Formal Support for an Informal
Business Modelling Method

Yun-Heh Chen-Burger

D
S

i
H.AY

Ph.D.
University of Edinburgh
July 3, 2001

ii

Abstract

Business modelling methods, like many of the Enterprise Modelling methods, provide
a structural framework to help capture knowledge of an enterprise forming a basis for
targeted analysis and subsequent reshaping of that enterprise. Although the potential
benefits that can be obtained by applying these methods have convinced many busi-
nesses to use them, the modellers are faced with a key problem: how to ensure the
quality of the model they build. The difficulty is partly rooted in the fact that large
parts of these methods are informal.

A possible solution to this problem is to use “heavyweight” formal methods, which
can be helpful in providing precision and quality assurance for such models. They are,
however, rarely practised, because of the prohibitively large cost implied when using
them, and due to the fact that the end product, i.e. the description of the model, is
often so complicated that it cannot easily be understood without specific professional
training.

As a more practical answer to the problem, a formal language based on a
“lightweight” approach and for use with an informal business modelling method has
been developed. The concrete example used in this dissertation is IBM’s Business
System Development Method (BSDM). The role of the formal notation in this case is
not to provide a formal semantics for the given method, but to provide a mechanism
for sharing the information supplied at different modelling stages and for automated
analysis of the model.

Based on my devised formal language, a layered modelling framework for captur-
ing the knowledge of the business modelling method as well as the models themselves
has been proposed. The original method (BSDM) has been extended to include a
model execution phase. This provides the necessary computational platform for auto-
matic verification and validation facilities to support the plan-build-test-refine model
development lifecycle. Gradual accumulation of model building knowledge is achieved
through Case-Based Reasoning techniques leading to improved modelling guidance over
time. We argue that with this support we are able to enhance the process of quality
assurance and modelling knowledge sharing and reusing. More importantly, it adds to
our understanding of how this sort of seemingly informal method can fit into parts of
the design lifecycle which require formal models.

iii

v

Dedication

To my parents,
Ching-Liang Chen and Peng-Tzu Chiu.

vi

Acknowledgements

I would like to thank my supervisor, Dr. David Robertson, for his excellent guidance
and advise throughout this thesis. His expertise in artificial intelligence research has
been most beneficial to my work. I am particularly thankful for his interest in my
work on business modelling, the time he was prepared to spend with me in the many
meetings we had, and his invaluable feedback on the various drafts of this document.

I would also like to thank John Fraser, Mike Uschold, Ian Harrison and Jussi Stader
for their helpful comments, and Julian Smart for his advice on solving technical prob-
lems. Further thanks go to all members of the Software Systems and Processes Group
for creating an interesting and stimulating research environment.

This research was mainly funded by a PhD scholarship from IBM UK. I thank IBM
UK, in particular Christine Lissoni, for their support.

Finally, I would like thank my parents and family who have always been there for
me and provided moral support. Last but not least, I thank my husband, Albert, for
all his support over the years and time he spent on proof-reading draft versions of this
dissertation.

vii

viii

Declaration

I hereby declare that I composed this thesis entirely myself and that it describes my
own research.

Yun-Heh Chen-Burger
Edinburgh
July 3, 2001

X

Contents

Abstract iii
Acknowledgements v
Acknowledgements vii
Declaration ix
Contents xiv
List of Figures xvii
1 Introduction 1
1.1 The Wider Context: Enterprise Modelling Methods 1

1.2 The Focus: Business System Development Method 3

1.3 The Aim: A Different Type of Modelling Support 4
1.4 Modelling Context and The Support Framework 5

1.5 Formal Approach and KBST-BM 7

1.6 The Use of KBST-BM ittt 8
1.7 Organisation of Thesis, 9

2 Background 11
2.1 Why Enterprise Modelling? 11
2.2 Enterprise Modelling Methods 13
2.3 Business System Development Method (BSDM) 15
2.4 Business Process Models o, 18
2.5 Review of Existing Modelling Tools 23

3 Problems and Approach 27
3.1 Introduction. 27
3.2 Relationship Between Business Model and Software Engineering 27
3.2.1 Software Systems For Business 27

3.2.2 Software System Seeks Real Goal 29

3.3 Support For Enterprise Modelling Methods 30
3.3.1 Problems with Enterprise Modelling Methods 30

3.32 BSDM e 34

3.3.3 Research Objectives 35

3.3.4 Formal Method L. 38

xi

3.3.5 Lightweight Logical Method
3.3.6 A Layered Framework
3.3.7 Modelling Support Overview of KBST-BM

4 Support for BSDM Entity Modelling

7

4.1
4.2
4.3
4.4
4.5
4.6
4.7

Defining a Formal Language: DefBM
Entity Model
Representing Entity Models
Representing Life Cycle Diagram
Representing Domain Knowledge
Inference. L
Conclusion e

Support for BSDM Process Modelling

5.1
5.2
5.3
5.4
5.5
5.6
5.7

Process Modelo
Representing Process Models,
Representing Life Cycle Diagrams with Processes
Representing User-Defined Attribute Rules
Representing Domain Knowledge
Inference Lo
Conclusion o . oL e

Support for Procedural Modelling

6.1
6.2
6.3
6.4

6.5

6.6

Procedural Model e
Representing Dynamic Business Models
Representing Procedural Models,
Representing Domain Knowledge
6.4.1 Actions, Effects and Temporal Relations
6.4.2 Process Dependencies and Partial Execution Order
6.4.3 Simulation Algorithm
Inference L
6.5.1 Process Execution Sequence Constructor.
6.5.2 Process Conflict Detector
6.5.3 Business Model Simulator
Conclusion 0 e e e e e

Business Model Advisor

7.1
7.2
7.3
7.4
7.5
7.6
7.7
7.8
7.9

Introduction Lo Lo
Intelligent Assistance for the Business Modeller
Case-Based Reasoning (CBR)
GMA System Architecture Lo
Indexing and Domain Knowledge Representation
Generic Model Library (GML)
Entity Conceptual Hierarchy (ECH)
Algorithm for Case Retrieving,
Similarity Assessment oL oo
7.9.1 Matching Models
7.9.2 Discriminating Criteria

xii

45
45
49
ol
53
56
59
63

67
67
70
71
72
83
88
91

93
93
96
98
102
102
105
109
111
111
116
117
119

7.9.3 Heuristic Similarity Assessment
7.9.4 User-Definable Similarity Assessment
7.10 Report Generation and Retaining New Cases
7.11 An Example Use of GMA
7.12 Conclusion L e e

8 The Use of KBST-BM
8.1 Descriptionof DATI Case
8.2 Development of An Entity Model
8.3 Development of the Process Model
8.4 Develop Procedural Model
85 Conclusion

9 Evaluation of KBST-BM
9.1 Introduction.
9.2 Evaluation of Support for Method
9.2.1 Completeness Assessmentot ..
9.2.2 Model Verification Support Assessment
9.2.3 BSDM Development Process Support Assessment
9.2.4 Knowledge Integration and Sharing: An Evaluation of GMA
9.3 Comparison with Other Support Tools
9.3.1 Rose Business Process Link and Rose Planner Link
9.3.2 ATOWIN e
9.4 Conclusion e e e e

10 Conclusion
10.1 A Formal Approach o oo
10.2 The System: KBST-BM i v i ittt i
10.3 Evaluation of The KBST-BM

Bibliography

Generic Models From BSDM

Example Models From BSDM

An Industrial Model From an Auto Company
A Business Model for Family Restaurants

A Business Model for DAI

0|83 O Q ®W e

The Formal Operators in DefBM
F.1 Notation and Language Conventions

G Representing Entity Model Rules and Guidelines
G.1 Entity Model Rules
G.2 Entity Model Guidelines L.

157
158
159
166
168
174

177
177
179
179
183
191

. 196

208
209
209
212

215
217
219
221

227

235

239

241

245

251

255
255

H Representing Process Model Rules and Guidelines

H.1 Process Model Rules
H.2 Process Model Guidelines

I The Interpreter for User-Defined Attribute Rules

J Model Rules/Guidelines By Categorisations
J.1 Entity Model Rules.
J.2 Entity Model Guidelines
J.3 Process Model Rules
J.4 Process Model Guidelines

K Test Result of Model Rules and Guidelines
K.1 Test Result of Entity Model Rules
K.2 Test Result of Entity Model Guidelines.
K.3 Test Result of Process Model Rules
K.4 Test Result of Process Model Guidelines

L An Example Use of GMA
L.1 The Input User Model
L.2 The Representation of the User Model
L.3 The Actual Dialogue using GMA
L.4 A Statistical Summary of All Explored Matches

M Example Discourse of Using Business Simulator

Xiv

267
267
272

281

287
288
288
289
290

291
291
292
293
294

295
295
295
297
304

307

List of Figures

1.1

21
2.2

3.1
3.2
3.3
3.4
3.5
3.6

4.1
4.2
4.3
4.4
4.5

5.1
5.2
5.3
5.4
5.5
5.6
5.7

6.1
6.2
6.3
6.4
6.5
6.6
6.7
6.8

7.1
7.2
7.3
7.4

Three Layered Modelling Support Framework

A Comparison of BSDM with Conventional SE Methods
The PIF Class Hierarchy[51]

The Water Fall Model
Alan Davis’ Software System Development Model
The Plan-Build-Test-Refine Model Development Cycle
Overview of Approach and Goals of The Research
A Layered Framework
Overview of Modelling Support - KBST-BM

The Inheritance Class Hierarchy (ICH) of DefBM
A BSDM’s Entity Model
The Life Cycle Diagram for “Practical Turned In By Person”
An Error Life Cycle Diagram
A Consultation Window in KBST-BM

An Example BSDM Process Model
Process-Entity Matrixo oL o
An Extended BSDM Life Cycle Diagram
The Grammar Trees for BSDM Attribute Rules
Example Process to Illustrate Attribute Rule
A BSDM Process Model (2)
A Process Model Consultation Window

An Example Procedural Model for Originate Focal Processes
An Example Instantiation of Business Model
The Procedural Model for 'Module Performance Assessment”
Process Dependency and Partial Execution Order Diagram
Process Dependency and Partial Execution Order Diagram
A State Transition Diagram for Originate Focal Process
A State Transition Diagram for Originate Focal Process-2
A State Transition Diagram for Originate Focal Process-3

General Architecture of a Case-Based Reasoning System
Architecture of Generic Model Advisor
Starting The Generic Model Advisor
An Example Generic Model from GML

XV

7.5
7.6
7.7
7.8
7.9
7.10
7.11
7.12

8.1
8.2
8.3
8.4
8.5
8.6
8.7
8.8
8.9
8.10
8.11
8.12
8.13
8.14
8.15
8.16
8.17

9.1
9.2
9.3
9.4
9.5
9.6

Al
A2
A3
A4
AL
A6
AT

B.1
B.2

C.1
C.2
C.3

Notations in Entity Conceptual Hierarchy 138
The Entity Conceptual Hierarchy at the Layer 1 in an Entity Model . . 140

Possible Matching between User Models and Generic Models 144
The Preference of Matching Results 145
The Heuristic Similarity Evaluation Function 148
An Example Consultation Session - Part I 150
The Initial Business Model 152
The Recommended Generic Model 155
Overview of KBST-BM it 160
Recording Views in BSDM 161
Development Framework for A Business Model 161
Summary of Model Building Stages for Entity Model 162
The plan-build-test-refine development cycle 163
The (Property) Definition Form for Entity ‘Person’ 164
The Attribute Definition Form for Entity ‘Person’” 165
Detailed Definition Form for Attribute ‘Nationality’ (1) 165
Detailed Definition Form for Attribute ‘Nationality’ (2) 166
Definition Form for Process Assign Practical Mark (1) 167
Definition Form for Process Assign Practical Mark (2) 167
Dynamic Business Model with Trigger Occurrence 169
Definition Window for a Trigger Occurrence 170
Process Scope Described in a Trigger Occurrence 170
Activation of The Business Simulator 171
Simulation Result (1) L 172
Simulation Result (2) L o 173
Overview of Course Structurein DAT 184
Assign/Change/Cancel Course Performance Processes 185
Summary of Model Building Stages for Entity Model 191
Hierarchical View of Development Process in KBST-BM 193
The plan-build-test-refine development cycle 194
An Industrial Example Model 199
View: Place e 235
View: Business Function: Delivery 236
View: Contract and Account 236
View: Subject of Transaction: Ordered Batch 237
View: Inter-Business Relationship 237
View: Contract and Organisation Management 238
View: Applicationof Law L. 238
View: Employee Management 239
View: Customer Order and Delivery 240
An Industrial Model from an Auto Company 242
An Industrial Model from an Auto Company 243
An Industrial Model from an Auto Company 243

xvi

C.4

D.1
D.2
D.3
D4
D.5
D.6

E.1
E.2
E.3
EA4
E.5
E.6

L.1

An Industrial Model from an Auto Company 244

A Generic Model for Family Restaurant 246
A Generic Model for Family Restaurant 247
A Generic Model for Family Restaurant 247
A Generic Model for Family Restaurant 248
A Generic Model for Family Restaurant 249
A Generic Model for Family Restaurant 250
Module Evaluation View: Assign Practical Mark 251
Module Evaluation View: Assign/Review/Cancel Project Mark 252
Module Evaluation View: Assign Exam Mark 252
Course Evaluation View: Assign/Change/Cancel Course Performance . 252
Overview of Course Structurein DAT 253
Personnel Management View 253
The Example Input Model for GMA 295

xvii

Chapter 1

Introduction

1.1 The Wider Context: Enterprise Modelling Methods

Enterprise Modelling (EM) methods are commonly used by today’s entrepreneurs as
an analysis tool for describing and redesigning their businesses. The resulting product,
the enterprise model, is often used as a blueprint for reconstructing their organisations
as part of Business Process Re-engineering (BPR) or Business Process Improvement

(BPI) initiatives.

The goal of applying an enterprise modelling method is to seek ways to improve an
organisation’s performance. Enterprise Modelling (EM) methods are typically informal
or semi-formal. They provide notation which enables business persons to describe
aspects of their business operations. The notation is normally complemented with
semi-formal or natural language text which allows details of the business operations to

be described.

Examples of such EM methods are IBM’s BSDM Business Modelling Language[35],
Ould’s Business Process Modelling language[68], Dobson and Strens’s Organisa-
tional Modelling language [44], Fox and Gruninger’s enterprise modelling (in onto-
logical format)[24], Eriksson and Penker’s business modelling based on extensions of
UML[21], and IDEF methodology’s process modelling languages such as IDEF3[58]
and IDEF0[65]. We distinguish between (enterprise) modelling languages and models:
a modelling language is the language that is used to describe a domain, whereas the de-
scription of the domain (in that modelling language) is the end product of a modelling

exercise and called a model, or more specifically in our case an FEnterprise Model.

1

Although EM methods have proved to be useful in providing a systematic working
procedure and structural framework to capture and analyse enterprise-wise information,
a key problem that remains is the lack of means to ensure the quality of the developed
models. This problem is to a large extent due to the fact that models are mostly
described using informal or semi-formal languages. To maintain the quality of such
models, manual checking by a human modelling expert is required. However, a full-sized
model for an enterprise is often so large and complicated that it is a task too complex
to be carried out manually. Furthermore, the system dynamics described by the model
are often implicit and are very difficult to comprehend by the human mind without
appropriate computational aids. All of the above problems are further compounded
by the fact that normally only limited time is allowed for a modelling project. Hence,

when a model has been constructed, little time is left for quality checking.

It is clear that conventionally labour-intensive modelling tasks can benefit from
appropriate automatic or semi-automatic support. Tools that are currently used to
support modelling activities may be grouped into two types: the first type of tools
provide primarily capturing and report-generation functions for the specific modelling
method, the second type of tools provide documentation and report-generating func-
tions as well as simulation facilities for the described models. Although all these tools
provide useful facilities in assisting model-building activities, they are focusing on the
syntax of the model, i.e. notation. For more sophisticated functionalities, such as model
verification and validation, tools must also be able to process models at the semantic

level. How to achieve this is the primary issue in this thesis.

This thesis identifies areas where AI techniques can be usefully applied to provide
automatic tool support at a level that conventional tools are not capable of. The
EM method used for this work is BSDM’s Business Model[35]. A framework which
covers the whole life cycle of modelling exercises — the iterative plan-build-test-refine
modelling life cycle — has been devised; and based on the methodologies provided by
BSDM, a formal method to represent BSDM Business Models was developed. Based
on this formal language, explicit and implicit information described in the model is

extracted and/or derived from a business model using various Al techniques.
Relevant modelling knowledge which exists in the BSDM’s Business Modelling

2

method, standard modelling practice and domain-specific modelling experiences have
also been captured, structured and represented using the same underlying formal lan-
guage. The captured modelling expertise provides a standard to judge newly built
business models: to achieve this, various techniques as well as inference engines have
been developed and applied to provide automatic and semi-automatic support for the

modellers.

The formalised expertise is used in different parts of a Three Layered Framework
(which will be introduced in Section 1.4). Based on this framework the Knowledge
Based Support Tool for Business Models (KBST-BM) has been developed. The tool’s
target users are business modellers with a good understanding of IBM’s BSDM Business
Modelling method. The business persons (with fundamental knowledge of the business
modelling method) may also use the tool for browsing, communicating with others, and

refining the business context that has been captured in the business model.

The modelling support framework is generic and can be adapted to provide au-
tomatic and semi-automatic support for other EM modelling methods. Before the

framework is introduced, a brief introduction to BSDM is given below.

1.2 The Focus: Business System Development Method

BSDM][35] is an Enterprise Modelling method which has been developed by IBM. It
provides a business modelling method for developing software systems that are to be
used in a business environment, i.e. a company or an organisation. The result of the
business modelling activity, a business model, is taken as input for its later activities,
Need, Shape and Run, which include scoping, designing and implementing a business
system, including both computing and manual procedures. Although BSDM’s business
modelling method is primarily used to help design better business I'T systems, it also can
be, and often is, used as a business analysis tool and a communication device amongst
managers and between managers and software engineers.

What makes BSDM an interesting research subject is its provision of a well-
documented description of its modelling approach, model-building procedures and prac-
tical evaluation guidelines for good modelling practice, something that most other EM

modelling languages do not have; these EM methods provide the methodology but not

3

the step-by-step method of how such a methodology may be used in practice.! This
makes BSDM particularly valuable because it provides a reliable foundation upon which

useful model building automation can be based.

A further advantage of BSDM’s business modelling method is its comprehensiveness.
It offers coherent guidelines for the whole life cycle, and in the natural sequence, of
BSDM model development, rather than merely discrete techniques for some stages of
the development process. These guidelines are also sufficiently concrete so that they
can be easily applied in practice. This provides a basis on which a level of automatic

support can be provided by KBST-BM that has previously not been seen in other tools.

In spite of the above advantages and its concise yet powerful notation for business
managers to capture and analyse a complex business environment, BSDM too suffers
from one of the key problems of most enterprise modelling methods: the quality of the
built model is largely dependent on the experience and knowledge that the modellers
have of the method (BSDM) and the enterprise they are trying to model, which makes
it difficult to provide quality assurance for the model. Additionally, like for other EMs,
developing a BSDM business model is a labour-intensive task which tends to be error-
prone when the modelled domain is of real-world complexity. This problem is made
worse by typical industrial project time constraints that often leave little time for a
comprehensive iterative process of quality checking and refinement once a model has

been built.

Hence, BSDM shares problems typically found in most EMs, but has also a number
of specific characteristics that make it particularly suitable as a target for automatic and
semi-automatic tool support through the formalisation of models and model building

knowledge.

1.3 The Aim: A Different Type of Modelling Support

As outlined in the discussion so far, the work described in this dissertation is aim-
ing at providing a new level of tool support for business modellers. Specifically, it is
aiming at incorporating various sources of knowledge into the tool. This will enable

the tool to extend its scope beyond the more traditional features, such as drawing

! The distinction between methodology and method follows the definition given by Wieringa[92].

4

diagrams and storing general English descriptions of the model. New, advanced func-
tionalities, enabled through the underlying formal representation of models and model
building rules, include automatic and semi-automatic consistency checking across the
whole model, support for the development of new models through an existing library of
previously built models, automatic checking of compliance with general quality guide-
lines of new models, and overview and preview of possible execution orders of business

processes.

In summary, through the proposed approach, tool support is shifting from merely a
documentary role to one in which the tool is used to improve model building efficiency
and model quality. These aims and how they are achieved are discussed in more detail
throughout the dissertation, beginning with a modelling context support framework

overview in the next section.

1.4 Modelling Context and The Support Framework

BSDM’s Business Modelling Method provides a two-step activity framework for devel-
oping business models. The first activity is to build an Entity Model, based on which
then a Process Model, is constructed. A business model captures and represents the
given business environment in graphical and textual format. It conveys a converged
view of senior managers in the environment and provides a basis on which to build

software (and the corresponding manual) systems for the environment.

In a typical business modelling session, managers of key business areas and a BSDM
facilitator (expert in BSDM method) work together to create a business model for the
organisation. Normally, flip charts and post-it notes are used during these sessions. The
information is transfered to a drawing and text-editing tool after the session. An Entity
Model, which captures the concepts in the business as entities and the relationships
between them as dependencies, is created first. The entity model is then extended with
information about the processes which manage these entities to form a Process Model.
Information about the life cycle of an entity is described in detail in the corresponding
BSDM Life Cycle Diagrams. Descriptions of entities, processes and their attributes are

included in the BSDM Definition Forms using BSDM notation and English.

Based on the activity framework that has been provided by BSDM, the modelling

5

Inferred Information Layered Models Problems

Over-constrained entity model
Circular dependency of entities
Inconsistent practice described

in different processes

Important entitiesleft out

in a process scope

Entity life cycle not covered

by any process

Redundant or subsumed processes

@ Statetransitions

® Model rulesand
guidelinesviolations
and suggestions for
correction, process
dependency analysis

@ Model rulesand
guidelines violations
and suggestions for

correction, organis-
ation context analysis

Entities, Life Cycle,
Dependency

Model rules and guidelines
for best structure of entity
diagram

Procedural Model

-
)/

Process M odél

Triggers,
Actions
conditions

entity functions

Model rulesand guidelines \ Execution rulesfor processes
for relating entitiesto processes

Domain Knowledge

Figure 1.1: Three Layered Modelling Support Framework

support framework described in Figure 1.1 has been introduced as part of this work.
Three layers are used: the FEntity, Process and Procedural Model. The FEntity and
Process layers correspond to the activities of building FEntity and Process Models as
described in BSDM. The Procedural Model layer was created to provide the notation to
specify the execution details of a BSDM process which forms the basis for some of the
automatic support for BSDM processes. Since the execution procedure of a process can
only be decided after a process has been specified, the Procedural Model is a natural

extension of the existing BSDM modelling framework.

Figure 1.1 lists example problems that may arise during each modelling activity,
the types of domain knowledge that have been extracted and formalised, and example
information and automatic support that has been inferred and provided for in each
layer. The domain knowledge for each layer is divided into two types: information
captured in the business model and modelling rules for creating these models, shown
in Figure 1.1 as ellipses and boxes, respectively. From the entity and process models,

any violations of modelling rules or guidelines and possible corrections can be inferred.

Organisation contextual analysis may also be inferred from entity or process models.
Dependencies and partially-ordered execution sequences between the (distributed) pro-
cesses are inferred from the process model. From the procedural model, the system

dynamic states generated by the execution of business processes can also be inferred.

The modelling approach is application domain (business domain) independent, i.e.
it is generic for the applied business environment. Not only is this approach well-suited
for BSDM, it is also sufficiently generic to be usable for other enterprise modelling
methods. In fact, this formal approach and KBST-BM have recently been used in
another modelling project, also carried out by the author, during which several different
types of Enterprise Models, including BSDM, have been built in the domain of (military)
Air Operations[45][9][10].

Chapters 4, 5, 6 and 7 provide detailed descriptions of how such support is provided
within this framework. The next section briefly describes the formal basis that enables

the automatic support within the modelling framework and the system KBST-BM.

1.5 Formal Approach and KBST-BM

KBST-BM is based on a formal logical language, the DEFinition language for Business
Models (DefBM), which can be used to capture the modelling knowledge of the method
(BSDM) as well as its models based on a lightweight formal approach.

Using this approach, capabilities to obtain and retain BSDM modelling knowledge
and to use that knowledge to guide the model building process, i.e. the plan-build-test-
refine modelling development cycle (adapted from [69] and [26]), are computationally
supported. Because it is a “lightweight” approach, the various benefits are achieved
without having to cope with the overhead that is typical for “heavyweight” formal

methods.

DefBM is based on an adaptation of the Process Interchange Format (PIF) [51] core
class hierarchy, but uses first-order predicate logic to formalise the concepts within it.
It is this formalisation that enables the overall objectives of increased model quality
assurance and increased modelling productivity. Using DefBM it is possible to capture

model semantics and not just notation, thereby opening a wide range of automated

7

reasoning features. Logical programming and case-based reasoning techniques are im-

plemented on top of DefBM.

The formal representation of a business model can be stored and cross-referenced, as
it has a one-to-one mapping to concepts described in the model. A simulation engine,
based on the same formal representation, has been developed to explore business model
dynamics by executing business processes. It provides the primary support for model

validation, but also allows the modellers to experiment with various “what-if” scenarios.

A Case-Based Reasoning inference engine, the Generic Model Advisor, has been
developed to allow automatic model checking of BSDM modelling rules against new
business models and to give error-correction advice, where necessary. Using case-based
reasoning techniques and the formalised representation of the models, past business
models can be stored in the Generic Model Library and be reused for comparison and

analysis for when new, but similar, business circumstances are encountered.

1.6 The Use of KBST-BM

To become sufficiently familiar with BSDM’s Business Modelling method, in addition
to studying relevant literature and communicating with BSDM experts, in particularly
Christine Lissoni from IBM, I attended a BSDM training course and 2 days of an actual
Business Modelling working session where BSDM was used by an IBM client. All of
the above helped build a more comprehensive understanding of the methodology and
how BSDM is applied in an industrial context. It also helped clarify by whom and how

the proposed new tool might be used.

As mentioned previously in Section 1.1, two types of users are envisaged for KBST-
BM: the BSDM modelling experts and modellers/software engineers with fundamental
knowledge about BSDM — they have received training on BSDM and understand the
methodology to a certain extent. Primarily the tool is intended to be used during
business model building working sessions. Either the modelling expert or one of the
participating engineers/managers uses KBST-BM to document the model as it develops,
starting with the entity model. At various stages of the work session, the tool can be
used to check that the model developed thus far is inconsistent and does not violate

any of the modelling rules. It may also be used to get help in developing the model

8

through the Generic Model Advisor. Once a fairly stable model has been completed,
the process simulation engine can be used to analyse the dynamic states of the model.
This may initially be helpful in identifying remaining errors in the model, but also later

be used to investigate various ’what-if’ business scenarios.

KBST-BM was initially built based on a business modellers requirements; its capa-
bilities have been extended where Al techniques and (generic) modelling needs meet
best. As a part of the system developing and evaluation process, five different types of
business models have been built using the system: the standard and example models
provided by the method and its course material, an actual industrial model provided
by a company from the automobile industry, a generic industrial model for small and
medium-sized restaurants and a model for a real example of processing student marks
for academic assessment. Details and rationale for why these different models have
been chosen are given in Section 7.6. Most diagrams of these models, described using

KBST-BM, are available in Appendices E, C, D and A.

1.7 Organisation of Thesis

The remainder of this dissertation is organised as follows. Chapter 2 gives a general
introduction to Enterprise Modelling methods as well as a more detailed summary of
BSDM, the specific method used for this research. Chapter 3 discusses the motivation
for this work from the software engineering’s point of view as well as from the business’
point of view, and the chosen approach for solving the problem. Chapters 4, 5 and 6 give
details of the three parts of our layered modelling approach. Chapter 7 describes how
past model building knowledge can be reused using Case-Based Reasoning techniques.
Chapter 8 gives a brief demonstration of the use of the built system, KBST-BM, whereas

Chapter 9 evaluates the system. Chapter 10 concludes this dissertation.

10

Chapter 2

Background

This chapter describes the general background that sets the context for the work that
was carried out. It firstly introduces an overview of various Enterprise Modelling (EM)
methods which are currently available. It then discusses Business Modelling in Business
System Development Method (BSDM), the method for which a formalisation is proposed
in this dissertation. An introduction to Business Process Modelling (BPM) follows,
since some of the extensions to BSDM used in this work are based on techniques
developed in the area of BPM. There is also a brief discussion of software systems and

other related work.

The purpose of this chapter is not to cover all the background needed in great
detail, but to set the scene for the rest of the dissertation. More details of BSDM
are introduced in subsequent chapters together with the corresponding formalisation
work. We also defer a brief introduction to Case-Based Reasoning (CBR) techniques
to Chapter 7, where the use of CBR in KBST-BM is explained.

2.1 Why Enterprise Modelling?

The global economy and market in which a business operates and competes in has
changed so dramatically in the last decade that traditional business management and
operational methods are no longer sufficient to manage today’s business. Three main
driving forces are behind these changes: rapid advances of modern computing tech-
nology, intensified competition of the world market, and changing demands from the

consumers.

11

The advances of modern (computing) technologies have continuously provided com-
panies with new ways to do their business: both internal and external to the organ-
isation. Internally they provide more standardised, efficient and direct control over
the working processes which are supported with organised information that is easily
sharable among relevant personnel. Externally they provide a revolutionary medium
to interact with the customer and other businesses. It is no longer necessary to face
the customer in person or to provide a shop floor. The communication with customers
and other businesses, such as ordering goods and delivering services, can very often be

done electronically (e.g. through the Internet).

Modern computing technology and the fact that the world market has become more
accessible and exploited by businesses have made the world smaller and the competition
for customers more acute. It is commonplace that similar kinds of services and goods
are produced by companies all over the world. The boundaries set by countries or
geographical distance have become less important. Customers can now more easily
shop around companies all over the world to get the best product at the best price.
To gain a competitive edge, the modern enterprise is a virtual entity which consists
of many sub-organisations spread across many different geographical areas each with

special functionalities and business advantages.

Customer demands have also changed. Customers today are more informed and
aware of their power. They are no longer satisfied with the mass produced indifferent
goods or passive services. Instead they demand more sophisticated and individualised
products and better and quicker service. This puts pressure on companies to offer high
quality, diversified and customer-tailored goods and services, and at the same time offer

them at a reasonable price and within a relatively short time.

All of these demands require a radical change in how a business operates. It not
only needs to possess stronger financial backing in order to be able to compete on the
world market, it also needs to create wider and more direct contacts with potential
customers. Some companies achieve this through the Internet, some by gaining more
business allies, others by becoming larger companies through merging. More impor-
tantly, to cope with these changes, a business needs to introduce and practice brand

new sets of management and organisational methods. In fact, these changes have forced

12

many of today’s businesses into fundamentally rethinking and redesigning their strate-
gies and operations. Instead of adapting various ad-hoc solutions on a trial and error
basis, companies seek methods which help them to analyse their businesses as a whole
systematically and effectively, which in turn help them improve organisational perfor-

mance. To address this problem, Enterprise Modelling methods have been deployed.

2.2 Enterprise Modelling Methods

A variety of enterprise modelling methods have emerged during the last decade. They
provide a structural framework to help an enterprise capture the enterprise-wide knowl-
edge which forms the basis for the targeted analysis and helps the re-shaping and re-
designing of a business. A key goal of applying these methods is to seek ways to improve

an organisation’s effectiveness, efficiency and profitability.

Although most enterprise modelling methods are influenced by more than one disci-
pline, we will try to categorise them depending on their origin; the application domains
that use them actively; and the way that they are used in a broad sense. Three cate-
gories have been identified: business process modelling, business system modelling, and

organisation contert modelling methods.

Business process modelling methods were initially inspired by process modelling
techniques which provide precise formats to capture processes that are practised in a
manufacturing environment. By using these techniques, informally practised processes
can be made more concrete and formal analysis of processes can be carried out. More
importantly, actions and effects of these processes can be demonstrated using simulation
techniques. The performance of each process can therefore be predicted and used as a

basis to choose between competing processes|[70].

These techniques have been adapted and extended by business process modelling
methods to capture and standardise processes practised in a non-manufacturing envi-
ronment. This has enabled the analysis and re-design of processes in the service sector
leading sometimes to radical performance improvements. Representative business pro-
cess modelling methods are described in the Handbook of Organisational Processes

[57], Workflow Reference Model [33], Process Interchange Format (PIF) [51], Process

13

Specification Language (PSL) [82]', Integration DEFinition Language (IDEF3) [58], In-
tegration DEFinition Language (IDEF0) [65], UML’s Activity Diagram (extension)[78],
Event-driven Process Chains (EPC)[74] and Petri Net[72]. Because some of the tech-
niques used by the methods described in this category have a strong influence on the

work of this thesis, Section 2.4 will describe them in more detail.

The creation of Business System Modelling (BSM) method was inspired by
the software engineering community where discrepancies were recognised between the
vision of software engineers for the to-be built software system and the true need of a
business for its procured software system. The motivation for employing BSM methods

is often to provide a clearer picture and directions for building a better IT system.

BSM methods provide the means to describe a business and capture its operations
from a business’ point of view, but not confined by technical, specifically Information
Technology (IT), considerations. This means that for each business model there are
potentially many different ways to implement a Software System Model. Examples of
BSM methods and techniques are: BSDM’s business modelling method[35], ORDIT[44],
Role Activity Diagram (RAD)[68], Meta-Model by Scacchi et al [61], Swim-lane Diagram
by Rummler-Brache et al [79], Business Models using (extended) UML notation by
Eriksson el al[21] and by Rational [15], and the method developed by Jacobson [43].

Organisation Context Modelling (OCM) methods capture and tackle the
wider organisational issues within a business. This includes methods which capture
the functional, structural and/or cultural aspects of an organisation. It also includes
methods which capture the decision making processes as well as the vocabularies and

terms that are used in the business context.

To promote effective organisational knowledge management and utilisation, Mac-
intosh et al [54] provide a framework to identify, obtain and maintain the required
knowledge and skills for an organisation and the means to make use of them to achieve
organisational objectives. Yu, Mylopoulos and Lesperance[94] provide graphical no-
tations to capture business strategies and their rationale in the Strategic Dependency

and Strategic Rationale Models which exploit links between business strategies and the

! PSL and PIF provides a common platform for communications between process modelling languages.
PSL is a sharable ontology among process modelling languages and is in the process of merging with
PIF (1999).

14

actual operations. To promote a better communication via a common language within
and between organisations, ontologies have also been developed for businesses. A repre-
sentative example of work in this area is the Enterprise Ontology developed by Uschold

et al[90].

In parallel to development of the above methods, techniques in Business Process
Re-engineering (BPR) have become a popular management tool for rapid enterprise
re-structuring and re-design. Example literature includes Hammer et al[29] and DOD
[67]. Instead of using modelling methods, they provide a collection of generic business
management principles. When deploying such BPR techniques, OCM methods can
also be used as a part of a BPR initiative — although they are often used in their
own right. Other OCM methods are Activity-Based Costing (ABC) [18], Simulation
Modelling [83] and Total Quality Management (TQM) [17]. All of the above methods
provide the means to record and analyse some aspects of a business environment and
therefore all of them can be used to support BPR initiatives. This thesis focuses on

one EM method, the Business Modelling Method in BSDM, which is described below.

2.3 Business System Development Method (BSDM)

Business System Development Method (BSDM) is an enterprise modelling method
which was introduced by IBM [35]. It provides a modelling framework to capture and
analyse a business operation and requirements which helps the understanding of the
complex business environment as well as provides a basis for strategic analysis and
re-structuring of the organisation. It also provides a specification for the design of a
software system from an early stage from the business’ point of view and independent of
any information technology considerations which makes the developed software system
more “business-need-oriented” rather than “technology-oriented”. The ultimate goal

for applying BSDM is to improve an organisation’s performance.

BSDM consists of four activities: Map, Need, Shape and Run. BSDM firstly de-
scribes business environments, its policies, components and constraints and represents
them in a Business Model during the Map activity. Given this business model, BSDM

then provides the means to identify and specify requirements for a business system

15

during the Need activity.? Based on these requirements, BSDM then allows the user
to choose any suitable (software engineering) methods to design and implement the
business system during the Shape activity.> The actual deployment of the system takes
place during the Run activity. Since the most distinctive and important activity of
BSDM is Map or Business Modelling activity, this thesis focuses its work on it. Below

introduces this Business Modelling activity.
Business Modelling

The main components of a BSDM Business Model are Entity Model, Process Model,
Life Cycle Diagrams, and their supplemental textual descriptions. At the beginning,
business managers together with a BSDM facilitator create an Entity Model which cap-
tures the concepts (abstract and concrete things) in the business as entities and the
relationships between them as dependencies. The entity model is then extended with
information about the processes which manage these entities to form a process model.
A BSDM process describes the context of a business process, the circumstances which
trigger such a process and the effects of its actions. In parallel to the development of
entity and process models, Life Cycle Diagrams are built. They describe information
about an entity’s life statuses and how different processes manipulate these entities to
enable transitions between these life statuses. They also indicate the subtle relation-

ships between processes and the operations used to carried out a particular task.

BSDM provides step-by-step procedures towards the building of business models;
modelling considerations, recommendations and guidelines as well as example models
are offered along these procedures. A business model is normally built during BSDM
workshops over a few months’ time. Conventionally, the model is initially paper-based.
The graphical information may later be recorded in a CASE tool and the textual
information in an editing tool. The quality of the built model relies entirely on the
knowledge and experiences of the participants in the project. In chapter 3, the kinds of
automatic support which can be provided for such kind of informal modelling methods

will be proposed. The potential benefits of these kinds of automatic support will also

2 A suitable business system may not necessarily involve a computing system; it can be a computing
system supported with manual process, or it can be a purely manual system depending on the
business’ need.

3 A suitable method for designing and implementing a business system may be a software engineering
method which is suitable for the organisation.

16

be discussed.
BSDM Compared with SE

BSDM can be used in several different contexts, e.g. as a business analysis tool,
a management tool, or as a support method before a software engineering method is
carried out. To show the relation between BSDM and traditional Software Engineering

(SE) methods, a comparison is given below.

The part which distinguishes BSDM from a conventional software engineering
method is the Map or business modelling activity which captures and specifies business
requirements that fills the gap that conventional software engineering (SE) methods
left during the requirements analysis phase. Figure 2.1 shows how BSDM is mapped
onto conventional software engineering methods, which is adapted from the comparison

given by Spurr et al [85].

computer

; analyse maintain
SE | requirements y
Taken for granted
BSDM Map

Figure 2.1: A Comparison of BSDM with Conventional SE Methods

The most significant difference is the lack of business modelling activities in tradi-
tional SE which is the area highlighted with “Taken for granted”. This missing part
represents the activities of identification and analysis done in Map; as well as the activ-
ities of evaluating requirements for a business’ need in Need. Since part of the BSDM

Need activity is based on the earlier Map activity, much of it has no counterpart in SE.

The SE computer requirements, analyse, and the early stage of design, which include
the capturing and analysis of user requirements* and the logical and architectural design
of a software system, correspond to the later stage of Need and the early stage of Shape
activities in BSDM. Since the later part of Need includes user requirements capturing
and analysis (for technical and operational issues), the scoping of a business system as
well as the determination of main system functionalities, it corresponds to computer

requirements, analyse and the early stage of SE design activities. The early activities

* With regard to aspects of IT and the actual working procedure considerations.

17

of Shape include the logical and architectural design of a business system, therefore is

similar to the early activities of design in SE.

The rest of the SE phases, the late activities of design and the build, test and
maintain of a software system, are mapped onto the BSDM Shape activity. The SE
maintenance phase correspond to a revisit of Shape after the deployment of the system,
and sometimes even a revisit of Need when necessary. Since Run indicates the actual
use of a business system, it is not considered a SE activity, therefore it is not mapped

onto any phases in the SE method.

The building of a software system is an iterative cycle which is sometimes described
in a Plan-Build- Test- Refine spiral model. The business modelling activities can also
benefit from the same principle. Chapters 3 and 8 illustrate how our automatic support

can help this iterative modelling process.

2.4 Business Process Models

Although BSDM’s Business Modelling Method is not a pure “process-oriented” mod-
elling language, nor is it directly influenced by Business Process Models (BPM), tech-
niques used in BPM can be adapted and used to extend BSDM notations and can
amplify and diversify the use of BSDM models. A brief background description of
BPM is first given below.

Since the 1960s and 1970s, process modelling has been applied in the manufac-
turing sector[70]. Motor companies, such as Ford, and aerospace companies, such as
McDonnell Douglas Corporation, have used process models to capture the processes of
designing and manufacturing products. These process models were also simulated to
allow predication and evaluation of trade-offs of current design, and used as a basis to

guide the construction and selection of alternative designs.

The early acceptance of process models in manufacturing sectors was mainly due to
the need of frequent change of products which requires frequent and rapid generation
of production processes. It is also due to the fact that working procedures in a man-
ufacturing environment are comparatively clearly defined and sometimes formalised.

These useful characteristics initially were not obvious or were non-existent in the ser-

18

vice sector: the procedures being more informal and often differing depending on the

person who implemented the tasks.

This situation changed in the early 1990s when a great majority of informal business
processes were found to be similar and repetitive, so they can be captured, analysed
and improved using modelling techniques similar to process modelling (Harrington et
al[30], Malone et al[57]). This discovery encouraged the creation and use of modelling
methods in a more general business environment rather than in a pure manufacturing

context.

Enterprise modelling methods which are evidently influenced by this are classified
as business process modelling methods in this thesis, as mentioned earlier in Section
2.2, which includes methods such as the Handbook of Organisational Processes, PSL,
PIF and IDEF3. All of these methods treat the processes practised by an organisation
as the central focus in their modelling activities. To help understand what is a process,

Chris Menzel’s definition is given below:

“An objective real world event, described totally as a sequence of events (activities,
sub-processes) occurring over time containing certain objects having certain properties

standing in certain relations.” [82],
and is elaborated by Jeffery Herrmann

“A process can be decomposed into other processes. A process begins and ends at
points in time. One can view a process from different perspectives that include different
things. Objectives or drivers may be part of one perspective but not another: if included,

they could be seen as instructions.” [82]

The descriptions of a process given above are applicable for processes in many

process models including the one described in this thesis.

A process is an event which may include many activities where each activity may also
be itself a process which is decomposable - this is the “decomposability” property. A
process often lasts for a period of time during which it may involve the manipulation of
objects and the actors who manipulate them. It is, therefore, necessary to identify and
represent the temporal relations between these objects and the actors who manipulate

them in the process in the model. These characteristics and their representations will

19

be discussed later in the section on PIF and will be illustrated in more detail in our

formal work in Chapter 6.

In the Process Handbook project [57], once processes are identified for an organisa-
tion, they are classified and represented in a class hierarchy. Processes represented at
a higher level of the class hierarchy normally describe activities that are performed by
an organisation at a higher level of abstraction. These processes can be divided into
sub-activities which are represented at a lower level of abstraction and with more im-
plementation details; which may again (recursively) be divided into even smaller tasks

and described in further detail. This is the concept of process decomposition.

Because processes described at the higher level of the hierarchy describe generic
tasks, they often possess characteristics and properties that are sharable by processes
described at the lower level of the hierarchy. These common properties can be passed
to or inherited by the more specialised processes described at the lower level of the

hierarchy.

On the other hand, the more specialised processes can also be alternative processes
to achieve the purpose of a common generic task, but are specialised in particular
business applications. Because they are specialised, they may inherit properties from
the generic task, and may also override some of the inherited properties. This is the
concept of inheritance from process specialisation. Time and other constraints which
limit the execution of a task can also be described in the models which describe and

prescribe the implementation of the actual working practice.

The benefits of process specialisation and decomposition are essentially in four areas.
Firstly, it can reduce the work for developing a new process. By identifying and classi-
fying the appropriate place on the hierarchy for the new process, fundamental features
of the process can be automatically inherited from existing processes which are at the
higher level of the hierarchy. Secondly, it can decrease the work for maintenance: any
error only needs to be corrected once at the highest level and all of the more specialised
processes are corrected automatically. Thirdly, since all similar processes are grouped
together, it is easier to evaluate the trade-off and select between them. Lastly, by pro-
viding a taxonomic structure for process allocation, searching, combining and creating

of processes can be done more systematically and efficiently. The combinational use

20

of process decomposition and specialisation was first identified in a process modelling
framework[88]° and used in the Process Handbook Project and was accepted and used

in many later developed modelling methods.

In this thesis, the concept of process specialisation has also been adapted and used
to show how BSDM’s business processes can be classified and reused by incorporating
them as a part of our devised Inheritance Class Hierarchy and will be introduced in
detail in Chapter 4. The concept of process decomposition which is a concept initially
inherited from the process modelling community has also been adapted and represented
in our devised Procedural Model which will be described in Chapter 6. By deploying
these concepts, our formal architecture is able to enjoy many of the above benefits, such
as the ability of inheriting properties from a more general process to a more specialised

processes, ease of maintenance, comparison and manipulation of processes.

Although it can be used to capture (business) processes, the main purpose of PIF is
to provide a common language which enables different process models to communicate
and exchange information through them. PIF identifies a set of concepts that are
fundamental to process modelling and is commonly used in different process models.
Based on these concepts, PIF gives precise descriptions for each concept and defines
the relationships between them. Formats based on a frame structure are also provided
by PIF to capture and store information of these concepts - this set of fundamental
concepts for process modelling is called the PIF’s core. Specialised processes that are
captured in other process modelling languages which can not be described using only
PIF’s core may be represented using an extension format which is described in PIF’s

Partially Shared View.

Figure 2.2 shows the PIF class hierarchy. Modelling concepts such as entity, activity,
object, agent and the notion of time have been captured as PIF classes in the hierarchy.
Everything in PIF is a subclass of the root class entity. There are four sub-classes of
entity: activity, object, timepoint and relation. Each subclass may also have its own
subclasses. A subclass is indicated by an outgoing arrow from itself to the corresponding
superclass. This relationship between the subclass and the superclass is a specialisation

relationship. For instance, in PIF, decision (making) is a special kind of activity, and

® Through its use in hierarchical planning techniques in AT dates from the mid 1970.

21

—1 activity decision

— object agent
entity f=—

— timepoint

— relation creates

—— modifies

- performs

- before

—<-| successor

‘= activity-status

Figure 2.2: The PIF Class Hierarchy[51]

before is a particular kind of (temporal) relation.

The benefits of allocating all modelling concepts in a PIF class hierarchy with the
property of inheritance is similar to that of the Process Handbook Project. The concep-
tual entities are clearly identified and relationships between them specified. New con-
cepts can be added to the hierarchy and fundamental properties can be automatically
inherited from their superclasses. This speeds up the process of creating, manipulating

and evaluating process modelling concepts.

In addition to the concept of process specialisation, the PIF class hierarchy has also
been adapted in our formal work to suit BSDM’s business modelling method, which
enables our work to enjoy all of the above benefits of PIF as specified above. Moreover,
because we have taken the approach similar to PIF, it has enabled BSDM’s business
models to more easily communicate with any other process languages communicating

through PIF. It also enables BSDM models to be translated to other process languages

22

through PIF (without specific efforts on the one to one conceptual mapping between

BSDM and all other modelling languages). These benefits were not possible before.

2.5 Review of Existing Modelling Tools

It is probably safe to say that there isn’t a single modelling tool which provides complete
and comprehensive support for the full life cycle of business process development. Most
tools provide support for some aspects of modelling activities. Existing modelling

support tools may be coarsely divided into two categories.

The first category of tools primarily provide capturing and report-generating func-
tions for specific modelling methods. Examples of such tools are RBPL[38] which
provides its own business process modelling language as well as the corresponding doc-
umentation facilities; Paradigm Plus[89] supports various modelling methods, such as
Booch[5], OMT[77] and UML[6], and exporting facilities for these methods; BP WIN[93]
provides drawing and report-generation facilities for IDEF0[65] and Data Flow Dia-
grams (DFD); AI0 Win[48] supports the drawing and documentation of IDEF(0 models
and can export its details to other tools, such as ProSim[48]; Win A&D (or Mac
A&D)[53] provides documentation and reporting facilities for various modelling lan-
guages, such as the Class Model, Entity Relational data model and Data Flow Diagrams;
another relevant business process modelling tool is Procedural Builder[39] developed by
AIAT which allows the user to build IDEF3 models[58]7 and can communicate with En-

terprise Toolset which is supported by knowledge described in Enterprise Ontology[40].

In addition to providing documentation and report-generation functions, the sec-
ond category of tools also provide simulation facilities for the described models. For
example, ProSim/ProCap can simulate its own processes and can import processes
that have been drawn using other tools, e.g. AI0 Win and Visio[62]; Simprocess[13]
is an object-oriented process modelling and analysis tool based on its own simula-
tion language Simscript for analysing complex, dynamic systems; SAP R/3[81] offers

a client/server architecture and distributed open system solution whose in-house busi-

6 In fact, one way to enhance the usability of BSDM models and promote the understanding of its
models is to translate BSDM’s models into another model type which is already well-known and
widely used.

" An adapted version of IDEF3$ has been deployed by Procedural Builder.

23

ness processes are under-pinned by the modelling language EPC (Event-driven Process
Chain); BPSimulator[42] is a discrete event simulation tool which simulates business
processes using statistical simulation methods; iThink[31] is a tool for simulating sys-
tem dynamic models — these system dynamic models were initially designed to simulate
physical systems, e.g. a fluid system — this technology has been used by iThink to model
the flow of a business environment; ARIS Toolset[41] provides its own modelling lan-
guage which supports Activity-Based Costing (ABC) and Balanced Score Card (BSC)
to record and analyse a business’ performance; Yu, Mylopoulos and Lesperance[94] cap-
ture the actors, actors’ goals and dependencies between them in a business’ operation
in Strategic Dependency Models and Strategic Rationale Models which allow simulation
of business processes to be carried out and opportunities, vulnerabilities and patterns

of dependencies to be explored.

The simulation support given by the tools in the second category is largely of the
type that is usually found in performance studies. It allows the user to specify type and
frequency of business processes and the company resources required by these processes.
Running such simulations can help identify bottlenecks in the company’s operations,

but also means that the user has to specify numerous input parameters.

In general, in both categories of tools there is very little, if any, exploitation of
the knowledge that is implicit in the models that have been captured through the
corresponding documentation features of the tools. This is primarily due to the fact
that there is no underlying formalisation and logical representation of models and model
building knowledge built into these tools. Consequently, they are unable to provide the
type of semantics based modelling support as is offered by KBST-BM and GMA.

Together, KBST-BM and GMA, support the basic modelling activities such as draw-
ing, documenting, navigating, summarising and reporting, but they also provide ad-
vanced features such as consistency checking, error-correction advice-giving, alternative
visualisation of the model (some based on derived information), simulation of processes,
model building and refining guidance (by referring and comparing to standard or ex-
isting models), model verification and validation, and model reuse. In particular, much
of the model quality checking work can be automated to such an extent to make it

feasible and effective to do so in an industrial context. More details about KBST-BM

24

and GMA are given in Chapter 4, 5, 6, 7 and 8.

25

26

Chapter 3

Problems and Approach

3.1 Introduction

Enterprise Modelling Methods offer a structure and means to describe and analyse a
problem domain (the business) and possibly tools for constructing solutions for prob-
lems. Although these methods are valuable to help problem understanding, analysis
and solving in their own right, they are also helpful for software system development
in providing a framework to understand the organisation in which the software system
will be deployed, as described in section 3.2. On the other hand, the process of quality
assurance of the products from these methods, which is often paper-based, can benefit
from the discipline of the software engineering community, as described in section 3.3.
In this section, we describe a framework which has been inspired by the software system
development cycle, and an approach which uses formal methods to provide the means
of quality assurance for these informal enterprise modelling methods. Some possible

benefits of this research are also given in this section.

3.2 Relationship Between Business Model and Software
Engineering

3.2.1 Software Systems For Business

In today’s business world, computer systems are widely used to stay competitive and to
gain advantages over rival companies. The demand for appropriate software is acute.
Software systems are involved in companies’ operations at many levels and perform ever

more complicated tasks. Furthermore, due to the globalisation of economies and the

27

need to react to market changes quickly, the business organisations in which software
systems are deployed are not only more complex but also more dynamic than ever
before. This leads to constant requirement changes during system development as well
as deployment. The challenges to software engineers to develop systems that are timely

and appropriate have thus increased tremendously over the last decade.

To ensure the appropriate software systems are built, there is pressure on software
developers to find ways of producing high quality software. In the early days, researchers
in this area sought to employ various disciplinary procedures in software creation. Royce
[76] in 1970 firstly presented “the waterfall model” which captures the framework for
software system development. Figure 3.1 shows the waterfall model proposed by Royce.
The U.S. Department of Defence adopted this model and created their own version [66].
A more recent variation of the model was proposed by Alan M. Davis in 1993 [16]; given

in Figure 3.2.

Reguirements

Design

Coding

Testing

Operations

Figure 3.1: The Water Fall Model

In both Figures 3.1 and 3.2, boxes represent stages of activities which are carried
out during the life cycle of a software system’s development and deployment. Arrows
show the work flow between these stages. When comparing these two models, although
Alan’s model elaborates somewhat more on the initial stages, both include stages of
requirements, design, coding, testing and software deployment. Alan, however, partic-
ularly stresses planning and carrying out of testing activities for all stages, as shown
in boxes 10, 11 and 12 in Figure 3.2. It is implied by Alan’s model that a key fac-

tor in producing an appropriate software system is to test it carefully at each stage.

28

1 10 3

Software System Delivery
Requirements System Test i Production
Planning Testing Deployment
11 6 9
Preliminary Intgrgranon I ntegration Majr;tnenance
i est .
Design Planning Testing Enhancement
3 12 7
Detailed Unit Test Unit
Design Planning Testing
4
Coding

Figure 3.2: Alan Davis’ Software System Development Model

These testing activities can also be seen as the verification and validation process of

the deliverables at each stage.

Agreeing with the assessment that testing is essential, other scholars offer theoretical
and practical techniques in this area. For example, Perry offers a structured method for
software testing [69], Friedman and Voas offer techniques in assessing software reliability
and safety [26], and Voas and McGraw propose fault injection techniques to discover
errors in software [91]. All of these techniques provide good guidance and frameworks
for ensuring the quality of the built software systems, once what is required from
the system has been given. However, in spite of such techniques being available and

practised, many software systems still do not fit the intended organisations.

3.2.2 Software System Seeks Real Goal

While testing is widely recognised as an important technique to uncover software errors,
more and more evidence indicates that most software errors are design errors which in
general happen at the early stages of a software development cycle; in fact at the
stages of software specification or requirements engineering. Jackson has identified this

problem:

“Requirements engineering is about the satisfaction of goals. But goals
by themselves do not make a good starting point for requirements engi-

neering. To see why, consider a project to develop a computer-controlled

29

turnstile guarding the entrance to a zoo... the real goal is to ensure the

profitability of the zoo.” [96]

Only when one discovers the real goals for developing a software system can one
have a chance to develop the “correct” and “appropriate” software application for that
business. Unfortunately, it is not always straight forward to understand these goals.
To make matters worse, the business in which a software system is to be used may
not have clearly defined goals or they may be changing too frequently. Under such
circumstances, developing an application to support a company’s goals becomes a very

difficult task indeed.

Recognising this shortcoming, one approach for discovering these goals is firstly to
understand the business context and where necessary to help the business to clarify and
formulate its goals. Only then will the software engineers be able to identify and develop
appropriate software solutions. To promote a better understanding of the domain of a
business, several enterprise methods, including business modelling methods, have been
used in the past prior to the stage of user requirements elicitation and specifications for
a software system, which is described as “requirements” in Figure 3.2. Although, the
use of enterprise modelling methods is not limited to help build sound software systems,
it remains a good motivation for a business to use them prior to the standard software
system development process. A brief description of Enterprise Modelling Methods is

given in the next section 3.3.

3.3 Support For Enterprise Modelling Methods

3.3.1 Problems with Enterprise Modelling Methods

As mentioned in Chapter 2, a variety of enterprise modelling methods have emerged,
for example methods for business modelling BSDM [35], process modelling PIF [51],
Malone, etc, [57], PSL [82], enterprise modelling IDEF [59], organisational modelling
ORDIT [19], ISO standard 13407 [23], Rummler-Brache [79], business process re-
engineering Hammer[29], DOD85 [66], DOD [67], management of enterprise knowledge
Fraser and Macintosh [25], Hollingsworth [33] and some ontological work, e.g. enterprise

ontology [90]. Object-oriented technologies have also been used to depict a business

30

and its processes: for example, the activity diagrams in UML [6], the Business Models
offered by Rational Rose [15] and methods by Jacobson [43]. By providing a structural
framework, these methods help an enterprise to capture its enterprise-wide knowledge
which forms the basis for targeted analysis and helps the re-shaping and re-designing
of a business (which normally involves the use of advanced electronic and computing
technologies). These methods also provide a neutral forum where people of different
disciplines can communicate with each other. The goal of applying these methods is to

seek ways to improve an organisation’s effectiveness, efficiency and profitability.

The benefits of a successful application of these modelling methods can be tremen-
dous for an enterprise. For example, according to a report by the U.S. Department of
Defence in 1997, the application of a business process re-engineering project, leading to
a combined utilisation of modernised business practice and computing technology in its
organisation, has led to 1.6 billion USD in savings in inventory management since 1993
[67]. There are also other success stories, for example those which are documented in a
survey published by the BPR on-line learning center [71] in which over 200 companies
across the world have been included; some other success stories are included in Berztiss’
book [4]. The potential benefits offered by each of these enterprise modelling methods
have attracted increasing attention from both industry and researchers. However, not

all applications of these methods have been equally successful.

One key factor in the successful application of these methods is the quality of
the produced model, i.e. to ensure that the produced model is the right one for the
organisation. However, it is quite hard to determine the quality of the produced model,
and often its suitability and applicability are not known until it is actually put into
action. There are several problems in ensuring the quality of the produced model, some

of which are discussed below.

o Awailability of expertise: a modern enterprise today is a virtual entity which con-
sists of many sub-organisations which are distributed across different geograph-
ical areas, each possessing different expertise. Hence, it may not be possible to
have all of the persons with the right expertise (who are normally senior and/or
middle-level managers) available for model development. Furthermore, the re-

quired expertise may change as companies have to react — adapting their goals

31

and processes — to today’s fast changing global economies.

Lack of a comprehensive evaluation method: most of the enterprise modelling
methods mentioned above provide a procedural description of how to carry out
the modelling tasks and some measurement criteria for how well the model fits re-
ality. However, none of them supports a comprehensive and systematic approach
with respect to determining the correctness and completeness of a model, both
method-wise and enterprise-wise. This is not surprising, because guaranteeing
the correctness and completeness of enterprise-wide knowledge is extremely dif-
ficult. It requires a complete understanding of the enterprise knowledge for the
present and in some methods also for its future, which is the very knowledge to
be captured with the help of the modelling method in the first place. Guaran-
teeing correctness and completeness is also complicated by the fact that in order
to determine whether a business has been represented correctly and fully using a
particular method requires knowledge of the method as well as the business, and

few people posses both.

Informal or semi-formal modelling context: The first step in checking whether a
model is appropriate for its purpose is to understand the content that a model
describes. Many of these enterprise modelling methods are informal methods,
some of them are semi-formal and include pre-defined diagrammatic symbols
supplemented with natural language text. It is generally difficult or impossible
to ensure the correctness and consistency of informal and semi-formal methods,
because the checking normally involves a person to read and check all of the details

of the model which for a complete real industrial-sized model is an impossible task.

Time pressure: Very few projects can enjoy the luxury of not having to deal with
strict time constraints. When trying to keep the organisation in business and
gain a competitive edge over its rivals, time is a critical factor. It is therefore
important to make effective use of all of the resources allocated. In the model
building context this means that there is a need to provide an efficient and effective
way to maximise the productivity of the modellers in building a model, verifying

and validating it, and finding and correcting inadequacies in the model.

32

This normally suggests that a suitable software support system should be pro-
vided. Some such software tools have been offered, but most of them concentrate
on model building, storage and report generation, without support for the impor-
tant aspect of model validation. This generally means that there is not enough

time to carry out the tedious task of validating a model by hand.

Lack of modelling support facilities: An enterprise-sized model is often domain-
specific, knowledge-rich and rather complex. In addition, the modellers need to
remember the technical details of the method. Again, it needs to be pointed
out that few people posses good knowledge about both. To achieve an efficient
and effective modelling process, a proper (software) tool should ideally support a
knowledge base for the specific business domain as well as direct support for the

method.

Lack of efficient and effective knowledge transferring means: As mentioned above,
lack of availability of expertise can be a problem. A related issue is the lack of
efficient and effective knowledge transfer. Enterprise modelling is intended to
help this transfer, but it requires a sufficiently wide use of a particular method so
people can communicate through it. Most methods do not have wide usage at this
stage and would require additional training of staff. This may be difficult due to
internal resistance in the organisation. Furthermore, a complete enterprise model
may be quite complicated for un-aided human comprehension. A tool which
eases the communication (using a particular method) between people could thus

be very helpful in the transfer of knowledge.

Dynamic aspects of a model are complex: An enterprise modelling method nor-
mally captures the static structure of the targeted domain, but it often implies
and/or prescribes the actual activities to be carried out, e.g. activities to be
carried out in a business process. As many of these dynamic activities may be
happening concurrently and interacting with each other, to understand the impact
of them becomes in general a task too complex for un-aided human reasoning.
Therefore, it is important that these processes can be simulated within the model

with the help of a software tool to demonstrate and/or predict their behaviour,

33

to help people understand their implications and restrictions.

“Change is inevitable, except from a vending machine.” !
To cope with the changes of today’s business world caused by the advances of elec-
tronic and computing technologies, business organisations must adjust and/or re-shape

themselves to thrive in the new post-industrial era.?

The potentially great rewards
offered by applying enterprise modelling methods have encouraged many businesses to
use them. Unfortunately, as pointed out above, these methods have problems. One

particular problem is to determine and assure the quality of the built model.

In this thesis, we report our attempt in providing automatic support in assisting
modellers, particularly in providing the “testing” ability for those enterprise modelling
methods. We focus on one particular method: Business System Development Method
(BSDM). Before discussing our approach about how to tackle the problems, we give a
brief introduction to BSDM and look into areas where assistance can be provided to

help modelling activities in the following sections.

3.3.2 BSDM

Business System Development Method (BSDM) can be categorised as one of the En-
terprise Modelling Methods. It has been accepted and practised by IBM, as well as
its clients, as an effective way to capture a business’ static and dynamic environment
and its constraints. Furthermore, it is designed to fill the gap between business and
IT systems requirements — an area where conventional software engineering methods
appear inadequate [11] [36]. BSDM’s Business modelling also acts as a communication
tool between software engineers and the businessmen who can now describe a complex
business environment using only simple notation. This simplicity fosters time efficiency

when developing models.

However, it is not sufficient from the point of view of software system development,
since BSDM’s business modelling uses one notation (entity) to capture anything that

a business would want to manage. It also uses one notation (dependency) to represent

! This is quoted from [67], the original author is unknown.
% The term “post-industrial era” is taken from [4].

34

any kind of relationship within a business. This overloading of semantics on a few
symbols results in confusion when one wants to use a business model as the basis for
constructing software systems, since there is not a direct translation from a BSDM

model to an existing software engineering model.

Various modelling rules are given by BSDM which describe constraints on the model
which is being built during the business modelling activity. Some of these model rules
are obvious, but others are not. A violation of model rules can lead to an incorrectly
structured model. It is, therefore, necessary that these model rules are described ex-
plicitly and unambiguously. There are also guidelines recommended by BSDM; these
are valid for most business cases, but they are not compulsory to allow flexibility for
special circumstances. It is desirable to express these modelling guidelines explicitly

and unambiguously.

Since a part of the business model is written in natural language which leads to
difficulties for automatic correctness and consistency checking (due to the ambiguities
inherent in natural languages), it is, therefore, important to describe business models

in a way that is executable and can be used as a basis for model validation.

3.3.3 Research Objectives

Most issues mentioned above are rooted in the same basic problem: business models are
usually described informally. As is the case for any modelling activity, creating a model
is only the first step in a larger cycle. Once a model has been designed, to ensure its
quality, it needs to be verified and validated. In our context, verification is the process
of checking that no modelling rules have been violated. Validation is the process of
confirming that the model is a true representation of the real world. The lack of a
formal representation in methods like BSDM makes verification of a business model a
tedious and error prone task. To validate a model, the modeller must as a minimum
be able to work through the execution of typical scenarios for business processes and
then compare these with the real world. As mentioned earlier for all but very simple
business models, this is not achievable through a simple paper and pencil exercise and,

hence, detailed validation has not been possible in the past.

Our aim is not to improve the method itself, but help to improve the quality of its

35

products. We provide support that is closely tied in with the method so that the original
practices are not disturbed and no unnecessary un-familiarities are introduced to the
user.®> The objective of our work is to provide support not only for creating models,
but also for automating, as far as possible, the verification and validation of business
models. By doing so, we provide the means to complete the modelling cycle, i.e. the
modeller can go through several iterations of design, verification and validation until a
satisfactory business model has been produced. This iterative modelling development

cycle can be further illustrated in Figure 3.3.

Pan —> Buld —> Tet —> Refine

+ ! K !

Figure 3.3: The Plan-Build-Test-Refine Model Development Cycle

In formalising BSDM business modelling, the objective is not only to develop an
appropriate formal representation of a model, but also to take advantage of the knowl-
edge of BSDM about how to build such models and the existing set of rules about how
to evaluate the quality of them. Furthermore, the formal representation of a BSDM
business model must be able to capture not only the static but also the dynamic aspects

of the model.

Although in conventional BSDM the various states of the model can be captured,
there is no explicit way of describing how a process is carried out and how entities
are manipulated by a process. To enable the execution of a business model, i.e. to
simulate the execution of business processes, this knowledge of how to carry out a
process is essential. An additional objective of this work was, therefore, the ability to
describe and simulate the dynamic aspects of the models; because of this, an explicit

representation of time had to be introduced into the formalism.

A formal framework was developed for describing a business model by representing
components in the business model in formal terms, and rules written originally in
natural language in the BSDM manuals were re-interpreted as formal process rules.

A semantic structure was also devised which classifies and interconnects the many

3 Tt is important not to disturb the use of the original method, as this may cause unwanted distortions
in the method and lead to resistance from the practitioners to use the formal method.

36

Formal Representation
of Business Models

—> Formal Terms

Formal Process Rules

Business Business Models

Semantic Structure

Goals

Missions

Elements

Vision of Senior Managers

Policies
Relations Automatic Model Validation
Dynamic Model Reasonin,
Behaviours 4 9
Rapid Model Prototyping
Knowledge Transfer

Model Building Process Support

Figure 3.4: Overview of Approach and Goals of The Research

different notations used in business models. An overview of the approach and goals of

this work is outlined in figure 3.4.

The leftmost oval represents a business environment. Items inside this oval are
elements and characters of a business which are captured in a business model. The
oval in the middle of the picture represents business models which capture the business
environment described in the left oval. The boxes in this business model are entities or
things in a business, the links between these boxes represent relationships or constraints

between these things.

The top right box in this figure shows how business models are formulated, it
indicates the use of logical terms, axioms and semantic structures to describe business
models. The lower right box in this figure itemises the goals which are the aim of this

research. The list below gives a somewhat more comprehensive list of these goals:

to classify and distinguish model primitives;

to clarify ambiguous model rules;

to enable automatic model checking;

to enable automatic/semi-automatic reasoning on dynamic business models;

to enable model building knowledge sharing;

37

to enable rapid model prototyping;

to provide a basis for strategic planning;

to provide a basis for bridging business models and software engineering models;

to provide a basis for rapid business system generation.

3.3.4 Formal Method

As pointed out earlier, formal methods can be used to help assure the quality of informal
and/or semi-formal enterprise modelling methods. Although it is desirable to provide
these benetfits, we do not claim that we can provide all of these benefits, since there is
still a great gap between the informal and/or semi-formal enterprise modelling methods
(or the description of a problem) and the formal representation of all of its semantics.
It is our aim to try to narrow this gap. Fuchs and Robertson, advocators of applying
formal logical methods in support of informal modelling methods, pointed out three

areas which often cause difficulties in the process of formalisation[28]:

e Concepts, notations, standard practices and problem solving methods in the do-
main of application may not be easily mapped to, or reconciled with the concepts

of the formal method;

e Resistance comes from application specialists in applying a new formal method,
other than the one they are already familiar with. This is the case if they have

only dealt with informal or semi-formal methods in the past;

e A premature mapping from concepts in the domain of application to the do-
main of computational logic, caused by incomplete knowledge of the domain of

application.

As a consequence, the quality of the built model may be weakened by any of these
problems. More importantly, the application of the formal method must not com-
promise the working practice of the domain experts or distort the initial design. The

approach that we have taken is to understand the modelling concepts in BSDM and the

38

relationships between them. We also take a close look at the modelling process in build-
ing a BSDM model. The formal method proposed here is intended to be close to and
supportive of the basic concepts as well as the normal pattern of usage of BSDM. This
should reduce the unfamiliarity problem and help the acceptance of the new approach.
The formal method should also manage the transition from targeted concepts in BSDM
to our formal method. Finally, we aim to have an executable formal representational

language.*

3.3.5 Lightweight Logical Method

“To be formal or not to be formal is not the question - how formal is” °

Formal logical methods, sometimes referred to as ”heavyweight” logical methods,
in spite of being able to help achieve many of the benefits that we have described in the
previous sections, are rarely practised in the context of enterprise modelling. One ma-
jor consideration is the low cost-effectiveness implied in applying these formal methods.
The application of a "heavyweight” formal method normally requires lengthy involve-
ment of the domain experts concerned, which means high costs for the organisation.
The end product, the formal theory and description, is often very sophisticated and
complicated which is not easily understood. As a result, the end product can not easily

be put in good use.

To address these setbacks, lightweight formal logical methods have been advocated
by a group of scholars, Bowen [8] [7], Robertson and Agusti [75], and Saiedian [80)].
In contrast to “heavyweight” formal methods, “lightweight” formal theories usually
focus on a small number of central issues, their primitives are plainly-stated and can be

understood intuitively, their aim is to provide easier access to the models for the user.

The formal method that we have devised and deployed for BSDM is also lightweight.
One major concern has been pragmatics. We wanted to devise a formal language which
uses logical terms to represent concepts of the business model that can be understood
intuitively. Like many other enterprise modelling methods, quality assurance is a major

problem for business modelling methods. To provide the facility of quality assurance, a

* A further publication by Fuchs [27] may be of interest to the reader wanting more details on why it
is preferable to have specifications which are executable.
® This is modified by me from one of the well-known quotes of Shakespeare.

39

framework has been devised which uses this formal language as a foundation to provide
model verification and validation facilities and various other model building support.
This thesis describes the formal language and the built tool, KBST-BM, which provides

various forms of automated support based on this formal language.

3.3.6 A Layered Framework

IBM’s Business System Development Method (BSDM) is an informal method for devel-
oping business models. As described in section 2.1, initially a BSDM business model
consists of an entity model, which is later extended to a process model, both of which
are specified in a semi-formal way using diagrams and English text. On top of the
entity and the process model familiar to conventional BSDM practitioners, we intro-
duce another layer, the procedural model which extends the process model. Figure 3.5
illustrates our layered modelling approach. It points out problems which can occur
during entity and process modelling activities. It also shows which domain knowledge
has been formalised for each layer and what kind of information can be inferred through

the formalisation process.

An entity model describes the key components of a business’ operation, e.g. persons,
business partners, products, product information, activities and relationships. The con-
stituent elements of a business are captured and denoted as entities with dependencies
placed between each entity and those others on which it relies for its existence. A pro-
cess model is a collection of business processes crucial to the business’ operation. The
context of a business process, including the involved entities, the circumstances which
trigger a process and the consequences of its actions are described. The procedural
model was devised on top of BSDM’s entity and process model to enable the logical
sequences of action for processes to be specified and recorded enabling simulation of

business processes in a model.

Problems that can occur while building an entity model include various aspects:
methodical issues, application domain related methodical issues, and the pure applica-
tion domain issues. For instance, circular dependency is generally prohibited in many
modelling practices, while the fact that an entity model should generally only have

4 or less layers is a methodical as well as an application domain issue. Although in

40

Inferred Information Layered Models Problems

Procedural Model
Process M o ‘
(SES

Process,
entity functions

Over -constrained entity model
Circular dependency of entities
Inconsistent practice described

in different processes

Important entitiesleft out

in a process scope

Entity life cycle not covered

by any process

Redundant or subsumed processes

@ Statetransitions

@ Model rulesand
guidelinesviolations
and suggestions for
correction, process
dependency analysis

@ Mode rulesand
guidelinesviolations
and suggestions for
correction, organis-
ation context analysis

Entities, Life Cycle,
Dependency

Model rulesand guidelines
for best structure of entity
diagram

Triggers,
Actions
conditions

Model rulesand guidelines ‘ Execution rulesfor processes
for relating entities to processes

Domain Knowledge

Figure 3.5: A Layered Framework

general the method recommends 4 or less layers in an entity model, it allows exceptions
due to specific domain requirements. Since this is an application-dependent issue, in
practice its treatment is more flexible. Examples of purely domain-dependent issues
are the actual construction of a model or the acceptable boundary of defining an en-
tity. Domain-dependent problems vary between different industries, and are therefore
not covered in this thesis. The generic modelling principles which are considered and

applied in all modelling exercises are captured and formalised as rules.

The domain knowledge for each layer can be divided into two types: model compo-
nents and rules, which are shown in Figure 3.5 as ellipses and rectangles, respectively.
From the entity and process models, any violations of modelling rules or guidelines and
possible corrections can be inferred. From the procedural model, the state transitions
of the model caused by the execution of business processes can be inferred. A more

detailed description about these layers is given in the following sections and chapters.

3.3.7 Modelling Support Overview of KBST-BM

The support tool, KBST-BM, was built to provide automatic support for BSDM’s

business modelling activities. Figure 3.6 gives an overview of how KBST-BM can be

41

Formal Static Dynamic Procedure Modelling User-Defined
Represent- Facts Facts Facts Rules/Guides Rules
ation - \\ / //
[Reasoning
BSDM Procedural /f‘;UI /,’ Engine
Diagrams Business ,/ ’
Model Model
- = A

Gul -

Figure 3.6: Overview of Modelling Support - KBST-BM

used to help modellers in developing BSDM’s business models. At the beginning the
user creates a business model which is described using BSDM notation. From the
model, a formal representation can then be derived, one for the static and one for the
dynamic aspects of the model, respectively. In addition, general as well as user-defined
modelling rules are formalised. The general rules are entity and process model rules and
guidelines which are considered fixed and hence require no user input. The user-defined
rules are domain-specific attribute and business rules which are created with the help

of input from the user. (At this stage, the procedural model is not yet needed.)

The formal representation of the model as well as the rules provide the input to a
reasoning engine which analyses the business model. An analysis report is produced
which describes any violation of modelling rules and makes recommendations for how
the model can be improved. The user can then modify the business model accordingly
and start the next iteration of this process. The cycle is repeated until no further
errors and recommendations are produced, or when the user decides not to incorporate
any more of the given recommendations.® Once no more modelling rule violations are

reported by the reasoning engine, verification of the model is complete.

Before the user can simulate and therefore validate the model, he/she must create
the procedural model, which can then be formalised and fed into the reasoning engine.
During simulation of the model the user interacts directly with the reasoning engine

— telling it which process to execute from which starting state. The reasoning engine

 We assume that the user would not want to leave any errors in his/her model.

42

maintains a state transition diagram and information about the various states, which
the user can compare with the effects of business processes in the real world. If the user
decides that some changes in the business model are necessary, these changes must be
formalised and then again input to the reasoning engine.

Details of the devised and used formal language, DefBM, for KBST-BM are intro-

duced and examples illustrated in the following chapters.

43

44

Chapter 4

Support for BSDM Entity
Modelling

Based on the layered framework illustrated in subsection 3.3.6, a formal language
DefBM has been developed for which automatic support can be provided through a
knowledge based support tool, KBST-BM. Figure 3.5 shows our representational work
in BSDM’s business model in layers: Entity, Process and Procedural models. Entity
and Process modelling exercises are two distinguishable activities in BSDM. It is also a
natural and suitable division for our representational work. The added layer Procedural

model is also formalised to allow the specification of process operations.

Following this layered framework, this chapter illustrates which modelling knowl-
edge in an entity model is extracted and formalised and how building such a model is
supported by KBST-BM. Before the formalisation of entity models is introduced, this
chapter firstly describes the class hierarchy upon which the formal language DefBM is
based which is followed by a more detailed description of the BSDM Entity Model in
order to assist the reader’s understanding of our formal representation of the model

itself.

Chapter 5 and 6 describe the formalisation work done on the Process and Procedural

model.

4.1 Defining a Formal Language: DefBM

The formal representation of modelling concepts in BSDM is organised in an Inheritance

Class Hierarchy (ICH) which was initially inspired by the core class hierarchy of Process

45

Interchange Format (PIF) [51]. As mentioned previously in Figure 2.2 in Chapter
2, PIF is a formal “translation” language which aims at providing a communication
channel for concepts captured in process models built in different formats and schemas.
Since a BSDM’s business model includes a process model and exhibits similarities to a
business process model, it is advantageous to make use of this format when constructing
a formal language. However, since BSDM is different from PIF in several aspects, the
initial hierarchy has been modified and extended. Figure 4.1 shows the inheritance

class hierarchy, based on which the formal language DefBM has been defined.

originate_normal ‘<—{ originate_no_if ‘

change_focal_on

change normal H change normal_on ‘

originate originate_focal

change_focal

entity_family

model_rule process_model_rule ‘
guideline entity_guideline ‘
oo
attribute I N
riute rule originate_focal_fun
4’ entity_function)——«‘ change_focal_fun
change_normal_fun
relation-
ship process_cond postcondition
4’ dependency H parent_type
property_rel

entity_type rel

generic_alternative_parents
action_type | action ‘ A(b:?a';m

Notation Used

DefBM_
DataType

Figure 4.1: The Inheritance Class Hierarchy (ICH) of DefBM

Our aim is not to define the semantics of the BSDM method, but to provide a
framework which can make use of the knowledge embedded in the method to provide

various kinds of automated support. The aim of this inheritance hierarchy, therefore,

46

is two-fold: (1) to provide a structure to identify and relate concepts which are used
in a business modelling context; (2) to support an appropriate automatic inference

mechanism.

Two sorts of classes are included in this hierarchy: the abstract class and the normal
class, shown as a rectangle with a shaded corner and a plain rectangle in the figure,
respectively. An abstract class is a class which is matched to an aggregate and/or
abstract concept in a BSDM business model; except for rootclass which was devised as
a class to include all concepts that are described in the business modelling context. The
main purpose of an abstract class is to provide a structure to identify and distinguish
different concepts in a business model, and to allow the classification of the more
specialised sub-concepts. Therefore, members of an abstract class are other abstract

classes (to enable further specialisation) or normal classes.

An abstract class may or may not have a one-to-one mapping to primitives in a
conventional BSDM business model because we have added extra class types which are
used for the model but are not prescribed explicitly by the BSDM model primitives.
Added classes are, for instance, the class time which is an important concept in the
description of the dynamics of the model and therefore useful for our purposes, but
it is not a primitive found in the BSDM manual. The classes process_cond, rule and
activity are mentioned and used in BSDM but are not explicitly captured in a business
model: BSDM does not define notations and structures to record them. The classes
abstract_entity, generic_entity and generic_alternative_parent are classes applicable to
BSDM but not used by BSDM: we include them in the formal language to enable some
of the automated support that we intended to provide. With these extended classes,
various aspects of an instantiation of a business model can now be explicitly represented

and handled by this class hierarchy and the defined formal language.

A normal class maps to a set of concrete or abstract things described in a business
model. The members of a normal class are other normal classes as described in the
Figure, or instances that may occur in a business world. For example, the members
of class ‘action_type’ is another class ‘action’ which defines all of the possible actions
that may happen in a business process; whereas the members of class ‘attribute’ (of

an entity occurrence/instance) are all of the attributes that any entity occurrence may

47

have, e.g. the name, address and birthday of a person. Again, a normal class may or
may not have a direct mapping to the existing model primitives in a BSDM model due

to the added classes to the formal language, DefBM .

The language, DefBM, was defined to represent the architecture and meaning of
a business model in BSDM. It is based on first order predicate logic and follows the
convention of the Prolog syntax for arguments, i.e. we use any words starting with
a capital letter to denote a variable and any words starting with a lower case letter
to denote a constant. DefBM has also been used to represent the model rules and

guidelines which are described in BSDM.

In DefBM, the predicate abstract_class indicates an abstract class in the Inheritance

Class Hierarchy. For example, the root of the hierarchy, rootclass, is denoted as

abstract_class(rootclass).

There are (currently) in total 19 abstract classes and each one of them is represented
in an abstract_class predicate. A normal class is denoted by a predicate normal_class.

For example, the class originate_focal is represented as

normal_class(originate_focal).

The predicate super_class is used to denote the membership of a subclass to a
superclass in this inheritance hierarchy: the class Super is a superclass of the class Sub,

as shown in the predicate below.

super_class(Super, Sub).

An example instantiation of predicate super_class is that rootclass is a superclass of

process. This is formally represented below.

super_class(rootclass, process).

In this class hierarchy, both super and sub-classes can be abstract classes; or super-
class be an abstract class, and subclass be a normal class; or both of them be normal

classes. It is not allowed that a normal class has an abstract class as a sub-class it is

48

conceptually not compliant with the class hierarchy convention. The top-down alloca-
tion of classes is partly to ensure that the more general and higher level of abstraction
always appears first in the hierarchy before the more specialised and concrete concepts

are introduced.

Similar to the PIF class hierarchy, properties associated with a superclass are passed
onto its subclasses through the inheritance hierarchy. Unlike the PIF hierarchy, how-
ever, this hierarchy not only captures the facts about a business model, but also includes
classes that represent modelling rules. For example, classes model_rule and guideline are
the formalised modelling practice recommended by the method, whereas business_rule

and attribute_rule are domain-dependent rules which are constructed by the modellers.

A rule may be applied to a class anywhere in the hierarchy and may be associated
with one or more classes. Because of the class hierarchy, subclasses inherit the associa-
tion with rules from their parents. For example, if a particular rule has been associated
with a particular class originate (process), then that rule applies to all subclasses of
originate. Modelling these rules as their own set of classes allows for an easier identifi-
cation of the modelling rules that apply to a particular domain. Later in this chapter
and chapter 5 and 6 describe the details about how this formal language has been used
to represent things that are described and implied in the context of business modelling.
Before taking a close look at the use of this language, a brief summary of the concepts

of a BSDM entity model is given.

4.2 Entity Model

A BSDM business model gives an integrated view over various important aspects of
an organisation. This overview is captured in a so-called master map. Its content is
divided into the different business operations within an organisation. Each of the local
business functions is called a local map. In other words, a complete business model
consists of many local maps: although each local map is responsible for describing a
different operation of the business, as a whole they should be consistent and form a
converged view of a company.

Figure 4.2 shows part of an example BSDM business model, a local map, as it ap-

pears in our system KBST-BM, in which we named a local map a view. The notation

49

used in the tool is that described in the BSDM manuals [36] so existing BSDM prac-
titioners should be conversant with the notation. This simplified model describes the

selection and evaluation of modules at a university.

—'| Entity Model for Module Assessment | o |_I|

]

Practical
assigned Ta
Madule

Module
selection

Practical
Turned In By
FEFSON

Module
Ferfarmance

Figure 4.2: A BSDM’s Entity Model

Boxes show the entities involved: ‘Person’, ‘Module’, ‘Practical’, ‘Practical Assigned
to Module’, ‘Practical Turned In By Person’;, ‘Module Selection’ and ‘Module Perfor-
mance’. An entity denotes a class of things in the described world, in this case, ‘Person’
denotes the class of the individual persons who are in connection with the university,
and ‘Practical Turned In By Person’ denotes the group of all practical homework turned

in by every (known) person for a (known) assigned practical and a (known) module.

Lines with a circle at one end denote a dependence relationship between two entities:
the entity with the circle ending is the “parent” entity, whereas the line ending entity
is the “child” entity. As it is named, a dependence relationship places a “dependent”
relationship to the “child” entity. Every occurrence of a “child” entity can only exist
if the occurrence of the corresponding “parent” entity exists. For instance, in this

example, the entity ‘Module Selection’ has two parent entities: ‘Person’ and ‘Module’.

50

This means that it is impossible to select a module (i.e. to create an occurrence of

entity ‘Module Selection’) without knowing the particular person and module involved.

The dependence constraint is transferable to child entities (connected by depen-
dencies) and to further ”descendent” entities, which also provides tractability between
occurrences in the different layers of the model. For example, the entity ‘Practical
Turned In By Person’ is a direct descendent of entities ‘Person’ and ‘Practical Assigned
To Module’ which means that every occurrence of ‘Practical Turned In By Person’,
namely every recorded practical homework turned in by a student, must identify the
particular person (student) who did it and the particular practical which has been
assigned to the module. This entity is also a “descendent” entity of ‘Module’ and
‘Practical’ via entity ‘Practical Assigned to Module’ which allows it to trace back to
the corresponding module and practical. Therefore, according to this model, any prac-

tical homework can be traced back to its author, its assigned practical and module.

4.3 Representing Entity Models

As mentioned earlier, an entity represents a class of things in the world. Each ‘Person’,
‘Module’, ‘Practical’, ‘Practical Assigned to Module’, ‘Practical Turned In By Person’,
‘Module Selection’ and ‘Module Performance’ is a specific kind of entity, and they are
therefore represented as subclasses of entity in the inheritance class hierarchy. Using
this class hierarchy, we can represent all entities shown in this business model. For

example, the entity ‘Person’ is represented as:
class(entity, ‘Person’).
To represent the dependence between entities, a predicate
parent_type(Entity, Set_of Parents)

is used, where Entity denotes the child entity and Set_of Parents is the set of parent
entities of this entity. For example, ‘Person’ does not have a parent entity, therefore,
its Set_of Parents is empty as shown below; whereas ‘Practical Assigned To Module’
has two parent entities, therefore these two entities are enclosed in the set, also shown

below.

51

parent_type(‘Person’, [])
parent_type(‘Practical Assigned to Module’, [‘Module’, ‘Practical’])

BSDM gives a static and sharable set of properties to each entity: (entity) name,
parents preposition, definition, (occurrence/instance) examples, inclusions, exclusions,
query, notes, identifier, originated by, originated date, last revised by, last revised date,
controller and status. Conventionally, the values of the properties are recorded in a
BSDM form: the Entity Definition Form. During construction of the business models,
the modellers need to fill in values for these properties. These are usually written in

natural language and some in structured natural language.

A property, as described above, is a definition or characteristic of an entity and is
shared by every occurrence of this entity (class). For instance, the property definition
defines the meaning and boundary of an entity type, therefore every occurrence of this
entity must be bound by this definition. It is represented in the property predicate
below, where Entity_Name is the corresponding Entity, Property_Name is the name of

the property, and Property_Content is the value of the property.
property(Entity_Name, Property_Name, Property_Content).

Occurrences of an entity also have their own attributes. These are the characteristics
of the individual occurrence and are not shared with other occurrences. Examples of
attributes of an occurrence are the name of an occurrences or a certain date relevant
to a particular occurrence. For instance, an entity person may have several occurrences
whose individual names are mary, john and mike, etc. Hence, a predicate attribute is

used in the formalism to represent attributes of a particular occurrence.
attribute(Entity_Name, Att_Name, Attribute_Type)

Similar to the property predicate, Entity_Name represents the name of an entity,
Att_Name represents the name of an attribute, and Attribute_Type stores a set of allowed
types of values for the attribute. Unlike properties, attribute names are not provided
by the method, but given by the modellers after an entity has been created. The
information about an attribute is recorded in a conventional BSDM Attribute Definition

Form.

52

The actual value of an attribute for an entity occurrence is not recorded in the
definition form, and is only meaningful when a particular occurrence of an entity has
been created which is normally not part of the entity model building exercise. However,
because we provide a simulation facility to demonstrate the dynamic aspects of a model,

attribute values are also formalised which will be described in chapter 6.

Since an attribute value is dynamic and manipulated by other components (pro-
cesses) of the model, it is useful to define its value types using Attribute_type. The types
of values are ‘STRING’, ‘INTEGER’, or a predetermined finite set of “landmark” val-
ues. A landmark value is a value which shows the representative state of the system.
Since we are only concerned with values which are significant to the modeller, we will
only record landmark values. A good example of using landmark values is the spec-
ification of life statuses of an entity occurrence, which is illustrated in the following
section. While landmarks are expressed in linear and discrete values, it is also possible
to show a value that is between two landmark values in the form of [landmark_value_1,
landmark_value_2] to show a value that is greater than landmark_value_1, and smaller

than landmark_value_2.

A qualitative approach has been deployed for assignment of attributes values. This
approach has enabled KBST-BM to derive finite states of the model. Each derived
state is significant in its meaning to the modeller, and is distinctive from other states
which include entity occurrences with representative attributes. Attributes which are
not restricted are mostly used for documentation (e.g. STRING) and with limited

computational usage.

4.4 Representing Life Cycle Diagram

The instantiation of an entity, an entity occurrence, has a life cycle which starts when
it is “created” (or originated) and ends when it is “terminated” in a model. When an
occurrence is “terminated”, it becomes a history record in the model and will be used
for reference only. It no longer plays any active role or be treated as an active instance

in the model. BSDM uses Life Cycle Diagrams (LCD) to capture this information.

Figure 4.3 shows an example Life Cycle Diagram for the entity Practical Turned

In By Person as it is used in BSDM’s original forms. According to this diagram,

53

Entity: Practical Turn In By Person ‘

e handed-in
marked
cancelled

reviewed

Figure 4.3: The Life Cycle Diagram for “Practical Turned In By Person”

occurrences of this entity may have four different possible life statuses: handed-in,
marked, cancelled and reviewed. This means that the work of a practical assignment
can be ‘handed-in’ (by a student), ‘marked’ (by a first marker), or become ‘cancelled’
(e.g. in the case of a new submission of a practical from the same student which
automatically cancels the previous submissions) and the grade of the practical work
can be ‘reviewed’ by a second marker after it has been ‘marked’ by the first marker.
Although, the diagram does not limit the situation to where the first marker and the
second marker are the same person, but it points out that a grade has to be reviewed.
Had there been a policy that all practical work has to be reviewed by a different marker,

it would have been documented as a business rule.

The left-to-right arrows in a life cycle diagram point to the allowed starting statuses
for any occurrence of the corresponding entity type. Figure 4.3 specifies that when an
occurrence of Practical Turned In By Person is created, its life status is ‘handed-in’.
This example gives only one starting life status, though in other situations there may be
more than one starting status for an entity which would be denoted by the additional

left-to-right arrows in the corresponding LCD diagram.

The top-down arrows in a life cycle diagram define the possible transitions between
life statuses: with the beginning of line aligned to the "begin” or ”start” life status
and the arrow ending aligned to the designated life status. For example, in Figure 4.3,
the two left top-down arrows start with status “handed-in”, but one ends with status

“marked” and the other ends with status “cancelled”, denoting that after a practical

54

work has been handed in by a student, it can either be marked or cancelled afterwards.
The right-most top-down arrow denotes that a practical is reviewed after it has been
marked. Note that there is not an arrow which leads status cancelled downward, in
fact, a cancelled practical is an inactive instance and is only stored for reference. Also
note that in this figure any marked practical cannot be cancelled and any reviewed

practical stays the way it is. This reflects the marking policy of the university.

The definition of life cycle status and the allowed transitions between life statuses
of an entity is an important attribute of an entity which not only reflects the policies
of an organisation, it also decides the dynamic state of an entity occurrence and that
of the whole model. Therefore, it is important that they are represented and handled

in the formal language.

The predicates life_cycle_start_status, life_cycle_end_status and life_cycle_transit, are
used to represent three different kinds of life status information respectively. Predi-
cate life_cycle_start_status stores a possible life status in Life_status of an entity occur-
rence when an occurrence of the corresponding Entity_name has been created; whereas
predicate life_cycle_end_status stores a possible life status in Life_status of an entity
occurrence when an occurrence of the corresponding FEntity_name has been termi-
nated; the predicate life_cycle_transit records one directional transition, going from

the From_status to the To_status. These predicates are shown below.

life_cycle_start_status(Entity_name, Life_status)
life_cycle_end_status(Entity_name, Life_status)

life_cycle_transit(Entity_name, From_status, To_status)

Therefore, Figure 4.3 can now be formally represented using the predicates below.

life_cycle_start_status(‘Practical Turned In By Person’, handed-in)
life_cycle_end_status(‘Practical Turned In By Person’, cancelled)
life_cycle_end_status(‘Practical Turned In By Person’, reviewed)
life_cycle_transit(‘Practical Turned In By Person’, handed-in, marked)
life_cycle_transit(‘Practical Turned In By Person’, handed-in, cancelled)

life_cycle_transit(‘Practical Turned In By Person’, marked, reviewed)

55

4.5 Representing Domain Knowledge

BSDM provides advice on how to build good business models. We extract this advice
and formalise it under the abstract class rule in the class hierarchy shown in Figure 4.1.
Some pieces of advice are applicable to entity models and others to process models.
Each piece of advice is recommended with different strength. According to the degree of
enforcement on a model, we classify them in two categories: model rules and guidelines.
A model rule is a rule which must be followed if the model is to be sound. Model
guidelines are recommendations for a model of good style. They are classified in the
classes of entity_model_rule, process_model_rule, entity_guideline and process_guideline
which are subclasses of model_rule and guideline which are subclasses of rule in the class
hierarchy in Figure 4.1. ! To distinguish these two different strengths of enforcement,
two implication operators are deployed in our formalism: ‘=’ is used to represent a
model rule and is read as ‘must be’; ‘>’ is used for model guidelines and is read as
‘should be’. A formula ‘P = Q’ reads ‘if P is true then Q must be true’, and formula
‘P > Q’ reads ‘if P is true then Q should be true’. More details about this naming

convention are in appendix F.

The advice that is given by the method can be categorised into three kinds: general
methodical issues, application domain related methodical issues, and pure application
domain issues. The advice of purely methodical issues is the advice which is normally
associated with the strongest recommendation which when violated often leads to an
error in the model. We classify this type of advice as model rules. Advice of application
domain related methodical issues is more flexible. This type of advice provides guide-
lines for standard practice for most organisations. However, since the final decision
of design very often depends on the particular circumstances and requirements of the
organisation concerned, exceptions are also acceptable. We classify this type of advice
as model guidelines. Advice regarding purely domain-dependent issues is the general
advice about the construction of a model or the acceptable boundary of defining of
an entity, or an error checking mechanism for spotting model inappropriateness. Such
advice is mostly used to judge the discrepancy between the built model and business

reality. Since the final recommendation for any particular circumstances for an organi-

! The classes business_rule and attribute_rule are introduced in chapter 5.

56

sation cannot be pre-determined without knowing the particular organisation in depth,
this type of advice is not (and cannot be) formalised as rules and guidelines. (However,
some of such knowledge can be obtained by comparing with similar business models.
We deploy Case Based Reasoning techniques to store and reuse business models to

provide additional support. Chapter 7 provides more details.)

The text below gives an illustration of how an entity guideline and model rule can

be formalised using our formal language DefBM.
Example Entity Model Rule

A dependence in BSDM means that occurrences of a parent entity must have already
been created or are created at the same time when occurrences of its child entities are
created. A natural deduction of the above observation is a model rule which states that
any circular dependence relationship (a parent being dependent on its child) must not

be allowed in a business model.

To describe this rule, we introduce a predicate ancestor(P, () to mean that P is an
ancestor entity of @), if P is a parent entity of (), formally defined by the parent_type
predicate, or that it is an ancestor entity of () through the transitivity property of the
parent_type predicate. The ancestor predicate can be described formally in the two

expressions below:

VX,Y, E.parent type(X,Y)ANE €Y
=
ancestor(E, X)

VX,Y, E, Z.parent_type(X,Y) A E €Y A ancestor(Z, E)
=

ancestor(Z, X)

The circular dependence rule is then represented by the expression below which can

be read as “if X is an entity, then X cannot be its own ancestor”.

VX.class(entity, X) = —ancestor(X, X)

57

Example Entity Guideline

BSDM recommends that the depth of an entity model should normally be no more
than 4 layers, i.e. 4 steps through the dependency links. It also provides the types
of entities which should be placed in each layers, they are collectively called Entity
Families. The recommendation for the number of entity layers is to prevent a model
from being over-constrained by several layers of dependencies through levels of enti-
ties. Since this is only “soft” advice and the final decision very much depends on the

application, it has been formalised as a guideline in our formal language.

If we define property(Entity, level, N) to mean that an entity Entity is located at

level N in the business model, then this “4-layer”- guideline can be described as:

property(Entity,level, N) > N < 5.

Folklore Rule

In addition to advice given explicitly in BSDM manuals, there is a small portion of
the rules which are not mentioned in the method but are natural consequence of the
method itself and, therefore, must be followed to create a sound model. These rules
are also identified and captured as part of the formalisation. An example of this kind
of folklore rule is the “circular dependency rule” that we have shown in the example
above. Since these rules are derivable from the method itself and they do not require
any treatment which differ from the explicit ones, we do not use separate classes to

accommodate them.
Entity Families

Within the domain of an entity model, BSDM provides guidance about the struc-
ture and example entities to be used in an entity model. They are collectively called
Entity Families. This information is captured in our Entity Conceptual Hierarchy and is
formalised using DefBM. This information is used as background knowledge in our sys-
tem, KBST-BM, for understanding the semantics of an entity and assists in determining
the appropriateness of the selection of an entity during entity model verification and
consultation sessions. A detailed discussion of Entity Families and its representation is

described in Subsection 7.7.

58

Obviously, there are more aspects in an entity model that have been formalised but
are not described in this chapter. A list of the entity modelling rules and guidelines

used in the system is given in Appendix G.

4.6 Inference

As different entity model rules and guidelines may target to verify different aspects of
the model, similar rules and guidelines are grouped together in KBST-BM to enable an
iterative, systematic and topical verification process. It gives the user the freedom to
either run a complete check on the model or to choose to work on a particular aspect
of the model, i.e. to use certain rules/guidelines only, in a smaller “Plan-Build-Test-
Refine” cycle. This helps the user to focus on a particular design issue and not be

overloaded by too much advice which is of no immediate concern.

Each of these model rules and guidelines are also implemented modularly and there-
fore can operate independently. This enables the user to verify the model in his/her
preferred order. It is also much advantageous if the rule base is to be modified or

extended in the future.

There are in total eleven sets of entity model rules and six sets of guidelines. Based
on these sets of rules and guidelines and (partial) information of an entity model, so-
called critiques are inferred. These critiqgues provide help to the modeller during model
verification. They do not replace the manual verification process entirely, because not
all errors and solutions can be standardised or made available, as has been mentioned
in the previous sub-section. Instead, partial verification and validation is provided to
complement human efforts. In fact, due to the common lack of automatic verifica-
tion and validation methods for informal methods, partial verification and validation

methods can be especially interesting and helpful in quality assurance.

Several types of critiques are provided.

e (Correctness critiques detect structural, syntactical and semantic errors.

e Completeness critiques identify incomplete information in the model and suggest

which missing concepts may need to be included.

59

e (onsistency critiques point out discrepancies in different parts of the model.
e Appropriateness critiques show deviations from standard practices.

e Presentation critiques highlight awkward use of naming style which can lead to

misunderstandings or conceptual errors.

e Alternative critiques search for similar standard and past models and present
them as alternatives to a given modelling decision. This critique makes use of a
case library of business models (see Chapter 7 for more comments on the use of

Case-Based Reasoning techniques).

To provide these critiques, each of the above logic expressions are translated into
semantically equivalent CLIPS rules [46] which use the above introduced representation

of primitives (such as class, parent_type and ancestor) in the model. 2

For example, logical expressions of the form below:

e propertyl(X) = property2(X) (must always be true), and

e property3(X) > propertyd(X) (should always be true)

are firstly negated and formalised into a standardised Conjunction Normal Form.
For instance, for the above model rule and guideline, it is negated and formalised as

formula below.

Model rule: must always be true

—(propertyl(X) = property2(X))(negation)

= —(—propertyl(X) V property2(X))(normalisation)
= propertyl(X) A =(property2(X))

Model Guidelines: should always be true
—(property3(X) v property4(X))(negation)

= —(—property3(X) V propertyd(X))(normalisation)
= property3(X) A —=(property4(X))

2 Because the system that we have chosen for our implementation uses CLIPS, our formal expressions
are translated into CLIPS rules. These formal rules can also be programmed in Prolog, as we have
done in our first version of the system, or any other suitable languages.

60

If any of the normalised formulae are true, a violation is found. This forms the pre-
condition part of a model rule or guideline in CLIPS which checks a model by searching
for instances satisfying the precondition (it can consecutively find all instances). If any
instance is found, then the corresponding model rule and guideline is violated. The
CLIPS rule below can be implemented, where rule_n and guideline_nl denote the iden-

tifiers of the corresponding model rules and guidelines.

propertyl(X) A (not(property2(X)))
=>

advise(rule_n, X)

property3(X) A (not(propertyd(X)))
=>

advise(guideline_nl, X)

In response to the user’s request to verify a business model, the inference engine
dynamically represents the user model using the formal language and tries to prove
each rule_n and guideline_n1 to be true by actively searching all violation instances in
the model. If any violation has been found for a rule or guideline, the corresponding
modelling rule or guideline has been broken in the model, and explanation and advice

are given to the user, via the function advise(Violation_id, Source_data).

Having the knowledge about these rules and guidelines embedded in the system,
the inference engine can provide information which it has found are the cause of the
violation. It is also able to give advice on how to correct the error. For instance, if
the system has found a cyclic dependence in the model, a warning is given to the user
containing information about this violation. It provides a list of entities which are
involved in the cycle and suggests possible dependence links to be erased. An example

use of KBST-BM for model verification is given below.
Model Verification Consultation Example

Figure 4.4 modifies the example life cycle diagram shown in Figure 4.2. In this
Figure, one additional top-down arrow ‘(1) is added. Arrow (1) is incorrect because it

is initially intended that a ‘cancelled’ practical from a student should not be processed

61

Entity: Practical Turn In By Person ‘

—_— handed-in t

marked
(1)
cancelled ‘

reviewed

Figure 4.4: An Error Life Cycle Diagram

any further. However, this intention may have been lost during a complex modelling

exercise and arrow (1) was added at a later stage.

Terminating life statuses of all entities are specified in two ways: by the modellers
during model building activities, normally leading to a status which is only applicable
to a particular entity; or as a standard terminating life status which is applicable to
all entities, such as “cancelled” and “closed” provided by BSDM. This knowledge can
be used to support parts of the checking to determine whether an entity’s life cycle
has been defined correctly. For instance, if there exists a transition out of a known
terminating life status, as indicated by arrow (1), an error has been made and the

system should detect it and give appropriate advice.

The model rule which can be used to detect this error uses this knowledge is de-
scribed formally in the expression below (the two types of terminating life statuses
are each formally represented as life_cycle_end_status and terminated_life_status). Al-
though this rule is sufficiently self-explanatory, a more detailed description of this rule

is given in Appendix G.

life_cycle_transit(Entity, From_life,Tolife)
=
—terminated_li fe_status(Entity, From_ife) A

—life_cycle_end_status(FromJlife)

An example model verification and consultation window for this error is shown in

62

Figure 4.5. The top left slot labelled ‘Verify Model Type’ indicates the type (or the
part) of the business model that the system will be checking: there are currently two
types of models that can be checked: an entity or a process model and in this case it is
the entity model that the system is verifying. The second slot ‘Verify Rule/Guideline’
indicates that either a set of the modelling rules (R) or guidelines (G) is used: as ‘R’
is given it means a set of modelling rule is applied. Slot ‘Verify Rule/Guideline Set(1-
11/6)’ indicates that there are 11 sets of modelling rules and 6 sets of guidelines which
can be used for the verification: as illustrated it is the entity modelling rule set 11 that
is used. When all of this information has been given, the user can press the button

“Verify NOW’ to activate the verification process.

After checking the entity model, 5 violations have been found and are shown in the
‘Rule/Guideline Violation List” Window. The user can now highlight any particular
violation to see more details. Figure 4.5 shows that the user has highlighted the vi-
olation ‘Wrong Termination’ which involves the entity ‘Practical Turn In By Person’.
A detailed explanation about this violation, the violated instance and the suspected
erroneous properties, and the corresponding advice for the user to correct this error are
given in the following three sub-windows in the consultation window. Similar viola-
tion instances are grouped together and displayed in the same “list” window therefore
making it easier to work with, as it has been shown in this example. To see all of the

violations listed in this window, the user can highlight any instance to see more details.

4.7 Conclusion

This chapter demonstrated how an informal or semi-formal method, such as BSDM’s
Business Modelling Method, can benefit by applying a formal method. To capture the
knowledge of a business model a formal language, DefBM, has been devised which is
based on an inheritance class hierarchy. This inheritance hierarchy acts as a meta-
model which provides a backbone of categories for distinguishing different types of
model concepts allowing attributes to be passed on and model rules and guidelines to
be applied to similar types of model primitives.

A BSDM’s entity model can be formalised and represented using DefBM. Knowl-

edge, model rules and guidelines are formalised and embedded in a knowledge based

63

support tool, called KBST-BM. Standard and generic knowledge of the method and the
business domain is stored as facts in the database of KBST-BM; modelling rules and
guidelines are stored as rules. Together they are used by KBST-BM to infer and in-
spect the user entity models and provide advice for errors. This capability of KBST-BM
supports the iterative Plan-Build-Test-Refine model development cycle, it also allows
relevant parts of the model which may be scattered within the model to be examined
collectively and systematically using the original method. Compared to many EM tools
which are little more than an ”electronic paper”, KBST-BM provides useful additional

assistance to the modellers.

64

Figure 4.5: A Consultation Window in KBST-BM

65

66

Chapter 5

Support for BSDM Process
Modelling

When an entity model is completed, the next BSDM activity is to build the process
model. Following the same formal framework which has been used for the entity model
(illustrated in Figure 4.1), we are also able to formally represent model primitives
and properties of a process model using the devised formal language DefBM. Advice
for building business models in BSDM has been extracted from the user manuals to
construct model rules and guidelines. Extensions of modelling rules and guidelines in
connection with the execution of business processes have also been derived from BSDM
and formalised. These formalised modelling rules and guidelines form the basis for
the automatic verification and validation facilities in our support tool KBST-BM. This
chapter describes the components of a process model, their formal representation, and
the corresponding automatic modelling support which is provided in KBST-BM. An
example verification and consultation session using KBST-BM is illustrated at the end
of this chapter. An extensive description of all of the captured and formalised modelling

rules and guidelines can be found in Appendix H.

5.1 Process Model

Modellers can extend an entity model with information about how a business operates to
form a process model. Instead of describing the detailed current practice to accomplish
certain goals, a process model captures the necessary logical steps, in business terms,

to achieve these goals. Things which need to be known or to be managed in a process

67

are represented as entities and are normally identified during the entity model building
activity, though additional entities can be added by revisiting this activity. The set of

relevant entities are included in the process scope.

Ackrowledye Handed—Tn Practical

H Module Practical

Modu

Practical
Assigh To
Module

Module
Selection

Practical
Turn In By
Ferson

Module
Ferformance

Figure 5.1: An Example BSDM Process Model

Figure 5.1 shows a screen-shot of our system describing an example process model
which was built on top of the entity model shown in Figure 4.2. Two example processes
are shown: ‘Acknowledge Handed-In Practical’ and ‘Module Performance Assessment’.

Each includes four entities in its scope.

Any BSDM process includes at least one entity in its scope. The relationship
between a process and its included entities is determined by the specific role that each
entity plays in the process. This relationship is called an entity function and is normally

summarised in matrices like the one in Figure 5.2.

There are seven entity functions in BSDM: originate focal, originate normal, orig-
inate in-flight, change focal, change normal, refer normal and refer master. An entity

function which includes the keyword “focal”, i.e. originate focal or change focal, in-

68

Process-Entity Matrix

| Acknowledge Handed-In Practical | Module Performance Ass.

Person refer normal

Module refer normal

Practical Assign to Module refer normal refer normal
Practical Turn In By Person originate focal originate in-flight
Module Selection refer normal
Module Performance originate focal

Figure 5.2: Process-Entity Matrix

dicates that the main purpose of the process is to create an originate focal entity oc-
currence (instance) or to modify attributes of the change focal entity occurrence. The
originate type of entity functions, such as originate focal, normal and in-flight, specify
the creation of occurrences of the entity type. The change type of entity functions,
such as change focal and normal, represent update operations carried out on the prop-
erties of the entity. The refer type of entity functions, such as refer normal and master,
capture the referencing of an entity during process execution. The three types used in
our example are: originate focal, refer normal and originate in-flight. The matrix in
Figure 5.2 shows the relationships (entity functions) between the processes and entities

shown in Figure 5.1.

The BSDM modeller specifies the role of each entity in each process. The primary
purpose of the process “Acknowledge Handed-in Practical” is to acknowledge the fact
that the practical work which has been handed in by a person (student) has been
received, i.e. its purpose is to create an occurrence of the Practical Turn In By Person
entity (the originate focal entity). To create the occurrence, information stored in the
relevant entities, Person, Module and Practical Assign to Module, is used. Hence, these
entities are refer normal entities. In the process Module Performance Assessment,
Practical Turn In By Person is an originate in-flight entity. This indicates that the
records of a practical must be known before the Module Performance can be calculated;
otherwise, the corresponding practical must be recorded and marks assigned (the mark
is null if a practical has not been handed-in), as part of the process, before the Module

Performance can be determined.

69

5.2 Representing Process Models

There are two kinds of processes in a BSDM model: originate and change. For the
KBST-BM system, we classify these two kinds of processes respectively as originate and
change classes in the inheritance hierarchy (Figure 4.1). They are subclasses of process.
We further distinguish each process into sub-categories, according to the functions
that they carry out. Similarly to the representation of an entity, a process is formally

represented through a class predicate:
class(Process_type, Process_name).

In the example given in Figure 5.1, the process Acknowledge Handed-In Practical
is an originate_focal process, because its main function is to originate an entity which
is its focal entity. On the other hand, the process Module Performance Assessment is
an originate_focal_if process, because its main function includes not only to originate
its focal entity but also to manage its in-flight entity. The class originate_focal_if is a
subclass of originate_focal, which is a subclass of originate_process in the inheritance
class hierarchy). The example’s two processes can be formally represented as follows:

class(originate_focal, ‘Acknowledge Handed-In Practical’)
class(originate_focal_if, ‘Module Performance Assessment’)

A process is a class described by a set of common characteristics which are shared
by a collection of business processes. As was the case for entities, these common charac-
teristics are recorded through the use of a property predicate: property(Process_name,
Property_name, Property_Content). The values of these properties are static, i.e. they

remain unchanged during the simulation of the model.!

As mentioned earlier, entity functions are relationships between processes and en-
tities. They are therefore modelled as subclasses of relationship and entity_function
in the inheritance class hierarchy. To represent entity functions, a predicate En-
tity_function(Process_name, Entity_name) is used. The formal representation of the
three entity functions which are used in the example process model (Figure 5.1, re-
fer normal, originate focal and originate in-flight) for process ‘Module Performance

Assessment’ is given below.

! Dynamic aspects, i.e. issues dealing with the execution of a business model, are covered in Chapter
6, when we discuss the procedural model.

70

refer_normal_fun(‘Module Per formance Assessment',‘Practical Assign to Module')
refer_normal_fun(‘Module Per formance Assessment’,‘Module Selection')
originate_focal_fun(‘Module Performance Assessment',*Module Per formance')

originate_i f _fun(‘Module Per formance Assessment',‘Practical Turn In By Person')

Since each entity in a process must play a role in a process, i.e. has an entity
function, the collective information of entity functions define the process scope. This
derived process scope can be used to check the drawing of a process model. It can
also be used to understand the purpose of a process which forms the basis for checking

whether two processes can be merged or whether one is subsumed by the other.

5.3 Representing Life Cycle Diagrams with Processes

Based on the life cycle diagram completed during the entity model building sessions,
BSDM allows the modellers to further specify the relationships between entities, their
life statuses and processes. For example, Figure 5.3 adds information about which
processes are involved in the calculation of a practical mark by extending the life cycle
diagram which was initially built during the entity model building activity (see Figure

4.3).

- T
=| LCD: Practical Turn In By Person: lifel.dia [=15]

File Edit Layout Custom Menu Hyperlirks ﬁe]pl

BE= S = 3V

| Entity Name: Practical Turn In By Person |

originate Frocesses ‘ Life Status | ‘ Change Frocesses

@—acknowledge Handed-in Practiscal

Mark Practical

icancsl Practical
e e

reviewed

Figure 5.3: An Extended BSDM Life Cycle Diagram

As one can see, four processes have been identified: one originate process Acknowl-

edge Handed-In Practical and three change processes Mark Practical, Cancel Practical

71

and Review Practical. To represent this new process information, we use predicates

orgprocess and chgprocess.

orgprocess(Process_name, Entity_name, Life)

chgprocess(Process_name, Entity_name, Start, End)

The orgprocess states that process Process_name is an originate process, and that
its actions include the creation of occurrences for entity Entity_name with a (starting)
life status Life. The chgprocess predicate states that process Process_name is a change
process, and that its actions include the changing of life statuses for occurrences of

entity Entity_name from a life status Start to another life status End.

This information is used to help safeguard a complete and appropriate transit of
an entity life cycle. Furthermore, it can be used to derive information needed for cross
checking the design of process scope. Part of this checking is carried out as a part of
automatic process model verification, which is described in Section 5.6, another part is
implemented via the procedural model and its simulator which is described in Chapter

6.

5.4 Representing User-Defined Attribute Rules

BSDM allows derivable attributes for entity occurrences. The value of a derivable at-
tribute is the result of a calculation based on one or more attribute values of itself
or other entity occurrences. Derivable attributes normally provide aggregate informa-
tion taken from different resources and data for management and analytical purposes.
The function used to derive values for these attributes must consist of three types of
information: the derivable attribute and the entity occurrence involved, other entity
occurrences and their attributes which provide the basis for the calculation, and the

derivation method which provides the means to generate the result.

We do not intend to cover all possible derivation methods, because they come in
many varieties and it is not feasible to provide comprehensive coverage. Instead, we
provided a framework which demonstrates how formal methods can be used to allow
the modellers to define their own derivation methods for the derivable attributes using

structured English.

72

As mentioned above, under this framework the modeller must specify the targeted
entity occurrence (and its derivable attributes), the derivation function, and indices
for identifying the data which will be used for the calculation. The first piece of
information is given when through the user interface the user identifies the targeted
entity occurrence and the derivable attribute. For the second part, two mathematical
functions, summation and average, which are normally used in a derivation method are
built into KBST-BM. The modellers can choose to use these derivation functions or

build their own functions using Prolog expressions.

As not all data items can be identified directly, some searching and identifying
methods must be provided. Since entities are linked by dependencies throughout the
model, entity occurrences are also connected by dependency occurrences. Following
the structure of dependency occurrences, relevant entity occurrences can be found and
identified. The third part of the information, therefore, is for the user to provide
the identifying information which enable the system to search for and identify the
individual data items which are used as a basis for calculating the attribute value. We
call the identifying information an indez because it is used as an index to identify entity

occurrences. The following explains in more details.
Predicate For User-Defined Attribute Rules

All of the relevant information is described by the predicate derive_att_rule given

below.

derive_att_rule(Ent_name, Ent_ID, Ent_parents
Att_name, Att_value,
List_of_index_entities,
List_of_data_items,
Derivation_method,

Attribute_rule_content).

The information of entity name (Ent_name) and entity ID (Ent_ID) together identify
a particular entity occurrence. Ent_parents stores the occurrences of the corresponding
entity parents. Att_name is the name of the derivable attribute, whereas Att_value stores

the (eventually) derived attribute values. List_of_indez_entities gives the set of all entity

73

occurrences which are used as indices to identify the referring entity occurrences. An
index can be a particular entity occurrence or an ancestor entity occurrence of the
referring entities. List_of data_items specifies the pairs of entity (type) and attribute
name of the referring entity occurrences which hold the necessary data for deriving
the result. Derivation_method is either an empty list which indicates that a built-in
function of KBST-BM has been used, or a list containing the user-defined functions.
Attribute_rule_content specifies the derivation and search method which generates the

final result.

Four types of statements can be used in the Attribute_rule_content. The underlying
grammar for these statements is described next, followed by some examples of how the

derive_att_rule predicate is used.
Grammar For User-Defined Attribute Rules

BSDM mentions entity occurrences and their attributes, and the need to specify
attribute rules which specify how attribute values can be derived from other attributes,
but it does not specify how the relevant information that are scattered in different parts
of the model can be put together to generate values for the derivable attributes, nor
does it describe how the attribute rules are used in a process. We need to provide a
mechanism which can capture this information and produce the corresponding answers.
We first try to understand BSDM attribute rules in an attempt to draw the necessary

requirements and design structure for representing them:

e Not all information needed is known even at run time: to generate a derivable
attribute value, attribute values of other entity occurrences are often needed.
However, those values are often generated dynamically during the simulation,
therefore can not be obtained when the attribute rule are defined. Furthermore,
it is also common that the referred entity occurrences themselves are not known,
since they are also created dynamically. There is, therefore, a need for a mech-
anism which relates the known information to the unknown to help identify and

retrieve the set of "base” values needed for calculation at run time.

e Several types of base/referred data items may be included in a derivation function:

known distinctive and particular values enumerated by the modeller; entity at-

74

tributes which share common characteristics; results of other derivation methods,

or a combination of any of the above situations.

e The derivation or calculation function is often application domain and case depen-
dent. Since the calculation function may come in any arbitrary forms (arithmetic
or not), the design must be as flexible as possible, in fact preferably completely
open-ended to allow the user’s own design, but supplied with some commonly

used functions.

e The attribute rule must be easy to read: since most of the modellers are not
familiar with formal languages, describing attribute rules using formal notations
is not appropriate. The more desirable descriptions should be easy to design,

understand and use.

To accommodate the above requirements for BSDM attribute rules, we have used

the approach below:

e To allow the dynamic identification of referring attributes which are not known to
the modellers when derivation methods are specified, an indexing and searching
mechanism is provided to enable the automatic identification of those attributes
during process execution. Since all BSDM entity occurrences can be identified
through dependency links, we have used this property for searching and navigation

in the dynamic business model.

e To accommodate and capture the diversified relationships between the refer-
ring data and the calculation functions, we have provided a grammar (for At-
tribute_rule_content) which allows the user to specify the parent or ancestor entity
occurrences as indices to search for the desirable referring entity occurrences and
attributes. It is also possible to use a combination of complex and compound
sentences and phrases to obtain inter-medium results from the collected entity

attributes and use the results as an input to the derivation function.

e To provide the maximum flexibility for calculation functions, commonly used

functions are provided in the system and can be called by the calculation function.

75

We also allow the user to design their own functions using Prolog expressions

which will be used by KBST-BM.

e For easier design, use and understanding of attributes rules, we use structured
English to express these rules. The aim of being “easy to design” is somewhat con-
tradictory to the previous aim of “maximum flexibility” which inevitably requires
more skills from the user. One compromise is through the use of a form of struc-
tured English which provides the needed syntax and semantics for computational
operations for automation and is intended to give an intuitive understanding for

its users.

Figure 5.4 shows the grammar for four types of statements which can be used to
describe BSDM attribute rules: each type is labelled with statement type I, II, III or
Iv.

Statement Typel Statement Typel|
%\ %\
WVPL Ad-P Ady-P* Closing-statement VPL VP_content* Call-statement
NAN N T I
V NPL P2 NP2 Prop NP3 AdwP2 VP2 VP2 Ad-P AdwP* Closingsiatement v Fynction
§ |
VN call
Statement Typelll Statement TypelV
/!\A %\
VPL Statement Typel* Call-statement VP1 Statement Typel* VP _content* Call-statement

(* This construct can be used more than once, when connected by a comma)

(** This construct can be used more than once, when connected by the connective word " and")

Figure 5.4: The Grammar Trees for BSDM Attribute Rules

The grammar trees adapts the convention used in the field of natural language pro-
cessing [60] [63]. The abbreviation VP stands for “Verb Phrase”, NP stands for “Noun
Phrase”, Adj-P for “Adjective Phrase” and Adv-P for “Adverb Phrase”; wherever there

is an ID attached to them, it indicates the uniqueness of the corresponding phrases.

76

For example, VP! and VP2 are different Verb Phrases, because each may deploy dif-
ferent key words for verbs, or even with slightly different syntactic structure. There
is a collection of words and combinations of phrases (clauses) that is recognisable by
this system. For instance, there are two kinds of closing clauses that can terminate an

7 and the “call-statement”, as they are shown in

attribute rule: the “closing-statemen
the grammar tree. There is also a set of verbs which is acceptable by the grammar,
i.e. calculate, compute, use, search and find, where each verb is used in a phrase where
its meaning is the most appropriate for the context. The set of recognisable vocabu-

laries can be extended quite easily by extending the system’s dictionary; the grammar

structure of the rules are predetermined.

The grammar design satisfies the requirements mentioned above for BSDM attribute
rules. Domain specific (terminal) phrases have been introduced: closing-statement and
call-statement. Both statements indicate the enactment of the specified evaluation
function. Call-statement also specifies the input parameters and the obtained result(s).
In order to support the complicated constraints which can be applied when retrieving
data and the diversity of calculation methods, repetitive use of some phrase structures

is possible: these are marked by ‘*’ or ‘**’

in the figure. For instance, Adv-P can
be used several times in a sentence to define the multiple constraints applied when
retrieving data. A statement type I may therefore has the syntactical structure of VPI,
Adj-P, Adv-P and Closing-statement; or it may be VPI, Adj-P, two Adv-Ps and the

Closing-statement.

The full grammar is formally defined using a DCG (Definite Clause Grammar) and
is given in Appendix I. Based on this grammar, generic templates are derived for the
predicate derive_att_rule which provide the necessary structure to be instantiated by

attribute rules. An example template is given below.

(1) Example Template

derive_att_rule(Ent_name, Ent_id, Ent_Parents, }
Att_name, AttValue,
[Ref_EntityOccl, Ref_Entity0Occ2],
[Base_entity, Base_attName],

1,

7

[calculate, the, summation, of, attribute, Base_attName,
for, every, entity, Base_entity,
with, condition,
entity-ancestor, Ref_EntityOccl,
and, with, condition,
entity-ancestor, Ref_EntityOcc2,

when, finished, save, the, result, in, AttValue]).

The predicate above can be understood as “To infer the derivable value AttValue for
attribute Att_name of entity occurrence Ent_id with entity type Ent_name, one needs
to sum up all of the values of attribute Base_attName of all entity occurrences with
entity type Base_entity. However, not all of those entities occurrences with entity type
Base_entity are valid for this calculation, but only those which have entity occurrence
Ref EntityOccl and entity occurrence Ref FntityOcc2 as ancestor entities, which is
specified using the key word ‘entity-ancestor’. When all of the correct data items
(attribute values) are collected and summed up, the result is stored in the variable

AttValue.”

The sentence [calculate, the, summation,...]| follows the grammar structure for
Statement Type I, which specifies the derivation method (summation) and the tar-
geted attribute name (Base_attName) in VP1 (Verb Phrase type I) ’calculate, the,
summation, of, attribute, Base_attName’. It also specifies the searching method in the
Adj-P, i.e. ’for, every, entity, Base_entity’, which indicates that every entity occurrence
with the entity name Base_entity which at the same time satisfied the conditions spec-
ified in the Adv-Ps should be collected. Two Adv-Ps are used to specify the additional
identification method in the phrase ‘with, condition, entity-ancestor, Ref EntityOccl’,
and ‘with, condition, entity-ancestor, Ref_EntityOcc2’ connected by the key word ‘and’.
Finally, the ’closing-statement’ is ‘when, finished, save, the, result, in, AttValue’ which
indicates to store the result of the calculation in the variable AttValue.

The sentence is written in a predetermined syntax and is used in the place of ar-
gument Attribute_rule_content as shown in the derive_att_rule predicate above. When
the key word summation is replaced by average, the derivation function is changed

to average. To modify the “conditions” for collecting different data sources, the

78

List_of_index_entities and List_of data_items can either be shortened or extended.

It is also possible to give more constraints searching for the data items by giving
multiple “with condition...” phrases. This is denoted as a Adv-p (Adverb Phrase) and
the possibility of the repetition of this phrase is marked with “**’ in Figure 5.4. Each
new Adv-p is connected with an “and” key word with the previous phrase (as it is

shown in this example where two Adv-Ps have been used).

(2) Construction and Execution

I='| Procezs Model and User-Defined Attribute RBules |= |I:||

Fersan Module Fractical

ey o &
/ _/As}@mer%g'é Practlt\KIMark /I

dule Ferfgrmgnce Assessme}w\/
Module Practical
selection RSEIED D
Maodule
Module Practical
Performance Turn In By
Fersan
Auerage Fractical Mark
Practical mark
Exarn Mark
Module Mark

Figure 5.5: Example Process to Illustrate Attribute Rule

Figure 5.5 shows a business model with process Assign Awverage Practical Mark
and Module Performance Assessment. To illustrate the instantiation of a user-defined
attribute rule, the relevant attributes of the corresponding entities are labelled: Average
Practical Mark, Exam Mark and Module Mark are derivable attributes for entity
Module Performance, and Practical Mark is a “normal” attribute for entity Practical

Turn In By Person.

79

To specify the derivation method for calculating Awverage Practical Mark which
will be used and carried out by process Assign Average Practical Mark, the template

mentioned earlier is instantiated below.

derive_att_rule(‘Module Performance’, Ent_id),
[(‘Person’, Parentl), (‘Module’, Parent2)],
"’Average Practical Mark’", AttValue,
[(‘Person’, Parentl), (‘Module’, Parent2)],

["’Practical Turn In By Person’", "’Practical Mark’"],

1,

[calculate, the, average, of, attribute, "’Practical Mark’",
for, every, entity, "’Practical Turn In By Person’",
with, condition,
entity-ancestor, (‘Person’, Parentl),
and, with, condition,
entity-ancestor, (‘Module’, Parent2),

when, finished, save, the, result, in, AttValue]).

This predicate provides a framework for executing an attribute rule and is specified
by the modeller when the process model is developed. Its variables, such as Ent_id,
Parentl and Parent2, are instantiated dynamically when the simulation of the model
is carried out, therefore is not known when the rules are defined. ‘Person’ Parentl
and ‘Module’ Parent2 are the parent occurrences of the targeting occurrence ‘Module
Performance’ Ent_id and, in this case, happens to be the indices for searching. There are
two blocks of “with condition” statements, because the entities occurrences of Practical

Turn In By Person must have both ‘Person’ Parent! and ‘Module’ Parent2 as ancestors.

During the simulation, when a process occurrence of Assign Average Practical Mark
is created, the ‘Module Performance’ Ent_id entity occurrence is specified, but the re-
ferring Practical Turn In By Person entity occurrences are not known. One therefore
must identify the relationships between these two entities. Given the particular en-

tity occurrence of Module Performance, to calculate the attribute Awverage Practical

80

Mark one must first identify the Person and Module concerned before all of the rele-
vant Practical Marks can be collected. However, both Person and Module are parent
entities of Module Performance, they can therefore be identified from this relationship.
The located Person and Module entity occurrence IDs are instantiated in Parentl and

Parent2.

Upon locating the two ancestor entity occurrences, one can then follow the depen-
dency links downward to identify all of the descending Practical Turned In By Person
entity occurrences. Once all of the Practical Turned In By Person entity occurrences
are found, the relevant Practical Marks can be obtained and the average of the marks
can be calculated using the system built-in function, average. The result is returned
in AttValue which is stored in the attribute Awverage Practical Mark of the Module

Performance entity occurrence.

In summary, when the process Assign Average Practical Mark was created, it only
has the information of Module Performance and Module Selection entity occurrences.
The needed data set (Practical Marks) for the derivation function was not known
to the process and is only loosely connected to the targeting attribute. However,
given the necessary indices and specifications in the predicate, the system is able to
locate the missing information and generate the desirable value. It was based on the
observation that most of the referring entity attributes and the target entity attributes
share common characteristics, in this case the common ancestor entities. In the case
when common ancestors can not be identified, the specific indexing entity occurrences

are provided at run time.

This example demonstrated how a generic template is instantiated by a particu-
lar attribute rule, why the indexing and searching method are much needed and most
importantly how the grammar provides syntax for attribute rules which gives a frame-
work to instruct the gathering of dynamic information and producing of desirable result.
The next example illustrates the construction of a user-defined attribute rule using a

user-defined function.
(3) User-Defined Attribute Rule Using User-Defined Functions

Users can also define their own derivation functions using the above generic template

with only minor modification. For example, the user-defined function given below

81

(written in Prolog) uses again the example model of Figure 5.5. This rule states that
the final Module Mark (Res) of a module is taken 70% of the Ezamination Mark (Exam)
and 30% of the Average Practical Mark (AvePractical).

derive_module_mark(Exam, AvePractical, Res) :-

Res is (0.7 * Exam + 0.3 * AvePractical).

This user-defined derivation function can also be represented. The attribute rules
description used here is of Statement Type II. Several places are modified: (1) the
calculation function is specified to the full name of the Prolog rule, derive_module_mark,
to specify the particular function to use and the sentence is starting with the use
description to improve the readability of the sentence, (2) two VP_content constructs
are used, starting with key words, ‘find attribute’, which in themselves identify the
referring entity occurrences (with the key word ‘for entity’) and attributes, (3) at the
end of the rule description a call-statement is used instead of a closing-statement, which
indicates that a user-defined function is called. The corresponding predicate and rule

description is given below.

derive_att_rule("’Module Performance’", Ent_id,
[ParentOccl, ParentOcc2],
"’Module Mark’" , AttValue,
[ParentOccl, ParentOcc2],
["’Module Performance’", "’Average Practical Mark’",
">Exam Mark’"],

[derive_module_mark (AttValuel, AttValue2, AttValue)],

[use, the, derive_module_mark(Exam, AvePractical, AttValue),

for, calculation,

find, attribute, "’Exam Mark’", for, entity, "’Module Performance’",
with, condition,
entity-ancestor, ParentOccl,

and, with, condition,

82

entity-ancestor, ParentOcc2,

when, finished, save, the, result, in, Exam,

find, attribute, "’Average Practical Mark’",
for, entity, "’Module Performance’",
with, condition,
entity-ancestor, ParentOccl,
and, with, condition,
entity-ancestor, ParentOcc2,

when, finished, save, the, result, in, AvePractical,

call, derive_module_mark(Exam, AvePractical, AttValue)

]).

5.5 Representing Domain Knowledge

BSDM suggests standards of good practice. It also provides check lists of rules and
guidelines which are designed to help the modellers to review whether a developed model
is correct and appropriate. Similar to the advice given for entity models, the BSDM
advice on process models concerns three kinds of issues: general methodical issues,
application domain related methodical issues and pure application related issues. We
have captured the first two types of advice in our formal language. Since the third type
of advice is application domain dependent, there may not be a consensus regarding
which advice should be given, therefore we leave (most of) this issue to the modellers
(some of such advice is embedded in generalised sector-specific BSDM models and
therefore are provided by the Generic Model Adviser (GMA), a Case-Based Reasoning
component of KBST-BM, which will be described in detail in Chapter 7). We have
also added modelling guidelines which are not described in BSDM, but a derivation
from it, and thus also appropriate for guiding process modelling. They give rise to the

following four kinds of rules and guidelines.

1. Rules concerned with a single process and its entities: i.e. the checking of cor-

rectness and appropriateness within the process. This includes the checking of

83

the appropriateness of the naming style of a process, the provision of the required
trigger information for a process, and the appropriateness of the defined content
of a process scope and entity functions. For example, according to BSDM, each
process can only include one focal entity, i.e. there must be only one originate

focal entity or one change focal entity in any process.

. Rules concerned with several processes: i.e. to determine the appropriateness
of process scopes by observing the relations between processes. For example, by
comparing two process scopes, one can determine whether one process is sub-
sumed by another and therefore decide whether these two processes should be
merged. A further example is the detection of processes which may cause errors
in their execution, such as leading to a deadlock between two or more processes.
The latter example is given in BSDM but a derivation from BSDM and is illus-

trated as an example extended rule later in this section.

. Rules concerned with several processes and entities: i.e. to determine whether all
entities are being handled properly and consistently by all processes. For example,
according to BSDM, each entity must be covered by at least one process, and each

process must include at least one entity.

. Rules concerned with the definition of a process and the actual drawing of the
process model and the life cycle diagram: i.e. the consistency checking between
the process scopes (from KBST-BM definition form) and its graphical displays.
For example, for any entity whose start life status is created by a particular
process, this entity must be included in that process scope as either an originate

focal, originate normal or an originate in-flight entity (function).

Example Process Model Rule (Type 1)

BSDM states that each process can only include one focal entity in its scope, i.e.

there must only be one originate focal entity or only one change focal entity in any

process. The rule below formalises the fact that if there is an originate focal entity

in the process scope, then there should not be another originate focal or change focal

entity in the scope.

84

originate_focal_fun(Process_name, Entity_namel)

=
originate_focal_fun(Process_name, Entity_name2)A y
Entity_namel # Entity_name2
change_focal_fun(Process_name, Entity_name2)A\
Entity_namel # Entity_name2

Similarly, to formally represent the fact that if there is a change focal entity in the
process scope, then there should not be another originate focal or change focal entity

in the same process scope, one can write:

change_focal_fun(Process_name, Entity_namel)

=
originate_focal_fun(Process_name, Entity_name2)A y
Entity_namel # Entity_ name2
change_focal _fun(Process_name, Entity name2)A\
Entity_namel # Entity_ name2

Since this rule should be strictly followed, it is represented as a model rule which

uses the strong inference symbol, =, in our formal language.
Example Extended Process Model Guideline (Type 2)

Deadlock, in the context of process modelling, occurs when two or more processes
cannot be executed because the information which is needed to execute one process is
generated by the other process(es), however, the execution of these process(es) can only
take place after the initial process has already executed. Since these processes depend

on each other’s information for execution, no processes can be carried out.

In BSDM, originate in-flight entity occurrences in a process must be present or
created before the occurrence of the originate focal entity can be originated. However,
it is also possible that the demand for creation of the originate in-flight entity triggers
another process. A deadlock will happen if this newly triggered process requires the
presence (or creation) of the above mentioned originate focal entity occurrence; or it
will happen if it subsequently invokes other processes which require the presence (or

creation) of the above mentioned originate focal entity occurrence.

In general, a deadlock situation in BSDM may be found when a group of processes

are inter-dependent through triggering a chain of originate in-flight entity functions.

85

To specify the fact that the creation of an in-flight entity occurrence in a process
invokes another process, the predicate originate_if invoke is used. We can then present

the chain of inter-dependency between processes in below formal expressions.

originate_focal_fun(Process_name, X)A\
originate_if _fun(Process_name,Y)\ = inflight_chain(X,Y)
originate_if invoke(Process_name)

originate_focal_fun(Process_name, X)\
originate_if _fun(Process_name,Y)\
originate_i f invoke(Process_name)A
inflight_chain(Y, Z)

= inflight_chain(X, Z)

The first formula states that the creation of X is dependent on the creation of Y,
whereas the second formula indicates that the creation of X depends on the creation of
7, because the creation of X depends on Y, and the creation of Y depends on Z. This
chain of dependency is derivable from the definition of the originate in-flight entity
function.

Given the definition of the predicate inflight_chain, the guideline which detects the

possibility of deadlock between processes can be formally given as:

originate_focal_fun(Process_name, X)\
originate_if _fun(Process_name,Y)A > —(inflight_chain(X, X))
originate_i f invoke(Process_name)

This rule is not expressed in BSDM, but a logical deduction from it. It can also
be understood in business terms. The existence of deadlock among business processes
may very well indicate the contradictions existing in the policies for business opera-
tions. For instance, if a business always checks the credentials of a company before it
opens a customer account for it (that is having a process including ”customer order”
as the originate focal entity, and ”credential” as the originate in-flight entity) then
there should normally not be another process which requires the creation of a current
customer account in order to gain information as a basis for credential assessment.
However, since this testing only takes place at a very high level, i.e. only looking at
entities and their functions in a process, it does not take into account any of the details

within the business environment. It therefore merely forms a guideline.

86

Example Process Model Guidelines (Type 3)

As all entities included in an entity model are ”fundamental” and ”important” to
a business?, it is reasonable to assume that the creation methods of all entities should

be documented and included in processes. Therefore, BSDM has the check below:

” Are all entities originated (created) by at least one process?”

However, since the modeller may decide that the creation of a particular entity lies
outwith the scope of his/her model, this question forms a guideline, rather than a strict
rule in our formal language. Since an entity can be created in either of the three entity
functions, originate focal, originate mormal or originate in-flight entity-function, this
guideline states that each entity should play the role of either originate focal, originate

normal or originate in-flight entity-function in at least one process:

class(entity, Entity_name)

>
originate_focal_fun(Process_name, Entity name)V

AProcess_name. | originate_normal_fun(Process_name, Entity_name)V
originate_i f _fun(Process_name, Entity_name).

Given the above guideline, we infer a less restrictive rule with a stronger recom-
mendation which states that all entities in the model must be included in at least one

process for some roles. For this, we use the following rule:

class(entity, Entity_name)

originate_focal_fun(Process_name, Entity_name)V
originate_normal_fun(Process_name, Entity_name)V
originate_i f _fun(Process_name, Entity_name)V
AProcess_name. | change_focal_fun(Process_name, Entity_name)V 1]
change_normal_fun(Process_name, Entity_name)V
refer_normal_fun(Process_name, Entity_name)V
refer_master_fun(Process_name, Entity_ name).

Both of the rule and guideline above are example critiques regarding the appropriate
inclusion of (or relationship between) entities in processes. Therefore they belong to

the third kind of advice.

2 The definition of a BSDM entity model.

87

More process model rules and guidelines are given in detail in Appendix H. They

all follow the same basic notation as the examples given above.

5.6 Inference

The process model analysis detects errors which violate any of the four types of process-
related model rules and guidelines (within a process, among processes, in the inter-
relationships between entities and processes, and the usages of entities across the model)
and provides advice on how to correct such errors.

Similar to the verification facilities for the entity model, processes rules and guide-
lines are grouped into sets for error detection and advice display. The process model
rules and guidelines are also implemented modularly and operate independently. There-
fore, they enjoy the same benefits that entity model verification facilities offer.

There are in total 19 sets of process model rules and 13 sets of process model
guidelines. Inferencing techniques similar to the ones used for the entity model in

Chapter 4 are also applied here. Several types of critiques are offered:

e (Correctness critiques cover structural, syntactical and semantical errors in a pro-

cess,

o (Completeness critiques alert the user to missing information in a process and

potentially missing links between processes and entities,

e (onsistency critiques highlight contradictions in process properties and entity-

process relationships,

o Appropriateness critiques point out differences between the user model and stan-

dard practices,

e Presentation critiques identify discrepancies existing in process properties and

drawings which has been defined in different places of the model,

e Alternative critiques find subsumed and over-specialised processes and suggest
alternative processes (in contrast to entity models, this is not done by GMA?3,

but using guidelines).
3 Generic Model Advisor is a subsystem in KBST-BM which is described in Chapter 7.

88

Inference using the process model follows the same approach as described for the
entity model. Model primitives and their properties are each represented formally by
logical expressions. Rules and guidelines are negated and translated into CLIPS rules
which make use of the given class hierarchy and the formalisation of the primitives
and the derived information. Once a CLIPS goal has been proven to be true (detect-
ing a violation), an explanation of the modelling problem and possible solutions are

suggested.

Process Model Consultation Example

ElERE EI=l E

Mark Fractical

Review Practical

PEFSON

et

Cancel Fractical

Madule

Practical
Assign To
Madule

Module
Selection

Fractical
Turn In By
Person

Module
Ferfarmance

Figure 5.6: A BSDM Process Model (2)

An example process model consultation window is given in Figure 5.7* which is
based on the process model given in Figure 5.6, extending the process model given in
Figure 5.1 with three change processes. BSDM has deployed graphical symbols such

as ‘¥’ ‘0’ ‘>’ '+, ’x’, -’ and '=" to denote the different entity functions. We have

* Due to the limited space available for the advice window, part of the advice is not shown in Figure
5.7. In practice, the user can scroll down the window bar to see the rest of the advice. The part
of the advice which is not shown in Figure 5.6 states: “Since entity 'Practical’ is the parent entity,
it may store needed information for these process’ operations. In this context, we consider Focal,
Normal and In-Flight entity functions to be important.”

89

Figure 5.7: A Process Model Consultation Window

used them to label the commonly shared change focal, change normal and refer normal
entities for these processes with '+’, 'x’ and ‘-’ symbols, accordingly. The process model
now includes two parts (each is shown in a window in KBST-BM): one part is shown in

Figure 5.1 and the other in Figure 5.6. The verification takes both parts into account.’

Figure 5.7 shows that the process model rule, set (3), has been applied. One vio-
lated model rule was found “Process Rule Violation Type (3)”% which was given as an
example in the previous section. The layout and the usage of the consultation window
follows the same structure as the one used for entity models. In this verification session,
one error has been found: entity Practical was found not to be included in any process
and has been reported to the user. It was also suggested that it may be included in the

processes of Mark Practical, Review Practical and Cancel Practical. This advice was

5 During the consultation, every part in the business model is taken into account.
6 Each rule set may has its own numbering system.

90

based on the fact that Practical is a parent entity of Practical Assign To Module. Since
Practical Assign To Module somehow plays an important role to all of these processes,
entity Practical as a parent entity of this entity may carry information needed for the
execution of these processes. In this context, we consider the following entity functions
to be important: originate focal, originate normal, originate in-flight, change normal

and change master entity functions.

5.7 Conclusion

The second activity in BSDM’s business modelling is to build process models. All of
the information specified during the building of process models is expanded upon the
information given during the entity model building activities. This includes adding
process information to life cycle diagrams and entity models. In this chapter, the
formal representation of a process model, including process information recorded in
the life cycle diagram and user-defined attribute rules, has been described. In addition,
modelling advice given by BSDM for process models has been formalised into modelling
rules and guidelines which use the above formal representation as a basis for detecting
possible errors and generate advice to assist the user in aligning their model to standard

practice.

BSDM'’s model building process is incremental and iterative. Our formal framework
fully supports this principle. Based on the Inheritance Class Hierarchy described in
Chapter 4, the formal language DefBM extends this with process information, stat-
ing with diagrammatic annotations and adding process rules, therefore allowing the
knowledge base to be enlarged incrementally. The added process knowledge can also
be automatically verified, even when only partial information is available. This facility
assists the user in going through the iterative plan-build-test-refine cycle which is a

common way to build models.

The formal representation of processes also provides a basic foundation for model

simulation which is described in detail in the next Chapter, Chapter 6.

91

92

Chapter 6

Support for Procedural
Modelling

Conventional BSDM business models describe semi-formally what processes are, what
they consist of and what can be done by them. The BSDM method, however, is not
specific about how a process may be executed. In order to allow the execution of BSDM
business processes, we introduced an additional modelling facility: the procedural model,
which specifies the logical sequence and components of a process’ execution. This is
not the only possible form of execution consistent with the earlier stages of BSDM, but
is characteristic of the sort of execution which fits well with the style of modelling. The
notation used to describe this stage of modelling is not present in conventional BSDM

manuals, so practitioners require training to use it.

6.1 Procedural Model

The procedural model was inspired by modelling methods such as the organisational
process modelling methods [57], process modelling methods IDEF3 [59], PIF [51], PSL
[82], workflow modelling method [33] and planning theories [1]. These methods concen-
trate on specifying and managing tasks which are operational and have a close (if not
direct) mapping to the actual practices in an organisation, e.g. the process of design-
ing, building, testing and manufacturing a new product, or the procedure of a billing
system.

The procedural model, on the other hand, has been designed to specify the logical

and internal execution sequence of a business process which enables a conventional

93

BSDM processes to be executable. The specified

organisation’s current working practice and therefore can be implemented in several
different ways depending on the organisation’s goal and requirements. In other words,

it specifies the data to be manipulated and conditions to be considered, but not how to

do them in the real world. This is consistent with

BSDM which concerns itself with things which should be done, and does not give

a deterministic order of execution or specify the

However, some commitments to the order of execution are required at this stage of

procedure is still independent of an

the declarative style of conventional

implementation details in practice.

design and these are reflected in the successive layers of Figure 6.1.

|Process Type: Originate Focall

exizt=,

notexists
criginate
focal e‘nt.‘l. tw

avents_of
originate
focal ent,:l. =g

exists
refer
normal

entity ()

create

originate
focal

entity ()

add_att
originate
focal entity
W]

ref_att
originate focal
entity ()

derive att
originate focal
entity [}

a==ociate
oeriginate
focal

refer
noxmal

entit

]

associate

entity ()

exizts
originate

fosal
entity [)

exizts
criginate
focal entity
[

Figure 6.1: An Example Procedural Model

The figure shows an “uninstantiated” generic procedural model for originate focal

processes. It specifies the structures and components of an originate focal procedural

94

Exists refe:

normal

entity ()

for Originate Focal Processes

model but leaves their parameters uninstantiated. The structure of the successive
layers of tasks can be used as a template to derive most originate focal processes. An
originate focal is the most basic kind of originate process in our process classification
which is shown in the inheritance hierarchy in Figure 4.1.1 An originate focal process
includes only one originate type of entity function in its scope, i.e. an originate focal
entity function. A combinational addition of originate normal and/or originate-in-flight
entity functions makes it a more specialised process, such as an originate normal or
originate normal if process which are shown as sub-classes of originate focal process in

the inheritance hierarchy in Figure 4.1.

Process execution follows the arrows in the diagram. It always begins with a ‘start’
node after which comes a ‘trigger’ node which is followed by preconditions and an ‘and’
node which leads to two layers of actions connected by an ’and’ node. After the actions
come the postconditions and finally the ‘end’ node. In this generic procedural sequence,
there is an empty bracket “()” in each precondition, action and postcondition node. The
empty bracket will be filled with the corresponding entity name when this procedural
sequence is instantiated by a particular process. The instantiated procedural model
defines the dynamic behaviour for that process, i.e. requirements to be fulfilled and
activities to be carried out. This information provides a framework for the user to fill

in the detailed occurrence information for entities and processes at execution time.

BSDM specifies trigger and entity functions in a process. A trigger represents a
request to invoke a particular process. It can be caused externally (by the user) or
internally (by another process). If a trigger is present, all preconditions specified in the
procedure must be satisfied before any actions can be carried out. All postconditions

will be confirmed after all actions are finished.

Each BSDM entity function designates particular actions for a process to be car-
ried out on the corresponding entity. These actions are represented as actions in the
procedural model and are specified in two layers: in the first layer are those actions
which represent the main purpose of the corresponding process (e.g. the creation of

entity occurrences, the changing of entity attributes); actions in the second layer cover

! BSDM only distinguishes between originate and change processes. We classify them further, because
it is clearer and easier for us to distinguish between different types of processes and inherit functions
from them.

95

the inclusions of the newly created or manipulated entity occurrences in the newly
created (executed) process occurrence: in this case is to include the originate focal
and refer normal entity occurrences to the process occurrence. Although precondition
and postcondition statements are not explicitly specified in BSDM, they are derivable
from entity functions, as shown in the Figure. The user can also specify their own

preconditions and postconditions.

All of the model primitives in the procedural model, i.e. trigger, preconditions,
actions and postconditions of a process, are specified statically by the user. At execu-
tion time, the entity occurrence information for all preconditions, postconditions and
actions are specified interactively by the user and automatically instantiated. If all pre-
conditions of a process have been satisfied, this process can be executed: a new process
occurrence will be created which may create new entity occurrences, and/or modify
existing (entity occurrence) attributes, those entities which have been manipulated are
included in the scope of the newly created process occurrence. This form of interactive
process execution illustrates the corresponding possible dynamic states of a business
model. Before the formal description of a procedural model and its instantiation are
described, the next section illustrates the formal representation of a dynamic business

model.

6.2 Representing Dynamic Business Models

EERE Eail NS

John Eg Pl ez
(Practical (Fractical)

—

Module

Zelection Practical

Aesign Te
Module

Module

[— Fractical

Twn In By
Ferson

Figure 6.2: An Example Instantiation of Business Model

96

The previous two chapters (Chapters 4 and 5) have described the static structure
of a business model described in BSDM and our corresponding formal representation
for them. We have also demonstrated how this formal representation can be used as
a basis to represent the extracted “strongly recommended” model rules and “generally
recommended” guidelines from the method, which gives KBST-BM the needed knowl-
edge to provide a systematic and automatic help for model verification. However, to
demonstrate and thus evaluate the dynamic behaviour of a business model, one must
be able to display and capture the dynamic state changes of a business model. In our
work, a graphical notation has been used to capture and display the dynamic aspects
of a business model in a Dynamic Business Model. Formal representations have been
devised to capture the dynamic details which form the basis for the necessary reasoning

for its behaviour.

Figure 6.2 shows a Dynamic Business Model which is automatically generated by
KBST-BM from the static business model given in Figure 5.1. In addition to the
information initially displayed in Figure 5.1, the instantiation of entities (i.e. entity
occurrences) can be generated by the user, having automatically filled in the appro-
priate information, e.g. the corresponding attributes for each entity occurrence which
was identified as a part of the entity model. Each entity occurrence is linked via the

corresponding dependency (occurrences) to other relevant entity occurrences.

In this figure, six entity occurrences are specified: one person (John), one module
(ES), two practicals (pl and p2), and two practical assignments (‘ES-pl’, ‘ES-p2’).
These entity occurrences represent a snapshot at some point of time that this business
model may describe. Our first aim is to represent these occurrences and any corre-
sponding attributes using the formal language DefBM in a way which is consistent
with what has been used for entity and process models. Based on those formal descrip-
tions, inference methods can then be devised and dynamic behaviours of a business

model can be derived.

Two predicates have been used to capture entity occurrences and their attributes:

dyn(ent_occ(Ent_name, Ent_ID, Parents)
dyn(ent_occ_att(Ent_name, Ent_ID, Att_name, Att_value)

97

Following the convention used in BSDM that “entity name” and “entity ID” to-
gether identify a unique entity occurrence, the same principle is also applied in our
formal language. In both predicates, Ent_name stores the name of the entity (e.g.
Person), whereas Ent_ID stores the name of the entity ID (e.g. John). The argument
Parents stores the corresponding parent entity occurrences of this entity occurrence.
Att_name and Att_value store the name of the attribute and the value of the attribute.

For instance, the representation of a person 'John’ and the fact that he is male is:

dyn(ent_occ(’Person’, ’John’, [])

dyn(ent_occ_att(’Person’, *John’, ’gender’, 'male’).

Since the entity “Person” is at the top level of this business model, none of the
occurrences of entity “Person” will have a parent entity. This is represented as an
empty list ’[]’ in the Parent argument. The entity occurrence attributes have been
identified by the modeller during the entity modelling exercise, and have been formally

represented in the attribute predicates as previously described in Section 4.3.

A similar approach has been adapted for representing business processes. The

representation of a process occurrence is given below.

dyn(pro_occ(Process_-name, Process_ID))

dyn(pro_occ_att(Process_name, Process_ID, Att_name, Att_value))

The interpretation of these predicates is the same as those used for entity occur-
rences, only that they are applicable to processes in this case. Building on top of
the representation of the dynamic aspects discussed in this section, the next section

introduces the representation of procedural models.

6.3 Representing Procedural Models

Several important components have to be specified and instantiated before a process
can be executed: the trigger, preconditions, postconditions and actions of a process.
These components deal with the state changes of a model and must therefore in their
formal description include the kind of dynamic information which will be referred to

and used when generating new data.

98

A trigger needs to specify which (type of) process it invokes and when a process
should start to act. Each process occurrence (instance) is unique and is invoked by a
unique trigger occurrence which can be dynamically generated. A trigger occurrence
must, therefore, also be able to distinguish itself from other trigger occurrences. This
information together with the actions which are to be carried out by the process is

represented in a trigger_information predicate, as shown below, for conciseness.

trigger_information(Begin_time, Process_name, Trigger_ID, Action_list)

More details about this predicate are given in a later paragraph when describing

process actions. An example instance of this predicate is also given later in this section.

Preconditions for a process are requirements which make sure that process actions
can be carried out successfully. Their existence is often linked to the actions to be
carried out by a process. For instance, in Figure 6.1 the first precondition used is
‘notexists originate focal entity’, i.e. if a process is to generate its originate focal
entity (occurrence), then this entity (occurrence) must not already exist. The generic

precondition expression and this particular precondition are described formally below.

precondition(Process_name,
Entity_function_name,

Precondition_statement)

precondition(‘MODULE PERFORMANCE Assessment’,
originate_focal_entity,

[notexists,originate_focal_entity(Ent, EntID)]).

This predicate specifically instructs the checking of the 'non existence’ for the orig-
inate focal entity occurrence with entity name Ent and entity ID EntID in the process
MODULE PERFORMANCE Assessment. The users can also define their own pre-
condition statements using the same form, where the argument Entity_function_name
is still used to indicate which entity (function) it is referring to. Also, the Precondi-

tion_statement starts with the keyword exists or notezists followed by a normal dynamic

99

predicate. This format provides some flexibility for the modeller to specify simple busi-
ness and attributes preconditions for any properties of an entity. The representation of
a postcondition is similar to that of a precondition; the predicate name is replaced
with ‘postcondition’.

Actions that a process carries out are of two types: actions which realise the
purposes of a process, and actions which link the relevant entity occurrences with the
newly generated process occurrences. These actions are displayed in two consecutive

layers in the procedural model.

Process actions that are described in the Action_list of the trigger_information pred-
icate are the main actions and are described in the first layer. Each action node as
shown in Figure 6.1 is represented as one single predicate in the Action_list. Example
actions are the creation of the originate focal or the originate normal entities, the gener-
ation, modification and derivation of entity occurrence attributes, and the reference of
entity occurrences and its attributes. An example of how these actions are represented

in the Action_list is given at the end of this subsection.

Actions of the second type are also part of a process, because they link entity
occurrences to the corresponding process occurrence. They are the “standard” actions
of a process, therefore they are not specified in the trigger predicate. Standard action
types which are currently handled by KBST-BM include all of the entity functions that
are described in BSDM. Extensions of these actions can be easily made based on the

existing formal structure, if desired.
Example Procedural Model and Representation

Figure 6.3 shows an example procedural model for the process Module Performance
Assessment in Figure 5.1. Each node in the procedural model is labelled with the
corresponding entity name. Since there are five action nodes specified in the model,
there will be five corresponding actions specified in the Action_list of the corresponding
trigger_information predicate: these actions are ’create originate focal entity’, ’create

originate in-flight entity’, and three 'derive attribute’ nodes.

This procedural model is an extension of the one described in Figure 6.1 which is a
generic model for any originate focal process. Since this process also includes originate

in-flight entities, it must fulfill requirements for this entity function, which are shown in

100

all of the additional originate in-flight related precondition, action and postcondition
nodes. A trigger_information predicate which invokes the process Module Performance

Assessment can be described formally below.

trigger_information(Begin_time, ‘MODULE PERFORMANCE Assessment’, Trigger_ID,
[originate_focal_entity(’Module Performance’, EntID),
originate_if_entity(’Practical Turn In By Person’, EntID2),
derive_att(’Module Performance’, EntID, ’Average Practical Mark’),
derive_att (’Module Performance’, EntID, ’Exam Mark’),

derive_att (’Module Performance’, EntID, ’Module Mark’) 1)

It should be apparent that the particular Begin_time, Trigger_ID and the particular
entity occurrence of the originate focal entity (EntID), and that of the originate in-
flight entity (EntID2) (i.e. the entity occurrences of Module Performance and Practical
Turn In By Person) can only be decided when a particular process is to be invoked
and the process occurrence to be created. Therefore, the values of these arguments are
not instantiated here, but will be specified when a particular process instance is to be

created.

There are five process actions described in the Action_list argument. Since the
process Module Performance Assessment includes one originate focal and one origi-
nate in-flight entity, the main process actions are to carry out actions specified by
these entity functions. The process must firstly refer to the (dynamically designated)
occurrence of the originate in-flight entity (which needs to be created if it does not
already exist): this action is denoted by the predicate originate_if_entity in the Ac-
tion_list in the trigger_information predicate. Secondly, the process needs to create an
occurrence of the originate focal entity of the process. This is denoted in the predicate

originate_focal_entity, also in the Action_list in the trigger_information predicate.

The originate focal entity of the process, Module Performance, includes three deriv-
able attributes: Awerage Practical Mark, Ezam Mark and Module Mark (as illustrated
in Figure 5.5). Since these attributes are considered to be a part of the process, the

values of these attributes are also calculated and generated when the entity occurrence

101

is created.? The derivation of these attributes is specified in the three derive_att pred-
icates which indicate the entity occurrence involved and the derivable attributes. The
actual derivation method is defined in the derive_att_rule predicate which was described

in Section 5.4.

Given an ’instantiated’ dynamic business model and procedural model for the pro-
cesses with corresponding time references, the business model may now be simulated,
given the appropriate simulation procedure. A simulation algorithm is described in
Subsection 6.4.3. Before the simulation algorithm is introduced, we provide a way to

predict the dynamic behaviours without any simulation.

6.4 Representing Domain Knowledge

6.4.1 Actions, Effects and Temporal Relations

As mentioned in Section 6.1, BSDM specifies trigger and entity functions in a process.
Since the trigger and each of the entity function has a special meaning in BSDM, we
are able to derive the corresponding preconditions, actions and postconditions for a

process, and describe them in the procedural model.

BSDM also allows complex conditions to be specified within a trigger. These con-
ditions can be described in complex decision trees and involve internal and/or external
factors: internal factors are information that is derivable from the model, whereas ex-
ternal ones cover information which is not captured in the model. We simplify the
meaning of a trigger as the pre-requisite of its presence before a process execution in
our system, and allow internal conditions to be specified as “preconditions” in our for-
mal notation. The satisfaction of external conditions are assumed in our system when

the trigger is present.

Although BSDM describes the sketch of a process without specifying any execution
mechanism, the dynamic behaviours of its processes exhibit some similar characteristics
compared with the actions or events described in a planning system. Therefore, issues
which concern a planning system are also of interest to a BSDM process. Some key

characteristics of BSDM processes are given below.

2 The decision whether these derivable attributes or any attributes are to be generated by one process
or another relies entirely on the modeller’s judgement.

102

e Business processes take time. A business process is normally not instantaneous
and must take a period of time to accomplish. Furthermore, the effect of a busi-
ness process is normally not realised until the process is completed. This is due
to the authority and/or commitment that bonds a business and all participants
which is given only on completion of a process. This authority also allows the

business to take further actions and execute other processes.

For instance, a business will not fulfil a contract unless it is signed by all parties.
This is because the contract is not legally binding unless the negotiation of draw-
ing the contract is finished and it is signed by all parties involved — which is the
completion state of a contract drawing process. If it is necessary to indicate the
intermediate state of the business during process execution, it is perhaps more
appropriate to represent it in more than one processes to reflect these intermedi-
ate states. For example, the above contract drawing process can be modelled in
two separate processes: ”draft contract” and ”sign contract” to reflect the two
different states in the contract drawing process. In fact, it is also important to
indicate whether a contract is closed or cancelled which may be represented in

another two separate processes: ”close contract” and ”cancel contract”;

¢ Business processes may be carried out concurrently. As a result, these processes
may contradict each other or change effects of the other process while it has been
executed. Interferences normally happen when more than one process tries to
create or modify the same data item, or when one tries to create it while the
other one tries to modify it. The error when one process tries to refer to a data

item while others try to create it is prevented by the checking of preconditions.

e Business processes may or may not constrain each other: a business process
sometimes can only be executed after a certain process has been executed, this
constraint is imposed by the fact that for its execution a process may need infor-
mation which is provided by another process. For instance, an entity occurrence
cannot be modified unless it has already been created. Therefore, the process
which modifies this entity can only be executed after the other process which

creates this entity has been executed.

103

On the other hand, some processes may be prohibited from execution, if certain
other processes have been executed. For instance, the entity occurrence ”con-
tract” can not be signed and claimed to be valid by any process after it has
been cancelled. This constrain is particularly captured in the Life Cycle Diagram
(Figure 5.3). All of these constraints impose partial execution orders between

processes and is explained in further details in Section 6.4.2.

o Business processes may be influenced by external events. In BSDM external
events are shown as presence of triggers. The presence of these newly created
triggers will incur the execution of new processes. As a consequence, new pro-
cesses are created which may create contradictions with the existing processes,

thus changing the behaviour of the system.

Given these characteristics it is obvious that the notion of time must be represented
in our formal language to indicate the duration that a process takes and also to recog-
nise and handle any conflicts that may be incurred by processes that are carried out at
the same time. Co-operation and communication between BSDM processes is done by
passing information through entity occurrences which is only possible when a process
has been committed (i.e. successfully executed). This suggests that a system which
simulates processes concurrently and independently through time and which produces
an aggregate effect for all of the processes while resolving the conflicts and constraints
between processes will be suitable for our purpose. The system also needs to be in-
teractive to accept any new arriving events which can be integrated into a commonly

shared knowledge base which is referred to and updated by all processes.

The dynamic world of a BSDM business model has been represented in a state-
based system where each state is a snapshot of the status of the dynamic world at a
particular time. Processes are represented as functions which propagate between these
states. Within each state a set of fluents are used to describe the property of the state.
These fluents are without individual time stamps. The absence of a particular fluent

indicates, by default, the negation of its property.

Time reference points have been used to indicate time points of the model. A

period of time is marked by a begin and an end time stamp. The life span of any

104

process or entity occurrence therefore is indicated by two time points, i.e. the creation
and terminating time of the occurrence. Since at any point of time there is only one set
of fluents available in the system, the changes of fluents between states are recorded.
These recorded changes allow the system to restore any previous state of the world and,

hence, allow the system to exploit a different route of expedition from the previous state.

Because the system is interactively accepting new events from users, these new
external events are supplied to the system and subsequently change the course of action

of the system.

6.4.2 Process Dependencies and Partial Execution Order

Although an automatic simulator can predict the future by running through several
hypothetical business scenarios, often there are potentially an infinite number of com-
binations for process execution sequences which can be tested. It therefore would be
useful if the system could suggest possible sequences for process execution based on the
static description given in the entity and process models thus decreasing the testing

space.

During close examination of the process model, we discovered ways to determine
process relationships which can be automatically inferred from a process model. These
relationships can be used to outline an overview of process relationships and operations
and are helpful to get an insight into process executions without any actual simula-
tions. These relationships are process dependencies, because they are one-directional

and impose constraints on the execution of other corresponding processes.

Four types of process dependencies were found. The first two types of dependen-
cies are drawn from information which describes the operations within a process and
between processes. This information provides clues about (partial) process execution
order. The latter two types of dependencies have been derived from the requirement
for gaining information, which also places limitations on process executions. These de-
pendencies are described below (in descending order of strength that each dependency

imposes on process execution ordering).

105

Dependency Type I: Process execution order-1

This dependency is derived from the extended life cycle diagrams for entities: one
example is shown in Figure 5.3. In the extended life cycle diagram, processes which can
be used to create and transfer an entity’s life status are described as directional arrows
between the corresponding two transitional life statuses. This information also indicates
the possible execution orders between the two specified processes. Two rules have been

derived from life cycle diagrams and represented in the following two formulae.

orgprocess(Processl, Entity, Lifel) A
chgprocess(Process2, Entity, Lifel, Life2)
=

followed_by(Processl, Process2)

chgprocess(Processl, Entity, Life0, Lifel) A
chgprocess(Process2, Entity, Lifel, Life2)
=

followed_by(Processl, Process2)

As previously described in Section 5.3, the predicate orgprocess indicates an origi-
nate process, and chgprocess indicates a change process. Both of these two rules state
that if it is specified by the user that Process2 can transfer a life status Lifel of the
entity Entity to another life status Life2, and that Lifel was created by Process1, then
we can conclude that Process2 may be the next process candidate to be executed after
Process1 has worked on this entity. This dependency has been denoted by the predicate

followed_by and is shown in blue colour in our system.?

This dependency places the strongest constraint and indicates the closest relation-
ships between two processes. It states a rather close execution sequence between two
processes, i.e. one process can normally be executed after the completion of the previous

process without any additional processes being required to be executed.

3 In fact, all dependencies are in this colour scheme.

106

Dependency Type II: Process execution order-2

This dependency was derived from the definitions of process scope. Looking from
the view of manipulating one single entity, an entity cannot be modified unless it has
already been created. Therefore, it is derivable that the process which modifies it can
not be executed unless the process which creates it has already been carried out. This

rule can be described formally below.

originate_focal_fun(Processl, Entity)V
originate_normal_fun(Processl, Entity)

change_focal_fun(Process2, Entity)V
change_normal_fun(Process2, Entity)

=

maybe_followed_by(Processl, Process2)

The predicates originate_focal_fun and originate_normal_fun indicate that Processl
creates the entity Entity as part of its process operations; whereas change_focal fun and
change normal _fun indicate that Process2 modifies entity Entity as part of its process
operations — these predicates have been described in detail in Chapter 5. The rule
above states that if there exists a process Process] which includes an entity Entity as an
originate focal or originate normal entity (function) and there exists another process
Process2 which includes the same entity as a change focal or change normal entity
(function) then Process2 may only be executed after Processl has been executed.

This dependency constitutes the second strongest partial process execution order-
ing, because it is based on a broader relationship between processes: there could be
many change processes which modify the same entity, but not all of them can be exe-
cuted directly after the execution of the corresponding originate process — some other
processes may also need to be executed. These missing processes are often described in
the life cycle diagrams. In reality due to the limited scope of a project, often not all life
cycle diagrams are captured in a business model. The above rule establishes additional
vital relationships between processes in the situation when incomplete information has
been supplied.

Dependency Type III: Pre-requisite of information-1

Pre-requisite of information (type 1): this dependency is derived from the pre-

requisites for process execution which requires the provision of certain information

107

before a process can be executed. The process of concern includes at least one refer
normal entity function, therefore by definition it needs to refer to the specific entity
(occurrence), before it can be executed. If the required information is produced by
another process, then this other process must have been executed and provided the

needed information prior to its execution.

The rule below formally describes it:

refer_normal_fun(Process2, Entity) A
originate_focal_fun(Processl, Entity)V
originate_normal_fun(Processl, Entity)

=

pre_requisited(Processl, Process2)

This rule states that if there exists a process Process2 which includes a refer normal
entity Entity and there exists another process Processl which originates this entity, then

the execution of process Processl is a prerequisite for the execution of process Process2.

This type of dependency imposes an even weaker dependency constraint compared
with the previous two types of dependencies, because it only requires the existence of
some information before process execution. It does not indicate the natural flow of
process execution. In fact, it states a minimum prerequisite for a process execution
— that it cannot be executed unless the other processes have already been executed
earlier. In practice, more processes may need to be carried out before this process
can be executed. This dependency relationship can point out relationships between
processes which are not captured in all of the previous rules and therefore helps to

provide a more complete picture for process inter-relations.
Dependency Type IV: Pre-requisite of information-2

This type of dependency is also derived from the pre-requisite for a process exe-
cution. In this case, the entity function involved originate in-flight entity (function).
Originate in-flight entity function works, by definition, as a combination of refer nor-
mal and originate function: when used it imposes a prerequisite for the process to refer
to the designated originate in-flight entity (occurrence) before its execution. However,
it can also create this entity (occurrence) as a part of its process if it is not already

created. This dependency is described formally below.

108

originate_if _fun(Process2, Entity) A
originate_focal_fun(Processl, Entity)V
originate_normal_fun(Processl, Entity)

=

maybe_pre_requisited(Processl, Process2)

This rule above states that if there exists a process Process2 which includes an
originate in-flight entity Entity and there exists another process Process1 which includes
this entity as an originate focal entity (function), then the prior execution of process

Processl may be a prerequisite for the execution of process Process2.

Because of the definition of the originate in-flight entity, a process can create this
entity when it is absent, this implies the weakest constraint compared with all of the
previous dependencies. This type of dependency signifies that a process (Process2) can
be executed when the other process (Processl) has been carried out at a previous time;
however, the process (Process2) may also be carried out without this restriction. This
dependency further points out additional process relationships that have previously not

been captured.

Subsection 6.5.1 describes the use of the described dependencies.

6.4.3 Simulation Algorithm

Model rules derived from the procedural model are primarily concerned with the oper-
ational aspect of process execution. A process is normally carried out when its trigger
is present and all of the precondition statements are satisfied. A process may not be
applied if the user has chosen to explore a different route. The operation of the business

model simulator can be described in the algorithm below.

1. If the required simulation time span is finished then stop the simulator and report

the result of the simulation to the user; otherwise, go to 2.

2. Search for all of the triggers in the system. If all of the preconditions for any of
the processes are satisfied and the designated starting time (for execution) for
that process is due or has passed due time, then put them in the Process Agenda.

Go to 3.

109

3. Check for all of the processes in the Process Agenda and collect into a set those
processes with an ending time which is due or past due time. Perform a process
conflict check on all of the processes in the set; if any contradictions are found

between those processes, then go to 4, otherwise go to 5.

4. Report any contradictions found between processes, the detailed information
which has caused this problem, and a brief suggestion for conflict resolution to
the user. The user can decide if any of the processes should be removed from the
Process Agenda, thus from the system. After communicating with the user and

performing the operations required by the user, go to 3.

5. The user can now select eligible processes to be executed. Each selected process is
checked again to make sure that all of the process preconditions are still satisfied,
and that the actions within each process are syntactically correct and the de-
tailed requirements for executing each action are satisfied. The requirements for
executing an action are different from a process precondition, because it concerns
the details of the actual execution mechanism, e.g. the attribute of an entity
occurrence must not be changed unless there is already an old attribute value

present.

These eligible processes are selected (by the user) and carried out (by the system)
one by one. The user may also choose to ignore some (or indeed all of the)
processes for execution in order to explore a specific execution route. When this
happens, the ignored processes are left untouched in the Process Agenda. After
each process execution, the postconditions are checked. Report to the user, if any

irregularities have been found. Go to 6.

6. Advance the system to a new time. Advance the system to a new state if any
changes have been made to the current state. Enquire the user whether he/she
wishes to “rollback” the system and specifically which state he/she wishes to

restore. If the answer is yes, restore the system to the specified state. Go to 1.

As a result of a process execution, an occurrence of a process is created, its begin
and end time are also specified as part of these actions. The begin and end time of a

process are denoted by the occ_begin_time and occ_end_time predicates, as shown below.

110

occ_begin_time(Process_name, Process_Id, Begin_time)

occ_end_time(Process_name, Process_Id, End_time)

The same predicates are also used to denote the lifespan of entity occurrences, but
the attributes Process_name and Process_ID with Entity_name and Entity_ID are also
instantiated. The predicates which identify entity and process occurrences and those
which describe the attributes of them, together with other system predicates which
indicate the time and the state of the system, constitute a set of fluents which describe

the state of the system.

The properties of a state of the system are recorded as a set of fluents, the changes
made by processes to these fluents between states are recorded in a special change
predicate. As described earlier, these recorded changes allow the system to rollback
and restore any previous state of the world and allow the user to exploit a different

route of expedition from the previous path.

Details about what kinds of conflicts can be detected during process execution and
the use of the simulator are given in the following chapter. In this chapter, the use of

process dependencies is demonstrated next.

6.5 Inference

6.5.1 Process Execution Sequence Constructor

Based on the inferencing rules for process dependencies given in Subsection 6.4.2, the
Process Execution Sequence Constructor automatically generates Process Dependency
and Partial Ezecution Order Diagrams. Figure 6.4 shows one such diagram which
was automatically generated by KBST-BM (This is automatically generated from the
process model developed for the University (course) management domain which consists

of 44 processes in more than 30 diagrams. Some of them are given in Appendix E.)

Three types of process dependencies have been captured in this diagram. They are
dependency type I, IIT and IV. A solid blue arrow indicates a dependency type I from a
starting process node to the depending process node. A black dashed arrow indicates a
dependency type III, also from a starting process node to the depending process node. A

red dashed arrow indicates the dependency type IV. This diagram shows an overview

111

of relationships between processes and at the same time the dependencies between
them. For instance, a blue solid arrow leaving from ” Acknowledge Person” to ” Archive
Person” states that (the information of) a person cannot be archived unless he/she has
been acknowledged (i.e. known to the organisation) before. Because this dependency
type was derived from a life cycle diagram which describes the logical sequence of
processes, it indicates a strong relationship between the two processes. It also means
that it is possible to archive a person right after he/she has been acknowledged (despite
the fact that it may not be useful to do that right away).

The dashed red arrows are derivable from originate in-flight entity functions. The
one shown in the diagram connects ” Acknowledge Person” to ” Accept Employment
Contract”. This dependency type is relatively weaker compared with dependency type
I, because it only imposes a “may be” constraint. According to this particular depen-
dency, a person can draw an employment contract with the organisation (in this case
the University) if he/she is already known to the University; otherwise, the University
first needs to acknowledge this person before signing a contract with him/her. In other
words, the process “Acknowledge Person” does not necessarily need to be carried out

before the process “Accept Employment Contract” is executed.

Indication of this dependency type (IV) is particularly useful for detection of any
misuse of originate in-flight entities; for instance, the starting process may depend on
other processes, which means that some other processes need to be executed before
the designated entity can be originated (created). Consequently, the assignment of an
originate in-flight entity may be too weak — if this is the case, the assignment of a refer

normal entity may be an alternative choice.*

The most used arrows in this diagram are the black dashed ones, i.e. dependency
type III. The central node which leads to many other processes is ” Acknowledge Per-
son” which means that this process has the most freedom and least restriction to be
carried out and it provides (generates) the commonly shared information for many other
processes. These arrows indicate how information flows as well as the prerequisites for

process execution (this has been discussed previously in Section 6.4.2 in detail).

4 It is also possible that instead of creating the originate in-flight entity by the process itself, it can be
specified that the initial process which originates it is to be invoked. If this is the case, this particular
type of error can be avoided.

112

One interesting observation which can be made in this diagram is to look for any
isolated (process) nodes. One such node ” Cancel Exam Allocation To Module” has been
identified in the diagram. An isolated node normally indicates the lack of integration
with other processes, or that the needed information is not provided by other processes.
In this particular case it indicates the boundary of the design, the process which supplies
the needed information for this process, is outwith the scope of the project (i.e. it was
intentionally not included in the process model).

Figure 6.5 shows another example Process Dependency and Partial Ezecution Order
Diagram which again has been automatically generated by KBST-BM from the same
DAT process model. In addition to the previous three types of dependencies which were
shown in Figure 6.4, this diagram also includes the dependency type II. Furthermore,
wherever there is a dependency type II present, all of the corresponding dependencies
of type IIT which link to the particular depending process node are removed. As a
result, the less close relations (dependency type III) are deleted from the diagram and
replaced by the closer relationships (dependency type II).

This has simplified the diagram and clustered relevant processes in groups using this
new relationship, which is denoted as a green dashed arrow. Each group of processes
indicates operations which are carried out in some relevant business areas. This enables
the user to examine relevant processes together and to identify relationships between
these groups. One interesting observation in this diagram is that the isolated node,
?Cancel Exam Allocation To Module”, has now disappeared. Although the process
which provides information for it is not captured in the process model, it has been
identified as relating to a group of processes because it operates on the same entity as
others work on. As a result, each of these two types of diagrams show some properties

that the other one does not.

Several observations can be made from these diagrams and insights and warnings

for errors can be further drawn from the business model. This is described below.

e Isolated processes: indicate “orphan” processes which do not use information pro-
duced by any other processes nor do they produce data useful for other processes.
Such phenomena may indicate the incompleteness or error in the model. As de-

scribed previously, an isolated process signifies the boundary of the model design.

113

It can, however, also mean that more potential processes are yet to be captured

in the process model.

Process nodes with few or none in-coming arrows but many out-going arrows: this
type of processes are carried out with relatively little restrictions, and provide
commonly shared information to many other processes. It also indicates the

boundary of the design.

Process nodes with many in-coming arrows: this type of processes require lots
of information for its operations. It can be a process which produces analytical
information or a process of decision making. Because the constraints imposed by
a process dependency are transferable, processes at the other end of any leaving
arrows from the node are also constrained by the constraints imposed by all of
the incoming dependencies to the node. It is therefore important to ensure that

a process is not over-constrained.

Process nodes with many in-coming and out-going arrows: this type of processes

capture the center actions in a business’s operation.

Leaf processes: this type of processes does not have any out-going arrows. It
normally indicates the boundary of the model design, or that the actions it carried
out are terminal for some of the dealing entity occurrences. This means that no
other processes can work on those entity occurrences (other than just passively

refer to them) after this process has been carried out.

Process nodes with similar relationship architecture: when two processes have
many common in-coming and out-going arrows, then it may be worth checking

the overlap of these two processes.

Process nodes with in-coming red dashed arrows: red dashed arrows are derived
from the originate in-flight entity functions, which indicate the need of referring a
piece of information, yet they also indicate the freedom to create this information
when absent. It is, therefore, important that this freedom has not been misused.
Whether this freedom has been given wrongly to a process is determined by

the “source process” which is initially responsible for generating this piece of

114

information. If there are any dependencies which have been imposed at the
“source process”, then this red dashed arrow should not be allowed but should be
replaced by a more conservative black arrow: i.e. a refer normal entity function

should be used by that process.

Ideally in a well established business model, all process nodes are connected by
blue links, since they are the closest relationships between processes and indicate the
strongest partial process execution directives. However, it is often not possible to get a
business model that has been modelled to this level of detail. When this is true, other
types of dependencies are inferred to fill the gap. Advantages of using the Process

Ezecution Order Constructor are given below.

e It provides an overview for inter-relationships between processes which was not
obvious or given in the business model: it indicates how information is used,

shared and passed between processes.

e [t establishes partial process execution order which is not previously known to
the model: based on which the user can construct potential business scenarios

which make use of a series of business processes.

e It provides another way to analyse the business model: more importantly, it gives
the user another chance to examine the appropriateness of the context of process

scopes and the sufficiency of the existing processes.

e It cuts down the search space for testing what-if business scenarios: the workflow
which is suggested in the process dependency and partial execution order diagram
is constrained; workflows or business scenarios which violate these constraints
depicted in the diagram violate constraints that have been put on the business
model and will not be acceptable by the simulator. This facility, therefore, not
only helps to give the user an initial and integral view of potential business work-
flow and helps the user to construct useful testing scenarios, it also saves the user

effort in testing fruitless business scenarios.

e This facility is easy to use and no additional information is required from the user

rather than the already developed process model: therefore it is a very simple and

115

easy way to get a lot more insight into a developed business model. The produced
process dependency and partial execution order diagram is easy to read because
all of the dependencies are given in different colours schemes. Furthermore, the
method which has been used to derive this information entirely complies with

BSDM which raises the chances of acceptability of the tool by this group of users.

6.5.2 Process Conflict Detector

It is often the case that several processes are proposed to be carried out concurrently
in the system. It is, therefore, important to ensure that only coherent processes are
carried out at the same time. Several error checking facilities on the entity and process
model are provided and have been described in Chapters 4 and 5. For instance, the
potential for deadlocks between processes can be detected during the verification of the
process model using the guideline deadlock prevention among processes which identifies
possible deadlocks from the static structure of processes. A more detailed description

of these rules is given in Appendix H.

In addition to the static checking of process conflicts, during the execution of a
model, the process conflict detector looks for potential contradictory processes dynam-
ically. It examines particular data items (entity occurrences and attributes) that are

involved in a process’ execution, checking for three types of errors:

e Inconsistent handling of a data item is reported to the user when two processes
are found to be creating the same entity occurrence, or updating the same entity
attribute, or one process refers to an entity and the other one modifies it at the
same time. (The case where one process creates an entity occurrence while the
other is updating it is actually prevented from happening in our system through

the use of preconditions.)

o Erroneous handling of a data item occurs when a process tries to manipulate an
entity occurrence which is already “terminated” in terms of its life status, since
a “terminated” entity occurrence can only be used for archive purposes, i.e. only

for reference but not for active data manipulation.

116

o Suspended processes are those processes which stay in the Process Agenda for a
long time and cannot be executed. There are two ways of notifying/alerting the
user of this type of error: a passive reminder and an active warning. The passive
reminder is given to the user through viewing the content of the Process Agenda.
With this the user can keep track of which processes are in the queue and for how
long. An active warning is given to the user, when a predetermined threshold
of waiting time duration is expired. When the user finds a suspended process,
he/she can ask for an explanation from the system for the delay of execution
(i.e. to identify the failing preconditions of the process and type checking on the

specified actions) and possible ways of fixing this problem.

Process conflict detector works as a part of the business model simulator and is
carried out before process executions. The next subsection describes the use of the

simulator.

6.5.3 Business Model Simulator

The inference engine, Business Model Simulator, generates the dynamic behaviour of
the model, i.e. it simulates the execution of processes, according to the instructions
given by the user. The user can see how the model behaves under the current design by
exploring the model using potential business scenarios. More specifically, the user gives
the length of time for simulation and the set of triggers for processes to be enacted.
The scheduler of the inference engine selects a set of triggers which is appropriate for

invoking processes which are then added to a Process Agenda.

For those processes in the agenda which have all of their preconditions fulfilled, the
process occurrences are created and actions executed. This leads to a new system state.
The corresponding feedback is given to the user and the system time advanced. The
next cycle begins with the new system state and the user decides whether or not to
supply some new triggers. The model simulation ends when the the specified simulation
time period is finished. The inference engine is able to backtrack to any previous
system state (going backwards in time), thereby allowing the user to experiment with

alternative paths of execution of the model.

117

The transition from one state to another could be the result of more than one
process. We, therefore, must insure that processes which are carried out at the same
time are not in conflict with each other. To prevent conflicting processes from executing
at the same time, a process conflict detector is used before any process execution. When
a conflicting set of processes have been found, the user is notified and one or more

conflicting process(es) are selected by the user and removed from the Process Agenda.

The execution history and the changes made in each state can be described in a state
transition diagram. An example use of the business model simulator and the resulting

state transition diagram is given below.
Example Inference and State Transition Diagram

Figure 6.6 shows an example state transition diagram which demonstrates a possible
sequence of states generated by the system. It uses three processes specified in the
process model given in Figure 5.1 and 5.6. These are Mark Practical, Review Practical

and Module Performance Assessment.

The first circle denotes the initial state S0 at time 0, which is also described in the
Dynamic Business Model in Figure 6.2. Assuming that in the initial state we only have
a few facts (occurrences): a person John, a module ES, two practicals, pI and p2, and
their assignments to module ES: ES-p! and ES-p2. We also assume that initially five
triggers are given by the user: two invoke the ‘Mark Practical’ processes which assign
the practical marks for John for ES-p1 and ES-p2, two invoke the ‘Review Practical’
processes which confirm the practical marks assigned for John for ES-p! and ES-p2,
and one trigger that invokes the process ‘MODULE PERFORMANCE Assessment’
which assigns the average practical mark and module performance for John and ES.
5 Notice that in this example we have assumed that all triggers are given up front at
the initial state and all with the begin time zero for simplicity, although these triggers
could alternatively be specified by the user at different times, since the reasoning engine

is interactive.

The directed link MP1 denotes that process MP1 was executed. It transferred the

initial state S0 to state S71. Assuming that process MP1 ends at time 3, the newly

5 We assume that no exams have been set for this module, therefore the module performance is solely
determined by the performance of the practicals.

118

created state S1 is generated at time 3. Process MP1 has assigned a practical mark
75 to practical assignment ES-p1 for John and module ES. Process MP2 furthermore
assigned practical mark 80 to practical assignment ES-p2 for John and module ES.
This process also transfers state S1 to state S2 denoted by a link labelled MP2. Since
process MP2 has ended at time 6, this has become the system time of the state. By the
same reasoning, state S8, 54 and S5 are determined by processes RP1, RP2 and MPA
which review the above assigned practical marks and assigns 78 to Awverage Practical
Mark and A to module performance for module ES for John, and the system time is

16 at state S9.

This demonstrates one possible way of executing a process. The process execution
sequence is: MP1, MP2, RP1, RP2 and MPA. The user can decide to backtrack this
execution to find an alternative execution sequence, e.g. MP1, RP1, MP2, RP2 and
MPA. This alternative execution sequence is added to the previous diagram and shown
in Figure 6.7.

One other possible sequence is to execute multiple processes concurrently, e.g.
MP1+MP2, RP1+RP2, MPA which is shown in Figure 6.8.

The processes involved are partially ordered: a practical mark must be given before
it can be reviewed, and the average practical mark and module performance cannot be
determined unless all practical marks are reviewed. This partially ordered sequence is
determined by triggers and requirements of these processes (which are also influenced
by entity functions). The possible execution sequence of processes obeys the process

dependencies which have been described in Sections 6.4.2 and 6.5.1.

Chapter 8 gives a comprehensive view of how KBST-BM can be used in assisting

the development life cycle as a whole for building business models in BSDM.

6.6 Conclusion

Conventional BSDM provides informally a structure and declarative method for cap-
turing a complicated business environment in a business model. The fundamental and
important “things” and processes are represented and described statically as entities
and processes. These static structures have strong implications on the behaviour of

the business model. When a business model describes a relatively complex and large

119

organisation, it is very difficult to understand all these implications. Therefore, it is
useful if this dynamic behaviour of a business model can be demonstrated in a way
which reveals how the defined business rules, polices and arrangements will affect the
business when it is actually in operation. There is, however, in general a lack of support

in most business modelling methods, including BSDM, for such facilities.

To illustrate the dynamic behaviours of a business model, an additional layer, the
Procedural Model, was devised. It specifies the requirements, actions, logical sequence
and elements of a process’ execution. Given this information in a Procedural Model,
a business model can be enacted by the execution of its processes. Since there are
potentially infinite ways to run’ a business model, it is impossible to obtain all of the
different outcomes of a large and complex business model by execution. Qur Process
Ezecution Sequence Constructor makes use of the constraints imposed on the processes
which limit how an entity can be manipulated. It identifies process dependencies and
provides a high level and integral view of relationships between processes which was not
previously described by the method. The generated Process Dependency and Partial
Ezecution Order Diagram is intended to help the modellers to construct their own
business scenarios more speedily. It also gives the user another way to analyse and
verify the process model, in addition to the support which were given in Chapters 4

and 5.

Our Process Conflict Detector dynamically detects possible conflicting processes
and informs the modeller about it, together with advice for conflict resolution. This
is an attempt to free modellers from the technical details of process execution so that

they can concentrate on fundamental flaws in the business model.

The aim of the Business Model Simulator, which has been built as a part of our
tool KBST-BM, to provide a means to demonstrate the dynamic aspects of an initially
statically described business model has been achieved through the use of the procedural
model. The system helps the modeller validate the appropriateness of a business model,

one of the most important issues in the business modelling community.

120

notexiszts
originate
focal entity

exizts parents
of originate
focal entity
[Module
Performanae)

exiszts

refer
nermal
entity

| Fractical

create
create originate j ’ :
criginate in—‘ilight. dﬂ,lve dﬂ,lve dﬂllve
focal entity entity attribute abtribute attribute
i {Module {Module {Mochile
{Moctale {Practical FPer formance] ||Per foomance) |[Per formanoy
Per foomanece) Turn In By
Ferzon)
Ined
azsociate azzoeciate aszociate associate
originate originate refer refer normal
focal entity if entity normal entity
({Module | Fractical entity [Fractieal
Per formanae) Turn In By {Modnle hzzign to
Perzon) Selection) Mochile)

exists
originate
focal

exizts
originate
focal entity
in process
zcopel Module)

normal

scope|

exlsts refer
in processz

Selecticn)

entity

Module

€nizte refes
nermal entity
in process

Figure 6.3: The Procedural Model for 'Module Performance Assessment’

121

zoope(Fractical

"Suspend A " Cancel *I'nf orm Facul ty ' Cancel
' Accept ' Cancel Modul |
. Course Fol Modul e About (viva) Practical P! : -
;2“;2? pue,sg"‘ ' Taken By | | Recommendation’ Al ocati on’ Practical [~ Performance’ W thdraw A
! d’ Per son’ Al | ocat i on” Degr ee/ di pl ong|
Ferto ¥ LA Pur sui t’
¥ - *‘ h . | " Cancel A
R H Course For
"Gve H SN H Person’ ‘
I ndependent | | ' Archive
Eval uation To H Person’
Facul ty For '
Resear ch o3
Proj ect”
N * Suspend A
i gr ee/ di pl oma
Gve N Pursui t’
Questions To |
Facul ty For ' -
aal Bam “Enoll A st o
(viva) Degr ee/ di pl oma Nark’
Pursuit By _
Person.
N
'Gve Degree To
' Accept Person By Course’
Enpl oynent
Contract’
" Cancel A
Resear ch

" Revi ew Modul e
Per f or mance’

' Cancel
- " Accept Faculty Proj ect
' Reconmendat i on For| Mark
" I ndependent
\ AL Proj ect’
' Cancel Proj ect S
Assi gnnent”’ N, N oTake A
\ ‘Gve Resear ch
i Degree To “1Project By
\ Person By Person’
\ | Research'
Thssign | N 1
| Cour se \ *Confirm
Qosing O Perf or mance’ Assi gnment OF Cancel
Enpl oynent Modul e Exam
Contract’ | Per f or mance’ Allocation
o Revi ew To Modul e
S Exam Mark'
»
* Cancel a B
Cour se Assi gn
Per f or mance’ Pr oj ect ‘TU
Person
Assign -7
Practi cal \ -
* Cancel / Mar k" ' * Revi ew Cour se =1 'Accept Exam
Practical v Per f or mance’ Allocation To
Mar k' / \ Modul &'
' Revi ew --"
Practical o
Mark

" Revi ew Accept [Gancel "Gve Questions
Practi cal -==o| Practical Pract cal To Faculty For
* cancel O Al ocati on Al ocati on o
Proj ect e
 Revi ew Assi gnment”
Proj ect
Var ke " cancel
Practi cal Accept_Facul ty
Mar ke . ion For
I ndependent
Proj ect’ *Inform Facul ty
" Assi gn About (vi va)
Project To Take A Resear ch Recommendati on’
Person’ v Project By
Per son’ ' Gve
I ndependent
Eval uati on To
Facul ty For
Resear ch
Assign Proj ect”
Proj ect]
e Accept -
epl oyt ; ke e —
By Person’ Resear ch
Project By
rer i per son
N Assign " Suspend A |
Eml oyrent Gourse / \ Degr o6/ di pl oma }
Cont ract performnce’ |/ Pursui t© i Gancel
I . | “Confirm Taken By
*Cancel Course e | Assi gnrent of Person’
: gree To i Nodul e
Per for mance’ Person By Revi ew : port .
Resear ch’ Nodul e \ rlormenee
Per for mance’
" Take
' Revi ew Coursd ourse by
Per f o mance’ Per son’ “Gve
) Degree To
X Pason By * Revi ew
N urse’ .
I e A Exam Mar k
' Cancel A Degr ee/ di pl oma .
Course For Per son’ Pursuit By
Person’ Person’

* Cancel Exam " Accept
" Vi thdraw A cancel Allocation To e
Degr ee/ di pl oma Exam Mar k Modul e ocati on
Pursui t’

To Modul e’

Figure 6.5: Process Dependency and Partial Execution Order Diagram

122

Time=0 | MP1 Time=3 MP2 Time=5 RPL Time=9 RP2 Time=12 | MPA Time=16

State=S) State=S1 State=S2 State=S3 State=S4 State=S5
Person: John CreatePractical CreatePractical Review Practical Review Practical CreateModule
Module ES Mark 75toPractical Mark 80toPractical Mark 75to Practical Mark 80to Practical Performanceand asign
Prectica pL. Assignment ESpl Asignment ESp2 Asignment ESpl Asignment ESp2 T8for Average Practica Mark
Practica: P2 for Johnand ModueES foy jomn and ModuleES for Johnand ModuleES for Johnand ModuleES and A toModule Prformance

Practical Assgnment: ESpl
Practical Assgnment; ESp2

for ModuleESand John

Figure 6.6: A State Transition Diagram for Originate Focal Process

Time=0 | MP1 @ MP2 ® RP1 @ RP2 @ MPA Time=16

Person: John Create Practical CreatePractical Review Practical Review Practical CreateModule

Module: ES Mark 75 to Practical Mark 80 to Practical Mark 75 to Practical Mark 80to Practical Performance and assign
Practical: p1 Assignment ES-p1 Assignment ES-p2 Assignment ES-p1 Assignment ES-p2 78 for Average Practical Mark
Practical: P2 for John and Module ES for John and Module ES for John and Module ES for John and Module ES and A to Module Performance

Practical Assignment: ES-p1
Practical Assignment: ES-p2

for Module ESand John

RP1
Time=6 MP2 Time=6 RP2
State=S6 State=S7
Review Practical Create Practical
Mark 75 to Practical Mark 80to Practical
Assignment ES-p1 Assignment ES-p2

for John and Module ES for John and Module ES

Figure 6.7: A State Transition Diagram for Originate Focal Process-2

Time=0 | MP1 @ MP2 ® RP1 @ RP2 m MPA Time=16
State=S0 @ State=S2 @ @ State=S5

i

Person: John Create Practical Create Practical Review Practical Review Practical CreateModule

Module: ES Mark 75 to Practical Mark 80 to Practical Mark 75 to Practical Mark 80to Practical Performance and assign
Practical: p1 Assignment ES-p1 Assignment ES-p2 Assignment ES-pl Assignment ES-p2 78 for Average Practical Mark
Practical: P2 for John and Module ES for John and Module ES for John and Module ES for John and Module ES and A to Module Performance

Practical Assignment: ES-p1
Practical Assignment: ES-p2

for Module ESand John

RP1
Time=6 MP2 Time=6 RP2
State=S6 State=S7
MP1+MP2
Review Practical Create Practical
Mark 75 to Practical Mark 80to Practical
Assignment ES-p1 Assignment ES-p2
for John and Module ES for John and Module ES
ng RP1+RP2 ® MPA

State=s8 @

Create Practical Create Practical Review Practical Review Practical
Mark 75 to Practical . Mark 80 to Practical Mark 75 to Practical Mark 80 to Practical
Assignment ES-p1 Assignment ES-p2 Assignment ES-pl * Assgnment ESp2

for John and Module ES for John and Module ES for John and Module ES for John and Module ES

Figure 6.8: A State Transition Diagram for Originate Focal Process-3

123

124

Chapter 7

Business Model Advisor

7.1 Introduction

As mentioned in the previous chapter, KBST-BM is integrated with GMA, the Generic
Model Advisor. GMA is a Case-Based Reasoning (CBR) engine which facilitates the
analysis of new BSDM business maps by comparing them with existing BSDM models.
It also retains the newly developed business models in its library and uses them for fu-
ture consultations. By gaining new knowledge, GMA is able to enhance its consultation

capability over time.!

This chapter investigates how human modellers work and the intelligent assistance
that GMA may provide for the modellers as well as how GMA can assist in completing
the life cycle of CBR. After a brief introduction to Case-Based Reasoning in general, a
detailed account of the design and implementation of GMA is given and an example use
of GMA described (a more comprehensive example consultation using GMA is given in

Appendix L.

7.2 Intelligent Assistance for the Business Modeller

A BSDM entity model consists of two basic components: entities and dependencies.
Entities are things that a business needs to manage and dependencies are the relation-
ships between these things. Certain kinds of scenarios or relationships between entities
are common to many businesses. Hence, one would expect that the corresponding

BSDM maps to reflect these commonalities. It would be an advantage if a library of

! A part of this work is published in [95].

125

these maps for such common cases could be provided. The modeller of a new business
map could then reuse these generic models or use them as a reference for comparison
with his/her own maps. We will firstly look at how these re-usable knowledge compo-
nents can be used in practice by BSDM practitioners. We will then suggest means to

provide automatic support for the reuse of this knowledge.

In practice, IBM provides a catalogue of small-size generic entity models[34][36] as
well as more domain-oriented full-sized generic models for selected sectors. Provided
with these models, BSDM practitioners help clients build their business model by using
this information implicitly or explicitly. For BSDM consultancy, an experienced IBM

consultant, Martin King, suggested three possible ways of re-using a generic model[47].

e Back-Pocket Approach: the clients are made aware of the existence of these generic
models, but they are only used to support consultancy. The client will see little
or none of the generic model. A consultant keeps these generic models at the

back of his/her mind and tailors them to the clients’ special requirements.

e Reference Model Approach: supply the client with a relevant complete generic
model with detailed description, together with a contractual consultancy service

which provides help for the interpretation and use of the model.

e Software System Solution: provide developed software systems as packages which
are based on generic industrial models. These software systems can then be used
by the clients. The client may or may not see the generic business model which

was used to develop the required software system.

The first two suggested approaches make direct use of the relevant generic models
while developing new business models. In the first approach, since generic models
are kept in the background, several relevant generic models may be deployed by a
consultant. In the second approach, normally only one specific generic model is chosen

and supplied to the client for reference.

A BSDM business model consists of several views, where each view is a representa-
tion of some sub-domain knowledge of an organisation. There may be several different

ways to represent a view. For the first two approaches, it seems appropriate to re-use

126

generic models (presented in views) by developing a tool which provides a retrieval
mechanism for relevant generic BSDM models, and making them available to the users
(IBM consultants and the clients). It can also be used to analyse the user’s model
with respect to existing generic models. By providing this facility, the known generic
models can be shared among users, and a structural method of re-using this knowledge

is provided via the tool.

Although there are existing business modelling tools (as discussed in the literature
review in Chapter 2 and later on in Chapter 9), most of them focus on the capturing and
storing of a business model. The tool that we propose (GMA) takes a pro-active role
which encourages good modelling practice and provides correction advice of models,
if needed. The user can also systematically explore why a model is different from a
generic one. Furthermore, when a new business model is correctly built, this newly built
model can be generalised and retained by the tool in its memory, thereby enabling the
re-use of this new model and enabling the tool to enrich its knowledge through time.
The GMA tool uses a technique called Case-Based Reasoning (CBR). Before GMA is

described in more detail, a brief introduction to case-based reasoning is given.

7.3 Case-Based Reasoning (CBR)

Case-based reasoning was inspired by observing human reasoning. People perform CBR
on a daily basis: they solve new problems based on their past experience in similar
situations. They learn how to solve particular problems by remembering solutions
successfully applied to similar problems in the past and hence becoming more competent

in dealing with these problems over time.

In the same way, a CBR system solves new problems by comparing it with old
problems and their solutions, which are stored in the system’s memory. Old solutions
are adapted for new problems, and new solutions are stored back into the system’s
memory for future reference; this is how a CBR system learns [50]. General knowledge
and heuristic judgement is sometimes used to guide the choice of old problems, to
determine how well a new situation matches an old one, and to choose adaptation

strategies from old to new solutions.

Figure 7.1 presents the general architecture of a case-based reasoning system [73].

127

Input
| Indexing Rules Assign Indices
Input+Indices
 —— Retrieve Match Rules
Case Memory
Retrieved Case
Store Adapt Adaptation Rules
T Proposed Solution
_) Writing New Solution
Assign Indices <=——————— Test
Solution
Failure Description
Predictive Features . .
Explain —_—> Repair
Causal Analysis

Repair Rules

Figure 7.1: General Architecture of a Case-Based Reasoning System

A past experience is called a case which consists of an old problem and its (successful)
solution. Cases are stored in a case memory. Different cases in the system are identified
by their indices. Indices are significant features of cases which allow the system to
distinguish between them. The first task of the system is to identify and assign indices
to the new problem, an activity which is governed by indexing rules. Match Rules are
used to compare the assigned indices of a case with those in the case memory; a case
with a similar problem as the new one can be identified and retrieved. Adaptation rules
are applied to the solution of the previous case to adapt it to the new situation. If
the proposed (adapted) solution is appropriate for the given problem and worthy of
recording in the case memory then new indices are assigned to it and it is stored in
the case memory. If the proposed solution failed to solve the problem, an explanation
of failure is produced and an attempt is made to repair the solution, i.e. the solution
is modified according to repair rules and then tested again. If the failure is due to
the inappropriate indexing of the current problem, new indices are assigned and the

mechanism starts again from the beginning. In many applications, modification and

128

testing of solutions is carried out by the user.

In the past, several CBR systems have been built to support design: Cadet[64][87]
supports better conceptual design for electro-mechanical devices; Cadsyn[56] provides
guidance for architectural design and adapts existing designs for new buildings; Casecad
[55] and AskJef [3] use multimedia technology to store and present their cases to
the user, the former in the domain of architectural design, the latter in the domain
of human-machine interface design. Other example CBR systems are Archie-11[20],

Cadre[22], Kritik-11[86] and Julia[32].
7.4 GMA System Architecture

The Generic Model Advisor analyses a given user-defined BSDM model by comparing
it with generic models in the Generic Model Library (GML) — GML corresponds to
the case memory of the general CBR architecture in Figure 7.1 — and by reporting the
various matches back to the user. It is important to note that in this CBR system the
problem as well as the solution are BSDM maps: the system takes the description of a
user-defined map as the problem and suggests as a solution appropriate generic models
from its case memory. While this is not a solution to the problem of BSDM modelling in

itself, it assists the user in finding a good BSDM model for his/her particular business.

Figure 7.2 shows the architecture of the Generic Model Advisor (GMA). After the
user created a (partial) user business model using KBST-BM, he/she can choose to
export this model to GMA automatically from KBST-BM. Upon invoking GMA from
KBST-BM, a user interface of GMA is shown to the user which gives instructions to

the user and accepts user commands for further actions. Figure 7.3 gives a screen shot

of GMA when it is started.

After the user started GMA (typed 'run.’), GMA firstly identifies and assigns indices
to the problem, i.e. the user-defined BSDM model. These indices, together with
background contextual information, in our case the Entity Conceptual Hierarchy, are
passed to the pattern matching algorithm. Equipped with this background knowledge,
the pattern matching algorithm compares the indices of the user’s model with those
of the generic models in the case memory, in our case the Generic Model Library, to

retrieve a set of models which exhibit similar characteristics to the input model.

129

User-Defined
BSDM Model
User-Defined BSDM Model

Generic Model Advisor

Assign I ndices

Model Information + Indices

Entity

Generic Pattern <~—— Conceptual
Generic Model Models Matching Hierarchy
Librar \
y Match Rules
Generic Model
Assign I ndices enerehiodds Similarity

T / Assessment Method
Choose Best

’ . - Seeking for Another
Simulation — Validation* ——— - 9
Case Matching for the Same User Model

The Best Matching

Model Rules — Verification* ———| Report

Similarity/Disimilarity Analysis
KBST-BM and Explanation

Generalise Modify

* Thisfunction can be applied at any stage
of a business model development.

Figure 7.2: Architecture of Generic Model Advisor

The retrieved models are past cases relevant to the current problem. After they have
been retrieved they are examined for their relative degree of similarity with the user’s
model. For such a comparison, GMA provides a heuristic method for assessing which is
a better match for the current problem. Alternatively, the user can dynamically define
his/her own similarity assessment function by alternating the weights of designated
measuring features during a consultation session. (More details on similarity assessment

below.)

The best matching case according to the similarity assessment method is chosen
and an analysis report of similarities and differences between the user model and the
retrieved model, together with some explanations, are given to the user. The user can
then either read the report or ask the system to present a different matching result for

another retrieved model, if there are any. Matches are shown in descending order of

130

sicstus | ! |J
5 EST 159
néngpralogdor pl,, b
{ jessicac/kbst-on/ngprolog/case, db, , ¢
bat-tm/nypralon/oase, b consulted, 240 nses 26364 btes)
/i f
i /

Tue fug 26 10:14

e/ jessicat

==
= =

#; :14;
towpiling fha bst-D
han kst
1 1l

hane jessicac/kbst-on/mgprolonfenthre, db, , ¢
t-on/nupralan/entive,dh consulted, 190 weeg 24376 bytesh

1
-
3
l
tmg fha 3
l

i/
lting fhane
e jessicadh
I e
/jgssicank

wiesk lielcone b KBST Deneric fodkl Advisor Sk

=]

Tease tupe "run," o tahe the specific input From Hardy,
Press contral+d to quit the progran, Bug for now,

{/hamﬁr‘jessicac/kbst-bm/mgpmlugr’cbnp1 conpiled, 2020 wsec 100224 besh
|-

Figure 7.3: Starting The Generic Model Advisor

their scores in the chosen similarity assessment method.

A user-defined model may include more than one generic model, in which case the
user can look through all of these matches. Given a reference case model, the user can
choose to modify his/her model and repeat the above cycle, i.e. to assign indices to
the problem, retrieve reference models, present best match and give an analysis and
recommendation report. The user may decide to modify/extend his/her model based
on the retrieved cases and its reports. When the user is reasonably happy with his/her
model, he/she can retain this new model within GMA by firstly generalising this new
model, verifying and validating the generalised model using the integrated KBST-BM,
and then storing the new generic model back to the Generic Model Library. The Case
Based Reasoning Cycle is now completed, and GMA’s knowledge can be enriched and
evolved through time via the inclusion of newly acquired knowledge during operations.

The smaller KBST-BM system box in the Figure 7.2 illustrates how KBST-BM
can assist in completing the CBR cycle. It is equivalent to the “Test” activity in
the standard CBR process shown in Figure 7.1. Since verification and validation can
be carried out at any stage of model development, it is also appropriate during the

“Modify” activity in Figure 7.2.

The following sections describe the various components of GMA in more detail.

131

7.5 Indexing and Domain Knowledge Representation

As mentioned in Section 7.3, indices are features which can be used to distinguish cases
in the case memory and to find appropriate matches between a given problem and
previous cases. In the context of GMA, these indices must describe the characteristics
of a BSDM business model and, at the same time, the differences and commonalities

between models.

As was mentioned above, a business model is presented in several views. A view is
a building block of a business model, and is also the way that a business model is read.
Although each view of a model has a view name associated with it, these names alone
are not always useful when trying to identify common features of BSDM maps. It is,
therefore, necessary to look at the actual BSDM maps. Simply looking at the graphical

representation of maps, however, is not sufficient.

For example, drawing an existing map upside-down does not make it a different
map, the semantics of the inter-relationships (dependencies) between entities must be
taken into account. Furthermore, the business contextual similarities may be disguised.
For instance, if a business model is a more elaborated or specialised version of another
one (or vice versa), then these two models normally will not have the same architecture
(e.g. one may expand parts of the model in some areas), and often they do not share
the same entities (e.g. using domain specific vocabularies instead). However, because
they are essentially describing the similar business operations, it will be useful to refer

one to the other.

To be able to make meaningful comparisons between BSDM models, one must have
an integral understanding of the business context which is described in both the ar-
chitecture of a model as well as the business context that each entity represents. The
dependence (link) which connects two entities and denotes the relationship between
entities embeds this information. Therefore, these dependencies are used as indices for
BSDM models in GMA. To enable a concise and explicit representation of informa-
tion needed for matching, new predicates are introduced in addition to those already
introduced in Chapter 4. The data_arc predicate represents an Arc, the dependency

relationship, from parent entity Ent to the dependent entity Dependent_ent.

132

data_arc(Are, Ent, Dependent_ent)

To capture a more comprehensive understanding of a business map, we include
entities as another index. This enables the system to select a model based on the
similarities of both, entity architecture as well as the covered business domain. This

information is captured in a data_ent predicate:
data_ent(Entity)

where Entity is the name of an entity. At the beginning of a GMA consultation
session, this information is automatically derived by KBST-BM and exported to GMA.

A dependency is described by the parent and child entities, and an entity is described
by words which are appropriate in the corresponding domain. To match two models,
one needs to match dependencies and entities between them. The difficulty that arises
is to map entities representing similar but not the same concepts: while a more generic
model may be referring to more general things, e.g. “party”, a more specialised model
is likely to use two separated entities to express this, e.g. “business” and “person”; or
one may be using similar but different names but at the same level of abstraction, e.g.

“trade agreement” and “business arrangement”.

Differences at the same level of abstraction may also be caused by business-
dependent vocabularies (e.g. a “customer order request” to a store is similar to a
“reservation” for a restaurant). Although they make commitments to different things,
one for the product to be ordered, the other for a space to sit, they really are expressing
a similar concept: to express an informal request for a purchase which must be dealt
with by a business accordingly. To handle such different levels of abstraction and to
recognise the analogy of two similar entity concepts, the concept of an entity conceptual
hierarchy is introduced (Section 7.7).

Since a view name is normally given by the user when a model is built and is
conveniently available, we therefore also make it an index and provide a simple sub-
string matching mechanism. However, this index is only useful if the user is very
familiar with the internal naming scheme of the Generic Model Library. As in our own
assessment (Chapter 9), we found that the provision of view name is not crucial for a

successful retrieval.

133

Section 7.7, 7.8 and 7.9 describe in detail how these indices are used to retrieve the
relevant generic models for a user model. However, before more details are given, an

introduction to the Generic Model Library is described.

7.6 Generic Model Library (GML)

A Generic Model Library (GML) stores a set of Generic Models. A Generic Model
may be a standardised, generalised or example BSDM business model. Four different
sources have provided models for the Generic Model Library used for experimentation

with the prototype implementation of GMA:

e the standard and example business models provided by the method, i.e. business

models given in the BSDM manuals and its teaching materials;

e an industrial business model which was developed by IBM for its client in the
sector of automobile parts distribution (which is sometimes referred to as the

automobile model for short in the thesis);

e a generic business model which I developed for small and medium sized restau-

rants;

e 3 business model I developed for course management and evaluation for the De-

partment of Artificial Intelligence (DAI), The University of Edinburgh.?

BSDM provides a catalogue of standard models which describe business contexts
that are commonly exhibited within different organisations. It also provides stereo-
typical example business models to illustrate the selected business operations. Together
they naturally form the foundation of the content of GML. These models are interesting
to us, because they are generic and therefore may be used as references for many
businesses and in various sectors. The standard models are given in Appendix A, the

example models can be found in Appendix B.

Obtaining business models which are developed and used by industry is difficult.

This is mainly due to the large cost for industry in building them and, for those which

2 The Department of Artificial Intelligence is now a part of the University’s newly formed Informatics
Division.

134

have been built, their content is usually confidential (as it often conveys a business’
trade secrets). However, we were fortunate to get permission from one company, which
operates in the sector of automobile parts distribution®, and obtained a small por-
tion of their model. This model is valuable because it is a realistic model which was
independently built and used by a commercial company. It is intriguing because it
gives insights into business operations in a specialised context, i.e. in the domain of
automobile parts distribution. As a result, it contributes to both the realism and

“specialisation” properties of GML. This industrial model is given in Appendix C.

To further enrich GML, another industrial model was developed by me by talk-
ing to the industry directly. As a result, a generic model for small and medium-sized
restaurants has been built. The covered business areas include such issues as customer
enquiring, ordering, invoicing and stock control. This domain is representative, because
the above business areas are commonly shared by Small and Medium-sized Enterprises
(SMEs) in other sectors. Since SMEs are organisations of smaller size, we imagine there
are similarities in their business structures, implying commonalities in their business
models. The business model of an SME is also useful for larger organisations, because
although small and medium-sized enterprises are smaller in scale compared with in-
ternational trading companies, such a model covers most of the typical core business
operations, but describes them in a much more concise way. It is therefore interesting
to see whether the built business model can be used to help build business models on
a much larger scale and describe more complex operations in similar business areas.
This issue shall be explored in Chapter 9. This generic restaurant model is given in

Appendix D.

To further extend the GML, a business model was built by me for the Department
of Artificial Intelligence (DAI), The University of Edinburgh. It consists of 35 individ-
ual diagrams and covers the areas of Module Evaluation, Course Structure, Personnel
Management, Course Evaluation and Degree Evaluation. * The model was built to
demonstrate the generality of the BSDM business modelling method and that it is

able to describe a variety of organisations. It was also built for testing the automatic

3 The company wishes to keep their name confidential.
* A small part and a much simplified version of the “module evaluation” part of the model have been
used as a self-contained model in the previous chapters to illustrate the formal aspects of the work.

135

Verification and Validation V'V abilities of KBST-BM. Since this model is also real-
istic, it may be used for reference, if another similar model was to be built for another

university in the future. The model is given in Appendix E.

All of the above mentioned business models form the current content of GML. Since

a business model is presented in views, this is also the form that is stored in the GML.
Presentation and Representation Issues

A (Generic Model is essentially a BSDM business model. However, since it plays a
different role (an advisory role) in our system, a different but similar notation should be
deployed for its presentation to the user. It is important to use a similar notation be-
cause then the user can easily recognise the notation without much additional training.
It is important to use a different notation so that the advisory role of the generic model
is explicit for the system and for the user. The underlying development platform of
KBST-BM, Hardy[84], a hypertext diagramming tool, provides diagram card facilities
which allow its system developers to design and define new types of modelling notation.
In this case a BSDM diagram card has been designed and used to capture a BSDM
business model and a Generic Model Library diagram card has been designed and used
to capture a BSDM Generic Model stored in the Generic Model Library. More details
about the implementation of KBST-BM will be given in Chapter 8. Figure 7.4 shows

an example generic model present in a GML diagram card in KBST-BM.?

For the same reason, the formal representation of model primitives in a generic
model are also different from a normal business model. We report two main predi-
cates: gml link and gml ent. A dependency relationship in a generic model is formally

represented in a gml link predicate:

gml_link(Card_id, Link_id, Ent, Dependent_ent).

where Card_id is the GML diagram card ID and Link_id is the link ID of the
dependency which connects Ent which is the parent entity and Dependent_ent which is
the child entity. Since there may be many diagram cards (distinguished by their IDs)

representing the same business area differently in views, all of the above information is

5 Entities in a generic model are shown in orange in the system to distinguish them from the light-blue
coloured entities in a BSDM card.

136

Wiew Hame: Ezdm Manual: Enploves Management

This is an example model from ESDM entity manual,

Figure 7.4: An Example Generic Model from GML

needed to identify a particular link. An entity in a generic model is represented in a

gml_ent predicate:

gml_ent(Card_id, Entity)

where Card_id is the GML diagram card® ID and Entity is the described entity.
These two predicates above will be used to compare with data_arc and data_ent pred-
icates mentioned earlier to provide a basis to determine the similarities between two

models.

In the next section, the link which enables the mapping from a user model to a

generic model is described.

6 A Hardy card type determines the subset of the notation that is allowed to be used for this card.

137

7.7 Entity Conceptual Hierarchy (ECH)

BSDM recommends that four or less layers (or levels) of entities are normally built in
a business model, i.e. each entity in a business model normally does not have more
than three dependent entities (child entities). BSDM further exemplifies the “sorts”
of entities and actual entities that are frequently used in an entity layer which are
named FEntity Families. Since there are four recommended entity layers, we describe
and group the entities in the Entity Families into four categories corresponding to the

recommended layers: layer 1, 2, 3 and 4.

Entity Family records the commonly used entities in a structural way and is of-
ten referenced during a model building session. This information is, therefore, highly
reusable and bears important contextual information about entities. We capture these
Entity Families in our devised Entity Conceptual Hierarchy (ECH) which gives entity
families a hierarchical and graphical representation and, at the same time, allows the
identification and assignment of inter-relationships between the constituent nodes. Fig-
ure 7.5 shows the notation used in an Entity Conceptual Hierarchy which is captured

in an Entity Conceptual Hierarchy diagram using KBST-BM.

1 1.
==|Entit5 Conceptual Hierarchy Did “lE]l

= S 70w

D taxract
Entity Twpe

T

i= a

Concrete Entity
Type

Figure 7.5: Notations in Entity Conceptual Hierarchy

138

Two kinds of nodes are defined for the Entity Conceptual Hierarchy: the Abstract
Entity Type and the Concrete Entity Type. An Abstract Entity Type, a shaded rect-
angular box, captures the “sort” or the categorical concept of a Concrete Entity Type
which may be used in a business model. It is used to identify and distinguish the differ-
ent concepts which are represented by entities. There can be several levels of Abstract
Entity Types at a particular path which allows the exploration of the more specialised
areas of interest. Since an abstract entity type describes the categorical and contextual
information of an entity type, it is at a higher level of abstraction, which means it is
represented at a higher level in the Entity Conceptual Hierarchy. A Concrete Entity
Type, a clear rectangular box, is the actual entity which may be included in a business
model. A Concrete Entity Type is always at a lower level of an abstract entity type or

another concrete entity type.

The Entity Conceptual Hierarchy serves a similar purpose to that of a context tree
which describes the hierarchical structure in an s-a relationship. An is-a link may
describe the relationship between two concrete entity types, between a concrete and an
abstract entity type, or between two abstract entity types. For example, an employment
contract (concrete entity type) is a special kind of contract (concrete entity type) which

is a special kind of trade binding (abstract entity type).

At the highest level of abstraction for all BSDM entities is the abstract entity type
Things. All (other) concepts are grouped into four sub-classes at the next level of
abstraction, the four layers of the entity family. We represent each of them as an
abstract entity type: “Layer 1 Entity”, “Layer 2 Entity”, “Layer 3 Entity”, and “Layer
4 Entity”. For example, in the branch of “Layer 1 Entity” (Figure 7.6), at the next level
of abstraction, things are classified into: “External Item”, “Agent”, “Physical Thing”,

“Abstract Thing”, “Category” and “Group of Things””

These categories are then further subdivided at the next lower level of abstraction.
The Entity Conceptual Hierarchies don’t have to be “strict” tree structures: an entity
at one level of abstraction may have an is-a relationship with more than one entity at a
higher level. This design is to allow automatic reasoning for the approximate meaning

of an entity without the burden of having to produce an “absolute” taxonomy to suit

7 “Group of Things” and its sub-hierarchy are not shown in the Figure, because it is only a partial
diagram of the Entity Families in layer one.

139

Layer 1 Entity

AN

External o Fhysieal Lhatrast
Tten ¥ Thing Thing

Bueinesz Location And Tiue b ovaduct | | veticl Enployment Business Prodict
Factor Flace B ToaE Ehicle Managenent Category Cabegory
Organization o ||Busingss || Product || Part

Fhysical
hrea

Category

Geographical

Pratation A

Law

Eoakable
Place

Figure 7.6: The Entity Conceptual Hierarchy at the Layer 1 in an Entity Model

all cases - as this is extremely difficult, since not everything in the real world is a clear-
cut case; also doing so may not be necessary, since the main purpose is to identify the

analogy between entities but not to classify them.

Figure 7.6 shows a part of the entity hierarchy diagram card containing the sug-
gested entities for the top layer (layer 1) of a BSDM entity model using KBST-BM.
The shaded rectangular boxes represent the Abstract Entity Types, and the clear rect-
angular boxes represent real entities, Concrete Entity Types. An arrow from entity B
to entity A indicates an is-a relationship from B to A, i.e. B is-a A.

In the Generic Model Advisor, the is-a relationship is represented in an is_a predi-

cate:
is_a(Generic-entity, Specific-entity)

where the Generic and Specific entities can be an abstract or a real (concrete) entity

type. Given this entity (family) conceptual hierarchy, entities in the user model can

140

be mapped onto this hierarchy, and its context better understood. This information
is also used by GMA to match generic business models stored in GML and the user

model to provide automatic support in developing and 'debugging’ the user models.

A detailed description of the matching algorithm is provided in the next section.

7.8 Algorithm for Case Retrieving

As previously illustrated in Figure 7.2, after the indices are automatically assigned for
the user-defined BSDM business model, pattern matching is carried out. The pat-
tern matching algorithm compares the architecture and context between the given user
model and all of the reference models stored in the Generic Model Library. For each
comparison between the user model and a reference model, the matching ratio for var-
ious discriminating criteria for matching qualities are stored. A set of the matched
reference models along with their matching results are kept. When a particular sim-
ilarity assessment function is chosen by the user, the corresponding matching ratios
are applied in the assessment function to determine which is a better match, therefore
determining the recommendation/selection order of the matches to the user. More in-
formation about the discriminating criteria and the similarity assessment function will

be given in Section 7.9.2 and 7.9.3.

As explained in Section 7.5, view names, dependencies and entities are the indices
used for matching two entity models. For a modeller familiar with the naming scheme
used by GML, a view name may bear important discriminating information when it is
given correctly for the user model and appropriately to the GML. A simple approach
is therefore taken to matching between view names: a user view name is matched to

the view name of a reference model, if it is a sub-string of the latter.

Two dependencies match if their child and parent entities match. In other words,
a dependence in the user model is matched to a dependence in the generic model, if
the parent entity of the dependence in the user model can be mapped to the parent
entity of the dependence in the generic model, and if the child entity of the dependence
in the user model can be mapped to the child entity of the dependence in the generic
model. The declarative nature of this matching of two dependencies is well-suited

for the declarative programming style of Prolog. Furthermore, for each user model it

141

is possible to find more than one matching generic model. The additional matching
models can be automatically found when making use of Prolog’s built-in back-tracking

facility. It was, therefore, decided to use Prolog as the implementation language for

GMA.

The above matching algorithm of dependencies can thus be illustrated with the

following Prolog predicate match-dependency:®

match-dependence (Generic-model-id,
Data-model-id,
Dependence-in-user-model (parent-entity-1, child-entity-1),
Dependence-in-generic-model (parent-entity-2, child-entity-2))
map-entity(parent-entity-1, parent-entity-2),

map-entity(child-entity-1, child-entity-2).

The question that remains is how an entity in one model can be mapped to an
entity in a different model. This mapping must take account of the Entity Conceptual
Hierarchy (ECH) which means that all entities used in the user models and the generic
models must be recorded in the entity conceptual hierarchies. In summary, using the
entity conceptual hierarchy, two entities are matched if (1) one entity is at a higher level
of abstraction of the other, or (2) both entities are at the same level of abstraction and
are grouped under similar conceptual classes in the ECH. Without the entity conceptual

hierarchy only identical entities can be matched.

The following Prolog predicates are used to map entities between models:?

(1) Identical entities
map-entity(Entity-1, Entity-2) :-

Entity-1 = Entity-2.

(2) Subsumed entity I

8 The actual implementation is more complicated; unnecessary details are left out for clarity.
9 Again, a more complicated version of the predicates is used in GMA, but details are omitted here
for clarity.

142

map-entity(Entity-1, Entity-2) :-

is_a(Entity-1, Entity-2).

(3) Subsumed entity II
map-entity(Entity-1, Entity-2) :-

is_a(Entity-2, Entity-1).

(4) Sibling relationship
map-entity(Entity-1, Entity-2) :-
is_a(Shared-class, Entity-1),

is_a(Shared-class, Entity-2).

(5) Distant subsumed entity I
map-entity(Entity-1, Entity-2) :-
is_a(Intermediate-class, Entity-2),

map-entity(Entity-1, Intermediate-class).

(6) Distant subsumed entity II
map-entity(Entity-1, Entity-2) :-
is_a(Intermediate-class, Entity-1),

map-entity(Entity-2, Intermediate-class).

The first clause of map-entity maps two entities at the same level of abstraction;
the entities are identical. The second and third clauses map an entity to another entity
at the level of abstraction immediately above. The fourth clause maps two entities at
the same level of abstraction; these entities have similar or identical semantics which
share one common entity at one immediate higher level of abstraction. The fifth and
sixth clauses extend all of the above mapping to one additional level of abstraction,
i.e. similar entity types located at two levels of abstraction away can also be matched.
The closer the relationship is between two entities in the ECH, the higher the quality

of the match is rated.

143

The aggregative quality of matching from one model to another is evaluated by the

similarity evaluation function which is given in the next section.

7.9 Similarity Assessment

7.9.1 Matching Models

As mentioned in the previous section, a user model may include several generic models.
On the other hand, a generic model may include or partially overlap with the user
model. Therefore, there are four possible kinds of matches between a user model and
a generic model, as described below: (The no-match case is not discussed here, since
the corresponding generic model is not relevant to the user model and therefore will

not provide useful advice to the user; it will not be presented to the user.)

Case 1: the generic model is entirely included in the user model;
Case 2: only parts of both models are matched;
Case 3: the user model and the generic model are fully matched;

Case 4: the user model is entirely included in the generic model.

W@ (D

Casel Case2 Case3 Case4

G: Generic Model U: The User Model

Figure 7.7: Possible Matching between User Models and Generic Models

Figure 7.7 uses an ellipse marked “G” to represent a generic model and one marked
“U” to represent a user model and further illustrates the above matchings. We use the
same type of diagram to describe which match types are preferred; figure 7.8 elaborates
the above four general matching results into eight different matching outcomes and lists

them in the order of preference.

144

R ACD

CASEI CASEI CASEIN
Equivalent User model isincludedin the Generic Model
CASEIV CASEV

User mode isnot included in the generic model, but the generic model i fully included in the User Mode!

OG0 < DG

CASEVI CASEVII CASEVIII
User mode! is partially overlapping with the generic model

Figure 7.8: The Preference of Matching Results

As our aim is to seek for the best match, naturally a 100% match (CASE I) is
always given the highest priority. The second preference goes to a match in which a
user model is fully included in the selected generic model, hence CASEs II and III.
However, CASE II is superior to CASE TII since it has less additional, and potentially

distracting, model components.

If the user model is not included in the selected generic model, the next preference
lies with matches where the generic model is fully included in the user model (CASEs
IV and V), with an advantage in the case where the unmatched part of the user model

is less, i.e. CASE IV better than CASE V.

If neither the user model is included in the generic model nor vice versa, we opt for
the match where the overlap is greatest (CASEs VI and VII) and if there is no difference
in the overlap, prefer the case where the unmatched part of the generic model is less

(CASE VI better than CASE VII).

These preferences bear various implications; when the details of the matching al-

gorithm are given below, these implications are explained. Based on our preferences,

145

discriminating criteria are identified and the selection mechanism formed, as discussed

next.

7.9.2 Discriminating Criteria

It is common that an input user model will cause several generic models to be retrieved.
When a generic model is retrieved from the Generic Model Library, the quality of the
match between the generic and the user model must be evaluated. For each matching
possibility, a similarity assessment between the two models is computed; the match
which is evaluated to be the most similar is presented to the user first. The similarity

assessment function embedded in GMA uses the following discriminating criteria:

Match-View: Match-view equals to 1, if the input user view name is a sub-string of

the generic model’s view name; 0, otherwise.

Match-Data-Link: Ratio of the matched dependencies in the user model. Match-
Data-Link = Number-of-matched-dependencies / Total-number-of-dependencies-

in-user-model;

Match-Data-Entity: Ratio of the matched entities in the user model. Match-Data-

Entity = Number-of-matched-entities / Total-number-of-entities-in-user-model;

Match-Case-Link: Ratio of the matched dependencies in the generic model. Match-
Case-Link = Number-of-matched-dependencies / Total-number-of-dependencies-

in-generic-model;

Match-Case-Entity: Ratio of the matched entities in the generic model. Match-
Case-Entity = Number-of-matched-entities / Total-number-of-entities-in-generic-

model;

7.9.3 Heuristic Similarity Assessment

GMA provides a heuristic similarity assessment function which makes use of the above
five criteria to determine the quality of matches. In this heuristic function, we assume

that the user will provide a view name for matching only when they are sufficiently

146

familiar with the view naming-scheme of the case library. If this is the case, then this

index will provide good discrimination.

When comparing two matches, the heuristic method prefers the one with a matched
view name, i.e. Match-View = 1. When the matching results of the view names are
the same, i.e. either both found a matching view name or both didn’t, GMA will rate
higher the model which matches the most of the dependencies in the user model with
dependencies in the generic model (i.e. the match with the maximum ratio of Match-
Data-Link). This is desirable, since dependencies embed the architectural information
of a model. The higher ratio of Match-Data-Link indicates more aspects of the user

model are also represented in the corresponding generic model.

Although the ratio Match-Data-Link covers most of the architectural similarity
between two models, it does not include the case when an architecture is a specialisation
of another. In this situation, the more specialised architecture will have more entities
and dependencies to describe a situation where the more general one will use less entities
and dependencies. As a consequence, although similar concepts have been captured in
the two models, the relevant links can no longer be matched because the corresponding
parent-child entity set doesn’t exist in the representation of a link. To take this into
account, an independent entity matching algorithm is carried out and the ratio, Match-
Data-Entity, is made the third discriminating criterion. In the case when two matches
have the same values for Match-View and Match-Data-Link, the one with the higher

Match-Data-Entity rate is designated the better fit.

If both matches have equal ratios for Match-View, Match-Data-Link and Match-
Data-Entity, then they are probably equally good matches for the user model. Therefore
further discrimination may not be as crucial. However, in the case when many generic
models are retrieved, it is time-consuming to review all of these matches, thus it is
important that all of the retrieved cases are classified and presented in a meaningful
order. To further classify these matches, GMA looks at how well the generic model has
been matched to the user model, i.e. it chooses the match with the higher Match-Case-
Link, i.e. the match which has a higher ratio of matching dependencies. This heuristic
has a hidden consequence, i.e. when two generic models have the same number of

matching dependencies, GMA prefers the generic model which is smaller in size. This is

147

HEURISTIC SIMILARITY ASSESSMENT FUNCTION

Given two matches, X and Y
if match-view(X) > match-view(Y) then SELECT X
elseif match-view(X) = match-view(Y)) and
match-data-link(X) > match-data-link(Y) then SELECT X
elseif match-view(X) = match-view(Y)) and
match-data-link(X) = match-data-link(Y) and
match-data-entity(X) > match-data-entity(Y) then SELECT X
elseif match-view(X) = match-view(Y)) and
match-data-link(X) = match-data-link(Y) and
match-data-entity(X) = match-data-entity(Y) and
match-case-link(X) > match-case-link(Y) then SELECT X
else if match-view(X) = match-view(Y)) and
match-data-link(X) = match-data-link(Y) and
match-data-entity(X) = match-data-entity(Y) and
match-case-link(X) = match-case-link(Y) and
match-case-entity(X) > match-case-entity(Y) then SELECT X
else SELECT Y

Figure 7.9: The Heuristic Similarity Evaluation Function

desirable, since smaller models are normally simpler and therefore easier to understand.
If they are presented first, the user can use them for confirming the correctness of their

own models, before they continue to examine larger and more complicated models.

If all of the above mentioned discriminating criteria have not been able to distinguish
two matches, then the match which has a higher Match-Case-Entity is preferred. Figure

7.9 summaries the selection of a better match.

7.9.4 User-Definable Similarity Assessment

The heuristic function has been designed in such a way that the most suitable matches
are presented to the user first. In our experiments (reported in Chapter 9), the test
results were favourable. What exactly constitutes the best match in reality is not
entirely clear. It depends on the nature of the input user model as well as which

general models are currently in the library, not to mention the intention of the user.

One solution to solve this problem is to supply a more generic and dynamic selection
method, i.e. to use a Weighted City-Block Function [2] (also called Nearest-Neighbour

Ranking [50]) for similarity assessment. There are several possible implementations.

148

We have chosen to use the five identified discriminating criteria above as key features
of the function and allow weights to be put on them. The matching results of these key
features can either be strengthen or weaken and therefore influence the summarised
comparison result. This allows the user to dynamically define their own similarity

assessment function by changing the weights of the above five measure criteria.

The user-definable evaluation function, SA(U, G), is given below, where U rep-
resents the user model ID, and G is the generic model ID; and W1 to W5 are the
corresponding user-definable weights (between 0 and 1) for the five discriminating cri-

teria presented earlier.

SA(U, G) = W1 * Match-View(U,G) + W2 * Match-Data-Link(U,G) +
W3 * Match-Data-Entity(U,G) + W4 * Match-Case-Link(U,G) +

W5 * Match-Case-Entity(U,G)

Using this evaluation function, the match with a higher value of SA(U, G) is pre-
ferred by GMA, and therefore is presented to the user first. Since the weights of the
function can be dynamically defined, GMA is very flexible in retrieving and presenting
generic models. It also provides a means for the user to explore the generic models
stored in the Generic Model Library in different dimensions. Because of the nature
of the similarity assessment functions that we have chosen, GMA’s presentation op-
eration is independent from the storage method of the generic model library. This is
advantageous compared to a case base reasoner which employs a deductive approach

for retrieving a reference case.

7.10 Report Generation and Retaining New Cases

GMA produces a two-stage report for its matching results. The first part of this report
is a summary about how well the retrieved generic model is matched with the user
model. It informs the user about which generic model has been retrieved and the
matching ratios of the five discriminating criteria mentioned in Section 7.9.2. It tells
the user the number of dependencies and entities in the user model which could and
could not be mapped to the generic model. It also gives the number of dependencies

and entities in the generic model which could and could not be mapped to the user

149

model. This overview gives the user a good idea how well the user model and the generic
model match each other as well as the size of the retrieved generic model. Figure 7.10
shows an example of the first part of the report. A full dialogue of an example use of

GMA and its reports are given in Appendix L.

KkEAAARAAR Stage Report Ho. KkmAAARAAK

#kzxxxxzxx Fitness Measure of Matching ssssxxxsxz

(&) The matched CASE model is: Restaurant: Customer Order
The similar assessment ratic is: 0.5027777777777778

* Matching View Name: ves
The link mateching ratic of the retrieved CABE model: 0.2916666666LE6E6GGT
The entitv matching ratioc of the retrieved CASE model: 0.355885555885555889

There are 7 links matched,
and there are 17 links not matched.
There are in total 24 links in the CAZE model.

There are 7 entities matched,
and there are 11 entities not matched.
There are in total 18 entities in the CASE model.

(B) The input USER model is: Order

The link matching ratioc of the USER model: 0.3333333333333333
* The entity matching ratio of the USER model: 0.5

There are 7 links matched,
and there are 14 links not matched.
There are in total 21 links in the USER model.

There are 7 entities matched,
and there are 7 entities not matched.
There are in total 14 entities in the UZER model.

ﬂluﬂ hell line

Figure 7.10: An Example Consultation Session - Part I

The second part of the report provides the user with the matching details. It
gives the name of the selected generic model and describes which dependence in the
user model was mapped to which dependence in the generic model, and which entity
in the user model was mapped to which entity in the generic model. Furthermore, it
describes which dependencies in both models could not be mapped. In addition, simple
explanations are given why the models could not be matched. For example, it may be
the case that no corresponding entities existed; or even though matching entities were
found, no corresponding dependencies were found. This could be a hint to the user

that he/she may have left out an important aspect in the user model.

Based on the comparison between the user model and the retrieved generic model,
the user may wish to modify or extend his/her model, or view the next matched generic
model. A separate statistical summary report is produced in a file format which records
the mapping results for all of the matches that have been viewed by the user. This

summary report is useful for the user to gain an even greater overview over all of the

150

relevant generic models. It also provides the user with a convenient means to refer back
to a particular match. One example of such a report is given in the following section.

A more detailed example is given in Appendix L.4.

When the user finished his/her new model, the user may wish to retain this newly
developed model for future reference. The user can generalise this new model and
use KBST-BM’s verification and validation facility to help ensure the correctness and
appropriateness of the model, and use GMA to automatically store this newly developed
model back to the Generic Model Library. Once the new model is added to the Generic
Model Library, it is ready to be reused for the next consultation. This final step also

completes the life cycle of CBR.

7.11 An Example Use of GMA

This section gives an example of how GMA can be used to help the modeller design a
new model from scratch and how to provide a head-start by providing relevant generic
models and modelling guidance for the user in the problem domain. In the chosen ex-
ample, the user wants to build a model in the business area of customer order handling.
Initially, the user identified only two fundamental concepts in the domain: the individ-
ual customers who place customer orders with the company and these customer orders
placed by them. Based on a certain amount of training and experience with BSDM,
he/she recognises that these two concepts are often represented as entities “Person” and
“Customer Order”, respectively. The two entities, therefore, form the initial model (as
shown in Figure 7.11 which will be used as the input (user) model to the GMA for
consultation.

Before the consultation of GMA can begin, the background knowledge of GMA,
i.e. the most recent Generic Case Library and Entity Conceptual Hierarchy, must
be made available to GMA. The user can do so by selecting the menu-item “Custom
Menu/ Ezport Case Library to CBR” and “Custom Menu/ Export Entity Conceptual
Hierarchy” from any of the Generic Model Library or Entity Hierarchy diagram cards
using KBST-BM.

The user exports the initial model to GMA in a similar fashion, i.e. selects the menu-

item ”Custom Menu/ Ezport User Model to GMA” on the (BSDM) diagram card which

151

Custorner

Fersoh order

Figure 7.11: The Initial Business Model

captures the initial model. The user can then activate GMA by selecting the menu-
item “Custom Menu/ Run Generic Model Adviser” from the same BSDM diagram
card. This will trigger the creation of a separate window which automatically loads
the GMA inference engine and the necessary background knowledge. The activated
GMA is shown in a Prolog window: the welcome messages and instructions generated

by GMA are given below:

*¥kkkkk Welcome to KBST-BM Generic Model Advisor kkkkkkk
Please type "run." to take the specific input from KBST-BM.

Press control+d to quit the program. Bye for now.

| 7-

Since the user wants to use his/her own model as input, he/she types “run.” to
take the newly exported user model as input. GMA then compares the user model with
generic models in the case library and collects all of the models that match. After the
collection process is finished, GMA comes back to the user and asks for the selection
method for presenting those generic models. This part of the GMA dialogue is given

below.

?- run.
*okkokkokkkkkkkkk Retrieving User Model skkskoksoksikokikokkskkskokk

xx% Matching Generic Models in the Case Library sk**x

152

kk* Choose Similarity Assessment Method sdkkkkkkk
A1l of the relevant cases to the user model have been retrieved
and will be presented to you one at a time. The sequence of display
may be determined using the default method. Alternatively, if you wish,
you can design your own method by changing the weights on selected
features.

How would you like to optimise the presentation:

(1) Use The Default Method

(2) Redefine The Optimisation Method

|: 1.

Since the user does not wish to redesign the default method, the option “1” has
been taken which leads to the first recommended case: the generic model “Customer

Order And Delivery”. The generated analysing report is given below.

*xkokokokokkxkk Finished Optimising Solution sskssskokskskk
ke ok ok 3k ok ok K ok 3 ok Stage Report No. 1 ke ok ok ok ok ok ok ok ok
*kkkkkkkkk Fitness Measure of Matching xxkxxskkxx

(A) The matched CASE model is: Bsdm: Customer Order And Delivery
The overall similar assessment ratio is: 0.23

* Matching View Name: no
* The link matching ratio of the retrieved CASE model: 0
The entity matching ratio of the retrieved CASE model: 0.14

There are 2 entities matched,
and there are 12 entities not matched.

There are in total 14 entities in the CASE model.

* The link matching ratio of the USER model: 0
* The entity matching ratio of the USER model: 1.0

There are 2 entities matched,
and there are 0 entities not matched.

There are in total 2 entities in the USER model.

sk ok ok ok ok 3k ok ok Stage Report No. 2 ok ok ok ok ok ok ok ok
kxkkkkkk Result Analysis & Suggestion skksdokokkkxk

(1) The selected matching case model is: Bsdm: Customer Order And Delivery

(2) Matching of entities:
- There are 2 sets of entities found matched:

153

- The Entity "Customer Order" in the USER model.
was found to be matching with
the Entity "Customer Order" in the CASE model

- The Entity "Person" in the USER model.
was found to be matching with
the Entity "Business" in the CASE model

(3) An independent match from User to Case Model :
- No dependency was found to be matched.

============= End of R_eport =============

In this report, a summary of the overall matching is given in the first stage of the
report followed by detailed supporting evidences in the second stage of the report. If
the user wishes to see the above selected generic model, he/she can use KBST-BM
to view it and modify /extend their own model accordingly. The above recommended

generic model is shown in Figure 7.12.

Alternatively, the user may wish to see another matching model for the same user
model. In that case, he/she may type “y.” at the end of the first GMA consultation
session to ask GMA to present the next best matching. This part of the dialogue is

given below.

End of Report

Do you want to see an alternative matching ? (y. or n.)

[: y.

GMA will repeatly ask the user’s wishes to see an alternative match until the user
answers “n.”, or until all of the appropriate options have been displayed. In this fashion,
all of the matching generic models may be displayed to the user in the order based on
the chosen selection method. If the user decides to make direct use of any of the selected
generic model, the user can export that model out of the Generic Model Library using
KBST-BM by choosing the menu-item “Custom Menu/ Export GML to BSDM” on
that generic model. This will incur KBST-BM to automatically generate a new BSDM
(user) model from that generic model.

A more comprehensive consultation example of GMA including the corresponding

underlying formal representation of the user model is given in Appendix L.

154

bsdm Z: BSOM: Customer Order and Teliwver o |0

Figure 7.12: The Recommended Generic Model

7.12 Conclusion

Since common business scenarios exist in different business environments, it is an ob-
vious advantage if one can reuse already existing generic business models. As it was
observed earlier in this thesis, not all human reasoning about how to build an appro-
priate business model can be formalised as rules. In responding to both of these two
issues, Case Based Reasoning, was used to provide supplemental support to the user in

addition to the support which is already provided by KBST-BM.

A Case Based Reasoning Engine, Generic Model Advisor (GMA), has been devel-
oped and was described in this chapter. Also, a brief introduction to the standard CBR
life cycle was given. Following it was the system architecture of GMA. Integrated with
KBST-BM, GMA is able to store business models which are provided by the method

as well as newly developed generic models. It can retrieve and recommend relevant

155

business models to the user when only given a partial model.

A concept similar to that of the context tree has been deployed by GMA, namely the
building of an Entity Conceptual Hierarchy (ECH). The Entity Conceptual Hierarchy
provides a framework to express the entity concepts which are captured in a business
model as well as the inter-relations between them. This knowledge was used to match
two business models (it is also used to determine if a business model has been over or

under specialised as it is described in Chapter 4).

A heuristic similarity assessment function has been provided by the tool, this heuris-
tic was found to be successful in our tests (as reported in Chapter 9). To provide more
flexibility towards the retrieval of generic models, GMA allows the user to dynami-
cally alter the similarity assessment function. Both of these two similarity assessment
methods allow an independent operation of the case presentation to the user from the
storage method of generic models in the GML.

Combined with KBST-BM'’s verification and validation facilities, a business model’s
correctness can be verified and its appropriateness examined, new models can be re-
tained to the Generic Model Library and subsequently the retained models can be used

for future GMA consultation sessions, thereby completing the life cycle of GMA.

156

Chapter 8

The Use of KBST-BM

The Knowledge Based Support Tool for Business Models (KBST-BM) is built upon
a diagramming and hypertext development tool Hardy[84] which was developed and
provided by the Artificial Intelligence Application Institute (AIAI) at The University
of Edinburgh. Since Hardy has embedded within it the expert system shell CLIPS[46],
we are able to enrich the built tool with method and application domain knowledge.
KBST-BM is a design tool which uses our formal method to provide the user with
intelligent support throughout the development life cycle of building business models

using the Business System Development Method (BSDM).
KBST-BM has the following characteristics:
e it is event-driven;
e it is diagram and hypertext-based;
e it is knowledge-rich;
e it provides an automatic verification facility for business models;

e it extends BSDM’s business modelling method with the Procedural Model and

provides means to enable the simulation for the business model;
e it provides a notation to display a dynamic BSDM Business Model;

e it discovers process dependencies in business models and infers process execution

order which was previously not known to BSDM;

157

e it accumulates model building knowledge through time using the built-in system,

Generic Model Advisor;

e it supports the full model development cycle and can be used to record design

rationale.

This chapter describes an example user-scenario which deploys KBST-BM to build
a business model in BSDM, thereby demonstrating the use of KBST-BM in the context

of actual model building.

8.1 Description of DAI Case

As previously mentioned in Section 7.6, a business model has been developed for the
Department Artificial Intelligence (DAI), The University of Edinburgh during this re-
search project which will be referred to as the DAI model for short here. A much
simplified and partial view of the area of module evaluation at the same department
was used in the previous chapters to provide example business models when explaining
concepts and support of the tool. We will be referring back to some of the example
models which have been shown in those chapters to keep our description more concise.
We will, however, also use a more complete model to show aspects of the tool which

have not already been shown before.

In the more complete model, five interesting business areas have been identified for
the AT department and they are categorised as views in the business model: “Module
Evaluation”, “Course Structure”, “Personnel Management”, “Course Evaluation” and
“Degree Evaluation”. The view “Module Evaluation” specifies the (business) context
that is related to the assessment of student performance for a module which mainly
involves the assessment for undergraduate and MSc students in the department. The
evaluation of module performance for a student depends on two criteria: the perfor-
mance of examination and practicals for that module which are illustrated as business
processes in the view. We will use the development for the view “Module Evaluation”

as a case study example.

158

8.2 Development of An Entity Model

Overview of KBST-BM

Once an organisation has decided to build a business model, the first consideration
is to divide the business operations into several business areas. Each business area is
built as a part of the business model: they sometimes form a view or several views in

the model.

KBST-BM provides a tree hierarchy of cards to capture the business model.! Figure
8.1 shows the top level control window which displays one possible organisation of a
business model. Each text node indicates the name of a “card” which is a window of
either the type of a Text Card, Hypertext Card, BSDM Card (which captures the BSDM
business model), Life Cycle Diagram, Dynamic Business Model card, Procedural Model
card, Generic Model Library card, Entity Hierarchy card, WorkFlow Management card,
Process Sequence Diagram card, Entity Relational Diagram or a State Transition Di-
agram.? Hardy provides two text card types: Text Card and Hypertext Card, the rest
of the cards are devised by me based on BSDM and other appropriate notations using

drawing facilities provided by Hardy.
Figure 8.1 shows the tree hierarchy of the title of the cards stored in KBST-BM.

When modellers start to build a model, they create a “top card” in KBST-BM. The
top card “A DAI Model” has been created as a root node for the hierarchy. There can
only be one root node in KBST-BM. A text card, a card that only contains text, has been
used in this case which gives a brief description (in natural language) about the captured
model. Cards which share common interests are grouped together as subtrees and
expanded from the top card. For instance, the card stud35: Degree Evaluation View:
Take a Research Project by Person and its subtree describe the context of handling a
student’s research project. Other example BSDM Cards have been used to capture the

business model was shown in Appendix E.
WorkFlow Management for Developing a Business Model

The major business areas which have been identified by the user as “views” are

! This mechanism is provided by the underlying development tool HARDY.
2 All of these card types have been introduced and shown in previous chapters; the WorkFlow Man-
agement card will be described here.

159

| .

'|l(tudzs Cancel a Research Prolecth

tudza: Extend Froject Period

& DAl Maodel

stud3S: Degree Evaluation Wiew: Take a Research Project by Person s—stud30: Given Indep, Evaluation to Fa
tudzS: Inform/ACcept (YIYA) Reco

tud31: Give Degree To Fersan by R

14 Wark Process: Course Evaluation

Warkflow to
31 Entity Mapping <
(]

1 wWarkflow ouerview

ali]

f2:wWork Process: Module Evaluation Wik Process Mapping

wiiz

11 Procedural Mapping <
W13

Figure 8.1: Overview of KBST-BM

stored in a WorkFlow Management card in KBST-BM as shown in Figure 8.2. There
are five business views which have been identified for this model, each is captured as a
Workflow View node, a rectangle, in this card. This card provides an overview of the
important business areas; it can be further extended with subtrees of other WorkFlow
Management cards which capture the framework for the development life cycle for a

business model in BSDM, as shown in Figure 8.1.

Figure 8.3 shows the Workflow Management card which is at the top level of the
framework for developing a business model in the business area Module Evaluation.
Three sets of BSDM model building activities are described in three Workflow Process
nodes: entity mapping, process mapping and procedural mapping. Although modelling

activities captured in this figure include only one business area, they can be used

160

Course
Ewvaluation
Wiew

Mochil e
Evaluation

Degres
Ewvaluation
wiewr

Figure 8.2: Recording Views in BSDM

Frocedural
Mapping

Entity Mapping Frocess Mapping

)

Figure 8.3: Development Framework for A Business Model

to cover several business areas. The WorkFlow arrows which connect two Workflow

Process nodes suggest the developing sequence and iterative process.

The development framework for entity mapping and process mapping was taken
from BSDM. An example development framework for building Entity Models given by
BSDM is shown in Figure 8.4[37]. The procedural mapping, on the other hand, is an
extension to BSDM which is the model building process for the procedural model which
itself is a new component added to BSDM. Each Workflow Process node can be further
divided into more detailed activities and described as Workflow Action nodes in other

WorkFlow Management cards which is shown at a lower level in the hierarchy.
When business views have been identified and recorded in figures similar to the one

161

Knowledge of Business

! Process Mapping
' & 3 |dentify Processes
Entity Mapping 1. I dentify Originate Processes
X 3 Identify and Define Entities 2 Identity Changle Processes

'

Establish Process Scope

1. identify Candidate Entities
2. Create Working Diagrams
- 3. Verify the Entities

4. Create Formal Diagrams

S

1. Identify Process Scope

5. Define Entities 2. Summarize Process-Entity | nteractions
1 1
1 1

|dentify and Define Attributes Define Processes

3,

1. Identify Candidate Attributes
-- 2. Review Attributes
3. Define Attributes

1. Identify Triggers
2. Document Business Rules
1

'

Define Attribute Processing

o

1. Document Value Rules
2. Document Derivation Rules

[e
1

Figure 8.4: Summary of Model Building Stages for Entity Model

in Figure 8.2, the modellers can now follow the building procedure which is given by
BSDM and recorded in the WorkFlow Management cards. Three kinds of nodes have
been devised and provided for the WorkFlow Management cards: they are WorkFlow
View, WorkFlow Process and WorkFlow Action. Table (1) below shows the attributes

of these node.

The WorkFlow Management card was designed to capture the process of developing
a BSDM business model. The fact that design processes and actions can be decomposed
and their progress and design rationale can be recorded allows modellers to use KBST-
BM for project management. It has deployed its own set of notation and terminologies
to present an integral view for modelling management. A conceptual mapping between
the terminologies used in BSDM and in the Work Flow Management Card will be given
in Table (2) in Chapter 9.3

3 BSDM does not have a notation for its workflow.

162

| WorkFlow View | Workflow Process | Workflow Action |

View Name Process Name Action Name
Support Facility | Support Facility
Description Description Description
Version Version Version
Creation Date Creation Date Creation Date
Author Author Author
Working Status | Working Status Working Status
Working Time Working Time Working Time
Notes Notes Notes

Table (1): Nodes and Their Attributes in WorkFlow Diagrams

Reuse, Verify and Validate Entity Models

Build Refine

% ! ! !

Figure 8.5: The plan-build-test-refine development cycle

Pan —>

The model building process for BSDM is an iterative process which can be described
as a plan-build-test-refine development cycle as it is shown in Figure 8.5.(adapted from
the software development cycle in [69] and [26]). We provide facilities which analyse
the model from different aspects and give error correction advice to help the modellers

complete their tasks.

Example Entity Model has been described in Chapter 4 and a part of the model is
shown in the Figure 4.2. To begin with, the user can decide on a particular business area
to work with. The user can identify the key entities in this area and the dependencies
between them. The user can then use this partial model as input to the Generic
Model Adwvisor, which retrieves parts of (reference) models from the Generic Model
Library which are in the similar business circumstances, together with a comparison
and analysis report between the user model and the retrieved models. The user can
choose some of these retrieved models and have them automatically exported to the
user’s own model. The user can now adapt the newly retrieved model as his/her own

model.

163

[Ees| | [

Figure 8.6: The (Property) Definition Form for Entity ‘Person’

The creation of entities and dependencies on these cards is done using mouse-menu
interactions. After an entity is created, property values of this entity can be entered
through the definition form provided for in KBST-BM. Figure 8.6 shows the definition
form for entity Person. The attributes for the entity occurrences can also be specified
at this time. Recall that entity properties are the commonly shared properties for every
occurrence of an entity; whereas the values of entity atiributes are only applicable to the
particular entity occurrence (a concept that has been described in Chapter 4). Figure
8.7 shows the Attribute List Menu through which the user can create and define entity

attributes for entity “Person”.

Several entity attributes have been identified for person: to name a few, “First
Name”, “Last Name”, “Other Name”, “Birthday” and so on. Each entity attribute
can be further specified. Figures 8.8 and 8.9 show the definition forms for the attribute
“Nationality” for entity “Person”. The actual instantiation of values for these entity
attributes can only be done when the corresponding entity occurrence has been created;
this is done in the Dynamic Business Model which has been described previously in

Chapter 5 and will be briefly shown again later.

To help the user navigate around the model, several convenient facilities us-
ing mouse-menu activations have been provided: e.g. the facility to automatically

browse/close/iconise/save all cards, to show the name of the file which physically stores

164

Attribute List Menu

Figure 8.7: The Attribute Definition Form for Entity ‘Person’

Main Attribute Definition Form: Person

Figure 8.8: Detailed Definition Form for Attribute ‘Nationality’ (1)

the card, to see the type of the card, to get a summary information for all entities and
processes in a particular card or in the whole model, to generate a summary report
for all entities and processes in the model, to browse and search for all cards/processes
which include a particular entity, to locate the Life Cycle Diagram for an entity any-
where in the model, to automatically infer the parents for all entities (because not all
entity parents are included in all cards), and to infer the correct level for each entity in

the model.

As the Entity Model is developing, the user may identify important entities for which
the transition of life states needs to be specified. This information is recorded in Life

Cycle Diagrams: one such example was given in Figure 4.3. At any stage of building

165

Sub-Attribute DTefinition Form: Person

Figure 8.9: Detailed Definition Form for Attribute ‘Nationality’ (2)

the Entity Model, the user can decide to use the Generic Model Advisor again to gather
further comparison results using the newly developed model. The user can also use the

model verification facility in the KBST-BM at any stage of model development.

To carry out model verification, the user first needs to enact the representation
of the model followed by the activation of a consultation window for entity model
verification, both are using a mouse-menu interaction. One such consultation window
was shown in Figure 4.5. Verification of entity and process models are done by the
application of sets of model rules and guidelines. The user can use all of the rules and
guidelines to verify the model by specifying each set systematically in the consultation
window and to adjust the model according to the automatically generated analysis and

advice.

Since the process of the model development is iterative, the user may choose to
review, verify, validate and modify the model using the appropriate support facilities
provided by KBST-BM at any appropriate time. When the developed Entity Model
is correct and adequate, the newly built Entity Model can be automatically imported
into the Generic Model Library enabling future reuse of the model and increasing the
knowledge of Generic Model Advisor over time. Having finished building the Entity

Model to a certain extent, the user is now ready to extend the model with processes.

8.3 Development of the Process Model

Based on the BSDM Entity Model, the modellers can now identify processes which

manipulate those entities. Figure 5.1 shows an example process model using KBST-

166

Figure 8.11: Definition Form for Process Assign Practical Mark (2)

BM. Once a process is created, the user can define the process using definition forms
in KBST-BM. Figures 8.10 and 8.11 show the definition forms for process “Assign
Practical Mark” with which the user can define properties for the process and specify

the corresponding process scope.

The user can also decide to extend existing entity Life Cycle Diagrams (LCD) with
processes or create new entity LCDs, and relate them to the identified processes in the
model. To help the user cross-check the correctness, completeness and appropriateness
of the process model, the user can use the automatic model verification facilities at any
stage. The way of using this facility is the same as the one applied for entity model

verification. Having the errors identified and potential inadequacies pointed out by

167

the tool (if any), the user can modify the model accordingly. The user can also use
the navigation facilities which are provided for in KBST-BM at any stage to assist the

process model development.

When the process model is completed to a sufficient stage, the user can decide to
use the Process Execution Constructor to infer the dependencies and constraints for
process execution (Section 6.4.2 and 6.5.1). Two types of Process Dependencies and
Partial Ezecution Order diagrams can be generated, one shows dependency type I, 111
and VI, and the other one shows type I, IT, IIT and IV. In the second diagram the type
III dependencies are replaced by type II wherever type II dependencies are present
since type II and III dependencies indicate similar (but not the same) relationships.
Each of these two types of diagrams show some properties that the other one does not.
An example for each type of diagrams was given in Figures 6.4 and 6.5. Both of these

diagrams were generated using the DA model given in Appendix E.

Given these diagrams, the users are provided with another independent way to
evaluate the adequacy of processes, the relationships between them and can determine
if any overlapped processes should be merged or missing processes created. Possible
conclusions that the user can infer from the Process Dependencies and Partial Execution
Order and actions the user can take were described in detail in Section 6.5.1. Since
those process dependencies also indicate the constraints for process execution orders
the user can already gain an insight into the dynamic behaviours of a business model

even before the simulation begins.

8.4 Develop Procedural Model

If the user wishes to perform simulations based on the business model, then he/she
will need to learn our extension to BSDM, the Procedural Model, which captures the
operational details of a process. The building of a procedural model is supported with
standard procedural models. The user can select for adaption the standard procedural
model which has the same process type as the desired process (the process types are
described in the Inheritance Hierarchy) . The procedural model will then be instan-
tiated with entity types and actions, which will be used to provide a framework for

executing the process. Examples of standard and instantiated Procedural Models were

168

given in Figures 6.1 and 6.3.

\)
=] Run Dunamic Module Performance Evaluation {23: dynaZ.dia [=149]

File Edit Layout Custom Meru Huperlinks Help

| Ackl Handed=in Fractical

Jobn =5 Pl B2
| Feroon) | Mod1e) [Practical [Fractical)

111 Acknowladge
Handed-in T
‘ 1

Eractical
peree actical

AVEFage Fractical Mask Asshgnment \

MOdulE PEFTOFMANCe ASS25ament

EE-pl
{ Practical]

Hodile Assign To
Selection Prag| pogule) Module)
AssigrT
Module

Module
FPer formance

Practical

Figure 8.12: Dynamic Business Model with Trigger Occurrence

Having specified the Procedural Model the user can now design business scenarios
which will be used to test the adequacy of the business model. To gain an overview and
short cut in doing so, the Process Dependencies and Partial Ezecution Order diagrams
can be used to help prune the “search space” by avoiding business scenarios which
violate the constraints which have been stated in these diagrams. In fact, the system
will not allow the user to simulate many of the scenarios in which the process execution
contradicts the partial orders that have been derived and displayed in the Process
Dependencies and Partial Ezecution Order diagrams. For example, the business model
simulator make sure that an entity occurrence is already created, before it allows a
process to create an attribute for it. After the testing business scenarios have been
decided, the user may invoke KBST-BM to automatically create a Dynamic Business

Model from the Process Model using simple mouse-menu actions.

The user can instantiate the entity and process types in the Dynamic Business Model
with the corresponding occurrences. An instantiated diagram was given in Figure 6.2.
These occurrences constitute the initial state for the business model simulation. The

user also needs to create process trigger occurrences* in the Dynamic Business Model.

* The trigger occurrence actually includes all information needed to execute a process, therefore it is
more than a trigger occurrence, but also a trigger information pack. An example is given later in
this chapter.

169

Content of a trigger occurrence follows the information specified in the Procedural Model
for that process and will invoke the corresponding process occurrence to be created and

executed, when all required constraints are satisfied.

After this is done, the user can export the business model including the dynamic
information to the business model simulator and activate the simulator. During export,
fundamental errors such as missing of information may be found by the tool and mes-

sages shown to the user. These errors should be corrected before using the simulator.

Trigger Definition Window

o Tynanic Process Scope |0

Figure 8.14: Process Scope Described in a Trigger Occurrence

Entity, process and trigger occurrences are normally scattered across several Dy-
namic Business Model cards, but can be exported as a whole to the simulator. A trigger

occurrence includes all of the information that is needed to invoke the corresponding

170

process: i.e. the actions, preconditions, postconditions and IDs of the entity occur-
rences involved. Figure 8.12 shows one trigger occurrence (in diamond shape): the
trigger ID is 111, the process name is “Acknowledge Handed-In Practical”, the time

cost is 2 (units) and the process is to be activated at time 0.

Figure 8.13 shows the definition window for the trigger occurrence which includes all
of the information described above and control buttons which lead to other definition
windows for additional details. Figure 8.14 shows the additional definition window
Dynamic Process Scope which describes the entity occurrences that are included in
the process Acknowledge Handed-In Practical, in which entity types are automatically
generated based on the information specified in the corresponding procedural model.
Since entity occurrence information is changed every time a new trigger occurrence
is created, it is gathered by the user dynamically either through mouse or keyboard

interactions.

[(Stus 3 451 Tue fug 26 10:14:51 BST 1997

conpiling /hane/ jessicac/kbst-bn/sinulator/top,pl,, 3

consulting /hane/jessicac/kbst-bu/sinulator/library,pl,, b

Phame/ jessicac/kbst-bn/sinulator/Library,pl consulted, 10 nsec 456 bytes}
congulting /hane/ jessicac/kbst-bn/sinul ator/store.pl.,

hame/ jessicac/kbst-bn/sinulator/store.pl consulted, 0 msec 400 bytesh
consulting /hame/ jessicac/kbst-bm/sinulator/conflict.pl., >

hane/ jessicac/kbst-bn/simulator/conflict,pl consulted, 10 msec 10326 bytesk
consulting /hane/ jessicac/kbst-bm/simlator/cond,pl, b

hane/ jessicac/khst-bn/sinulator/cond,pl consulted, 30 msec 9936 bytes)
consulbing /hane/ jessicac/kbst-budsin stor/sxe,pl,, b

hame/ jessicac/kbst-bn/sinulator/exe.pl consulted, 20 msec 8816 butesh
consulting /hame/jessicac/kbst-bn/sinul ator/model.pl.. >

hane/ jessicac/kbst-bn/simulator/nodel.pl consulted, 10 msec 3636 bytest
consulting /hame/ jessicac/kbst-bm/simulator/derive,pl, b

hane jessicac/kbst-bn/simulator/derive,pl consulted, 20 msec 13712 bytes}
consulting /hane/ jessicac/kbst-bu/sinul stor/datacond, db, . 3

hame jessicac/kbst-bn/sinulator/data/cond,db consulted, 10 msec 3408 hytesh
congulting /hane/jessicac/kbst-bn/sinul ator/datasdyn.db. . .F

hame/ jessicac/kbst-bn/sinulator/data/dyn.db consulted, 10 msec 4000 bytesk
consulting /hane/ jessicac/kbst-bm/simulator/data‘entity.db, . .3

hane/ jessicac/kbst-bn/simulator/data/entity, db consulted, 0 msec 2528 bytesk
consulting /hane/ jessicac/kbst-bm/sinulator/data/process, db, ,

hane/ jessicac/khst-bn/sinulator/data/process,db consulted, 10 msec 4608 bytes)
consulbing Jhane/ jessicac/kbst-bndsinl stor/dstactrigger, ob,, b

hame jessicac/kbst-bn/sinulator/data/trigeer.db consulted, 20 msec 4176 bytes)

elcone to The Business Hodel Simulator for BSIN
his sinulator is a part of the tool KEST-BH

lease: activate this progran by typing top(4),

here as i is the nunber of steps required for sinulation,
t the end of the sinulation type lack to see results,

fhamed jessicac/kbst-bn/sinulator/top.pl compiled, 310 nsec 83488 bytesk
7- topil},

¥>>» Searching for Processes

¥r2» Searching for Triggers

¥2>» Searching for Triggers

393 Bearching for Triggers

nd Ting; 0

tep left: 0

lould you like to add new eccurrences to the systen? (y./n.}

nd of simulation, Simulation stops at timep 1
KRR export_data_to_srchive HkekkE
ysten States are saved in sim,out

Figure 8.15: Activation of The Business Simulator

The business model simulator can be activated from the Dynamic Business Model
or from any BSDM Cards. Upon activation, a window which runs the simulator is

opened and the user can give instructions for how many steps of simulations the system

171

should take. Figure 8.15 shows the window of the simulator (the simulator is written in
Prolog). In this example, the user has issued the command top(1) to enable the system
to infer one step (one system time unit). The system reports back to the user about
the progress of its actions and at the end of the execution asks the user for any new

trigger occurrences which can be imported from a Dynamic Business Model. Since the

user has decided not to supply a new trigger occurrence, the command “n.” was given.

The simulation has now come to an end.

I 7= look.
o enart dunantz susten state -
Shown State: 0 State Tine: M. It is now times O

v, "ES-p2’, [(Precticel’.i

ert_o ian To Hodule’, "ES-pl’, [(’Madule’.’ES’},(’Practical”,pl}l}.

7. Pl lifeststus, validd.
ent_oco_att('Practical Assign To Hodule’, "ES-p2”, lifestatus, validd,
ert_occ_att('Practical Assign Ta Module’. “ES-pl”, lifestatus, validd.
ent_occ_att(‘Practical”, p2, lifestatus, valid),

ent_occ_att('Hodule’, "ES", lifestatus, valid).

ent_oco_att(‘Person’, “John”, lifestatus, validi,
occ_begint "Person”, “John”. 1),
oce_end(“Person”, “John”, 23,

current_state<03.

stateco, time(03),

ledae Handed: in Prastical , 111, orisinate fasal entivy, dunfentoool Prastical Tur
7 JohnES-P1”,[¢"Practical fissign To Hod

ent_fun¢“Acknouledge Handed-in Practical”, "1117, refer_normal_entity, dun(ent_oce(’Module”,’ES",[13
BN

ert_fun(’Acknouledge Handed-in Practical’, "1117, refer_: . dynlent_occd"Person” .’ John”, T
n.

ical”

1 Fer_t - dynlent_occd"Practical Assign
RS

ded-in Practical”, ‘111", [a
Turn, T By Person’s 3
Fer_normal_entitu(Hodule”

tityé Practical Tum In By
foo

ye Practical

Figure 8.16: Simulation Result (1)

The initial state consists of a system state ID “0”, time 0 and all of the dynamic
information that was imported from the model. To see which state the system is
currently in, the ‘look.” command is issued in the simulator. This command can be
used at any stage when the simulator is not executing. Figure 8.16 shows the results
of the simulator. As was previously mentioned in Chapter 6, trigger occurrences are

represented in a trigger_information predicate:
trigger_information(Begin_time, Process_name, Trigger_ID, Action_list).

Since the above trigger occurrence suits the time requirement at time ’0’ and all
corresponding preconditions were satisfied at that time, this trigger occurrence is put
inside the process agenda. The trigger_information predicate is therefore deleted and

an agenda predicate inserted (also shown in Figure 8.16):

172

agenda(process(Process_name, Trigger_ID,Action_list, (Begin_time, End_time))).

At this stage, since no processes have been executed yet, no changes are made to
the dynamic state of the system. The system therefore still stays at “state 0” (the

initial state)® and has used up one time unit and stops before the entering of time 1.

| 7 topd23,

Y2393 Searching for Processes

>35> Searching for Triggers

Erd Tine: 1

Step left: 1

lould you like to add new occurrences to the systen? (y./n.)

It n,
>»>>> Searching for Processes

811 pracesses in the Agenda are given below:

Acknowledge Handed-in Practieal 111

* Searching for contradicatory processes...
No contradicatory processes found,

ould you like to execute processt

fcknouledge Handed~in Practical
Trigger 11; 111

KRR HRRERR R KRR K
B [Execution? (y/n y.

T T)
Process Execution Phase
GHERKIRRRKEERKRRERRRRR KRR
hecking the triagers....
hecking triggers succesd,
hecking then preconditions,,..
hecking presond succeed.
hecking the referred attributes...
| checking referred attributes succeed.
4 Checking the adding sttributes, ..
checking adding attributes succesd,
¥ Checking for the changing attributes...
checking changing attributes succeed.
* Executing the process ...
Process execution succeed,
 Verifying the postoonditions. ..
Verifying postconditions succeed.
3505 Searching for Processes
53555 Searching for Triggers
End Time:; 2
Step left: 0
lould wou like to add new oceurrences to the sustem? (y./n.)
BN
Erd of siuulation, Simulation stops at tine: 3
okkkk export,_data_to_archive Hhokx
System States are saved in sim.out

es
177 look,

--—---- report. dynanic system state ---—---
Shown State: 1 State Tine: 2. It is now bime: 2

Figure 8.17: Simulation Result (2)

The user has now decided to advance the system for another 2 time steps, hence
gives the command top(2). The process trigger is now matured (time-wise) and its
effects are realised. Figure 8.17 shows how the system operates and reports back to
the user. The user may decide to execute several processes at any time point, if there
are more than one matured processes. The user may also decide NOT to execute a
process and postpone the execution until later. However, if a matured process has
been postponed for too long (a pre-determined time span), a warning/reminder will be
given to the user. Note that before a process can be executed, various aspects must
be checked: the detection of any potential conflicts between any competing processes

(described in Section 6.5.2), the correct syntax of the triggers and its actions, the

5 End_time is the dynamic Begin_time when a process is in the agenda plus the necessary time cost to
execute the process.
6 A system state can only be changed if a process has been executed.

173

satisfaction of the process preconditions (stated by the user in the procedural model)
and any other pre-requisites for process actions (system built-in). If any of the above
checks fails, the execution is aborted and the user will be prompted with error messages
and advice. The aborted process execution can be continued in the next time step if

the error has been corrected.

After executing the process, the user may decide to issue another “look.” command
to the simulator to see the changes made to the system state. He/she will find that the
process has been executed and effects realised: the corresponding entity and process
occurrences and attributes have been created, and the state is now advanced to “state
1”7, because of the process execution. A full dialogue of this operation is given in

Appendix M.

In the above case, no conflicts between processes have been found. However, in a
case when a potential conflict is present the tool is able to detect that and report it
to the user. As mentioned in Chapter 6, the execution of processes and changes made
to the dynamic states of the business model can be described in a State Transition
Diagram. The user can use the business model simulator to help predict if the design

of the business model will allow the business organisation to behave in certain ways.

8.5 Conclusion

The process of developing BSDM’s business model is an iterative one. Parallel to the
development framework, which was summarised in Figure 8.3, is the plan-built-test-
refine development cycle as shown in Figure 8.5. The development process of a business
model is captured and represented in a WorkFlow diagram, which enables the user to
keep track of the current status of model development and the design rationale. As the
model is extended, the user can decide to carry out verification and validation checks.
If the user feeds the relevant process and procedural information into a model, further
validation checking can be carried out. Based on the checking results, the user can
modify the model to eliminate errors and repeat the plan-build-test-refine cycle until
the model is complete. The tool also helps the user to reuse and retain model building

knowledge.

In summary, KBST-BM provides a knowledge-rich system which enables the reuse,

174

verification and validation of business models. Its capabilities can be improved over
time due to its GMA component. As a result, it can be used to improve the quality of
business models and speed up the model building process. KBST-BM complies with
the method (BSDM) and can demonstrate the dynamic behaviours of a business model.
It can, therefore, be used as a communicator (especially for those who are not BSDM

professionals) and increase user confidence in the model.

175

176

Chapter 9

Evaluation of KBST-BM

9.1 Introduction

The functionality of KBST-BM was repeatedly evaluated and improved through the
actual use of it to build the different business models described in this thesis. The
usefulness of the tool has also been demonstrated when it was successfully used for
a large Multi-Perspective Enterprise Modelling project, AOEM, for (military) Air
Operations[45][10]. There, using KBST-BM, a BSDM Business Model has been built,
including 41 BSDM diagrams, describing 162 different types of entities and 28 different

types of processes.!

This chapter describes an evaluation of KBST-BM based on work carried out under
the PhD research, i.e. not including many further details on AOEM. The main part of
this analysis focuses on the level of support the tool provides for the method (BSDM),
although a brief comparison with other similar modelling tools and a discussion of our

experiences in using a logic-based method to provide such support are also included.

KBST-BM was built to test the idea proposed in the thesis: following a logic-
based approach, it is possible to provide automatic support for informal methods. As
mentioned in Section 7.6, business models in five different areas have been built using
KBST-BM as a part of the research. They are the standard and example business
models provided by the method, an industrial business model which was developed by
IBM for its client in the sector of automobile parts distribution, a generic business model

which was developed by myself for small and medium sized restaurants, a business

! The AOEM project has now been successfully concluded.

177

model developed by myself for course management and evaluation for the Department

of Artificial Intelligence (DAI), The University of Edinburgh.?

The actual use and evaluation of the tool has shown that it facilitates a level of
automation of modelling tasks and a support of the method that was previously not
available. The tool previously used by IBM BSDM experts, FlowMark[52], has none of
the sophisticated automation tools and only provides various documentation facilities
for BSDM. The aim of this chapter is to evaluate how well Al techniques can be
used to help business modelling activities; but not to assess the usability or user-
friendliness of KBST-BM or GMA. Once the conceptual experimental work is proven
to be successful, building industrial strength graphical user interfaces is better left to

interested commercial vendors.

The evaluation of how well KBST-BM supports the method uses the following

criteria:

o Completeness: how well the tool covers the user requirements which are needed

to apply the BSDM method.

e Model Verification Support: how well the modelling rules and guidelines that
BSDM specifies and which are used to check syntactic and semantic correctness
of a model are included in the tool. The evaluation assesses to what extent these
model rules are incorporated into the tool and used for verification and validation

purposes and why certain rules were not included.

e BSDM Development Process Support: how well the tool supports the
BSDM model development process. Does the tool support every model develop-
ment stage? Do the practitioners and modellers need to change their modelling

practices in order to use the tool?

¢ Knowledge Integration and Sharing: while it is useful to share model build-
ing knowledge, it is generally difficult to do so because the knowledge is normally
scattered around different documents to which not everyone has access and unique

model experiences can be possessed by several individuals. How well the tool can

2 Department of Artificial Intelligence has now been merged and forms part of the Division of Infor-
matics.

178

help to integrate these forms of modelling knowledge and make good use of it to
provide modelling guidances is the key question here. This test is particularly

carried out on GMA.

A comparison of KBST-BM with other similar tools, the Rose Business Process
Link (from Ensemble Systems Inc.) and AIOWIN (Knowledge Based Systems, Inc.), is

given in section 9.3.

9.2 Evaluation of Support for Method

9.2.1 Completeness Assessment

In this section, I evaluate KBST-BM against the user requirements of a typical BSDM
modeller and the standard BSDM method. It does not include any BSDM extensions
proposed as part of this thesis. The newly-added procedural model, the simulation
ability of the tool and the workflow diagrams provided in the tool are discussed in later

sections.

Business models are normally built during workshop sessions by business managers
and a BSDM facilitator (business model expert), who makes use of flip charts and
post-it notes for communication and documentation purposes. A diagramming and an
editing tool are used after the workshop to record this information. It was suggested
that the current tool in use (FlowMark[52]) is not satisfactory due to two main reasons:
it does not support the method, i.e. the tool does not provide direct support for the
BSDM notation nor its documentation, and the current tool lacks automatic facilities
such as communication and error checking — the tool offers process execution abilities,
but these are not applicable for BSDM processes. Therefore, a more suitable electronic

support tool is much needed.

At an early stage of this research, I held several meetings to talk to an experienced
BSDM business modeller (who later became the user of the tool) together with two AT
scientists to draw initial requirements for potential modelling support. These initial
requirements formed the foundation of the tool design. To gain early feedback the
tool was regularly demonstrated to and evaluated by the IBM expert (the intended

user) while the tool was under development. Each feedback was taken into account

179

during subsequent development work. The tool was given to the modeller for further

evaluation when it was finished.

Requirements Functions | Priority | Provision
IBM | AI
Entity:
Entity Definition 1 h l yes
Attribute Definition 1 h l yes
Attribute List 1 m l part
Entity Family Specification 2 m m yes
Show Entity Dependence 2 m m yes
Entity Dependence Check 3 l m yes
Entity Occurrence Example 2 m l yes
Entity Life States 1,2 m m yes
Process:
Process Scope Description 1,2 h l yes
Process Display 1,2 m l yes
Process Definition 1,2 h m yes
Process Generation 4 l m yes
Process Definition Check 4 l m yes
Others:
Search Ability 2 h l yes
Diagram Repositioning 2 m m yes*
Generic Model Library 1,2 m m yes
Generic Model Advisor 4 l h yes
Report Generation 2 h l yes
Process/Entity Matriz 2 m l no
Model Browser 1,2 h h yes

Table (1): Requirements And Their Priorities For Tool

o Functions:

1. Capture abilities: capture BSDM notation and descriptions,

2. Analytical and Communication abilities: automatic support for analysing and infor-
mation deriving, searching, model traversing, summarising of information, diagram
repositioning/layout and report generation.

3. Syntactical checking ability,
4. Semantical checking ability.

e Priority: indicates the priority for development from the user’s, the modeller’s, and AI’s
(or research’s) point of view. The user and the modeller’s view is given in the column
“IBM”, AI experts’ view s given in the column “AI”: h = high priority, m = medium
priority, 1 = low priority.

o Provision: Whether the function has been provided by KBST-BM: yes = provided, no =
not provided, part = partially provided.

o ¥ qndicates that the automatic diagramming layout facility is provided by the develop-
ment platform, HARDY.

180

Table (1) is an extension of a similar table originally presented in my MSc thesis[12],
and gives the list of the initial coarse-grained user requirements for the tool obtained
from these user requirement meetings. In this table, requirements are partitioned in
terms of which activities they support during model development: support provided
for entity and process modelling activities are grouped into "Entity’ and "Process’ cat-
egories; support which is applicable to all areas is grouped into the Others’ category.
There are roughly four different types of support functions (specified as 1 - 4) that
these requirements specify. A detailed documentation about the held user requirement

sessions is available in [12]. The initial built tool is described in [12] and [11].

Firstly, it is essential that the tool can accurately capture the correct shape of
the notations and forms used in the method. Having to borrow notations from other
methods would not only be confusing to the user, but might lead to misunderstandings
of the model itself. This type of requirement is described as function (1). Secondly,
the provision of analytical information, including the automatic generation of derivable
information, and communication facilities are important in assisting the modeller to
make sound design decisions and convey a clearer vision described in the model to the
user. These are described as function (2). Functions (3) and (4) describe the automatic

syntactic and semantic (error) checking of the model as described in the method.

Among the four specified functions, function (1) has been overall rated as the high-
est priority by the user, and lowest priority by AI experts since less Al techniques are
required to fulfill these requirements. These facilities allow the user to draw proper
entity and process models and record their properties in the corresponding (definition)
forms. Being built on top of Hardy, KBST-BM is able to utilise the diagramming fa-
cilities provided by HARDY to capture the ezact notations, i.e. the exact shape of
drawing and the correct way of using entity, process and dependence, in the method.
The definition forms in BSDM are also accurately captured in KBST-BM (implemented
in CLIPS which is the language supplied by HARDY): some with added functions, and
some with automatically generated derivable properties, but all are built in accordance
with the method. A ’yes’ is given at the “Provision” column to indicate that these
requirements are accurately fulfilled in the tool; this could simply be checked by com-

paring existing BSDM model diagrams and forms with those provided by the tool.

181

Although it wasn’t initially specified as a requirement for the tool and is therefore not
included in the table, some support for the BSDM concept of a ”Life Cycle Diagram”
has been provided, partly because it stores information which can be used by some of
the advanced features of the tool, such as automatic model properties inferencing and

simulation. Evaluation of these features will be discussed later.

Function (2) includes communication facilities which enable the user to browse,
traverse and examine the model and therefore provide a “communication” channel to
the user, as well as facilities which generate analytical (derived) information from the
model. The communication facilities are provided by KBST-BM. For example, the
user can browse through diagrams, entities and processes using the diagram and en-
tity /process browsers, the user can also traverse the diagrams following the hierarchical
tree structure which is presented at the top level of the tool. The user can also browse
diagrams and processes which include a particular selected entity. Together, these
facilities enable the user to examine the model from different perspectives, therefore

providing adequate communication support.

Analytical information about architecture and properties of the model is also pro-
vided by the tool and described in Function (2). It is derived using axioms and the
knowledge stored in the tool. One such example of inferred information is the content
of a process scope, which is determined from the actual drawing of a process and can
be used by the automatic modelling checker to decide if it is consistent with the scope
portrayed by the set of entity-functions. Other examples are the automatically gener-
ated Process Dependencies and Partial Execution Order diagrams and the summarised

information of all the entities and processes in the model.

Details of function (3) and (4) will be discussed in more detail in the next subsection.

9.2.1.1 Evaluation Summary

After the user requirements have been drawn, an initial tool has been developed and
was brought back to the original user for evaluation. The result of the evaluation was

satisfactory since the tool has met a majority of the necessary requirements.

Since then the tool has been extended and refined to reach its current form, KBST-

BM, and has provided all of the “Capture” facilities needed to describe and store

182

the fundamental information of a business model, except for one, the “attribute list”
which is only partially supported due to time limitations - although the recording of this
information is not provided by a specific facility, but it can be done using a conventional

Hardy hypertext or text card.

The majority of the required “Analytical and Communication” facilities are pro-
vided, except for the “Entity/Process Matrix” of BSDM, which was left out also due
to time limitations. The inter-relationships between entities and processes described
in the matrix can be gained using the “search by entity” facility which lists all of the
processes and diagram cards that involved the particular entity in question. These inter-
relationships have also been extracted automatically to derive Process Dependency and
Partial Execution Order Diagrams, which provide an aggregate and an useful overview

of entity-process relationships, as it has been mentioned in Section 6.4.2

Overall, all important user requirements have been fulfilled. The end product has
been successfully used to build experimental as well as industrial business models during
the PhD research. Further evaluation of the “Syntactical” and “Semantical Checking”

capabilities of KBST-BM will be discussed in more detail in the next subsection.

9.2.2 Model Verification Support Assessment

In this subsection, the model verification abilities which are specified as functions (3)
and (4) in the requirements table are examined in terms of the extent to which they

support the method.

Automatic syntactic and semantic model checking functionalities in the tool are
derived from the model rules in BSDM. They are formalised as model rules or guide-
lines in the system; the formal representation and explanation of them is detailed in

Appendices G and H, which also give the original references from the manual.

To test the tool, it is impossible to find realistic and detailed models which are in
use by industry and which exhibit all of the described errors in the method, as designers
work hard to avoid these. As a consequence, real models will not be sufficient for our
testing purposes, as they don’t possess all of the error examples. For this reason, I have
devised an example model (the DAI example) as our testing case, given in Appendix

E. T have also used error-injection techniques [91] to confirm the tool’s error testing

183

capability, i.e. to inject errors into the testing model and then test the performance of

the system.

9.2.2.1 Case Study

A realistic business model was developed for the Department of Artificial Intelligence
(DAI) in the University of Edinburgh® which was used to evaluate the tool’s auto-
matic model error detection and advice providing abilities. This model, referred to as
the DAI model in this thesis, captures fundamental information and operations which
are essential to the Al department to manage data about its students, evaluate their

performance and award earned credits.

There are in total 55 entities and 41 processes captured in this model. Applica-
tion domain knowledge is divided into five sub-areas which each forms a view: course
structure, personnel management, course evaluation, module evaluation and degree
evaluation. The entity model gives a relatively more complete skeleton of the overall
structure of DAI, where processes captured in the model are mostly related to the

assessment of student performance and awarding of credits.

O Soeg
= @ o g

BEE CIoE E

Figure 9.1: Overview of Course Structure in DAI

3 Department of Artificial Intelligence is now renamed as School of Artificial Intelligence, but since
DAI is used throughout this thesis when referring to the model, I keep the old name here.

184

The KBST-BM example window shown in Figure 9.1 describes an overview of the
course structure in DAI. Each of the type degree/diploma, certificate/credit, course,
theme and module which are known and offered by DAI are recorded as entity types
(class): “Degree/diploma”, “Certificate/credit”, “Course”, “Theme” and “Module”.
The actual courses, themes and modules which are offered each term are recorded as oc-
currences of these entity types, “Course”, “Theme” and “Module”, where each of them
is associated with a particular “Duration”, e.g. a course that is offered during autumn
term 1998. Entities which are placed at the second or third layers are contracts, relation-
ships and associations of their parents, e.g. an entity occurrence of “Degree/diploma
Taken by Person” is created when a person officially follows a degree/diploma with the
department; and an occurrence of “Course offered by Degree/diploma” is created when

a particular course is offered by a selected degree/diploma.

Figure 9.2 gives an example process “Take Course by Person”. This process states
that for a person to take a course, (s)he must also decide the theme that (s)he will be
taking for the course (if not already done so), that the selected course must conform
with the requirements of the degree/diploma that (s)he is pursuing, and that the chosen
theme must also confirm with the selected course. When a person has taken a course and
the according theme, the relationship between them is linked (with “Theme Selected

By Person For Course”).

F—nﬂ

EIEEI@ I F IS & 27000,

Take Course by Person

Deqree Aiploma
Type Course Ferson
Degree/diploma Degree/diploma Tgﬁgf;y selahcirendew Theme offered
suitable For Course Taken By Ferson o Ferenn) By COUrseE
- - > _

Theme selected By
Person For Course

Figure 9.2: Assign/Change/Cancel Course Performance Processes

185

The whole model is described in 34 separate cards (presented in windows) using
KBST-BM. To evaluate the model verification facilities, I have injected 465 errors into
the testing model. After errors had been injected in the model, the tool was used to
formalise the erroneous model, and a model verification was carried out. Appendix K
describes these errors in more detail and the model rules/guidelines which are respon-
sible for detecting them. We found that all of the errors known to the system, i.e. error
detections which are formalisable and have been formalised and implemented in the
tool, were detected by the system, but that an error can sometimes cause violations for
more than one rule/guideline. For example, a circular dependency error can add extra
layers to the model due to the newly introduced dependencies, which may as a result
add too many layers and introduce a violation of the 4-entity-layer rule. On the other
hand, as one would expect therefore, the removal of one error can sometimes remove

more than one violation.

As a consequence, the usefulness of advice given to the user depends on the execution
order of the rules/guidelines. For instance, for the above error, the more appropriate
advice for the user is the “circular dependency error” rule and not the “4-entity-layers”
guideline, since the former is the real cause of the problem. For an experienced modeller
this kind of error can be relatively easily corrected once it is identified. For a naive user,
this may not be so obvious. Fortunately, the system has classified BSDM rules into
model rules and guidelines, where model rules deal with more fundamental modelling
errors. Since it is normal practice to check on rule violations before dealing with
guideline violations, many of the above situations can be resolved. For example, in
the above case the user would have been given advise on the violation of the circular
dependency error, rather than the 4-entity-layers problem. When the problem is not
resolved in this way, the responsibility lies with the user to make a rational decision.
The following paragraphs elaborate on model verification ability assessment in more

detail.

9.2.2.2 Results

Model rules and guidelines which are formalised and provided in the tool can be dis-

tinguished into the three categories below.

186

o Ezact Match: These model rules/guidelines are given in the method explicitly and
all errors described by such rules are detectable by the tool and correct advice

can be given.

o Partial Match: These model rules/guidelines are given in the method explicitly,
but only a part of the specified errors are detectable by the tool with correct

advice given.

e No Match: These types of model rules in the method are completely un-

formalisable.

Exact Match

For this type of rule, all of the errors described in the method can be correctly
detected by the tool and accurate advice given whenever an error is detected. Consider

the following statement for dependence:

“As a general rule, entities have either two parents or none. This, how-
ever, is NOT an absolute rule, and you must treat it with caution.” (page

43 [36])

This description is formalised as a Null or two parents only guideline in the
formalism and is implemented accordingly in the tool. The actual formalisation is
given below. A detailed explanation can be found in appendix G. Since it has been
ezplicitly described as a general rule, but NOT an absolute rule in the BSDM manual,
it was formalised as a guideline in our system, i.e. it is only provided as a reference,

but not as a rule to be followed strictly.

As discussed in the previous chapters, to indicate this weaker enforcement of the
rule, a triangle symbol, >, is used. The below logic expression can therefore be read
as “if there exists a dependency (relationship) between a dependent entity (denoted as
Entity) and its parent entities (denoted as Parents), then the dependent entity should

have either no parents or two parents in this dependence.”*

* Dependent entity is also called a child entity in BSDM.

187

parent_type(Entity, Parents)
>
member_no(Parents) = 0V

member_no(Parents) = 2 (entity guideline 20)

Since the tool explicitly distinguishes between rules and guidelines, the activation
of guideline detection is separate from that of the model rules, and the advice that is
given to the user is less forceful. The explanation and advice given by the tool for the

above guideline is shown below.

“Fzplanation: wunder normal circumstances, an entity normally has
either none or two parents, i.e. a binary entity-relationship between the two
parents, since it is normally the most clear way to describe a relationship

and therefore the best way for modelling.”

“Advice: under special circumstances you can assign one parent to an
entity; if you have more than two dependencies linked to this entity, then
you either need to delete the spurious links, or create new entities which can
then be used to describe this missing relationship between this entity and its

parents, or only between its parents.”

Since the dependent entity can be seen as a “relationship” between its parent en-
tities, in the case when more than two parent entities are involved, it is possible that
either a spurious link is involved, or new entities should be introduced to capture the
missing relationship between them (page 18 and 43 in [36]). Other example rules of this
type are “Each entity should be originated by at least one process” and “Each process

should have at least one trigger identified.” (page 74 in [36] and page 62 in [37]).
Partial Match
Rules and guidelines that fall into this category are error cases which may not all
be detectable by the system. The inability of detecting all of them is caused by the fact

that it is impossible to record all knowledge which is necessary to detect all kinds of

modelling errors and for all kinds of business organisations. Particularly, since business

188

circumstances differ between companies and contradicting practices may exist between

them, it is not possible to generalise rules such that they apply to all companies.

For example, a rule which judges the appropriateness of the identified entities in a
model is to inspect the name of an entity, and by doing so some conceptual errors may

be revealed. This rule is given below.

“Things that are a representation of the thing are unlikely (entity)
candidates. For example, to include an entity named Purchase Order Form
in the model would be to substitute a piece of paper for the request that

the paper represents, e.g. Purchase Order”. (page 25 in BSDM manual [36])

“Avoid (using) words like form, documentation and note, unless that is

genuinely what the business is managing.” (page 39 in BSDM manual [36]).

To approximate this sort of modelling rule, we have devised a predicate
form_name(Name) which stores all of the known terms generally regarded as “rep-
resentation” of real things, rather than the “real things” that need to be captured in
the model. Given this knowledge, we can then use pattern matching techniques to
search for their usage in any user-defined entities. If any of these form names have
been used in any entity, we can then suggest that this entity name is not appropriate.
This rule is formalised as an entity model rule, “An entity is a representation of real

things”, and its formal representation is given below.

class(entity, Entity)

=

-IName. (form_name(Name) A sub_string(Name, Entity))
(entity model rule 10)

The effectiveness of such type of rules relies on accurate and sufficient generic busi-
ness knowledge being embedded in the system as well as business-specific input from
the user. When such knowledge is not available in the system, some common sense
must be applied by the user. It is not likely that the tool can provide a high coverage

of detection of such errors.

189

A further typical example is to determine whether an entity has been defined at an
appropriate level, i.e. if it has been over-specialised and could be generalised and/or
merged with other entities into a new entity. This type of error may be spotted by a
comparison to an automatically retrieved standard model from the case library, or by a
comparison with similar entity types included in the Entity Conceptual Hierarchy, but
the final decision must rely on the modeller’s judgement. More details about the use

of case-based reasoning will be given in subsection 9.2.4.

No Match

These types of modelling rules are un-formalisable due to the difficulty in gaining
a complete and comprehensive understanding of the application domain knowledge,
the common business knowledge, and/or the natural language involved. Examples of
this type of model rules are evaluation criteria applied to business models such as: “Is
each entity interesting enough to be managed (and described in the model)?” (page
74 in [36]) and “Does the business model cover the scope of the study?” (page 63 in
[37]). To answer these two questions correctly, one must have both an insight into the
specific business itself as well as some general business knowledge. The acquisition and

formalisation of such knowledge is outwith the scope of our research.

9.2.2.3 Summary

There are in total 60 rules/guidelines (Appendix G and H) derived from the method
which are implemented in 46 (Appendix J) sets of CLIPS rules in the tool. Around
70% of all BSDM model rules have been implemented.

Out of the 465 system-known errors which have been injected into the model, a
majority of model rules/guidelines (85%) detect all of the specified errors, and are
therefore classified as Fzact Match. A smaller portion (15%) of these rules detect only
some of the corresponding errors and therefore are categorised as Partial Match. More

detailed information is given in Appendix J.?

190

Knowledge of Business

1
1
|
! | Process Mapping
1
1
' 1 e Identify Processes
. . l | 3
Entity Mapping . 1. I dentify Originate Processes
1 1 .
2. Identify Change Processes
- Identify and Define Entities . yehang
! 1
I 1
| 1.identify Candidate Entities Lo 1
1 . .
\ 2. Create Working Diagrams ! 1 .
Establish Pr
L-. 3. Verify the Entiies L4 stablish Process Scope
: 4. Create Formal Diagrams : E_ B 1. Identify Process Scope
! 5. Define Entities X | 2. Summarize Process-Entity Interactions
: : o :
| ' Lo '
1 1
: 9 Identify and Define Attributes 1 : 5 Define Processes
| 1
X 1. Identify Candidate Attributes | | _ 1. Identify Triggers
t- - 2. Review Attributes : :- 2. Document Business Rules
3. Define Attributes . |
Lo '
1 1
| ! ! 6 Define Attribute Processing
] 1
X | :_ B 1. Document Value Rules
e X 2. Document Derivation Rules

Figure 9.3: Summary of Model Building Stages for Entity Model

9.2.3 BSDM Development Process Support Assessment

9.2.3.1 BSDM Business Model Building Process

The approach of BSDM and its practitioners towards building a business model is firstly
to divide the whole of the application domain knowledge (the business knowledge) into
sub-domains. The sub-domain knowledge is then captured and recorded in wiews or
local maps of a business map. The summation of these views and local maps is called a
master map which is also called a Business Model. The developers can build a master
map by starting with the construction of a chosen view or local map. BSDM provides
a detailed incremental step-by-step model building procedure for the practitioners.
Figure 9.3 is taken from a BSDM manual and summarises the necessary stages in

producing a business model.

Within each view, one firstly builds an entity model (Entity Mapping), then based

on this entity model, one can build a process model (Process Mapping). This work-

5 Out of these formalised model rules, some (17%) of them are classified as folklore rules; and some
(28%) are classified as enhanced rules.

191

ing process is sequential, incremental, iterative and flexible. It is sequential, because
activities are carried out in a sequential order. It is incremental because the activities
carried out at later stages are based on data provided at earlier stages. It is iterative,
because the modeller will go through several modelling cycles of adding new data to the
model and regularly reviewing the model to identify possible improvements. It is flexi-
ble, because designers have the freedom to choose the order of the subject area (view)
to work on and can decide to omit the specification of some knowledge for pragmatic

reasons.
9.2.3.2 Evaluation of Representing BSDM Development Processes

Since we have seen that the BSDM development process is incremental, sequential,
iterative and flexible, we shall examine if the support tool has similar characteristics.
The workflow diagram is an integral part of KBST-BM and is used as electronic paper
to capture the above development process and assist the user in using the tool in

modelling development.

The workflow diagram captures and represents the BSDM development process in
a hierarchical structure. It provides notation to capture all domain-specific concepts.
For instance, the representation of sub-domain knowledge in views, the activities car-
ried out to produce maps, and the stages involved in each activity. Table (2) shows
the conceptual mapping between BSDM’s terminology and that of the tool’s workflow

diagram. Figure 9.4 shows a hierarchical view of how these concepts are linked in the

tool.
BSDM | Work Flow Diagram Content Example Instance
view view sub-domain business knowledge order view
activity process a list of actions entity mapping
stage action actions to be carried out identify entities

Table (2): Mapping between BSDM and KBST-BM Work Flow Concepts

At the highest level of a workflow diagram is a “Business Domain Knowledge
Overview” where each view in the domain is represented and recorded. Each view
leads to a sequential three-step work process: entity mapping, process mapping and
procedural mapping (the procedural mapping is not included in the method, but is

provided with the tool, therefore it is also included in the workflow diagram). The

192

View-1 View-2
Entity Process Procedural
Mapping Mapping Modelling
View-3 View-4
Business Mapping Processes
Business Domain Knowledge Overview
Identify Create I dentify +
Candidate—= Working —= \ée:lzy - Ee?(nl; - Identify + . — Define Entity
Entities Diagrams ntites n Define Entities Attributes
Business Actions Business Actions
o000

Figure 9.4: Hierarchical View of Development Process in KBST-BM

tasks which are to be carried out for each mapping process are specified as actions.
Since each BSDM modelling building stage may be further decomposed, the tool also
provides the facility to break down actions into a more detailed granularity. As shown
in the figure, the business action “Identify and Define Entities” has been decomposed

and represented at a more detailed level of business actions.

The workflow diagram gives a framework for using the tool which is consistent with
the working procedures specified in the method. Furthermore, since each view, process
and activity is represented as model concepts in the tool, the usually more intangible
factors such as working status and design decision rationale can now be recorded via
their attributes as a part of model development, and therefore support the BSDM

development method.

As an integrated part of KBST-BM, the use of the tool was found to be compliant
with the principles of the BSDM development method. The designer can sequentially
follow the workflow diagrams and use the tool to iteratively build a business model. The
built knowledge can be incrementally added to using the tool. It gives the designer the
flexibility to choose which part of the business area to work on. If a part of the model
is left un-finished, errors may be found by the tool. However the designer may choose
to “ignore” the recommendations and decide to come back to correct the model later

- the tool merely points out the errors with possible corrections, it does not force the

193

designer to comply.

Two essential aspects of KBST-BM support for BSDM its iterative and incremental

model building style which will be discussed further in the following two sections.

9.2.3.3 Evaluation of Support for Iterative Development Cycle

Pn —> Bild — T —> Refine

I A E

Figure 9.5: The plan-build-test-refine development cycle

Model building is an iterative process, following the “plan-build-test-refine” devel-
opment cycle shown in Figure 9.5. In the context of BSDM, this iterative building cycle

is indicated by the directions pointed out by arrows as shown in Figure 9.5.

One key activity carried out in this process is “test”, i.e. the detection of errors
(model verification) and inappropriateness (model validation) that exists in the model.
Because of the complexity and variety of knowledge required to make a good judgement
in testing a model, this review process is conventionally done by hand. The automatic
model verification ability enables KBST-BM to support the development cycle, in part
because this facility can be used given only partial knowledge. It is suitable for error
detection at all stages throughout entity mapping and process mapping. As mentioned
earlier in this thesis, all of the verification model rules and guidelines can be applied
independently of each other. The user can select “focus” areas to work on to avoid too
many errors/inconsistencies being report by the tool. At early stages of model building,

it can also be used as a reminder for adding missing information.

The model validation facility can be used for process mapping. It is accomplished
through information provided in procedural models. This newly added model type
has been kept compliant with the method, because its content is based on the BSDM
concept of entity functions and their relationships with processes. BSDM processes,
which originally could only be modelled in a declarative way without definition of any
actions that can be carried out by them, can now be simulated through the use of the

procedural model. Automatic model validation is only available when a process model

194

has been built and an appropriate procedural model has been derived. It can reveal
errors in both the entity and the process model, since it captures the dynamic aspects of
the entity as well as the process models. In summary, KBST-BM supports the iterative
development cycle because it supports the planning of the model (by using workflow
diagrams), building of the model (by using KBST-BM BSDM cards), testing of the
model (by using the verification and validation facilities of the tool), and refinement of

the model (using all of the above facilities).

9.2.3.4 Evaluation of Information Passing

In BSDM’s business modelling method, all information that is entered into entity mod-
els is later on used as a basis for process modelling. This is the incremental aspect
of the model development. For instance, the life cycle status of an entity is closely
linked to the life status of a process which is responsible for manipulating this entity.
Another example are the significant attributes of an entity which may determine the
validation of a process execution. In BSDM, processes retrieve data from and store
data in entities, though they manipulate only data of entities which are in their process
scope. User-defined attribute rules, which constrain what manipulations are permitted
on the attributes, and business rules which may involve more than a single entity are

also used for process operations, because these rules control process execution.

A closer look at how KBST-BM incorporates this close relationship between
BSDM’s entities and processes shows that the system is able to capture the exact
definition for entities and processes as they are described in the BSDM manuals, and
is therefore able to capture the corresponding boundary between entities and processes
as well as the subtle relationship between them. In the tool, entities are the constituent
body of a process and are related to a process through entity functions. The attributes
and business rules are captured within an entity and are accessible to any process which
needs to use them. Furthermore, trigger and entity function information which is spec-
ified in a process model is extracted and used to derive a standard procedural model.

Overall, KBST-BM information passing closely follows that of BSDM itself.

195

9.2.3.5 Summary

BSDM is an incremental, sequential, iterative and flexible method. These properties
are also reflected in KBST-BM. The important facilities in the tool which provide
this support for BSDM Business Model development are the workflow diagrams, the

automatic model verification and the validation functions.

9.2.4 Knowledge Integration and Sharing: An Evaluation of GMA

Various types of knowledge and capabilities are used to help build a sound and ap-
propriate business model. These are normally found in the following sources: (1) the
standard and example business models provided by the method, (2) real and generic
business models from industry, (3) the standard entities that are normally used in a
business model which are captured in the entity families and from the method; (4) the
conceptual relationships between entities from the method and from experience; (5) the
ability to detect model errors and adhere to standard design practice; (6) the ability to

retain and reuse knowledge from model building experiences.

It is the case that the stake-holders of this knowledge are scattered around different
places and that only very experienced modellers will have full access and the ability to
use them. Since the possession of such knowledge is essential for good quality model
building, it would be advantageous if this knowledge could be integrated in a tool and

shared between modellers.

In this subsection, we will evaluate how the Generic Model Adviser (GMA) compo-
nent of KBST-BM integrates the above knowledge to help the user develop models. As
mentioned in Chapter 7, GMA is a Case-Based Reasoner. Its main task is to provide
a framework for organising and storing past modelling experiences, and to provide a

mechanism to produce references and guidances for new model building projects.

The evaluation was concerned with the following issues: (1) to which extent can the
tool provide a starting point to help build a new model; (2) how capable is the tool in
helping to detect model errors by retrieving the appropriate reference models; (3) how
well can the system help to retain new knowledge and store it for future reuse. In short,
I am interested in determining how well the tool can help to speed-start model building,

encourage good modelling practice and accumulate model building knowledge.

196

Althoff et al [2] proposed an evaluation framework to test both the theoretical
and practical aspects of Case-Based Reasoning systems. They have also carried out
comprehensive tests and reviews on several CBR systems. Since some of their evaluation
methods are appropriate to GMA, their testing methods were adopted and used in this

thesis — the testing results given in subsections below.

9.2.4.1 Types of Business Models

As previously mentioned in Section 7.6, five types of business models which have been
developed based on four different resources are included in the Generic Model Library.
They are the standard and example models from the BSDM method, the industrial
models in the automobile and restaurant domain, and a business model built for the

education domain (the DAI model).

The standard and example models from the BSDM method are included because
they capture the typical way of describing common business scenarios for most indus-
tries, which makes them a useful resources to provide advice. They are also useful in

the sense that they provide a standard for model building exercises.

The argument for including the automobile example is three-fold: a) it provides a
real, industrial example of a large multi-national company, b) it is an independently
developed model, and c) it is very useful in determining whether the Case Based Rea-
soning techniques used are helpful in giving advice in a very specialised domain given

only generic knowledge, or knowledge in a similar but different domain.

Although the business model built for small and medium-sized restaurants is rela-
tively small, it covers most of the common and important operations in the business
domain, such as customer enquiring, billing and invoicing. The model is, therefore,
relatively generic and can be used as a test case for this very important modelling
domain. Furthermore, it can be reused to provide concise advice and an overview of

the important concepts for other different business examples.

The DAI business model describes an education domain example and was built to
help the development, testing and improvement of KBST-BM. Although it covers a
different domain from most of the models stored in the library, it is nevertheless a

legitimate business model and, therefore, serves as further evidence that KBST-BM is

197

a generic modelling tool. The model did, however, not play an essential role in the
evaluation of GMA in this thesis, due to the lack of sufficient similar models. Due to
its importance as an external, industrial model, the automobile case study is explained

a further detail next.
9.2.4.2 Case Study: The Automobile Model

We were able to obtain part of a real industrial model which was developed by an in-
ternational automobile parts company.® A part of the model has been used for testing
the capability of GMA: these parts are the business areas of “order”, “parts”, “rules”
and “marketing information”. There are in total five views involved, where each view
describes a particular business area. The reason why we have chosen these business
areas is that they are more commonly seen across industries. Although, as an inter-
national automobile parts company it follows a specialised business logic which fits
its requirements, we nevertheless would expect to find some common features between

these models and our generic models.

The model is described in two parts: a graphical model which is presented in several
views and a separate supporting textual document for the model which is written in
English. Both, notational and textual information, has been successfully captured using
KBST-BM. The relevant textual information of corresponding notation is associated
with the notation using its definition forms in the tool. Since GMA focuses on the
semantics and architectural information described in the graphic model, the textual

information is not used by GMA.

An example textual information of an entity, Customer Order, is given below:

Entity Name: Customer Order

Description: a request to supply one or part types and
services that WE* are prepared to offer, which once confirmed,
becomes a contract. It may not be a recognised part number. It

must be a recognised customer to take order.

6 The company wishes to keep their identity confidential.

198

Inclusion: Forward Orders, Advanced Orders.

Life Cycle: Received, Accepted, Rejected, Cancelled.

Note: the rules by which a received order is validated prior
to acceptance can vary significantly according to the type

of order.

An example view, “Supply and Distribution: Order”, of the industrial model is
given in figure 9.6 as it is captured using KBST-BM. BSDM models are organised in
views in both, KBST-BM and GMA.

BlEE ECk B

‘View NHame: Supply and Distribution: 0rdEr|

Figure 9.6: An Industrial Example Model

In the following subsections, I shall use this model as well as models mentioned
in Chapter 7 and subsection 9.2.4.1 to test the ability of GMA. Appendix C gives a
detailed account of this industrial model which is captured and produced by KBST-BM;
Appendix A lists all of the generic models in the generic model library.

All of the test results below were obtained using the built-in similarity assessment

199

heuristic in GMA as described in section 7.9.3. An example GMA consultation output
is given in Appendix L.

9.2.4.3 Test I

In this first test, I checked the ability of GMA to help the user to have a head start
building new models. It was assumed that the user provides only very little information
for the GMA to look for the appropriate cases, but expects GMA to provide some
relevant examples. I carried out these tests by providing the input data model with
(1) only short view names, (2) view name and few key entities and, (3) view name and

some key entities and their dependencies.

I have chosen to use view names, entities and dependencies of different degrees of
sufficiency in order to test the capability of GMA, since when a modeller decides to build
a model, the first things he/she must decide is which business area to work on (view),
the fundamental concepts/actors/products/binding/things involved (entities) and the
relationships between them (dependencies). The test was designed to determine how

well the system behaves when given only partial information.

Working with the Generic Model Library described in Appendices A, B, C, D and
E, three sets of partial models in the business area of “customer order”, “rule” and
“purchase invoice” (represented in view names) were used as input to test the ability

of GMA to retrieve the correct, relevant models.

Test I Results:

1. Given only view names, does the system retrieve ANY relevant model

(where there is one available) ?

customer order: yes
rule: no (the current implementation performs partial

‘‘rule’’ is not part of any

matching; since
known view name, no model is retrieved. Skip
question 2 for this set of data)

purchase invoice: yes

200

2. Given only view name, does the system include ALL relevant matches

in its retrieval 7

customer order: yes (retrieved 2 good matching cases)

purchase invoice: yes (retrieved 2 good matching cases)

3. Given view name and partial model, i.e. two to three key entities,
does the system retrieve any good matching models (i.e. where there
is one available)? What is the recommendation order (in 1st place,

2nd place, etc.)?

customer order: yes, 1 and 2 (given 2 entities retrieved 13 cases)

rule: yes, 6 (given 2 entities retrieved 12 cases,
p.s. GMA was able to retrieve relevant
models without any matching view names.)

purchase invoice: yes, 1 and 2 (given 3 entities retrieved 12 cases)

4. Given view name, three key entities and two dependencies, does

the system recommend good matches? What is the recommendation order?

customer order: yes, 1 and 2
rule: yes, 6

purchase invoice: yes, 1 and 2

The experiments show that even when given only partial data, the system was able
to retrieve relevant reference cases, if any existed in the library. The matching result
is influenced by the view name of the data model, e.g. the view name “rule” fails to
match any generic model in experiment 1. However, in the absence of a matching view
name, GMA can still retrieve good matching cases from the library as long as some

entities and dependencies are provided. This is desirable, since the system should not

201

rely on the user’s knowledge about GML for matching, but should provide relevant

models through similarity analysis based on the modelled context.

During our experiments, we found that case models which have greater matching
numbers (i.e. the number of matching dependencies) with the test model are given
higher priority. However, when there are equal numbers of matching, the smaller sized
cases are presented first. For example, say 2 reference models called cases A and B, have
been found to have 2 pairs of matching dependencies with the user model. However,
since case A includes 4 dependencies and case B has 8, case A is presented first because

it has a greater matching ratio (2/4 ; 2/8).

This result is beneficial for the user, because smaller reference models are normally
easier to understand and can provide confirmation for a portion of the user model.
Moreover, in the current library, most of the small-sized models are standard models
extracted from the method itself. They can give a good introduction to the user before

more complicated and specialised models are introduced.

9.2.4.4 Test I1

This experiment tested the correctness and robustness of the matching mechanism of

GMA.

GMA uses indexing features to distinguish one business model diagram from an-
other. Its successful application, therefore, heavily relies on the appropriateness of the
chosen indering features. To achieve high quality performance, it is equally impor-
tant that the similarity assessment function of GMA is suitable for the domain since
it decides what is a better match. Therefore, this test determines whether the indez-
ing features chosen for BSDM’s Business Model and the similarity assessment function

chosen for GMA has been appropriate.

To evaluate the correctness and robustness of the system, noisy models are being
used as input to test the capability of the system. Initially some reference models from
the case library have been chosen as input data with some fixed portion of information
randomly deleted from them, i.e. having 0%, 10%, 30% and 50% of their entities, the

corresponding dependencies and view names deleted. We then observed if the system

202

can still fetch the correct case models and recommend them in a reasonable preference
order.

To enlarge the test base, we included the automobile (parts) company’s model
(Appendix C) in the case library, and chosen three representative case models from
each of the three main sources: i.e. “Customer Order and Delivery” (from the BSDM
method), “Employee Management” (from the restaurant example), and “Rule” (from
the automobile company example). (Although only three test examples are reported

here, we tested the tool with more examples during the development of the system.)

Test II Results:

1. Delete 0% of information from the initial model and its view
name, does the system recommend the initial model? If so, what

is the recommendation order?

Customer Order and Delivery: yes, 1
Employee Management: yes, 1

Rule: yes, 1

2. Delete at least 10% of information from the initial model and its
view name, does the system recommend the initial model? If so, what

is the recommendation order?

Customer Order and Delivery: yes, 1 (delete a level 3 entity)
Employee Management: yes, 1 (delete a level 1 entity)

Rule: yes, 1 (delete a level 2 entity)

(p.s. when an entity is deleted, the associated dependencies

are also deleted.)

3. Delete at least 30% of information from the initial model and its

view name, does the system recommend the initial model? If so, what

203

is the recommendation order?

Customer Order and Delivery: yes, 1 (delete 5 out of 14 entities,
the deletion are evenly
distributed in the model)

Employee Management : yes, 1 (delete 4 out of 12 entities,
the deletion are evenly
distributed in the model)

Rule: yes, 1 (delete 3 out of 7 entities,
the deletion is on the same

path.)

. Delete at least 50% information of the initial model and

its view name, does the system recommend the initial model? If so,

what is the recommendation order?

Customer Order and Delivery: yes, 1 (delete 7 entities)
Employee Management: yes, 1 (delete 6 entities)

Rule: yes, 1 (delete 4 entities)

. Delete at least 70% information of the initial model and its view

name, does the system recommend the initial model? If so, what is

the recommendation order?

Customer Order and Delivery: yes, 1 (delete 10 entities)
Employee Management: yes, 1 (delete 9 entities)

Rule: yes, 1 (delete 5 entities)

. Randomly choose another view ‘‘Customer Order’’ from the

restaurant example. Have its view name and 70% of the model

deleted. We check if it confirms the above result.

204

test 1: delete the entities from left to right, top to bottom.

Result: the intended model is retrieved and at the first place.

test 2: delete the entities from right to left, bottom to top.

Result: the intended model is retrieved and at the first place.

Our test results consistently show that although a lot of information was lost in the
testing model, the intended reference model was always retrieved and given in a highly
favourable order (in our test examples, they are in the first place which is the most
favourable position). This test raises our confidence in the correctness and robustness

of the system.

Although the above tests have been proven to be successful, we can imagine cir-
cumstances where the system may not produce similarly successful results, i.e. instead
of using a correct partial model, it gives an erroneous model with vital mistakes. For
example, a business model which uses an entirely wrong view name or a partial business
model which is grossly mis-represented. When the input model is given in such a way,
it will misguide the system to believe that it is more similar to another reference model,
hence the retrieval case will be less likely to be successful. We, however, believe that

the modellers normally have sufficient judgement not to make such vital mistakes.

9.2.4.5 Test III

In this test, the automobile business model has been taken out of the case library and
used as input data, which leaves standard and example BSDM models, and restaurant
models in the case library. Since the automobile model has been independently de-
veloped by and for a real business, it is a good testing vehicle to demonstrate if CBR
techniques can be used to contribute to general business model building exercises. I
have chosen two business areas from the model, views “Order” and “Rule”, because
some of the case models in the library cover such areas. The test was to determine
if GMA can retrieve similar cases from the library, given sufficiently different model

architecture and entity names.

205

Test III Results:

1. Was any case retrieved, if there is a similar case existing in the

library?

Order: yes

Rule: yes

2. Are similar cases retrieved? If so, are they recommended in

a favourable order?

Order: the best and good matched cases were present in the
first and second place.

Rule: the best match was presented in the first place.

3. Are there any favourable cases which are given a much lower

priority?

Order: one relevant but not the best matching case could be
given a more favourable order.

Rule: no, since there are not many relevant cases in the library.

For each of the above chosen views, GMA was able to retrieve some similar reference
models for it, and present them in a reasonable order of preference with similarity
analysis. The quality of the matching obviously is closely linked to the cases stored in
the library. In our situation, we do not have the full access to all the industrial models.
Therefore, we could not have a well-balanced library. The testing result, however,
shows that although some of our cases in the library are much less complicated and
smaller in scale and most of them are indeed in a different domain of business, useful
similarities (in the same business areas across sectors) have still been identified using

GMA. We also found that cases highly recommended by the system cover the best or

206

good matching models, although sometimes relevant (not the best) matching cases are

given a lower priority than deserved.

Interestingly, the system also identified case models which describe different business
areas exhibiting significant similarities in their architecture to the test model of which
I was not aware before running these tests. Such matching cases bring to people’s
attention how business practices are similar to each other. This result also provides
useful indications to help software engineers to understand and decide the business

function boundaries when designing their systems.

9.2.4.6 Discussion

One vital step for a Case-Based Reasoner is its ability of retaining new knowledge for
future reference. Given the above newly acquired industrial automobile model we were
able to retain all of this model into our case library and integrate it with the rest of
the knowledge base using KBST-BM. The correctness of the newly built model relies
on a joint effort of the human and the automatic verification and validation abilities

provided by KBST-BM.

The fact that KBST-BM integrates with GMA provides a more complete framework
for CBR, including automatic indexing of input data, retrieving relevant cases from the
library, comparing and analysing input with selected cases, revising cases for current
problems, verifying and validating input, and retaining new input for future reference.
We claim that with this support we are able to enhance the level of knowledge sharing
and problem solving ability. Indeed, not only new business models can be automatically
exported from the case library, the newly built business model can also be integrated
into the library. This bi-directional knowledge flow provides a fuller support towards

completing the development life cycle of building business models.

9.2.4.7 Summary

In our experiments, we found that GMA can provide relevant reference models given
incomplete information. Its matching ability is sound and consistent throughout mul-
tiple tests, and appears robust against noisy data. All similarities and differences

between the new model and the retrieved reference models are listed, each with reasons

207

and remedy explained. One real industrial model was obtained for testing our case
library. It showed that although its scale and domain is much different from our cases
in the library, similarities have been identified which demonstrated the value of reusing

knowledge and the usefulness of GMA.

A part of the vital cycle of CBR is the retention and reuse of newly acquired
knowledge. We were able to retain all parts of the industrial model using KBST-BM
and integrate them in the case library, thus making them available in the full modelling
system KBST-BM. Verification and validation of the correctness and appropriateness
of the newly acquired model is supported by KBST-BM which together with GMA

provides fuller support throughout the modelling life cycle.

9.3 Comparison with Other Support Tools

As mentioned previously in Section 2.5, Two types of modelling tools are currently
available: those which primarily provide drawing and documentation facilities, and
those which also provide process simulation functionalities. This section looks at two
representative modelling support tools and compares them with KBST-BM (and GMA).
The rationale of our selection for tools was based on the relevance of the domain that
the tool was built for as well as the acceptance of the selected tool by practitioners in the
business modelling community. I have firstly chosen Rose Business Process Link which
is a business modelling tool based on an extended method which is a part of UML.
UML is one of the most widely used Object-Oriented (O0) modelling languages. OO
methods are well-established and widely used by software engineers and more recently
by business modellers. I have also chosen the AI0 WIN business process modelling
tool. AI0 WIN is a “knowledge-oriented” tool which is developed and distributed
by Knowledge Based Systems Inc. (KBSI), a reputable company in both software

engineering and knowledge management communities.

Both tools are well-established and widely accepted by their users. An introduction
to each tool is given, followed by a brief comparison between these tools and the tools
presented in this dissertation. Our aim is not to determine which tool is a better one,
nor will we give an extensive usability comparison. Instead, our discussion will focus

on the potential support that the modelling tools can provide for the user.

208

9.3.1 Rose Business Process Link and Rose Planner Link

Rose Business Process Link (RBPL) is a business modelling tool developed by Ensemble
Systems Inc. who have been closely collaborating with Rational Software Corporation
(RSC) and have developed several software packages for it in the past. The tool,
RBPL, adapts and extends the Activity Diagram of UML (Unified Modelling Language)
for its business modelling method. As business modelling methods have been used to
understand a business and to capture business requirements, it is often the starting
point of a software system development project. This tool, therefore, is often used in
practice in conjunction with Rose Planner Link (also developed by Ensemble Systems
Inc.), and which provides a framework, the Rational Unified Process, for software system

development.

Based on the extended method, RBPL enables the user to describe a business’
workflow, activities, actors, business objects, responsibilities of actors, events, business
decision points (branching decision for the next activities) and the synchronisation
of activities. These modelling elements are organised in a hierarchical browser which
allows the user to traverse the model easily. Although the facility of a simulation for the
workflow is not provided, it supports a ”story-boarding” facility which allows the user
to step through a business workflow and therefore enhance its communication ability
for its users. It also automatically generates reports and the finished model can be

exported to the object-oriented modelling tool Rational Rose.

RBPL is a typical (conventional) modelling tool which supports specific modelling
methods with its elaborated electronic record keeping facilities. The issues of quality
assurance, extraction/derivation and presentation of embedded information, or pro-
vision of guidance for good modelling practice for the built models are left out, and
which are the essence and motivations for our tool KBST-BM. In other words, none of
the advanced features that are possible through the formalisation of models and model

building knowledge in KBST-BM, are supported by RBPL.

9.3.2 AIO0O WIN

AI0 WIN [49] is a business function and process modelling tool developed by Knowledge

209

Based Systems, Inc. (KBSI).” It is based on the Activity Based Costing (ABC) method
which provides an evaluation means to determine the performance of a business activity
and to identify the sources which cause cost and limit profits. It, therefore, provides a
means for the managers to carry out activity-based cost-benefit analysis. To support
the use of ABC, AI0 WIN utilises the functional modelling method IDEF(0 [65] as
a framework to enable its users to capture, visualise, build and analyses a business
environment. The information which is stored in AI0 WIN can also be exported to
a set of other tools which are mostly also built by the same company: e.g. process
simulation tools, spreadsheet packages, data modelling tools, cost calculation tools,

and project management tools.

Among them, ProSim, the process simulation tool, takes the output from AI0 WIN
and simulates the business workflow which was portrayed in AI0 WIN. ProSim uses its
own process modelling language (an adaptation of IDEF3) to enable the user to specify
business processes in more detail. Since ProSim is related to our work, I will combine

it with AI0 WIN in our comparison below.

AI0 WIN is similar to KBST-BM in the sense that they both are a business support
tool and that they both provide automatic support to help the user build models of
an underlying business method, i.e. ABC/IDEF0 and BSDM. They are also similar in
the sense that the underlying methods are similar in principle: they are both business
models; they both use graphical notations to capture ”things” in the world and use
natural language to define and describe these things; they both capture processes and
are concerned not only with the static but also the dynamic side of the world. Above
all, both tools try to provide automatic support to some degree to help the user better

understand the model, avoid erroneousness, and produce higher quality models.

ProSim takes output from AI0 WIN and simulates the process model using sta-
tistical simulation methods: processes are instantiated, frequencies of events assigned
and resources allocated before and during the execution of a simulation. These pro-
vide a measurement for efficiency analysis on the current design and bottlenecks of
the process can be identified. In order to make use of this method, additional system

parameters, such as various frequencies and amount of resources have to be added.

" KBSI is a company which was commissioned by the U.S. Air Force to develop several parts of the
IDEF method which later became a standard method for software systems development.

210

KBST-BM on the other hand makes use of symbolic reasoning techniques which infer

system behaviours based on the existing business model.

A further important difference lies in the level of abstraction at which processes
are modelled. The processes used by ProSim contain more details of the business that
is being modelled and can, therefore, more easily mapped onto a company’s opera-
tions. In KBST-BM processes are logical business processes, they are at a higher level
of abstraction. Although details of data used by a process are specified clearly and
the relationships between them are well described, the relationships and constraints
between processes are only specified when necessary which allows more flexibility in

implementing BSDM processes.

These differences are probably rooted in the different motivation for the two do-
mains. In a process modelling domain, the modelling purpose often lies in the im-
mediate improvement on efficiency and effectiveness of current working procedures,
which are often influenced by the introduction of new machinery, products, change of
practices and allocation of resources. The designed process models often take current
circumstances and technologies into account and are therefore designed in greater de-
tail. The designed processes are “immediately implementable” but will have to evolve

or be abandoned as a result of changes in circumstances.

By contrast, processes which are described in a BSDM business model capture
business logic which is core to a business operation. Therefore, these processes are
relatively robust and can stay unchanged for a long time. They are also independent
of current technologies or any other limitations that an organisation may have, e.g. no
particular machinery or technology will be assumed for use in these processes. The
detailed (implementation) requirements and actions within and between processes are
often not specified. The resulting business models, therefore, are not limited to any
particular implementation. Although the implementation details are not given in the
model (by the user), it is important to note that KBST-BM can still simulate these
processes, although at a more abstract level, and therefore gain an insight into their

dynamics (the purpose of our procedural model).

AI0 WIN, in general, focuses more on providing high quality facilities to capture

and structure business related knowledge. It also focuses on communication with other

211

tools. It, however, does not provide guidance in model building or error correction.

KBST-BM, on the other hand, focuses on this.

A number of other business modelling support tools are available. They mostly
provide an electronic record keeping and organising system. Most of them do not pro-
vide method-dependent and/or domain-dependent verification and validation support
for the built model and therefore entirely rely on the modellers’ effort to produce a
sound product. Some business process modelling tools when given sufficient details can
produce a simulation of the process which provides verification and validation support

to some degree.

The gap that is still left to be filled for all of the current tools is to provide automatic
support beyond record keeping and simulation functions. The novelty of the approach
and the tool developed in this dissertation lies in the provision of a mechanism that
empowers a tool to “understand” a model and therefore provide support at the semantic

level with embedded modelling knowledge.

9.4 Conclusion

In this chapter we have evaluated KBST-BM and GMA with respect to the level of
support which they provide for BSDM’s business modelling method. Theoretical and
empirical tests have been carried out, where appropriate. A real industrial model was

obtained and used to show the fitness of GMA.

We have also compared KBST-BM and GMA with two other existing, representa-
tive business modelling tools. Unlike the tools developed in this dissertation, existing
industrial tools were found to have little, if any, support for pro-active model building
guidance, automatic error detection and amendment. They also did not provide con-
tinuous support throughout the modelling development life cycle. Furthermore, these
industrial tools lacked KBST-BM’s ability to provide adaptive support that evolves

through time to provide a better quality of modelling guidance to its users.

It was shown that based on a logical formal method, we are able to form a coherent
knowledge base which integrates expertise of different resources, which allows us to pro-

vide model guidance, verification and validation, development life cycle management,

212

and can improve its knowledge through time (by updating and enriching its case library

in GMA).

213

214

Chapter 10

Conclusion

Enterprise Modelling (EM) methods are interesting to the business community, because
they offer ways of analysing and “redesigning” an organisation which may lead to
significant improvement in business performance. They are also interesting to the
academic research community, because despite of their wide acceptance and potential
benefits for businesses, there are still a variety of open problems which are not satisfied
by any single existing EM method.

One particular problem is quality assurance of the produced models. Several reasons

for this problem are explained below:

o Awailability of expertise: a modern enterprise today is a virtual entity which con-
sists of many sub-organisations which are distributed across different geograph-
ical areas, each possessing different expertise. Hence, it may not be possible to
have all of the persons with the right expertise (who are normally senior and/or
middle-level managers) available for model development. Furthermore, the re-
quired expertise may change as companies have to react — adapting their goals

and processes — to today’s fast changing global economies.

e Lack of comprehensive evaluation method: Most EM modelling methods do not
provide a comprehensive evaluation method for the models they build. As a
result, a standardised evaluation and appraisal of the quality of models cannot

easily be obtained. Therefore, the quality of the model cannot be ensured.

e Informal or semi-formal modelling context: Since parts of such methods incor-

porate natural language text, it is difficult to perform detailed verification and

215

validation on the models (due to the ambiguities inherited from the informality

of natural language).

Lack of modelling support facilities: An enterprise-sized model is often domain-
specific, knowledge-rich and comparatively complex. In addition, the modellers
need to keep in mind the technical details of the method they are using. Since
few people posses good knowledge of both, to achieve an efficient and effective
modelling process, a proper (software) tool should ideally provide the knowledge
required for the specific business domain as well as direct support for the method.
There is currently a lack of such tools, which means that more generic, domain-

independent tools need to be used instead.

Flexibility in representing a domain: As is the case in most modelling activities,
there is no single correct way to describe a domain. Several different models may
all be acceptable and describe a domain sufficiently correctly. The decision of
which model is better suited for a domain may, therefore, not be a clear-cut one.
This also contributes to the difficulties in determining a good model since several

different models may be rated similarly.

Time pressure: Very few projects can enjoy the luxury of not having to deal with
strict time constraints. In the model building context this means that after the
model has been created there is often not sufficient time to carry out systematic
and comprehensive model validation and verification, since due to the lack of
appropriate tools this would take a significant amount of time, especially when

dealing with model dynamics (see below).

Lack of efficient and effective knowledge transfer means: Enterprise modelling
methods are intended to help knowledge transfer through their models, but this
requires sufficiently wide use of a particular method that people can communicate
through. However, most methods do not have wide usage at this stage. A tool
which conveys the semantics of the model using alternative intuitive visualisation
or simulation techniques can ease the communication between people and could

thus be very helpful in the transfer of knowledge.

216

o Dynamic aspects of a model are complex: An enterprise modelling method nor-
mally captures the static structure of the targeted domain, but often also implies
and/or prescribes the actual activities to be carried out. As many of these dy-
namic activities may be happening concurrently and interacting with each other,
to understand the impact of them becomes in general a task too complex for
un-aided human reasoning. It is therefore important that these processes can be

simulated and effects demonstrated clearly by a software tool.

All the above problems are shared by many EM methods. This is not surprising
considering that they have a common fundamental characteristic: they are either infor-
mal or semi-formal, i.e. a large part of their models are described in natural language.
To provide a highly expressive EM language which captures and describes any ver-
satile (business) domain, a certain degree of informality is perhaps unavoidable. The
informality existing in the modelling method provides the flexibility necessary to model
any domain and express anything worth mentioning, but it at the same time also in-
troduces uncertainty to its quality. As a result, the semantics of these models may
be interpreted differently by different people. Furthermore, two different models may
seem to be describing the same scenario, i.e. the interpretation of the two models can
be the same.

The interesting issue here is, therefore, to understand how one can introduce formal-
ity to such an informal method without disturbing the practice of the original method,
or in other words, how can one gain the benefits of a formalised approach without

having to cope with the disadvantages that usually come with it.

10.1 A Formal Approach

The primary objective of this research was to develop an approach for using AT tech-
niques to improve the model development process in informal modelling methods, with
the particular emphasis on the process for quality evaluation and assurance. Despite
its importance for the EM field, very little work has been done in this area so far.

A light-weight formal approach was proposed in this thesis, i.e. instead of applying
a comprehensive formalisation of all aspects of an informal modelling method, formal-

isation was carried out where it is appropriate. This approach avoids the prohibitively

217

high cost normally associated with a “heavy-weight” formal approach, but still enjoys
benefits of precision gained from applying a formal approach. It can also be argued
that a heavy-weight formal approach would not be feasible in this domain, since not all
necessary knowledge is available for formalisation. The proposed light-weight formal
approach is based on a new formal language, DefBM, which was adapted from the PIF
core class hierarchy. Since PIF is one of the more accepted process language, business
processes described in DefBM inherit this generality. It will, therefore, be easier to

communicate with other process models.

DefBM is a formal language based on First-Order Predicate Logic (FOPL). FOPL
was chosen because it offers a declarative, precise and concise notation which promotes
intuitive understanding of the described semantics. These characteristics are effective
in clarifying ambiguities exhibited in the informal method. Furthermore, FOPL is
supported with a sound inference mechanism which allows automatic deduction to be

naturally performed on the acquired information.

The light-weight formal approach proved to be useful: it captures valuable knowl-
edge effectively and facilities the integration of different types of knowledge. The use
of this knowledge can help reduce the time required to design and refine new business
models, and the quality of models can be improved, since through the formalisation of
the models using DefBM errors that previously would have been very difficult to be

discovered can now be found through automated deductions.

The disadvantages of deploying FOPL is that not all of the informal knowledge
can be formalised and used for automatic reasoning. This disadvantage, however, may
not be avoidable even if a different computational method has been used, since such
type of support often requires background knowledge which may not be available. One
other disadvantage of using FOPL is that the users require training before they can
understand the formal representation — this also applies to any other computational
languages used. Nevertheless, this drawback is not very significant, if a suitable user
interface and explanation facility is provided. In that case, the user may never need to

see the underlying formal representation, as is true in the case of KBST-BM.

To address the problem that not all modelling knowledge can be captured using

a formal method, Case Based Reasoning techniques were employed. CBR provides

218

us with two main benefits: 1) modelling knowledge that is not well understood can
be inferred and used by referring to the standardised and past models, 2) modelling
knowledge is enriched and critiquing abilities improved by collecting a larger set of
models over time. The disadvantage of applying CBR in our experience is the difficulty
of acquiring a large set of real industrial models. It was, thus, very useful that BSDM
provides a catalogue of standard models. However, more reference models are needed
to take full advantage of CBR techniques. To overcome this problem, I have developed
a few realistic business models on selected domains which provide examples for using
and testing the approach. Within a company making use of business modelling, this

problem is not likely to be serious, as they can add their own models over time.

Based on the above formal approach a three-layer framework was created to fit
BSDM’s modelling activities. This framework was useful because it not only suggests
a structure as to where and which AI techniques fit in the modelling activities, it
also extends the existing BSDM modelling activities to an automatic execution phase
without disturbing the practice of the original method. This framework adds value to
applying BSDM, because the modellers receive method-specific guidelines and critiques
without extra effort, and alternative modelling options are suggested where appropriate

as a part of the framework.

10.2 The System: KBST-BM

KBST-BM was built as a proof of concept for the proposed formal approach. Before
building KBST-BM, a few issues had to be considered. For instance, what type of
automatic support is useful to the modellers? What kind of knowledge is needed to
provide such support? Is this knowledge available? Is it generic or method- and/or
application-domain dependent? If such knowledge is available, can it be formalised and
realised in a computational tool? What kind of support would the user be particularly
interested in? To obtain answers to some of these questions, user requirements meetings
were held regularly with the main user type for the tool, a BSDM business modeller,
during the early stages of tool development. During these, user requirements were
drawn and prioritised which provided a useful and reliable foundation for building the

initial tool.

219

The next task was to collect standard and practical modelling knowledge that Al
techniques can manipulate to provide useful automatic support. The modelling knowl-
edge was found embedded in several different sources: the method, the business models,
the modelling experts and the domain experts (when a specific application is involved)
and all of them were informal. The next task was, therefore, to formalise the knowl-
edge as far as possible and to apply suitable AI techniques which take full advantages
of them. This process was very much an experimental task, as there isn’t a clear guide-
line for which knowledge will be useful for which modelling task and how the various
modelling support may fit together. After several iterations through the development

process, the combined tools of KBST-BM and GMA were produced.

This work has demonstrated how key components of an originally informally speci-
fied method, BSDM, and its business models can be formalised using first order predi-
cate logic and realised in a support tool KBST-BM. Having achieved this transition from
an informal to a formal representation of models and modelling rules it was possible to
provide guidance and consistency checking during the life cycle of a model — making
use of techniques such as case-based reasoning. The tool was also able automatically to
derive knowledge from the model which was initially not known. For example, business
process dependencies and their partial execution order constraints can automatically
be determined. It also allowed us to complement the original method with a model
execution phase — using the Procedural Model. This extends the scope of BSDM and,
more importantly, it adds to our understanding of how this kind of seemingly informal

method can fit into parts of the design lifecycle which require formal models.

The underlying formal representation of the model and the modelling knowledge
together with the appropriate inferencing engines provide the modeller with support
throughout the iterative Plan-Build-Test-Refine process, i.e. the planning, building,
testing, error correcting and re-fining of the models are all supported. The modeller
can use Work Flow Diagrams to keep track of the model development process. To gain
a quick head start in model building, the General Model Advisor, GMA, can be used
to provide standard and past models for the current business domain. During model
building, the automatic model management and verification facilities of the tool can be

of assistance. GMA is used to retrieve similar models from a case library and compare

220

them with the newly built model. Advice is given to the user, if any discrepancies are
found. The modeller can repeat the iterative Plan-Build-Test-Refine cycle as often as

necessary.

To explore the system dynamics of the built model, i.e. how the processes interact
with each other and change the business world, Process Dependency and Partial Eze-
cution Order diagrams are automatically drawn to provide an initial overview. Since
this knowledge has not previously been available to the method and does not require
any additional input from the user, this is a direct benefit of using formal methods.
A simulator was built to further explore and demonstrate the dynamic behaviours of

models, which is based on a model extension, the Procedural Model.

Throughout the model development life cycle, the developed tools provide significant
aid for modellers wanting to achieve a high level of confidence in their models. This
is possible because of the incorporation of domain-specific knowledge about business
modelling into the system, which in turn allows much of the complex and often tedious

work of model validation and verification to be pushed into the software.

It should be noted that none of the basic techniques applied here are specific to
business modelling. Hence, other modelling domains that need to deal with infor-
mal and/or semi-formal information may benefit from the same an approach. The
results of this research have proven useful and sufficiently generic when a similar ap-
proach was successfully used in a later project, AOEM[45], which extended KBST-BM
to KBST-EM to include in total seven different types of enterprise models, includ-
ing BSDM, IDEF3, Role Activity and Communication Diagram (RACD)[9] and UML.
Overall around eighty diagrams and 200 pages of textual documentations have been
produced which also proved the extendibility of the above tool. Under the same project,
KBST-BM was used as a working tool to build a real industrial business model which
consisted of 41 BSDM business diagrams describing 162 different types of entities and
28 different types of processes.

10.3 Evaluation of The KBST-BM

KBST-BM was built as a proof of concept to test the idea, proposed in the thesis, that

based on a logic-based approach useful automatic support can be provided for informal

221

methods. The intended users for the tool are mainly BSDM business modellers. To
help build, refine and then evaluate the developed tools, a set of business models have

either been collected or newly created for different domains.

A business model, the DAI model, which describes course management and eval-
uation of student performance for the former Artificial Intelligence Department, the
University of Edinburgh, was initially built to provide a realistic business model which
makes use of the tool. In addition, standard and example business models provided by
the method, an industrial business model which was developed by IBM for its client
in the sector of automobile parts distribution, and a generic business model which was
developed by myself for small and medium sized restaurants have also been used to test
the rule-based and case-based engines and other peripheral facilities in KBST-BM. All
of the above models are stored in the Generic Model Library which provides reference

models for the Case Based Reasoning engine, GMA.

Theoretical and practical evaluations have been carried out on the tool using the
above models. Although other models are also included, the DAI model was mainly
used to test general facilities in KBST-BM. The rest of the models were primarily used
to test the ability of the Generic Model Advisor (GMA), since they describe similar
business domains. Furthermore, to test the capabilities of GMA, an integrated part of

KBST-BM, the Althoff et al[2] evaluation framework was adapted and used.

To evaluate KBST-BM, four criteria were considered. Firstly, Completeness As-
sessment : how well the tool covers the user requirements which are needed to apply
the BSDM method. At the early stages of tool development, work meetings were held
regularly with a real business modeller, the intended type of users for the tool. Feed-
back was collected from the user during these meetings and used to refine the tool.
At the end of these initial stages, an evaluation was carried out. Since most of the
requirements were successfully implemented and the additional tool support features
did not disturb the original modelling practice, the review of this part of the evaluation

was highly satisfactory.

Secondly, an evaluation of the Model Verification support has been carried out
to determine the coverage of tool support compared with guidelines provided by the

method. The DAI model has been chosen as the test case and was injected with errors

222

using error-injection techniques[91]. Three types of test results have been identified:
Ezact, Partial and No Match. Exact and Partial Match are model rules (and guidelines)
that are explicitly given in the method and which were successfully formalised. No
Match is the case when model rules are not formalisable. Exact and Partial Match
rules are implemented in the tool for error-detecting and advice-giving: Exact Match
rules discover all of the included errors, whereas Partial Match rules discovers part of

them.

The reason for the inability to detect all possible errors is caused by the fact that it
is impossible to record all knowledge which is necessary to detect all kinds of modelling
errors and for all kinds of business organisations. Particularly, since business circum-
stances differ between companies and contradicting practices may exist between them,

it is not possible to generalise rules such that they apply to all companies.

No Match model rules tend to be quite high level which therefore require (com-
mercial) experiences and relevant generic and specific background knowledge to make
a good judgement. Unfortunately, as mention earlier, it is impossible to obtain this. In
fact, it is probable that different business modellers may make a different or even con-
tradicting recommendation for the model. One further obstacle identified during the
evaluation is that much information is given in the informal description of the business
model. To formalise this would require sophisticated natural language processing abil-
ity equipped with sound background knowledge as mentioned above, which has been

outside the scope of this thesis.

It is fair to say that it is probably impossible to provide a complete quality proof
for a business model. Hence the motivation during this research to provide partial
verification and validation based on a light-weight formal approach, and not to attempt
to formalise every aspect of the method and the produced model. The overall test
results were nevertheless encouraging. The majority of model rules (85%) detected all
of the targeted errors. A smaller portion of model rules (15%) only partially detected
errors. Such model rules provide quality control beyond pure syntactical checking.
They extended model checking to include model semantics, which made the developed
tools superior compared to model support that is currently available in other existing

tools.

223

Thirdly, a theoretical analysis has been carried out to determine the extent to which
the tool support covers the different stages of the business model development life cycle.
BSDM is an incremental, sequential, iterative and flexible method. These properties
were also found to be the case for KBST-BM, which provides the concept of a workflow
diagram to capture the various steps in BSDM’s development life cycle to provide a

framework for using the tool in the context of BSDM modelling.

As an integrated part of KBST-BM, the use of the tool was found to be fully
compliant with the principles of the BSDM development method. The designer can
sequentially follow the workflow diagrams and use the tool to iteratively build a business
model. The built knowledge can be incrementally added to using the tool. It also gives
the designer the flexibility to choose which part of the business area to work on, and
when and how to fix an error. KBST-BM merely gives suggestions which allows the

designer to make the final decision.

KBST-BM was found not only to provide full support for BSDM model develop-
ment, but also to promote effective management during model building exercises by
providing facilities for recording design rationale and current working status (which

was not originally supported by the method).

Finally, a series of test have been carried out to determine the degree of tool support
for integration and sharing of modelling knowledge that are scattered across different

resources. This part of the test was primarily focusing on the CBR engine, GMA.

Three issues were of main concern: (1) to which extent can the tool help building a
new model; (2) how capable is the tool in helping to detect model errors by retrieving
the appropriate reference models; (3) how well can the system help to retain new
knowledge and store it for future reuse. In short, the test was to determine how well
the tool can help to speed-start model building, encourage good modelling practice
and accumulate model building knowledge. The evaluation method was adapted from

Althoff et al’s[2] evaluation framework.

In our experiments, we found that GMA can provide relevant reference models given
only little, discrete information. This means new, usually smaller, models can get a
head-start by learning from existing standard models. The matching ability was sound

and consistent throughout multiple tests, and appears robust against noisy data. All

224

similarities and differences between the new model and the retrieved reference models
are listed, each with reasons and remedy provided. One real industrial model was
obtained for testing. It showed that although its scale and domain is much different
from the cases in our library, similarities could still be identified, thereby demonstrating

the value of reusing knowledge and the usefulness of GMA.

It has also been shown that knowledge that exists in different knowledge sources
can been integrated and used to provide a ”collective” knowledge base for advise and
reuse — this has been demonstrated by a combinational use of GMA and KBST-BM. A
part of the vital cycle of CBR is the retention and reuse of newly acquired knowledge.
We were able to retain all parts of the industrial model using KBST-BM and integrate
it in the case library, thus making it available in the full modelling system KBST-BM.

In addition, a comparison of KBST-BM with other similar existing tools has been
carried out. We coarsely divided existing modelling support tools into two categories:
the type of tools which primarily provide capturing and report-generating functions
for specific modelling methods, and the type of tools which, in addition to the above
functions, also provide simulation facilities. In particularly, two typical modelling tools
of each category, the Rose Business Process Link (from Ensemble Systems Inc.) and

AI0 WIN and ProSim (Knowledge Based Systems, Inc.) have been looked at in detail.

In general, in both categories of tools there is very little, if any, exploitation of
the knowledge that is implicit in the models that have been captured through the
corresponding documentation features of the tools. This is primarily due to the fact
that there is no underlying formalisation and logical representation of models and model
building knowledge built into these tools. Consequently, they are unable to provide the
type of semantics-based modelling support that is offered by KBST-BM and GMA.

While most other tools only provide support at the beginning of the development
life cycle, leaving the task of verification, validation and refinement of the built model
to the modellers, simulation tools, such as ProSim provide V & V to some extent.
However, the simulation is carried out at a lower level of abstraction and requires
a significant additional input from the user. In comparison, KBST-BM extracts the
necessary information for process simulation from the model already developed. Its

processes are also at a higher level of abstraction and therefore less prone to changes

225

in company procedures or use of specific technologies.

In summary, KBST-BM provides useful automatic support which fits well with the
BSDM model development process. The advice given was sound and adequate, as it
adheres to BSDM guidelines. The support has proved to be useful and time-saving.
It has been successfully used for a later project, Air Operations Enterprise Project[45]
and is currently used in the IRC AKT project[14]. In both projects, KBST-BM has
been extended using a similar formal approach and tool design rationale as the ones

describes in this thesis.

Although the work described in this dissertation makes a valuable contribution
towards building better business models, the possibility of errors remains. Unless there
is a way of making sure that all domain and modelling method knowledge has been
built into a tool such as KBST-BM and all informal aspects of EM methods can be
eliminated, absolute proof will not be possible. For these reasons, I believe that future
work should not focus on achieving the illusive goal of absolute correctness, but that
further research be carried out in applying similar techniques described here to the
domain of software development methods. Since increasingly business models are built
as a first step of building a software system, there may be great benefits in investigating
the link between these two activities and how the formalisation approach presented in

this work could be exploited.

226

Bibliography

[1]

2]

[3]

[4]

[5]
[6]

[7]

(8]

[9]

[10]

[11]

James F. Allen, Henry A. Kautz, Richard N. Pelavin, and Josh D. Tenenberg. Rea-
soning About Plans. Morgan Kaufmann Publishers, Inc., San Mateo, California,
1991.

Klaus-Dieter Althoff, Eric Auriol, Ralph Barletta, and Michel Manago. An Al
Perspectives Report: A Review of Industrial Case-Based Reasoning Tools. An Al
Perspective Report. Al Intelligence, P.O.Box 95, Oxford OX2 7XL, 1995.

J. Barber, S. Bhatta, A. Goel, M. Jacobsen, M. Pearce, L.. Penberthy, M. Shankar,
and E. Stroulia. Integrating Case-Based Reasoning And Multimedia Technologies
For Interface Design Support. In Artificial Intelligence In Design, Editor: J. G.
Boston, Kluwer Academic Publisher, 1992.

Alfs Berztiss. Software Methods for Business Reengineering. Springer-Verlag New
York, Inc., 1996.

G. Booch. Object oriented design with applications. 1991.

Grady Booch, James Rumbaugh, and Ivar Jacobson. The Unified Modelling Lan-
guage User Guide. Object Technology. Addison-Wesley, February 1999.

Jonathan P. Bowen. Seven more myths of formal methods. IEEFE Software, 7(5):11—
19, September 1990.

Jonathan P. Bowen. Ten commandments of formal methods. IEEE Computer,
28(4):56-63, April 1995.

Yun-Heh Chen-Burger. A knowledge based multi-perspective framework for enter-
prise modelling. Informatics Division Technical Report, University of Edinburgh.,
February 2001.

Yun-Heh Chen-Burger. Knowledge sharing and inconsistency checking on multi-
ple enterprise models. International Joint Conference on Artificial Intelligence,
Knowledge Management and Organizational Memories Workshop,IJCAI 2001,
Seattle, Washington, USA., August 2001.

Yun-Heh Chen-Burger, David Robertson, John Fraser, and Christine Lissoni.
Kbst: A support tool for business modelling in bsdm. Proceedings of Fzpert Sys-
tems 95: Applications and Innovations in Ezxpert Systems III, Cambridge, UK,
December 1995.

227

[12]

[13]
[14]

[15]
[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

Yun-Heh (Jessica) Chen-Burger. Kbst: A support tool for business modelling
in bsdm. Msc. thesis, The Artificial Intelligence Department, The University of
Edinburgh, 80 South Bridge, Room E17, Edinburgh EH1 1HN, September 1994.

CACI Products Company. Simprocess. http://www.simprocess.com.

AKT Consortium. http://www.aktors.org, October 2000. Interdisciplinary Re-
search Collaborations (IRC), Advanced Knowledge Technologies (AKT) Project.
Partners: University of Southampton, Aberdeen, Edinburgh, Sheffield and Open
University, UK.

Rational Software Corporation. http://www.rational.com/index.jtmpl, 1999.

Alan M. Davis. Software Requirements: Objects, Functions and States. Prentice-
Hall, Inc., 1993. ISBN 0-13-805763-x.

Department of Defense. Framework for Managing Process Improvement, December
1994. http://www.dtic.mil/c3i/bpred/3003.html.

Department of Defense. ABC Guidebook, June 1995.
http://www.dtic.mil/c3i/bpred/.

John Dobson and Ros Strens. Organizational requirements definition for infor-
mation technology systems. Technical report, Department of Computing Science,
University of Newcastle upon Tyne, NE1 7TRU, 1992.

E. Domeshek, J. Kolodner, and C. Zimring. The design of a tool kit for case-
based design aids. Proceedings of the Third International Conference on Artificial
Intelligence in Design, 1994.

Hans-Erik Eriksson and Magnus Penker. Business Modeling with UML: Business
Patterns at Work. John Wiley and Sons, 2000.

B. Faltings. Case Reuse By Model-Based Interpretation. in Issues and Applica-
tions of Case-Based Reasoning in Design, Editor: M. L. Maher, P. Pu, Lawrence
Erlbaum Associates, Hillsdale, N.J., 1997. pp. 30-60.

International Organization for Standardization. Human centred design processes
for interactive systems. ISO DIS 13407. http://www.iso.ch/.

M. S. Fox and M. Gruninger. Enterprise modelling. AI Magazine, AAAI press.,
pages 109-121, Fall, 1998.

John Fraser and Ann Macintosh. FEnterprise State of the Survey, The Enterprise
Consortium. Artificial Intelligence Applications Institute (ATAI), ATAIL, The Univ.
of Edinburgh, 80 South Bridge, Edinburgh EH1 1HN, UK, September 1994.

Michael Friedman and Jeffrey Voas. Software Assessment: Reliability, Safety,
Testability. John Wiley and Sons, Inc., 1995.

Norbert E. Fuchs. Specifications are (preferable) executable. Software Engineering
Journal, September 1992.

228

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]
[41]
[42]

[43]

[44]

Norbert. E. Fuchs and David Robertson. Declarative specifications. The Knowledge
Engineering Review, 11(4):317-331, 1996.

Michael Hammer and James Champy. Reengineering the Corporation: A Manifesto
for Business Revolution. Harper Business, May 1995.

J. H. Harrington. Business Process Improvement: The Breakthrough Strategy for
Total Quality, Productivity, and Competitiveness. McGraw-Hill, New York, 1991.

Inc. High Performance Systems. Ithink. http://www.hps-inc.com.

T.R. Hinrichs. Towards an architecture for open world problem solving. Pro-
ceedings of CBR workshop, pages pp. 182-189, 1988. Morgan Kaufmann, San
Francisco.

David Hollingsworth. Workflow Management Coalition, The Workflow Reference
Model. Workflow Management Coalition, Avenue Marcel Thirty 204, 1200 Brussels,
Belgium., 1994.

IBM. Business System Development Method: Business Mapping. IBM Education
Services, Sudbury, July 1994. IS03 Course Notes.

IBM, London, UK. Business System Development Method, Introducing BSDM,
2nd edition, May 1992.

IBM, UK. Business System Development Method: Business Mapping Partl: En-
tities, 2nd edition, May 1992.

IBM United Kingdom Limited, 389 Chriswick High Road, London W4 4AL, Eng-
land. Business System Development Method, Business Mapping Part2: Processes,
2nd edition, May 1992.

Ensemble Systems Inc. Rose business process link (rbpl). http://www. ensemble-
systems.com, 2000. Business Modelling Support Tool Integrated with Rational
Rose Tool Set.

Artificial Intelligence Application Institute. http://www.aiai.ed.ac.uk/
project/enterprise.
Artificial Intelligence Application Institute. http://www.aiai.ed. ac.uk.

IDS Scheer International. Aris toolset. http://ids-scheer.com/english/index.php.

Technology Economics International. Bpsimulator.
http://www.reengineering.com/articles/jun96/techwtch.html.

Ivar Jacobson, Maria Ericsson, and Agneta Jacobson. The Object Advantage -
Business Process Reengineering with Object Technology. Addison Wesley, 1995.

J.E.Dobson, A. J. C. Blyth, J. Chudge, and M. R. Strens. The ordit approach
to organisational requirements. Requirements Engineering: Social and Technical
Issues, 1994. London, ed. Jirotka and J.A.Goguen, Academic Press.

229

[45]

[46]

[47]

[48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

[57]

[58]

Defense Advanced Research Projects Agency (DARPA) Program Joint Force
Air Component Commander. Air operation enterprise modelling project.
http://www.darpa.mil/iso/jfacc/index.htm. 1999-2001.

NASA Johnson Space Center (JSC). C Language Integrated Production System.
Clips 6.0 Reference Manual. Software Technology Branch, June 1993.

Martin King. Knowledge reuse in business domains experience with ibm bsdm.
Technical report, Artificial Intelligence Application Institute, 1995.

Inc. Knowledge Based Systems. Business process modelling tool: Ai0 win and
prosim. http://www.kbsi.com/software/ai0win.htm.

Inc. Knowledge Based Systems. http://www.kbsi.com/, 1998.

Janet Kolodner. Case-Based Reasoning. Morgan Kaufmann Publishers, Inc., 2929
Campus Drive, suite260, SanMateo, CA, USA, 1993.

Jintae Lee, Michael Gruninger, Yan Jin, Thomas Malone, Austin Tate, Gregg
Yost, and other members of the PIF working group. The pif interchange for-
mat and framework. The Knowledge Engineering Review, 13(1), March 1998.
http://www.aiai.ed.ac.uk/project/pif/.

Frank Leymann and Dieter Roller. Business process management with flowmark.
IEEE, 1994. 1063-6390/94.

Excel Software Ltd. Win ad and mac ad. http://www.excelsoftware.com, 2001.

Ann Magcintosh, Ian Filby, and Austin Tate. Knowledge asset road maps. Pro-
ceedings of The 2nd International Conference on Practical Aspects of Knowledge
Management, October 1998. Basel, Switzerland.

M. L. Maher, B. Balachandran, and D. M. Zhang. Case-Based Reasoning In
Design. Lawrence Erlbaum, 1995.

M. L. Maher and A. Gomez de Silva Garza. Developing case-based reasoning for
structural design. IEEE Expert, Intelligent Systems and Their Applications, 11(3),
June 1996.

Thomas W. Malone, Kevin Crowston, Jintae Lee, Brian Pentland, Chrysanthos
Dellarocas, George Wyner, John Quimby, Charley Osborne, and Abraham Bern-
stein. Tools for inventing Organizations: Toward a handbook of organizational
processes. Centre for Coordination Science Massachusetts Institute of Technology,
1993.

Richard Mayer, Christopher Menzel, Michael Painter, Paula Witte, Thomas Blinn,
and Benjamin Perakath. Information Integration for Concurrent Engineering
(IICE) IDEF3 Process Description Capture Method Report. Knowledge Based
Systems Inc. (KBSI), September 1995. http://www.idef.com/overviews/idef3.htm.

230

[59]

[60]

[61]

[62]

[63]

[64]

[65]

[66]

[67]

[68]

[69]

[70]

[71]

[72]

[73]

[74]

Richard J Mayer, Michael K Painter, and Paula S deWitte. Idef family of
methods for concurrent engineering and business re-engineering applications.
http://www.idef.com, Knowledge Based Systems Inc., One KBSI Place, 1408 Uni-
versity Drive East, College Station, TX 77840-2335, USA, 1992.

Chris S. Mellish. Computer Interpretation Of Natural Language Descriptions. Ellis
Horwood Limited, 1985.

Peiwei Mi and Walt Scacchi. A meta-model for formulating knowledge-based mod-
els of software development. Decision Support Systems, 1996.

Microsoft. Microsoft visio. http://www.microsoft.com/office/visio/, 2002.

Glyn V. Morrill. Type Logic Grammar: Categorical Logic of Signs. Kluwer Aca-
demic Publishers, 1994.

S. Narashiman, K. Sycara, and D. Navin-Chandra. Representation and Synthesis
of Non-Monotonic Mechanical Devices. In Issues and Applications of Case-Based
Reasoning in Design, Editor: M.L. Maher, P.Pu, Lawrence Erlbaum Associates,
Hillsdale, N.J., 1997.

National Institute of Standards and Technology. Integration Definition for Func-
tion Modelling (IDEF(0), December 1993.

U.S. Department of Defense. Military standard: Defense system software develop-
ment. Dod-std-2167, June 1985.

U.S. Department of Defense. Leading change in a new era. Technical report, May
1997.

Martyn A. Ould. Business Processes: Modelling and Analysis for Re-engineering
and Improvement. John Wiley and Sons, 1995.

William Perry. Effective Methods for Software Testing. John Wiley and Sons, Inc.,
1995.

David Profozich. Managing Change with Business Process Simulation. Prentice
Hall PTR, 1998.

ProSci. Bpr online learning center: the reengineering directory, January 1999.
Web page.

W. Reisig. Petri nets, an introduction. EATCS, Monographs on Theoretical Com-
puter Science, 1985.

Christopher K. Riesbeck and Roger C. Schank. Inside Case-Based Reasoning.
Lawrence Erlbaum Inc., 1989.

Peter Rittgen. Paving the road to business process automation. European Confer-
ence on Information Systems (ECIS) 2000, Vienna, Austria, pages 313-319, July
2000.

231

[75]

[76]

[77]

[78]

[79]

[80]
[81]
[82]

[83]
[84]

[85]

[86]

[87]

[88]

[89]

[90]

D. Robertson and J. Augusti. Software Blueprints: Lightweight Uses of Logic in
Conceptual Modelling. Addison Wesley, May 1999. in press.

W. Royce. Managing the development of large software systems. IEEE WESCON,
pages pp.1-9, August 1970. Reprinted in Ninth IEEE International Conference on
Software Engineering, Washington D.C., Computer Society Press.1987.

James Rumbaugh, Michael Blaha, William Premerlani, Frederick Eddy, and
William Lorensen. Object-Oriented Modelling and Design. Prentice Hall, 1991.

James Rumbaugh, Ivar Jacobson, and Grady Booch. The Unified Modeling Lan-
guage Reference Manual. Addison Wesley Longman, Inc., 1999.

Geary A. Rummler and Alan P. Brache. Improving Performance: How to Manage
the White Space on the Organizational Chart. Jossey-Bass Publishers, May 1995.

Hossein Saiedian. An invitation to formal methods. IEEE Computer, April 1996.
SAP. Sap r/3 system. http://www.sap.com, 2001.

Craig Schlenoff, Amy Knutilla, and Steven Ray. Proceedings of the process speci-
fication language (psl) roundtable. NISTIR 6081, National Institute of Standards
and Technology, Gaithersburg, MD, 1997. http://www.nist.gov/psl/.

R. E. Shannon. System Simulation. Englewood Cliffs, NJ: Prentice-Hall, 1975.

Julian Smart. User Manual for HARDY. Artificial Intelligence Appli-
cations Institute, University of Edinburgh, The University of Edinburgh,
80 South Bridge, Edinburgh EH1 1HN, UK, I1st edition, August 1994.
http://www.aiai.ed.ac.uk/project/hardy/.

Kathy Spurr and Paul Layzell, editors. Case: Current Practice, Future Prospects.
John Wiley and Son Ltd., 1992.

E. Stroulia and A. K. Goel. Generic teleological mechanisms and their use in case
adaptation. Proceedings of the Fourteenth Annual Conference of the Cognitive
Science, 1992. Northvale, N.J., Erlbaum.

K. Sycara, R. Guttal, J. Koning, S. Narasimhan, and D. Navin-
chandra. Cadet: A case-based synthesis tool for engineering de-
sign. International Journal for FExzpert Systems, 4(2):pp. 157-188, 1992.
http://www.cs.cmu.edu/afs/cs.cmu.edu/project/cadet /ftp/ docs/CADET .html.

Austin Tate. Generating project networks. Proceedings of The 5th International
Joint Conference on Artificial Intelligence, 2:888-893, August 1977.

Platinum Technology. Paradigm plus. (Platinum Technology is now called Com-
puter Associates).

Mike Uschold, Martin King, Stuart Moralee, and Yannis Zorgios. Enterprise on-
tology. The Knowledge Engineering Review: Special Issue on Putting Ontologies
to Use, 13, 1998. Also available as technical report for ATAI, as ATAI-TR-195.

232

[91]

[92]

[93]
[94]

[95]

[96]

Jeffrey M Voas and Gary McGraw. Software Fault Injection Inoculating Programs
Against Errors. John Wiley and Sons, 1998.

R. J. Wieringa. Requirements Engineering - Frameworks for Understanding. John
Wiley and Sons Ltd., 1996.

Logic Works. Bpwin: Business process modelling tool. http://www.shi.com.

Eric S. K. Yu, John Mylopoulos, and Yves Lesperance. Modelling the organization:
New concepts and tools for re-engineering. IEEE Expert: AI Models for Business
Process Reengineering, August 1996.

Jussi Stader Yun-Heh Chen-Burger, Dave Robertson. A case-based reasoning
framework for enterprise model building, sharing and reusing. Proceedings of
ECAI Workshop: Knowledge Management and Organizational Memories, Berlin.,
August 2000.

Pamela Zave and Michael Jackson. Four dark corners of requirements engineer.
ACM Transactions on software Engineering and Methodology, Vol. 6(No. 1):page
1-30, January 1997.

233

234

Appendix A

Generic Models From BSDM

This chapter includes all of the BSDM models stored in the Generic Model Library
of GMA which includes the generic models and example business models taken from
BSDM manuals. A generic business model which was built for small and medium-sized
restaurants for the evaluation purpose of GMA is also included here. The graphical
presentation of all of these models are given below. The motivation and the building
process for the “Family Restaurant” model is also given here.

Figure A.1: View: Place

235

Tiew MHame: Business Functicn: Delivery

Figure A.2: View: Business Function: Delivery

Figure A.3: View: Contract and Account

236

View Name: Subject Of Transaction: Ordered Eateh

Figure A.4: View: Subject of Transaction: Ordered Batch

Wiew Hame: Inter-Businessz Relationship

Figure A.5: View: Inter-Business Relationship

237

View Name: Contract And Organisation Management

Figure A.6: View: Contract and Organisation Management

= GHL 71 A lication of Law = JC1

Wiew Name: Bpplication ©f Law

Figure A.7: View: Application of Law

238

Appendix B

Example Models From BSDM

EI=IE] E = Svcowoootle i

Figure B.1: View: Employee Management

239

|View Name: Badm: Customer Order And Deliveryl

| This is an example model from BESDM entity manual,

Figure B.2: View: Customer Order and Delivery

240

Appendix C

An Industrial Model From an
Auto Company

Obtaining business models which are developed and used by the industry is difficult.
This is mainly due to the large cost for industry in building them and, for those which
have been built, their content is usually confidential (as it often conveys a business’
trade secrets). However, we were fortunate to gain the permission of one company
which is in the sector of automobile parts distribution' and obtain a small portion of
their model.

This model is valuable because it is a realistic model which was independently built
and used by a commercial company. It is also intriguing because it gives insights to
business operations in a specialised context, in this case, in the domain of automobile
parts distribution. As a result, it contributes to both the realisticism and “specialisa-
tion” properties of GML.

The source model was described in two parts: a graphical model which is presented
in several diagrams and a separate supporting textual document for the model which
is written in English. Both of the notational and textual information are captured in
KBST-BM.

An example textual information of an entity, “Customer Order”, from the source
document is given below:

Entity Name: Customer Order

Description: a request to supply one or part types and
services that WE* are prepared to offer, which once confirmed,
becomes a contract. It may not be a recognised part number. It
must be a recognised customer to take order.

Inclusion: Forward Orders, Advanced Orders.

Life Cycle: Received, Accepted, Rejected, Cancelled.

Note: the rules by which a received order is validated prior

! The company wishes to keep their name confidential.

241

to acceptance can vary significantly according to the type
of order.

This textual information of the corresponding notation, in this case the entity “Cus-
tomer Order” is associated with the entity itself using the Definition Form facility of
the tool.

Four business areas of the model have been selected and stored in the GML: “order”,
“parts”, “rules” and “marketing information”. The reason that I have chosen these
business areas is that they are more commonly seen across industries. Although, as
an international automobile company it follows specialised business logic which fits
its requirements, nevertheless I expect to find some common features between these
models and our generic models. There are in total four views involved, where each view
describes a particular business area as enclosed below.

View Hame: Order

Figure C.1: An Industrial Model from an Auto Company

242

EEE EEl

Figure C.2: An Industrial Model from an Auto Company

EIEF] S 3%,

Tiew Name: Rule

Figure C.3: An Industrial Model from an Auto Company

243

|View Wame: Supply and Distribution: Marketing Infocrmation|

Figure C.4: An Industrial Model from an Auto Company

244

Appendix D

A Business Model for Family
Restaurants

I have chosen to build a generic business model for small and medium-sized family
restaurants. The reason for selecting an example in this industry is firstly that I had
access to the stake-holders of the business which was essential in building realistic
business models. Secondly, and perhaps more importantly, a small business such as
the one of a family restaurant covers important and essential business aspects. Their
business operations are also simpler, comparing to many of the complications of a large
company. The resulting business model is likely to be easier to understand, and may
be more generic and hence more relevant to other business (since they cover a simpler
version of the essential business operations such as customer ordering and purchasing).

Several interviews were conducted with former restaurant owners here in Edinburgh,
in an attempt to build a realistic but generic business model for small and medium
sized family restaurants. Five common and important business areas were identified:
Customer Order, Purchase Invoice, Stock Control, Employment Management and Tax
Payment. Each business area is described in one or two BSDM diagrams.

Prior to the meetings with our business correspondent (the restaurant owners), an
initial business model was developed. Because of the simplicity of the model and time
limitation, I have taken a simplicity approach in interviewing the businessmen. There
were two stages in the meetings. During the first stage, a short introduction to BSDM
was given. In the second stage, the already developed model was presented to the
businessmen, the semantics of the model explained, and example business scenarios
described by the model illustrated.

The focus and aims of these meetings were two-fold: (1) to gain positive confir-
mation of the correctness of the developed model and to identify mis-captures in the
model, and seek and make appropriate modifications to the model based on the feed-
back on our business correspondent in order to make the model as realistic as possible
and at the same time as generic as possible; (2) identify any important aspects in the
business which were left out in the model, those aspects were added to the model as
appropriate.

The resulting business model consists of six diagrams which cover the above five
business areas. The model is relatively small in scale compared to a full-sized business
model from a large company which has complex business requirements and covers wider

245

services, but since I have chosen a rather simple and straightforward business environ-
ment - a small-medium sized family restaurant - the resulting model is satisfactory to
our stakeholders in describing the necessary issues for their business operations.

The graphical part of the business model is given below.

EERE E=

_L_J

View Name: Restaurant: Customer Order

Figure D.1: A Generic Model for Family Restaurant

246

View Name: Restaurant: Stock Ceontrol

Figure D.2: A Generic Model for Family Restaurant

View Name: Restaurant: Empleyee Management

Figure D.3: A Generic Model for Family Restaurant

247

|
[=]

resdi Restaurant: Purchase Invoice and Payment Yiew

View Name: Purchase Inwvoice and Payment

Figure D.4: A Generic Model for Family Restaurant

248

|‘ii"iew Hame: Restaurant: Purchase Invoice Lned Delivequ

o =

Figure D.5: A Generic Model for Family Restaurant

249

View Name: Resgtaurant: Tax Payment

Figure D.6: A Generic Model for Family Restaurant

250

Appendix E

A Business Model for DAI

Example Diagrams In The DAT Model

The DAI business model was built based on the Department of Artificial In-
telligence here in the University of Edinburgh.! There are in total 35 diagrams
included in five different business ares which are: Module Evaluation, Course Eval-
uation, Degree Evaluation, Course Structure and Personnel Management. Among
them, three areas, Module, Course and Degree Evaluation, have been developed
in more detail. FEach of these three areas describes the architecture and processes
for evaluating undergraduate and postgraduate students performance and assigning
marks for the taken module, course, or project and eventually the rewarding of a degree.

This appendix gives some example diagrams from the model.

A?r(}n Fractical Ma.ﬂ\

Fracrical
allocate To
odule

Module Taken
By Ferson

Fractical Taken By
Fersan

Figure E.1: Module Evaluation View: Assign Practical Mark

! Now incorporated into the Division of Informatics.

251

Assian Froject Mark

Feview Froject Mark

Cancel Froject Mark

Figure E.2: Module Evaluation View: Assign/Review/Cancel Project Mark

SSign E=am Ma

Figure E.3: Module Evaluation View: Assign Exam Mark

ASETON COUFSE PEFTOFMANCE
Change Course Ferformance
Cancel COurse Ferformance

Figure E.4: Course Evaluation View: Assign/Change/Cancel Course Performance

252

EEE EEH SR

Figure E.5: Overview of Course Structure in DAI

Figure E.6: Personnel Management View

253

254

Appendix F

The Formal Operators in DefBM

The formal representation used in this thesis is based on an extended version of first
order predicate logic. We use a Prolog-like syntax for argumentation in our logical
expressions. The following operators, naming conventions and predicate names are
used throughout the devised formal language, DefBM.

F.1 Notation and Language Conventions

This thesis follows the naming convention of Prolog: constants start with lower-case
letters; whereas variables start with capital letters. Model rules are described in terms
of First-Order Predicate Logic. To avoid any possible ambiguity, some symbols used in
this documents are defined below.

e True: true

The term “true” will be used to denote something that is true.

o False: false

The term “false” will be used to denote something that is false.

e Inference Symbol: =
= is the normal inference symbol. A = B means if A is true, then B must be
true.

e Bi-directional Inference Symbol: <
& is semantically equivalent to two normal inference symbols =-. A sentence “A
< B” means that if A is true, then B must be true, and that if B is true then A
must also be true.

e Weak Inference Symbol: >
> is the weaken inference symbol which indicates the possible leading conclusion.
A > B reads “if A is true, then B should be true”.

e Membership Symbol: €

€ represents the membership of a list/set. For example, E € S means E is an
element of set/list S. Therefore, if S is a list consisting of many lists, then E can

255

be one of the lists. For instance, the statement [1,2,3] € [[1,2, 3], [4, 5, 6]] is true,
and business(ibm) € [business(hp), business(ibm)] is also true.

Time Operators: <,>,=<,>=,=

The above operators represent the time sequence in the system. For example,
time-unit T6 < time-unit T8, if T6 happens before T8.

Empty set/list: []

Following Prolog convention, [| used in this document represents an empty set
or list.

iff: if only if

The word iff are sometimes used in the English text when explaining a logic
expression. Its logical meaning is “if only if” or the bidirectional implication
symbol <. A statement “A iff B” is true, only when both “if A is true, then B
is true” and “if B is true, then A is true” are true.

256

Appendix G

Representing Entity Model Rules
and Guidelines

In its manual, BSDM defines an entity model and recommends good practices in de-
veloping a business model[36]. There are also other modelling rules which are not
documented in the manual, but are standard practice or natural deductions from the
method. Some of these recommendations are necessary to follow to build a sound
business model, others are circumstantial rules.

This appendix catalogues these recommendations relevant to entity modelling, the
first activity toward developing a business model. According to the strength of en-
forcement of these recommendations, they are distinguished into two main categories:
model rules and guidelines. A user-defined business model will be checked upon using
these model rules and guidelines at the request of the user. Model rules are strong
recommendations which if not followed, will probably cause an error in the business
model or cause KBST-BM to behave wrongly. Model guidelines, on the other hand,
should be followed most of the time, but there can be exceptions depending on the
business’ circumstances.

The formal language chosen to describe these rules is first order predicate logic
complemented with the argumentation convention of Prolog, i.e. arguments start with
capital letters are variables, otherwise, constants. The actual implementation of those
rules are introduced in Chapter 8.

A strong inference symbol = is used to represent the stronger enforcement of rules,
whereas > is used to represent the weaker enforcement of guidelines.

G.1 Entity Model Rules

e An entity is not isolated No isolated entity is allowed in the model, i.e. each
entity must be linked with at least one other entity via a dependence relationship.
Since a dependence relationship is represented in a predicate parent_type in the
formalism, this rule can be interpreted as ’each entity must have at least one
parent or child entity’. This rule is a deduction from BSDM.

257

class(entity, Entity)

X € Set_of parents (1)
parent_type(X, Parents)A\
Entity € Parents

(parent_type(Entity, Set_of _parents)A) v
X

e No circular dependence link Any circular dependence relationship (an entity
being depended on its own descendents via dependence links) are not allowed in
a business model. To describe this rule, we define ancestor(Q, P) to mean that
P is either a parent entity of Q, formally defined by the parent_type predicate,
or that it is an ancestor entity of Q through the transitivity property of the
parent_type predicate. The “circular dependence”-rule is then represented by
the expression below. This rule is also a deduction from the method.

class(entity, X) = —ancestor(X, X) (2)
The ancestor predicate can be described formally in the two expressions below:

parent type(X,YYANE €Y
=
ancestor(X, E)

parent_type(X,Y) A
EcY A

ancestor(E, Z)

=

ancestor(X, Z) (3)

e An entity must be defined Every entity must be given a definition statement
by the modeller about the context and boundary of this entity. Since an
entity definition is the most fundamental means to define the nature, pur-
pose and relationships to its parent entities, it is essential to have each entity
defined. This is a derived BSDM model rule from the entity manual (page 34 [36]).

class(entity, Entity _type)
=

ADe finition.content. (Definition_content # nil

property(Entity type, de finition, De finition_content) A) (4)

e Child entity occurrence must be created after its parents The occurrence
of a child entity can not be existed, unless the corresponding occurrences of its
parent entities have already existed (Note that a parent and child entity occur-
rences can be created at the same time within the same process by BSDM, and
this is ensured by the execution of a process). Occurrences of an entity is rep-
resented by an occ(Entity_type, Occ_name, Parent_occurrences) predicate,
where Entity type is the entity type name of the occurrence, Occ_name is the
name of the occurrence, and Parent_occurrences is the set of the corresponding

258

parent occurrences. Predicate occ_exists(P) is defined to be true if occurrence P
exists in the system.

occ(Entity_type, Occ_name, Parent_occurrences)
=
VP.(P € Parents_occurrences A occ_exists(P)) (5)

All entities are unique Every entity included in a business model must be
unique and used consistently throughout the model (BSDM Entity manual page
32). In a business model, a business area of the business’s operation are usually
shown through a ”view” or several "views” of the business model. Each view
includes the relevant entities and processes. It is quite often that an entity is
appeared in several views, for reference and/or to introduce a new entity function
in another process.

It is hence important that the same entity has not been redefined in different
views. The consistency checking of entity uniqueness includes a consistent check-
ing on the dependence links between entities, entity definitions, and the values of
entity properties. Given that dependencies between entities is represented by a
predicate parent_type(Entity, Set_of Parents), and that an entity uses the same
dependence definition throughout all views, then the rule below must hold within
a business model.

parent_type(Entity, Parents)
=

—3Parents2. ((6)

parent_type(Entity, Parents2)A\
Parents # Parents2

A set of alternative parents is an alternative set of entity parents which is also
applied to the same entity. An entity can have alternative parents by depending
itself to an alternative parents box in a business model. The alternative parents
of an entity must also be uniquely and consistently defined throughout different
parts of the model. In this document, we refer to a part of the model as a view
and it is shown in a window in KBST. The predicate alternative_parent(Entity,
Alt_par) is true, if Alt_par is the complete set of alternative parents to Entity.

alternative_parent(Entity, Alt_par)
=

—-3Alt_par2. ((7)

alternative_parent(Entity, Alt_par2)A\
Alt_par # Alt_par2

Similarly, the properties of the same entity must be consistent throughout a busi-
ness model. An entity’s property is represented in a predicate property(Entity,
Property_name, Property_content) where Entity is the name of the entity in con-
cerned, Property_content stores the value of a particular property, which is stored
in Property_name.

259

property(Entity, Property_name, Property_content)
=

property(Entity, Property_name, Content2)A
AContent2. (Property_content # Content2 (8)

e An entity is a representation of real things Entities included in a business
model are the reflection of existence of things in the real world. The role of
an object which plays in a business should not be captured as an entity, nor
should its identifiers, documentation or representations. One way to ensure this
mistake does not happen is to make sure that any entity name does not include
one of those “avoided names”, i.e. role names, identifiers, documentations and
representations. (BSDM entity manual page 25, 27, 33, 39).

Let predicate role_name(Name) defined to be true, if Name is a role name, such
as teacher, student, customer, employee, and a predicate sub_string(Stringl,
String2) defined to be true, if Stringl is a part of String2, then the first part
of the rule, “An entity name should not be a role name or incorporate a role
name as part of its name”, can be described formally below.

class(entity, Entity)
=

—JdName. < 9)

role_name(Name)A
sub_string(Name, Entity)

Words such like ’link’, 'form’, ’"documentation’ and ’note’ are either the represen-
tations or documentation of the real things, therefore they should also be avoided
when naming an entity. This rule provides a safeguard to mistakenly create enti-
ties which may be a representation of a particular implementation of a business
model, instead of the higher level abstraction of those possible implementations.
Let predicate form name(Name) defined to be true, if Name is a form name, such
as link, form, documentation and note, this rule can be described formally below.

class(entity, Entity)
=

—=3dName (

form_name(Name)A) (10)

sub_string(Name, Entity)

e Derivable attributes must have derivation means Attributes are the prop-
erties of an entity occurrence, some attributes are derivable from attributes of
other entity occurrences. The corresponding deriving rule are given by the user,
therefore the derivable attribute is defined, and can be calculated when the ref-
erence data is available (BSDM entity manual page 55).

The attribute rule is stored in a predicate attribute_rule(Entity, Attribute_name,
Variable_list, Attribute rule) where Entity is the name of the entity, At-
tribute_name is the name of the attribute, Attribute_rule is the logical and math-
ematical means of deriving the attribute value; the data for reference is stored in
the Variable_list.

260

The expression below states that if an Attribute_name, denoted as in de-
rive_attribute, is a derivable attribute of Entity, then there must exists an at-
tribute_rule which defines how its value can be calculated.

derive_attribute(Entity, Attribute_name)

=

FVariable_list, Attribute_rule.

attribute_rule(Entity, Attribute_name, V ariable_list, Attribute_rule) (11)

An entity should be associated with the Entity Families Any entity in
a business model can be an existing entity recorded in the entity family or a
specialised type of an existing entity in the entity family (BSDM entity manual
page 26).

Entity families are the standard entities which are common to many businesses
and therefore has great re-usability when developing new business models. The
entity families is organised in an entity family hierarchy in KBST: each entity in
the hierarchy is represented in a predicate entity family(Entity). The predicate
special_type_of(General, Special) is defined to be true, if the Special entity is a
special type of the more General entity type.

Although a complete association between entities in a business model and stan-
dard entities in the entity families is not required by the user in BSDM, this
establishment, however, is necessary in order to make use of the contextual in-
formation embedded in entity families, and to utilise CBR techniques to help
building, verification and validation of a new business model (refer to chapter 7).
The established association between newly identified entities and standard enti-
ties is therefore strongly recommended in KBST, and is represented as a model
rule.

The model rule below states that each newly identified entity must be an existing
standard entity in the entity families, or a specialised type of it.

class(entity, Entity)
=
entity_family(Entity) V

(12)

YGeneral_entity. entity_family(General _entity) A)

special _type_of (General _entity, Entity)

The predicate special_type_of is defined by is_a relation links. An entity family
hierarchy includes entities as nodes which are connected by is_a relationship.
This relationship is one-directional and transitive. A more formal definition for
predicate special_type_of based on transitive is_a relational links is given below.

entity_family(General_ent) A

class(entity, Special _ent) A

is_a(General _ent, Special _ent)

=

special type_of (General _ent, Special _ent) (13)

261

entity_family(General _ent) A
entity_family(Special _ent) A

is_a(General_ent, Special _ent)

=

special _type_of (General_ent, Special _ent) (14)

special _type_of (General_ent, Special _ent) A
class(entity, New_ent) A

is_a(Special _ent, New_ent)

=

special type_of (General_ent, New_ent) (15)

e Each entity must be given at least two life statuses Processes are responsi-
ble in originating entity occurrences, create their initial life statuses, and transfer
their current life statuses to the next ones. The life status of an entity not only
indicates the state of an entity occurrence but also that of the corresponding
process occurrence which creates or updates it (BSDM process manual page 41).

To represent the life status of an entity occurrence, at least two (landmark) values
must be used, i.e. the starting and ending life statuses. If no significant life status
has been identified then at least two life status: “valid” and “invalid” should be
given to an entity. This forms the advice of this rule and is not given in the logical
expression below.

The predicate life_cycle_start_status(Entity, Life) is defined to be true, if Life
is a valid start life status for all entity occurrences of entity type Entity. The
predicate life_cycle_transit(Entity, Lifel, Life2) is defined to be true, if all entity
occurrences with entity type Entity whose life status may be propagated from
Lifel to Life2.

There must be a start life status for each entity and that this life status
must be transferable The expression below states that for each entity, there
must exist (at least) one start life cycle status, denoted as Life, and that it must
be transferable to another life status — which means that there must exist at
least one transition possibility which transfers it to another life status Next_life.

class(entity, Entity)
=
ILife, Newt life. (life_cycle_start_status(Entity, Life)A) (16)

life_cycle_transit(Entity, Life, Next_life)

There must be an end life status for each entity and this life status
must be reachable The expression below states that for each entity, there must
exist (at least) one terminating life cycle status, which is defined as the argument
End_life, and that it must be reachable — this means that there must exist at
least one life status Life which leads to this ending life status End_life.

class(entity, Entity)
=

IEnd.life, Life. < life_cycle_end_status(Entity, End_life)A) (17)

life_cycle_transit(Entity, Life, End_life)

262

Detecting of error life status transition BSDM has offered keywords for
denoting the ending life status of an entity, e.g. cancelled, terminated and closed
(BSDM process manual page 55, 71[37]). We have represented them together
with “invalid” as the keywords to denote the standard ending life statuses of
an entity occurrence in the system. Those ending life statuses are stored in the
terminated_life_status predicate. The user can also define the specific ending life
status for an entity, this is stored in the life_cycle_end_status predicate.

The below expression states that any transition which transfers a standard ending
life status or a user-defined ending life status to any other life status is not allowed.

life_cycle_transit(Entity, Fromlife, End_life)
=

—terminated life_status(From.life) A
—life_cycle_end_status(Fromlife) (18)

The below expression states that any transition which transfers a life status to a
start life status is not allowed.

life_cycle_transit(Entity, From life, End life)
=
=life_cycle_start_status(End.life) (19)

G.2 Entity Model Guidelines

As we have previous mentioned, some model rules which are in or derived from BSDM
are with flexibility, that is their compliance is only relative to the circumstances. Those
model rules are represented as model guidelines in the formalism using a weaker in-
ference symbol >. A guideline when violated, advice given to the user are with milder
warnings compared to a normal model rule.

e A business model should be within 4 layers “Certain families of entities are
so common that it is useful to look for them ... for candidate entities. Independent
entities are at the top, level one. Contracts ... are at level two. Contents are at
level three. Reconciliation are at level four.” (BSDM Entity manual page 26 [36])

BSDM recommends that the depth of an entity model should not be more than
4 layers, i.e. 4 steps through parent links. This is to prevent a model from
being over-constrained by several layers of dependencies through levels of entities
(BSDM Entity manual page 26 and 77 [36]). This rule is formally described
below.

property(Entity,level, N)> N < 5 (20)

e Null or two parents only BSDM promotes the practice that each entity should
only depend on zero or two parent entities. This rule, however, is not strictly
enforced in all situations. There are, in fact, exceptions that the user may choose
to use one-parent entities. The user are, however, generally encouraged to create

263

only zero or two-parent entities. This rule is therefore represented as a guideline.
(This is from BSDM Entity manual page 18 and 43 [36].)

parent_type(Entity, Parents)

>

member_no(Parents) =0V
member_no(Parents) = 2 (21)

Entity names should be short Entity names should be as short as possible
(BSDM entity manual page 33), e.g. less than 20 characters.

class(entity, Entity)
>
string_length(Entity) =< 20 (22)

Entity names should be general Entity names should be as general as possible
therefore to provide the maximum flexibility for the business to cover all cases,
i.e. all possible occurrences must be covered by the entity class (BSDM entity
manual).

A possible way to accomplish the above check is to match entities to the entity
family hierarchy, which can give some contextual information about those entities,
therefore to detect any possible generalisation to the identified entities. In the
expression below, each Entity is the highest possible generalisation of entities, and
there isn’t another entity Special_ent in the model which together with the Entity
can become a more general entity name. Note that there are situations when a
general entity needs to be specialised, therefore this is only a recommendation.

class(entity, Entity) A
special _type_of (General _ent, Entity)

class(entity, Special _ent) A
—3Special _ent. | special type_of(General_ent, Special _ent)\ (23)
Special _ent # Entity

Entity names should be singular nouns The entity name should always be
a single noun or noun-phrase, because each occurrence of an entity represents a
single object or thing in the real business world. The user must avoid words which
end with -s, -es and -ies. (BSDM entity manual). This rule is described formally
below using a predicate string_ending to identify the ending words of a string. The
predicate string_ending(String, Ending) is defined to be true when Ending is the
ending string of String. One can find exceptional words with ending -s, -es or -ies
but still represents singular noun, therefore this rule again is a recommendation.

class(entity, Entity)

>
string_ending(Entity,’ s')V

= | string_ending(Entity,' es')V (24)
string_ending(Entity, ies')

264

e Probably a mis-usage of alternative parents A possible error of using alter-
native parents is to allow more than two sets of alternative parents for an entity.
Since this is an un-usual usage of alternative parents, it may be useful to remind
the modeller of it. This is a derived rule from the method.

The predicate alternative_parent(Entity, Alt_par) is true, if Alt_par is the set of
alternative parents to Entity. It is normally the case that two sets of parents are
included in the Alt_par to indicate that they are alternative to each other, this is
graphically denoted by one dependency linked to the alternative-parent bor and
the other linked to one of the parent entity directly. It will be the case when
three sets of alternative parents are included when both dependencies are linked
to the alternative-parent box which is perhaps less common. More alternative
parents may be included in the set, if more than two entities are included in the
alternative-parent box.

The rule below formally describes that an entity normally has two sets of alter-
native parents, if there is any.

alternative_parents(Entity, Parents)
>
member_no(Parents) =2 (25)

265

266

Appendix H

Representing Process Model
Rules and (GGuidelines

This Appendix documents the formalisation of the recommendation of business mod-
elling in BSDM process manual [37]. The formal language used is first order predicate
logic compliment with the argumentation convention of Prolog, i.e. arguments start
with capital letters are variables, otherwise, constants.

BSDM defines a process model and recommends good practices in developing a
sound business model[36]. There are also other modelling rules which are not doc-
umented in the manual, but are standard practice or natural deductions from the
method. Some of these recommendations are necessary to follow to build a correct
business model, others are circumstantial rules. Similarly to those given in Appendix
G, according to the strength of enforcement of the recommendations on models, they
are distinguished into two main categories: model rules and guidelines. A user-defined
business model will be checked using these models rules and guidelines at the request of
the user. Model rules are strong recommendations which if not followed will probably
cause an error in the business model or cause KBST-BM to behave wrongly. Model
guidelines, on the other hand, are normally followed but can be with exceptions de-
pending on each business’ circumstances.

A strong inference symbol = is used to represent the stronger enforcement of rules,
whereas > is used to represent the weaker enforcement of guidelines.

H.1 Process Model Rules

e Each process must have a trigger A BSDM process is defined together
by its trigger and (entity) functions (BSDM process manual page 10, 30, 62).
Therefore, each process must be given at least one trigger by the modeller.

267

class(process, Process)
=
AT rigger_content.trigger(Process, Trigger_content) (1)

Each process must include at least one entity Each process must include
at least one entity in its scope. Assuming each entity is given an entity function,
this rule is represented below:

class(process, Process)
=
IEntity_function, Entity.entity_function(Entity_function, Process, Entity) (2)

There are only seven different kinds of entity functions Each process
may include one or more entity functions in its scope. Those entity functions
are pre-determined and can only be one of the following seven different kinds:
originate focal, normal and if-flight entity functions, change focal and normal
entity functions, and refer normal and master entity functions.

entity_function(Entity_function, Process, Entity)
=

Entity_function = originate_focal_fun VvV
Entity_function = originate_normal_fun VvV
Entity_function = originate_if _fun V
Entity_function = change_focal_fun VvV
Entity_function = change_normal_fun V
Entity_function = refer_normal_fun VvV
Entity_function = refer_master_fun (3)

Each entity must be included in at least one process It is sensible
to state that each entity in the model must be included in at least one pro-
cess with one of the permitted entity functions. For this, we use the following rule:

class(entity, Entity)

=

JProcess, Entity_function.
entity_function(Entity_function, Process, Entity) (4)

Main purpose of an originate process An originate process’ primary purpose
is to originate at least one entity occurrence in its scope (BSDM process manual
page 14, 21). To be more precise, its main purpose is to originate the entity
occurrences of its originate focal entity, and perhaps also its originate normal and
in-flight entities, if any exists (BSDM process manual page 29, 30, 62).

This can be summarised as: given any process which is an originate process
then (a) it must included an originate focal entity-function in scope and one of

268

its process actions must be to create an entity occurrence of the corresponding
originate focal entity-function; and (b) it also creates entity occurrences of the
corresponding originate normal and in-flight entity-functions, if it includes any
of them in scope. The predicate

process_action(create_originate_focal_entity, Process, Entity, Occurrence)

means that an action of process Process is to create an entity occurrence of the
corresponding originate focal entity of that process. This entity has an entity
type Entity, and the corresponding occurrence is Occurrence. The same pred-
icate is used to denote a process action which generates entity occurrences of
the corresponding originate normal and originate in-flight entities, with the re-
placement of the first argument of the predicate with originate_normal_entity and
originate_if_entity, respectively.

The logic expressions below state that, each originate process must include at
least one originate focal entity function, and that it must create entity occurrence
of this entity function as a part of its process actions.

class(originate_process, Process)
=
JEntity, Occ.
entity_function(originate_focal_fun, Process, Entity) A) (5)
process_action(create_originate_focal _entity, Process, Entity, Occ)

The two logic expressions below state that, if an originate process include an
originate normal or an originate in-flight entity function in its scope, then it
must create or confirm the entity occurrence of this entity function as a part of
its process actions. (The creation of of an absent originate_if entity is handled
by the business model simulator.)

class(originate_process, Process) A

entity_function(originate_normal_fun, Process, Entity)

=

IO0ce.process_action(create_originate_normal_entity, Process, Entity, Occ) (6)

class(originate_process, Process) N

entity_function(originate_i f _fun, Process, Entity)

=

I0cc.process_action(con firm_originate_i f _entity, Process, Entity, Occ) (7)

Main purpose of a change process A change process’ primary purpose is to
change attributes of at least one entity occurrence in its scope (BSDM process
manual page 14, 22). To be more precise, its main purpose is to change attributes
of entity occurrences of its change focal entity, and also its change normal entities,
if any exists (BSDM process manual page 29, 30, 62).

In in other words, given any change process, then (a) it must include a change
focal entity in scope and one of its actions must be to change an attribute value

269

of an entity occurrence of its change focal entity; and (b) it also changes attribute
values of entity occurrences of its change normal entity functions, if it has included
any such entity function in scope. The predicate

process_action(update_change_focal_entity, Process, Entity, Att, Old, New)

means that a particular action of a process Process is to update the value of
attribute At¢t from Old to New of the corresponding change focal entity of Process.
The entity type is Entity. The same predicate is used to denote a process action
which changes attribute values of entity occurrences of the corresponding change
normal entities, with a replacement of the first argument of the predicate with
change_normal_entity.

class(change_process, Process)
=
JEntity, Att, Old, N ew.
entity_function(change_focal _fun, Process, Entity)A\) (8)
process_action(update_change_focal _entity, Process, Entity, Att, Old, New)

The expression below states that if a change process includes a change normal
entity in its scope, then it must include at least one process action which carries
out the update of at least one attribute of this change normal entity.

class(change_process, Process) N

entity_function(change_normal_fun, Process, Entity)

=

JAtt, Old, New.

process_action(update_change_normal_entity, Process, Entity, Att, Old, New) (9)

Focal originate entity applies only to originate processes A focal originate
entity function constitutes the primary purpose of an originate process. By
definition, this process must be an originate process and can not be any other
kinds of process (BSDM process manual page 30).

entity_function(originate_focal_fun, Process, Entity)
=

VProcess_type. (

class(Process_type, Process) A\) (10)

Process_type = originate_process

Each entity in the process scope must have an entity function Each
entity which is physically drawn within a process scope, must be assigned with
an entity function for this process. On the other hand, any entity may not have
any functional relationship (entity function) with a process unless it is within
the process scope of that process (BSDM process manual page 29, 30, 62). A
bi-directional symbol <> is used here which is equivalent of two = which enforce
the property of the other one once one property is true.

270

process_scope(Process, Entity)
<~
IEntity_function.entity_function(Entity_function, Process, Entity) (11)

One entity function per entity in a process Each entity which is physically
drawn within a process scope, must be assigned with an entity function for this
process. Furthermore, this entity function should be the unique one which was
assigned to the entity, i.e. an entity can not play two roles in a process therefore
can not bear more than one different entity functions within a process (BSDM
process manual page 29, 30, 62).

entity_function(Entity_function, Process, Entity)
=

. ' L on(Entitu. on?2. P Enti
3 Entity_function?. < entity_function(Entity_function2, Process, Entity) A\) (12)

Entity_function # Entity_function2

Derivable attributes are not the primary purpose of a change process
A derivable attribute alone is not considered to be independent and sufficiently
significant for a BSDM business process - a change of its value can always be
derived whenever it is needed. Therefore, a process must not be created such that
its primary or sole purpose is to produce or update value of a derivable attribute.
When a change of the derivable attribute is important to the business, it is those
values which cause the changes are important. A derivable attribute should be
dynamically recalculated if any of the calculation basis has been changed (BSDM
process manual page 15, 22, 58 and 60).

The above rule can be interpreted as: for any attribute updating action where
the updated attribute is a derivable attribute, there must be another primary
action carried out by this process.

process_action(update_change_focal _entity, Process, Entity, Attribute, Old, New) A
derive_attribute(Entity, Attribute)
=

JAttribute2, Old2, New?2.
process_action(update_change_focal_entity, Process, Entity, Attribute2, Old2, New2)A (13)
Attribute2 # Attribute

The calculation base for derivable variables must be in the process
scope If a process has an originate focal or originate normal or originate in-flight
entity function in scope, then it will need to produce this entity’s attribute values
when it creates this entity. If any of these originated attributes is a derivable
attribute, then those other entities, whose attribute values which are used as
a calculation basis in the derivation rule, must be included in the scope of the
process (BSDM process manual page 28, 58).

271

class(process, Process) N

JEntity, Attribute.
entity_function(originate_focal_fun, Process, Entity)V
entity_function(originate_normal_fun, Process, Entity)

derive_attribute(Entity, Attribute)
=

JAtt value, Referred_entities, Attribute_rule_content.
attribute_rule(Entity, Attribute, Att_value, Re ferred_entities,
Attribute_rule_content)
VX, 3Process_scope.
X € Referred_entitiesN
process_scope(Process, Process_scope)\ (14)
X € Process_scope

e Counsistency checking between Life Cycle Diagram and Process Model
If a process has been included in an entity’s Life Cycle Diagram then this must
be reflected in the process scope. This means if an originate process has been
identified in an entity’s Life Cycle Diagram (denoted as in the orgprocess predi-
cate), then this entity must be originated by that process, i.e. it must either be
an originate focal, normal or in-flight entity in that process; if a change process
has been included in an entity’s Life Cycle Diagram (denoted as in the chgprocess
predicate), then that entity must be changeable by the process, i.e. it must be
an change focal or normal entity in that process. These two rules are described
formally below.

orgprocess(Process, Entity, Life)

=
entity_function(originate_focal _fun, Process, Entity)V

entity_function(originate_normal_fun, Process, Entity)V (15)
entity_function(originate_i f _fun, Process, Entity)

chgprocess(Process, Entity, Start, End)

=
entity_function(change_focal_fun, Process, Entity)V (16)
entity_function(change_normal_fun, Process, Entity)

H.2 Process Model Guidelines

e Each process should have a business rule A BSDM process is also defined by
its business rules(BSDM process manual page 10). Therefore, it is recommended
that each process should be given at least one business rule by the modeller.

class(process, Process)
>
JRule_content.business_rule(Process, Rule_content) (17)

272

e Each entity should be originated by at least one process Each entity
should be originated (created) by at least one process (BSDM process manual
page 41, 63). Each entity included in a business model is of significance
and therefore theoretically, the origination of an entity occurrence should be
controlled and described in a business process. However, since the modeller may
decide that the creation of some particular entity occurrences lies outwith the
scope of his/her modelling activities, this forms a guideline, rather than a strict
model rule. The guideline states that each entity must either be an originate
focal, originate normal or in-flight entity in at least one process (note that this
is a more specific version of model rule 2).

class(entity, Entity)
>

3Process.
entity_function(originate_focal _fun, Process, Entity)V

entity_function(origiante_normal_fun, Process, Entity)V (18)
entity_function(originate_if_fun, Process, Entity).

e Naming convention of a process BSDM has recommended a convention for
naming a process therefore to ensure that the name of a process is meaningful
and consistent throughout the model. A process name should indicate what the
process do and the main affected entity (BSDM process manual page 24).

The rule for naming is “a verb followed by a simple noun”. The noun used can
be entity name, written in capital, e.g. “Take CUSTOMER ORDER”, or “Open
CUSTOMER ACCOUNT™”. The simple process name can also be extended to give
more information about the process, e.g. “Accept BUSINESS as Trading Part-
ner”, or “Discontinue Trade with BUSINESS”, or “Accept PAYMENT against
CUSTOMER ACCOUNT”. Commonly used verbs are access, confirm, propose,
define, make, transform, assemble, move, predict, issue, receive, take, open, close,
discontinue, create.

In short, a standardised process name should begin with a simple verb followed
by a capitalised entity name. Therefore, we formalise it below.

class(process, Process_name)
>
dBegin_word, Entity_name.

begin_string(Process_name, Begin_word) A\
simple_verb(Begin_word)A\ (19)

class(entity, Entity_name)A

sub_string(Entity_name, Process_name)

e Unique focal entity in a process It is generally recommended that only one
focal originate or focal change entity is included in a process which forms the
primary reason for the existence of the process. The expression below states that
each process can have one and only one originate focal entity function in its scope.

273

entity_function(originate_focal_fun, Process, Entity)
>
_3Entity?. < entity_function(originate_focal_fun, Process, Entity2)\) (20)

Entity # Entity2

The expression below states that each process can have one and only one change
focal entity function in its scope.

entity_function(change_focal_fun, Process, Entity)
>

—~JdEntity2. (Entity # Entity2

entity_function(change_focal_fun, Process, Entity2) A\) (21)
Parents of focal and normal entities In any process, if any of its focal and
normal entities are dependent entities, then when their entity occurrences are to
be created or changed, the occurrence of its parent entities may also be needed
for the process execution. Their parents can be in one of the three possibilities:
(1) the parent entity occurrence will always already existed, (2) the parent entity
occurrence will usually exist but not always be present, (3) the parent entity
occurrence will normally not present but is created as a part of the process. It
is a pre-requisite in the method that parent entity occurrences must be created
before or at the same time when the dependent entity occurrence is created, so
that the necessary information from the parent entity occurrence can be used for
the creation.

There are three different ways to model the parent entities in the process. In the
first situation, as a reference entity function in the process, since the required
information is already existed. In the second case, an originate in-flight because
it sometimes is already existed, but can be originated if absent. In the third case,
as an originate change entity function, because it is always co-created during the
process of originating the initial originate focal and normal entities. This rule,
however, does not have to be strictly followed, since the assignment of entity
function is business dependent and modelling project dependent (i.e. it may lie
outwith the scope of the modelling project) (BSDM process manual page 29).

As an originate process is responsible in origination of entity occurrences in
addition of merely referring to those entity occurrences. The above rule is
formalised in two expressions each deals with parents of an originate focal and
originate normal entity.

274

entity_function(originate_focal_fun, Process, Entity) A
parent_type(Entity, Parents)
>

VX.X € Parents A
entity_function(refer_normal_fun, Process, X)V

)
entity_function(refer_master_fun, Process, X)V
entity_function(originate_if _fun, Process, X))V
entity_function(originate_normal_fun, Process, X)

(22)

entity_function(originate_normal_fun, Process, Entity) A
parent_type(Entity, Parents)
>

VX.X € Parents A
entity_function(refer_normal_fun, Process, X)V

entity_function(refer_master_fun, Process, X)V
entity_function(originate_i f _fun, Process, X))V
entity_function(originate_normal_fun, Process, X)

(23)

As a change process primarily modifies existing entity occurrences, we assume
that parent entity occurrences of the focal and normal entity occurrences are
always already existed. Therefore, we only need to refer to them. This is
formalised below.

entity_function(change_focal_fun, Process, Entity) A
parent_type(Entity, Parents)
>
VX.X € Parents A
entity_function(refer_normal_fun, Process, X)V (24)
entity_function(refer_master_fun, Process, X)

entity_function(change_normal_fun, Process, Entity) A
parent_type(Entity, Parents)
>
VX.X € Parents A
entity_function(refer_normal_fun, Process, X)V (25)
entity_function(refer_master_fun, Process, X)

Identification of subsumed process If there are two processes whose process
actions are identical, or one’s actions are subsumed by the other one, then there
may be a chance of overlapping definition of these two processes (BSDM process
manual page 62).

process_action_set(Process, Actions)
>

—=3Process2, Actions2. (

process_action_set(Process2, Actions2) A\ (26)
Actions C Actions2

275

e Identification of complementary process If two processes which are raised
(triggered) by the same event and each carries out a part of the activities which
together belong to a bigger process, then these two processes should be combined
into a larger process (BSDM process manual page 62).

The representation of the above rule is not straightforward, because of the difficul-
ties in identifying the above situation. The above situation can not be identified
using only process actions, because each will be different as a partial process and
complementary of each other; nor can the situation be identified using the trigger
alone, i.e. to find the two partial processes by identifying processes which share
a same trigger.

A more accurate judgement would take both factors into account. To determine
if two process are complementary to each other, we can probably consider the
primary purpose of each process, i.e. the focal entities of each process. We can
then describe this as: if there are two processes which are invoked by the same
trigger, and that the primary purpose of one process is either to originate or
change the direct parent or child entity of the primary focal entity of the other
process, then these two processes might be combined.

To translate the above observation into formal representations, we can again
rewrite this as: if one can find two processes which are invoked by the same
trigger, and that one’s focal entity is the direct parent (or child) entity of the
other process’ focal entity, then these two processes may be combined. The final
judgement of whether two processes should be kept separated or combined is
again made by the individual business. We represent this rule as a guideline
in the two expressions below, each dealing with an originate and a change process.

trigger (Process, Trigger_content) A
entity_function(originate_focal_fun, Process, Entity) A
parent_type(Entity, Parents)
>
—3Process2, Entity2.
trigger(Process2, Trigger_content) A\
Process # Process2A

entity_function(originate_focal_fun, Process2, Entity2)A\ (27)
Entity2 € Parents
trigger(Process, Trigger_content) A
entity_function(change_focal_fun, Process, Entity) A
parent_type(Entity, Parents)
>
—=3Process2, Entity?2.
trigger(Process2, Trigger_content) A
P P 2
rocess # Process2A (28)

entity_function(change_focal_fun, Process2, Entity2)A\
Entity2 € Parents

276

e All important attributes are covered by processes If an entity has an
attribute which is of importance to a business, it is essential to document how
the attribute values are changed. This is particularly true when changes in an
attribute value reflect changes in the status of the entity occurrence, i.e life cycle
status of an entity occurrence. In other words, one or more change processes
should be defined to carry out the changes of this value (BSDM process manual
page 22, 41).

The formal expression below states that for each entity Entity, if its life
cycle status can be changed from one state Old to the other New, then
there should exist at least one change process Process which includes the
Entity either as its change focal or change mormal entity and that one of its
process actions should be to change this entity’s life cycle status from Old to New.

li fe_cycle_transit(Entity, Old, New)
> dProcess.
entity_function(change_focal -fun, Process, Entity) A\
process_action(update_change_focal _entity, Process, Entity, |V
lifestatus, Old, New)
entity_function(change_normal_fun, Process, Entity)A\
process_action(update_change_normal _entity, Process, Entity,
li festatus, Old, N ew)

(29)

Other important attributes can be identified by the modeller and represented in
a predicate important_attribute(Entity, Attribute). This predicate is defined to be
true, iff Attribute is an “important” attribute to entity Entity and the business
being modelled. The decision about whether an attribute is important or not is
determined by each business, therefore is not discussed here.

The below logical sentence states that all important attributes must be handled
by at least one change process which update it. (The attributes may be given at
the creation of entity occurrence therefore is not specified here.)

important_attribute(Entity, Attribute) A
>
dProcess, Old, N ew.
entity_function(change_focal -fun, Process, Entity)A\
process_action(update_change_focal entity, Process, Entity, |V
Attribute, Old, New)
entity_function(change_normal_fun, Process, Entity)A\

process_action(update_change_normal_entity, Process, Entity,
Attribute, Old, N ew)

(30)

For those important attributes whose values are specified in the attribute_transit
predicate, the above rule is formalised below.

277

important_attribute(Entity, Attribute) A
attribute_transit(Entity, Attribute, Old, New)
>

dProcess, Actions.

(process_action(update_change_focal _entity, Process, Entity, Attribute, Old, N ew)
entity_function(change_normal_fun, Process, Entity)
process_action(update_change_normal _entity, Process, Entity, Attribute, Old, N ew)

entity_function(change_focal_fun, Process, Entity) A)
A

V (31)
)

Deadlock prevention among processes Deadlock, in the context of process
modelling, is the situation when two or more processes can not be executed be-
cause the information which is needed for execution is absent and will have to be
generated by other process(es); however, the execution of these process(es) can
only be done if the initial process is already executed. Since all of these processes
depend on each other’s information for execution, no processes can be carried
out.

In BSDM, the pre-requisite for executing a process is through the originate
in-flight entity function and the ability of triggering another process to generate
it, which if not careful may invoke a chain of invocation for processes. This
interdependency of process execution can be described in the inflight_chain
predicate.

entity_function(originate_focal _fun, Process_name, X)A
entity_function(originate_if_fun, Process_name,Y)\
entity_function(originate_if _invoke, Process_name)

inflight_chain(X,Y")
originate_focal_fun(Process_name, X)\
originate_if _fun(Process_name,Y)\

originate_i f invoke(Process_name)A
inflight_chain(Y, Z)
=

inflight_chain(X,Z) (32)

Given the definition of the predicate inflight_chain, the guideline which detects
the possibility of deadlock between processes can be formally given below.

entity_function(originate_focal_fun, Process_name, X)A
entity_function(originate_if_fun, Process_name,Y)\
entity_function(originate_if invoke, Process_name)

—(inflight_chain(X, X)) (33)

A more detailed explanation about what deadlock is in BSDM and these rules is
given in Section 5.5.

278

e Inconsistent handling of entities We could perhaps assume that normally a
business policy is carried out consistently even in different business operations.
Based on this assumption, we may expect that two closely related entities play
similar roles even in different processes.

For instance, if an entity occurrence Y is always created when an entity
occurrence X is created, then when expressed in a process scope, entity X will
be the originate focal entity, and Y be the originate normal entity. We may then
think it is inconsistent with the standard practice, if there is another process,
Process_name2, which specifies X be the originate normal entity and Y be the
originate focal entity. If this is applicable, the similar principle can also be
applied to the relationships for change focal and change normal entity functions.
These are the extended guidelines which are a natural deduction from BSDM.
They are described formally below.

(entity_function(originate_focal_fun, Process, Entityl)A)

entity_function(originate_normal_fun, Process, Entity2)
>

—3dProcess2.
entity_function(originate_focal - fun, Process2, Entity2)A\ (34)
entity_function(originate_normal_fun, Process2, Entityl)

(entity_function(change_focal _fun, Process, Entityl)A)

entity_function(changee_normal_fun, Process, Entity2)
>

=3 Process2.
entity_function(changee_focal _fun, Process2, Entity2) A (35)
entity_function(changee_normal_fun, Process2, Entityl)

279

280

Appendix 1

The Interpreter for User-Defined
Attribute Rules

Tl ToToToToToToToToTo 1o 1o 1o o Jo Jo o o o o o Jo o o o To T T T T T T T To T T T T o o oo oo oo oo oo o oo oo o o o o o
% File: derive.pl 1999-6-17

h

% This document records the design for derivation methods for

% entity attributes.

Tl ToloToToToToToToTo 1o 1o o To o Jo o o o o o Jo o To o To T T T T T T T T T T T T o oo oo oo oo oo o oo oo oo o o o

Tl Tt o T o o oo to To fo o to To oo To o T o Fo T fo o To oo To To o ot To o Fo o o o T T Yo Fo T Fo o Fo o o o Fo o o
%% Main Program (1)
Tl Toto o Tt o ot to To oo to To oo To o o o To T o o To oo Fo T o o T To o Fo T oo T T Yo Fa T Fo o Fo o o o T o o

Tl ToloToToToToToToToToTo o To o o o o o o o o o oo To o Jo o To T T To T T T T T T T T o o oo o o oo
% statement --> verb_phrase + noun_phrase +

% adj_phrase + adv_phrase +

% closing_phrase

Tl Tl ToToToToToToToToto 1o 1o o Jo o o o o o o o Jo o o o Jo T o T Jo T T T T T T T o o oo o o oo
%hhhh Type 1: statement

statement ([typel, function(Function), attname (Attname),
att_value(Att_list), res(Result)])

--> vp(Function, Attname),
adj_p(Entity), adv_p(Entity, [], EntOccs),
closing_statement (Result),
{find_all_attvalues(Attname, EntOccs, Att_list),
compute (Function, Att_list, Result) }.

%hh%%h Type 2: statement

statement ([type2, function(Function), res(Result)])

281

--> vp(Function),
vp_content (Result),
call_statement (Function),
{(\+ var(Function), call(Function);
var (Function)) }.

%hhh%h Type 3: statement
statement ([type3, function(Function), res(Result)])

--> vp(Function),
s1_block(Result),
call_statement (Function),
{(\+ var(Function), call(Function);
var (Function)) }.

%hhhh Type 4: statement

statement ([type4, function(Function), res(Result)])

--> vp(Function),
s1_block(Resl), vp_content(Res2),
call_statement (Function),
{(\+ var(Function), call(Function);
var (Function)),
append(Resl, Res2, Result) }.

T TotoTo o ToToTo oo ToTo o T To o o To T To o Jo T o o o Jo T o o o Jo T oo o Jo o o o o T o oo T oo o T o o
sl_block([typel|Result]) --> statement([typell|l Result]).

s1_block([typel|Result]) --> statement([typel| Resl1]), [and],
statement ([typel| Res2]),
{append(Resl, [typell Res2], Result) }.

Tl ToloToToToToToToToToTo 1o 1o To o o o o o o o oo T Jo T To T T Jo o T T T T T T T T o o o oo o

vp_content ([Result]) -->
vp2(Attname), adj_p(Entity), adv_p(Entity, [], EntOccs),
closing_statement (Result),
{write(EntOccs) ,nl,
write(Entity) ,write(ID),nl,
member ((Entity, ID), EntOccs),
dyn(ent_occ_att(Entity, ID, Attname, Result)) }.

282

vp_content (Result) -->
vp2(Attname), adj_p(Entity), adv_p(Entity, [], EntOccs),
closing_statement (Resl),
vp_content (Res2),
{member ((Entity, ID), EntOccs),
dyn(ent_occ_att(Entity, ID, Attname, Resl)),
append([Res1], Res2, Result) }.

Tt ol T o T e s Tt o T T o T To o To TS o fo T T S o T o T fo T o Fo T Vo T o o T Vo Fo T o o o T o o T o
% (1) Verb and Verb Phrase

verb --> [calculate], {write(’verb’),nl}.
verb --> [compute], {write(’verb’) ,nl}.

verb --> [use], {write(’verb’),nl}.
verb --> [search], {write(’verb’),nl}.
verb --> [find], {write(’verb’),nl}.
YAYANA

vp(Function, Attname) -->
verb, [the, Function, of, attribute, Attname],
{write(’vp?’),nl}.

vp(Function) --> verb, [the, Function, for], noun,
{nl, write(’vp’),nl}.

vp(Function, Attname) -->
verb, [the], function(Function), [of, attribute, Attname],
{write(’vp’),nl}.

vp2(Attname) --> verb , [attribute, Attname],
{write(’vp2’),nl}.

Tl ToloToToToToToToToToTo o To o o o o o o o oo oo To o o o To T T T To T T T T T T T o o oo o o oo

% (2) Noun and Noun Phrase

noun --> [computation].
noun --> [calculation].

function(average) --> [average] .
function(summation) --> [summation].

T ToTotoToto o ToToTo e To oo ToToToTo o o Jo To T o To o o o o To T T ToJo o o o o To T o oo oo o o T T o o oo

% (3) Adj Phrase

adj_p(Entity) --> [for, every, entity, Entity], {write(’adj_p’),nl}.
adj_p(Entity) --> [for, entity, Entity]l, {write(’adj_p’),nl}.

283

D 1oToTo o ToToto oo ToTo o o ToTo o ToToTo o Jo ToTo o o ToTo T o o To T Jo o o To T o o o To T o o o To o oo o T o o o

% (4) find all relevant Entity Occurrences

%% find a special set of ent occs.
adv_p(Entity, InOcc, OutOcc) -->
[with, condition, entity-ancestor, ParQOcc],
{write(’adv_pl’),nl,
find_all_ent_occ(Entity, ParOcc, InOcc, OutOcc)}.

adv_p(Entity, InOcc, OutOcc) -->
[with, condition, entity-ancestor, ParQOcc, and],
adv_p(Entity, InOcc, MidOcc),
{write(’adv_p2’),nl,
find_all_ent_occ(Entity, ParOcc, MidOcc, OutOcc)
}.

%% know the particular entity occ
adv_p(Entity, InOcc, OutOcc) -->
[with, condition, entity-id, EntID],
{write(’adv_p1’),nl,
find_one_ent_occ(Entity, EntID, InOcc, OutOcc)}.

DoTohototoTotoToTo foto foTo o JoTo ToTo fo T o To 1o To o o T o o o Jo o o Jo T o o o Yoo o T o Jo o o o o o o o o o o

% (5)

closing_statement (Result) --> [when, finished,save,the,result,in,Result],
{write(’close’),nl}.

DoTohoto o To o ToTo fo o foTo o ToTo ToTo fo T o To 1o To o o T o o o Jo o o Jo T o T o Yo o o o o Yo o o o o o o o o o 2o o

% (6)

call_statement (Function) --> [call, Function],
{\+ var(Function), write(’call statement’),nl}.

call_statement (Function) --> [call, Function],
{var(Function),
write (’Error: User defined function is not given !’),nl}.

Dot To T To o To o To ToTo ToTo Toto To o To o o o o o Fo o T o T o To o T Fo o Jo o o o Jo o o o Fo o o o o T o T o o o o Yo o Yo o Yo o Yoo o o Y o o o o o
% find_all_ent_occ(Entity, ParOcc, InOcc, OutOcc)

%

% Given Parent Occurrence, find all relevant entity occurrence.

yA

% Output = [(Entity, ID), (Entity2, ID2),...]

Dot TotaTo o To foTo Jo To ToTo Joto Jo o Jo o o o o o Jo o T o T o o Fo T Jo o Yo o o o o o Yo 0o o o o o o T o o o o o o Yo 7o Yo o Yo o Yo o o o Yo o Yo o o o

find_all_ent_occ(Entity, ParOcc, InOcc, OutOcc) :-
findall((Entity, ID),

284

(dyn(ent_occ(Entity, ID, _)),
ancestor((Entity, ID), Par0Occ)
),
NewOcc),
append (InQcc, NewOcc, Mid),
set (Mid, OutOcc).

find_all_ent_occ(Entity, _, InOcc, InOcc) :-
dyn(ent_occ(Entity, _, [1)),
write(’An Error was found: The Entity "’), write(Entity),write(’"’),nl,
write(’is without a parent.’),nl.

find_all_ent_occ(Entity, [], InOcc, InOcc) :-
write(’An Error was found: The Entity "’), write(Entity),write(’"’),nl,
write(’can not be found without given parent occurrences.’),nl.

Tt to ot oo To ot To Toto o foTo o fo Jo To o Bo To o o Yo Fo To o T o Fo o Yo B Fo to o Yo B T o o fo 1o o o o Yoo o o T o o o oo o o o Fo 0o o o o Yo o o
% find_one_ent_occ(Entity, EntID, InOcc, OutOcc)

%

% Given the Entity name and Entity ID, the particular Ent Occ is

% retrieved and added to InOcc and return in Outocc.

Tl ToloToToToToToToToTo 1o 1o To o Jo o o o o o o o Jo o To o o o T T T T To T T T T T T T o T o oo oo oo o oo o oo o oo oo o oo o o o

find_one_ent_occ(Entity, EntID, InOcc, OutOcc) :-
dyn(ent_occ(Entity, EntID, _)),
append (InOcc, [(Entity, EntID)], Out),
set (Out, OutOcc).

find_one_ent_occ(Entity, EntID, InOcc, InlOcc) :-

\+ dyn(ent_occ(Entity, EntID, _)),

write(’Warning: An entity occurrence is required for the derivable
attribute rule, but it does not exist.’),nl,

write(’The entity Name: ’), write(Entity),nl,

write(’The entity ID: ’), write(EntID) ,nl.

Dot To o To o to foTo ToTo o To ToTo Toto To o o o o o T o o o T Jo o o o Fo o Jo o o o o o Jo o o o o o o o o o o o o o o Yo o Yo o o o Yoo o o o o o o
% find_all_attvalues(Attname, EntOccs, Output_list),
TotoTo T To o to foTo ToTo ToTo ToTo Toto To o o o o o T Fo T o T Jo o o o Fo o Yo o Fo o o o Yo o o o o o Yo T o o o o o o o o Yo o Yo 7o Yo o Yoo o o o o o o
find_all_attvalues(Attname, EntOccs, Output_list) :-
findall(AttValue,
(member((Ent, ID), EntOccs),

dyn(ent_occ_att(Ent, ID, Attname, AttValue))),
Qutput_list).

285

WototoTototo To s to ot to Toto o foto o foJo To Yo To Toto To o Fo o ta To Fo Fo o Yoo o Fo o o To Yo oo Yo Fo Jo o o Jo o o o 0o Fo 1o To o T Fo o o o to o o o Foto o
% compute (Function, Input_list, Result)
Dot to T To o To foTo ToTo ToTo ToTo To o To o o o o fo T o To o T o To o Fo o o Jo o o o o o o o Yo o o o o o o T o o o o Yo o Yo o Yo o Yoo o o o o o o o o
compute (average, [1, 0) :- !.
compute (average, Input_list, Result) :-

compute (summation, Input_list, R1),

length(Input_list, Len),
Result is R1 / Len.

Tl doto ot To o toTo o Bo oo to oo
compute (summation, [], 0) :- !.

compute (summation, Input, Result) :-
my_sum(Input, O, Result).

Bl I T bt e
my_sum([], Res, Res) :- !.
my_sum([X|List_of_data], Input, Res) :-

Sum is X + Input,
my_sum(List_of_data, Sum, Res).

286

Appendix J

Model Rules/Guidelines By
Categorisations

This appendix categories all of the model rules and guidelines described in the thesis
in four categories and list them in four tables.

Explanation of the four categories of model rules and guidelines are given below:

1. Ezact Match: These model rules/guidelines are given in the method explicitly and
all errors described by such rules are detectable by the tool and correct advice
can be given.

2. Partial Match: These model rules/guidelines are given in the method explicitly,
but only a part of the specified errors are detectable by the tool with correct
advice given.

3. Folklore Rules: This type of rules are not explicitly stated in the method, but
is assumed or inferable from it and is normally used by practitioners. Folklore
model rules are modelling rules which are normally applied in practice. Although
they are not explicitly stated in the method, they can be inferred from BSDM
guidelines.

4. Enhanced Rules: The use of enhanced modelling rules are only possible when
applying DefBM or KBST-BM. This is due to the extension of BSDM that is made
available in our modelling framework. Such extensions are the provision of the
Entity Conceptual Hierarchy, Process Dependency and Partial Execution Order
Diagrams, extended Life Cycle Diagrams, Procedural Model and the checking
functionalities provided by the business model simulator.

The model rules and guidelines are described in the following sections. The IDs of
the model rules and guidelines are used correspondingly in Appendix G and H.

287

J.1 Entity Model Rules

‘ Rule ID Entity Model Rules ‘ Category ‘
1 No entity should be isolated 1,3
2,3 No circular dependency is allowed 1,3
4 Each entity must be defined 1
5 A child entity occurrence must be

created only after its parent

occurrences are created 1,4
6,7,8 Each entity is unique 2
9,10 Each entity represents real things 2
11 Each derivable variable must have

a derivation mean 1
12,13,14,15 | Each entity should be associated

with members in the entity families | 1, 4
16 Each entity must have a start life

status 14
17 Each entity must have a terminating

life status 14
18,19 Each entity must have a correct

life cycle transition 1,4

J.2 Entity Model Guidelines

‘ Guideline ID ‘ Entity Model Guidelines ‘ Category

20 An entity model should be within

4 layers 1
21 None or two entity parents only 1
22 Entity name should be short 1
23 Entity name should be general 2,4
24 Entity name are singular nouns 2
25 One dependency to an alternative

box only 1,3

288

J.3 Process Model Rules

‘ Rule ID ‘ Process Model Rules ‘ Category

1 Each process must have a trigger 1
2 Each process must include at least

one entity 1
3 There are only seven different kinds

of entity functions 1
4 Each entity must be included in

at least one process 1
) Each originate process must define

the creation of its org. foc. ent. 1,4
6 An originate process must define

the creation of its org. normal

entity if it has any 1,4
7 An originate process must define

the creation of its org. in-flight

entity if it has any 1,4
8 A change process must define the

creation of its change focal entity 1,4
9 A change process must define the

creation of its change normal

entity, if it has any 1,4
10 originate focal entity is only

applicable for originate process 1
11 Each entity in a process must be

assigned an entity function 1
12 Each entity can only have one entity

function in any process 1
13 Creation and modification for values

of derivable variables can not be the

primary purpose of a process 1
14 The calculation base for derivable

variables must be include in the

corresponding process scope 1
15, 16 Consistency Checking for

Life Cycle Diagrams and Processes 2,3,4

289

J.4 Process Model Guidelines

‘ Guideline ID ‘ Process Model Guidelines ‘ Category

17 Each process should include

least one business rule 1
18 Each entity should be originated by

at least one process 1
19 Process name should obey the standard

naming convention 1
20 There is only one originate focal

entity in an originate process 1
21 There is only one change focal

entity in a change process 1
22,23 Parent entities of originate

entities in a process may also be

included in the same process 1
24,25 Parent entities of change

entities in a process may also be

included in the same process 1
26 Checking for subsumed processes
27 Checking for the possibility of

combining originate processes 2
28 Checking for the possibility of

combining change processes 2
29 The transition of all life statuses

should be handled by at least one process | 1, 4
30 Important attributes should be

handled by at least one process 1,4
31 Known transition of attribute

values should be handled by at least

one process 1,4
32,33 Deadlock by process definitions 1,3,4
34, 35 Inconsistent handling of entities 1,3,4

290

Appendix K

Test Result of Model Rules and
Guidelines

K.1 Test Result of Entity Model Rules

‘ Number ‘ Error Description ‘ Error Found ‘ Rule ID ‘
1 An entity without definition 41 4
2 An entity with different parents

defined in different cards 1 6
3 An entity with inconsistent

class attribute values
4 Add an isolated entity 1 1
5 Insert two dependencies from

Duration to its descendant to

create a circular dependency 4 2
6 An entity occurrence was created

but its parent occurrences were

not created - 5*
7 Name an entity “Registration

Form” 1 10
8 Entities not associated with

entity families 52 12
9 Entities not specifying its starting

life status 56 16
10 Entities not specifying its ending

life status 56 17

291

11 | transferring the ending life status
of an entity to another life status 1118

12 | give an entity a start life status
but does not give it a transition
means to another status 1116

13 | give an entity an ending life status
but does not give it a transition
means to arrive it 2|17

14 | give an entity a life status
transition cycle which does not end | 1 | 18

Table (1): Test Result of Entity Model Rules

* This error is only checkable in the dynamic business card, and is prevented in the
business model simulator.

K.2 Test Result of Entity Model Guidelines

Number | Error Description Error Found | Guideline ID
1 Insert a one-parent entity 1 21
2 Insert a three-parent entity 1 21
3 Long entity names 1 22
4 Two entities which divide the

concept of place in two entities 1 23

A plural entity name is used 1 24
6 Too many layers due to circular

dependencies placed in the model | 26 20
7 Without planted the error of

circular dependencies but with one

extra entity injected at the button

of the model 1 20
8 One entity which is dependent on

alternative parents box only 1 25

Table (2): Test Result of Entity Model Guidelines

292

K.3 Test Result of Process Model Rules

Number | Error Description Error Found | Rule ID
1 Processes not defined a trigger event 37 1
2 Process not include an entity 1 2
3 Entities which are not included by

at least one process 37 4
4 Originate process without defining

its origination focal actions 11 5
5 Originate process without defining

its originate normal actions 2 6
6 Originate process without defining

its originate in-flight actions 3 7
7 One change process not

having a change focal entity 1 8
8 Change processes not specifying its

change focal actions 29 8
9 Change processes not specifying its

change normal actions 2 9
10 One originate focal entity is added

in a change process 1 10
11 Assign an entity to a process, but

do not give it an entity function 1 11
12 Assign an entity with two entity

functions in a process 1 12
13 A process was specified to originate an

entity’s life status in the LCD*, but

is not specified in the corresponding

process scope 1 15
14 A process was specified to change an

entity’s life status in the LCD*, but

is not specified in the corresponding

process scope 1 16

Table (3): Test Result of Process Model Rules

* LCD stands for Life Cycle Diagram.

293

K.4 Test Result of Process Model Guidelines

Number | Error Description Error Found | Guideline ID
1 Define a process but does not specify

a business rule for it 41 17
2 Create entities in the model, but

does not define any process to

originate them 43 18
3 Define two originate focal entities

in a process 1 20
4 Define two change focal entities

in a process 1 21
5 An entity which is with inconsistent

parents, but is also at the same
time being an originate focal entity
for a process 4 22

6 An entity which is with inconsistent
parents, but is also at the same
time being a change focal entity
for a process 4 24

Table (4): Test Result of Process Model Guidelines

294

Appendix L

An Example Use of GMA

This Appendix gives an example use of GMA and the generated reports.

L.1 The Input User Model

EIEEj=EF= 2 3

Figure L.1: The Example Input Model for GMA

L.2 The Representation of the User Model

data_ent (hardy, ’Reservation 0f Future Supply’).
data_ent (hardy, ’Association Of Customer Order With Enquiry’).

295

data_ent (hardy, ’Applicability Of Term To Order’).

data_ent (hardy, ’Allocation Of Part Type To Request’).

data_ent (hardy, ’Purchase Ordered Part Type’).

data_ent (hardy, ’Association 0f Part Type With Enquiry’).

data_ent (hardy, ’Requested Item’).

data_ent (hardy, ’Customer Order Enquiry’).

data_ent (hardy, ’Customer Order’).

data_ent (hardy, ’Purchase Order’).

data_ent (hardy, ’Trade Agreement’).

data_ent (hardy, ’Contract Term’).

data_ent (hardy, ’Part Type’).

data_ent (hardy, ’Party’).

data_view(hardy, ’Order’).

data_arc(hardy, ’7143’, ’Allocation Of Part Type To Request’,
’Reservation 0f Future Supply’).

data_arc(hardy, ’7139’, ’Purchase Ordered Part Type’,
’Reservation 0f Future Supply’).

data_arc(hardy, ’7075’, ’Requested Item’, ’Allocation 0f Part Type To
Request’).

data_arc(hardy, ’7135’, ’Customer Order Enquiry’,
’Association Of Customer Order With Enquiry’).

data_arc(hardy, ’7131’, ’Customer Order Enquiry’,
’Association Of Part Type With Enquiry’).

data_arc(hardy, ’7119’, ’Customer Order’,
’Association 0Of Customer Order With Enquiry’).

data_arc(hardy, ’7103’, ’Customer Order’, ’Applicability Of Term To
Order’).

data_arc(hardy, ’7059’, ’Customer Order’, ’Requested Item’).

data_arc(hardy, ’7063’, ’Purchase Order’, ’Purchase Ordered Part

Type’) .

data_arc(hardy, ’7111’, ’Contract Term’, ’Applicability Of Term To
Order’).

data_arc(hardy, ’7127’, ’Part Type’, ’Association 0f Part Type With
Enquiry’).

data_arc(hardy, ’7115’, ’Part Type’, ’Allocation 0f Part Type To
Request’).

data_arc(hardy, ’7071’, ’Part Type’, ’Purchase Ordered Part Type’).
data_arc(hardy, ’6982’, ’Part Type’, ’Customer Order Enquiry’).
data_arc(hardy, ’6978’, ’Part Type’, ’Customer Order Enquiry’).
data_arc(hardy, ’6974’, ’Part Type’, ’Customer Order’).
data_arc(hardy, ’6970’, ’Part Type’, ’Customer Order’).
data_arc(hardy, ’6934’, ’Party’, ’Trade Agreement’).
data_arc(hardy, ’6926°, ’Party’, ’Trade Agreement’).
data_arc(hardy, ’6922’, ’Party’, ’Purchase Order’).

data_arc(hardy, ’6918’, ’Party’, ’Purchase Order’).

296

L.3 The Actual Dialogue using GMA

merlin[myprolog] SICStus 3 #5: Tue Aug 26 10:14:51 BST 1997

| 7- [cbr].

{consulting /hame/jessicac/kbst-bm/myprolog/cbr.pl...}

{consulting /hame/jessicac/kbst-bm/myprolog/case.db...}
{/hame/jessicac/kbst-bm/myprolog/case.db consulted, 80 msec 26896 bytes}
{consulting /hame/jessicac/kbst-bm/myprolog/enthrc.db...}
{/hame/jessicac/kbst-bm/myprolog/enthrc.db consulted, 40 msec 19968 bytes}

**kxkxk*x* Welcome to KBST Generic Model Advisor dkkkkx*

Please type "run." to take the specific input from Hardy.

Press control+d to quit the program. Bye for now.
{/hame/jessicac/kbst-bm/myprolog/cbr.pl consulted, 250 msec 87104 bytes}
yes

| ?- run.
{consulting /hame/jessicac/kbst-bm/myprolog/cbr.db...}
{/hame/jessicac/kbst-bm/myprolog/cbr.db consulted, 10 msec 3184 bytes}

*kkkkkokkokkkkkk Retrieving User Model skksksksokskkskkokkokskk
x*x* Matching Generic Models in the Case Library *x*
*xxk*x** Choose Similarity Assessment Method skkskkkkkk

A1l of the relevant cases to the user model have been retrieved,
and will be presented to you in order. The sequence of display
can be given by default order. Alternatively, if you wish,

you can influence the sequence of the cases which are presented
to you by changing the weight on the selected features.

How would you like to optimise the solution presentation:

(1) Use The Default Method
(2) Redefine The Optimisation Method
[: 1.
*xxkkkk Finished Optimising Solution k¥

ok o ke ok ok ok 3k ok ok k- Stage Report No. 1 ok ok ok ok s ok ok ok ok
*kkkkkkkkk Fitness Measure of Matching *kkkskkkskskx

(A) The matched CASE model is: Restaurant: Customer Order
The similar assessment ratio is: 0.50

* Matching View Name: yes

* The link matching ratio of the retrieved CASE model: 0.29
The entity matching ratio of the retrieved CASE model: 0.39

297

There are 7 links matched,
and there are 17 links not matched.
There are in total 24 links in the CASE model.

There are 7 entities matched,
and there are 11 entities not matched.
There are in total 18 entities in the CASE model.

(B) The input USER model is: Order

* The link matching ratio of the USER model: 0.33
* The entity matching ratio of the USER model: 0.5

There are 7 links matched,
and there are 14 links not matched.
There are in total 21 links in the USER model.

There are 7 entities matched,
and there are 7 entities not matched.
There are in total 14 entities in the USER model.

ok ok 3k ok ok ok ok %k Stage Report No. 2 sk 3k 3k ok ok >k 5k % %k
*kxkkkkk Result Analysis & Suggestion skkskkkkksksk

(1) The selected matching case model is: Restaurant: Customer Order
- The input USER model is: Order

(2) Matching of entities:
- There are 7 sets of entities found matched:

- The Entity "Allocation Of Part Type To Request" in the USER model.
was found to be matching with
the Entity "Association Of Customer Order With Reservation"
in the CASE model

- The Entity "Applicability Of Term To Order" in the USER model.
was found to be matching with
the Entity "Applicability 0f Trade Agreement For Customer Order"
in the CASE model

- The Entity "Contract Term" in the USER model.
was found to be matching with

the Entity "Promotion" in the CASE model

- The Entity "Customer Order" in the USER model.
was found to be matching with

298

(3) An

the Entity "Customer Order" in the CASE model

The Entity "Customer Order Enquiry" in the USER model.

was found to be matching with

the Entity "Customer Reservation" in the CASE model

The Entity "Party" in the USER model.

was found to be matching with

the Entity "Business" in the CASE model

The Entity "Trade Agreement" in the USER model.

was found to be matching with

the Entity "Trade Agreement" in the CASE model

- Matching a Valid Dependency:

The link from entity "Customer
"Association 0f Customer Order
in the USER model MATCHES with
the link from entity "Customer
"Association 0f Customer Order
in the CASE model.

Matching a Valid Dependency:
The link from entity "Customer
Customer Order With Enquiry"
in the USER model MATCHES with
the link from entity "Customer

independent architecture matching:

Order Enquiry" to

With Enquiry"

Reservation" to
With Reservation"

Order"

Order"

Customer Order With Reservation"

in the CASE model.

- Matching a Valid Dependency:

The link from entity "Customer
Term To Order"

in the USER model MATCHES with
the link from entity "Customer

Order"

Order"

Trade Agreement For Customer Order"

in the CASE model.

- Matching a Valid Dependency:

to

to

to

to

"Association Of

"Association Of

"Applicability Of

"Applicability Of

The link from entity "Party" to "Trade Agreement"

in the USER model MATCHES with

the link from entity "Business" to "Trade Agreement"

in the CASE model.

- Matching a Valid Dependency:

299

The link from entity "Party" to "Trade Agreement"

in the USER model MATCHES with

the link from entity "Business" to "Trade Agreement"
in the CASE model.

- Matching a Valid Dependency:
The link from entity "Party" to "Purchase Order"
in the USER model MATCHES with
the link from entity "Business" to "Customer Order"
in the CASE model.

- Matching a Valid Dependency:
The link from entity "Party" to "Purchase Order"
in the USER model MATCHES with
the link from entity "Business" to "Customer Order"
in the CASE model.

(4) Unmatched dependencies:

- There is a link from entity "Trade Agreement" to "Applicability
0f Trade Agreement For Customer Order"
in the case model which could not be matched with any links
in the data model.

Analysis: because the corresponding entities of
"Trade Agreement" and "Applicability 0f Trade Agreement

For Customer Order" in the data model could not be found.

<< ... details omitted ... >>

End of Report
Do you want to see an alternative matching ? (y. or n.)
[: y.

Show an alternative solution:

*xxkkk*k Finished Optimising Solution ks
ok ok 3k ok ok ok sk ok sk k Stage Report No. 1 3k ok ok ok ok sk ok ok ok

*kkkkkkkkk Fitness Measure of Matching kkkkkkskkx

(A) The matched CASE model is: Subject Of Transaction: Ordered Batch
The similar assessment ratio is: 0.66

* Matching View Name: yes
* The link matching ratio of the retrieved CASE model: 1.0
1.

The entity matching ratio of the retrieved CASE model: 0

300

There are 2 links matched,
and there are 0 links not matched.
There are in total 2 links in the CASE model.

There are 3 entities matched,
and there are 0 entities not matched.
There are in total 3 entities in the CASE model.

(B) The input USER model is: Order

* The link matching ratio of the USER model: 0.10
* The entity matching ratio of the USER model: 0.21

There are 2 links matched,
and there are 19 links not matched.
There are in total 21 links in the USER model.

There are 3 entities matched,
and there are 11 entities not matched.

There are in total 14 entities in the USER model.

ko 3k ok ok ok ok 3k Stage Report No. 2 sk 3k 3k ok ok >k ok 3k %k
*xxdkkkk Result Analysis & Suggestion sokskkkksksksk

(1) The selected matching case model is: Subject Of Transaction:
Ordered Batch

- The input USER model is: Order

(2) Matching of entities:
- There are 3 sets of entities found matched:

- The Entity "Customer Order" in the USER model.
was found to be matching with
the Entity "Customer Order" in the CASE model
- The Entity "Part Type" in the USER model.
was found to be matching with
the Entity "Product Type" in the CASE model
- The Entity "Purchase Ordered Part Type" in the USER model.
was found to be matching with
the Entity "Ordered Batch" in the CASE model

(3) An independent architecture matching:

- Matching a Valid Dependency:

301

The link from entity "Part Type" to "Purchase Ordered Part Type"
in the USER model MATCHES with

the link from entity "Product Type" to "Ordered Batch"

in the CASE model.

- Matching a Valid Dependency:
The link from entity "Purchase Order" to "Purchase Ordered Part Type"
in the USER model MATCHES with
the link from entity "Customer Order" to "Ordered Batch"
in the CASE model.

(4) Unmatched dependencies:

- All dependences in the Case Model are matched.

End of Report
Do you want to see an alternative matching ? (y. or n.)
[: y.

Show an alternative solution:

*kkkkkk Finished Optimising Solution kkkskskskkk
kKoo ok o o ok Stage Report No. 1 sk o o o o ok ok ok

*kkkkkkkkk Fitness Measure of Matching sk

(A) The matched CASE model is: BSDM: Customer Order And Delivery
The similar assessment ratio is: 0.32

* Matching View Name: yes
* The link matching ratio of the retrieved CASE model: 0.09
The entity matching ratio of the retrieved CASE model: 0.21
There are 2 links matched,
and there are 20 links not matched.
There are in total 22 links in the CASE model.
There are 3 entities matched,
and there are 11 entities not matched.
There are in total 14 entities in the CASE model.

(B) The input USER model is: Order

* The link matching ratio of the USER model: 0.10
* The entity matching ratio of the USER model: 0.21

There are 2 links matched,

302

and there are 19 links not matched.
There are in total 21 links in the USER model.

There are 3 entities matched,
and there are 11 entities not matched.
There are in total 14 entities in the USER model.

sk o 3k ok ok ok ok 3k Stage Report No. 2 sk 3k 3k ok ok >k ok 3k %k
*kkkxkkxk*x Result Analysis & Suggestion F¥dkdkdkkkkxk

(1) The selected matching case model is: BSDM: Customer Order And
Delivery

- The input USER model is: Order

(2) Matching of entities:
- There are 3 sets of entities found matched:

- The Entity "Customer Order" in the USER model.
was found to be matching with
the Entity "Customer Order" in the CASE model

- The Entity "Party" in the USER model.
was found to be matching with
the Entity "Business" in the CASE model

- The Entity "Purchase Ordered Part Type" in the USER model.
was found to be matching with
the Entity "Product On Order" in the CASE model

(3) An independent architecture matching:

- Matching a Valid Dependency:
The link from entity "Purchase Order" to "Purchase Ordered Part
Type" in the USER model MATCHES with the link from entity "Customer
Order" to "Product On Order" in the CASE model.

- Matching a Valid Dependency:
The link from entity "Party" to "Purchase Order"
in the USER model MATCHES with
the link from entity "Business" to "Customer Order"
in the CASE model.

(4) Unmatched dependencies:

- There is a link from entity "Business" to "Order Receiving Point"
in the case model which could not be matched with any links

303

in the data model.
Analysis: because the corresponding entities of
"Business" and "Order Receiving Point"

in the data model could not be found.

<< ... details omitted ... >>

End of Report
Do you want to see an alternative matching ? (y. or n.)
[: y.

Show an alternative solution:

<< A1l of the alternative solutions have been explored by
the user, but the details are omitted here. A summary
of the retrieved cases and their reports are given in
the next section. >>

L.4 A Statistical Summary of All Explored Matches

A Summary Report of Matching Results
Input USER model: Order

Matching Ratios:

(1) Match-View/Match-case-ent/Match-user-ent
Match-case-link/Match-user-link

(2) All1-User-Links/Matched-Links/Unmatched-Links
Al11-Case-Links/Matched-Case-Links/Unmatched-Case-Links

(3) All-User-Ents/Matched-Ents/Unmatched-Ents
Al11-Case-Ents/Matched-Case-Ents/Unmatched-Case-Ents

Restaurant: Customer Order:
1 0.39/0.5 0.29/0.33
21/7/14 24/7/17

14/7/7 18/7/11

Subject 0f Transaction: Ordered Batch:
1 1.0/0.21 1.0/0.10

21/2/19 2/2/0

14/3/11 3/3/0

BSDM: Customer Order And Delivery:
1 0.21/0.21

0.09/0.10
21/2/19 22/2/20

304

14/3/11 14/3/11

Purchase Invoice and Payment:
0 0.42/0.36 0.38/0.29
21/6/15 16/6/10

14/5/9 12/5/7

Restaurant: Purchase Invoice And Delivery:
0 0.45/0.36 0.25/0.19

21/4/17 16/4/12

14/5/9 11/5/6

Restaurant: Stock Control:
0 0.6/0.43 0.3/0.14
21/3/18 10/3/7

14/6/8 10/6/4

BSDM Manual: Employee Management:
0 0.4/0.14 0.33/0.10

21/2/19 6/2/4

14/2/12 5/2/3

Restaurant: Tax Payment:
0 0.13/0.14 0.1/0.10
21/2/19 20/2/18
14/2/12 16/2/14

Business Function: Delivery:
0 0.33/0.07 0/0

0/0/0 2/0/2

14/1/13 3/1/2

Contract and Account:
0 0.25/0.07 0/0
0/0/0 6/0/6
14/1/13 4/1/3

Inter-Business Relationship:
0 0.2/0.07 0/0

0/0/0 6/0/6

14/1/13 5/1/4

Contract And Organisation Management:
0 0.2/0.07 0/0

0/0/0 6/0/6

14/1/13 5/1/4

305

Application Of Law:
0 0.2/0.07 0/0
0/0/0 4/0/4
14/1/13 5/1/4

Restaurant: Employee Management:
0 0.08/0.07 0/0

0/0/0 14/0/14

14/1/13 12/1/11

306

Appendix M

Example Discourse of Using
Business Simulator

This example is served as an supportive document to the illustration given in Section
8.4.

SICStus 3 #5: Tue Aug 26 10:14:51 BST 1997

{compiling /hame/jessicac/kbst-bm/simulator/top.pl...}

{consulting /hame/jessicac/kbst-bm/simulator/library.pl...}
{/hame/jessicac/kbst-bm/simulator/library.pl consulted, 10 msec 3456 bytes}
{consulting /hame/jessicac/kbst-bm/simulator/store.pl...}
{/hame/jessicac/kbst-bm/simulator/store.pl consulted, O msec 400 bytes}
{consulting /hame/jessicac/kbst-bm/simulator/conflict.pl...}
{/hame/jessicac/kbst-bm/simulator/conflict.pl consulted, 20 msec 10336 bytes}
{consulting /hame/jessicac/kbst-bm/simulator/cond.pl...}
{/hame/jessicac/kbst-bm/simulator/cond.pl consulted, 30 msec 9936 bytes}
{consulting /hame/jessicac/kbst-bm/simulator/exe.pl...}
{/hame/jessicac/kbst-bm/simulator/exe.pl consulted, 20 msec 8816 bytes}
{consulting /hame/jessicac/kbst-bm/simulator/model.pl...}
{/hame/jessicac/kbst-bm/simulator/model.pl consulted, 10 msec 3696 bytes}
{consulting /hame/jessicac/kbst-bm/simulator/derive.pl...}
{/hame/jessicac/kbst-bm/simulator/derive.pl consulted, 20 msec 12848 bytes}
{consulting /hame/jessicac/kbst-bm/simulator/data/cond.db...}
{/hame/jessicac/kbst-bm/simulator/data/cond.db consulted, O msec 3408 bytes}
{consulting /hame/jessicac/kbst-bm/simulator/data/dyn.db...}
{/hame/jessicac/kbst-bm/simulator/data/dyn.db consulted, 0 msec 1344 bytes}
{consulting /hame/jessicac/kbst-bm/simulator/data/entity.db...}
{/hame/jessicac/kbst-bm/simulator/data/entity.db consulted, O msec 2528 bytes}
{consulting /hame/jessicac/kbst-bm/simulator/data/process.db...}
{/hame/jessicac/kbst-bm/simulator/data/process.db consulted, O msec 6224 bytes}
{consulting /hame/jessicac/kbst-bm/simulator/data/trigger.db...}
{/hame/jessicac/kbst-bm/simulator/data/trigger.db consulted, 10 msec 2864 bytes}
sk o ko ok s ok ko ok ko o ko ok ko o sk ke ok sk ok ok ok o sk ok ko sk o ko o ko ko o ok o sk ok ok o sk o ok sk o ok ok

Welcome to The Business Model Simulator for BSDM

This simulator is a part of the tool KBST-BM

307

Please activate this program by typing top(X).

Where as X is the number of steps required for simulation.
At the end of the simulation type look to see results.

s ks s s e ke ok ks s s s s ke ok sk sk sk e s s ke sk s se s ke ok sk sk s s s ok sk sk sk s ke ok sk sk sk ke sk ks s s ke sk sk ok
{/hame/jessicac/kbst-bm/simulator/top.pl compiled, 260 msec 79824 bytes}
| 7- top(1).

>>>>> Searching for Processes

>>>>> Searching for Triggers

>>>>> Searching for Triggers

End Time: O

Step left: O

Would you like to add new occurrences to the system? (y./n.)
[: n.

End of simulation, Simulation stops at time: 1

*kkkkk export_data_to_archive k*kkkkk

System States are saved in sim.out

yes
| ?- look.

——————— report dynamic system state -------
Shown State: 0 State Time: 0. It is now time: O

ent_occ(’Practical’, pl, [1).

ent_occ(’Practical Assign To Module’, ’ES-p2’,
[(°Practical’,p2),(’Module’,’ES’)]).

ent_occ(’Practical Assign To Module’, ’ES-pl’,
[(’Module’,’ES’), (’Practical’,p1)]).

ent_occ(’Practical’, p2, [1).

ent_occ(’Module’, ’ES’, []).

ent_occ(’Person’, ’John’, []).

ent_occ_att(’Practical’, pl, lifestatus, valid).
ent_occ_att(’Practical Assign To Module’, ’ES-p2’, lifestatus, valid).
ent_occ_att(’Practical Assign To Module’, ’ES-pl’, lifestatus, valid).
ent_occ_att(’Practical’, p2, lifestatus, valid).

ent_occ_att(’Module’, ’ES’, lifestatus, valid).

ent_occ_att(’Person’, ’John’, lifestatus, valid).

308

occ_begin(’Person’, ’John’, 1).
occ_end(’Person’, ’John’, 2).
current_state(0).

state(0, time(0)).

ent_fun(’Acknowledge Handed-in Practical’, ’111’, originate_focal_entity,
dyn(ent_occ(’Practical Tun In By Person’,’John-ES-P1’,
[(’Practical Assign To Module’,’ES-pl’),(’Person’,’John’)]))).

ent_fun(’Acknowledge Handed-in Practical’, ’111’, refer_normal_entity,
dyn(ent_occ(’Module’,’ES’,[1)).

ent_fun(’Acknowledge Handed-in Practical’, ’111’, refer_normal_entity,
dyn(ent_occ(’Person’,’John’,]))).

ent_fun(’Acknowledge Handed-in Practical’, ’111’, refer_normal_entity,
dyn(ent_occ(’Practical Assign To Module’,’ES-pl’,[(’Module’,’ES’),
(’Practical’,p1)]))).

state_id(0).

agenda(process(’Acknowledge Handed-in Practical’,’111’,
[originate_focal_entity(’Practical Turn In B Person’,’John-ES-P1’),
add_att(’Practical Turn In By Person’,’John-ES-P1’, lifestatus,
’handed-in’), refer_normal_entity(’Person’,’John’),
refer_normal_entity(’Module’,’ES’) ,refer_normal_entity(

’Practical Assign To Module’,’ES-p1’)]1,(0,2))).

change((0,0), (’Acknowledge Handed-in Practical’,’111’),
[dyn(trigger(0,’Acknowledge Handed-in Practical’,’111’,
[originate_focal_entity(’Practical Turn In By Person’,’John-ES-P1’),
add_att(’Practical urn In By Person’, ’John-ES-P1’, lifestatus,
’handed-in’),

refer_normal_entity(’Person’,’John’), refer_normal_entity(’Module’,
’ES’),

refer_normal_entity(’Practical Assign To Module’,’ES-p1’)]1))1],
[dyn(agenda(process(’Acknowledge Handed-in Practical’,’111’,
[originate_focal_entity(’Practical Turn In By Person’,’John-ES-P1’),
add_att(’Practical Turn In By Person’,’John-ES-P1’ lifestatus,
’handed-in’) ,refer_normal_entity(’Person’,’John’),
refer_normal_entity(’Module’,’ES’) ,refer_normal_entity(

’Practical Assign To Module’,’ES-p1’)],(0,2))))1).

current_time(1).

309

skip_process(no).

yes
| 7- top(2).

>>>>> Searching for Processes

>>>>> Searching for Triggers

End Time: 1

Step left: 1

Would you like to add new occurrences to the system? (y./n.)
[: n.

>>>>> Searching for Processes

s sk s s s ke ok sk sk sk s e s ke ok sk sk sk e s ke sk sk s sk ke sk sk s s s ke ke sk sk s e ke

A1l processes in the Agenda are given below:

Acknowledge Handed-in Practical,1il

sk ok ok ok ok ok ok ok ok sk ok ok ok ok ok sk ok sk ok sk sk sk sk ok sk sk sk sk sk sk sk s s s s s s s ok o o ok ok
* Searching for contradictory processes...
No contradictory processes found.

3k 2k 3k ok ok 2k dk ok ok k 3k ok ok %k 2k 3k ok >k k dk ok >k %k dk k 5k ok %k %k ok 5k %k %k %k

Would you like to execute process:

Acknowledge Handed-in Practical
Trigger ID: 111
s sk ok o ok ok ok sk sk sk o ok ok ok ok sk sk sk s ok s ok ok sk sk sk o o o ok ke ok

Execution? (y/n) y.

s stk ok o o o ok sk sk ok o o sk ksl ok o o ok ks sk o o o ok
Process Execution Phase

st ke o s ok ok ok sk sk sk o ok ok ok ok sk sk sk s ok s ok ok sk sk sk s o ok ok ok

* Checking the triggers....
checking triggers succeed.

* Checking then preconditions....
checking precond succeed.

* Checking the referred attributes...
checking referred attributes succeed.

* Checking the adding attributes...
checking adding attributes succeed.

* Checking for the changing attributes...
checking changing attributes succeed.

* Executing the process
Process execution succeed.

* Verifying the postconditionms...
Verifying postconditions succeed.

>>>>> Searching for Processes

310

>>>>> Searching for Triggers

End Time: 2

Step left: O

Would you like to add new occurrences to the system? (y./n.)
|: n.

End of simulation, Simulation stops at time: 3
*kkkkk export_data_to_archive sk kkk

System States are saved in sim.out

yes

| 7- look.

——————— report dynamic system state —-—-——---
Shown State: 1 State Time: 2. It is now time: 2
ent_occ(’Practical’, pl, [1).

ent_occ(’Practical Assign To Module’, ’ES-p2’,
[(’Practical’,p2), (’Module’,’ES’)]).

ent_occ(’Practical Assign To Module’, ’ES-pl’,
[(’Module’,’ES’), (’Practical’,pl)]).

ent_occ(’Practical’, p2, [1).

ent_occ(’Module’, ’ES’, []).

ent_occ(’Person’, ’John’, []).

ent_occ_att(’Practical’, pl, lifestatus, valid).
ent_occ_att(’Practical Assign To Module’, ’ES-p2’, lifestatus, valid).
ent_occ_att(’Practical Assign To Module’, ’ES-pl’, lifestatus, valid).
ent_occ_att(’Practical’, p2, lifestatus, valid).

ent_occ_att(’Module’, ’ES’, lifestatus, valid).

ent_occ_att(’Person’, ’John’, lifestatus, valid).

occ_begin(’Person’, ’John’, 1).

occ_end(’Person’, ’John’, 2).

state(0, time(0)).

change((0,0), (’Acknowledge Handed-in Practical’,’111’),

311

[dyn(trigger (0, ’Acknowledge Handed-in Practical’,’111’,
[originate_focal_entity(’Practical Turn In By Person’,’John-ES-P17%),
add_att(’Practical urn In By Person’,’John-ES-P1’, /lifestatus,
’handed-in’), refer_normal_entity(’Person’,’John’),
refer_normal_entity(’Module’,’ES’), refer_normal_entity(’Practical
Assign To Module’,’ES-p1°)]1))], [dyn(agenda(process(

’Acknowledge Handed-in Practical’,’111’,
[originate_focal_entity(’Practical Turn In By Person’,
?John-ES-P1’), add_att(’Practical Turn In By Person’,

?John-ES-P1’ ,1ifestatus, ’handed-in’), refer_normal_entity(
’Person’,’John’) ,refer_normal_entity(’Module’,’ES’),
refer_normal_entity(’Practical Assign To Module’,’ES-p1°)]1,(0,2))))]1).

ent_occ(’Practical Turn In By Person’, ’John-ES-P1’,
[(’Practical Assign To Module’,’ES-pl’),(’Person’,’John’)]).

occ_begin(’Practical Turn In By Person’, ’John-ES-P1°, 2).

change((0,1), (’Acknowledge Handed-in Practical’,’111’), [],
[dyn(ent_occ(’Practical Turn In By Person’,’John-ES-P17,
[(’Practical Assign To Module’,’ES-pl1’),(’Person’,’John’)])),
dyn(occ_begin(’Practical Turn In By Person’,’John-ES-P17,2))]).

ent_occ_att(’Practical Turn In By Person’, ’John-ES-P1’,
lifestatus, ’handed-in’).

change((0,1), (’Acknowledge Handed-in Practical’,’1117’), [],
[dyn(ent_occ_att(’Practical Turn In By Person’,’John-ES-P1’,
lifestatus, ’handed-in’))]).

occ_originate_focal(’Acknowledge Handed-in Practical’, ’111’,
’Practical Turn In By Person’, ’John-S-P17).

change((0,1), (’Acknowledge Handed-in Practical’,’111’), [],
[dyn(occ_originate_focal(’Acknowledge anded-in Practical’,’1117,
’Practical Turn In By Person’,’John-ES-P1°))]).

occ_refer_normal (’Acknowledge Handed-in Practical’, ’111’, ’Module’, ’ES’).
change((0,1), (’Acknowledge Handed-in Practical’,’111’), [],
[dyn(occ_refer_normal (’Acknowledge Handed-in Practical’,’111’,

’Module’,’ES’))]).

occ_refer_normal(’Acknowledge Handed-in Practical’, ’111°’,
’Person’, ’John’).

change((0,1), (’Acknowledge Handed-in Practical’,’111’), [],
[dyn(occ_refer_normal (’Acknowledge Handed-in Practical’,’111’,

312

’Person’,’John’))]).

occ_refer_normal(’Acknowledge Handed-in Practical’, ’111°,
’Practical Assign To Module’, ’ES-pl’).

change((0,1), (’Acknowledge Handed-in Practical’,’111’), [],
[dyn(occ_refer_normal (’Acknowledge Handed-in Practical’,’111’,
’Practical Assign To Module’,’ES-pl1’))]).

pro_occ(’Acknowledge Handed-in Practical’, ’111’).
occ_begin(’Acknowledge Handed-in Practical’, ’111’, 0).
occ_end(’Acknowledge Handed-in Practical’, ’111°, 2).

change((0,1), (’Acknowledge Handed-in Practical’,’111’),
[dyn(agenda(process(’Acknowledge Handed-in Practical’,’111’,
[originate_focal_entity(’Practical Turn In By Person’,’John-ES-P1’),
add_att (’Practical Turn In By Person’,’John-ES-P1’,lifestatus,
’handed-in’) ,refer_normal_entity(’Person’,’John’),
refer_normal_entity(’Module’,’ES’) ,refer_normal_entity(

’Practical Assign To Module’,’ES-p1’)]1,(0,2)))),
[dyn(pro_occ(’Acknowledge Handed-in Practical’,’111’)),
dyn(occ_begin(’Acknowledge Handed-in Practical’,’111’,0)),
dyn(occ_end(’Acknowledge Handed-in Practical’,’111’,2))]).

change((0,1), (’Acknowledge Handed-in Practical’,’111’),
[dyn(ent_fun(’Acknowledge Handed-in Practical’,’111’,
originate_focal_entity,dyn(ent_occ(’Practical Turn In By Person’,
?John-ES-P1’,[(’Practical Assign To Module’,’ES-pl’),(’Person’,
?John’)1))))1, [1).

change((0,1), (’Acknowledge Handed-in Practical’,’111’),
[dyn(ent_fun(’Acknowledge Handed-in Practical’,’1117,
refer_normal_entity,dyn(ent_occ(’Module’,’ES’,[1))))], [1).

change((0,1), (’Acknowledge Handed-in Practical’,’1117),
[dyn(ent_fun(’Acknowledge Handed-in Practical’,’1117,
refer_normal_entity,dyn(ent_occ(’Person’,’John’,[1))))]1, [1).

change((0,1), (’Acknowledge Handed-in Practical’,’1117),
[dyn(ent_fun(’Acknowledge Handed-in Practical’,’1117,
refer_normal_entity,dyn(ent_occ(’Practical Assign To Module’,

’ES-p1’,[(°Module’,’ES’),(’Practical’,p1)1))))]1, [1).

current_state(1).

313

state_id(1).

state(1l, time(2)).

current_time(3).

skip_process(no).

yes
| 7-

314

