts. This notion of similarity in a vector space has already been seen in several

matchmakers covered in chapter 3 (Klusch, Fries, and Khalid 2005; Kaufer and Klusch

2006; Subrahmanian et al. 2000).

To understand how fragile descriptions might be, consider an example service and

request from (Li and Horrocks 2004), which describe a computer purchasing task:

Advert1 ≡ ServiceProfile u

∀ providedBy .(Actor u∀ hasName .{Georgia})u

∀ requestedBy .(Actor u ≥5 hasCreditLevel)u

∀ item .(PC u ≥128 memorySize)u

≥700 hasUnitPrice u ≤200 hasQuantity u

∀ delivery .(Delivery u ≤20030501 date u∀ location .Manchester)

Query1 ≡ ServiceProfile u

∀ providedBy .(Actor u ≥5 hasCreditLevel)u

∀ item .(PC u∀ hasProcessor .Pentium4 u

≤700 hasUnitPrice

Placing information like provider location and price constraints in the service description

itself, rather than in a negotiating process, means that service descriptions will need to

be changed frequently, and good matches that otherwise could be made would be missed

or relegated to low quality matches due to needlessly constraining statements.

Chapter 4. Critique 81

4.2.2 Formalism in software engineering

Software development today remains very much a craft, despite efforts to impose order

based on the approaches of traditional engineering and mathematics. In the context of

semantic web services, the closest point of comparison is with the method and practice

of formal methods. Formal methods use mathematical techniques to variously specify,

reify, and prove the correctness of software (Wing 1990). There are several well-known

such formalisms, including Z (Spivey 1992) and the Vienna Development Method

(Bjørner and Jones 1978).

The use of formal methods specifically for specification has shown itself to be often

effective, but difficult to apply for most engineers (Larsen, Fitzgerald, and Brookes

1996; Meyer 1985). The problem of fully modelling the domain remains difficult, and is

not removed by the use of formality:

For instance it is interesting to note that several contributions to the Sisyphus-
II initiative (Schreiber and Birmingham 1996) report ‘discoveries’ related
to the nature of the domain knowledge and the behaviour of the problem
solver, which emerged only after the implementation of the end system. And
this (fairly typical) phenomenon emerged in the context of an application,
the VT elevator design problem (Yost and Rothenfluh 1996), which has
been extensively analysed and reconstructed several times!

(Motta 1999)

(Goodenough and Gerhart 1975) defended testing by pointing out errors in published

programs which had set out to demonstrate the superiority of formal development of

coding over post-hoc testing. Donald Knuth once quipped: “Beware of bugs in the

above code; I have only proved it correct, not tried it”. Although formal methods have

been used with some success in real-world software production, they tend to be either

watered-down, or applied to only the most critical sections of code in safety-critical

situations in fields like aviation or the military (Clarke and Wing 1996).

Formal verification has gained more favour in hardware (Brock, Kaufmann, and

Moore 1996), where the required behaviour is often easier to understand, specify and

reason about than is the case in software, due to its regularity and narrowness. Moreover,

Chapter 4. Critique 82

the typical production runs of millions of units can both amortise the cost of the proof,

and make the potential costs of replacing fielded units after fault discovery worth the

investment. Even here, however, formal methods offer no guarantee, as illustrated by the

case of the Viper microprocessor.

Viper (Cullyer 1989) was intended for commercial manufacture and use in safety-

critical roles in military and civilian applications. The chip relied heavily on formal

methods, in specification (Cullyer 1985) and design. Nonetheless, problems came

to light. In the wake of this, a series of machine assisted proofs were conducted

independently of the design team (Cohn 1987). Cohn raises several issues, including the

resources required (six months of effort to verify just the high-level design: the lower

levels were expected to be more demanding), and warns against placing too much faith

in proofs about what are only models of the artifact. She ends the report with a lament

that “the errors we found in Viper’s specification and host machine are apparently not

present in the actual chip; hence the manufacturers cannot have used the specification

which we have started to verify.”

4.2.3 In practice

We can expect that the people who will create the semantic services and their descriptions

will be drawn from the ranks of today’s web designers and software engineers. However,

as an industry, we still have difficulty in adhering to the conceptually simpler standards

of the Web. A study by browser vendor Opera (Wilson 2008) has found very few web

pages are standards compliant. Half do not carry an XML/HTML DOCTYPE declaration,

and overall judged only 4% of the 3.5 million sampled URLs to be valid, as defined by

the W3C’s online markup validator1. Tool support was no panacea: of the eleven cited

page production systems, only one produced valid pages at a rate over 5%. Finally, the

report noted that under half—47% of XHTML and 49% of HTML—of the pages which

advertised their validation status through ‘validated by’ icons were valid. Either content

1http://validator.w3.org/

http://validator.w3.org/

Chapter 4. Critique 83

generators are lying, or, more likely, other pressures lead to pages losing their validity

over time.

Such problems are sure to loom larger when machines become the predominant

interpreters of the information. As Peter Norvig, Google’s head of research, argued to

Tim Berners-Lee2, the semantic web will be more difficult to construct properly than the

current one:

What I get a lot is: ‘Why are you against the Semantic Web?’ I am not
against the Semantic Web. But from Google’s point of view, there are a few
things you need to overcome, incompetence being the first. . . We deal with
millions of Web masters who can’t configure a server, can’t write HTML.
It’s hard for them to go to the next step. The second problem is competition.
Some commercial providers say, ’I’m the leader. Why should I standardise?’
The third problem is one of deception. We deal every day with people who
try to rank higher in the results and then try to sell someone Viagra when
that’s not what they are looking for. With less human oversight with the
Semantic Web, we are worried about it being easier to be deceptive.

The prospects for semantic services are unlikely to be any better: “Annotation

providers are generally not conversant with the use of such technology and are unlikely

to make use of the expressive power of OWL” (Lord et al. 2005). The experience

of instructors of tutorials in semantic web services suggests most participants are

unprepared for the demands (Stollberg et al. 2006). Stollberg et al. cite a lack of

ability in conceptualising ontologies and formalising knowledge, on top of poor general

knowledge of AI methods. And this is in a self-selected cohort at the upper end of the

ability spectrum, interested in semantics at the research level, and motivated enough

to participate in a tutorial. The task of describing these systems is complicated, and

requires more training than does achieving similar results—at least in the short-term—in

a standard programming language.

Specific problems in describing services will include:

• User ignorance of ability of the language to express a constraint, or of the effect

of declaring the constraint. As constraints become more complex, and services

2http://news.zdnet.com/2100-9588_22-6095705.html

http://news.zdnet.com/2100-9588_22-6095705.html

Chapter 4. Critique 84

more common, it becomes increasingly likely that users will be unaware of the

full implications of their descriptions.

• User expectation that the information will not be used by clients or matchmakers.

Even if developers fully understand the logics, they may not invest much effort

in describing the services in a way that would help the matchmaker. It is not

unreasonable to expect service providers will refrain from supplying this kind

of data until they observe a significant portion of the service ecosystem using it,

creating a bootstrapping problem.

• Comprehensive constraints may be too expensive to generate or use. Even if

none of the above hold, it would often simply not be worthwhile for the service

provider to analyse and encode the information. The problems of ‘qualification’

and ‘ramification’—detailing all the necessary conditions that must hold for a

given action to have its intended effect, and infering the results of an action—are

key in describing services, and remain difficult to deal with.

• Privacy or deception As in real life, the advertisements provided by service

providers need not adhere to ‘truth in advertising’. In some instances, there is an

incentive for service providers to keep the description of their services as general

as possible, though not to the extent of attracting clients they has no possibility of

pleasing. Alternatively, the provider may not wish to be honest or open about her

service’s foibles.

4.2.4 Tools

It is sometimes claimed that tools will make it easy to wrap existing services. Even in

creating web services from legacy software, there are important conceptual mismatches.

Extant systems exported via web services often have fine-grained interfaces with complex

state, or use a factory pattern which requires the creation of a service object which is

then invoked (Vinoski 2002a; Vinoski 2002b). Internal state may be exposed, along

Chapter 4. Critique 85

with exceptions and the like, complicating the interface and requiring the client to clean

up after they have finished. Exporting these fine-grained interfaces directly through

a tool would make services more tightly coupled than they should be, complicating

interaction.

On the semantic side, there are tools for creating semantic descriptions from WSDL,

such as WSDL2OWLS (Paolucci et al. 2003a). However, by definition, the WSDL does

not contain sufficient information to create a semantic description: WSDL2OWLS can

extract only operation names (which it maps to OWL-S atomic operations), and OWL

equivalents of the XML Schema (Fallside and Walmsley 2004). The XSD schemas,

however, often make little sense from a knowledge modelling viewpoint, so the OWL

translations do not necessarily make ontological sense (Paolucci et al. 2003b).

Moreover, our experience of working with WSDL (for example, in the Living Human

Digital Library (Viceconti et al. 2007)), is that WSDL does not usually contain enough

information to enable even a human to invoke a service. More information must typically

be elicited through communication with the service programmers, or by trial and error

invocation. Others have found the same: “In our experience, the key difficulty has been

poor documentation of the services, requiring experimental invocation of the service

with test data” (Lord et al. 2005).

4.2.5 Semantics Lite

To close out this section on the shortcomings of a formal approach to service descrip-

tion, we examine two parallel movements in the web services and semantic services

communities. Both place less emphasis on rich formality, vindicating some of the

criticisms here. On the services side, the increasing use of services built with the ‘REST’

philosophy is weakening SOAP’s hegemony. In semantics, several attempts are underway

to offer users an easy way in to semantics (Semantic Annotations for WSDL), for REST

services (Semantic Annotations for REST), as well as lighter-weight formal languages

(MicroWSML).

Chapter 4. Critique 86

Semantic web services are layered atop standard web services, an important contrast

to previous attempts at intelligent services like KQML. The use of existing functionality

means that we can take opportunistic advantage of the basic functionality implemented

by others with more prosaic aims. It is important to note, then, the evolving attitude to

web service provision. SOAP, WSDL, and UDDI have been surrounded by a thriving

ecosystem of other standards which have become known as WS-*. The complexity of

this software stack has drawn criticism from many programmers3. Despite claimed

interoperability, in practice there are significant problems integrating different platforms,

and in handling the evolving practices not detailed in the standard, such as the emergence

of the the SOAPAction HTTP header.

The response of many has been to turn to simpler protocols, like REST and XML-RPC.

Both are very simple, do not have large companies pushing complex standards, and do

not support description systems like SOAP’s WSDL. Proposed description languages for

REST like WADL have not been greeted with much interest: the many developers who

prefer the simplicity of REST do not see a benefit in machine readable API descriptions

that still require a human to read documentation.

The debate is by turns frustrating and entertaining, but is instructive for our argument.

It seems vital for web service acceptance that the protocols and formats remain relatively

simple, inspectable and hackable: this is why web services gained popularity where

CORBA did not, and it seems to be a continuing pressure in the current excitement over

REST (Richardson and Ruby 2007). As long as programmers do not feel the ‘rigour’ and

tool support of WSDL offers them tangible benefits, semantic services may remain less

interesting to them. Given our contention that even strong, well-engineered ontologies

will have semantic slack, the prospect of dealing with services which are more lightly

specified suggests even more scope for under-specification of interfaces, and thus a

greater role for deciding matchmaking on evidence of how they behave, and not just the

description.

3The more cynical suggest that the complexity was deliberately fostered by the vendors of tools, in
order to force programmers to buy into their tool sets just to cope.

Chapter 4. Critique 87

The second thread is directly related to the semantic descriptions. Given the

complexity of current semantic web services technologies, and the slow take-up

compared with other semantic web technologies like RDF and OWL, some researchers

have concluded that the demands of semantics must be lessened to lower the barrier.

The best known of these is approaches is SA-WSDL, ‘Semantic Annotations for WSDL’,

which is a W3C recommendation (Farrell and Lausen 2007). SA-WSDL enables WSDL

definitions to contain pointers to semantics. Similar approaches include SA-REST and

MicroWSMO, discussed in section 3.5.3. Should these mechanisms become popular,

semantic services will become more available, but with less precise semantics.

4.3 Services themselves

A new paradigm they may be, but web services are still just plain old software, and the

least well understood kind of software at that: distributed. Leslie Lamport, a pioneer

in distributed computing, gave an unorthodox definition of a distributed system as

“one in which the failure of a computer you didn’t even know existed can render your

own computer unusable” (Lamport 1987). Today’s trend away from semi-rigorous

requirements gathering and specification and toward agile development and constant

evolution of systems runs counter to the notion of formal specification and prior semantic

agreement. In this section, we argue against the black-box exchangability of services,

and that the descriptions of services will often not be provided by the engineers or even

the organisation which produced the service.

4.3.1 Fungibility

The assumption behind the whole enterprise of matchmaking is that services identified

by logically equivalent service descriptions are equivalent in the real world. This belief

in the black-box fungibility of Web, Grid, and agent services is a useful abstraction, but

we must remember that “the map is not the territory” (Korzybski 1931). When the goal

Chapter 4. Critique 88

of fully interchangeable blocks of code still eludes conventional programming after

decades of research, there is no reason to believe it will suddenly be true for service

oriented computing. While we can hope that the greater decoupling that comes with

agent or service oriented design will alleviate the trouble to some extent, the greater

openness and dynamism will bring other problems to undermine interoperability. Most

matchmakers to date have been designed for closed worlds, where it is assumed that

agents are fungible.

In (Zhang and Zhang 2002), the problem of variation between agents in their

‘intrinsic ability’ to complete a given task is highlighted. In myGrid, bioinformaticians

expressed strong views about the particular implementation of a service type (Lord et al.

2005). Similarly, the database that a service operates on may be an influence: although

this information is sometimes made explicitly available through registry information or

word-of-mouth, it may well be deemed a trade secret by the provider.

A related problem is versioning. This is commonly solved by labelling components

with a version number. While never foolproof—requirements tend to be liberal and

therefore do not solve the problem, or overly tight, which may prevent small problems at

the expense of unnecessarily refusing to run at all—in the Internet age, it is even harder

with the mantra of ‘release early, release often’. Online software services are often

simply unversioned, and continual, unannounced release of agent or web services will

become more common. It is already impossible in many cases to tell if a service used

today is executing the same code it used yesterday. Conducting a search at Google4 will

use both code and a data set that are unversioned, and may return different results today

than the same query would have done yesterday.

4.3.2 One service, many descriptions

There are conceptually at least three actors involved in using a semantic web service:

the web service creator, the semantic description creator, and the user. Both the leading

4www.google.com

www.google.com

Chapter 4. Critique 89

semantic web services frameworks, OWL-S and WSMO are predicated on the reuse of pre-

existing non-semantic services, and that consequently there can be multiple descriptions

of the same underlying service. Each non-semantic service may be described and used

in different contexts by way of different mediators or descriptions. The people doing the

mapping will in many cases not be the people who wrote the services, and may well be

acting totally independently, without even the knowledge of the service providers.

Especially in highly technical domains, there may be too much knowledge, explicit

and tacit, for these semantics to line up. (Lord et al. 2004) suggests that formal

models of the domain and the services will be inferior to the domain experts’ experience.

The same paper also notes that, especially in areas like bioinformatics, the underlying

concepts themselves are subject to disagreement and evolution.

4.4 Interactions

Most matchmaking work has addressed interactions with only two-parties: the service

requester and the provider. This bias continues on the semantic web. OWL-S (Martin

et al. 2004), for instance, imagines that any interaction will be principally two-party.

FIPA-ACL and OWL-S both make notional provision for multi-party interactions, but

support for them is weak. Where multi-party interactions do occur, the matchmakings

occur serially. Much of the dialogue theory work in agency derives from earlier

linguistic or philosophical work, such as the Walton and Krabbe typology (Walton and

Krabbe 1995)), which is mostly concerned with two-party dialogue. One can easily

imagine interactions that are inherently multi-agent and which would thus require any

matchmaker to find an appropriate set of agents. Indeed, recent developments in web

services choreography (Kavantzas, Burdett, and Ritzinger 2004) reveal the growing

realisation that many real-world processes require multiple participants.

A key driver for the success of social web sites, Google, and the Web in general,

is the ‘network effect’, or Metcalfe’s Law (Hendler and Golbeck 2008). This is the

Chapter 4. Critique 90

hypothesis that the benefit of additional users is more than linear. In the web, the

opportunity for links between content grows at a rate considerably greater than the

number of documents: in principle, as the square of the number of documents. One of

the principle supposed benefits of web services in general, and semantic web service in

particular, is the opportunity for the unanticipated, serendipitous reuse of services in

ad-hoc orchestrations. In Web 2.0 these have been termed ‘mashups’, and the semantic

equivalent dubbed ‘smashups’ (Lathem, Gomadam, and Sheth 2007). With many

services, there will be many ways to have them interact: too many for individual service

providers to test, or even enumerate.

Hardware and software are notorious for having interactions that “shouldn’t happen”,

and such problems are all the more difficult to trace and repair because they cannot

be isolated in a single component. In (Wooldridge and Ciancarini 2000) we find the

claim that “interaction is probably the most important single characteristic of complex

software”, and one that certainly has implications for matchmaking in a world of services.

Incompatibility between software is a commonplace. Airbus lost billions of dollars

and delayed delivery of its A380 aircraft after inaccurate data translation between the

different versions of the computer-aided design software used in different teams meant

the electrical cabling did not fit the fuselage (Bartholomew 2007). Ironically, a member

of another Airbus CAD team predicted just such a problem (Horwood 2005).

It is an everyday fact that, like any interacting systems, some collections of agents

will work better together than with others who are individually as capable. Agents

provided by the same organisation, written by the same group of engineers, or sharing

some view of the world not denoted in their formal specifications, are likely to produce

better results when working together than when teamed with other agents that ‘think

differently’. In the process of creating this dissertation using LATEX, I had several paths

for producing PostScript output: the direct use of pslatex; using latex then dvips;

or pdflatex then pdf2ps. These should produce the same result. They do not.

Similarly, in viewing the final result, different viewers (xdvi, gs evince, or Adobe

Chapter 4. Critique 91

Acrobat) perform differently, adding their own flourishes with regard to font choice and

resolution, crop marks and missing images. Reasonable people reading manuals, or

planners looking at formal descriptions of these tools, would be disappointed by the

reality of the orchestrations. What underlying causes are there for these problems that

are so difficult to encode? In the remainder of this section, we look at some causes

which are particularly relevant for semantic services.

4.4.1 Semantic islands

There will be some level of semantic balkanisation. Tim Berners-Lee talks of the

semantic web as a ‘fractal mess’, and James Hendler of ‘semantic webs’. Such problems

emerge in several ways: there may be differences in the fundamental logic, in the

ontologies, in the implementations, and if mediation is used to circumvent the problem,

the mediators themselves may suffer from any of these problems. Even when a

community agrees on an ontology, a single set of formal symbols, there is no guarantee

they actually agree. There can be misunderstandings. The ontology itself may be known

to be a compromise, and incapable of expressing differences agreed by many to exist but

lacking support for ontology change.

The logics underlying semantics are not yet a settled affair. Despite efforts at sharing

knowledge bases, there are still many forms of logic, reasoners for them, and ontologies

written in them (Ginsberg 1991). The reasoners which deal with them are, as with any

software, correct only in so far as their human implementers can make them.

In small examples, it may be easy to check the correctness of a system’s
reasoning. However, for typical real-world examples, manual checking is
not feasible. In these instances, the best (perhaps the only) way to check
correctness is often by checking for consistency with the reasoning of other
existing systems.

(Gardiner, Horrocks, and Tsarkov 2006)

Such an attempt is the subject of (Pan 2005), where an empirical study is made of

three brand-name DL reasoners: Fact++, Pellet, and RACER. The study compared the

Chapter 4. Critique 92

reasoners on a set of 135 OWL ontologies culled from real-world usage, considering not

only how quickly they classified the ontologies but also qualitative issues. Performance

wise, there was little to choose: for most of the problems they reasoned in very similar

amounts of time5. On a number of ontologies, the reasoners did not agree on the

consistency of the ontology or bailed out of the attempt. We reproduce the table in

figure 4.1. In the study, classifications taking over one hour were recorded as ‘Timed

out’.

A similar result appears in (Gardiner, Horrocks, and Tsarkov 2006). This paper

attempted to quantify the real-world complexity of DL reasoning, also by automated

benchmarking of reasoners, adding KAON2 to the three studied in (Pan 2005). 300 OWL

ontologies were collected, of which only 162 could be translated to the DIG DL-reasoner

interface (Dickinson 2004). DIG is a popular DL interface and language, predating the

semantic web. The paper assumes the OWL-DIG translation is correct. They defined

‘complex’ description logics as those more complex than ALC6 Those ontologies which

proved most computationally expensive were not necessarily very complex. Though not

their primary purpose, they also noted the inconsistencies between systems.

Figure 4.1 OWL reasoners disagree

System Consistent Inconsistent Timed Out Aborted

Racer 101 7 0 27

Pellet 103 0 17 15

Fact++ 121 0 3 11

From the review of OWL reasoners in (Pan 2005).

It is wholly understandable that these reasoners differ. That is entirely our point.

While OWL-DL is well defined, with precise semantics, it is simply beyond the state-of-

the-art in software engineering to ensure that all but the simplest of algorithms perform

5http://www.mindswap.org/2003/pellet/performance.shtml
6ALC is a minimal description logic, supporting: (from AL) atomic concepts (including top and

bottom concepts), atomic concept negation (¬A), concept intersection (C uD), value restriction (∀R.C)
and limited existential quantification (∃R.>). C adds complement of arbitrary roles.

Chapter 4. Critique 93

identically across implementations. When even OWL reasoners, with their explicit

semantics and implementations by description logic experts, do not agree, there can

be little hope for the poor software engineer trying to ensure interoperability between

services implemented without formal specifications and between many organisations.

4.4.2 Ontology mapping, mediation, and gateways

It is likely that many services will be provided and accessed via gateways and inter-

ontology translation: for example, reusing an OWL-S service in a WSMO system.

Services performing screen scraping, interfaces to legacy systems, translations between

ontologies or web service frameworks (semantic or otherwise) will all introduce their

own semantic impedances. While they will make more information and services

available, they will also make the possibility for error greater than would be the case for

systems designed explicitly to interact with similar systems.

The processes of ontology mapping or merging offer a means to bridge between

knowledge bases constructed using different ontologies. Automated ontology mapping

systems rely on various inexact mechanisms, such as string similarity between concepts,

finding relationships between those concepts through WordNet (Fellbaum 1998), and

inferring concepts from shared instances (Kalfoglou and Schorlemmer 2003), and so are

going to introduce incompatibilities. Manual translations are not only expensive, even

they cannot merge the unmergable: mapping between an ontology which distinguishes

newspapers, magazines, and journals with one which lumps them all as periodicals

cannot be done without loss of precision. Moreover, the native ontology of a service—the

one in which the system’s implementers thought and wrote the code around—may not be

declared to the outside world, if it formally exists at all. This makes it impossible to tell

conclusively if a shared ontology is really being used at a deep level by the participants,

rather than merely as a lingua franca.

Beyond simply mapping between ontologies is the heterogeneity in frameworks and

implementation platforms. The semantic services landscape at the moment includes not

Chapter 4. Critique 94

just OWL-S and WSMO, but SWSF, MicroWSMO, SA-WSDL, as well as agent frameworks

being repurposed, and legacy systems exported through web services. Such systems vary

in their patterns of communication (direct peer-to-peer, mediated, broadcast), protocols,

communication languages, representation languages and implementation platforms.

Moreover, the bridges themselves will take many forms: ad-hoc shim implemented

on a per task and per agent basis, gateway agents, and reusable mediation toolkits.

Sometimes the mediation will be visible to the users and middle agents, and sometimes

it will be hidden.

One of the few case studies of inter-system integration in the literature is that done

to bridge the significant and independently developed multi-agent systems of RETSINA

(Sycara et al. 2003a) and Open Agent Architecture (Cheyer and Martin 2001). In

(Giampapa, Paolucci, and Sycara 2000), the approach was to build a portal agent (that

they call a ‘SuperAgent’) to bridge the two agent worlds. They cite the following issues

in the translation:

• Different computational/representational paradigms KQML is functional, Prolog

relational. This has implications for mapping multiple return values (since a

Prolog clause can succeed several times with different values), and more taxingly,

the issue of input and output parameters. In OAA input and output parameters are

not explicitly defined. In addition, KQML performatives must be accounted for.

These had to be added by hand.

• Syntactic differences This might be rather trivial, but could lead to complication

and confusion for humans. In this case, KQML’s Lisp-inspired (predicate

:arg1 value1 :arg2 value2) must be translated to the OAA equivalent

predicate(value1, value2), but there is nothing in the description to

link KQML’s keywords with Prolog’s positional ones. If automated inference were

used, mistakes could be made.

• Slow translation of service advertisements, which although not very important in

Chapter 4. Critique 95

their small system (just 50 agents), would become more so in larger web service

environments.

Another example of the difficulty of inter-agent mediation appears in (Gil 2005),

where the authors note several cases where systems had fundamentally different notions

of position and movement. For instance, helicopter flight paths generated by a planning

agent had a precision of 9 metres, but the agent responsible for flight would not recognise

such a short distance, and would assume the goal achieved, without actually moving the

helicopter. They remark that “Differences in modelling methodologies make translation

an arbitrarily complex task”. They make a case for much richer knowledge modelling

that formally captures background information and providence information about the

ontology, allowing reasoning about the ontology as well as in it.

4.4.3 Workflow construction

Although we have mostly focused on the incompatibilities of clients, the interactions

between clients are directed by the workflows. We saw in the last chapter that even

a simple distributed problem could result in a broker offering multiple workflows as

solutions. Figure 3.2 showed two different sequences of performatives that converted

metric and imperial measurements and resulted in computation of a body mass index. In

the first sequence, the two input measurements were first converted to metric before

being passed to the dietitian. In the latter, the dietitian works with imperial measurements

producing a result that is then converted to the metric equivalent. Even in such a trivial

example, there may be cause for choosing one ordering over another. For instance,

the converter agent’s numerical accuracy might be poor, and we would want to avoid

using it as much as possible. Or, most simply, we might want to reduce the number of

performatives issued. In more complex examples, entirely different sets of agents and

operations might be used to achieve the same end, and the complexity of the interactions

quickly mount.

Chapter 4. Critique 96

4.4.4 Peopleware

Finally, we observe that not all the problems of interactions are purely technical. In

orchestrating services drawn from many providers, we inevitably try to cross unmarked,

perhaps unrecognised, boundaries between human groups. These groupings may emerge

for several reasons:

• Social reasons For instance, different social communities, or communities of

practice, may each cluster around particular service providers for no particular

reason, yet this would result in improved performance on some tasks if agents

were selected from the same social pool.

• Strategic (or otherwise) inter-business partnerships Airlines may offer a special

deal with other airlines or car-hire companies that would lead to a more satisfied

customer. On a deeper level, companies and their suppliers may have invested

considerable effort aligning their technologies, without it being obvious to an

external entity.

• Malice Lastly, and sadly, it is hardly unknown for some software creators to

ensure lock-in by making their software deliberately fail to interact correctly with

that of other vendors.

4.5 Summary

In this chapter, we made a case that service selection based only on fragments of first

order logic will be difficult to do well in an open setting. This was based on problems

engineers have in expressing themselves in formal logics, in the variation in performance

amongst services with similar advertised properties, and in the many subtle interactions

that appear when components are assembled. We also noted that users may actually only

use automated service selection when they really do not mind imprecise matching, thus

making attempts at precise matching besides the point. We can conclude that:

Chapter 4. Critique 97

• The expectations of matchmaking may be unrealistically high. In practical use,

good-enough results might not just be good-enough, they might be the only

achievable results. If expectations are lowered, there is greater scope for middle

agents to perform more flexible but less accurate matchmaking.

• Software engineers find formal descriptions difficult, and formal methods have

seen little mainstream take-up. Even those well trained in such formalisms have

encountered failures in projects which relied heavily on them. In reality, much

software is developed with no specification at all.

• Formal languages, particularly those used on the semantic web, have limited

expressiveness, which makes capturing all the assumptions and effects of a service

difficult, if not impossible.

• Services themselves are not fungible. Even when their descriptions are identical,

it is highly unlikely that their observable behaviour will be. Vendors will offer

services that, while comparable at the level of granularity of a service description,

will vary in their quality and precise behaviour. Service providers will have little

incentive to be especially truthful in their service advertisements.

• As difficult as it is to create high quality ontologies, particularly those with enough

richness to model service behaviour, it is even more difficult to combine such

ontologies: semantic agreement does not scale well.

• Services will have non-obvious, hard to phrase, and perhaps even hidden dif-

ferences that will affect not their intrinsic ability, but their ability to function in

collaborations with services with different biases.

Chapter 5

Tools

As we stated in the introduction, this thesis introduces an approach to matchmaking

that is reminiscent of search engines. We can conceive of a service orchestration as a

first-class object, a specific interaction. That interaction names several kinds of service,

each of which must be linked by the matchmaker to a specific agent which advertises

itself as capable of fulfilling it. If each interaction is scored by the peer which initiated it,

the matchmaker can store this ranking, in much the same way search engines record

which web pages contain certain words. Over time, a matchmaker can construct a large

database of such interactions, and compute the selections of agents most likely to prove

successful for new interactions.

We develop the matchmakers themselves in chapters 6 and 7. In this chapter, we

review the two formalisms on which we build our matchmakers: the Lightweight

Coordination Calculus and the Incidence Calculus. The Lightweight Coordination

Calculus (LCC) is a compact language for specifying distributed agent or service

dialogues. In our search engine analogy, LCC interactions are our documents. The

Incidence Calculus (IC) is a probabilistic calculus based on the explicit representation

of events, and their manipulation via set operations to compute probabilities. IC, then,

is comparable to the ‘inverse indexes’ of information retrieval. The fundamentals of

our approach to matchmaking do not rely on either of these two formalisms: they are,

98

Chapter 5. Tools 99

however, both clear and convenient vehicles for expressing them.

5.1 Lightweight Coordination Calculus

The Lightweight Coordination Calculus (LCC) (Robertson 2004) developed from work

on ‘electronic institutions’, which are ways of describing inter-agent dialogues. In

multi-agent systems, the agents perform actions in the world either through their own

internal means or by communicating with others. These inter-agent dialogues, as sets

of illocutionary messages (Austin 1976), change the world by having agents commit

themselves to actions which they can directly effect. Thus, the content of these messages

and the patterns they form crucially determine the behaviour of the system.

Agent interaction patterns typically fall into one of two camps: very strict, and very

unstructured. Strict protocols force agents into simple and inflexible communication

paths. They are, however, easy to understand and verify. At the other extreme are very

flexible protocols in which agents have few constraints on their behaviour, which makes

it difficult for agents to reason about the conversations they are participating in, and to

determine if other agents are behaving correctly. Electronic Institutions (EIs) (Esteva

et al. 2000; Esteva, Padget, and Sierra 2001; Esteva, Cruz, and Sierra 2002) provide a

middle path, mimicking traditional human social institutions by providing agents with

roles that they fulfil (such as an auctioneer or buyer), scenes that they participate in

(signing up to an auction, bidding, and completing the purchase), and by providing

institutional over-seer agents that ensure other agents are behaving correctly according

to their role and the obligations they have entered into with others. Special agents known

as ‘governors’ enforce the patterns of exchange.

EIs describe agent interactions in terms of labelled transition graphs, called ‘dialogic

frameworks’. The potential states of the dialogue are represented in the graph’s nodes,

and the directed nodes indicate the illocutions which move the agents from one state

to another. Agents are permitted only to make the illocutions specified in the graph,

Chapter 5. Tools 100

and only when in the correct state. They aid in multi-agent systems by making explicit

the communication patters permitted and required of agents, thus constraining the

amount of reasoning necessary from the union of the mental states (such as those present

in the belief-desire-intention model) of the engaged agents to the just those message

exchanges explicitly permitted by the institution. The import of this is that institutions,

by constraining interactions to the conventionally allowed paths in a managed way,

enable agents to better reason about the behaviour of others.

However, EIs have limitations: the role of an over-seer, for instance, can limit the

autonomy and concurrency of the agents, an important characteristic of agent systems.

LCC extends EIs by providing for a completely distributed mechanism that still ensures

agents adhere to a common protocol. This dichotomy is referred to in (Genesereth

and Ketchpel 1994) as ‘direct communication’ (where agents interact directly with

one-another) and ‘assisted communication’ (where they use middle-agents to mediate

the transaction). LCC enables us to take either approach, as each task dictates.

5.1.1 Structure and interpretation of LCC

LCC is based on the π-calculus (Milner 1999), and provides a simple, declarative

language for defining inter-agent message passing in peer-to-peer systems. The central

notion of LCC is the ‘interaction’. An interaction I is a triple

I = 〈M,C,K〉

The kind of interaction is defined by M , the model, which is equivalent to the dialogic

framework in the electronic institutions. C are clauses currently ‘in flight’, that is, in a

state of partial evaluation by some of the agents. K is the common knowledge, the facts

shared between the participating peers for that interaction. In the framework, an agent is

denoted as a(Role, Id), where the Id is some atomic identifier unique to the agent, and

Role is some (optionally parameterised) role, or type assumed by the agent within the

Chapter 5. Tools 101

interaction. An agent can send messages to other named agents:

msg1 ⇒ a(Role, Id)

and receive messages

msg2 ⇐ a(Role, Id)

Messages can be unconditional, as above, or conditional on constraints. A constraint C

to be satisfied on receiving a message M is a ‘reaction’ constraint, and is written

C ←M ⇐ a(R, I)

A constraint on sending a message is a ‘proaction’ constraint, written as

M ⇒ a(R, I)← C

These message-passing operations are the primitive actions of the calculus. They are

tied together with operators for sequencing (then) and choice (or). Following

the Prolog tradition, terms beginning with an uppercase letter are variables, and other

terms are constants. A grammar for the framework is provided in figure 5.1. The

rewrite rules for expressing the execution are shown in figure 5.2. Since LCC is a

language for coordinating services, not programming them, its comparative lack of

general programming constructs is a deliberate and useful property.

Along with the interaction model and the partially expanded clauses, an interaction

carries ‘common knowledge’ (Halpern and Moses 1984). This is a set of expressions,

specific to an interaction, that every participant in the dialogue can access and extend.

Knowledge is expressed as a set of clauses of the form knows(Agent, Fact), where

Agent is the name of an agent or the wildcard ?, standing for all agents, and the Fact is

a Prolog-like term (Term in the LCC grammar).

Conceptually, an interaction model is a script for communication, defined in the

dialogue framework. This script is passed between the agents as they proceed, with each

agent marking in the interaction (on the script) what they have done. It can be compared

Chapter 5. Tools 102

Figure 5.1 Grammar for the LCC dialogue framework

Model ::= Clause∗

Clause ::= Agent :: Def

Agent ::= a(Role, Id)

Def ::= Agent|Message|Def then Def |Def or Def

Message ::= M ⇒ Agent|M ⇒ Agent← C|M ⇐ Agent|C ←M ⇐ Agent

C ::= Term|C ∧ C|C ∨ C

Type ::= Term

Id ::= Constant

M ::= Term

to actors passing around a single script of a play, marking what they have just said, and

passing to the actor whose turn is next.

Figure 5.3 shows a model for discovering new music tracks based on current

tastes. We see three roles: listener , classifier , and recommender . The first clause

is a(listener ,L), which will be adopted by the agent L that initiates the interaction.

Because L can satisfy the constraint favourites(Favourites), unifying the variable

Favourites with a list of its favoured musical tracks, it can use the rewrite rules def and

proaction to send a message to the music-classifier . The partially evaluated copy of

the listener role definition is added to interaction state I , and sent with the message.

The music-classifier agent C itself is a variable: its value might be determined by L, or

by a matchmaker. C receives the message m(tracks(Tracks)), after which, through a

rewrite proaction , it satisfies the constraint classify(Tracks ,Genres) and sends the list

of Genres to the recommender agent R. R can then satisfy

recommend(Genres ,Recommendations)

and send the final result Recommendations back to L.

There are several ways of deploying LCC. The most common, and the one used for

Chapter 5. Tools 103

Figure 5.2 Standard LCC interaction model rewrite rules.
A rewrite rule

α
Mi,Mo,P,O−−−−−−→ β

holds if α can be rewritten to β where: Mi are the available messages before rewriting;

Mo are the messages available after the rewrite; P is the interaction; O is the message

produced by the rewrite (if any).

B
Mi,Mo,P,O−−−−−−→ E

A :: B
Mi,Mo,P,O−−−−−−→ A :: E

def

A1
Mi,Mo,P,O−−−−−−→ E ¬closed(A2)

A1 or A2
Mi,Mo,P,O−−−−−−→ E

or 1

A2
Mi,Mo,P,C,O−−−−−−−→ E ¬closed(A1)

A1 or A2
Mi,Mo,P,C,O−−−−−−−→ E

or 2

A1
Mi,Mo,P,O−−−−−−→ E

A1 then A2
Mi,Mo,P,O−−−−−−→ E then A2

then 1

A2
Mi,Mo,P,O−−−−−−→ E closed(A1)

A1 then A2
Mi,Mo,P,O−−−−−−→ A1 then E

then 2

(M ⇐ A) ∈Mi satisfy(C)

C ←M ⇐ A
Mi,Mi\{M⇐A},P,∅−−−−−−−−−−−→ closed(M ⇐ A, C)

reaction

satisfied(C)

M ⇒ A← C
Mi,Mi,P,C,C′,{M⇒A}−−−−−−−−−−−−−→ closed(M ⇒ A, C ′)

proaction

satisfied(C)

null← C
Mi,Mi,P,C,∅−−−−−−−→ closed(null, C)

end

clause(P , C, a(R, I) :: B) satisfied(C)

a(R, I)← C
Mi,Mo,P,C,∅−−−−−−−→ a(R, I) :: B

role

Chapter 5. Tools 104

Figure 5.3 An LCC interaction model

a(listener ,L) ::

m(tracks(Favourites))⇒ a(music-classifier ,C)←

favourites(Favourites) then

play(Recommendations)←

m(recommended(Recommendations))⇐ a(recommender , R)

a(classifier ,C) ::

m(tracks(Tracks))⇐ a(listener ,L) then

m(genres(Genres))⇒ a(recommender , R)← classify(Tracks ,Genres)

a(recommender ,R) ::

m(genres(Genres))⇐ a(classifier ,C) then

m(recommended(Recommendations))⇒ a(listener ,L)←

recommend(Genres ,Recommendations)

Chapter 5. Tools 105

our matchmakers, is to treat the interaction model as a data structure passed between

agents who hold no conversation state themselves: the interaction contains everything

they need to continue the conversation. Another is to distribute, ahead of the interaction,

fragments of the model to individual agents, who can then choreograph their own

interactions with those agents they directly interact with. This approach has been used

to drive web service orchestrations. It can also be used by a single machine to drive an

orchestration similar to workflow execution engines languages like BPEL4WS (Andrews

et al. 2003).

5.1.2 Uses of LCC

Due to its lightweight nature, LCC has been used as a test-bed for several pieces of

research. In particular, a variant of LCC used with web services is the Multi-Agent

Protocol language (MAP). MAP was developed in parallel with the Prolog-based LCC,

implemented in Java, and designed for coordination of web services implemented in the

WSDL/SOAP framework. The language for specifying the protocols bears a passing

resemblance to Perl. The key difference with MAP, however, is in how it is distributed.

While an LCC model is normally passed from agent to agent as the dialogue progresses,

a MAP protocol is sent out to the agents beforehand. This makes it easier to achieve

parallelism, but does restrict the behaviour to static protocols, where the dialogue

framework is fixed before execution.

As stated earlier, a major benefit of such protocols is the restriction of agent choice:

LCC models constrain the search space that agents must reason in to those specified in

the model, and the small number of choice points specified in it through the constraints

agents must satisfy (the ‘←’ construct). In LCC (Osman, Robertson, and Walton 2005;

Osman and Robertson 2007) (Walton 2004), Osman and Walton have applied model

checking (Clarke, Grumberg, and Peled 1999) techniques to dialogue frameworks. This

makes possible verification, at run-time, of statements about the dialogue, such as that

particular deontic commitments are upheld. This can be used to guarantee, for example,

Chapter 5. Tools 106

that an agent’s trust requirements are not violated when it participates in an interaction.

LCC lacks a direct counterpart to Electronic Institutions’ notion of scene. Since the

scene provides a useful engineering construct from which dialogues can be composed,

work has been done (Joseph et al. 2007) to reintroduce them based on the concept of

mobile ambients found in extensions of the π-calculus (Cardelli and Gordon 1998). One

use of LCC was to investigate computationally ‘dialogue games’, which were previously

a philosophical enquiry (McGinnis 2006). LCC has been used to directly implement the

kind of workflow processes used to tie together web services. In (Guo, Robertson, and

Chen-Burger 2005), an LCC protocol is developed which directly interprets the Business

Process Execution Language for Web Services (BPEL4WS) (Andrews et al. 2003),

enabling such work flows to be executed in a peer-to-peer fashion. It has also been used

to study on-demand ontology mapping between peers in a context-sensitive way (Besana

and Robertson 2007), and to execute bioinformatics experiments (Quan et al. 2007).

Finally, LCC forms the basis for the OpenKnowledge project1 (Robertson et al. 2007).

5.2 Incidence calculus

The incidence calculus (Bundy 1985; Bundy 1992; Liu 2001) (IC) was invented to

provide a logic for probabilistic reasoning that ensured the correct propagation of

probabilities through logical formulae. The usual means for adding probabilities to

logics is to assign probabilities directly to syntactic features in the logic, which for

our purposes will be limited to propositions. Thus, if p(φ) = 1
2

(the probability of φ

being true is 50%) and p(ψ) = 1
2

then, by definition, p(φ ∧ ψ) = 1
4
. Such a mechanism

cannot handle correlations between statements: if φ represents the state of high ambient

temperature, and ψ for snow, it is unlikely that the probability of both is 1
4
, yet most

logics with probability give that answer.

Logics which maintain correctness in this respect are known as ‘truth functional’,

1http://www.openk.org

Chapter 5. Tools 107

and the incidence calculus is one such system. The incidence calculus does not directly

associate a proposition with a numerical probability. Instead, it assigns an ‘incidence’ to

each proposition. An incidence is a set of possible worlds in which certain formulae

are true or false. We will formally introduce the calculus shortly, but we begin with a

summary of the syntax and an example.

We begin with sentences of propositional logic, and the propositions themselves such

as p,q, and the boolean truth values true and false. Propositions can be negated (¬p),

and combined in conjunctions (p ∧ q) and disjunctions of sentences (p ∨ q). Sentences

may also contain implications (p→ q) and equivalences (q ↔ q). Each sentence has an

interpretation, mapping the sentence to {true, false}. The incidences are sets of worlds

where a statement is true, and the incidence of a sentence φ is written i(φ). W is the set

of all possible worlds. The probabilities are calculated by comparing the size of the

incidence sets.

As an example, let’s examine the dinners eaten by a student over a week. We can

declare the worlds to be the days of the week, and the propositions as the various kinds

of food and drink consumed. Our student’s intake is described as follows:

worlds =W = {mon, tue,wed , thu, fri , sat , sun}

i(haggis) = {mon, thu}

i(fish) = {fri}

i(lamb) = {sun}

i(porridge) = {tue,wed , sat}

i(potatoes) = {mon, thu, sun}

i(chips) = {fri}

i(wine) = {fri , sun}

i(whisky) = {mon, thu}

The probability of any particular incidence φ is the ratio |i(φ)|
|W| . So we can now see

that:

Chapter 5. Tools 108

p(haggis) = |{mon,thu}|
|W| =

2

7

p(haggis ∧wine) = |{mon,thu}∩{fri ,sun}|
|W| =

0

7

p(haggis ∧whisky) = |{mon,thu}∩{mon,thu}|
|W| =

2

7

In particular, note that p(haggis ∧whisky) and p(haggis ∧wine) have different

values, even though p(whisky) and p(wine) are both 2
7
. This property is used later

to select multi-service collaborations where individual services may have identical

individual performance histories, but their combinations differ.

Conditional probabilities in the incidence calculus are as expected. The probability

of φ being true given that ψ is true, denoted p(φ|ψ), is

p(φ|ψ) = p(φ, ψ)p(ψ)

p(φ|ψ) = |i(φ)∧i(ψ)|
|W| · |W||i(ψ)|

p(φ|ψ) = |i(φ)∧i(ψ)|
|p(ψ)|

This being the case, we can compute the conditional probability of various events:

p(whisky | haggis) =
|{mon, thu} ∩ {mon, thu}|

|{mon, thu}|
= 1

5.2.1 Formal definition

We will now formally define the incidence calculus, following (Liu 2001). We define the

set of logical sentences L(P) we can form from P , a finite set of atomic propositions,

and the usual logical connectives.

• true, false ∈ L(P)

• if p ∈ P then p ∈ L(P)

• if p, q ∈ L(P) then p, q,¬p,¬q, p ∧ q, p ∨ q, p→ q, and p↔ q ∈ L(P)

Chapter 5. Tools 109

Which is to say that our language L(P) is closed under the logical connectives

of negation, conjunction, disjunction, implication, and equivalence. We distinguish a

‘basic element set’. If P = {p1, p2, . . . , pn} then a basic element is q = q1 ∧ . . . ∧ qn

where each qi is either pi or ¬pi. The set of all such elements is the ‘basic element

set’. Every sentence in L(P) can be represented by a disjunction of basic elements

φ ∈ L(P) = q1 ∨ . . . ∨ qn.

The probability space, (X,χ, µ), has

• a sample space X

• a σ-algebra χ over X

• a probability measure µ : χ→ [0, 1]

A σ-algebra Σ on a set X is a subset of the power sets of X such that:

• ∅ ∈ χ

• if X ′ ∈ Σ then X\X ′ ∈ Σ

• the union of countably many subsets of Σ is in Σ

That is, Σ is closed under complement and union. And the probability measure

obeys the following properties:

• µ(Xi) ≤ 1 for all Xi ∈ χ

• µ(X) = 1

• µ(
⋃∞
j=1Xj) =

∑∞
j=1 µ(Xj) if the Xjs are disjoint members of χ.

We can now define incidence calculus theories:

〈W , µ, P,A, i〉

• W is the set of possible worlds

Chapter 5. Tools 110

• µ assigns a probability for every w ∈ W , and µ(W) = 1. µ(I) =
∑

w∈I µ(w)

• P is the (finite) set of atom propositions.

• A are the axioms, and are a subset of L(P). Axioms are those elements of L(P)

for which there is a known assignment of worlds.

• i is a function i : A → 2W . i(φ) is the set of possible worlds in which φ is true.

i(φ) = {w ∈ W|w |= φ}

Since only the sentences in A are defined directly, we extend i to L(A) as follows

i(true) = W

i(false) = ∅

i(¬φ) = W\i(φ)

i(φ ∧ ψ) = i(φ) ∩ i(ψ)

i(φ ∨ ψ) = i(φ) ∪ i(ψ)

i(φ→ ψ) = W\i(φ) ∪ i(ψ)

And the probabilities of elements in A are defined as

p(φ) =
|i(φ)|
|i(true)|

p(φ|ψ) =
|i(φ ∧ ψ)|
|i(ψ)|

When considering probabilities of sentences in L(P)\A(P), it is not necessarily

possible to find an exact incidence set. Upper and lower bound bound incidences are

defined as

i∗(φ) =
⋂

ψ∈L(A)

{i(ψ)|i(φ→ ψ) =W}

i∗(φ) =
⋃

ψ∈L(A)

{i(ψ)|i(φ→ ψ) =W}

Chapter 5. Tools 111

These bounds come in to play when performing inference. For example, in the

following application of modus ponens

φ→ ψ φ

ψ

the incidence of ψ cannot be precisely determined. IC has been used to construct truth

maintenance systems (Liu, Bundy, and Robertson 1993) which can propagate the

bounds to increase the precision of the resulting probabilities. For our purposes, this

does not present a problem, since we do not perform inference.

5.2.2 Justification

The incidence calculus is not frequently applied, since one requires exact records of

the incidences to use it. For the application at hand, however, we will have detailed

information about each matchmaker invocation, and the calculus provides a simple,

intuitive way of dealing with the data and reducing it to probabilities.

5.3 Summary

We introduced two formalisms which underly our approach. The first, the lightweight

coordination calculus, provides a simple way of specifying peer-to-peer interactions.

The second, incidence calculus, offers a simple means to compute the probabilities of

complex expressions, which will come about as our matchmakers try to work out the

best combinations of agents for each kind of interaction they are asked to broker.

• LCC provides a lightweight means to specify and deploy service orchestrations.

LCC brings with it a world-view in which the workflows are first-class objects

with many participating services. When services are no longer the centrepiece, we

can begin to consider their interaction. Much of the context of these interactions

can be captured as in the LCC model, and in the evolving interactions which they

shape.

Chapter 5. Tools 112

• The incidence calculus is truth functional probability calculus based on sets. In

the next chapter, IC will be shown to map intuitively to the notion of interactions

and their use of particular services. In chapter 7, we show how it provides a means

to predict the effectiveness of multi-service collaborations.

Chapter 6

Monogamy

Our thesis ultimately requires building a matchmaker that can matchmake multi-party

interactions, learning how to do so from experience of prior matchmaking events. Before

constructing such a creature, we will first see how LCC and the incidence calculus can

support a matchmaker which learns how to matchmake single-party interactions. The

problem of a client locating a single provider, a case we will call ‘monogamy’, is the

most fundamental matchmaking event, and the easiest to examine.

We begin this chapter by examining the simplest matchmaker, one which selects

randomly amongst eligible providers. The intention is to show how we integrate

the matchmaking process with LCC, and to establish a baseline behaviour. We then

introduce a matchmaker using incidence calculus which learns from user feedback

about its selections. Next, we reconstruct in our framework the matchmaker of (Zhang

and Zhang 2002), which was the first to use statistical information about agents’ prior

performance to select providers. We consider the choices taken by Zhang and Zhang,

and how they alter the matchmaker’s performance.

6.1 Matchmaking and LCC

We begin by showing how we integrate matchmaking with the LCC model. The task is

twofold:

113

Chapter 6. Monogamy 114

1. Describe the services

2. Deal with client requests and the matchmaker’s responses in the LCC execution

model.

We solve the first very simply, by side stepping the issue of providing a sophisticated

service description. Since we argue in this thesis that such descriptions will be both hard

to create, and will not guarantee perfect matches anyway, we will adopt the convention

that services are identified only through the role name. This means that any service

advertising its proficiency in, say, the role of weather -forecaster , will always be capable

of precisely that. In a framework like OWL, this step would correspond to the common

subsumption matchmaking (Sycara et al. 2003b; Li and Horrocks 2004). We would

expect such a matching phase to easily integrated into our model, but we proceed without

it, assuming that it works to a satisfactory degree (as their proponents themselves claim)

to provide us with a set of services for a query which are close enough for us to apply

our statistics-based matching.

The second task of inserting the matchmaking process into LCC can be address

through several models, classified here along axes related to participation by the agent,

and alteration of the interaction model:

1. An agent can inspect the LCC protocol to determine unfulfilled roles, and query

the matchmaker by executing a separate interaction. This requires insight on the

part of the agent into LCC, something which LCC itself explicitly seeks to avoid

since it increases the coupling between agents.

2. The interaction model itself can be rewritten so that the matchmaker is invoked

before sending messages to unrecruited agents. Doing this greatly complicates the

models, making them less understandable.

3. The LCC model interpreter can invoke the matchmaker out of band when the

interaction itself requires a recruiting operation—that is, make a direct call to the

matchmaker outwith the structure of the LCC model currently in play.

Chapter 6. Monogamy 115

We will adopt the third approach, which avoids modifying the interaction models

themselves, and requires no intelligence from the agent executing the model. It is the

most straightforward to implement and means we can cleanly and simply extend the

interaction rewrite rules to include the matchmaking operations.

So, how do we change the rewrite rules of figure 5.2 for matchmaking? Since a

matchmaker is involved at the point where an agent requires a service from another—as

yet unidentified—agent, the natural intercept point in LCC is at the ‘send message’ stage.

This affects the unconditional and conditional send message rules m ⇒ a(Id ,Role) and

m ⇒ a(Id ,Role)← C. The augmented version of the rules are shown in figure 6.1.

The function recruit is responsible for the invocation of the matchmaker, if necessary,

and the modification of the interaction model to reflect that. When recruit needs to find

a new service, it delegates to the matchmake function. The recruit function behaves as

follows:

1. Check if the term Id in a(Role, Id) in the active clause is instantiated. If it is, the

agent is known, and no action need be taken.

2. If Id is not instantiated, try to find a clause matching collaborator(Role, Id) in

the interaction’s common knowledge, K. If found, unify the Ids.

3. Otherwise, a new agent must be selected, by calling the matchmake function. The

algorithms used to implement matchmake may vary, and their character is the

topic of much of this thesis. Once an agent is identified, the variable Id is unified

with it, and the role/agent combination is recorded in the interaction’s common

knowledge. Specifically, the fact knows(matchmaker , collaborator(Role, Id))

is added to the interaction’s common knowledge K.

Remember from chapter 5 that an interaction is a triple I = 〈M,C,K〉, where M is

the model, C are the clauses currently in use, and K is the common knowledge. The

reason behind storing the role/agent pairs in the common knowledge as well as simply

instantiating them in the live clauses is that the bindings of variables do not persist across

Chapter 6. Monogamy 116

instances of the clauses. As the interaction executes, it is possible for clauses to be

reselected from the model, and thus for a previously identified agent to be unidentified

in a specific clause freshly copied from the model. Keeping this information in the

common knowledge allows the LCC interpreters to retain collaborator identities across

clause instantiation. Moreover, a client may add its own collaboration selections to an

interaction’s common knowledge, if they wish to use particular services for some or all

roles.

Our matchmakers require another point of contact with the agent: they need feedback

from the client which initiated the interaction on the outcome of the interaction. Since

this is done at only one point, and by only one agent, it is easiest to simply alter the

model to require the client to send one last message to the matchmaker at the conclusion

of the interaction. We do this by adding a term to the end of the client’s role:

outcome(Outcome)⇒ a(matchmaker ,Matchmaker)←

interaction-outcome(Outcome)

This uses a proaction constraint interaction-outcome , defined by the agent, and sends a

simple message to the matchmaker notifying it of the result.

To illustrate, we can imagine a periodic communication, such as that made by a

user’s weather monitoring application to a weather information service. The model M

might look like this:

a(weather -watcher(Location, Interval),Watcher) ::

get-forecast(Location)⇒ a(weather -forecaster ,Forecaster) then

forecast(Forecast)⇐ a(weather -forecaster ,Forecaster) then

a(weather -watcher(Location, Interval),Watcher)← wait(Interval)

a(weather -forecaster(Location), Forecaster) ::

get-forecast(Location)⇐ a(weather -watcher(,),Watcher) then

forecast(Forecast)⇒ a(weather -watcher(,),Watcher)←

forecastFor(Location,Forecast)

Chapter 6. Monogamy 117

Figure 6.1 LCC rewrite rules for monogamous matchmaking
These rewrite rules extend those introduced in figure 5.2 to support the selection

and communication of the set of collaborating peers. Note the new terms C—the

set of collaborators before the rewrite—and C ′ (if present) the, possibly extended,

set of collaborators after the rewrite. C is a set of pairs of role and service name,

e.g. col(search-engine, ferret). The same rewrite rules hold regardless of the

implementation of the matchmaking function matchmake.

B
Mi,Mo,P,C,O−−−−−−−→ E

A :: B
Mi,Mo,P,C,O−−−−−−−→ A :: E

def

A1
Mi,Mo,P,C,C′,O−−−−−−−−−→ E ¬ closed (A2)

A1 or A2
Mi,Mo,P,C,C′,O−−−−−−−−−→ E

or 1

A2
Mi,Mo,P,C,C′,O−−−−−−−−−→ E ¬ closed (A1)

A1 or A2
Mi,Mo,P,C,C′,O−−−−−−−−−→ E

or 2

A1
Mi,Mo,P,C,C′,O−−−−−−−−−→ E

A1 then A2
Mi,Mo,P,C,C′,O−−−−−−−−−→ E then A2

then 1

A2
Mi,Mo,P,C,C′,O−−−−−−−−−→ E closed (A1) collaborators(A1) = C

A1 then A2
Mi,Mo,P,C,C′,O−−−−−−−−−→ A1 then E

then 2

(M ⇐ A) ∈Mi satisfied(C)

C ←M ⇐ A
Mi,Mi\{M⇐A},P,C,∅−−−−−−−−−−−−→ closed(M ⇐ A, C)

reaction

satisfied(C) C ′ = recruit(P , C, role(A))

M ⇒ A← C
Mi,Mi,P,C,C′,{M⇒A}−−−−−−−−−−−−−→ closed(M ⇒ A, C ′)

proaction

satisfied(C)

null← C
Mi,Mi,P,C,∅−−−−−−−→ closed(null, C)

end

clause (P , C, a(R, I) :: B) satisfied(C)

a(R, I)← C
Mi,Mo,P,C,∅−−−−−−−→ a(R, I) :: B

role

Chapter 6. Monogamy 118

The weather -watcher agent Watcher beings executing the interaction I which requires

it to send a message get-forecast(Location) to the agent Forecaster which can fill the

weather -forecaster role. Since Forecaster is uninstantiated, the Watcher agent’s LCC

interpreter queries a matchmaker with the interaction I . The matchmaker finds a suitable

weather -forecaster agent (say wfi), instantiates the Forecaster variable in the active

clause of I , and adds the term col(weather -forecaster ,wfi) to I’s common knowledge.

With Forecaster known, Watcher can send the message. The Forecaster receives the

request and, contingent on it being able to satisfy forecastFor(Location,Forecast), it

will return the forecast to the Watcher . The Watcher agent then waits for Interval

before repeating the interaction.

Since the weather -watcher role is tail-recursive, when the Watcher agent re-enters

it, the LCC expander will create a new copy of the definition clause with only the

Watcher and Location variables instantiated (since they are instantiated in the ‘call’ to

the role). Thus, the Forecaster variable is unbound on every fresh invocation of the

role. We should not invoke the matchmaker again, however. Instead, the LCC expander

checks the common knowledge and instantiates the agent variable itself.

This particular interaction model never terminates, so no success rating is returned

to the matchmaker. We can change this by replacing the weather -watcher role with this

version:

a(weather -watcher(Location, Interval),Watcher) ::

get-forecast(Location)⇒ a(weather -forecaster ,Forecaster) then

forecast(Forecast)⇐ a(weather -forecaster ,Forecaster) then

a(weather -watcher(Location, Interval),Watcher)←

wait(Interval)

or

outcome(Outcome)⇒ a(matchmaker ,Matchmaker)←

interaction-outcome(Outcome)

Chapter 6. Monogamy 119

Now, if the wait constraint fails, the weather -watcher concludes the interaction

with a final message to the matchmaker. This requires a matching role definition for the

matchmaker:

a(matchmaker ,Matchmaker) ::

record -outcome(Outcome)←

outcome(Outcome)⇐ a(weather -watcher ,Watcher)

In the interactions models in the rest of this paper, we typically omit this particular role

definition.

The various algorithms that we develop for matchmaking in this single-agent

case (and, later, in the multi-party scenario) can all be interfaced in the same way to

the LCC rewrite rules of figure 6.1, and the matchmaker role definition. By using

the same rewrite rules regardless of the matchmaking policy, we can reuse both the

interaction interpreters, as well as other tools such as model checkers (Walton 2004;

Osman, Robertson, and Walton 2005), on the interactions. Meanwhile, matchmaker

implementers can change the matchmake procedure, and clients can use their own

choice of matchmaking service.

We still have to provide a mechanism for allowing service providers to inform

matchmakers of their availability and capability. We will define a service advertisement

from an agent as being a notice that an agent can perform a named role, such as

weather -forecaster in the example above 1. The advertisements reach the matchmaker

through an LCC interaction. A simple interaction model for advertising is shown in

figure 6.2. In this case, since the Matchmaker role itself is not specified, the matchmaker

to which it is advertising will be selected by its default matchmaker—presumably itself.

The client could direct the message to a specific matchmaker by adding common

knowledge to the interaction in form col(matchmaker M1.

1This is not the only way to proceed. Since one of the benefits of LCC is the ability to define ad-hoc
protocols using ad-hoc role names, an alternative solution is to define an agent by the constraints it can
satisfy. In this thesis, we use define only roles which satisfy one constraint each, and in this case, the two
are equivalent in this respect.

Chapter 6. Monogamy 120

Figure 6.2 LCC interaction model for service advertising

a(advertiser(Service-description),Advertiser) ::

advert(Service-description)⇒ a(matchmaker ,Matchmaker)

a(matchmaker,Matchmaker) ::

record(Service-description)←

advert(Service-description)⇐ a(advertiser ,Advertiser)

As an aside, we note here that there is another way for our matchmaker to discover

new services: from clients. Since a client can add a col(role, agent) fact to an

interaction’s common knowledge, a matchmaker could use this information to discover

new services. Services discovered in such a manner might well be better than average,

since a user would be unlikely to deliberately select services they were not familiar with.

6.2 A random matchmaker

Our first matchmaker will identify suitable service providers by filtering by requested

LCC role, and then select randomly from those filtered. We will name this algorithm

MATCHMAKEONE-RANDOM.

In the algorithm MATCHMAKEONE-RANDOM, the variable matchmaker holds the

state of the matchmaker. For the MATCHMAKEONE-RANDOM matchmaker, this will

be very straightforward: the matchmaker is represented as 〈A〉, where A is a mapping

Role 7→ P(Agent), from a role to the set of agents capable of fulfilling that role. This

relationship is constructed from the advertisements received by the matchmaker from

agents.

At this point, we introduce the running example we follow throughout this chapter,

and establish a baseline of behaviour with the random selection. Our scenario is familiar

to any user of the Web: calling a web search engine. As is well known, there are several

Chapter 6. Monogamy 121

Figure 6.3 MATCHMAKEONE-RANDOM algorithm

MATCHMAKEONE-RANDOM(interaction, matchmaker)

1 role ← ROLEREQUIRED(interaction)

2 candidates ← A(role) � A(role) is the list of agents providing role

3 return RECOMMENDONE-RANDOM(candidates)

RECOMMENDONE-RANDOM(candidates)

1 a ← RANDOM(1,LENGTH(candidates))

2 return candidates(a)

web search engines, all providing the same notional service, and with similar interfaces.

The conventional view of matchmaking is that these services would, once identified as

matching the client’s service request specification, provide essentially identical services.

We know from the history of web search that this is simply not the case. The engines

use different search algorithms, and cover different subsets of the web. Our hypothetical

user, Sergey the searcher, will be more satisfied by some than by others. Sergey executes

an interaction model WEB-SEARCH, shown in figure 6.4. In the interaction model’s

framework, the variable SE represents the search engine which will provide the service,

and will be selected by the matchmaker when the interaction is executed.

When Sergey (or his agent) executes the interaction, the LCC interpreter attempts to

send the message search(Query) to the search engine SE . Since SE is an unbound

variable, the recruit procedure is invoked locally. Sergey has not specified a search

engine in the interaction’s common knowledge K, so recruit involves a matchmaker to

find a suitable candidate. In this case, MATCHMAKEONE-RANDOM simply chooses

randomly from those search-engines that had advertised with it.

Our first experiment simply establishes a baseline of performance. We imagine six

search engines ‘Apropos’, ‘’bout’, ‘Comb’, ‘Discover’, ‘Expiscator’, and ‘Ferret’, with

average performances of 90, 85, 80 75, 70, and 65 respectively. When a search engine

Chapter 6. Monogamy 122

Figure 6.4 LCC interaction model for WEB-SEARCH scenario

a(searcher(Query), Searcher) ::

search(Query)⇒ a(search-engine, SE) then

use-result(Results)← results(Results)⇐ a(search-engine, SE)

a(search-engine, SE) ::

search(Query)⇐ a(searcher(Query), Searcher) then

results(Results)⇒ a(searcher(Query), Searcher)

← do-query(Query ,Results)

answers a query, its response is computed from its intrinsic performance as perturbed

by noise (with the noise drawn from a Gaussian distribution with σ = 10). For each

search engine, we run the WEB-SEARCH interaction 200 times. The client agent judges

an interaction’s outcome to be ‘good’ (records outcome(good)) if the returned value r

is greater than a value t, where t is a per-interaction random value drawn uniformly

from (0, 100). We performed a series of 200 runs for each of the six search engines, and

another 200 runs using the MATCHMAKEONE-RANDOM matchmaker. Each such trial

was done 30 times, and the results averaged.

We can easily predict the experiment’s outcome. The average outcome for any

interaction involving a given search engine ei is

ε[outcome] = Q(ei)

where Q(ei) is the ‘intrinsic quality’ of the engine ei. Since the random matchmaker

selects amongst the N engines with equal probability, the expected performance of the

random incremental matchmaker is

ε[outcome] =
∑
i

P (ei)Q(ei) =

∑
iQ(ei)

N

which is just the arithmetic mean of the Q of each engine. This result is borne out in

the graph of figure 6.6, which shows the performance of each service, and the random

Chapter 6. Monogamy 123

Figure 6.5 Intrinsic abilities of hypothetical web search engines

Service quality

P
ro

ba
bi

lit
y

0.00

0.01

0.02

0.03

0.04

0 20 40 60 80 100 120

● ● ● ● ● ● ●

●

●

●

●

●

●

apropos
bout
comb
discover
expiscator
ferret

●

matchmaker, through the series of interactions.

6.3 Adding the incidence calculus

Having established how we integrate LCC with a matchmaking process, we can now add

incidence calculus to the matchmaker. A matchmaker associates each LCC interaction it

is involved with an incidence calculus world, which we represent with a unique integer.

On the completion of a matchmaking session, the client reports to the matchmaker its

satisfaction, and the matchmaker records the features of interest from the interaction.

For the moment, these features are the name of the model involved and which agents

participated in which roles. Satisfaction is measured by a simple binary good/bad

decision, and represented as outcome(good) or outcome(bad). This gives us a set of

ground predicates, viz:

Chapter 6. Monogamy 124

Figure 6.6 WEB-SEARCH success: individual services and random matchmaking

Interactions

S
at

is
fa

ct
io

n
%

60

70

80

90

0 50 100 150 200 250

● ● ● ● ● ● ● ● ● ●

apropos
'bout
comb

discover
expiscator
ferret

MatchmakeOne−Random●

col(search-engine, ferret)

model(web-search)

outcome(good)

We can compare this with a web document, which is indexed as a list of words, and

index it just as a web search engine would. Formally, our matchmaker’s knowledge base

is now the tuple

matchmaker = 〈A, I〉

where A is, as before, the the mapping from a role to the agents capable of fulfilling

that role, and I is a mapping from each predicate to the list of incidences in which is

true. Below is an illustration of the implementation. On the left is a hash table keyed by

incidence calculus axiom, and on the right, lists of worlds in which each axiom is true:

Chapter 6. Monogamy 125

outcome(good) 1 3 5 7 9

outcome(bad) 2 4 6 8 10

model(m1) 1 2 . . . 9 10

col(r1,a1) 1 3 5 7 10

col(r1,a2) 2 4 6 8 9

The diagram shows a matchmaker which has been involved with interaction model

m1 ten times, and which has been informed by clients that agent a1 is significantly more

successful than agent a2 at fulfilling the role r1.

How do we take advantage of this database in selecting a service? When a client

queries the middle-agent for a service to fulfil role r, the matchmaker selects the service

which will maximise the probability of satisfying the client:

argmaxaP (outcome(good)|I, {col(r, a)} ∪ collaborators(I),matchmaker)

The algorithm for this operation MATCHMAKEONE-IC is shown in figure 6.7.

The RECOMMENDONE-IC procedure implements an approximate argmax operation.

Because the matchmaker must balance exploiting its knowledge with the need for

continued exploration of the available agents’ behaviour, it sometimes makes a non-

optimal choice. For the moment, we will use for RECOMMENDONE-IC a policy known

as ε-greedy (see section 7.4.2). With ε-greedy, we select the best agent with probability

1− ε, and randomly choose from the others with probability ε. In this chapter, we set

ε = 0.1. The WEIGHTEDSORT procedure called by RECOMMENDONE-IC is tweaked

so that services which have been rarely been tried are moved up the sort order, thus

forcing some exploration. For this chapter, services with less than ten interactions are

favoured.

Figure 6.8 shows the results of rerunning our web-search experiment with a match-

maker operating the incremental incidence calculus policy. We see MATCHMAKEONE-

IC modestly outperforms MATCHMAKEONE-RANDOM in the proportion of successful

Chapter 6. Monogamy 126

Figure 6.7 MATCHMAKEONE-IC algorithm (ε-greedy)

MATCHMAKEONE-IC(interaction, role, database)

1 collaborators ← CURRENTCOLLABORATORS(interaction)

2 candidates ← CAPABLEAGENTS(database, role)

3 for c ∈ candidates

4 do quality [c]← P (outcome(good)| col(role, c) ∪ collaborators)

5 return RECOMMENDONE-IC(candidates , quality)

RECOMMENDONE-IC(candidates , quality)

1 WEIGHTEDSORT(candidates ,quality) � Order best-first

2 r ← RANDOM(0.0,1.0)

3 if r > ε

4 then

5 return candidates[1]

6 else

7 c ← RANDOM(2,LENGTH(candidates))

8 return candidates[c]

Chapter 6. Monogamy 127

Figure 6.8 WEB-SEARCH selection under different policies

Interactions

S
uc

ce
sf

ul
 o

ut
co

m
e

%

60

70

80

90

0 50 100 150 200 250

●
● ● ● ● ● ● ● ● ●

MatchmakeOne−Random
MatchmakeOne−IC

MatchmakeOne−IC (last 50)
optimal

●

Interactions

O
pt

im
al

 c
ho

ic
e

%

0

20

40

60

0 50 100 150 200 250

●

● ● ● ● ● ● ● ● ● ●

MatchmakeOne−Random MatchmakeOne−IC MatchmakeOne−IC (last 50)●

The top plot shows the cumulative satisfaction of clients for the MATCHMAKEONE-

RANDOM and MATCHMAKEONE-IC algorithms. The ‘optimal’ line is the result of

always selecting the optimal service, ‘apropos’. The bottom plot shows the cumulative

percentage of selections of the optimal service, ‘apropos’. The ‘last 50’ lines are based

on the moving mean value over the preceding 50 interactions.

Chapter 6. Monogamy 128

interactions, because it is much more likely to select the optimal service for any given

interaction. Optimality is a useful metric: the success of an interaction is ultimately

dependent on the ability of the available services, so the best we can do is pick the

optimal services, even if they are less than perfect (or, indeed, they are little better than

the rest). For the MATCHMAKEONE-IC policy, optimal selection is depressed by two

factors:

1. The need to keep exploring: deliberately selecting sub-optimal services on

occasion, both to expand the services covered, and to track a (probably) changing

environment.

2. The algorithm itself settling prematurely on what it believes is the best service,

but in fact is not. The data shown in figure 6.8 is drawn from a total of 30 runs, of

which typically several will settle on a suboptimal service.

These behaviours are determined by the RECOMMENDONE-IC procedure.

6.4 Comparison to Zhang and Zhang

As noted in chapter 3, the first work to break out of the ‘description-only’ mind-set is

(Zhang and Zhang 2002). They too argued that matchmaking research had ignored the

possibility that agents might be selected on the basis of anything other than their own

advertisements and self-appraisals of their ability. Zhang and Zhang’s belief was that

agents would vary in what they call intrinsic ability to execute a task. They did not

consider that the agent would be negligent or wilfully dishonest in their service capability

description, nor that the description formalism would be insufficient. They worked with

an example of agents predicting future interest rates, positing several services which

offer such a service, with identical interfaces. The services use different algorithms to

generate their results: for example, a neural network and a genetic algorithm. Thus,

depending on the suitability of the implemented machine-learning algorithm to the

application, different performances will result.

Chapter 6. Monogamy 129

In this section, we look at the method adopted by Zhang and Zhang and compare it

to our incidence calculus matchmaker. Our aim is not to measure how much better one

is that the other, but to draw lessons about respective merits of the approaches in the

context of an open services environment.

6.4.1 The Zhang and Zhang matchmaker

The Zhang matchmaker executes a two-stage selection process. In the first phase,

filtering appropriate agents based on the service description, they use the nearest

neighbour model developed in the IMPACT project (Subrahmanian et al. 2000) (reviewed

in section 3.2). In the second stage, Zhang and Zhang’s matchmaker used records

track records for each service. A client reports satisfaction on a categorical scale:

strong-satisfaction, satisfaction, weak -satisfaction, neutral , weak -unsatisfaction,

unsatisfaction, and strong-unsatisfaction. Thus, each agent in the database can be

denoted 〈agent-name, services〉, where services is a set of tuples of the form

〈service-name, inputs , outputs , record〉

Thus each agent can offer many services, which are scored independently of one another.

The record is a set of pairs

〈invocation-number , satisfaction-rating〉

Once the FINDNEARESTNEIGHBOUR algorithm selects the set A of agents which might

satisfy the request, an ‘evaluation matrix’ is constructed:

M =

n11 n12 · · · n1k

n21 n22 · · · n2k

...
...

n71 n72 · · · n7k

strong-satisfaction

satisfaction

...

strong-unsatisfaction

The columns represents the agents in A, and the rows 1 . . . k are the satisfaction levels

strong-satisfaction through strong-unsatisfaction . Each entry nij represents number

Chapter 6. Monogamy 130

of agent j’s scores registered at satisfaction level i. The authors propose two algorithms

for selecting an agent using the evaluation table. The first is a simple set of rules:

MATCHMAKEONE-ZHANG(A)

1 if ∀j∃l.n1l ≥ n1j ∧ n5l = n6l = n7l = 0

2 then return Al

3 else if ∀j, k.n1j = n1k ∧ ∀j∃l.n2l > n2j ∧ nl5 = nl6 = nl7 = 0

4 then return Al

5 else if ∀j, k.njk = 0, j, k 6= 4

6 then return ChooseOneRandomly(A)

MATCHMAKEONE-ZHANG is the algorithm labelled ‘SELECTMOSTPROMISING’ in

(Zhang and Zhang 2002).

The alternative algorithms they proposed reduces the qualitative scores to numbers in

the interval [−1, 1] (why this is used, instead of the table shown above used to compute

the benchmark scores, is unexplained). The authors give a complicated algorithm

for dealing with this, but the essence is simple: sum the numerical scores for each

agent together, and select the highest scoring agent. They use an undefined function

ageing-check to make a binary decision on the currency of the agent’s track record data.

6.4.2 Initial values

When services are first registered with the matchmaker, their services histories are

naturally empty. Zhang and Zhang propose a benchmarking process in which the

matchmaker is trained with problems with known solutions, which the matchmaker

could repeatedly test its registered agents. Their benchmark problems come with

correct answers: the value of the service is computed by calculating the Euclidean

distance between an agent’s answer and the expected one, and mapping this to the

7-point satisfaction scale. A benchmark score is recorded as 〈0, Sbenchmark〉. A score

is computed by taking the Euclidean distance between an agent’s result Ai and the

Chapter 6. Monogamy 131

benchmark solution Bi for a task i. How this distance is normalised to or kept within

[0, 1] is not specified. The qualitative score is mapped to a number as an equal partition

of the interval [0, 1] as follows:

Distance Satisfaction

[0, 0.143] strong satisfaction

(0.143, 0.286] satisfaction

(0.286, 0.429] weak satisfaction

(0.429, 0.572] neutral

(0.572, 0.715] weak unsatisfaction

(0.715, 0.858] unsatisfaction

(0.858, 1.0] strong unsatisfaction

6.4.3 Experiment

We implemented the MATCHMAKEONE-ZHANG algorithm, and ran it on our web

search example. Figure 6.9 shows the results. We used two evaluation functions, which

are plotted as ‘MatchmakeOne-Zhang’ and ‘MatchmakeOne-Zhang-Optimistic’. In the

first, the search score is converted to a satisfaction rating using the following conversion

from the search engine’s result’s ‘quality’ to the satisfaction level:

Score Satisfaction

> 90% strong satisfaction

> 85% satisfaction

> 80% weak satisfaction

> 75% neutral

> 70% weak unsatisfaction

> 65% unsatisfaction

≤ 65% strong unsatisfaction

This algorithm under-performs incidence calculus for two reasons. The first is that

the simple algorithm MATCHMAKEONE-ZHANG is very sensitive to below-par ratings.

Chapter 6. Monogamy 132

After an initial good start, a few low ratings quickly reduce the algorithm to performing

random selection, and indeed the rate at which it selects the optimal search engine

converges with that of the random matchmaker. We can tweak the Zhang algorithm by

changing the satisfaction function to not report any level of ‘unsatisfaction’:

Score Satisfaction

> 90% strong satisfaction

> 85% satisfaction

> 80% weak satisfaction

≤ 80%% neutral

The line ‘zhang optimistic’ in figure 6.9 shows the improvement of this scheme.

The dependence on good initial values is high. There is no exploration after the initial

‘best’ service is found, so the initial values must be accurate. The ageing mechanism

does not help much here, because once there is a front-runner, that agent will accumulate

newer records faster than others. Because the algorithms do not attempt exploration, the

accuracy of the initial track records is crucial. There ought to be a mechanism to ensure

that the matchmaker continues to explore agents, both new entrants to the ‘market’, and

to check on older agents which may have improved their performance over time.

6.5 Discussion

The comparison between our incidence calculus and the Zhang system bring up several

points. First, in an open system, we cannot rely on a supply of high quality initial

values. This will be particularly true where money must be spent for a service to operate,

whether that is explicit, in the case of buying a flight, or in a more general sense like

invoking a computational expensive process or needing generate data. Instead, the

matchmaker must be capable of exploring the services itself. Secondly, the system

should not be overly sensitive to individual rankings. We cannot know how individual

clients will rate services, and we should not be thrown either by the occasionally bad

Chapter 6. Monogamy 133

Figure 6.9 Zhang and Zhang algorithm on the WEB-SEARCH task

Interactions

O
pt

im
al

 c
ho

ic
e

%

0

20

40

60

0 50 100 150 200 250

●

● ● ● ● ● ● ● ● ● ●

MatchmakeOne−Random
MatchmakeOne−IC
MatchmakeOne−IC (last 50)

MatchmakeOne−Zhang
MatchmakeOne−Zhang−Optimistic

●

The Zhang algorithm initially performs well, but quickly deteriorates due to its

over-sensitivity to occasional poor results. Using the ‘optimistic’ valuation, the

Zhang algorithm improves its performance significantly, quickly outperforming

MATCHMAKEONE-RANDOM and MATCHMAKEONE-IC, before plateauing. After

about 100 runs, however, it is again outperformed by MATCHMAKEONE-IC on the

moving average shown by the ‘MatchmakeOne-IC (last 50)’ line.

Chapter 6. Monogamy 134

performance from a particular service. The Zhang method suffers from both of these

problems, in comparison to our incidence calculus scoring.

However, the Zhang algorithm does have in its favour much lower storage require-

ments for track records. In needs to keep only seven numbers for every service: a count

of interactions at each satisfaction level. In contrast, the incidence calculus system

keeps a (small) record of every interaction. The MATCHMAKEONE-IC matchmaker

as demonstrated can be realised in much simpler and more efficient way, simply by

counting the good and bad outcomes. However, we show in the next chapter how the IC

approach easily extends to dealing with multi-party interactions.

A final question we raise here, but one for which we do not answer, relates to the

satisfaction rating itself. There are three issues:

1. Can clients be persuaded to report satisfaction?

2. How should we measure the satisfaction?

3. Are the clients’ ratings trustworthy?

The first question we must ask is whether users will be prepared to invest the effort to

report satisfaction. We cannot know this, but we may surmise from the ratings systems

used in sites like Amazon that many users would be prepared to do so. Moreover, in

many cases, the outcome of an interaction can be rated automatically: a computer

can easily rate an interaction as unsatisfactory if a timeout occurs, or a error is raised.

Contrarily, if the interaction runs to completion, and the end result is understandable,

then the machine can return a satisfactory rating.

The second issue of what metric we use is related to the first. It is easier to elicit

a simple yes/no answer than one which requires a user to value the response on a

scale of, say, 0 to 100. And, while finer grading levels lead to more precise rankings

from the viewpoint of individual clients, that information can be harder to use to reach

a consensus. Each client has different grading criteria, and some may mark more

extremely than others. A single bad rating from a harsh client might offset several votes

Chapter 6. Monogamy 135

from less extreme happy users. Using a simple good/bad rating gives every client or

interaction an equal say in ranking a set of services, and the final incidence calculus

score represents a consensus view of a collaboration’s adequacy. In an open system like

the Internet, broad agreement from many users in different context on which services

are good-enough may well prove more useful than more precise ratings which cannot be

generalised out of the context that produced them.

One may well question the veracity of the outcomes reported by clients. Most

obviously, they could be fraudulent, with malcontents marking down good services

and giving higher than justified ratings to their own services. For matchmakers serving

specialist communities such as bioinformatics, we might expect most users to be

trustworthy. For open matchmakers, and services with no cost or authentication

requirements, the problem of this kind of ‘spamming’ will be more serious. One way

around this could be to search the database for malicious patterns of behaviour. Although

we have not done so here, we could easily store details of clients’ identity with each

interaction record, and use this to curb individuals soiling the database.

6.6 Summary

In this chapter we integrated LCC with matchmaking and introduced a simple match-

maker using incidence calculus. The main points were:

• Introduction of a matchmaking model to LCC through an extension of the rewrite

rules for model interactions.

• Addition of a feedback mechanism through which clients could inform the

matchmaker of the success or otherwise of interactions resulting from the

matchmaker’s choice of services.

• Demonstration through the example of web search how performance can be

improved using this matchmaker.

Chapter 6. Monogamy 136

• Reconstruction of a seminal work in matchmaking (Zhang and Zhang 2002) in

our framework. We argued that it was unnecessarily arbitrary, and required high

quality initial values to offset its lack of exploration and harshness when dealing

with unsatisfactory outcomes.

• Observation that, for the single agent case, our approach using incidence calculus

is an expensive way of pursuing simple naive Bayes reasoning to find the

optimal service. The next chapter will show how it redeems itself in multi-

party interactions.

Chapter 7

Polygamy

In the last chapter, we examined the use of an incidence calculus database to select

individual services. The problem of matchmaking has historically been limited to finding

just one service at a time, but in this chapter we address the fact that many tasks require

the involvement of several agents. It is our thesis that in addition to agents’ individual

merits, overall success of an interaction will depend on how the agents interact. We

extend our incidence calculus matchmaker to cope with selecting multi-agent teams, and

illustrate its application in a Grid computing scenario. We then show the advantage of

using a full database of interaction histories compared to simply maintaining a record

of individual service performance in the multi-party case. Later in the chapter, we

briefly look at using the same approach to selecting role definitions when dynamically

constructing protocols. We finish by highlighting the connections between the incidence

calculus matchmakers and both information retrieval and reinforcement learning.

7.1 Building a team

Let’s look at an example of how our approach would work in a hypothetical scenario

on the Grid (figure 7.1). We imagine that Astrid, an astronomer, is attempting to find

and visualise a suspected black hole in a region of space around the object Cygnus

X-1. The voluminous data about this segment of space is kept in a very large file

137

Chapter 7. Polygamy 138

Figure 7.1 A Grid workflow in the astronomical domain

‘cygnusx -1 ’, which is stored at numerous repositories, all of which can fill the role

astronomy-database1. Astrid uses an LCC interaction to copy this raw data from

the database to a computationally intensive service called black -hole-finder which

determines if there is a black hole present. The black -hole-finder , if successful, will

send the processed data (now refined and significantly smaller) back to Astrid, who can

use it to create a visualisation. The interaction model for this BLACK-HOLE-SEARCH

workflow is shown in figure 7.2.

The conceit on which this example hangs is that network bandwidth between various

pairs of black -hole-finder and astronomy-database is not uniform, and sometimes

insufficient for the interaction to complete in a timely enough manner for Astrid to

be satisfied. Since bandwidth information between two ostensibly unrelated services

is not a property of the individual services, and in any case is not available to the

engineers providing and describing the individual services, it is not declared in the

service advertisement. In practice this kind of knowledge is unknowable—since the

service provider cannot know apriori who might use their service or where and how

they connect to it—and hence could not be declared to the matchmaker by any of the

individual services in their advertisements. Figure 7.3 shows the network connectivity

available between the various databases and compute servers we provide in this example.

Note that LCC is used only to coordinate the interaction: when domain-specific protocols,

such as Grid FTP, are available and more appropriate, they are used to perform the heavy

1One might object that not all such databases might hold that particular file. We can ignore ignore
this for our purposes: the solution is to construct a set of databases which do have the file, and for the
matchmaker to consider only those. This could be done by the client ‘out of band’, by the client after
augmenting the interaction model to include a search for appropriate databases, or by an extension to the
matchmaker. The end result would be a list of services able to discharge the astronomy-database role
being added to the common knowledge which the matchmaker could use to narrow the query.

Chapter 7. Polygamy 139

Figure 7.2 LCC interaction model for the Astrogrid scenario

a(astronomer(File),Astronomer) ::

search(File)⇒ a(black -hole-finder ,BHF) then

visualise-black -hole(Data)←

black -hole-data(Data)⇐ a(black -hole-finder ,BHF)

a(black -hole-finder ,BHF) ::

search(File)⇐ a(astronomer(File), Astronomer) then

grid -ftp-get(File)⇒ a(astronomy-database,AD) then

grid -ftp-sent(File)⇐ a(astronomy-database,AD) then

black -hole-data(Data)⇒ a(astronomer,Astronomer)

← black -hole-search(File,Data)

a(astronomy-database,AD) ::

grid -ftp-get(File)⇐ a(black -hole-finder ,BHF)

grid -ftp-sent(File)⇒ a(black -hole-finder ,BHF)←

grid -ftp-send(File,AD)

Chapter 7. Polygamy 140

lifting by satisfying the appropriate constraint grid -ftp-send in the astronomy-database

role.

Figure 7.3 Astrogrid services’ network bandwidth

Black hole finders

A
st

ro
no

m
ic

al
 d

at
ab

as
es

GREENWICH

HERSCHEL

KECK

BARCELONA HPCX SDSC

0

1

2

3

4

5

6

7

8

Megabytes of network bandwidth available for sending data from the astronomy database

services to the computation servers running the black-hole finding code.

This example is different from the WEB-SEARCH model in that we must recruit

multiple kinds of services in one interaction. We can solve this in two ways. The first is

repeated application of our MATCHMAKEONE-IC or MATCHMAKEONE-RANDOM

procedures which select a single service at a time, calling the matchmaker as the services

are required by the interaction. The second is to make a selection for every role in the

model at once, in a single matchmaking operation. For this, we introduce the procedure

MATCHMAKEALL-IC.

Chapter 7. Polygamy 141

MATCHMAKEALL-IC calculates the joint distribution for all possible permutations

of agents in their respective roles, selecting the grouping with the largest probability of a

good outcome. Formally, we compute

argmaxCP (outcome(good)|I, C ∪ collaborators(I),matchmaker)

where C is the set of collaborators {col(ri, aj)} for the currently unfilled roles in the

interaction I . collaborators(I) is the set of collaborators already determined for the

interaction. In the Astrogrid model, it is more concretely:

argmax{s1,s2}P

 outcome(good)|I,matchmaker ,

{col(astronomy-database, s1), col(black -hole-finder , s2)}

The already selected collaborators collaborators(I) may have been chosen through

early matchmaking events, or because one of the clients explicitly selected a collaborator

by inserting into the interaction’s common knowledge a statement such as:

known(matchmaker , collaborator(black -hole-finder , hpcx))

As an aside—we do not implement or use it in this thesis—a simple extension would

allow a client to bar specific service from participation by adding statements of the form

known(matchmaker , not(collaborator(Role,Agent)))

to the common knowledge. The pseudocode for MATCHMAKEALL-IC is shown in

figure 7.4.

We could introduce MATCHMAKEALL-RANDOM but refrain from doing so, since

its behaviour in terms of selecting services is not interestingly different from repeated

applications of MATCHMAKEONE-RANDOM. In our naming convention, we are

deviating from the traditional meaning of the terms ‘matchmake one’ and ‘matchmake

all’ as used in, for example, the KQML/FIPA-ACL terminology. There, the ‘one’ refers to

a request for the matchmaker to select a single agent matching the requirement, and ‘all’

Chapter 7. Polygamy 142

Figure 7.4 MATCHMAKEALL-IC algorithm

MATCHMAKEALL-IC(interaction, database)

1 roles ← UNFILLEDROLES(interaction)

2 collaborators ← CURRENTCOLLABORATORS(interaction)

3 candidates ← ALLCOLLABORATIONS(database, roles , collaborators)

4 for C ∈ candidates

5 do quality [C]← P (outcome(good)|C ∪ collaborators)

6 return RECOMMENDALL-IC(candidates , quality)

RECOMMENDALL-IC(candidates , quality)

1 WEIGHTEDSORT(candidates ,quality) � Order best-first

2 r ← RANDOM(0.0,1.0)

3 if r > ε

4 then return candidates[1]

5 else c ← RANDOM(2,LENGTH(candidates))

6 return candidates[c]

RECOMMENDALL-IC is essentially identical to RECOMMENDONE-IC, except that

it selects sets of collaborators instead of individuals. UNFILLEDROLES returns a set

of those roles defined in the model but currently without a matching col(r, a) in the

interaction’s common knowledge.

Chapter 7. Polygamy 143

directs the matchmaker to forward all suitable advertisements to the client, so the client

may perform the final selection itself. Here, we use ‘one’ to mean the selection of a

single service for the current unfilled role, but ‘all’ to mean selecting one service for

each of the unfilled roles in an interaction.

Filling more than one role at a time requires a modification to the the rewrite rules of

figure 6.1. The modification is limited to the recruit function used in the proaction rule.

In the monogamous case, recruit knows the role which needs to be filled, since it is

available as a variable in the rewrite rule. To extend it to polygamy, we can remove

the explicit mention of the role immediately at hand, and have recruit inspect the

interaction to determine the unfilled roles (UNFILLEDROLES in the MATCHMAKEALL-

IC algorithm in figure 7.4). Since the recruit function’s behaviour is (in principle)

selectable by the agent executing the LCC interaction, the agent can retain control over

the policy, at least to the extent that its chosen matchmaker will cooperate in such a

policy.

Returning to our BLACK-HOLE-SEARCH example, we can compare the performance

of our two incidence calculus based algorithms against random selection. The model

itself was introduced back in figure 7.2. For this experiment, we ran each matchmaker

policy with 250 interactions, and for statistical stability in the results, each such trial

was run 30 times and averaged. Satisfaction was determined by randomly selecting a

file size for the astronomical dataset: if the file size exceeds the network bandwidth

between the two selected service, Astrid is unhappy. The file size is drawn from a

uniform distribution between 0 and 12Mb, compared with the 0-8Mb of the available

network bandwidths2.

The plots in figure 7.5 show the comparative rates of satisfaction of the client, and of

selecting the optimal service pairing. In this case, although MATCHMAKEONE-IC and

MATCHMAKEALL-IC reach comparable levels of satisfaction, their optimality levels

are significantly different. This is accounted for by the fact that MATCHMAKEONE-IC

2For simplicity, we assume that the transfer must happen within a second: we could trivially scale the
numbers to more realistic values.

Chapter 7. Polygamy 144

is selecting the first requested service (astronomy-database) greedily, and that for

two such databases (keck and herschel), there is a good but not optimal pairing with

black -hole-finderservice sdsc.

After a few interactions, the matchmaker’s database might look like this:

i(model(BLACK-HOLE-SEARCH), {1, 2, . . . , 24})

i(outcome(good), {2, 5, 6, 7, 9, 10, 11, 13, 14, 16, 17, 18, 20, 21, 24})

i(col(astronomy-database, greenwich), {1, 6, 11, 13, 17, 21, 22})

i(col(astronomy-database, herschel), {3, 7, 8, 9, 12, 16, 18, 20})

i(col(astronomy-database, keck), {2, 4, 5, 10, 14, 15, 19, 23, 24})

i(col(black -hole-finder , barcelona), {3, 4, 8, 11, 19, 22})

i(col(black -hole-finder , hpcx), {1, 7, 9, 10, 12, 13, 16, 21, 24})

i(col(black -hole-finder , sdsc), {2, 5, 6, 14, 15, 17, 18, 20, 23})

We can see the importance of the interaction of the services by noting that the barcelona

supercomputer is relatively unsuccessful compared to its rivals:

i(col(black -hole-finder , barcelona) ∧ outcome(good)) = {11}

p(outcome(good)| col(black -hole-finder , barcelona)) =
1

6

i(col(black -hole-finder , hpcx) ∧ outcome(good)) = {7, 9, 10, 13, 16, 21, 24}

p(outcome(good)| col(black -hole-finder , barcelona)) =
7

9

i(col(black -hole-finder , sdsc) ∧ outcome(good)) = {2, 5, 6, 14, 17, 18, 20}

p(outcome(good)| col(black -hole-finder , barcelona)) =
7

9

This is not because it is a worse supercomputer than sdsc or hpcx , but because its

connection to the available databases is limited.

Chapter 7. Polygamy 145

Figure 7.5 Astrogrid selection

Interactions

S
at

is
fa

ct
io

n
%

0

20

40

60

0 50 100 150 200 250

●

● ● ●
● ● ● ● ● ● ●

MatchmakeOne−Random
MatchmakeOne−IC
MatchmakeAll−IC

MatchmakeOne−IC (last 50)
MatchmakeAll−IC (last 50)
optimal

●

Interactions

O
pt

im
al

 c
ho

ic
e

%

0

20

40

60

80

0 50 100 150 200 250

●

● ● ● ● ● ● ● ● ● ●

MatchmakeOne−Random
MatchmakeOne−IC
MatchmakeAll−IC

MatchmakeOne−IC (last 50)
MatchmakeAll−IC (last 50)

●

Chapter 7. Polygamy 146

7.2 Better than (naive) Bayes

As noted in chapter 6, maintaining the entire database of interactions is much more

memory intensive than a simpler mechanism of keeping a count of successful and

unsuccessful interactions per service. The computational cost in using it is also

considerable. In this section, we contrast the incidence calculus matchmakers with

comparable ones which use a naive Bayes model of the services’ abilities which keep

track only of individual services’ success rates.

Our incidence calculus matchmaker is effectively computing the Bayesian ‘maximum

likelihood’ hypothesis, where the ‘hypothesis’ is the agent or agents that can be selected

at the current point in time. This hypothesis hML is computed by finding the hypothesis

resulting in the highest probability given the data D

hML = argmaxhP (h|D)

For our matchmakers, this is

hML = argmaxhP (h|P , collaborators , database)

where the hypothesis has the form

h = outcome(good), newcollaborators

and the newcollaborators being the services we are to matchmake. Computing this hML

is known as ‘brute force’ Bayes classification, and the incidence calculus procedures do

precisely this.

Because of its expense, the exact Bayesian computation is often approximated by a

‘naive Bayes’ classifier (Mitchell 1997). A naive Bayes classifier makes the assumption

of independence between the random variables, that in general P (x, y) = P (x)P (y).

Where the Bayesian (and incidence calculus) calculation would know the exact

probability of a successful outcome for a given set of collaborators, a naive Bayesian

calculation would simply take the product of the individual services’ probabilities. For

Chapter 7. Polygamy 147

example, where IC would calculate the probability

P (outcome(good) ∧ col(r1, a1) ∧ col(r2 , a2) ∧ · · ·)

the naive Bayes classifier settles for

∏
i

P (outcome(good), col(ri, ai))

This allows complex statements of the form found in our matchmaker queries to be

computed without succumbing to the ‘curse of dimensionality’, either in computational

expense (calculating the exact sets which apply under all the conditions) or in sparsity of

data. On the flip side, naive Bayes becomes increasingly inaccurate as its independence

assumption is violated. As we argued in chapter 4, and ensured in the Astrogrid scenario,

assuming agents’ ability to be independent of that of other agents is optimistic.

7.2.1 Naive Bayes matchmakers

We now introduce two algorithms using Naive Bayes, MATCHMAKEONE-BAYES and

MATCHMAKEALL-BAYES. Figure 7.6 shows the pseudocode. The implementation

of MATCHMAKEONE-BAYES is obvious: we evaluate the numerical probability of

success for each individual service, and select the one with the greatest likelihood

(subject to some randomness to drive exploration). MATCHMAKEALL-BAYES functions

simply by repeatedly invoking MATCHMAKEONE-BAYES for each of the roles returned

by UNFILLEDROLES. This is, after all, simply the application of the naive Bayes

assumption that each choice is independent of the others.

7.2.2 Experiment

We rerun the experiment of the previous section, comparing naive Bayes selection

with the results from the incidence calculus matchmakers. Figure 7.7 compares the

satisfaction and optimality outcomes between the incidence calculus algorithms and

the Bayes matchmaker. As can be seen from the graph, Bayes certainly improves over

Chapter 7. Polygamy 148

Figure 7.6 MATCHMAKEONE-BAYES and MATCHMAKEALL-BAYES algorithms

MATCHMAKEONE-BAYES(interaction, role, database)

1 candidates ← CAPABLEAGENTS(database, role)

2 for c ∈ candidates

3 do quality[c]← P (outcome(good)| col(role, c))

4 return RECOMMEND-BAYES(candidates ,quality)

MATCHMAKEALL-BAYES(interaction, database)

1 roles ← UNFILLEDROLES(interaction)

2 for r ∈ roles

3 do

4 candidates ← CAPABLEAGENTS(database, role)

5 for c ∈ candidates

6 do quality[c]← P (outcome(good)| col(r , c))

7 collaborators[r]← RECOMMEND-BAYES(candidates ,quality)

8 return collaborators

RECOMMEND-BAYES(candidates , quality)

1 WEIGHTEDSORT(candidates ,quality) � Order best-first

2 r ← RANDOM(0.0,1.0)

3 if r > ε

4 then

5 return candidates[1]

6 else

7 c ← RANDOM(2,LENGTH(candidates))

8 return candidates[c]

Chapter 7. Polygamy 149

random selection, but significantly less than incidence calculus. In figure 7.8, we can

see the number of times each pairing of astronomy-database and black -hole-finder

services is selected by each matchmaker policy. Both the IC policies, and Bayes, have

discovered that the Barcelona supercomputer is a bad choice, but Bayes displays less

discrimination on the other choices, lowering its overall performance.

7.2.3 Service preselection

We now consider a variation on the Astrogrid scenario that shows more clearly the

benefit to the incidence calculus approach. As we noted in the previous chapter, a client

can preselect collaborators by modifying the interaction’s common knowledge. An

example of this might be a client booking a trip involving flight: if the client were

accumulating frequent fly miles with a particular airline, it could specify that airline

be used, and the matchmaker would work around this choice. This mechanism also

allows us to direct the matchmaker’s search: selecting a particular agent suggests that the

client wants similar agents, from the same social pool, for the other roles. For example,

in a peer-to-peer search, by selecting an agent the client suspects will be helpful in a

particular enquiry, the broker can find further agents that are closely ‘socially’ related to

that first one.

Returning to our astronomer, suppose Astrid must use a particular compute server,

perhaps because the operation is expensive and her grant will only stretch to paying for

computer time at an affiliated institution. She would add a fact like the following to the

common knowledge:

known(matchmaker , collaborator(black -hole-finder , hpcx))

informing the matchmaker, and any other collaborating agents, that she intends to

use the UK’s HPCX supercomputer. For our experiment, every interaction is started with

a preselected black -hole-finder , randomly chosen from {hpcx , barcelona, sdsc}. The

matchmaker should then select a service which works well with that one. Figure 7.9

Chapter 7. Polygamy 150

Figure 7.7 Astrogrid selection with Naive Bayes

Interactions

S
at

is
fa

ct
io

n
%

0

20

40

60

0 50 100 150 200 250

●

● ● ●
● ● ● ● ● ● ●

MatchmakeOne−Random
MatchmakeOne−IC
MatchmakeAll−IC

MatchmakeOne−Bayes
optimal

●

Interactions

O
pt

im
al

 c
ho

ic
e

%

0

10

20

30

40

50

0 50 100 150 200 250

●

● ● ● ● ● ● ● ● ● ●

MatchmakeOne−Random
MatchmakeOne−IC

MatchmakeAll−IC
MatchmakeOne−Bayes

●

Chapter 7. Polygamy 151

Figure 7.8 Astrogrid service selection patterns

GREENWICH

HERSCHEL

KECK

BARCELONA HPCX SDSC

0

20

40

60

80

100

GREENWICH

HERSCHEL

KECK

BARCELONA HPCX SDSC

0

20

40

60

80

100

ONE-IC ALL-IC

GREENWICH

HERSCHEL

KECK

BARCELONA HPCX SDSC

0

20

40

60

80

100

GREENWICH

HERSCHEL

KECK

BARCELONA HPCX SDSC

0

20

40

60

80

100

ONE-BAYES ONE-RANDOM

Chapter 7. Polygamy 152

shows the results for satisfaction and optimality. Now, naive Bayes performs at a level

little better than random selection. The relative selection rates plotted in figure 7.10

show that the Bayes matchmaker, due to the naive Bayes assumption of independence,

does not deal well with the user pre-selecting some of the services.

Chapter 7. Polygamy 153

Figure 7.9 Astrogrid with preselected computation server

Interactions

S
at

is
fa

ct
io

n
%

0

10

20

30

40

0 50 100 150 200 250

●

● ● ● ● ● ● ● ● ● ●

MatchmakeOne−Random
MatchmakeOne−IC
MatchmakeAll−IC

MatchmakeOne−Bayes
optimal

●

Interactions

O
pt

im
al

ity
 %

0

20

40

60

80

100

0 50 100 150 200 250

●

●
● ● ● ● ● ● ● ● ●

MatchmakeOne−Random
MatchmakeOne−IC
MatchmakeAll−IC

MatchmakeOne−Bayes
optimal

●

Chapter 7. Polygamy 154

Figure 7.10 Astrogrid service selection with preselected compute server

GREENWICH

HERSCHEL

KECK

BARCELONA HPCX SDSC

0

20

40

60

80

100

GREENWICH

HERSCHEL

KECK

BARCELONA HPCX SDSC

0

20

40

60

80

100

ONE-IC ALL-IC

GREENWICH

HERSCHEL

KECK

BARCELONA HPCX SDSC

0

20

40

60

80

100

GREENWICH

HERSCHEL

KECK

BARCELONA HPCX SDSC

0

20

40

60

80

100

ONE-BAYES RANDOM-ONE

Chapter 7. Polygamy 155

7.3 Selecting roles

We have seen how to use performance histories to improve the selection of teams of

agents. We now sketch how we can apply the same technique to select the interaction

patterns themselves. Just as there are many agents capable of performing a given task

(that is, fulfilling a role), so there are many sequences of actions which can lead to

the achievement of a task. An interaction model is composed of several roles, which

interact when messages are sent between agents. For some workflows where roles can

be considered as ‘subroutines’ in a larger workflow, with clearly defined inputs and

outputs and no interaction with other parts of the workflow, we can interchange role

definitions. For instance, in a scientific setting, the preprocessing of a dataset prior to its

use in the main workflow could be seen in this way.

We can structure a task in multiple ways, and we can expect that some of these will

be more likely than others to produce pleasing outcomes. Roles consist of an ordering

of messages, together with constraints, and moves to other roles. It might be the case

that just changing the ordering might make a large difference. For instance, if one is

arranging to travel to a concert, it is usually preferable to obtain event tickets first then

organise transport, since ticket availability is usually more constrained.

In the same way we added collaborations to the rewrite rules, we also modify the

rules to account for the dynamic addition of roles to the interaction model. The rules in

full are shown in figure 7.11. The principle addition is the enrole function, in the def

rule, which selects a role definition, if necessary, and adds it to the model P, producing

an extended model P ′. Other rules are modified as necessary to ensure the modified

protocols P ′ are propagated through the evaluations.

The role selecting algorithms are straightforward counterparts to their service

selecting brethren. EMBELLISHONE works similarly to MATCHMAKEONE, adding role

definitions to the protocol as those roles are required at run-time. We have not provided

equivalent to RECRUIT-ALL, since this can inflate protocols with many roles that will

Chapter 7. Polygamy 156

remain unused.

7.3.1 Experiment

In our example, we take the problem of booking a trip involving obtaining flight and

hotel room reservations. The LCC model is shown in figure 7.12, which makes reference

to a travel -agent role, but contains no matching role definition. Figure 7.13 shows two

alternative definitions for travel -agent : flight-then-hotel and hotel -then-flight . These

definitions are denoted in a form like:

role(flight-then-hotel) ≡ a(travel -agent , Agent) ::

where flight-then-hotel is the name of a role definition that can be used place of the

role travel -agent . For the purpose of this experiment, we suppose that it is a preferable

course of action to book the flight then the hotel room, reasoning that hotel room costs

are more flexible than flight costs.

Specifically in this experiment, we begin with a budget of £400, and assume that a

flight always costs £250. The room booking service manages to find rooms at a cost of r

times the proffered budget, where r is drawn from a uniform random distribution of

[0.3, 0.6]. Thus, if the room is booked first, it will cost on average £200, and the flight

will then be unaffordable. Booking the flight and then the room will result in a total cost

of £300 on average (and presumably correspondingly less salubrious accommodation).

As usual, we ran a total of 30 trials, each with 250 interactions. Figure 7.14 shows the

results, which again show the potential benefit of a matchmaker using experience to

improve its performance in selecting role definitions.

Chapter 7. Polygamy 157

Figure 7.11 LCC rewrite rules for role selection
This set of rewrite rules extend those introduced in figure 6.1 to enable role selection

at runtime. We incorporate the change to the role parameter to recruit mentioned in

section 7.1. The rule def houses the enrolement machinery, in the form of the enrole

function. enrole produces a new protocol P+ containing the new role definition (if

necessary), and the evaluation of the role body occurs in the context of this new model,

eventually producing a P ′. Other rules have been modified as necessary to propagate the

modified models P ′ as they may arise.

B
Mi,Mo,P+,P ′,C,O−−−−−−−−−−→ E P+ = enrole(P , R)

a(R, I) :: B
Mi,Mo,P,P ′,C,O−−−−−−−−−→ a(R, I) :: E

def

A1
Mi,Mo,P,P ′,C,C′,O−−−−−−−−−−−→ E ¬ closed (A2)

A1 or A2
Mi,Mo,P,P ′,C,C′,O−−−−−−−−−−−→ E

or 1

A2
Mi,Mo,P,P ′,C,C′,O−−−−−−−−−−−→ E ¬ closed (A1)

A1 or A2
Mi,Mo,P,P ′,C,C′,O−−−−−−−−−−−→ E

or 2

A1
Mi,Mo,P,P ′,C,C′,O−−−−−−−−−−−→ E

A1 then A2
Mi,Mo,P,P ′,C,C′,O−−−−−−−−−−−→ E then A2

then 1

A2
Mi,Mo,P,P ′,C,C′,O−−−−−−−−−−−→ E closed (A1) collaborators(A1) = C

A1 then A2
Mi,Mo,P,P ′,C,C′,O−−−−−−−−−−−→ A1 then E

then 2

(M ⇐ A) ∈Mi satisfied(C)

C ←M ⇐ A
Mi,Mi\{M⇐A},P,C,∅−−−−−−−−−−−−→ closed(M ⇐ A, C)

reaction

satisfied(C) C ′ = recruit(P , C, unfilled -roles(P))

M ⇒ A← C
Mi,Mi,P,C,C′,{M⇒A}−−−−−−−−−−−−−→ closed(M ⇒ A, C ′)

proaction

satisfied(C)

null← C
Mi,Mi,P,C,∅−−−−−−−→ closed(null, C)

end

clause (P , C, a(R, I) :: B) satisfied(C)

a(R, I)← C
Mi,Mo,P,P ′,C,∅−−−−−−−−−→ a(R, I) :: B

role

Chapter 7. Polygamy 158

Figure 7.12 Booking a trip with LCC

a(traveller ,Traveller) ::

book -holiday(Src,Dst , Start ,End ,Money)⇒ a(travel -agent ,Agent)

← travel -details(Src,Dst , Start ,End ,Money) then booking(Start ,End ,Cost)⇐ a(travel -agent ,Agent) then

matchmaking(good)⇒ a(matchmaker ,matchmaker)

 or

 failure ⇐ a(travel -agent ,Agent) then

matchmaking(bad)⇒ a(matchmaker ,matchmaker)

a(hotel,Hotel) ::

book -hotel(Location, Start ,End ,Money)⇐ a(Role,Agent) then

room-available(Location, Start ,End ,Money ,Cost)⇒ a(Role,Agent)

← room-available(Location, Start ,End ,Money ,Cost) or

no-vacancy ⇒ a(Role,Agent)

a(airline, Airline) ::

book -flight(Src,Dst , Start ,End ,Money)⇐ a(Role,Agent) then

flight-available(Src,Dst , Start ,End ,Money)⇒ a(Role,Agent)

← flight-available(Src,Dst , Start ,End ,Money) or

no-flights ⇒ a(Role,Agent)

a(matchmaker ,matchmaker) ::

record -matchmaking-outcome(Outcome)

← matchmaking(Outcome)⇐ a(Role,Agent)

Chapter 7. Polygamy 159

Figure 7.13 Alternative travel agent role definitions

role(flight-then-hotel) ≡ a(travel -agent , Agent) ::

book -holiday(Src,Dst , Start ,End ,Money)⇐ a(client ,Client) then

book -flight(Src,Dst , Start ,End ,Money)⇒ a(airline,Airline) then no-flights ⇐ a(airline,Airline) then

failure ⇒ a(client ,Client)

 or

flight-booking(Flight-Cost)⇐ a(airline,Airline) then

flight-available(Src,Dst , Start ,End ,Money)⇐ a(airline,Airline) then

book -hotel(Location, Start ,End ,Money)⇒ a(hotel ,Hotel)

← is(Money-Left ,Money −Flight-Cost) then
hotel -booking(Hotel -Cost)⇐ a(hotel ,Hotel) then

booking(Total -Cost)⇒ a(client ,Client)

← is(Total -Cost ,Flight-Cost + Hotel -Cost)

 or

 no-vacancy ⇐ a(hotel ,Hotel) then

failure ⇒ a(client ,Client)

role(flight-then-hotel) ≡ a(travel -agent , Agent) ::

book -holiday(Src,Dst , Start ,End ,Money)⇐ a(client ,Client) then

book -flight(Src,Dst , Start ,End ,Money)⇒ a(airline,Airline) then no-flights ⇐ a(airline,Airline) then

failure ⇒ a(client ,Client)

 or

flight-booking(Flight-Cost)⇐ a(airline,Airline) then

flight-available(Src,Dst , Start ,End ,Money)⇐ a(airline,Airline) then

book -hotel(Location, Start ,End ,Money)⇒ a(hotel ,Hotel)

← is(Money-Left ,Money −Flight-Cost) then
hotel -booking(Hotel -Cost)⇐ a(hotel ,Hotel) then

booking(Total -Cost)⇒ a(client ,Client)

← is(Total -Cost ,Flight-Cost + Hotel -Cost)

 or

 no-vacancy ⇐ a(hotel ,Hotel) then

failure ⇒ a(client ,Client)

Chapter 7. Polygamy 160

Figure 7.14 Role selection

Interactions

S
at

is
fa

ct
io

n
%

0

20

40

60

80

100

0 50 100 150 200 250

●

● ● ● ● ● ● ● ● ● ●

EnroleOne−Random EnroleOne−IC optimal●

Interactions

O
pt

im
al

 c
ho

ic
e

%

0

20

40

60

80

0 50 100 150 200 250

●

● ● ● ● ● ● ● ● ● ●

EnroleOne−Random EnroleOne−IC●

The top plot shows client satisfaction for ENROLEONE-RANDOM and ENROLEONE-IC.

The ‘optimal’ line shows satisfaction for clients which always preselect the optimal

role definition (flight-then-hotel). The bottom plot shows how often the ENROLEONE-

RANDOM and ENROLEONE-IC select the optimal role. Results are averaged over

30runs.

Chapter 7. Polygamy 161

7.4 Connections

In this section, we highlight the connections between our approach and work in other

fields. We said earlier that our approach was comparable with the information retrieval

model used for decades to find documents matching keyword queries. Having laid out

the details of our approach, we can now make this analogy more precise. We also touch

base with reinforcement learning, which informs how we balance exploitation of the

database with the need to continue exploring new service combinations and revisiting

others which may have changed their competence over time.

7.4.1 Information retrieval

Information retrieval (IR) (Baeza-Yates and Ribeiro-Neto 1999; Witten, Moffat, and

Bell 1999) deals with the searching of a collection of documents for those which match

a given query. The documents may be images, sounds, videos, or other media. Most

commonly, however, they are text. Likewise, the queries may take different forms, but

again the usual case is a short list of words. The most commonly used information

retrieval systems today are web search engines, and they form both an inspiration for

our approach and the touchstone for the comparison in this section.

In an information retrieval system, the user issues a query q, from a the set of all

possible queries Q. The IR system locates an ‘answer set’ Aq of documents from the

complete set of documents in its database, D. The query is a list of keywords which the

user believes models the set of documents she is interested in. In the simplest case, the

answer set Aq is the set of documents which contain all the keywords. A slight extension

is to allow the user to specify keywords which should not be present in the answer set. A

query is then a composite of the required terms q+ and the tabu terms q−. Such queries

are known as ‘boolean’, since the terms must be either be present or not present.

The implementation of such a retrieval system is straightforward, at least at the

abstract level, although optimisation is always a large and complicating factor in real-

Chapter 7. Polygamy 162

world systems. Each document d in the set D is dealt with as a set of keywords, usually

after some preprocessing to remove the most common terms like ‘the’, ‘a’ etc, and often

to stem or conflate similar words e.g. transforming ‘running’ and ‘ran’ to ‘run’. The

system defines a ‘lexicon’ T of words or terms which will be indexed. Each document d

is allocated a unique integer identifier, and for each unique term t ∈ T in d, the identifier

for d is added to the list of documents for t. The result is an ‘inverted index’3 for the

keywords with pointers to the containing documents.

The similarity to our matchmaker is clear. If we substitute the document set for

an interaction set and individual collaborations for keyword terms, we can see that

the two indexes are essentially the same. Query construction is somewhat different:

instead of requesting an answer set of documents for a single query, we build a set

of queries where we consider a fixed core consisting of the current interaction’s prior

commitments to collaborators, and a variable component identifying each of the possible

new collaborators for the unfilled role or roles under consideration. Further, the answer

set itself is not of interest, but the relative size of the sets.

Although simple to understand, and the basis for our matchmaker, the boolean

model is not much used in current IR systems, since it is too blunt a tool. Keyword

matches are all or nothing, and do not account for multiple occurrences of terms in

a single document, which would usually indicate a stronger match. Most modern IR

systems, such as Google (Brin and Page 1998) are based on a vector space model, which

measures the ‘similarity’ between query and documents sim(~q, ~dj). In boolean searches,

documents (and queries) are represented as sets of terms, but they can equivalently be

represented by |T | dimensional vectors, where each dimension is associated with a term

t ∈ T , and the value of a given dimension is 1 if the term is present and 0 otherwise. In

a vector space model, this is generalised so that vectors are measured as real values, not

as booleans. This enables multiple occurrences of a term to be recorded and used to

measure relevance, and for matches to be less than 100%. A match is defined via some
3This being the conventional term, although it is not actually an inverted index, but an inverted file, or

an index.

Chapter 7. Polygamy 163

similarity metric between the vector standing for the query, and the vectors representing

each document. The simplest measure is Euclidean distance:

sim(~q, ~d) = (
∑
t∈q

~qt − ~dt)
(1/|T |)

A more common measure is the angle between the query and the query and document

(actually the cosine of that angle):

sim(~q, ~d) =
~q · ~d
|~q| × |~d|

This can be further refined by accounting for the relative frequencies of terms

in the documents and the document collection. A vector representing d a document

comprises weights wd,t, that is, a measure of the prominence of term t in d. This weight

is influenced by the intra-document frequency of t in d, or ‘term-frequency’ and denoted

tf d,t. tf d,t is usually the number of times t occurs in d (n(d, t)), and scaled. One might

scale over all words in the document n(d, t)/
∑

t∈T n(d, t), or by the term occuring

most often n(d, t)/maxt∈T (d, t)

Analysis of the whole document collection D reveals which terms are most able to

differentiate between clusters, and are thus of greater weight in the query. The ‘inverse

document frequency’ (IDF) of a term idf t is

idf t = log
|D|
nt

where nt is the number of documents in which t occurs. Finally, the term frequency and

inverse document frequency are often combined to the TF-IDF measure, making the final

weights for a document vector d:

wd,t = tf d,t× idf t

Information retrieval systems are most commonly compared by their ‘precision’

and ‘recall’ performance. Both of these are measured by comparing the document set

Aq against a ‘correct’ answer Dq for that query. This ideal answer Dq is determined

Chapter 7. Polygamy 164

manually when a benchmark problem is constructed. Recall is defined as the proportion

of documents in the answer set that are relevant compared with the ideal answer:

recall =
|Aq ∩Dq|
|Dq|

Similarly, precision is the fraction of answer set that is deemed relevant:

precision =
|Aq ∩Dq|
|Aq|

Neither of these measures are applicable for us, since our answer set is, by definition,

the correct set as determined by previous users. However, these metrics are sometimes

used to evaluate the response of matchmakers, particularly in the service ‘selection’

phase. In particular, the IR approach of ((Klusch, Fries, and Khalid 2005)) uses such

a scheme (see section 3.6), and it also appears in the semantic service selection (S3)

challenge which tries to benchmark matchmakers4.

In information retrieval, ‘relevance feedback’ is sometimes used to allow a user to

refine their query. After an initial query q is submitted, the user reviews the resulting

answer set, informing the system of which documents are more relevant. The system

can then perform ‘query expansion’, adding new terms to the query q, or reweight the

terms in q. An early method was ‘Rocchio’s method’. The revised query is a sum of the

original query, plus a sum of the terms from the relevant documents R+, minus a sum of

the irrelevant documents R−:

~q′ = α~q + β
∑
~d∈R+

~d− γ
∑
~d∈R−

~d

Such techniques are not seen on web search engines for two reasons. Web users

are generally unwilling to spend much effort refining their searches, being generally

happy with initial results. Secondly, query expansion can significantly slow the speed

at which document similarity is computed, because it increases greatly the number of

terms which must be compared.
4http://www-ags.dfki.uni-sb.de/˜klusch/s3/

http://www-ags.dfki.uni-sb.de/~klusch/s3/

Chapter 7. Polygamy 165

In our matchmaker, we rely on user feedback between queries, not during them. This

is different from traditional IR, where a search engine’s raw material is not affected by its

own actions5 We next look at this from the perspective of reinforcement learning, which

deals exactly with the issue of an agent learning as it participates in an environment.

7.4.2 Reinforcement learning

Reinforcement learning (Barto and Sutton 1998) is one of the three principle sorts of

learning, the others being supervised and unsupervised. In reinforcement learning, an

agent participates in an environment, choosing actions which lead to rewards. The agent

‘wants’ greater reward, and attempts to learn to select those actions which provide higher

rewards over the long term. The two key features which distinguish reinforcement

learning (RL) from other kinds of learning are also present in our matchmakers:

1. The learner is an active participant in its environment, and must therefore

strike a balance between exploiting its current knowledge to improve immediate

performance, and exploring alternatives, which may lead to improved long term

performance.

2. Correct decisions are characterised by an evaluation function, not by instruction.

That is, the learner’s choice of actions result in a value related to its performance.

It is rewarded based on the value of its action sequence: it is not told explicitly

what actions sequence it should have produced.

The first is clearly true since our matchmakers are learning the best selections as they

participate with clients and services in ongoing interactions. The second property is

satisfied because the matchmaker is told how well its selections worked for the client,

not which selections it ought to have made. Indeed, we cannot know which services

5At least to a first approximation. It’s certainly possible, and probably the case, that users choose to
create links to other pages based in part on the search results they see. This biasing caused by search
engines has been dubbed the ‘Googlarchy’, but at least one study has shown search engines actually lead
to less prominent sites receiving more traffic than they would by pure browsing (Fortunato et al. 2005).

Chapter 7. Polygamy 166

should have been selected, since that information is not available to any agent in the

environment.

A reinforcement learner receives a reward for each action it takes from each of a

series of states. The interaction occurs at discrete time intervals t. At each point in time

t, the learner is given a representation of the current state st, and must choose an action

at. The agent receives a numerical reward rt+1 based on the new state which was caused,

to a greater or lesser extent, by its action at. Using these values, a learner constructs a

policy π, a probabilistic mapping from states to actions. The value function for a policy

V π(s) gives the expected long term reward (or result) from pursuing policy π from state

s. The action-value function Qπ(s, a) gives the expected return from taking action a in

state s, and following continuing to follow policy π. For our matchmakers, the states are

LCC interactions with unassigned roles6, and the actions are selecting services to meet

those roles. In our case, a real reward is issued only after the interaction has completed,

but this is solved by simply making all but the final reward 0. Our matchmaking task

is of a kind known as ‘episodic’, because the sequence of states can be broken into

sub-sequences, each marking the end of a sub-task. The episodes correspond to the

matchmaking activities related to a single interaction.

A learner attempts to improve its policy by progressively approximating the optimal

policy π∗, and does so by updating its value and value-action functions based on

experience. The simplest way to approximate Q∗ is to take the mean reward for a given

action:

Qt(a) =
r1 + r2 + · · ·+ rka

ka

Keeping and computing this can be computationally very expensive and thus is usually

avoided in RL, but it is exactly what we do in our matchmakers. For us, the computational

cost is not so great: most of the rewards are zero and can be ignored. Moreover, by

keeping a database of interactions, we keep open the possibility of performing other

analysis offline (possibilities are discussed in chapter 9), and allow clients direct access

6More precisely, just the mappings from roles to services, assigned or not.

Chapter 7. Polygamy 167

to the data in the event they wish to use their own policy. Another shared interest with

RL is the importance of the trade-off between exploiting our current knowledge and

exploring the consequences of actions we have not tried before. Our solution so far has

been our so-called ‘argmax’ algorithm. In RL this approach—called ‘ε-greedy’—is just

one of many, and we will take a look at them in the next chapter.

7.5 Summary

In this chapter we extended our approach from the matchmaking for a single agent to

matchmaking several collaborations in a single interaction. We demonstrated the

applicability of a simple, comprehensible technique to the problem of achieving

satisfactory coherence between the participants in an interaction. This is the core

contribution of the thesis.

• Illustrated through the Astrogrid scenario the importance of inter-agent perfor-

mance.

• Demonstrated an improvement in user satisfaction over random selection by using

historical performance data.

• Showed how full interaction histories and the incidence calculus improve over the

simpler and algorithmically cheaper naive Bayes approach.

• Applied the same basic technique to automating the construction of interaction

models at run time, based on the previous success or otherwise of components of

an overall workflow.

• Discussed connections between our approach and those of information retrieval

and reinforcement learning.

Chapter 8

Scaling

Over the last three chapters we introduced a simple mechanism for tracking and

predicting the performance of agents as they participated in multi-party interactions.

We looked at illustrative, small-scale examples involving a single interaction model

and a handful of agents. In this chapter, we investigate what happens on a larger stage,

with many agents, roles, and interaction models. We pursue this through simulations,

rather than by empirical study of real semantic web services. We are unhappy with this,

but see little alternative, given the lack of deployed semantic web services systems,

and the difficulty likely to be encountered in augmenting a semantic services platform

with such a scheme. Moreover, the number of user ratings to be captured is not

insignificant, and would be difficult to achieve in a small scale study. Since our

thesis states that formal models of services cannot reasonably capture all aspects real

world use, we can hardly now claim to be able to evaluate in a precise way how our

matchmaker would fare in practice. We do show that it will scale effectively, and that,

for reasonable and conservative parameters of likely interaction problems, it offers

worthwhile improvements in finding agents which work well together.

168

Chapter 8. Scaling 169

8.1 Simulation

There are very few semantic web or agent services openly available. Those that do

exist have been carefully constructed so as to work together, as we argued in chapter 4.

Consequently, we create a synthetic environment to evaluate our matchmaking approach.

Our simulation model is not intended as a comprehensive model of web services now, or

in the future. Although we construct our simulation based on the values of some easily

tracked parameters (ontology for instance), we do not believe that all such values can be

easily encapsulated.

8.1.1 Evaluation model

For the purposes of our scaling experiments, we adopt four notions:

• Interoperability, representing an agent’s choice of ontology and implementation

platform and the resulting incompatibility with agents that make other choices

• Intrinsic ability, representing an agent’s core competence at its task

• Random noise, a random value between 0 and 1, which is added to an interaction

score to account for the variance in users’ opinions, network outages, and so on

• Good/bad threshold, a real value between 0 and 1, which determines whether the

computed score of an interaction should be recorded as good or bad

These values are strong simplifications of the real environment where there would be

many other such factors, including geographical locality (for maps, weather, restaurant

ratings), and network limitations (bandwidth, line of sight or atmospheric issues in

sensor networks). Since our matchmaking scheme is intended to work without regard

to the causes of the incompatibilities, we believe such a coarse model is acceptable.

Adding more variables would not increase the fidelity to an (unknown) reality, but would

remove clarity from the experiment and results.

Chapter 8. Scaling 170

We define an agent A as a tuple 〈I,A〉 where I is the implementation and A the

intrinsic ability. The value of I is a discrete value standing for the agent’s choice of

ontology and platform, while A is a real value between 0 and 1. These properties of

the agents are known only to an oracle, and not to the matchmakers. An interaction

I is defined as a tuple 〈M,R,C〉 with interaction model P , requesting agent R, and

collaborating agents C.

In an experiment, the matchmaker must take an interaction and recruit appropriate

services to each role. When all roles are filled, the experimental harness asks the oracle

for a verdict on the quality of the collaboration. The score is defined as

∆
|I(I)|−1
I ×mins∈collaborators(I)(A(s))

The ∆I is a simulation parameter which determines the quality of interaction between

services with different ‘implementations’. When ∆I is 1, we assume full compatibility,

and at 0, total incompatibility between agents with different values for their implementa-

tion value. The set of implementations used by all collaborators in an interaction I is

denoted I(I), and so the number of distinct implementations used in an interaction is

|I(I)|. To get to the final good/bad determination, we add some noise to this oracular

score, and compare to the threshold:

outcome =

 good if
(

∆
|I(I)|−1
I ×

∏
s∈collaborators(I)A(s) + noise

)
≥ threshold

bad otherwise

The threshold itself is defined as 90% of the score of the optimal set of available agents

for the interaction.

How should the values representing implementations be distributed? It is reasonable

to expect that a few ontologies will claim most attention, while there will be many others

less popular but which still find happy users in their niches. These kinds of patterns are

known as ‘power-law’ distributions, and are often seen on the Web (Baldi, Frasconi, and

Smyth 2003). We choose to use the Zipfian distribution, a particular class of power-law,

Chapter 8. Scaling 171

which is defined

f(k; s, n) =
1

ks
Hn,s

where Hn,s is the nth harmonic number. The parameter s controls how flat the

distribution is, while n is the total number of terms being considered. Figure 8.1

shows Zipfian distributions with s = 0.6 for both plots, and n = 5 and n = 100

respectively.

Figure 8.1 Zipfian probability distributions

rank order

fr
eq

ue
nc

y

0.15

0.20

0.25

0.30

1 2 3 4 5

●

●

●

●

●

rank order

fr
eq

ue
nc

y
0.02

0.04

0.06

0 20 40 60 80 100

●

●

●

●

●
●
●
●
●●

8.1.2 Experimental setup

Until now, our simulations were performed with a bona fide LCC interpreter which used

a Prolog engine implemented in Common Lisp to fully expand the interactions according

to the rewrite rules mentioned in chapters 6 and 7. Executing workflow languages is

unnecessarily expensive in time when our primary aim is to score our matchmakers’

interactions—especially since our own interpreter emphasises clarity over quickness.

While we could optimise the interpreter to some degree, in this chapter we choose to

discard workflow interpretation entirely in order to evaluate much larger simulations of

many thousands of interactions. Instead of explicit models, our interactions become

simple sets of roles and collaborators.

This simplification enables us to study larger simulations. How large should they

be? One is tempted to look at the web to gauge an appropriate scale. When Google first

Chapter 8. Scaling 172

went public, it indexed 26 million pages, and now covers a substantial fraction of the

trillion URLs Google has found1. But the HTML web is not a legitimate comparison, not

least because pages are not services. The start-up company seekda2 crawls the web for

WSDL, and as of early 2009, they claim 28000 services from 7000 providers. Rough

numbers from bioinformaticians claim around 3000 services in that domain (Hull et al.

2006), but not all of those are web services.

In related research discussing matchmakers based on subsumption, we usually see

evaluations where there are perhaps a few hundred services. As in our case, most or all

of these services are synthetic, although they are often based on a smaller set of ‘real’

descriptions which are then cloned and randomly manipulated by programs to provide a

larger set for testing purposes. Numbers of services across those papers detailing their

matchmaking experiments are

• 3 to 20 providers in the WARREN system (Decker, Sycara, and Williamson 1997)

• 350 in the MX matchmaker (Klusch, Fries, and Khalid 2005; Kaufer and Klusch

2006)

• 100 to 1500 in another OWL-S matchmaker (Li and Horrocks 2003)

• up to 2000 in a WSMO matchmaker (Stollberg, Hepp, and Hoffmann 2007)

This does not translate directly into our own simulation, for there is an important

difference: in those systems, each query to find a suitable services was executed only

once3, since the system as a whole is stateless. The query is made, a match is found, and

an evaluation made. For our experiments, the same basic query—‘find me a service of

this type’—must be made many times. The evaluation of that match will happen many

times, giving slightly different results because of the random noise we add, but more

importantly, the matchmaker’s selection will vary, because it is learning to improve its

1http://googleblog.blogspot.com/2008/07/we-knew-web-was-big.html
2seekda.com
3The actual tests are usually run several times to obtain statistical stability in the timing, but in

principle, each is run only once.

http://googleblog.blogspot.com/2008/07/we-knew-web-was-big.html
seekda.com

Chapter 8. Scaling 173

response. While individual queries are very fast, running them hundreds of thousands of

times is not.

How long does a matchmaking operation take? All the systems referenced above

can matchmake a single role in under one second. According to (Miles et al. 2003),

normal UDDI queries took 190ms, while using a UDDI directory enriched with RDF

increased the time to about 210ms. The numbers in (Stollberg, Hepp, and Hoffmann

2007) are similar: “average time for a single matchmaking operation has been 115

ms, and 15 ms for the discovery-by-lookup procedure”. We will give precise timings

for our scheme in section 8.3, but we also answer individual queries in under one

second. Individual queries in the neighbourhood of one second do limit the size of our

simulations, even though they would be perfectly adequate in a real-world deployment

where the matchmaking database would be built and used over days, months, and years.

8.2 Tuning

Before looking at the final macro performance of our system, we briefly look at how we

can improve the micro performance of the matchmaking operations. We look at the

basic cost of the incidence calculus operations, which lie at the core of our method, and

show how they can be made faster. We then briefly present other optimisations that

could be made in a deployed system.

8.2.1 Incidence calculus operations

At the core of our approach is the computation of the incidence sets, so it is important

that they be efficiently computable. We store the incidence sets as ordered lists of

integers, and intersecting multiple lists can be straightforwardly implemented as a

sequence of pairwise intersections. Doing this is O(n), for sets of n worlds. It helps

that, as more sets are intersected, the candidate sets to be processed usually become

significantly smaller. It is a standard optimisation for IR systems to keep the list of sets

Chapter 8. Scaling 174

yet to be processed sorted in increasing size (Witten, Moffat, and Bell 1999). Figure 8.2

illustrates performance for sizable sets with and without this optimisation.

A bigger impact can be made by reconsidering how we compute the probabilities.

Up to now, we did this using the standard incidence calculus definition, which requires

that we intersect the full list of good and bad outcomes with the lists of the various

role/service pairings:

p(outcome(good)| collaborators) =
|i(outcome(good)| collaborators)|

|i(collaborators)|

Since every interaction is recorded in either the outcome(good) or outcome(bad) lists,

intersecting with them is slow. If we instead determine only the set i(collaborators), we

can go through this set and individually count how many of the interactions contain

outcome(good). Remember from 6.3 that we store each interaction individually, as

well as indexing them for the incidence calculus operations, so going through the set of

interactions is straight-forward. Moreover, this approach allows us to make a further

important optimisation. We can now limit our search to only the most recent interactions

for which collaborators is true, imposing a ‘horizon’ on our search. Again, this is a

frequently used optimisation in web-scale information retrieval systems, where on the

order of ten thousand pages are found in a batch and then ranked (Brin and Page 1998).

Similarly, we can look for the last 50 or so interactions using the set of collaborators

we are considering, and see what proportion of those led to a good income. An added

benefit is that we can now account naturally for changes in services’ behaviour, since

we are interested in how the service performed recently, rather than considering its

entire performance history. Although not exploited here, the use of a horizon instead

of immediate intersection with the outcome allows the use of other metrics for output.

For instance, a real number score can now be assigned to each interaction, and the sum

taken of those interactions returned within the horizon.

We implemented the horizon operations at the incidence calculus query level. We

added MATCHMAKEHORIZON-ONE and MATCHMAKEHORIZON-ALL matchmakers

which use the same algorithm as MATCHMAKEIC-ONE and MATCHMAKEIC-ALL

Chapter 8. Scaling 175

Figure 8.2 Set intersection operations

0

20000
40000

60000
80000

100000

2

3

4

5

6
0

2

4

6

8

set size

num
ber of sets

m
ill

is
ec

on
ds

0

1

2

3

4

5

6

7

8

9

0

20000
40000

60000
80000

100000

2

3

4

5

6
0
2
4
6
8

10

12

set size

num
ber of sets

m
ill

is
ec

on
ds

0

2

4

6

8

10

12

(a) (b)

0

20000
40000

60000
80000

100000

2

3

4

5

6
0
1

2

3

4

5

6

set size

num
ber of sets

m
ill

is
ec

on
ds

0

1

2

3

4

5

6

0

20000
40000

60000
80000

100000

2

3

4

5

6
0
2
4
6
8

10

12

set size

num
ber of sets

m
ill

is
ec

on
ds

0

2

4

6

8

10

12

(c) (d)

Plots (a) and (b) show intersection performance respectively for sets of randomly selected

incidences and full sets. A full set of n instances is the set of instances {1, 2, 3, 4, . . . , n}),

while the random sets are constructed by choosing the first n integers each with p = 1
2
.

Plot (c) shows the moderate increase in performance achieved by keeping the incidence

sets sorted in increasing set size. Plot (d) shows no improvement since the sets are

always the same size. All measurements are averaged over 30 runs. Intersections of 6

sets of 100000 random incidences typically return 700 to 800 incidences. As discussed

in section 8.4, it becomes difficult to use more than about four terms in one query,

precisely because the resulting datasets become very sparse.

Chapter 8. Scaling 176

respectively, but which use the modified incidence calculus functions.

8.2.2 Possibilities

Our implementation, using normal Common Lisp lists, is bordering on the naive, but still

performs reasonably quickly. We are confident that using the implementation techniques

of Web scale IR systems would offer a considerable constant factor improvement through

both high and low level optimisations. In the remainder of this section, we sketch some

of those techniques, and discuss the use of other algorithms from reinforcement learning

that might perform better than the ε-greedy algorithm used here.

Caching An obvious optimisation is to cache results. The most common queries

will likely be made many times by different clients, and by caching the most frequent

queries, we can save substantial computational effort. This is commonly used by Google

and other web search engines for the most common searches.

Parallelisation The wall time required for a matchmaking operation can be reduced

by parallelising the queries. There are at least two ways we can exploit parallelism.

First, when we query the database to find the best collaborator:

argmaxCP (outcome(good)|I, C ∪ collaborators(I),matchmaker)

we create several queries for each set of collaborators implied by the choices available in

the new collaborators C. We can execute all of those queries in parallel. Secondly, every

interaction has an associated ‘possible world’ in the incidence sets, and because we

never consider predicates across worlds, we can split incidence sets up according to the

time frame, or epoch, in which they occurred. That is, the first n interactions would be

considered the first epoch, the second n interactions would be the second epoch, and so

on. Each epoch might cover a billion incidences, and could be assigned to a separate

machine. A query for a particular set of services can be dispatched to each machine, and

the final numerical counts collated easily and quickly. This stratification also lends itself

Chapter 8. Scaling 177

to progressive deepening, in conjunction with the horizon search, so that only the most

recent epochs need be examined in most cases, with the search going further back in

time when insufficient recent data is available.

Fairness and exploration After the incidence calculus-based algorithms have

computed the historical performance of the various combinations of agents, our

matchmakers must decide whether to select the combination that has the highest

score, or to try one of the others. This balance between exploiting current knowledge

and continuing to explore new options is important for a matchmaker like ours, and

the field of reinforcement learning has developed several alternative ‘action selection’

functions. The optimal action selection function can be decided only with detailed

knowledge of the problem, and in our case, we do not have this to hand (Barto and

Sutton 1998).

A primary alternative to the ε-greedy selection used in this this thesis is ‘softmax’.

ε-greedy usually selects the highest-scoring action, and with probability ε randomly

selects amongst all available actions with equal probability. Softmax also usually selects

the the highest-scoring action, but its choice of other actions is weighted by their score,

so that the second-highest scoring action is selected more frequently than third, and so on.

One common way to compute the weighting is a Boltzmann distribution parametrised

by a ‘temperature’ which can be used to tune the weighting. The probability of selecting

the action a amongst the A available at a temperature t in a Boltzmann distribution is

P (a) =
eQ(a)/t∑
b∈A e

Q(b)/t

Figure 8.3 shows Boltzmann distributions for several temperature values.

Another common technique is to provide optimistic initial values. Instead of services

beginning with an empty history or zero score, they begin with a high score that is

gradually reduced by poor performance. This would transparently favour exploration of

newly advertised services.

Chapter 8. Scaling 178

Figure 8.3 Boltzmann probability distributions

x

P
(x

)

0.1

0.2

0.3

0.0 0.2 0.4 0.6 0.8 1.0

● ● ● ● ● ● ● ● ● ● ● ● ●
●

●

●

●

●

●

●

●

x

P
(x

)

0.1

0.2

0.3

0.0 0.2 0.4 0.6 0.8 1.0

● ● ● ● ● ● ● ●
●

●
●

●
●

●

●

●

●

●

●

●

●

x

P
(x

)

0.1

0.2

0.3

0.0 0.2 0.4 0.6 0.8 1.0

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●
●

●
●

●

From left to right, Boltzmann probability distributions for t = 0.1, t = 0.3, and

t = 1. The lower the temperature t, the stronger the preference (higher P (x)) for better

performing actions (represented here by higher x values).

8.3 Experiments

In this section we present the results of our larger-scale experiments. We considered a

total of 16 scenarios, running each one with 30000 interactions, and each over 30 runs

for statistical stability. The sixteen scenarios explore three dimensions of the problem

space: number of roles per model, the interoperability between agents, and the intrinsic

ability of individual agents. The scenarios used the following values:

parameter values

roles per model 2, 3

interoperability ∆I 1, 0.95, 0.9, 0.8

intrinsic ability A 1, U(0.8, 1)

The notation U(x, y) denotes the uniform probability distribution between x and y,

inclusive. For each scenario we create 300 services, assigning each service one of 30

‘implementation platforms’ according to the Zipf distribution mentioned earlier. In each

scenario we create 100 models using either 2 or 3 roles depending on scenario. Each

service is assigned one role, and we evenly apportion them, so that each role has 3

services which can fulfil it.

Chapter 8. Scaling 179

Figure 8.4 shows the plots for the simulations with models having two roles requiring

matchmaking, and figure 8.5 for models with three roles to be filled. The lines plots

the proportion of good outcomes (as defined in section 8.1.1), with a sliding average

covering the last 500 interactions.

As before, not too much is to be read into the exact values obtained, but we can see

that for even for small deviations from perfect intrinsic ability and interoperability, our

simple matchmaking algorithms offer significant gains over random choice between os-

tensibly suitable services. Again, MATCHMAKEONE-HORIZON improves more rapidly

than MATCHMAKEALL-HORIZON, but reaches a lower final level of performance.

The time required for an individual matchmaking operation is usually below the

measurable threshold of 4 millisecond on our platform4. Some matchmaking operations

register above 0ms, but never above 50ms, and these longer times can be attributed to

garbage collection in the system. Measuring the run-time for entire simulations, we can

infer an average of 7ms per operation over the 30000 interaction experiments, but this

includes the time taken by the simulation framework and garbage collection in addition

to the core matchmaking operation.

4A laptop with an Intel Core 2 Duo 2.40GHz CPU and 4GB RAM, running Linux 2.6.30 and
SBCL 1.0.31.

Chapter 8. Scaling 180

Figure 8.4 Simulations with two-role models

A = 1,∆I = 1 A =U(0.8,1),∆I = 1

Interactions

%
 w

ith
in

 9
0%

 o
f o

pt
im

al

0

20

40

60

80

100

0 5000 10000 15000 20000 25000 30000

●

● ● ● ● ● ● ● ● ● ● ● ●

MatchmakeAll−Horizon MatchmakeOne−Horizon Random●

Interactions

%
 w

ith
in

 9
0%

 o
f o

pt
im

al

0

20

40

60

80

100

0 5000 10000 15000 20000 25000 30000

●

● ●

●

● ● ● ● ● ● ● ● ●

MatchmakeAll−Horizon MatchmakeOne−Horizon Random●

A = 1,∆I = 0.95 A =U(0.8,1),∆I = 0.95

Interactions

%
 w

ith
in

 9
0%

 o
f o

pt
im

al

0

20

40

60

80

100

0 5000 10000 15000 20000 25000 30000

●

● ● ● ● ● ● ● ● ● ● ● ●

MatchmakeAll−Horizon MatchmakeOne−Horizon Random●

Interactions

%
 w

ith
in

 9
0%

 o
f o

pt
im

al

0

20

40

60

80

100

0 5000 10000 15000 20000 25000 30000

●

● ●

●

● ● ● ● ● ● ● ● ●

MatchmakeAll−Horizon MatchmakeOne−Horizon Random●

A = 1,∆I = 0.9 A =U(0.8,1),∆I = 0.9

Interactions

%
 w

ith
in

 9
0%

 o
f o

pt
im

al

0

20

40

60

80

100

0 5000 10000 15000 20000 25000 30000

●

● ●

●

● ● ● ● ● ● ● ● ●

MatchmakeAll−Horizon MatchmakeOne−Horizon Random●

Interactions

%
 w

ith
in

 9
0%

 o
f o

pt
im

al

0

20

40

60

80

100

0 5000 10000 15000 20000 25000 30000

●

● ●

●

● ● ● ● ● ● ● ● ●

MatchmakeAll−Horizon MatchmakeOne−Horizon Random●

A = 1,∆I = 0.8 A =U(0.8,1),∆I = 0.8

Interactions

%
 w

ith
in

 9
0%

 o
f o

pt
im

al

0

20

40

60

80

100

0 5000 10000 15000 20000 25000 30000

●

● ●

●

● ● ● ● ● ● ● ● ●

MatchmakeAll−Horizon MatchmakeOne−Horizon Random●

Interactions

%
 w

ith
in

 9
0%

 o
f o

pt
im

al

0

20

40

60

80

100

0 5000 10000 15000 20000 25000 30000

●

● ●

●

● ● ● ● ● ● ● ● ●

MatchmakeAll−Horizon MatchmakeOne−Horizon Random●

Chapter 8. Scaling 181

Figure 8.5 Simulations with three-role models

A = 1,∆I = 1 A =U(0.8,1),∆I = 1

Interactions

%
 w

ith
in

 9
0%

 o
f o

pt
im

al

0

20

40

60

80

100

0 5000 10000 15000 20000 25000 30000

●

● ● ● ● ● ● ● ● ● ● ● ●

MatchmakeAll−Horizon MatchmakeOne−Horizon Random●

Interactions

%
 w

ith
in

 9
0%

 o
f o

pt
im

al

0

20

40

60

80

100

0 5000 10000 15000 20000 25000 30000

●

● ● ● ● ● ● ●
●

●

● ● ●

MatchmakeAll−Horizon MatchmakeOne−Horizon Random●

A = 1,∆I = 0.95 A =U(0.8,1),∆I = 0.95

Interactions

%
 w

ith
in

 9
0%

 o
f o

pt
im

al

0

20

40

60

80

100

0 5000 10000 15000 20000 25000 30000

●

● ● ● ● ● ● ● ● ● ● ● ●

MatchmakeAll−Horizon MatchmakeOne−Horizon Random●

Interactions

%
 w

ith
in

 9
0%

 o
f o

pt
im

al

0

20

40

60

80

0 5000 10000 15000 20000 25000 30000

●

● ● ● ● ● ● ●
●

●

● ● ●

MatchmakeAll−Horizon MatchmakeOne−Horizon Random●

A = 1,∆I = 0.9 A =U(0.8,1),∆I = 0.9

Interactions

%
 w

ith
in

 9
0%

 o
f o

pt
im

al

0

20

40

60

80

100

0 5000 10000 15000 20000 25000 30000

●

● ● ● ● ● ●
●

●

●

● ● ●

MatchmakeAll−Horizon MatchmakeOne−Horizon Random●

Interactions

%
 w

ith
in

 9
0%

 o
f o

pt
im

al

0

20

40

60

80

0 5000 10000 15000 20000 25000 30000

●

●
● ● ● ● ● ●

●

●

● ● ●

MatchmakeAll−Horizon MatchmakeOne−Horizon Random●

A = 1,∆I = 0.8 A =U(0.8,1),∆I = 0.8

Interactions

%
 w

ith
in

 9
0%

 o
f o

pt
im

al

0

20

40

60

80

0 5000 10000 15000 20000 25000 30000

●

● ●
● ● ● ● ●

●

●

●
● ●

MatchmakeAll−Horizon MatchmakeOne−Horizon Random●

Interactions

%
 w

ith
in

 9
0%

 o
f o

pt
im

al

0

20

40

60

80

0 5000 10000 15000 20000 25000 30000

●

● ● ● ● ● ● ●
●

●

● ● ●

MatchmakeAll−Horizon MatchmakeOne−Horizon Random●

Chapter 8. Scaling 182

8.4 Discussion

What can we conclude about the scalability of our algorithms? The experiments in the

last section showed that individual queries comparable to those in the matchmaking

literature can execute very quickly, and that we can build databases of large numbers of

interactions. Furthermore, we have an existence proof of our approach in the web search

engines that daily handle millions of such queries.

There is one genuine issue with the scalability of this approach, and it is caused by

the interaction of lots of services to consider for each role, and the number of roles in an

interaction. For an interaction with a set of roles R, and with each role nominally being

fulfillable by a service s ∈ Sr, the number of collaborator sets to consider is∏
r∈R

|Sr|

Each matchmaking request from a client expands to a set of queries to the incidence

calculus database of this size, making scaling in this way O(|R||S|). The real problem

lies not in our approach but in the domain: not only can we not build a system to deal

with it efficiently, but there can never be enough interactions to fully explore such a

space. This is the common ‘curse of dimensionality’ (Bellman 1961).

We can dodge the problem, at least for the role count, by using a technique from

statistical natural language processing: ‘n-grams’. In the task of predicting the next

word in a sequence, the preceding words in the phrase are used as a key into a corpus,

and the most likely following words in the corpus can be found by finding the maximum

likelihood estimator

argmaxwn
P (wn|wn−1, wn−2, . . .)

Just as in our case, considering every word in the sequence rapidly leads to very sparse

data sets. By making a ‘Markov assumption’ that words at a particular distance are

independent, the length of phrase to be considered is greatly reduced. In a bigram

model, only pairs of words are learned, leading to predictions of the next word wn based

on just the current word, wn−1. In trigrams, wn is predicated based on the preceding

Chapter 8. Scaling 183

two words wn−2, wn−1, and so on. Typically, the n in the n-gram does not exceed four,

and even this requires a training corpus of tens of millions of words (Manning and

Schütze 1999, p201). Equating words with collaborations, we can see that the same

approach can be taken with the matchmaker. That is, we can assume that the effects of

interactions between services ‘fade out’ as the data passes from service to service, so

we need only consider services which interact closely with other services in a given

model. Less obvious is the mapping from the linear sequence of words to the set of

collaborations. In the simplest case, we can use the order in which roles were filled. In

MATCHMAKEALL-* algorithms, we can use the arbitrary order of role definitions in the

model. Neither of these correspond well to any sensible notion of proximity. In a system

with an explicit dataflow accessible to the matchmaker, such as LCC, we can determine

the flow of data between services, and use that to determine the nearest sources of any

given data, and use those as the priors.

On policy choice Although we would ideally like to leave policy selection to each

client, the interaction of the policies and the database can bring limitations. In particular,

the MATCHMAKEALL algorithm cannot straightforwardly reuse a database built with

MATCHMAKEONE. For a model with roles R, MATCHMAKEALL will always select an

agent for every role in R, while an interaction using MATCHMAKEONE may matchmake

only some R′ ⊂ R, so that RECRUIT-ALL cannot form a joint probability distribution

over R, since there are no entries for the roles R\R′.

As we have seen in the various experiments in chapters 7 and 8, MATCHMAKEALL

will outperform MATCHMAKEONE, but in real-world cases, MATCHMAKEONE may

well be preferable as the more robust: if roles frequently go unfilled, total work on the

broker would be reduced, and the matchmaker would not need to record the assignments

of agents that were never actually used. In any event, because we have chosen to record

a database of interactions, we can expose some or all of this to the client at selection

time, so that they can fine tune their own selection.

Chapter 8. Scaling 184

8.5 Summary

In this chapter, we explored the performance of our matchmaker at large scale, using

simulated environments. We:

• Presented a simple model of a large scale environment, representing individual

agents through a small number of parameters.

• Introduced some optimisations to the basic algorithms which offer significant

improvements in speed.

• Outlined potential optimisations for both the set intersection operations through

parallelisation, and to the algorithms determining final service choice.

• Provided experimental data from simulations which show the method scales

acceptably for the sizes of problems typically suggested in the matchmaking

literature.

• Discussed the experimental results, concluding that the scaling properties of

the algorithms mean they could be a valid means of augmenting matchmaking

systems.

Chapter 9

Conclusion

In this final chapter, we highlight the scientific contributions of the work, and finish with

a look at a open questions and suggestions for future research.

9.1 Contributions

In this thesis we critiqued the view of service matchmaking as simply a matter of

matching input and output types, asserting instead the importance of actual outcomes in

agent selection. We began our argument by surveying the background to the service

composition and selection problem, highlighting the emphasis on formal methods

for describing the capabilities of services. We then looked at several matchmaking

frameworks and matchmakers, from distributed computing, through multi-agent systems,

ending with today’s semantic web services, noting that they all focus on the service

advertisements and requests. This prepared the ground for our own contributions in the

following chapters, where we:

• Outlined reasons to question the efficacy of purely logic-based selection of services

based on service capability advertisements.

• Introduced the existing formalisms of LCC (Robertson 2004) and incidence

calculus (Bundy 1985; Bundy 1992), and tied them together to produce a

185

Chapter 9. Conclusion 186

framework for multi-party matchmaking.

• Showed how statistical information about service invocation histories can be used

to select agents in two-party LCC interactions, and reviewed earlier history-based

matchmaking work in the context of this formalism.

• Extended the method and matchmakers to support the selection of several agents

in a single interaction.

• Showed how the same technique can be select roles in order to extend a model at

run time.

• Evaluated the technique in simulations of large numbers of interactions, using

synthetic services and interactions with plausible interaction impedances.

We believe the key contributions of this thesis to be

1. The argument against seamless interoperability between services based only on

the limited formal service descriptions provided by by service builders.

2. The view of interactions themselves as significant entities worthy of study. In

particular, we showed that interactions can be usefully modelled using information

retrieval techniques, in the same way search engines record and process Web

pages.

3. The introduction of simple matchmaking algorithms which can exploit interaction

databases to improve over time their selection of services which are individually

better performing, and together more interoperable.

Our proposed approach is not technically complex, but we believe that it provides

a useful starting point for exploring and exploiting the information about service

composition that is available to the users of those services, rather than their advertisers.

We implemented our prototype matchmakers using LCC, but the approach would have

value in any setting where service workflows are specified in a flexible, semantic

Chapter 9. Conclusion 187

encoding. Consequently, we can see applications in multi-agent systems, web services,

and on the Grid. It is these areas, particularly web services, where we can place our

contributions in perspective. Recent trends in service provision point in the same

direction as our own work:

• Looser semantics Both in the move from SOAP to REST services, and in the

promotion of lightweight semantics for service descriptions through SA-WSDL

(Farrell and Lausen 2007), MicroWSMO (Kopecký et al. 2008), and WSMO-

Lite (Vitvar, Kopecký, and Fensel 2008), it is clear that whatever services and

descriptions we see in the near future will have less exactness in typing than

matchmaking research has hitherto presupposed.

• Explicitly multi-party workflows Matchmaking has focused on simple client-

server interactions, where only one service is required. In practice, many scientific

workflows require numerous participants, while ‘mashups’ of multiple services

are becoming common way of providing new Web applications. Moreover, there

is a growing understanding that the workflows themselves are important artifacts

to be treated as first-class objects (Wroe et al. 2007).

• User feedback Interaction almost defines the Web 2.0 phenomenon, and users are

now accustomed to providing ratings for almost everything, from blog articles

and books, to restaurants and professors. Google’s Android Market prominently

features users’ ratings of programs. The myExperiment project created a website

where scientific workflows users can share the workflows, and comment on them.

This suggests that users are not only interested in workflows per se, but are eager

to share them and contextual information about them.

Taken together, these trends would seem to support the case for matchmaking

techniques like ours. As Google researchers recently argued:

. . . invariably, simple models and a lot of data trump more elaborate models
based on less data.

(Halevy, Norvig, and Pereira 2009)

Chapter 9. Conclusion 188

If it is the case that users will trade certainty for deftness, the occasional wrong

answer for the chance to make one-off choreographies that usually end up working, then

matchmakers like ours would be a useful addition to the middleware landscape.

9.2 Future work

The work presented in this thesis has been based on plausible simulations of agent

systems. While valid in itself, it is not possible to fully explore the possibilities of the

presented approach, let alone tune our algorithms and implementations, in the absence

of real-life experience of large numbers of users of such systems. Future work, therefore,

would hopefully exploit empirical data regarding the behaviour of services, users, and

the resulting interactions.

9.2.1 Exploiting structure

Our major criticism of conventional matchmaking is that it takes account only of the

single service requested and the advertisements of available services. We have introduced

matchmakers which take account of the service records of providers, in the context of

multi-party interactions. Our model is essentially an application of information retrieval

techniques as used on the early web. A key advance in web search engines was the move

from treating web pages as flat sequences of text, as in traditional information retrieval,

and exploring the extra structure presented through HTML tags and links (Pitkow 1997;

Kleinberg 1999). Google’s success is famously based on just such an exploitation of link

structure through their ‘PageRank’ algorithm (Page et al. 1998).

We can reasonably expect similar properties to emerge in service interactions, too.

What other forms of information in the LCC models and interactions could we exploit,

and what other information could be added to those interactions to further improve

service selection?

The kind of information that could be used includes:

Chapter 9. Conclusion 189

• Services directly exchanging data with one another have greater dependence on

one another than with another service in the same interaction which is not directly

involved with that data exchange. Tracking the data flows within the protocol

would enable these to be teased out.

• Variants of LCC have explored deontic constraints (Osman and Robertson 2007),

dynamic transformation of the interaction model (McGinnis 2006), and ontology

mapping (Besana and Robertson 2007). Each of these could provide hooks for a

matchmaker which recorded them and their consequences.

Some of the structure of an interaction may be known only to the client requesting

the matchmaking operation. A client may want to use that knowledge to influence

the matchmaking, in a way that is too idiosyncratic or private to embed directly in

a matchmaker’s behaviour. Because our technique is based on structurally simple

queries to the database, a client could construct its own queries for matchmaker, without

requiring specialised support from it.

9.2.2 Mining matchmaking databases

The matchmakers presented in this thesis construct databases of service invocation

information. We made use of these to automatically select services as required by

interacting agents. If this kind of matchmaker became popular, it would become a

powerful resource for its community of users and service providers. What more might

be done with the kind of information it collects? As we sketched in section 7.3, we

can use interaction databases to help construct the workflow itself. It is conceivable

that interaction models could carry instructions to the matchmaker to store particular

variables’ values as clues to the interaction’s behaviour. These instructions could be

determined automatically, but at least initially they could be more easily added by those

constructing the workflow, who would have some insight into important variables, and

could add annotations to record and make use of them.

Chapter 9. Conclusion 190

The matchmaking here has been fully automatic: an agent leaves service selection

entirely in the hands of the matchmaker. There are several types of ‘matchmaker’ which

can be differentiated by the information available to the matchmaker and client (Decker,

Sycara, and Williamson 1997). Where a client has knowledge that would influence

its choice of service, but that it does not wish to disclose, it can ask the matchmaker

for a list of appropriate services, and make the final selection itself. Such a client can

use matchmakers as we use web search engines, issuing queries and receiving lists of

appropriate services, and details about the prior invocations.

Offline analysis, including clustering, could reveal explanations for the preferential

performance of certain groups, in a way that could be used more generally than the

very specific associations we currently work with. When the client wants to make a

decision about which of set of recommended services to use, such a matchmaker can

provide additional information about the services: the context in which others have used

the service. In (Belhajjame et al. 2008), data flows within workflows are analysed to

determine upper and lower bounds for variable types. This static analysis could benefit

from the run-time information made available from our matchmaking databases.

Service providers would surely be interested to discover the patterns in which their

services were being used. Moreover, they could use the interaction databases to debug

their services’ interactions with others. The interactions would also be of interest to the

emerging field of web science (Hendler et al. 2008), which aims to understand the web

and the emergent properties create through these kind of interactions.

9.2.3 Deployment

A large question remains over the likely scalability and mechanism of deployment of

general-purpose matchmakers, and there seems to be little research in that direction. In

this work, we too ducked the issue and considered only the single matchmaker. There

are two principle issues: the technical problem of building a system capable of fielding

many concurrent queries, and the organisational one of finding a sustainable way to pay

Chapter 9. Conclusion 191

for the physical infrastructure required, and ordering the social implications.

Matchmakers must be provided by someone: Who will do that? The contemporary

analogues for this kind of service include mail servers, DNS, and web search engines.

The Domain Name Service (DNS) is a distributed mechanism, which is provided at the

edge by users’ Internet service providers (ISP). DNS provision is an inseparable part of

the ISP’s task, so they can be expected to provide it, and in turn can expect to charge

their customers for it.

Search engines, on the other hand, pay for their existence through advertising. One

early model was for search engines to alter their page rankings by placing paying

customers’ pages higher in the query result’s order than their page intrinsically deserved.

As pointed out in (Page et al. 1998), this undermines user trust, and such search engines

have fallen into disuse. Today’s approach places appropriate and obvious advertisements

against ‘honest’ search results. Central to this business model is that the search engine

does not alter its search results, merely adds paid-for adverts in a sidebar, or otherwise

separately from the text. Thus, users still place trust in the rankings. It is hard to see

how this might translate to matchmaking: agents would be impervious to eye-catching

adverts. Providers might return to altering the ranking itself, lowering to perhaps

intolerable levels users’ trust in their results.

Domain specific matchmakers may be curated by and offered as a service to the

community: in areas like bioinformatics this kind of behaviour is already providing hubs

for services, documentation and the like. We might see matchmakers operated close to

the user, by their employer, say, in the same manner as mail servers or intranet search

engines today. Such a system would reduce the potential for sharing recommendation

information, but also make it harder for service providers to disseminate their capability

advertisements.

Another route would be hierarchical and peer-to-peer systems, which have been

explored for information retrieval (Gravano, Garcı́a-Molina, and Tomasic 1999;

Siebes and Kotoulas 2007), and achieved significant real-world success in file sharing

Chapter 9. Conclusion 192

applications. One approach taken by the GlOSS (Glossary of Search Servers) family

of systems (Gravano, Garcı́a-Molina, and Tomasic 1999) is to create a second-level

information retrieval engine, which indexes the areas of expertise of the IR systems

that directly index documents. In the matchmaking field, that would mean each direct

matchmaking database might cover a smaller set of services (perhaps several thousand) in

a particular domain, and the meta-level system would pass on queries having determined

the most appropriate matchmaker to deal with it.

9.2.4 Getting real

It is hard to see how semantic web services will progress until a more hands-on approach

is taken to service descriptions in realistic settings. The ubiquitous use of the travel

agent scenario, for example, in semantic web services and agent papers (Berners-Lee,

Hendler, and Lassila 2001; McIlraith, Son, and Zeng 2001; Fensel et al. 2006; Galizia

and Gugliotta 2008; Kazhamiakin et al. 2008) is tired. The field must place more

emphasis on the engineering and empirical components, and there are some encouraging

signs of progress in this direction, with several ‘challenge’ events emerging.

The Semantic Web Services Challenge1, and its attached workshops, is an important

step in this direction (Petrie et al. 2009). Although the focus is still on the engineering of

small-scale solutions, the problems are posed by the challenge organisers rather than by

the contestants, so we get a better idea of how well the solutions handle problems they

were not explicitly designed to solve. The semantic service selection (S3) challenge2 is

an event to test matchmakers. However, selection is done based on the use of the OWL-S

and SA-WSDL test collections3 and subjective criteria of relevance. As this thesis argued,

the very model of complete and correct descriptions is questionable. Probably the most

important current activity is OPOSSum (Online Portal for Semantic Services)4. This is

1http://sws-challenge.org/wiki/index.php/Main_Page
2http://www-ags.dfki.uni-sb.de/˜klusch/s3/
3http://projects.semwebcentral.org/projects/owls-tc/
4http://fusion.cs.uni-jena.de/opossum/

http://sws-challenge.org/wiki/index.php/Main_Page
http://www-ags.dfki.uni-sb.de/~klusch/s3/
http://projects.semwebcentral.org/projects/owls-tc/
http://fusion.cs.uni-jena.de/opossum/

Chapter 9. Conclusion 193

an online repository for collecting and searching semantic web service descriptions from

multiple formalisms, and aims to be a clearing house for such descriptions, and their

comparative evaluation.

These efforts point in the right direction: we must grapple with real problems at a

large-scale. Many years ago, a similar plea was made for knowledge representation in

(Lenat and Guha 1990):

The majority of work in knowledge representation has been concerned with
the technicalities of relating predicate calculus to other formalisms, and with
the details of various schemes for default reasoning. There has been almost
an aversion to addressing the problems that arise in actually representing
large bodies of knowledge with content. The typical AI researcher seems
to consider that task to be ‘just applications work’. But there are deep,
important issues that must be addressed if we are to ever have a large
intelligent knowledge-based program. . . In short, we must bite the bullet.

The semantic services community must bite its own bullet of building sizable,

functioning collections of semantic web services, and evolve them in realistic settings

with real users. There are large costs involved in this, including the monetary cost of the

required engineering work, and there may be little in the way of academic prestige to be

obtained in the effort. Worse yet, we may discover that real users do not want some of

the alleged benefits of matchmaking at all (Lord et al. 2004).

Bibliography

Advanced Knowledge Technologies (2007). Advanced Knowledge Technologies:

Selected Papers 2007. ISBN: 085432 873 4. See p. 12.

Akkirau, Rama, Joel Farrell, John Miller, Meenkshi Nagarajan, Marc-Thomas Schmidt,

Amit Sheth, and Kunal Verma (2005). Web Services Semantics—WSDL-S. W3C

Technial Note. Apr. 2005. See p. 68.

Altintas, I., C. Berkley, E. Jaeger, M. Jones, B. Ludascher, and S. Mock (2004).

Kepler: an extensible system for design and execution of scientific workflows. In:

Proceedings of the 16th International Conference on Scientific and Statistical

Database Management, pp. 423–424. See p. 52.

Andrews, Tony, Francisco Curbera, Hitesh Dholakia, Yaron Goland, Johannes Klein,

Frank Leymann, Kevin Liu, Dieter Roller, Doug Smith, Satish Thatte, Ivana

Trickovic, and Sanjiva Weerawarana (2003). Business Process Execution Language

for Web Services Version 1.1. URL: http://download.boulder.ibm.com/

ibmdl/pub/software/dw/specs/ws-bpel/ws-bpel.pdf. See pp. 6,

51, 105, 106.

Arnold, Ken, ed. (2000). The Jini Specifications. second. Boston, MA, USA: Addison-

Wesley Longman Publishing Co., Inc. ISBN: 0201726173. See p. 2.

Austin, John L. (1976). How to Do Things With Words. 2nd Revised. Oxford Paperbacks.

See pp. 37, 99.

Baader, Franz, Diego Calvanese, Deborah L. McGuinness, Daniele Nardi, and

Peter F. Patel-Schneider, eds. (2003). The description logic handbook: theory,

194

http://download.boulder.ibm.com/ibmdl/pub/software/dw/specs/ws-bpel/ws-bpel.pdf
http://download.boulder.ibm.com/ibmdl/pub/software/dw/specs/ws-bpel/ws-bpel.pdf

Bibliography 195

implementation, and applications. Cambridge University Press. ISBN: 0-521-78176-

0. See pp. 26, 56.

Baeza-Yates, Ricardo and Berthier Ribeiro-Neto (1999). Modern Information Retrieval.

Essex, England: Addison Wesley/ACM Press. ISBN: 0-201-39829-X. See p. 161.

Baldi, Pierre, Paolo Frasconi, and Pahdraic Smyth (2003). Modelling the Internet and

the Web: Probabilistic Methods and Algorithms. Wiley. See p. 170.

Bartholomew, Doug (2007). PLM: Boeing’s Dream, Airbus’ Nightmare. In: Baseline

(Feb. 2007). Online at http://www.baselinemag.com/c/a/Projects-

Processes/PLM-Boeings-Dream-Airbus-Nightmare/. See p. 90.

Barto, Andrew G. and Richard S. Sutton (1998). Reinforcement Learning: An

Introduction. MIT Press. See pp. 165, 177.

Battle, Steve, Abraham Bernstein, Harold Boley, Benjamin Grosof, Michael Gruninger,

Richard Hull, Michael Kifer, David Martin, Sheila McIlraith, Deborah McGuinness,

Jianwen Su, and Said Tabet (2005). Semantic Web Services Framework (SWSF)

Overview. Tech. rep. World Wide Web Consortium (W3C). URL: http://www.

w3.org/Submission/SWSF/. See pp. 8, 58.

Bechhofer, Sean, Frank van Harmelen, Jim Hendler, Ian Horrocks, Deborah L.

McGuinness, Peter F. Patel-Schneider, and Lynn Andrea Stein (2004). OWL Web

Ontology Language Reference. Ed. by Mike Dean and Guus Schreiber. W3C

Recommendation 10 February 2004. URL: http://www.w3.org/TR/owl-

ref/. See p. 56.

Beged-Dov, Gabe, Dan Brickley, Rael Dornfest, Ian Davis, Leigh Dodds, Jonathan

Eisenzopf, David Galbraith, R.V. Guha, Ken MacLeod, Eric Miller, Aaron Swartz,

and Eric van der Vlist (2000). RDF Site Summary (RSS) 1.0. URL: http://purl.

org/rss/1.0/spec. See p. 7.

Belhajjame, Khalid, Suzanne M. Embury, Norman W. Paton, Robert Stevens, and

Carole A. Goble (2008). Automatic Annotation of Web Services Based on Workflow

Definitions. In: ACM Transactions on the Web 2.2 (Apr. 2008). See p. 190.

http://www.baselinemag.com/c/a/Projects-Processes/PLM-Boeings-Dream-Airbus-Nightmare/
http://www.baselinemag.com/c/a/Projects-Processes/PLM-Boeings-Dream-Airbus-Nightmare/
http://www.w3.org/Submission/SWSF/
http://www.w3.org/Submission/SWSF/
http://www.w3.org/TR/owl-ref/
http://www.w3.org/TR/owl-ref/
http://purl.org/rss/1.0/spec
http://purl.org/rss/1.0/spec

Bibliography 196

Bellman, Richard (1961). Adaptive Control Processes: A Guided Tour. Princeton

University Press. See p. 182.

Benjamins, V. Richard, Stefan Decker, Dieter Fensel, Enrico Motta, Guus Schreiber, Rudi

Studer, Bob Wielinga, and Enric Plaza (1998). IBROW3—An Intelligent Brokering

Service for Knowledge-Component Reuse on the World-Wide Web. In: Workshop

on Applications of Ontologies and Problem Solving Methods of the 13th European

Conference on Artificial Intelligence (ECAI98). Brighton, United Kingdom. See

p. 31.

Berners-Lee, T., R. Fielding, and L. Masinter (2005). Uniform Resource Identifier (URI):

Generic Syntax. Tech. rep. URL: http://www.ietf.org/rfc/rfc3986.

txt. See p. 44.

Berners-Lee, T., J. Hendler, and O. Lassila (2001). The Semantic Web. In: Scientific

American (May 2001), pp. 34–43. URL: http://www.sciam.com/article.

cfm?articleID=00048144-10D2-1C70-84A9809EC588EF21. See

pp. 7, 57, 78, 192.

Berners-Lee, Tim (1992). Where should one store links? Online at http : / /

www.w3.org/History/19921103-hypertext/hypertext/WWW/

StoringLinks . html. URL: http : / / www . w3 . org / History /

19921103-hypertext/hypertext/WWW/StoringLinks.html. See

p. 7.

— (1998). What the Semantic Web can represent. Sept. 1998. URL: http://www.

w3.org/DesignIssues/RDFnot.html. See p. 79.

Bernstein, Philip A. (1996). Middleware: A Model for Distributed System Services. In:

Commun. ACM 39.2, pp. 86–98. See p. 4.

Bernstein, Steve Battle (Hewlett Packard) Abraham, Harold Boley, Benjamin Grosof,

Michael Gruninger, Richard Hull, Michael Kifer, David Martin, Sheila McIlraith,

Deborah McGuinness, Jianwen Su, and Said Tabet (2005). Semantic Web Services

http://www.ietf.org/rfc/rfc3986.txt
http://www.ietf.org/rfc/rfc3986.txt
http://www.sciam.com/article.cfm?articleID=00048144-10D2-1C70-84A9809EC588EF21
http://www.sciam.com/article.cfm?articleID=00048144-10D2-1C70-84A9809EC588EF21
http://www.w3.org/History/19921103-hypertext/hypertext/WWW/StoringLinks.html
http://www.w3.org/History/19921103-hypertext/hypertext/WWW/StoringLinks.html
http://www.w3.org/History/19921103-hypertext/hypertext/WWW/StoringLinks.html
http://www.w3.org/History/19921103-hypertext/hypertext/WWW/StoringLinks.html
http://www.w3.org/History/19921103-hypertext/hypertext/WWW/StoringLinks.html
http://www.w3.org/DesignIssues/RDFnot.html
http://www.w3.org/DesignIssues/RDFnot.html

Bibliography 197

Language (SWSL). Tech. rep. World Wide Web Consortium (W3C). URL: http:

//www.w3.org/Submission/SWSF-SWSL/. See p. 8.

Besana, P. and D. Robertson (2007). How Service Choreography Statistics Reduce the

Ontology Mapping Problem. In: Proceedings of the International Semantic Web

Conference 2007. Busan, Korea: Springer. See pp. 11, 106, 189.

Bizer, Christian, Tom Heath, and Tim Berners-Lee (2008). Linked Data: Principles and

State of the Art. In: 17th World Wide Web Conference (WWW2008). Beijing, China.

See p. 8.

Bjørner, Dines and Cliff B. Jones (1978). The Vienna Development Method: The Meta-

Language. Vol. 61. Lecture Notes in Computer Science. Springer. ISBN: 3-540-

08766-4. See p. 81.

Booth, David and Canyang Kevin Liu (2007). Web Services Description Language

(WSDL) Version 2.0 Part 0: Primer. Tech. rep. World Wide Web Consortium (W3C).

URL: http://www.w3.org/TR/wsdl20-primer. See pp. 47, 50.

Booth, David, Hugo Haas, Francis McCabe, Eric Newcomer, Michael Champion, Chris

Ferris, and David Orchard (2004). Web Services Architecture. W3C Working Group

Note. World Wide Web Consortium (W3C). URL: http://www.w3.org/TR/

2004/NOTE-ws-arch-20040211/. See p. 2.

Borst, W. N. (1997). “Construction of Engineering Ontologies”. PhD thesis. Enschede:

University of Twente. See p. 78.

Brachman, Ronald J., Deborah L. McGuiness, Peter F. Patel-Schneider, and Lori A.

Resnick (1990). Living with CLASSIC: when and how to use a KL-ONE-like language.

In: Principles of semantic networks. Ed. by John Sowa. San Mateo, US: Morgan

Kaufmann. URL: citeseer.ist.psu.edu/brachman91living.html.

See p. 41.

Bray, Tim, Jean Paoli, C. M. Sperberg-McQueen, Eve Maler, and François Yergeau

(2008). Extensible Markup Language (XML) 1.0 (Fifth Edition). Tech. rep. World

http://www.w3.org/Submission/SWSF-SWSL/
http://www.w3.org/Submission/SWSF-SWSL/
http://www.w3.org/TR/wsdl20-primer
http://www.w3.org/TR/2004/NOTE-ws-arch-20040211/
http://www.w3.org/TR/2004/NOTE-ws-arch-20040211/
citeseer.ist.psu.edu/brachman91living.html

Bibliography 198

Wide Web Consortium (W3C). URL: http://www.w3.org/TR/2008/REC-

xml-20081126/. See pp. 3, 44.

Brickley, Dan and Libby Miller (2007). FOAF Vocabulary Specification 0.91. Online

at http://xmlns.com/foaf/spec/. URL: http://xmlns.com/foaf/

spec/. See p. 7.

Brin, Sergey and Lawrence Page (1998). The anatomy of a large-scale hypertextual

Web search engine. In: Computer Networks and ISDN Systems 30.1–7, pp. 107–117.

URL: citeseer.ist.psu.edu/brin98anatomy.html. See pp. 9, 162,

174.

Brock, Bishop, Matt Kaufmann, and J Moore (1996). ACL2 Theorems about Commercial

Microprocessors. In: Proceedings of Formal Methods in Computer-Aided Design

(FMCAD1996). Ed. by M. Srivas and A. Camilleri. Springer-Verlag, pp. 275–293.

See p. 81.

Bruijn, Jos de, Dieter Fensel, Uwe Keller, Michael Kifer, Holger Lausen, Reto

Krummenacher, Axel Polleres, and Livia Predoiu (2005). Web Service Modeling

Language (WSML) W3C Member Submission. June 2005. URL: http://www.w3.

org/Submission/WSML/. See p. 8.

Bundy, Alan (1985). Incidence calculus: A mechanism for probabilistic reasoning. In:

Journal of Automated Reasoning 1.3, pp. 263–284. See pp. 11, 106, 185.

— (1992). Incidence calculus. In: Encyclopedia of Artificial Intelligence. Wiley,

pp. 663–668. See pp. 106, 185.

Burstein, Mark, Christoph Bussler, Michal Zaremba, Tim Finin, Michael N. Huhns,

Massimo Paolucci, Amit P. Sheth, and Stuart Williams (2005). A Semantic Web

Services Architecture. In: IEEE Internet Computing 9.5 (September/October 2005),

pp. 72–81. See pp. 8, 21.

Cardelli, Luca and Andrew D. Gordon (1998). Mobile Ambients. In: Proceedings

of the first international conference on the Foundations of Software Science and

http://www.w3.org/TR/2008/REC-xml-20081126/
http://www.w3.org/TR/2008/REC-xml-20081126/
http://xmlns.com/foaf/spec/
http://xmlns.com/foaf/spec/
http://xmlns.com/foaf/spec/
citeseer.ist.psu.edu/brin98anatomy.html
http://www.w3.org/Submission/WSML/
http://www.w3.org/Submission/WSML/

Bibliography 199

Computational Structures. Ed. by Maurice Nivat. Vol. 1378. Lecture Notes in

Computer Science. Springer, pp. 140–155. See p. 106.

Carriero, Nicholas and David Gelernter (1989). Linda in context. In: Communications

of the ACM 32.4, pp. 444–458. ISSN: 0001-0782. DOI: http://doi.acm.org/

10.1145/63334.63337. See p. 35.

Cheyer, Adam and David Martin (2001). The Open Agent Architecture. In: Autonomous

Agents and Multi-Agent Systems 4 (Mar. 2001), pp. 143–148. See p. 94.

Christensen, Erik, Francisco Curbera, Greg Meredith, and Sanjiva Weerawarana (2001).

Web Services Description Language (WSDL) 1.1. URL: http://www.w3.org/

TR/wsdl. See pp. 44, 47.

Churches, David, Gabor Gombas, Andrew Harrison, Jason Maassen, Craig Robinson,

Matthew Shields, Ian Taylor, and Ian Wang (2006). Programming scientific and

distributed workflow with Triana services: Research Articles. In: Concurrency and

Computation: Practice & Experience 18.10, pp. 1021–1037. ISSN: 1532-0626. DOI:

http://dx.doi.org/10.1002/cpe.v18:10. See p. 52.

Clancey, William J. (1985). Heuristic Classification. Tech. rep. Department of Computer

Science, Stanford University. See p. 30.

Clarke, Edmund M. and Jeannette M. Wing (1996). Formal methods: state of the art and

future directions. In: ACM Computing Surveys 28.4, pp. 626–643. ISSN: 0360-0300.

DOI: http://doi.acm.org/10.1145/242223.242257. See p. 81.

Clarke Jr, Edmund M., Orna Grumberg, and Doron A. Peled (1999). Model Checking.

MIT Press. ISBN: 0-262-03270-8. See p. 105.

Clocksin, William F. and Christopher S. Mellish (2003). Programming in Prolog: Using

the ISO Standard. 5th. Springer-Verlag. ISBN: 978-3540006787. See p. 30.

Cocchiarella, N. B. (1991). Formal Ontology. In: Handbook of Metaphysics and

Ontology. Ed. by H. Burkhardt and B. Smith. Munich: Philosophia Verlag,

pp. 640–647. See p. 78.

http://dx.doi.org/http://doi.acm.org/10.1145/63334.63337
http://dx.doi.org/http://doi.acm.org/10.1145/63334.63337
http://www.w3.org/TR/wsdl
http://www.w3.org/TR/wsdl
http://dx.doi.org/http://dx.doi.org/10.1002/cpe.v18:10
http://dx.doi.org/http://doi.acm.org/10.1145/242223.242257

Bibliography 200

Cohn, Avra (1987). A proof of correctness of the Viper microprocessor: the first level.

Technical report 104. Computing Laboratory, University of Cambridge. See p. 82.

Connolly, Dan, Frank van Harmelen, Ian Horrocks, Deborah L. McGuinness, Peter F.

Patel-Schneider, and Lynn Andrea Stein (2001). DAML+OIL Reference Description.

Tech. rep. Available online at http://www.w3.org/TR/daml+oil-

reference. World Wide Web Consortium (W3C). See p. 56.

Cullyer, W. J. (1985). Viper Microprocessor: Formal Specification. RSRE Report. Royal

SignalsRadar Establishment. See p. 82.

— (1989). Implementing high integrity systems: the VIPER microprocessor. In: IEEE

Aerospace and Electronic Systems Magazine 4 (6 1989), pp. 5–13. ISSN: 0885-

8985. URL: http://ieeexplore.ieee.org/xpls/abs_all.jsp?

arnumber=31813. See p. 82.

Decker, K., K. Sycara, and M. Williamson (1997). Middle-Agents for the In-

ternet. In: Proceedings of the 15th International Joint Conference on Ar-

tificial Intelligence. Nagoya, Japan. URL: citeseer . ist . psu . edu /

decker97middleagents.html. See pp. 5, 18–20, 172, 190.

Dickinson, Ian (2004). Implementation experience with the DIG 1.1 specification. Tech.

rep. Hewlett Packard Digital Media Systems Laboratory. See p. 92.

Dillon, Tharam, Elizabeth Chang, Robert Meersman, and Katia Sycara, eds. (2009).

Advances in Web Semantics I: Ontologies, Web Services and Applied Semantic Web.

Springer. See p. 12.

Esteva, M., J. Rodriguez, J. Arcos, C. Sierra, and P. Garcia (2000). Formalising Agent

Mediated Electronic Institutions. URL: citeseer.ist.psu.edu/esteva0

0formalising.html. See p. 99.

Esteva, Marc, David de la Cruz, and Carles Sierra (2002). ISLANDER: an electronic

institutions editor. In: Proceedings of the first international joint conference

on Autonomous agents and multiagent systems. Bologna, Italy: ACM Press,

http://www.w3.org/TR/daml+oil-reference
http://www.w3.org/TR/daml+oil-reference
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=31813
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=31813
citeseer.ist.psu.edu/decker97middleagents.html
citeseer.ist.psu.edu/decker97middleagents.html
citeseer.ist.psu.edu/esteva00formalising.html
citeseer.ist.psu.edu/esteva00formalising.html

Bibliography 201

pp. 1045–1052. ISBN: 1-58113-480-0. DOI: http://doi.acm.org/10.

1145/545056.545069. See p. 99.

Esteva, Marc, Julian A. Padget, and Carles Sierra (2001). Formalizing a Language

for Institutions and Norms. In: ATAL. Ed. by John-Jules Ch. Meyer and Milind

Tambe. Vol. 2333. Lecture Notes in Computer Science. Springer, pp. 348–366. ISBN:

3-540-43858-0. See p. 99.

Fallside, David C. and Priscilla Walmsley (2004). XML Schema Part 0: Primer Second

Edition. Tech. rep. World Wide Web Consortium (W3C). URL: http://www.w3.

org/TR/xmlschema-0/. See p. 85.

Farrell, Joel and Holger Lausen (2007). Semantic Annotations for WSDL and XML

Schema. W3C Recommendation. World Wide Web Consortium (W3C). URL: http:

//www.w3.org/TR/sawsdl/. See pp. 8, 68, 87, 187.

Feigenbaum, Edward and Pamela McCorduck (1983). The fifth generation: artificial

intelligence and Japan’s computer challenge to the world. Boston, MA, USA:

Addison-Wesley Longman Publishing Co., Inc. ISBN: 0-201-11519-0. See p. 1.

Fellbaum, Christiane, ed. (1998). WordNet: An Electronic Lexical Database. MIT Press.

ISBN: 026206197X. See p. 93.

Fensel and Bussler (2002). The Web Services Modelling Framework. See p. 64.

Fensel, D., I. Horrocks, F. Van Harmelen, S. Decker, M. Erdmann, and M. Klein (2000).

OIL in a nutshell. In: 12th International Conference on Knowledge Engineering

and Knowledge Management (EKAW 2000). Lecture Notes in Computer Science.

Springer-Verlag. See p. 56.

Fensel, Dieter (2001). Ontologies: A Silver Bullet for Knowledge Management and

Electronic Commerce. Springer. URL: citeseer.ist.psu.edu/413498.

html. See p. 79.

Fensel, Dieter, V. Richard Benjamins, Enrico Motta, and Bob J. Wielinga (1999).

UPML: A Framework for Knowledge System Reuse. In: Proceedings of the 16th

http://dx.doi.org/http://doi.acm.org/10.1145/545056.545069
http://dx.doi.org/http://doi.acm.org/10.1145/545056.545069
http://www.w3.org/TR/xmlschema-0/
http://www.w3.org/TR/xmlschema-0/
http://www.w3.org/TR/sawsdl/
http://www.w3.org/TR/sawsdl/
citeseer.ist.psu.edu/413498.html
citeseer.ist.psu.edu/413498.html

Bibliography 202

International Joint Conference on AI (IJCAI-99). Morgan Kaufmann. San Francisco,

CA, USA, pp. 16–23. ISBN: 1-55860-613-0. See pp. 64, 66.

Fensel, Dieter, Holger Lausen, Axel Polleres, Jos de Bruijn, Michael Stollberg, Dumitru

Roman, and John Domingue (2006). Enabling Semantic Web Services. Springer.

See pp. 31, 64, 192.

Fielding, R., J. Gettys, J. Mogul, H. Frystyk, L. Masinter, P. Leach, and T. Berners-Lee

(1999). Hypertext Transfer Protocol — HTTP/1.1. Tech. rep. Internet Engineering

Task Force. See pp. 3, 44.

Fielding, Roy Thomas (2000). “Architectural Styles and the Design of Network-based

Software Architectures”. PhD thesis. University of California, Irvine. See p. 50.

Fortunato, Santo, Alessandro Flammini, Filippo Menczer, and Alessandro Vespignani

(2005). The egalitarian effect of search engines. Nov. 2005. eprint: cs.CY/0511

005. URL: http://arxiv.org/abs/cs.CY/0511005. See p. 165.

Foster, Ian, Nicholas R. Jennings, and Carl Kesselman (2004). Brain Meets Brawn. In:

Proceedings of the third international joint conference on Autonomous Agents and

Multi-Agent Systems. New York, New York, USA: ACM Press. See p. 6.

Foster, Ian, Carl Kesselman, and Steven Tuecke (2001). The Anatomy of the Grid: En-

abling Scalable Virtual Organizations. In: International Journal of Supercomputer

Applications 15, p. 2001. See p. 51.

Foster, Ian, Carl Kesselman, Jeffrey M. Nick, and Steven Tuecke (2002). Grid Services

for Distributed System Integration. In: Computer 35.6 (June 2002), pp. 37–46. See

p. 52.

Foundation for Intelligent Physical Agents (2002). FIPA Contract Net Interaction

Protocol Specification. Dec. 2002. See p. 35.

Frey, J., T. Tannenbaum, M. Livny, I. Foster, and S. Tuecke (2001). Condor-G: a

computation management agent for multi-institutional grids. In: Proceedings of the

10th IEEE International Symposium on High Performance Distributed Computing.

San Francisco, CA, USA, pp. 55–63. ISBN: 0-7695-1296-8. See p. 52.

cs.CY/0511005
cs.CY/0511005
http://arxiv.org/abs/cs.CY/0511005

Bibliography 203

Galizia, Stefania and Alessio Gugliotta (2008). A Framework for Selecting Trusted

Semantic Web Services. In: Proceedings of the first Future Internet Symposium.

Sematic Technology Institute. Vienna, Austria. See p. 192.

Galstyan, Aram, Karl Czajkowski, and Kristina Lerman (2004). Resource Allocation in

the Grid Using Reinforcement Learning. In: In 3 rd International Joint Conference

on Autonomous Agents and Multiagent Systems (AAMAS’03. IEEE CS Press,

pp. 1314–1315. See p. 52.

Ganek, A G and T A Corbi (2003). The dawning of the autonomic computing era. In:

IBM Systems Journal 42.1 (Jan. 2003), pp. 5–18. See p. 33.

Gardiner, Tom, Ian Horrocks, and Dmitry Tsarkov (2006). Automated Benchmarking

of Description Logic Reasoners. In: Proc. of the 2006 Description Logic Workshop

(DL 2006). Vol. 189. CEUR (http://ceur-ws.org/). URL: download/

2006/GaHT06a.pdf. See pp. 91, 92.

Gaston, Matthew E. and Marie desJardins (2005). Agent-organized networks for

dynamic team formation. In: AAMAS ’05: Proceedings of the fourth international

joint conference on Autonomous agents and multiagent systems. The Netherlands:

ACM Press, pp. 230–237. ISBN: 1-59593-093-0. DOI: http://doi.acm.org/

10.1145/1082473.1082508. See p. 32.

Genesereth, Michael R. and Steven P. Ketchpel (1994). Software agents. In: Commun.

ACM 37.7, 48–ff. ISSN: 0001-0782. DOI: http://doi.acm.org/10.1145/

176789.176794. See p. 100.

Gerber, Aurona, Alta van der Merwe, and Andries Barnard (2008). A Functional

Semantic Web Architecture. In: Proceedings of the 5th European Semantic web

Conference. Vol. 5021. Lecture Notes in Computer Science. Tenerife: Springer,

pp. 273–287. See p. 56.

Giampapa, Joseph A., Massimo Paolucci, and Katia Sycara (2000). Agent interoperation

across multiagent system boundaries. In: AGENTS ’00: Proceedings of the fourth

international conference on Autonomous agents. Barcelona, Spain: ACM Press,

http://ceur-ws.org/
download/2006/GaHT06a.pdf
download/2006/GaHT06a.pdf
http://dx.doi.org/http://doi.acm.org/10.1145/1082473.1082508
http://dx.doi.org/http://doi.acm.org/10.1145/1082473.1082508
http://dx.doi.org/http://doi.acm.org/10.1145/176789.176794
http://dx.doi.org/http://doi.acm.org/10.1145/176789.176794

Bibliography 204

pp. 179–186. ISBN: 1-58113-230-1. DOI: http://doi.acm.org/10.1145/

336595.337348. See p. 94.

Gil, Yolanda (2005). Knowledge Mobility: Semantics for the Web as a White Knight

for Knowledge-Based Systems. In: Spinning the Semantic Web: Bringing the World

Wide Web to Its Full Potential. Ed. by Dieter Fensel, James A. Hendler, Henry

Lieberman, and Wolfgang Wahlster. MIT Press. See pp. 79, 95.

Ginsberg, Matthew L. (1991). Knowledge interchange format: the KIF of death. In: AI

Magazine 12, pp. 57–63. See p. 91.

Glinton, Robin, Paul Scerri, and Katia Sycara (2008). Agent-based sensor coalition

formation. In: 11th International Conference on Information Fusion. Cologne,

Germany, pp. 1–7. ISBN: 978-3-8007-3092-6. See p. 32.

Goble, C, C Wroe, and R Stevens (2003). The myGrid project: services, architecture

and demonstrator. In: Proceedings of the UK e-Science All Hands Meeting. See

pp. 53, 55.

Goble, Carole and David De Roure (2002). The Grid: an application of the semantic

web. In: SIGMOD Rec. 31.4, pp. 65–70. ISSN: 0163-5808. DOI: http://doi.

acm.org/10.1145/637411.637422. URL: http://portal.acm.

org/citation.cfm?id=637411.637422#. See p. 51.

Gomadam, Karthik and Amit Sheth (2008). SA-REST: Using Semantics to Empower

RESTful Services and Smashups with Better Interoperability and Mediation. In:

Semantic Technology Conference 2008. San Jose, CA, USA. URL: http://

knoesis.wright.edu/library/download/gomadam_Sheth_SA-

REST_semTech2008.ppt. See p. 50.

Goodenough, John B. and Susan L. Gerhart (1975). Toward a theory of test data

selection. In: ACM SIGPLAN Notices 10.6, pp. 493–510. ISSN: 0362-1340. DOI:

http://doi.acm.org/10.1145/390016.808473. See p. 81.

Gottschalk, K., S. Graham, H. Kreger, and J. Snell (2002). Introduction to Web

services architecture. In: IBM Systems Journal 41.2, pp. 170–177. URL: http:

http://dx.doi.org/http://doi.acm.org/10.1145/336595.337348
http://dx.doi.org/http://doi.acm.org/10.1145/336595.337348
http://dx.doi.org/http://doi.acm.org/10.1145/637411.637422
http://dx.doi.org/http://doi.acm.org/10.1145/637411.637422
http://portal.acm.org/citation.cfm?id=637411.637422#
http://portal.acm.org/citation.cfm?id=637411.637422#
http://knoesis.wright.edu/library/download/gomadam_Sheth_SA-REST_semTech2008.ppt
http://knoesis.wright.edu/library/download/gomadam_Sheth_SA-REST_semTech2008.ppt
http://knoesis.wright.edu/library/download/gomadam_Sheth_SA-REST_semTech2008.ppt
http://dx.doi.org/http://doi.acm.org/10.1145/390016.808473
http://researchweb.watson.ibm.com/journal/sj/412/gottschalk.html

Bibliography 205

//researchweb.watson.ibm.com/journal/sj/412/gottschalk.

html. See p. 3.

Gravano, Luis, Héctor Garcı́a-Molina, and Anthony Tomasic (1999). GlOSS: text-

source discovery over the Internet. In: ACM Transactions on Database Systems

24.2, pp. 229–264. ISSN: 0362-5915. DOI: http://doi.acm.org/10.1145/

320248.320252. See pp. 191, 192.

Gruber, Thomas R. (1993). A translation approach to portable ontology specifications.

In: Knowl. Acquis. 5.2, pp. 199–220. ISSN: 1042-8143. DOI: http://dx.doi.

org/10.1006/knac.1993.1008. See p. 78.

Guo, L, Dave Robertson, and Yun-Heh Chen-Burger (2005). Enacting the Distributed

Business Workflows Using BPEL4WS on the Multi-Agent Platform. In: Proceedings

of the MATES 2005 conference. Vol. 3550. LNAI. See pp. 11, 106.

Gärdenfors, Peter (2000). Conceptual Spaces: The Geometry of Thought. MIT Press.

See p. 80.

— (2004). How to make the Semantic Web more semantic. In: Formal Ontology in

Information Systems. Ed. by A.C. Varzi and L. Vieu. IOS Press, pp. 19–36. See

p. 80.

Hadley, Marc J. (2006). Web Application Description Language (WADL). Nov. 2006.

See p. 50.

Halevy, Alon, Peter Norvig, and Fernando Pereira (2009). The Unreasonable

Effectiveness of Data. In: IEEE Intelligent Systems (March/April 2009), pp. 8–12.

See p. 187.

Halpern, Joseph Y. and Yoram Moses (1984). Knowledge and common knowledge in

a distributed environment. In: PODC ’84: Proceedings of the third annual ACM

symposium on Principles of distributed computing. Vancouver, British Columbia,

Canada: ACM, pp. 50–61. ISBN: 0-89791-143-1. DOI: http://doi.acm.org/

10.1145/800222.806735. See p. 101.

http://researchweb.watson.ibm.com/journal/sj/412/gottschalk.html
http://researchweb.watson.ibm.com/journal/sj/412/gottschalk.html
http://researchweb.watson.ibm.com/journal/sj/412/gottschalk.html
http://dx.doi.org/http://doi.acm.org/10.1145/320248.320252
http://dx.doi.org/http://doi.acm.org/10.1145/320248.320252
http://dx.doi.org/http://dx.doi.org/10.1006/knac.1993.1008
http://dx.doi.org/http://dx.doi.org/10.1006/knac.1993.1008
http://dx.doi.org/http://doi.acm.org/10.1145/800222.806735
http://dx.doi.org/http://doi.acm.org/10.1145/800222.806735

Bibliography 206

Hendler, James and Jennifer Golbeck (2008). Metcalfe’s law, Web 2.0, and the Semantic

Web. In: Web Semantics: Science, Services and Agents on the World Wide Web 6 (1

2008), pp. 14–20. DOI: 10.1016/j.websem.2007.11.008. See p. 89.

Hendler, James, Nigel Shadbolt, Wendy Hall, Tim Berners-Lee, and Daniel Weitzner

(2008). Web science: an interdisciplinary approach to understanding the web. In:

Communications of the ACM 51.7, pp. 60–69. ISSN: 0001-0782. DOI: http://

doi.acm.org/10.1145/1364782.1364798. See p. 190.

Horn, Paul (2001). Autonomic Computing: IBM’s Perspective on the State of In-

formation Technology. Online at http://www.research.ibm.com/

autonomic / manifesto / autonomic _ computing . pdf. Oct. 2001.

URL: http://www.research.ibm.com/autonomic/manifesto/

autonomic_computing.pdf. See p. 32.

Horrocks, Ian (2002). DAML+OIL: A Description Logic for the Semantic Web. In: IEEE

Bulletin of the Technical Committee on Data Engineering 25.1 (Mar. 2002), pp. 4–9.

See p. 56.

Horrocks, Ian and Peter Patel-Schneider (1999). Optimizing description logic sub-

sumption. In: Journal of Logic and Computation 9 (3 1999), pp. 267–293. See

p. 26.

Horwood, Martin (2005). CAD data quality. In: Engineering Designer (May/June

2005). Online at http://www.infosys.com/industries/aerospace-

defense/white-papers/cad-quality.pdf. See p. 90.

Hull, Duncan, Evgeny Zolin, Andrey Bovykin, Ian Horrocks, Ulrike Sattler, and Robert

Stevens (2006). Deciding Semantic Matching of Stateless Services. In: Proceedings

of the Twenty-First National Conference on Artificial Intelligence (AAAI-06) and

Eighteenth Innovative Applications of Artificial Intelligence (IAAI-06) Conference.

Boston, MA, USA, pp. 1319–1324. See pp. 64, 172.

Joseph, Sindhu, Adrián Perreau de Pinninck Bas, David Robertson, Carles Sierra, and

Chris Walton (2007). Interaction Model Language Definition. In: IJCAI Workshop

http://dx.doi.org/10.1016/j.websem.2007.11.008
http://dx.doi.org/http://doi.acm.org/10.1145/1364782.1364798
http://dx.doi.org/http://doi.acm.org/10.1145/1364782.1364798
http://www.research.ibm.com/autonomic/manifesto/autonomic_computing.pdf
http://www.research.ibm.com/autonomic/manifesto/autonomic_computing.pdf
http://www.research.ibm.com/autonomic/manifesto/autonomic_computing.pdf
http://www.research.ibm.com/autonomic/manifesto/autonomic_computing.pdf
http://www.infosys.com/industries/aerospace-defense/white-papers/cad-quality.pdf
http://www.infosys.com/industries/aerospace-defense/white-papers/cad-quality.pdf

Bibliography 207

AOMS Agent Organizations Models and Simulations. Ed. by Virginia Dignum, Frank

Dignum, Eric Matson, and Bruce Edmonds, pp. 49–61. See p. 106.

Kalfoglou, Yannis and Marco Schorlemmer (2003). Ontology Mapping: The State of

the Art. In: The Knowledge Engineering Review 18, p. 2003. See pp. 9, 93.

Kaufer, Frank and Matthias Klusch (2006). A Logic Programming Based Hybrid

Service Matchmaker. In: Proceedings of the 4th IEEE European Conference on

Web Services (ECOWS 2006). Zurich, Switzerland: IEEE CS Press. See pp. 70, 80,

172.

Kavantzas, Nickolaos, David Burdett, and Greg Ritzinger (2004). Web Services

Choreography Description Language Version 1.0. W3C Working Draft 27 April

2004. URL: http://www.w3.org/TR/ws-cdl-10/. See p. 89.

Kazhamiakin, Raman, Piergiorgio Bertoli, Massimo Paoluccci, Marco Pistore, and

Matthias Wagner (2008). Having Services “YourWay!”: Towards User-Centric

Composition of Mobile Services. In: Proceedings of the first Future Internet

Symposium. Sematic Technology Institute. Vienna, Austria. See p. 192.

Keller, Uwe, Rubén Lara, Axel Polleres, Ioan Toma, Michel Kifer, and Dieter Fensel

(2004). D5.1 WSMO Web Service Discovery. Tech. rep. Web Services Modeling

Ontology Working Group. URL: http://www.wsmo.org/2004/d5/d5.1/.

See p. 66.

Kifer, Michael and Georg Lausen (1989). F-logic: a higher-order language for

reasoning about objects, inheritance, and scheme. In: SIGMOD ’89: Proceedings of

the 1989 ACM SIGMOD international conference on Management of data. Portland,

Oregon, United States: ACM Press, pp. 134–146. ISBN: 0-89791-317-5. DOI: http:

//doi.acm.org/10.1145/67544.66939. See p. 64.

Kifer, Michael, Georg Lausen, and James Wu (1995). Logical foundations of object-

oriented and frame-based languages. In: J. ACM 42.4, pp. 741–843. ISSN: 0004-

5411. DOI: http://doi.acm.org/10.1145/210332.210335. See p. 64.

http://www.w3.org/TR/ws-cdl-10/
http://www.wsmo.org/2004/d5/d5.1/
http://dx.doi.org/http://doi.acm.org/10.1145/67544.66939
http://dx.doi.org/http://doi.acm.org/10.1145/67544.66939
http://dx.doi.org/http://doi.acm.org/10.1145/210332.210335

Bibliography 208

Kleinberg, J. (1999). Authoritative sources in a hyperlinked environment. In: Journal

of the ACM 46.5, pp. 604–632. See p. 188.

Klusch, M., B. Fries, and M. Khalid (2005). OWLS-MX: Hybrid Semantic Web Service

Retrieval. In: Proceedings of the 1st International AAAI Fall Symposium on Agents

and the Semantic Web. See pp. 26, 70–72, 80, 164, 172.

Klusch, Matthias and Katia Sycara (2001). Brokering and matchmaking for coordi-

nation of agent societies: a survey. In: Coordination of Internet agents: models,

technologies, and applications. Springer-Verlag, 197–224. ISBN: 3-540-41613-7.

URL: http://www.dfki.de/˜klusch/papers/chapter8.pdf. See

p. 18.

Konstan, Joseph A, Bradley N Miller, David Maltz, Jonathan L Herlocker, Lee R Gordon,

and John Riedl (1997). GroupLens: applying collaborative filtering to Usenet news.

In: Communications of the ACM 40.3, pp. 77–87. See p. 31.

Kopecky, Jacek, Karthik Gomadam, and Tomas Vitvar (2008). hRESTS: an HTML

Microformat for Describing RESTful Web Services. In: Proceedings of the 2008

IEEE/WIC/ACM International Conference on Intelligent Agent Technology. Sydney,

Australia. See pp. 50, 68.

Kopecký, Jacek, Tomas Vitvar, Dieter Fensel, and Karthik Gomadam (2008). D12

MicroWSMO: Semantic Annotations for RESTful Services. Tech. rep. Conceptual

Models of Services working group (CMS), STI International. URL: http://cms-

wg.sti2.org/TR/d12/. See pp. 68, 187.

Kornfeld, W A (1979). ETHER: A parallel problem solving system. In: Proceedings of

the 6th International Joint Conference on Artificial Intelligence (IJCAI ’79). Tokyo,

Japan, pp. 490–492. See p. 34.

Kornfeld, William A. (1979). Using Parallel Processing for Problem Solving. Tech. rep.

Artificial Intelligence Lab, Massachusetts Institute of Technology. URL: http:

//dspace.mit.edu/handle/1721.1/5719. See p. 34.

http://www.dfki.de/~klusch/papers/chapter8.pdf
http://cms-wg.sti2.org/TR/d12/
http://cms-wg.sti2.org/TR/d12/
http://dspace.mit.edu/handle/1721.1/5719
http://dspace.mit.edu/handle/1721.1/5719

Bibliography 209

Kornfeld, William A. (1981). The use of parallelism to implement a heuristic search.

In: Proceedings of the 7th International Joint Conference on Artificial Intelligence

(IJCAI ’81). Vancouver, Canada, pp. 575–580. See p. 34.

Korzybski, Alfred (1931). A Non-Aristotelian System and its Necessity for Rigour

in Mathematics and Physics. In: Meeting of the American Association for the

Advancement of Science. New Orleans, Louisiana, USA. See p. 87.

Kuokka, D. and L. Harada (1995). Matchmaking for Information Agents. In: Proceed-

ings of the 14th IJCAI, pp. 672–678. See pp. 5, 39.

Kuokka, Daniel and Larry Harada (1996). Integrating information via matchmaking.

In: Journal of Intelligent Information Systems 6.2-3, pp. 261–279. ISSN: 0925-9902.

DOI: http://dx.doi.org/10.1007/BF00122130. See p. 39.

Labrou, Yannis and Tim Finin (1997). A Proposal for a new KQML Specication. Tech.

rep. Baltimore, Maryland: Computer ScienceElectrical Engineering Department,

University of Maryland Baltimore County. See pp. 37, 38.

Lambert, D. and D. Robertson (2006). Selecting Web Services Statistically. In: Tenth

International Workshop on Cooperative Information Agents. Edinburgh, Scotland.

See p. 12.

Lambert, David and David Robertson (2005). Matchmaking and Brokering Multi-Party

Interactions Using Historical Performance Data. In: Proceedings of the Fourth

International Joint Conference on Autonomous Agents and Multi-Agent Systems

(AAMAS-05). Utrecht, Netherlands, pp. 611–617. See p. 12.

Lambert, David J. (2005). Accounting for Valency in Service Composition. In: First

Advanced Knowledge Technologies Doctoral Symposium. Milton Keynes, England.

See p. 12.

Lamport, Leslie (1987). Distribution. Online at http://research.microsoft.

com / users / lamport / pubs / distributed - system . txt. URL:

http : / / research . microsoft . com / users / lamport / pubs /

distributed-system.txt. See p. 87.

http://dx.doi.org/http://dx.doi.org/10.1007/BF00122130
http://research.microsoft.com/users/lamport/pubs/distributed-system.txt
http://research.microsoft.com/users/lamport/pubs/distributed-system.txt
http://research.microsoft.com/users/lamport/pubs/distributed-system.txt
http://research.microsoft.com/users/lamport/pubs/distributed-system.txt

Bibliography 210

Larsen, Peter Gorm, John Fitzgerald, and Tom Brookes (1996). Applying Formal

Specification in Industry. In: IEEE Software 13 (3 1996), pp. 48–56. See p. 81.

Lathem, Jon, Karthik Gomadam, and Amit P. Sheth (2007). SA-REST and (S)mashups

: Adding Semantics to RESTful Services. In: Proceedings of the International

Conference on Semantic Computing (ICSC 2007). Los Alamitos, CA, USA: IEEE

Computer Society, pp. 469–476. DOI: http://doi.ieeecomputersociety.

org/10.1109/ICSC.2007.94. See p. 90.

Lausen, Holger, Axel Polleres, and Dumitru Roman (2005). Web Service Modeling

Ontology (WSMO). Tech. rep. World Wide Web Consortium (W3C). URL: http:

//www.w3.org/Submission/WSMO/. See p. 8.

Lenat, Douglas B. and R. V. Guha (1990). Building Large Knowledge-Based Systems:

Representation and Inference in the Cyc Project. Addison-Wesley. See p. 193.

Li, L. and I. Horrocks (2003). A software framework for matchmaking based on

semantic web technology. URL: citeseer.ist.psu.edu/li03software.

html. See pp. 5, 172.

Li, Lei and Ian Horrocks (2004). A Software Framework For Matchmaking Based on

Semantic Web Technology. In: International Journal of Electronic Commerce 8.4

(Summer 2004), pp. 39–60. See pp. vii, 62, 63, 80, 114.

Licklider, J.C.R. (1963). Memorandum For Members and Affiliates of the Intergalactic

Computer Network. Apr. 1963. URL: http://www.kurzweilai.net/

articles/art0366.html?printable=1. See p. 13.

Licklider, J.C.R. and Robert W. Taylor (1968). The Computer as a Communication

Device. This paper was reprinted in: In Memoriam: J. C. R. Licklider 1915-1990

and Research Report 61 Digital Equipment Corporation Systems Research Center

August 1990. Apr. 1968. URL: http://gatekeeper.dec.com/pub/DEC/

SRC/research-reports/abstracts/src-rr-061.html. See p. 13.

Liu, Weiru (2001). Propositional, Probabilistic and Evidential Reasoning: Integrating

Numerical and Symbolic Approaches. Physica-Verlag. See pp. 106, 108.

http://dx.doi.org/http://doi.ieeecomputersociety.org/10.1109/ICSC.2007.94
http://dx.doi.org/http://doi.ieeecomputersociety.org/10.1109/ICSC.2007.94
http://www.w3.org/Submission/WSMO/
http://www.w3.org/Submission/WSMO/
citeseer.ist.psu.edu/li03software.html
citeseer.ist.psu.edu/li03software.html
http://www.kurzweilai.net/articles/art0366.html?printable=1
http://www.kurzweilai.net/articles/art0366.html?printable=1
http://gatekeeper.dec.com/pub/DEC/SRC/research-reports/abstracts/src-rr-061.html
http://gatekeeper.dec.com/pub/DEC/SRC/research-reports/abstracts/src-rr-061.html

Bibliography 211

Liu, Weiru, Alan Bundy, and Dave Robertson (1993). On the Relations between Inci-

dence Calculus and ATMS. In: European Conference on Symbolic and Quantitative

Approaches to Reasoning and Uncertainty. Springer-Verlag, pp. 249–256. See

p. 111.

Lord, P, P Alper, C Wroe, and C Goble (2005). Feta: A Light-Weight Architecture for

User Oriented Semantic Service Discovery. In: Proceedings of the 2nd European

Semantic web Conference. Vol. 3532. Lecture Notes in Computer Science. Springer,

pp. 17–31. ISBN: 978-3-540-26124-7. DOI: 10.1007/b136731. See pp. 54, 83,

85, 88.

Lord, Phillip, Sean Bechhofer, Mark D. Wilkinson, Gary Schiltz, Damian Gessler,

Duncan Hull, Carole Goble, and Lincoln Stein (2004). Applying Semantic

Web Services to Bioinformatics: Experiences Gained, Lessons Learned. In: The

Semantic Web — ISWC 2004. Ed. by Sheila A. McIlraith, Dimitris Plexousakis, and

Frank van Harmelen. Vol. 3298. Lecture Notes in Computer Science. Hiroshima,

Japan: Springer, pp. 350–364. See pp. 54, 77, 89, 193.

Luan, Xiaocheng (2004). “Adaptive Middle Agent for Service Matching in the Semantic

Web: A Quantitative Approach”. PhD thesis. University of Maryland, Baltimore

County. URL: http://ebiquity.umbc.edu/paper/html/id/206/.

See pp. 70, 76.

— (2004). Quantitative Agent Service Matching. In: Proceedings of the 2004

IEEE/WIC/ACM International Conference on Web Intelligence. See p. 70.

Manning, Christopher D. and Hinrich Schütze (1999). Foundations of Statistical Natural

Language Processing. MIT Press. See p. 183.

Marcus, Sandra and John McDermott (1989). SALT: a knowledge acquisition language

for propose-and-revise systems. In: Artificial Intelligence 39.1, pp. 1–37. ISSN:

0004-3702. DOI: http://dx.doi.org/10.1016/0004-3702(89)9000

2-7. See p. 30.

http://dx.doi.org/10.1007/b136731
http://ebiquity.umbc.edu/paper/html/id/206/
http://dx.doi.org/http://dx.doi.org/10.1016/0004-3702(89)90002-7
http://dx.doi.org/http://dx.doi.org/10.1016/0004-3702(89)90002-7

Bibliography 212

Martin, D., A. Cheyer, and D. Moran (1999). The Open Agent Architecture: A

Framework for Building Distributed Software Systems. In: Applied Artificial

Intelligence 13 ((1-2) 1999), pp. 92–128. See pp. 5, 25, 42.

Martin, David, Mark Burstein, Jerry Hobbs, Ora Lassila, Drew McDermott, Sheila

McIlraith, Srini Narayanan, Massimo Paolucci, Bijan Parsia, Terry Payne, Evren

Sirin, Naveen Srinivasan, and Katia Sycara (2004). OWL-S: Semantic Markup

for Web Services. W3C Member Submission 22 November 2004. URL: http:

//www.w3.org/Submission/OWL-S. See pp. 8, 58, 60, 89.

McGinnis, Jarred P. (2006). “On the Mutability of Protocols”. PhD thesis. School of

Informatics, University of Edinburgh. See pp. 106, 189.

McIlraith, S., T. Son, and H. Zeng (2001). Semantic Web services. In: IEEE Intelligent

Systems 16 (2 2001), pp. 46–53. ISSN: 1541-1672. URL: citeseer.ist.psu.

edu/mcilraith01semantic.html. See pp. 8, 192.

Meyer, Bertrand (1985). On Formalism in Specifications. In: IEEE Software 2 (1 1985),

pp. 6–26. See p. 81.

Microsoft Corporation (1996). DCOM Technical Overview. Online at http://msdn2

.microsoft.com/en-us/library/ms809340.aspx. Nov. 1996. URL:

http://msdn2.microsoft.com/en-us/library/ms809340.aspx.

See p. 2.

Miles, S., J. Papay, Dialani, V., Luck, M., Decker, K., Payne, T., Moreau, and L. (2003).

Personalised Grid Service Discovery. In: Proceedings of the nineteenth annual UK

Performance Engineering Workshop (UKPEW’03). See pp. 54, 173.

Milner, Robin (1999). Communicating and Mobile Systems: The π-Calculus. Cam-

bridge University Press. See p. 100.

Mitchell, Tom M. (1997). Machine Learning. New York: McGraw-Hill. See p. 146.

Moto-oka, Tohru and Masaru Kitsuregawa (1985). The Fifth Generation Computer:

The Japanese Challenge. John Wiley and Sons. See p. 1.

http://www.w3.org/Submission/OWL-S
http://www.w3.org/Submission/OWL-S
citeseer.ist.psu.edu/mcilraith01semantic.html
citeseer.ist.psu.edu/mcilraith01semantic.html
http://msdn2.microsoft.com/en-us/library/ms809340.aspx
http://msdn2.microsoft.com/en-us/library/ms809340.aspx
http://msdn2.microsoft.com/en-us/library/ms809340.aspx

Bibliography 213

Motta, Enrico (1999). Reusable Components for Knowledge Modelling. Vol. 53.

Frontiers in Artificial Intelligence and Applications. IOS Press. ISBN: 978-1-58603-

003-2. See p. 81.

Nardi, Daniele and Ronald J. Brachman (2003). An Introduction to Description Logics.

In: ed. by Franz Baader, Diego Calvanese, Deborah L. McGuinness, Daniele Nardi,

and Peter F. Patel-Schneider. Cambridge University Press. ISBN: 0-521-78176-0.

See p. 5.

Norton, Barry and Carlos Pedrinaci (2006). 3-Level Service Composition and Cashew:

A Model for Orchestration and Choreography in Semantic Web Services. In:

2nd International Workshop on Agents, Web Services and Ontologies Merging

(AWeSOMe’06). See p. 66.

OASIS UDDI Specification TC (2005). Universal Description, Discovery and Integration

v3.0.2 (UDDI). Feb. 2005. URL: http://www.oasis-open.org/specs/

index.php#uddiv3.0.2. See p. 48.

Object Management Group (2004). Common Object Request Broker Architecture: Core

Specification. Online at http://www.omg.org/cgi-bin/apps/doc?

formal/04-03-12.pdf. Mar. 2004. URL: http://www.omg.org/cgi-

bin/apps/doc?formal/04-03-12.pdf. See p. 2.

Oinn, T. M., M. Addis, J. Ferris, D. Marvin, R. M. Greenwood, T. Carver, M. R. Pocock,

A. Wipat, and P. Li (2004). Taverna: a tool for the composition and enactment of

bioinformatics workflows. In: Bioinformatics 20.17 (Nov. 2004), pp. 3045–3054.

See pp. 4, 6.

Osman, N., D. Robertson, and C. Walton (2005). Run-time model checking of interaction

and deontic models for multi-agent systems. In: Proceedings of the European Multi-

Agent Systems Workshop, 2005. See pp. 11, 105, 119.

Osman, Nardine and David Robertson (2007). Dynamic Verification of Trust in

Distributed Open Systems. In: IJCAI 2007, Proceedings of the 20th International

http://www.oasis-open.org/specs/index.php#uddiv3.0.2
http://www.oasis-open.org/specs/index.php#uddiv3.0.2
http://www.omg.org/cgi-bin/apps/doc?formal/04-03-12.pdf
http://www.omg.org/cgi-bin/apps/doc?formal/04-03-12.pdf
http://www.omg.org/cgi-bin/apps/doc?formal/04-03-12.pdf
http://www.omg.org/cgi-bin/apps/doc?formal/04-03-12.pdf

Bibliography 214

Joint Conference on Artificial Intelligence, Hyderabad, India, January 6-12, 2007.

Ed. by Manuela M. Veloso. See pp. 105, 189.

Page, Lawrence, Sergey Brin, Rajeev Motwani, and Terry Winograd (1998). The

PageRank Citation Ranking: Bringing Order to the Web. Tech. rep. Stanford

Digital Library Technologies Project. URL: citeseer . ist . psu . edu /

page98pagerank.html. See pp. 188, 191.

Palankar, Mayur R., Adriana Iamnitchi, Matei Ripeanu, and Simson Garfinkel (2008).

Amazon S3 for science grids: a viable solution? In: DADC ’08: Proceedings of the

2008 international workshop on Data-aware distributed computing. Boston, MA,

USA: ACM, pp. 55–64. ISBN: 978-1-60558-154-5. DOI: http://doi.acm.

org/10.1145/1383519.1383526. See p. 3.

Pan, Zhengxiang (2005). Benchmarking DL Reasoners Using Realistic Ontologies. In:

OWL: Directions and Experiences. Galway, Ireland. See pp. 91, 92.

Paolucci, M., T. Kawamura, T. Payne, and K. Sycara (2002a). Importing the semantic

web in UDDI. URL: citeseer.ist.psu.edu/article/paolucci02

importing.html. See pp. 48, 62.

Paolucci, M., N. Srinivasan, K. Sycara, and T. Nishimura (2003a). Towards a Semantic

Choreography of Web Services: from WSDL to DAML-S. In: Proceedings of the

International Conference on Web Services (ICWS 2003). Las Vegas, Nevada, USA.

See p. 85.

Paolucci, Massimo, Takahiro Kawamura, Terry R. Payne, and Katia Sycara (2002b).

Semantic Matching of Web Services Capabilities. In: The Semantic Web — ISWC

2002: Proceedings. See p. 5.

Paolucci, Massimo, Anupriya Ankolekar, Naveen Srinivasan, and Katia Sycara (2003b).

The DAML-S Virtual Machine. In: Proceedings of the Second International Semantic

Web Conference. Sanibel Island, Florida, USA. See p. 85.

citeseer.ist.psu.edu/page98pagerank.html
citeseer.ist.psu.edu/page98pagerank.html
http://dx.doi.org/http://doi.acm.org/10.1145/1383519.1383526
http://dx.doi.org/http://doi.acm.org/10.1145/1383519.1383526
citeseer.ist.psu.edu/article/paolucci02importing.html
citeseer.ist.psu.edu/article/paolucci02importing.html

Bibliography 215

Papazoglou, Mike P. (2003). Service-Oriented Computing: Concepts, Characteristics

and Directions. In: Proceedings of the Fourth International Conference on Web

Information Systems Engineering (WISE 03). See p. 2.

Payne, Terry R. (2008). Web Services from an Agent Perspective. In: IEEE Intelligent

Systems 23.2 (March/April 2008), pp. 12–14. See p. 6.

Petrie, C., T. Margaria, H Lausen, and M Zaremba, eds. (2009). Semantic Web Services

Challenge: Results from the First Year. Vol. 8. Semantic Web and Beyond. Springer

Verlag. ISBN: 978-0-387-72495-9. See p. 192.

Pitkow, James Edward (1997). “Characterizing World Wide Web Ecologies”. PhD thesis.

Georgia Institute of Technology, Georgia, USA. See p. 188.

Proceedings of the 5th European Semantic web Conference (2008). Vol. 5021. Lecture

Notes in Computer Science. Tenerife: Springer.

Proceedings of the first Future Internet Symposium (2008). Sematic Technology

Institute. Vienna, Austria.

Proceedings of the first international joint conference on Autonomous agents and

multiagent systems (AAMAS 2002) (2002). Bologna, Italy: ACM Press. ISBN: 1-

58113-480-0.

Proceedings of the International Semantic Web Conference 2007 (2007). Busan, Korea:

Springer.

Quan, Xueping, Chris Walton, Dietlind L. Gerloff, Joanna L. Sharman, and David

Robertson (2007). Peer-to-Peer Experimentation in Protein Structure Prediction:

An Architecture, Experiment and Initial Results. In: GCCB. Ed. by Werner Dubitzky,

Assaf Schuster, Peter M. A. Sloot, Michael Schroeder, and Mathilde Romberg.

Vol. 4360. Lecture Notes in Computer Science. Springer, pp. 75–98. ISBN: 3-540-

69841-8. See p. 106.

Raman, R., M. Livny, and M. Solomon (1998). Matchmaking: distributed resource

management for high throughputcomputing. In: Proceedings of the Seventh Inter-

Bibliography 216

national Symposium on High Performance Distributed Computing. Chicago, IL,

USA, pp. 140–146. ISBN: 0-8186-8579-4. See p. 52.

Raman, R., M. Livny, and M. Solomon (2000). Resource management through

multilateral matchmaking. In: Proceedings of the ninth International Symposium

on High-Performance Distributed Computing. Pittsburgh, PA, USA, pp. 290–291.

ISBN: 0-7695-0783-2. See p. 52.

Resnick, Paul and Hal R. Varian (1997). Recommender systems. In: Commun. ACM

40.3, pp. 56–58. ISSN: 0001-0782. DOI: http://doi.acm.org/10.1145/

245108.245121. See pp. 10, 31.

Richardson, Leonard and Sam Ruby (2007). RESTful Web Services. O’Reilly Media, Inc.

See pp. 47, 86.

Robertson, D., C. Walton, A. Barker, A. Besana, Y. Chen-Burger, F. Hassan, D, Lambert,

G. Li, J. McGinnis, N. Osman, A. Bundy, F. McNeil, F. van Harmelen, C. Sierra,

and F. Giunchiglia (2009). Models of Interaction as a Grounding for Peer to Peer

Knowledge Sharing. In: ed. by Tharam Dillon, Elizabeth Chang, Robert Meersman,

and Katia Sycara. Springer. See p. 12.

Robertson, David (2004). A lightweight method for coordination of agent oriented web

services. In: Proceedings of the 2004 AAAI Spring Symposium on Semantic Web

Services. California, USA. See pp. 11, 99, 185.

Robertson, David, Fausto Giunchiglia, Frank van Harmelen, Maurizio Marchese, Marta

Sabou, W. Marco Schorlemmer, Nigel Shadbolt, Ronny Siebes, Carles Sierra,

Chris Walton, Srinandan Dasmahapatra, David Dupplaw, Paul H. Lewis, Mikalai

Yatskevich, Spyros Kotoulas, Adrian Perreau de Pinninck, and Antonis Loizou (2007).

Open Knowledge. In: LADS. Ed. by Mehdi Dastani, Amal El Fallah-Seghrouchni,

João Leite, and Paolo Torroni. Vol. 5118. Lecture Notes in Computer Science.

Springer, pp. 1–18. ISBN: 978-3-540-85057-1. See p. 106.

Robertson, David Stuart, Flávio S. Corrêa da Silva, Wamberto Weber Vasconcelos,

and Ana Cristina Vieira de Melo (2000). A Lightweight Capability Communication

http://dx.doi.org/http://doi.acm.org/10.1145/245108.245121
http://dx.doi.org/http://doi.acm.org/10.1145/245108.245121

Bibliography 217

Mechanism. In: Intelligent Problem Solving. Methodologies and Approaches: 13th

International Conference on Industrial and Engineering Applications of Artificial

Intelligence and Expert Systems, IEA/AIE 2000, New Orleans, Louisiana, USA, June

2000. Proceedings. Vol. 1821. Lecture Notes in Computer Science. Springer-Verlag,

pp. 660–670. See p. 43.

Roure, David De and Carole Goble (2007). myExperiment––A Web 2.0 Virtual Research

Environment. In: International Workshop on Virtual Research Environments and

Collaborative Work Environments. Edinburgh, United Kingdom. URL: http://

eprints.ecs.soton.ac.uk/13961/. See p. 55.

SAP News Desk (2005). Microsoft, IBM, SAP To Discontinue UDDI Web Services

Registry Effort. Online at http://soa.sys-con.com/node/164624.

Dec. 2005. URL: http://soa.sys-con.com/node/164624. See p. 48.

Schafer, Ben J, Joseph Konstan, and John Riedl (1999). Recommender systems in e-

Commerce. In: Proceedings of the ACM Conference on Electronic Commerce. See

pp. 10, 32.

Schreiber, A T and W P Birmingham (1996). Editorial: The Sisyphus-VT initiative. In:

International Journal of Human-Computer Studies 44 (3/4 1996), pp. 373–402. See

p. 81.

Shirky, Clay (2003). The Semantic Web, Syllogism, and Worldview. First published as

an email on the ‘Networks, Economics, and Culture’ mailing list. Available online at

http://www.shirky.com/writings/semantic_syllogism.html.

Nov. 2003. URL: http://www.shirky.com/writings/semantic_

syllogism.html. See pp. 8, 79.

— (2005). Ontology is Overrated: Categories, Links, and Tags. Available online at

http://www.shirky.com/writings/ontology_overrated.html.

URL: http://www.shirky.com/writings/ontology_overrated.

html. See p. 79.

http://eprints.ecs.soton.ac.uk/13961/
http://eprints.ecs.soton.ac.uk/13961/
http://soa.sys-con.com/node/164624
http://soa.sys-con.com/node/164624
http://www.shirky.com/writings/semantic_syllogism.html
http://www.shirky.com/writings/semantic_syllogism.html
http://www.shirky.com/writings/semantic_syllogism.html
http://www.shirky.com/writings/ontology_overrated.html
http://www.shirky.com/writings/ontology_overrated.html
http://www.shirky.com/writings/ontology_overrated.html

Bibliography 218

Siebes, Ronny and Spyros Kotoulas (2007). pRoute: Peer selection using shared term

similarity matrices. In: Journal Web Intelligence and Agent Systems 5 (1 2007),

pp. 89–107. ISSN: 1570-1263. See p. 191.

Singh, Munindar P. and Michael N. Huhns (2005). Service-Oriented Computing:

Semantics, Processes, Agents. Chichester, England: John Wiley & Sons. See p. 1.

Singh, N. (1993). A Common Lisp API and Facilitator for ABSI. Tech. rep. Logic Group,

Computer Science Department, Stanford University. See pp. 5, 39.

Sirin, E., B. Parsia, and J. Hendler (2004). Filtering and selecting semantic Web services

with interactive composition techniques. In: IEEE Intelligent Systems 19 (4 2004),

pp. 42–49. ISSN: 1541-1672. See p. 63.

Smith, Michael K., Chris Welty, and Deborah L. McGuinness (2004). OWL Web

Ontology Language Guide. W3C Recommendation 10 February 2004. URL: http:

//www.w3.org/TR/owl-guide/. See pp. 26, 56.

Smith, R. G. (1980). The Contract Net Protocol: High-Level Communication and

Control in a Distributed Problem Solver. In: IEEE Transactions on Computers 29.12

(Dec. 1980), pp. 1104–1113. See pp. 4, 16, 17.

Smith, R .G. and R. Davis (1978). Applications of the Contract Net Framework:

Distributed Sensing. In: Proceedings ARPA Distributed Sensor Net Symposium.

Pittsburgh, USA, pp. 12–20. See p. 35.

Spivey, J. Michael (1992). The Z Notation: a reference manual. Second. Prentice Hall.

See pp. 25, 81.

Srinivasan, R. (1995). Remote Procedure Call Protocol Specification Version 2. Tech.

rep. Internet Engineering Task Force. URL: http://www.ietf.org/rfc/

rfc1831.txt. See p. 14.

Stollberg, Michael, Martin Hepp, and Jörg Hoffmann (2007). A Caching Mechanism

for Semantic Web Service Discovery. In: Proceedings of the International Semantic

Web Conference 2007. Busan, Korea: Springer. See pp. 67, 172, 173.

http://www.w3.org/TR/owl-guide/
http://www.w3.org/TR/owl-guide/
http://www.ietf.org/rfc/rfc1831.txt
http://www.ietf.org/rfc/rfc1831.txt

Bibliography 219

Stollberg, Michael, Matthew Moran, Liliana Cabral, Barry Norton, and John

Domingue (2006). Experiences from Semantic Web Service Tutorials. In: Semantic

Web Education and Training Workshop (SWET’06), First Asian Semantic Web

Conference (ASWC). Beijing, China. See p. 83.

Studer, R., V. Benjamins, and D. Fensel (1998). Knowledge engineering: Principles

and methods. In: IEEE Transactions on Data and Knowledge Engineering 25.1-2,

pp. 161–197. URL: citeseer.comp.nus.edu.sg/225099.html. See

pp. 30, 78.

Subrahmanian, V. S., Piero Bonatti, Jurgen Dix, Thomas Eiter, and Fatma Ozcan

(2000). Heterogeneous Agent Systems–Heterogeneous Agent Systems. MIT Press.

ISBN: 0262194368. See pp. 26, 40, 80, 129.

Sycara, K., M. Klusch, and S. Widoff (1999). Dynamic Service Matchmaking Among

Agents in Open Information Environments. In: SIGMOD Record 28 (1 1999),

pp. 47–53. See p. 5.

Sycara, K., J. A. Giampapa, B.K. Langley, and M. Paolucci (2003a). The RETSINA

MAS, a Case Study. In: Software Engineering for Large-Scale Multi-Agent Systems:

Research Issues and Practical Applications. Ed. by Alessandro Garcia, Carlos

Lucena, Franco Zambonelli, Andrea Omici, and Jaelson Castro. Vol. 2603. Lecture

Notes in Computer Science. Berlin Heidelberg: Springer-Verlag, pp. 232–250. See

pp. 40, 94.

Sycara, Katia, Seth Widoff, Matthias Klusch, and Jianguo Lu (2002). LARKS:

Dynamic Matchmaking Among Heterogeneous Software Agnets in Cyberspace. In:

Autonomous Agents and Multi-Agent Systems 5, pp. 173–203. See pp. 22, 40.

Sycara, Katia P., Massimo Paolucci, Anupriya Ankolekar, and Naveen Srinivasan

(2003b). Automated discovery, interaction and composition of Semantic Web

services. In: J. Web Sem. 1.1, pp. 27–46. See pp. 26, 61, 62, 71, 114.

Teije, A. ten, F. van Harmelen, and B. Wielinga (2004). Configuration of Web Services as

Parametric Design. In: Proceedings of the 14th International Conference, (EKAW-

citeseer.comp.nus.edu.sg/225099.html

Bibliography 220

2004). Ed. by E. Motta, N. Shadbolt, A. Stutt, and N. Gibbins. Lecture Notes in

Artificial Intelligence 3257. ISBN 3-540-23340-7. Whittleburry Hall, UK: Springer

Verlag, pp. 321–336. See p. 31.

Teije, Annette ten, Frank van Harmelen, A. Th. Schreiber, and Bob J. Wielinga (1998).

Construction of problem-solving methods as parametric design. In: International

Journal of Human Computer Studies 49.4, pp. 363–389. See p. 31.

The DAML Services Coalition (2003). DAML-S: Semantic Markup for Web Services.

Online at http://www.daml.org/services/daml-s/0.9/daml-s.

html. URL: http://www.daml.org/services/daml-s/0.9/daml-

s.html. See p. 62.

Tobies, Stephan (2001). “Complexity Results and Practical Algorithms for Logics in

Knowledge Representation”. PhD thesis. RWTH Aachen. See p. 26.

Toma, Ioan, Brahmananda Sapkota, James Scicluna, Juan Miguel Gomez, Dumitru

Roman, and Dieter Fensel (2005). A P2P Discovery mechanism for Web Service

Execution Environment. In: Proceedings of the 2nd International WSMO Implemen-

tation Workshop. Innsbruck, Austria. See pp. 35, 66.

Trastour, David, Claudio Bartolini, and Javier Gonzalez-Castillo (2001). A Semantic Web

Approach to Service Description for Matchmaking of Services. In: Proceedings

of SWWS’01, The first Semantic Web Working Symposium. Ed. by Isabel F. Cruz,

Stefan Decker, Jérôme Euzenat, and Deborah L. McGuinness. Stanford University,

California, USA, pp. 447–461. See p. 63.

Viceconti, Marco, Fulvia Taddei, Serge Van Sint Jan, Alberto Leardini, Gordon

Clapworthy, Stefania Galizia, and Paolo Quadrani (2007). Towards the multiscale

modelling of musculoskeletal system. In: see p. 85.

Vinoski, Steve (2002a). Putting the “Web” into Web Services: Web Services Interaction

Models, Part 1. In: IEEE Internet Computing 6.3 (May-June 2002), pp. 89–91. See

p. 84.

http://www.daml.org/services/daml-s/0.9/daml-s.html
http://www.daml.org/services/daml-s/0.9/daml-s.html
http://www.daml.org/services/daml-s/0.9/daml-s.html
http://www.daml.org/services/daml-s/0.9/daml-s.html

Bibliography 221

Vinoski, Steve (2002b). Putting the “Web” into Web Services: Web Services Interaction

Models, Part 2. In: IEEE Internet Computing 6.4 (July-August 2002), pp. 90–92.

See p. 84.

Vitvar, Thomas, Jacek Kopecky, Jana Viskova, and Dieter Fensel (2008). WSMO-Lite

Annotations for Web Services. In: Proceedings of the 5th European Semantic web

Conference. Vol. 5021. Lecture Notes in Computer Science. Tenerife: Springer. See

p. 8.

Vitvar, Tomas, Jacek Kopecký, and Dieter Fensel (2008). D11 WSMO-Lite: Lightweight

Semantic Descriptions for Services on the Web. Tech. rep. Conceptual Models of

Services working group (CMS), STI International. URL: http://cms-wg.sti2.

org/TR/d11/. See pp. 69, 187.

Walton, Christopher (2004). Model Checking Multi-Agent Web Services. In: Proceed-

ings of the 2004 AAAI Spring Symposium on Semantic Web Services. See pp. 105,

119.

Walton, D. N. and E. C. W. Krabbe (1995). Commitment in Dialogue: Basic Concepts

of Interpersonal Reasoning. Albany, NY, USA: SUNY Press. See p. 89.

Walton, N. A., A. Lawrence, and T. Linde (2003). AstroGrid: Initial Deployment of the

UK’s Virtual Observatory. In: Astronomical Data Analysis Software and Systems

(ADASS) XIII. Strasbourg, France. See p. 3.

White, James E. (1975). A High-Level Framework for Network-Based Resource

Sharing. Tech. rep. Internet Engineering Task Force. See p. 14.

Wilkinson, Mark D. and Matthew Links (2002). BioMOBY: An open source biological

web services proposal. In: Briefings in bioinformatics 3.4, pp. 331–341. DOI: doi:

10.1093/bib/3.4.331. See pp. 3, 55.

Wilson, Brian (2008). MAMA: W3C validator research. Published online at http:

/ / dev . opera . com / articles / view / mama - w3c - validator -

research-2/. Oct. 2008. See p. 82.

http://cms-wg.sti2.org/TR/d11/
http://cms-wg.sti2.org/TR/d11/
http://dx.doi.org/doi:10.1093/bib/3.4.331
http://dx.doi.org/doi:10.1093/bib/3.4.331
http://dev.opera.com/articles/view/mama-w3c-validator-research-2/
http://dev.opera.com/articles/view/mama-w3c-validator-research-2/
http://dev.opera.com/articles/view/mama-w3c-validator-research-2/

Bibliography 222

Winer, Dave (1999). XML-RPC Specification. Online at http://www.xmlrpc.

com/spec. June 1999. URL: http://www.xmlrpc.com/spec. See p. 49.

Wing, Jeannette M. (1990). A specifier’s introduction to formal methods. In: Computer

23 (9 1990), pp. 8,10–22,24. ISSN: 0018-9162. See p. 81.

Witten, Ian H., Alistair Moffat, and Timothy C. Bell (1999). Managing Gigabytes.

Academic Press. See pp. 161, 174.

Wong, H. and K. Sycara (2000). A Taxonomy of Middle-agents for the Internet. In: 4th

International Conference on Multi-Agent Systems (ICMAS 2000). URL: citeseer.

ist.psu.edu/wong00taxonomy.html. See p. 22.

Wooldridge, M. (2000). Reasoning About Rational Agents. MIT Press. ISBN: 0-262-

23213-8. See p. 6.

Wooldridge, Michael and Nicholas R. Jennings (1995). Intelligent Agents: Theory and

Practice. http://www.doc.mmu.ac.uk/STAFF/mike/ker95/ker95-

html.h (Hypertext version of Knowledge Engineering Review paper). URL:

citeseer.ist.psu.edu/article/wooldridge95intelligent.

html. See p. 18.

Wooldridge, Mike and P. Ciancarini (2000). Agent-Oriented Software Engineering: The

State of the Art. In: First Int. Workshop on Agent-Oriented Software Engineering.

Ed. by P. Ciancarini and M. Wooldridge. Vol. 1957. Springer-Verlag, Berlin, pp. 1–28.

URL: citeseer.ist.psu.edu/wooldridge00agentoriented.html.

See pp. 2, 90.

Wroe, C, CA Goble, A Goderis, and P Lord (2007). Recycling workflows and services

through discovery and reuse. In: Concurrency and Computation: Practice and

Engineering 19 (2 2007), pp. 181–194. See pp. 77, 187.

Wroe, Chris, Carole Goble, Mark Greenwood, Phillip Lord, Simon Miles, Juri Papay,

Terry Payne, and Luc Moreau (2004). Automating Experiments Using Semantic

Data on a Bioinformatics Grid. In: IEEE Intelligent Systems 19.1 (January/February

2004), pp. 48–55. See pp. 23, 54, 55.

http://www.xmlrpc.com/spec
http://www.xmlrpc.com/spec
http://www.xmlrpc.com/spec
citeseer.ist.psu.edu/wong00taxonomy.html
citeseer.ist.psu.edu/wong00taxonomy.html
http://www.doc.mmu.ac.uk/STAFF/mike/ker95/ker95-html.h
http://www.doc.mmu.ac.uk/STAFF/mike/ker95/ker95-html.h
citeseer.ist.psu.edu/article/wooldridge95intelligent.html
citeseer.ist.psu.edu/article/wooldridge95intelligent.html
citeseer.ist.psu.edu/wooldridge00agentoriented.html

Bibliography 223

Yost, G R and T R Rothenfluh (1996). Configuring elevator systems. In: International

Journal of Human-Computer Studies 44 (3/4 1996), pp. 521–568. See p. 81.

Zaremba, Maciej, Tomas Vitvar, Matthew Moran, and Thomas Hasselwanter (2006).

WSMX Discovery for SWS Challenge. In: SWS Challenge Workshop, at ISWC 2006.

Athens, Georgia, USA. See p. 66.

Zaremba, Michal, Matthew Moran, Thomas Haselwanter, Ho-Kyung Lee, and Sung-

Kook Han (2004). WSMX Architecture. Tech. rep. Web Services Modeling Ontology

Working Group. URL: http://www.wsmo.org/TR/d13/d13.4/. See p. 65.

Zhang, Zili and Chengqi Zhang (2002). An improvement to matchmaking algorithms

for middle agents. In: Proceedings of the first international joint conference

on Autonomous agents and multiagent systems. Bologna, Italy: ACM Press,

pp. 1340–1347. ISBN: 1-58113-480-0. DOI: http://doi.acm.org/10.

1145/545056.545129. See pp. viii, 69, 76, 88, 113, 128–130, 133, 136.

http://www.wsmo.org/TR/d13/d13.4/
http://dx.doi.org/http://doi.acm.org/10.1145/545056.545129
http://dx.doi.org/http://doi.acm.org/10.1145/545056.545129

	Introduction
	Services oriented computing
	Finding services
	The modern service ecology
	Thesis
	Publications

	Background
	Distributed computing
	The connection problem
	Requirements for matchmaking
	Service description
	Related fields
	Summary

	Matchmakers
	Distributed AI
	Multi-agent systems
	Web services
	Grid and workflow systems
	Semantic web services
	Our nearest neighbours
	Summary

	Critique
	Expectations for matchmaking
	Limits of logic
	Services themselves
	Interactions
	Summary

	Tools
	Lightweight Coordination Calculus
	Incidence calculus
	Summary

	Monogamy
	Matchmaking and LCC
	A random matchmaker
	Adding the incidence calculus
	Comparison to Zhang and Zhang
	Discussion
	Summary

	Polygamy
	Building a team
	Better than (naive) Bayes
	Selecting roles
	Connections
	Summary

	Scaling
	Simulation
	Tuning
	Experiments
	Discussion
	Summary

	Conclusion
	Contributions
	Future work

	Bibliography

