
Importing the Semantic Web into a lightweight

formal broker : an exercise in incorporating

Description Logic Programs into Logic Programs.

Antoon Goderis

2003

Abstract The first part of this thesis provides a comparative overview
of UPML, DAML-S and F-X, three approaches to describe service capability
on the Web. In our overview, we have special attention for the reasoning
support offered by UPML, because to date it has not received much attention
in the Web services literature. In the second part, we use our insights from
this comparison to add functionality to F-X. In particular, we facilitate the
use of domain ontologies in F-X, and we exploit such domain knowledge to
support more flexible competence matching. We achieve this based on query
relaxation techniques and a recent translation from a subset of Description
Logics to Logic Programs.

1

Acknowledgements Many thanks to Dave Robertson and Stephen Pot-
ter for all the useful discussions and help. Thanks also to Andreas Abecker
and Rudi Studer at the FZI/AIFB in Karlsruhe, who provided a warm wel-
come. A final thanks to my family and friends for their support throughout
the MSc.

2

Contents

1 Towards Semantic Web Services 5
1.1 Vision . 5

1.1.1 Nothing new under the sun ? 6
1.1.2 Challenges for Knowledge Representation 7

1.2 Web Services . 7
1.2.1 The Web Services language stack 7
1.2.2 Brokering Web Services 8

1.3 The Semantic Web . 10
1.3.1 Resource Description Framework (RDF) 11
1.3.2 Ontology Web Language (OWL) 11

2 Existing approaches to capability description 13
2.1 Problem-solving methods . 13

2.1.1 Building blocks for knowledge-based systems 13
2.1.2 Assembling knowledge-based systems with UPML . . 14
2.1.3 Tasks . 18
2.1.4 Problem-solving methods 19
2.1.5 Assumptions . 22

2.2 Description logics . 24
2.2.1 Supporting service classification 24
2.2.2 Description Logics in a nutshell 25
2.2.3 DAML-S : a service ontology in Description Logic . . 26
2.2.4 A closer look at DAML-S 27
2.2.5 Comparing DAML-S with UPML 30

2.3 Other approaches . 36

3 Reasoning mechanisms for composing and configuring ser-
vices 38
3.1 Techniques for problem-solving methods 38

3.1.1 Configuring knowledge-based systems 38
3.1.2 Brokering as assumption discovery 41
3.1.3 Configuration as parametric design 44

3.2 Other approaches . 48

3

3.2.1 Planning . 48
3.2.2 Deductive synthesis 48

4 F-X: brokering lightweight formal capability descriptions 50
4.1 Rationale . 50
4.2 Technology . 51

4.2.1 F-Comp : capability descriptions for F-X 51
4.2.2 Reasoning with F-Comp 55
4.2.3 Communication in F-X 57

4.3 F-X in action . 57
4.3.1 F-X implemented in Prolog 57
4.3.2 A trip-booking example 58

4.4 F-Comp compared . 63
4.4.1 F-Comp and UPML 63
4.4.2 F-Comp and DAML-S 67

5 Towards more flexible competence matching using query re-
laxation 70
5.1 Current situation in F-X . 70
5.2 Relax and obtain better results 71
5.3 Query relaxation based on taxonomic information 71

5.3.1 Predicate generalization 72
5.3.2 Rewriting terms . 75

5.4 Importing OWL ontologies in F-X 76
5.4.1 Motivation . 76
5.4.2 From Description Logics to Logic Programs 77
5.4.3 Building a domain ontology 78
5.4.4 Dealing with DLP domain ontologies in the broker . . 83

5.5 Trip-booking scenario revisited 86
5.6 Related and future work . 87

5.6.1 Related work . 87
5.6.2 Future work . 87

6 Conclusions 89

A F-X brokering algorithm in Prolog 91

B Prolog code for trip-booking scenario 93

C Place ontology as OWL/RDF 94

D Place ontology as Horn clauses 100

4

Chapter 1

Towards Semantic Web
Services

Today, the World Wide Web is deeply affecting the way in which both
humans and machines are interconnected on a global scale. With the advent
of standards for describing domain knowledge and software services on the
Web, there now exists a promise for software components to become available
anytime, anyplace. In this chapter, we introduce the vision and technology
behind Semantic Web services.

1.1 Vision

Semantic Web Services (SWS) seek to bring together effort on the Semantic
Web and Web Services. In the coming sections we briefly discuss these two
drivers. Here, we add some background to the vision behind SWS.

Making the Semantic Web and Web Services work crucially depends on
moving beyond syntax to computational semantics. Working with seman-
tics in a distributed setting like the Internet requires web-enabled markup
languages to enable description of resources and reasoning with them. One
way to view the Semantic Web is as a collection of documents, where seman-
tics serve to describe these static resources. Another view acknowledges the
dynamic nature of some kinds of resources, namely software components,
and envisions a Semantic Web of services. Both views are complementary
and rely on exploiting computational semantics. In this report, our focus is
on languages to formally describe Semantic Web Services.

The promise is that by marking up services with such formal semantics,
intelligent software agents will be in a position to discover, configure, invoke,
mediate, compose, execute, monitor, recover, simulate and verify services on
the Web. In addition, middleware is needed to hide complexity from users
(human or machine) (Fensel & Bussler 2002). Finally, it is expected many
ideas from the software agent community can be put to use (Lomuscio,

5

Wooldridge & Jennings 2001).
There are two ways to interpret the term “ Semantic Web Services” (due

to Benjamin Grosof). First, SWS can be parsed as {Semantic Web} Ser-
vices. This includes, in particular, infrastructural services to support the
Semantic Web, e.g. the service of providing capabilities for integration of
knowledge, information and databases, for inferencing, and/or for transla-
tion between different forms of knowledge and databases. Second, SWS can
be parsed as Semantic {Web Services}. This includes knowledge-based ser-
vice descriptions of (parts of) general Web Services. Such descriptions of a
service can be used for multiple higher-level tasks about services, such as
discovery and composition.

1.1.1 Nothing new under the sun ?

Given these high promises, we should add a caution note. In particular, some
worry the Semantic Web rhetoric is but a breakthrough in enthusiasm, and
Web Services the name for a marketing initiative (Thompson 2002). We
can add to this concern that already in 1991, the potential of knowledge
services was clearly recognised, yet still is has not become reality. The
vision of (Neches, Fikes, Finin, Gruber, Patil et al. 1991) sounds familiar
when compared to what the Semantic Web (Berners-Lee 1999) promises
today. To illustrate this, we give a quick summary of the 1991 vision below.
The reader is invited to substitute the term “knowledge systems” below with
the term “Web services”.

With regard to end users, Neches et al. (1991) foresee that the face of
information systems will change in three ways. First, knowledge systems
will provide sources of information that serve the same functions as books
and libraries but are more flexible, easier to update, and easier to query.
Second, knowledge systems will enable the construction and marketing of
prepackaged knowledge services, allowing users to invoke (rent or buy) ser-
vices. Third, it will be possible for end users to tailor large systems to their
needs by assembling knowledge bases and services rather than programming
them from scratch.

With regard to the way developers view and manipulate knowledge sys-
tems, they envision three mechanisms that would increase their productiv-
ity. These mechanisms are very similar to the major goals formulated for
the IBROW project, which we discuss in Section 2.1.2. First, there should
be libraries of multiple layers of reusable knowledge bases that could either
be incorporated into software or remotely consulted at execution time. At a
level generic to a class of applications, layers in such knowledge bases cap-
ture conceptualizations, tasks, and problem-solving methods. Second, sys-
tem construction will be facilitated by the availability of common knowledge
representation systems and a means for translation between them. Finally,
there is a need for tools and methodologies that allow developers to find and

6

use library entries useful to their needs as well as preexisting services built
on these libraries. These tools will be complemented by tools that allow
developers to offer their work for inclusion in the libraries.

1.1.2 Challenges for Knowledge Representation

Why has this vision not been realized yet ? The main difficulty lies in rep-
resenting computational semantics. Like any other field, knowledge repre-
sentation (KR) struggles with a number of fundamental research questions.
These include the expressibility-tractability trade-off, the knowledge acquisi-
tion bottleneck and the issue of how to deal with heterogeneous vocabularies
or different conceptualisations of the same domain. A distributed environ-
ment like the Web brings further challenges to KR — it does not solve the
earlier ones. Unpredictability of how knowledge will be used, multiplicity of
knowledge sources, scalability of reasoning, or issues of authority become a
big part of the equation (van Harmelen 2002). Regardless of what can be
said at this early stage of research on the feasibility of the Semantic Web
or Web Services, “grand challenges” are valuable if only to inspire whole
generations of researchers (Shadbolt 2003). There is certainly more than
this to the idea of SWS, but in what follows, we will further abstain from
the debate, and concentrate on the technology available today.

1.2 Web Services

Web Services are the first driver for Semantic Web Services. As a technology,
they are mainly industry-driven. Web Services are defined as self-contained,
self-describing, modular applications that can be published, located, and
invoked across the Web (IBM Web Services Architecture Team 2000). They
rely on standards like XML (Schema), SOAP, WSDL and UDDI to provide
the web equivalent of remote procedure calls. In what follows, we provide an
overview of these languages. We also narrow the focus of this thesis down
to one particular aspect of Web service lifecycle management: brokering.

1.2.1 The Web Services language stack

The Extensible Markup Language (XML) (Bray, Paoli & Sperberg-McQueen
1998) allows disparate software agents to interoperate by modelling appli-
cation boundary crossings in terms of application-specific types, secure in
the knowledge that an XML-based representation of these types can be ex-
changed across language, process, host and vendor boundaries (Box, Skon-
nard & Lam 2000). In particular, XML documents that are exchanged be-
tween software agents often follow a common form or structure that is shared
by many documents in a give problem domain. XML Schema (Thompson,
Beech, Maloney & Mendelsohn 2001) allows to prescribe the structure of

7

a document class, such that all instances of such a class can be checked
for their (schema-) validity. In this respect, XML Schema can be seen as
syntactic (i.e. structural) metadata.

At the lowest level in the Web services “stack”, XML is irrefutable as
the standard for data encoding and formatting. SOAP (the acronym is now
the name) (Mitra 2002) packages these data and transfers it from system
to system. It consists of a very simple request/reply mechanism. One layer
higher up, SOAP is bound to an actual web protocol such as HTTP. To
facilitate and improve web service advertising, discovery and invocation,
SOAP has spawned into two other technologies: UDDI (Universal Descrip-
tion, Discovery and Integration) and WSDL (Web Service Description Lan-
guage) (Chinnici, Gudgin, Moreau & Weerawarana 2003). UDDI offers a
forum for organisations to describe the services they offer and inquire about
services made available by other organisations. UDDI is complemented by
WSDL, which builds upon XML Schema to define an actual XML vocabu-
lary for such service descriptions (Lemahieu 2001).

One problem with the WSDL/UDDI approach is that, whereas tradi-
tional distributed object technologies base their search criteria on the type
of interface an object implements, this may be totally inadequate for Web
service selection. Web services not only deliver some kind of return value
to a request, they may also have an effect in the real world (McIlraith &
Martin 2003). This effect may be a much more important search criterion;
the web service’s interface will only be a secondary facet. UDDI does pro-
vide a categorization mechanism according to “real world” criteria such as
industry branch, product type and geographic location, but it is in no way
destined at discovering services based on fine-grained specifications of what
is required from the service (Lemahieu 2001). Currently, it is far from clear
how these effects on the world would be represented formally. Nevertheless,
the idea is there. In any case, there is a need for more expressive ser-
vice descriptions, which would yield improved support for service discovery,
configuration and composition. For this reason, researchers in Knowledge
Representation are currently considering how to bring KR to the Web.

1.2.2 Brokering Web Services

In section 1.1.1 we mentioned many of the facets related to Web service
lifecycle management. In this thesis, we assume that a human or software
agent, in order to make use of a particular service, will walk through (some
of) the following steps.

1. Agent formulates a request

2. Agent discovers a broker

3. Agent submits request to a broker

8

4. Broker discovers services, possibly through composition

5. Broker returns (a list of) (composed) services

6. Agent selects a service, or reformulates its request and goes back to
Step 2

7. Agent configures service

8. Agent verifies and/or simulates service

9. Agent invokes/executes service

10. Agent monitors/recovers service

Central to this scenario is that the agent relies on a brokering agent to
discover relevant services. In the following chapters, we will mainly focus on
techniques to support brokerage of services. The dictionary defines a broker
as follows (from Dictionary.com):

Broker
An agent employed to effect bargains and contracts, as a middle-
man or negotiator, between other persons, for a compensation
commonly called brokerage.

The important notion here is the broker’s role as middleman or nego-
tiator. Brokers of software components will mediate components between
agents and service providers. In our view, brokering can comprise service
composition. Discovering whether a particular service exists or can be as-
sembled from existing services will often require composition techniques.1

The framework given in (Decker, Sycara & Williamson 1997) offers a
good overview of the different kinds of brokering. It uses the notion of
privacy, or the degree to which requests and capabilities are made public,
as the primary dimension to distinguish between brokering scenarios (see
Figure 1.1). Note that these authors call brokers “middle agents”, and
that they reserve the term “broker” for the situation where both requests
and capabilities are publicly known. In future chapters, we will refer back to
this framework when we introduce different techniques to support brokering.
Many of these techniques will, in some form or other, make the link to the
Web. Therefore, in the next section we provide some background on the
languages proposed for use on the (Semantic) Web.

1Under that same broad view of mediation, brokering could also comprise data medi-
ation.

9

Figure 1.1: Brokering framework (Decker et al. 1997)

1.3 The Semantic Web

The Semantic Web is a vision for the future of the Web put forward by the
W3C: the idea of having data on the Web defined and linked in a way that it
can be used by machines not just for display purposes, but for automation,
integration and reuse of data across various applications (W3C 2001).2

Semantics can take many shapes, ranging from natural language de-
scriptions to formal specifications. To enable the Semantic Web vision, the
semantics or meaning of the data should become accessible for machines. Us-
ing only XML and XML Schema as web markup will not do. XML Schema
remains largely restricted to modelling syntactic properties, not semantic
ones. XML Schema’s are a means to provide integrity constraints for infor-
mation sources, whereas ontology languages are a means to specify domain
theories. They allow to describe the structure of the semantics of more
complex objects (Klein, Fensel, van Harmelen & Horrocks 2001).

Ontologies are designed to capture consensual understanding: they are
defined as formal, explicit specifications of a shared conceptualization ((Borst
1997), based on (Gruber 1993)). As Studer, Benjamins & Fensel (1998) ex-
plain, conceptualization refers to an abstract model of some phenomenon in
the world by having identified the relevant concepts of that phenomenon.
Explicit means that the type of concepts used, and the constraints on their

2For an illustrative overview, see http://www.semaview.com/c/SW.html

10

use, are explicitly defined. Formal refers to the fact that the ontologies
should be machine readable. Shared reflects the notion that an ontology
captures consensual knowledge, that is, it is not private to some individual,
but accepted by a group.

One lesson learned in knowledge representation (KR) over the years is
that representation and reasoning should be seen as two sides of the same
coin (Davis, Shrobe & Szolovits 1993). There exists a trade-off between
expressibility and tractability, which causes reasoning with expressive nota-
tions to be hard. As illustrated by current web language proposals like OWL
(see Section 1.3.2), this trade-off stays with us when we tranfer knowledge
representations to the Web.

1.3.1 Resource Description Framework (RDF)

The Semantic Web builds on XML’s ability to define customized tagging
schemes and RDF’s flexible approach to representing data.3 RDF (Lasilla
& Swick 1999) is a datamodel for objects (“resources”) and relations between
them. It provides a simple semantics for this datamodel, and these datamod-
els can be represented in an XML syntax. RDF Schema (RDFS) (Brickley
& Guha 2000) extends RDF with a vocabulary for describing properties and
classes of RDF resources. It includes a (somewhat controversial) semantics
for generalization hierarchies of such properties and classes. In contrast to
XML Schema, RDFS primarily describes resources instead of prescribing
constraints to them. See (Ratnakar & Gil 2002) and (Klein, Fensel, van
Harmelen & Horrocks 2000) for a further comparison of these (and other)
ontology languages with XML Schema.

1.3.2 Ontology Web Language (OWL)

The Ontology Web Language (OWL) extends the vocabulary of RDF(S)
for describing properties and classes: amongst others, it supports mod-
elling relations between classes (e.g. disjointness), cardinality, equality,
richer typing of properties, characteristics of properties and enumerated
classes (McGuinness & van Harmelen 2003). Most of the XML Schema
datatypes can be used without restriction, except for some4 (see (Patel-
Schneider & Horrocks 2003) for a discussion).

OWL provides three increasingly expressive sublanguages.

• OWL Lite supports those users primarily needing a classification hier-
archy and simple constraint features, thus providing a migration path
for thesauri and other taxonomies.

3For an entertaining account of how Google could exploit the Semantic Web using
RDF, see http://www.ftrain.com/google_takes_all.html

4In particular, duration, Qname, ENTITY, ENTITIES, NOTATION, ID, IDREF(S),
and NMTOKENS are either not supported or carry restrictions.

11

• OWL DL (Description Logics) supports those users who want the max-
imum expressiveness while their reasoning systems maintain complete-
ness and decidability.

• OWL Full provides maximum expressiveness and the syntactic freedom
of RDF with no computational guarantees.

Elegantly, each of these sublanguages is an extension of its simpler prede-
cessor, both in what can be legally expressed and in what can be validly
concluded (McGuinness & van Harmelen 2003). OWL is a revision of the
DAML+OIL (DAML+OIL Joint Committee 2001) (Horrocks 2002) web on-
tology language. It can be expected that web formalisms which currently
depend on DAML+OIL (including many of the ones discussed in the next
chapter) will migrate to OWL DL.

With regard to querying Semantic Web Services, Horrocks & Tessaris
(2002) show how DAML+OIL queries (and thus OWL queries) can be
rewritten so that query answering is reduced to the problem of knowledge
base satisfiability for the logic corresponding to the ontology language. This
enables us to answer queries using standard reasoning techniques, and to
guarantee that query answers will be sound and complete in the case that
that our knowledge base satisfiability test is sound and complete. In prac-
tice, this means that one can use implemented Description Logic systems
(or any other system capable of deciding knowledge base satisfiability) to
provide sound and complete answers to queries. We will look deeper into
the matter of discovering SWS in the coming chapter.

12

Chapter 2

Existing approaches to
capability description

Making the vision behind Semantic Web Services work crucially depends on
choosing the right (set of) language(s) to talk about service capability. This
chapter highlights some of the fields that are likely to make an impact here,
and reviews some of the proposals made. In this overview, we try to keep a
clear distinction between the actual service ontology and the object language
in which this ontology is represented.

2.1 Problem-solving methods

This section presents a brief history of and motivation for the use of problem-
solving methods, and discusses a prominent approach to configuring and
composing these into knowledge systems. We provide an overview of what
the UPML language for describing problem-solving methods looks like, and
discuss the notion of assumptions. We will build on these concepts in sub-
sequent chapters.

2.1.1 Building blocks for knowledge-based systems

Recently, in the Web services literature, some authors (see (Motta, Domingue,
Cabral & Gaspari 2003) and (Wroe, Stevens, Goble, Roberts & Greenwood
To appear)) introduced the notion of tasks to facilitate capability match-
ing. One reason for keeping tasks separated from the actual web service
descriptions is a possible n-to-m mapping between them, i.e. the same web
service can serve different tasks and different (competing) services can serve
the same task. Fensel & Bussler (2002) give the example of an online book-
selling service, which could be used both for buying books and bibliography
retrieval.

The nature of tasks (also called problem types or task definitions) and

13

their interaction with generic inference structures (called problem-solving
methods) has been studied extensively within the Knowledge Engineering
community (KE) during the past decade.

As Musen (2000) writes, problem-solving methods (PSMs) were born
out of the difficulties encountered in the development of expert systems in
the early eighties. Although the majority of such knowledge-based systems
(KBSs) even today continue to be built using rule-based shells, there are
well-known limitations to the scalability and maintainability of KBSs that
researchers began to identify nearly as soon as the first rule-based systems
had been developed. There was a need for more abstract specifications for
KBSs. In this way, KBSs would become scalable, maintainable and even
reusable (Musen 2000).

As part of the effort to develop the means for reuse of large-scale soft-
ware components when building intelligent systems, problem-solving meth-
ods became an important area of KBS-research in the nineties. PSMs
can be seen as abstract algorithms for achieving solutions to stereotypical
knowledge-intensive tasks (like diagnosis, classification, design, monitoring,
etc.) but also have an operational dimension that provides working code
(Musen 2000). They act as reasoning templates that need to be instatiated
with domain knowledge for each new aplication (Crubézy & Musen 2003).
A unifying theme for problem-solving methods is their reliance on search as
a technique to find solutions. See Section 2.1.5 for a discussion of how this
influences PSM characterization.

2.1.2 Assembling knowledge-based systems with UPML

In recent years, the research agenda on PSMs has been influenced by the
common infrastructure offered by the Internet. During the IBROW project,1

a large part of the (European) Knowledge Engineering community reached
agreement on a common language (called UPML, see below) to describe
the distributed libraries of PSMs that were developed over the past years.
Knowledge components annotated in this language could thus be exploited
for web-based brokerage.

Using UPML descriptions, the IBROW broker selects third-party PSMs
available on the Web, and combines PSMs and knowledge bases in a dis-
tributed, “plug and play” fashion. As a result, reasoning services can be
configured dynamically out of independent components to solve a specific
task. The broker thus builds “throw-away” Web applications (Omelayenko,
Crubézy, Fensel, Benjamins, Wielinga, Motta, Musen & Ding 2003).

1Web site: http://www.swi.psy.uva.nl/projects/ibrow/home.html

14

Figure 2.1: UPML architecture (Fensel et al. 2003)

Overview of UPML

UPML, or the Unified Problem-solving Method description Lanuage, plays a
kernel role at each stage of the brokering process (Fensel, Motta, Benjamins,
Crubézy, Decker, Gaspari, Groenboom, Grosso, van Harmelen, Musen, Plaza,
Schreiber, Studer & Wielinga 2003). It is intended as a software architecture
specifically designed to describe KBSs. A software architecture determines
the structure of a system, which comprises software components, the exter-
nally visible properties of those components, and the relationships among
them (Garlan 2001). Software architectures typically play a role as a bridge
between requirements and code. The UPML architecture consists of six
different kinds of elements, and additional architectural constraints and de-
sign guidelines. The dependencies between the elements are illustrated in
Figure 2.1 and 2.2. These elements fulfill the following roles (from (Fensel
et al. 2003)):

• A task defines the problem to be solved by the KBS.

• A problem-solving method defines the reasoning process used to solve
the problem.

• A domain model defines the domain knowledge available to solve the
problem. It consists of three elements: a characterization of proper-
ties of the domain knowledge, the domain knowledge, and (external)
assumptions of the domain model.

Each of these elements is described independently to enable reuse of

15

– Task descriptions in different domains

– Problem-solving methods for different tasks and domains

– Domain knowledge for different tasks and problem-solving meth-
ods

• Ontologies provide the terminology used in the tasks, problem-solving
methods, and domain definitions. Again this separation enables knowl-
edge sharing and reuse. For example, different tasks or problem-
solving methods can share parts of the same vocabulary and defini-
tions.

• Adapters are necessary to adjust other (reusable) elements to each
other and to the specific application problem. UPML provides two
types of adapters: bridges and refiners.

– Bridges explicitly model the relationships between two different
parts of the architecture, e.g. between a domain and a task or a
task and a problem-solving method. As such, bridges change the
input and output of the components to make them fit together.

– Refiners can be used to express the stepwise adaptation of a single
element of the specification, e.g. generic problem-solving meth-
ods or tasks can be refined into more specific ones by applying
them to a sequence of refiners. Refiners may change only the in-
ternal details, e.g. the subtasks of a problem-solving method (see
Section 2.1.4. Again, separating the generic and specific parts of
a reasoning process enhances reusability.

Logics for UPML

To implement this software architecture, the UPML lanuage has to facili-
tate three aspects. First, a UPML specification must reflect the structure of
Figure 2.1, describing a system of interrelated and intrarelated units. Sec-
ond, the language must provide means for the declarative specification of
functional aspects. Finally, it must provide means to describe control and
communication aspects.

In order to achieve this, UPML envisages the use of three types of log-
ics (for more information see (Fensel, Motta, Benjamins, Decker, Gaspari,
Groenboom, Grosso, Musen, Plaza, Schreiber, Studer & Wielinga 1999,
pages 50-54)):

• A logic to describe the static aspects (like the six architectural ele-
ments). Here first-order order logic is appropriate. Its syntactical
enrichment and structuring by abstract data types (ADTs) enables
to reflect the language and architectural level in the logic. Work in
IBROW has used F-Logic, OCML and sorted logic for this purpose.

16

Figure 2.2: UPML class hierarchy (Omelayenko et al. 2000)

• The operational specification of the problem-solving method and its
communication behavior (see Section 2.1.4) introduce the aspect of
dynamics into the specification framework. By describing states with
an algebra a smooth transition from static to dynamic aspects can
be achieved. UPML proposes to use MCL for this purpose, but ap-
proaches based on dynamic logic and situation calculus would be pos-
sible as well.

• A logic to specify the communication protocol of a method. The stan-
dard option here is to use process algebra or finite state machines.

Now that we have an understanding of the vision behind UPML and the
main architecture, we focus our attention on the parts of it that are crucial
for capability brokering. In particular, in what follows we will concentrate
on two key UPML elements : Tasks and Problem-solving methods.2

2We refer the reader to (Fensel et al. 1999b), (Omaleyenko et al. 2000) and (Fensel et
al. 2003) for information about the other elements.

17

2.1.3 Tasks

A task defines the problem that is supposed to be solved by the system. The
decision to make tasks first-order citizens is based on the following grounds:

• For reasons of computational complexity (see Section 2.1.5) the func-
tionality desired by the user may differ from the functionality actually
provided by the system. Distinguishing the desired functionality from
the actual competence of the system provides the advantage to have
an explicit notion for this gap.

• A second particular feature of a task definition is its domain-independence.
This enables reuse of problem definitions in different domains. Clas-
sification tasks, diagnostic tasks, and design tasks can be defined in-
dependently from the domain in which they are reused. The (well
proven) assumption is that there are problem types that appear in dif-
ferent domains. For example, problems solved by diagnosis appear in
a broad variety of domains (electronic circuits, fluid systems, copying
machines, etc.). In consequence, a task does not only introduce a goal
(i.e. a notion of the desired functionality) but also a generic description
of the type of domains it can be instantiated to. Its requirements on
domain knowledge (also called assumptions, see Section 2.1.5) provide
a “domain-independent characterization of its domain-dependency”.

The Task concept (a subconcept of Knowledge Component, see Figure
2.2) specifies the task to be achieved by PSMs. The Task can also define a
subtask of a Problem Decomposer (defined in the next subsection).3

Task < Knowledge Component
uses : (Task)
input roles : (Signature Element)
output roles : (Signature Element)
competence : Competence
assumptions : (Formula)

Competence < Concept
preconditions : (Formula)
postconditions : (Formula)

3Omelayenko et al. 2000 use the following notation for UPML definitions. Concepts
(classes) begin with upper case and the subclass relationship between two concepts is
denoted by <. Each concept or relation is represented as a list of attribute-type pairs
(attribute : type). Each pair from the list describes one property of the entity called
attribute, whose values have as the type either a class or a primitive type STRING.
Brackets around the type of an attribute denote that the attribute can appear multiple
times in the concept description.

18

Figure 2.3: An example task (rendered with the Protégé UPML editor
(Crubézy et al. 2002))

• The input roles and output roles together with the competence prop-
erty define the input/output specification of the task. The Input roles
specify the input of case data and the output roles specify the output
of the case data.

• Competence includes preconditions restricting valid inputs and post-
conditions which describe the output of a task.

• The assumptions property defines requirements on the knowledge that
is used to define the goal (see also Section 2.1.5). The Task can import
and refine other tasks via its uses attribute.

In Figure 2.3 an example of a task is shown. This particular task allows
to specify a classification problem, based on the library built by (Motta &
Lu 2000). It takes as input a set of observables, candidate solutions, a match
criterion and an admissibility criterion solution. As output it generates a
set of possible solutions to the problem.

2.1.4 Problem-solving methods

The PSM component represents a problem-solving method, defined by its
competence and communication properties.

19

PSM < Knowledge Component
input roles : (Signature Element)
output roles : (Signature Element)
competence : Competence
communication : Communication

Communication < Concept
communication : STRING

• The input roles and output roles of the PSM specify its inputs and
outputs, similar to their function in the Task component.

• The Competence concept represents the functional input/output spec-
ification of the Task component. Competence includes preconditions
restricting valid inputs and postconditions which describe the output
of a method.

• The PSM’s communication property describes its interaction protocol
with its environment, in particular with other PSM components. It
defines the ports of each building block and for each port how the
block reacts to incoming events and how it provides outcoming events.

UPML distinguishes two different types of problem-solving methods:
complex problem-solving methods that decompose a task into subtasks and
primitive problem-solving methods that make assumptions about domain
knowledge to perform a reasoning step. The latter correspond to infer-
ence actions in the CommonKADS methodology.4 Consequently, the PSM
concept has two subclasses: Problem Decomposer (or complex PSM) and
Reasoning Resource (or primitive PSM).

Complex problem-solving methods

A Problem Decomposer (also called complex PSM) decomposes a task to
be solved into a set of subtasks. A complex method decomposes a task
into subtasks and therefore recursively relies on other methods that process
its subtasks. Such a subtask may describe a complex reasoning task that
may further be decomposed by another problem-solving method or may be
performed directly by a simple problem-solving method.

Problem Decomposer < PSM
subtasks : (Task)
operational description : Operational Description

Operational Description < Concept

4Website: http://www.commonkads.uva.nl

20

intermediate roles : (Signature Element)
programs : (Program)

Program < Concept
program : STRING

Its Operational Description specifies the control structure over the sub-
tasks and internal data flow among the subtasks. Such an operational de-
scription explains how the desired competence can be achieved. It defines
the data and control flow between the main reasoning steps of the method.
For this purpose it introduces intermediate roles (the stores for input and
output of the intermediate reasoning steps), the procedures, and the control.
As mentioned earlier, for specification of control UPML relies on MCL, a
language combining features from the (ML)2 and KARL KBS specification
languages.

Primitive problem-solving methods

A Reasoning Resource (also called primitive PSM or simple PSM) solves
a primitive step — also called subtask — of a problem provided by the
problem decomposer.

Reasoning Resource < PSM
knowledge roles : (Signature Element)
assumptions : (Formula)

The specification of a primitive problem-solving method closely resem-
bles the definition of a complex one, but there are two differences:

• A primitive problem-solving method does not provide an operational
specification. Primitive PSMs do not have an internal structure, i.e.
their internal structure is regarded as an implementational aspect of
no interest for the architectural specification of the entire knowledge-
based system. The knowledge roles attribute specifies the input of the
(domain) knowledge to the reasoning resource.

• The definition of the competence differs slightly. Assumptions describe
properties of the domain knowledge that is needed by the method.
The assumptions about domain knowledge are the equivalent of the
assumptions about the subtasks of a complex problem-solving method.
These assumptions regarding the domain knowledge must be fulfilled
in order to perform a primitive reasoning step.

21

2.1.5 Assumptions

The notion of assumptions appears to be where problem-solving methods
differ from traditional software components. In what follows, we pay closer
attention to them. We start by explaining how PSMs link to the notion of
problem solving as search in AI. Using this connection, the role of assump-
tions in the brokering process will become clear(er).

Problem solving as search

Problem solving in general can be characterized in terms of search problems
and consequently search underlies much of AI. When you are given a prob-
lem, you are usually not given an algorithm to solve it ; you have to search
for a solution. For example, determining a logical entailment can be reduced
to the syntactic problem of searching for a logical proof (Poole, Mackworth
& Goebel 1998, page 114). Search is an enumeration of a set of potential
partial solutions to a problem so that they can be checked to see if they
truly are solutions, or could lead to solutions.

In order to solve a problem, you explicate the underlying search space
and apply a search algorithm to that search space (also called solution
space). The existence of public key encryption codes demonstrates the diffi-
culty of search. In this example, the search space is clear and the test for a
solution is given, however humans have no hope of solving this problem and
computers cannot solve it in a realistic time frame. This suggests that com-
puter agents need to exploit knowledge about special cases to guide them in
a solution. This extra knowledge beyond the search space is called heuristic
knowledge (Poole et al. 1998, page 115). The term heuristic search refers
to the art of good guessing ; heuristic knowledge is knowledge that guides.
Much of the practice of problem-solving methods is concerned with effective
ways to incorporate such knowledge into reasoning systems (Stefik 1995,
page 147).

Restricting the context of problem-solving methods

Problem-solving methods are used primarily to describe the reasoning steps
and types of knowledge which are needed to perform a task by a KBS.
With the above rationale of heuristic search in mind, Fensel (2000, page 8)
advocates that PSMs should be characterized in terms of the assumptions
they carry. Not unlike other AI problems, problems tackled with knowledge-
based systems are often inherently complex and intractable. Fensel stresses
that, when this relation between problem-solving methods and computa-
tional complexity is ignored or kept as an implicit notion, neither the se-
lection nor the design of problem-solving methods can be performed in an
informed manner.

22

Figure 2.4: The relation between a problem-solving method and its context
(Fensel 2000, p.8)

So how can problem-solving methods provide functionality if the prob-
lems are intractable in their general form? They use heuristic knowledge
acquired from a domain expert to improve efficiency. The way PSMs achieve
this “efficient realization of functionality” is by making assumptions. The
assumptions put restrictions on the context of the PSM (Figure 2.4):

• One role of the assumptions of a PSM is to define the domain knowl-
edge that the PSM requires. These assumptions describe the domain
dependency of a PSM in domain-independent terms. Technically they
can be viewed as proof obligations: missing pieces in the proof that
the domain knowledge fulfills its assumed properties (i.e. one has to
prove that the given domain knowledge fulfills the assumptions). As
such, one could regard them as goals for the knowledge acquisition and
domain modelling process.

• The second role of assumptions of a PSM is to define the task (i.e. the
problem) that can be tackled successfully by the PSM. For example,
the termination of a PSM may only be provable when assuming that
a solution exists.

Otherwise put, assumptions play two roles: they formulate requirements
on reasoning support that is assumed by the PSMs and they put restrictions
on the reasoning support that is provided by the PSMs. In Section 3.1.2
they will be used as central concept in the brokering process.

Assumptions and domain properties

The properties of the domain knowledge are the counterpart of the assump-
tions on domain knowledge introduced by the other parts of a specifica-

23

tion (e.g. task or PSM) (Fensel, Benjamins, Decker, Gaspari, Groenboom,
Grosso, Musen, Motta, Plaza, Schreiber, Studer & Wielinga 1999). The
domain knowledge is necessary to define the task in the given application
domain and necessary to carry out the inference steps of the chosen PSM.

Assumptions and preconditions

As could be seen from the definition of a PSM in Section 2.1.4, UPML
makes the distinction between assumptions and preconditions. In an ab-
stract sense, both assumptions and preconditions can be viewed as input.
However, distinguishing case data, which are processed (i.e. input), from
knowledge, which is used to define the goal/problem, is a characteristic fea-
ture of knowledge-based systems. UPML defines preconditions as conditions
on dynamic inputs, whereas assumptions are conditions on knowledge con-
sulted by the reasoner but not transformed. Often, assumptions can be
checked in advance during the system building process, preconditions can-
not. They rather restrict the valid inputs.

The assumptions ensure (together with the axioms of the ontology) that
the task can always be solved for permissable input (input for which the
preconditions hold). For example, when the goal of a task is to find a global
optimum, then the assumptions have to ensure that such a global optimum
exists (i.e. by “assuming” that the preference relation used is non-cyclic).

2.2 Description logics

Problem-solving methods offer only one way to think about component ca-
pabilities. Recently, Descriptions Logics (DLs) have been considered as a
framework for service (capability) description. In this section, we provide
a brief introduction to DLs, and motivate why one would use them in this
context. We take a close look at the DAML-S service ontology, and make
the comparison with UPML.

2.2.1 Supporting service classification

It is clear that to discover services and to configure compositions, services
should first be described and classified in some way. Given that nowadays
these can be published on the World Wide Web, service registries are ex-
pected to hold many service descriptions.

However, manually created classifications of services are inflexible and
hard to manage when they become large, detailed and multi-axial. For
example, a description should always be self-coherent and consistent with
respect to others in the classification. The service classification should evolve
as the descriptions evolve, for instance when changes occur in the quality of
service or functionality. To resolve this issue, some advocate to keep service

24

descriptions, classification and constraint management tightly coupled and
to treat this within the uniform framework of Description Logics (Wroe
et al. To appear). Services and data types are grouped into taxonomic
hierarchies, together with definitions of the relationships and constraints
between classes and their service instances (McIlraith & Martin 2003).

One of the main attractions of using a Description Logic (DL) for describ-
ing services is the support this formalism brings for building large service
ontologies. DLs help ontology development by checking for logically incon-
sistent concepts (with regard to the entire ontology), reclassifying changed
descriptions, and detecting (possibly unexpected) implicit subsumption rela-
tionships. They also support ontology deployment by offering classification
reasoning to external applications.

2.2.2 Description Logics in a nutshell

Description Logics are expressive subsets of First-Order Logic, which lend
themselves particularly well for describing domain knowledge. As explained
in (Baader, Calvanese, McGuinness, Nardi & Schneider 2003, pages 16-20),
a Description Logic knowledge base is typically comprised by two compo-
nents — a TBox and an ABox. The TBox contains general information
about the problem domain (intensional knowledge, “classes”), whereas the
ABox contains knowledge that is specific to the individuals of the domain
(assertional or extensional knowledge, “instances”). Intensional knowledge
is usually thought not to change, whereas extensional knowledge is usually
thought to be contingent, or dependent on a single set of circumstances, and
therefore subject to occasional or even constant change.

The basic task in constructing a TBox terminology is classification, which
amounts to placing a new concept expression in the proper place in a taxo-
nomic hiearchy of concepts. Classification can be accomplished by verifying
the subsumption relation between each defined concept in the hierarchy and
the new concept expression. The basic reasoning task in an ABox is instance
checking, which verifies whether a given individual belongs to a specified con-
cept. This is accomplished by verifying the subsumption relation between
each defined concept in the (TBox) hierarchy and the new concept expres-
sion. For further information, we refer to (Baader et al. 2003, Chapters
1 to 3) which provide an excellent introduction to Description Logics and
associated reasoning.

The resulting classifications are lattices, not trees, as a description can
have multiple parents. For example, in bioinformatics, a protein might be
classified by what it transports, what it catalyses, the process it participates
in; and where it is located. A service may be classified by its location, its
cost, its inputs, its function and so on (Wroe et al. To appear).

25

2.2.3 DAML-S : a service ontology in Description Logic

DAML-S (DAML-S Consortium 2003) (McIlraith & Martin 2003) is an up-
per level service ontology specified in the (web-enabled) description logic
DAML+OIL. See (Horrocks 2002) and (Baader et al. 2003, Chapter 14) for
an introduction to DAML+OIL.

The use of DAML+OIL as a DL formalism for DAML-S brings three
important aspects with it: rich modelling primitives as provided by the
frame community, formal semantics and efficient subsumption reasoning
as provided by description logics, and a standard proposal for syntactical
exchange notations as provided by the Web community (i.e. XML and
RDF) (Horrocks 2002) (Fensel & van Harmelen 2001).

The DAML-S service ontology builds on industry standards such as
SOAP, WSDL, and WSFL (Web Services Flow Language; (Leymann 2001))
by adding rich typing and class information to describe and constrain the
range of Web service capabilities much more effectively than XML Schema
data types.

The upper ontology of DAML-S contains the following elements (Narayanan
& McIlraith 2002): a Service Profile for service advertisements, a Service
Model (process model) for describing the actual program that realises the
service and a Service Grounding for describing the transport-level messaging
information associated with execution of the program. In what follows, we
take a closer look at these different elements. Most of the remainder of this
section is copied from (Aitken & Tate 2003).

• The Service Profile contains the name of the Service, contact infor-
mation, plus a textual description. It is providedBy an Actor, which
in turn has a title, phone, fax, email, physical address and a URL.
The Profile represents two aspects of the functionality of the service:
the information transformation and the state change produced by the
execution of the service (DAML-S Consortium 2003).

• A Service is describedBy a Service Model, being a process model which
is described in terms of a process ontology. The process ontology dis-
tinguishes three subtypes of Process: Atomic Process, Composite Pro-
cess and Simple Process. It also contains control constructs which are
used to describe how component processes are combined into a com-
posite process. Control constructs include: sequence, split, split+join,
unordered, choice, if-then-else, iterate and repeat-until. These are de-
scribed in text, but no official formal definition is provided (yet).

This is partly due to the lack of intrinsic support in DAML+OIL to
define process control or dataflows. Therefore, any information re-
garding such information cannot be used to calculate a classification
structure by DAML+OIL reasoners. However, both (Ankolekar, Huch

26

& Sycara 2002) and (Narayanan & McIlraith To appear) have devel-
oped additional formalisations, for the purposes of verification and
simulation.

• The Service Grounding that a Service supports defines the concrete
means of realising the service. The abstract notions of the ontology
and process models are expressed in terms of existing XML-based tech-
nologies: WSDL, SOAP and UDDI.

Both the Service Profile and the processes in a Service Model can have
inputs, outputs, preconditions and effects (the so-called IOPE’s) associated
with them. Each of these properties is represented by a Parameter Descrip-
tion, composed of:

• parameterName: the name, a literal or URI

• restrictedTo: a restriction on the values the relation holds of

• refersTo: a reference to the process model

The Service Profile is primarily intended for advertising, discovery, selec-
tion and matchmaking purposes, whereas the Service Model (process model)
can be used for various purposes related to invocation, execution, monitor-
ing, recovery, etc.

The Service Model is intended to be the “home” of inputs, outputs,
preconditions, and effects. The Profile is meant to derive its advertised
IOPE’s from the process model. So the IOPE’s on the Profile are normally
just a copy of what is on the corresponding process, or perhaps even just a
subset of what is on the corresponding process. The idea is that a process
may have inputs and outputs that are not really useful for matchmaking, so
they can be omitted from the Profile.5

2.2.4 A closer look at DAML-S

In its vision to create a Semantic Web for services, the DAML-S consortium
has expressed the ambition to support many aspects of the service lifecycle.
These include service discovery, invocation, mediation, composition, execu-
tion, monitoring, recovery, simulation and verification. It should be of little
surprise that getting all this right from the start is hard. It appears as if
DAML-S tries to be all things to all people, being too general at some points,
while being too specific at others.

In what follows, first we look in some detail at the conceptual model.
We then sketch out different design choices for the process model currently
under consideration. The questions asked here include what should go in
the process model, and how this should be modelled.

5These last two paragraphs are due to David Martin (e-mail correspondence with
Austin Tate dd. 4 June 2003).

27

Imprecise conceptual model

Work by (Sabou, Richards & Splunter 2003) has shown that DAML-S has
an imprecise underlying conceptual model. There are different reasons for
this (which we quote literally from the authors):

Different models within DAML-S The parts of DAML-S employ dif-
ferent metaphors to describe services. At the Profile level a service
has four types of parameters: IOPE’s. At the Process level IO’s and
PE’s are treated conceptually differently as they emerge from two dif-
ferent views of a service. A service viewed as a program is defined
by its IO’s, while when seen as an action the PE’s are important.
The conceptual gap is even wider when one tries to align the DAML-
S model to the WSDL model which defines services as collections of
ports. These alternative conceptual models make specification of ser-
vices difficult and mapping between models almost impossible. Even
within DAML-S the different models can lead to inconsistencies in the
specification.

Unclear links between models Several links exist between the concep-
tual models however they are often unclear. Insufficient descriptions
are provided in the DAML-S documentation to discover the intended
meaning of certain properties and in particular which properties are
related to properties in one or more of the other models. The lack of
precise specification of the interconnections between models and the
possibility of inconsistent models is admitted by the DAML-S Coali-
tion.

No clear correspondence with software engineering concepts Many,
if not the majority, of intended users of DAML-S are software en-
gineers. Reference to and support for SE concepts, perhaps in the
form of concept mappings, would ease the understanding of DAML-S.
While WSDL intuitively models different interfaces as PortTypes and
allows grouping operations in ports (as the methods of an interface), it
seems that DAML-S only considers the very simple function metaphor
(methods). More complex concepts such as parametric polymorphism
or re-use are not supported. Using the SE model would both disam-
biguate some of the concepts and give a shared framework for DAML-S
and WSDL.

Service Model design choices

The current characterization of the Service Model is rather unwieldly, and
not formally defined. However, it is still very much under discussion. Below

28

we summarize the major lines of thought regarding process model content
and specification in DAML-S.6

Process model content Two kinds of needs can drive process model
content.

• One way to see process modeling is as modeling an executable specifica-
tion, in support of automated proof and validation. This corresponds
to a ’glass box’ view of a component, where the component internals
are widely published.

• The other line of thinking promotes partial modeling using constraints,
modelling only what a service provider wants or needs to expose. This
approach is known as the ’gray box’ view (see also (Fensel & Bussler
2002)). The latter approach specifies internal milestones or points
at which conditions can be met or constraints can be established, as
well as a simple advertisement or description of the overall results. A
particular advantage of this approach is that the standardized Process
Specification Language (PSL) (Schlenoff, Gruninger, Tissot, Valois,
Lubell & Lee 2000) can be built over it (PSL is not aimed to specify
software components, like for instance the Z language).

Process model representation Once it is known what goes inside the
process model, another issue DAML-S must address is how to represent these
processes in Description Logics and exploit reasoning capabilities. Recently,
several alternatives have been proposed to address the issue. The following
list is a summary of a recent discussion on the WWW-WS mailing list.7

• Represent processes as concepts Currently, in defining a process in
DAML-S or OWL-S, DAML-S conceptualizes a process as the class of
its execution instances (or, synonymously, “execution traces”). This
allows not only for the specification of the process (as a class) but also
for the specification of an individual execution trace (as an instance
of that class). One could use subsumption to answer a question like
“Is this execution trace a valid instance of that process?”. However,
reasoning for the ABox (i.e. on instances) is known to be problematic
in DLs. Other objections against this approach include the need for
OWL Full, the use of unintuitive constructs and the question whether
one can think of process executions as being instances of processes.

6For more details, see http://lists.w3.org/Archives/Public/www-ws/2003Apr/

0080.html and http://lists.w3.org/Archives/Public/www-ws/2003Apr/0082.html
7Start from the following www-ws@w3.org messages for more informa-

tion: http://lists.w3.org/Archives/Public/www-ws/2003Aug/0029.html, and
http://lists.w3.org/Archives/Public/www-ws/2003Aug/0044.html

29

• Represent processes as instances This is the current focus of the DAML-
S consortium. Experience has taught the DAML-S people that it is
more natural to think of a process, and an execution of the process, as
two different (though closely related) kinds of things, and model the
relationships in some other way than class membership. If processes
are to be represented as instances, the current DAML-S process ontol-
ogy will have to be extended to include the specification of individual
execution traces.

• Represent processes as properties The fundamental notion here is that
properties would represent transitions between states (represented by
instances). Classes, then, become preconditions of the transition (i.e.,
what has to be true of the state before the transition can occur).

Another important issue is how to handle variable bindings. As Aitken
& Tate (2003) observe, in process workflow, it is common to state that the
thing output by one process is the same thing input to another. However,
Description Logics, and ontologies based on them, lack the variable binding
mechanism that is normally used for this purpose. All we can do is specify
the types of the inputs and outputs. A solution to this problem will come
from the DAML-Rules initiative. We refer to Section 4.3 for an example
of such bindings in the F-X brokering environment. See Chapter 5 for an
introduction to the Description Logic Programs formalism, on which DAML-
Rules will most likely rely.

2.2.5 Comparing DAML-S with UPML

In Section 2.1 we presented an overview of UPML. Given their rather similar
objectives (to ease the assembly of software components over the Web), it
makes sense to draw the comparison between DAML-S and UPML. Table
2.1 gives a quick overview of how the major concepts relate. In this sec-
tion, we briefly compare object languages and investigate to what extent
UPML notions are present in DAML-S. We look at the concept of Task
(-refinement), PSM and Bridge.

Object language

The biggest difference between DAML-S services and UPML PSMs appears
to be in the freedom granted when choosing an object language to represent
the service ontology. This results in different kinds of reasoning support.
DAML-S structures its descriptions using DAML+OIL, while leaving some
room on top for additional languages. As detailed in Section 2.1.2, UPML
pretty much leaves open which object language to use, as long as it is a
subset of FOL.

30

UPML DAML-S
Task Service request
PSM Service

Competence (incl. pre-/postcond.) PE in Profile and Service Model
Operational Description Composite Process

Pragmatics Non-functional part of Profile
Pragmatics + Competence Profile

Operational Description + Competence Service Model
Assumptions -

- Effects

Table 2.1: UPML to DAML-S dictionary

Nevertheless, efforts have been made to represent UPML elements in OIL
(the Ontology Inference Layer, (Fensel, van Harmelen & Horrocks 1999)),
the precursor of DAML+OIL and OWL (see (Fensel 2002) for a history
report). Here we report on the experiences gained by (Fensel, Crubézy,
van Harmelen & Horrocks 2000). The authors used OIL to directly express
UPML specifications. In this way, a component specification of an ontology
or a task would correspond to an ontology in OIL.

In particular, they tried to model a simple task ontology and a task
specification in OIL. The following problems arose:

• Important axioms could not be expressed directly. As a result, they
were written down in the OIL rule base which has no semantics.

• OIL was extended with the property of being nonreflexive for slots and
with cardinality constraints for classes.

• When using OIL the structure of the specification units of UPML gets
lost. Things like the definition of an input role or an output role are
only kept as natural language comments in the documentation slot.

• OIL does not provide the means to specify functional slots. The au-
thors solved this by defining a cardinality constraint but this was not
yet part of the language definition for slots.

• Finally, their task ontology defined sets of sets (as is possible in sorted
logics). More concretely, in their given example, an instance of findings
is a set of instances of the class finding. Therefore, they included a
powerset operator in the OIL specification which was not part of the
language definition. Such a decision may cause serious problems for
the OIL semantics. However, without this operator it was not possible
to capture the essence of the small and simple UPML ontology.

31

A number of OIL’s limitations have since been addressed in DAML+OIL
and its descendant, OWL DL. In particular, support for cardinality con-
straints and functional slots is now available. Sets of sets are still not pos-
sible. In general, given that UPML axioms are not restricted to the DL
subset of FOL, there will always be areas where (DAML+)OIL or OWL DL
are insufficiently expressive.

In the same paper, the authors also address the rather interesting ques-
tion whether UPML can provide any help to OIL (and hence DAML+OIL).
It turns out it can, as we discuss below in the section on bridges.

Tasks

One of the larger projects where the DAML-S service ontology has been put
to use is myGrid8, a pilot project part of the UK Grid effort. myGrid aims
at building a virtual laboratory workbench to support bioinformaticians in
making use of the complex distributed resources of the Grid. One important
addition that was made to DAML-S in this setting was the introduction of
the notion of a task (Wroe et al. To appear). In particular, the Profile was
extended with a performs task property. We refer the reader to Sections
2.1.3 and 4.4.1 for a discussion on how tasks are viewed in UPML and F-
Comp (see Section 4.1) respectively.

Adding the notion of a task to DAML-S is also advocated in (Motta
et al. 2003). The authors write that in DAML-S tasks are defined as service-
seeking agents. Tasks are always application specific, so no provision for task
registries is envisaged. In contrast, in the authors’ UPML-based approach
tasks provide the basic mechanism for aggregating services and it is pos-
sible to specify service types (i.e., tasks), independently of specific service
providers.

The authors further point out that, in principle, this is also possible in
DAML-S. Here a task would be defined as a service class, say S, and its
profile will give the task definition. However, this solution implies that all
instances of S will inherit the task profile. This approach is not very flexible,
given that it makes it impossible to distinguish (and to reason about) the
differences between the profile of a task (service class) and the profile of
a method (specific service provider) — attributes are inherited down IS-A
hierarchies.

In particular, in some cases, a method may only solve a weaker form of a
task, and it is therefore important for a brokering agent to be able to reason
about the task-method competence matching, to decide whether it is OK
to use the weaker method in the given scenario. For instance, in a currency
conversion scenario, a task specification may define currency conversion rates
in terms of the official stock exchange quotes, but different service providers

8Web site: http://mygrid.man.ac.uk

32

may adopt other conversion rates. By explicitly distinguishing between tasks
and methods (Motta et al. 2003) provide a basic framework for representing
these differences and for enabling matchmaking agents to reason about them.

Both approaches mentioned suggest to represent task and service in the
same service ontology. The impossibility to distinguish profiles mentioned
above could be avoided if one separates out tasks and services into different
ontologies. One could then select a task from the task registry, and classify
this one among the available Service Profiles in the service registry. Such
a modelling approach would also correspond better to the brokering sce-
narios skectched in Chapter 1, where both providers and requesters publish
their information seperately, and where matchmaking agents/brokers can
intervene.

The exchange rate example used above employs the notion of a “weaker
method”. Imposing such an order on components is hard, and one would
have to adopt domain-specific heuristics (i.e. there are no general techniques
for automatic software refinement). If one accepts this lack of generality, we
see no reason why one could not do this for DAML-S as well, and organise
tasks and services in a weaker-to-stronger hierarchy.

Further, the question can be raised how expressive tasks should be. Ob-
viously, the more we know about the problem, the easier it is to solve.
However, the burden on the user increases equally. Under the UPML ap-
proach, tasks clearly can get very expressive. Hence, much knowledge must
be elicited from the user before attempting the PSM matching process. The
approach of (Motta et al. 2003) requires extensive task knowledge, and ac-
quires this using a methodology similar to the one described in Section 3.1.1.
In this way, the task-PSM brokering effort can be kept very simple, and the
focus is mostly on “task brokering”.

The approach discussed in Chapter 4 takes a look at the other end of
the spectrum, where tasks are considered to be simple queries. In this case,
the burden is on the PSM broker, which has to decide whether it can find a
(composition of) service(s) to realize the desired task competence.

Problem-solving methods

DAML-S and UPML both offer functionality to describe problem solvers.
Still, there is no direct substitute for the DAML-S notions of “Service Pro-
file” and “Service Model” in UPML. The Profile captures elements which
in UPML are modelled under Pragmatics and Competence, while Service
Model covers the concept of Operational Description and again Compe-
tence. We explain this in some detail below, using the UPML notions as a
starting point.

Competence The elements in DAML-S that correspond closest to a PSM
competence are the preconditions and effects. UPML currently proposes an

33

approach based on algebraic specifications (although a situation calculus-
based approach would be possible as well, see Section 2.1.2). DAML-S seems
to have adopted a hybrid style, borrowing elements from both algebraic
specifications and action-based formalisms. We mentioned earlier that the
connection between Profile and Service Model is unclear because of this, and
that the Service Model currently is ill-defined.

Adding to the confusion is the fact that DAML-S services can make
claims about changing the state of the real world after service execution —
the so-called effects in the world. The notion of effect is not without contro-
versy.9 Suppose one wants in a representation language some description of
effects to the world. The only reason then for having that is that to reason
about those in some way. The effects should somehow affect how you would
use your service or the consequences of using it. As such, these effects have
to be meaningful in some sense. It remains an open question how it would
be meaningful in an open Internet environment to talk about changes to the
world connected to services that one knows nothing about. In addition, this
happens in situations where one has no idea whether these services are even
persistent or not, and certainly no such guarantees can be provided. To
understand the semantics of this, notions of persistence of state over time
are needed, and those have always been tricky for AI.

An alternative way to cater for these kinds of circumstances is to let some
notion of contract, agent dialogue or coordination take the place of the sort
of deeper reasoning about states of the world. Dialogue protocols do not
yield the same sort of shared state one has when reasoning about actions
of world, but it is the sort of state one can reason about if, for example, a
contract over the use of some resource is needed.

To date, DAML-S has stayed silent on how to actually represent effects,
and at the moment preconditions and effects are mapped to Thing (i.e. any
DAML+OIL expression is allowed). A working group is currently trying
to specify rules in DAML-S. Given the restrictions that DLs impose on
forming rules (see also Sections 5.3.2 and 5.4.2), it will be interesting to see
how expressive the preconditions and effects will prove.

Complex and primitive problem-solving methods Intuitively, com-
plex PSMs correpond with DAML-S services that have composite processes
in the Service Model. Just like complex PSMs and their subtasks, compos-
ite processes are decomposable into other noncomposite or composite pro-
cesses. Decomposition of composite processes can be specified using control
constructs such as Sequence and If-Then-Else.

Primitive PSMs are very closely related to DAML-S Atomic processes :
Atomic Processes are directly invocable, have no subprocesses, and execute
in a single step. DAML-S also has the notion of Simple Process, which

9The following is due to a discussion with Dave Robertson.

34

is not invocable and is not associated with a Grounding, but serves as an
abstraction to provide a view on using some (atomic or composite) process,
for purposes of planning and reasoning.

As far as reasoning support goes, UPML’s Operational Description (which
is exclusive to complex PSMs) relies on MCL descriptions, which can be ex-
ploited using interactive theorem proving (see Section 3.1.2). As for DAML-
S, we discussed the representation of processes in Section 2.2.4, where we
stressed that the Service Model is still being defined. However, as mentioned
in Section 2.2.3, some formalizations are readily available.

One solution to the lack of support for dataflows or control in DAML+OIL
is to ascribe process semantics to DAML-S by mapping it to the Process
Specification Language (PSL) mentioned above (Schlenoff et al. 2000). PSL
is a (standardized) process specification ontology described in the situation
calculus (McCarthy & Hayes 1969), which is a (mostly) first-order logic lan-
guage for reasoning about action and change in dynamical systems. With
these semantics in hand, (Narayanan & McIlraith 2002) encode service de-
scriptions in a Petri net formalism and provide decision procedures for ser-
vice simulation, verification and composition.

Communication The UPML Communication concept corresponds roughly
to the Grounding in DAML-S. The DAML-S Grounding (and DAML-S in
general) makes an active effort to link into many of the upcoming indus-
try standards, including BPEL4WS (Mandell & McIlraith 2003), UDDI
(Paolucci, Kawamura, Payne & Sycara 2002) and WSDL. Recently, work
started on ebXML. This is an area where UPML is underdeveloped, al-
though some work has been done to integrate Communication with the
FIPA standard for agent communication.

Pragmatics UPML Pragmatics correspond to the Profile’s non-functional
part. UPML pragmatics are a little different as they also relate to the notion
of cost, which is absent in the standard DAML-S Profile. The costs of a
problem-solving method have several different dimensions: interaction costs
(with user and other aspects of the environment) and computation costs (in
terms of average, worst, or typical cases).

Bridges

As Motta et al. (2003) write, the separation made in UPML between tasks
and methods provides a basic model for dealing with ontology mismatches.
The UPML framework assumes that the mapping between methods and
tasks may be mediated by bridges (as explained in Section 2.1.2). In practice
this means that if task T is specified in ontology A and a method M is
specified in ontology B, which can be used to solve T, it is still possible to
use M to solve T, provided the appropriate bridge is defined.

35

The work of (Fensel et al. 2000) discussed whether UPML could provide
any help to OIL (one could imagine repeating this exercise for OWL). One
important area where such help is possible concerns the facilities available
in UPML for modularising ontologies. OIL provides a very simple construc-
tion to modularise ontologies. In fact, this mechanism is identical to the
namespace mechanism in XML. It amounts to a textual inclusion of the im-
ported module, where name-clashes are avoided by prefixing every imported
symbol with a unique prefix indicating its original location. However, much
more elaborated mechanisms are required for a structured representation of
large ontologies.

As the authors further note, renaming, restructuring, and redefinition
means must be applicable to imported ontologies. Here, one can make use
of the adapter concept of UPML. UPML provides refiners and bridges to
modify components. These adapter components of UPML can be used to in-
tegrate the need of ontology structuring into an existing architecture. When
combining UPML and OIL in this way one is able to specialize the generic
adapter concept of UPML for the fixed set of language primitives of OIL. The
precise integration of the adaptation concept of UPML in (DAML+)OIL is
still under investigation.

Assumptions

Another important concept in UPML concerns Assumptions. We postpone
our discussion of assumptions to Section 4.4.1, at which point we will have
explained how assumptions are exploited during the matching process (see
Section 3.1.2 for this). Section 4.4.1 also extends the discussion initiated
above on the relevance of tasks.

2.3 Other approaches

We now briefly mention other areas that are likely to have an impact on
capability description languages for the Web.

Software specification techniques There exists a long tradition in hard-
ware verification and proving properties of software, which has yielded a
number of robust formal languages such as Z or VDM. Often these lan-
guages are indecidable or rely on theorem proving. Given the current state
of the art, it is rather unlikely that they will scale to the size of the Web —
or even the Intranet for that matter.

Database query languages An active field of research possibly rele-
vant to discovery of Semantic Web Services concerns the querying of semi-
structured data like XML. However, since we require a query language to

36

closely fit to the underlying data model, the choice for RDF as the data-
representation language immediately rules out any of the XML-based query
languages (Broekstra, Fluit & van Harmelen 2000). A comparison of RDF
query languages is beyond the scope of this thesis. For a survey including
RDF and XML based approaches, see (Magkanaraki, Karvounarakis, Anh,
Christophides & Plexousakis 2002) and (Broekstra et al. 2000)).

Agent systems Agent systems often are looking for the right balance
between expressivity and reasoning power to have agents work together.
A lot of relevant work has been done on coordination for agent systems.
One important example here is KAoS, the Knowledgeable Agent-oriented
System.10 We should also mention the work on LARKS, which offers very
good matchmaking capabilities (Sycara, Widoff, Klusch & Lu 2002). Given
that our focus is not on agent systems, we do not look into this any further.

Action representation formalisms We will briefly mention action for-
malisms in the next chapter. Again, they are outside our scope.

10Web site: http://ksi.cpsc.ucalgary.ca/KAW/KAW96/bradshaw/KAW.html

37

Chapter 3

Reasoning mechanisms for
composing and configuring
services

It is well known in logic that representation and reasoning represent two sides
of the same coin. The previous chapter focussed mainly on representing
service capability. Here we look in some detail at the support problem-
solving methods offer in terms of service composition and configuration. We
briefly mention a few other techniques as well.

3.1 Techniques for problem-solving methods

In what follows, we present three different approaches that were proposed
in the context of research on Problem-Solving Methods. After each section,
we insert a brief discussion on the relevance of the approach for Semantic
Web Services.

3.1.1 Configuring knowledge-based systems

Building knowledge-based systems from existing components requires fit-
ting together heterogeneous knowledge components. Crubézy, Motta, Lu
& Musen (2003) propose a methodology to configure such KBSs based on
UPML. Their Internet Reasoning Service (IRS) provides tool support for
this process. There exist two versions of the IRS: one was produced by
Stanford Medical Informatics based on the Protégé environment1, the other
was created at the Knowledge Media Institute.2 The former provides strong
support for mapping, extending the work of (Park, Gennari & Musen 1997)
(see also (Crubézy & Musen 2003)), while the latter is intertwined with an

1Web site: http://protege.stanford.edu/plugins/psmtab/PSMTab.html
2Web site: http://kmi.open.ac.uk/projects/irs

38

Figure 3.1: IRS use scenario and process model (Crubézy et al. 2003)

operational environment that can execute the configured system. The IRS
methodology consists of eight steps and is summarized below. An overview
of the IRS setup is shown in Figure 3.1.

Task selection First of all, IRS users first need to characterize the goal
of their application in terms of one of the tasks known to the IRS.
Currently, the IRS has been tested with a library of components for
classification (Motta & Lu 2000), and a library for scheduling tasks is
in the works. Task selection means adopting a particular viewpoint
to impose over an application. Often in KE, the same application can
be built using different task models. As such, a task model provides
a conceptual viewpoint for characterizing an application and for fo-
cussing the knowledge-acquisition process. The IRS supports users in
browsing and navigating UPML-based descriptions of the various tasks
in the available libraries, along with examples of the ways tasks have
been applied previously. Users select a task by choosing a refinement
of a high-level task.

Task configuration In this crucial step, users configure the selected task
for their particular domain by providing relevant domain knowledge
to fill the input and output roles defined by the task. If the domain
knowledge does not conform to the task ontology, the IRS supports
users in constructing a mapping relation between the task role and
domain knowledge. The created mappings are then stored in a task-
domain bridge (see Figure 2.1).

Domain selection In this phase (which could also take place before task
selection), users specify the domain knowledge that they intend to use
in their application. The IRS provides a range of existing domain
models stored in UPML-compliant libraries. The advantage of select-
ing an available domain model is that, in many cases, no configuration

39

effort will be needed, given that mappings (adapters) themselves are
often reusable. Alternatively, the IRS provides knowledge acquisition
forms to enter domain knowledge directly. Another possibility is that
users provide their own knowledge base. The nice thing here about
the Protégé IRS is that Protégé knowledge bases can be imported di-
rectly. This is an important feature given that Protégé (arguably) has
become the de facto standard platform for building ontologies.

Task verification This step consists of checking the assumptions that the
selected task defines on domain knowledge. The IRS performs this step
automatically by running an assumption-checking engine on the task
input roles — possibly obtained from domain inputs through mapping
relations — and the assumptions of the task. However, in the general
case, not all assumptions are necessarily verifiable (see Section 3.1.3
for an approach that explicitly addresses this issue), for example when
one assumes that only one solution exists in the target domain.

PSM selection This step focuses on selecting a PSM that can realize the
configured task. Users can always choose among the available PSMs
manually, but one way the IRS can assist in finding PSMs is by check-
ing the list of available PSM-task bridges, which contains PSMs that
can realize the task. Another way the IRS could retrieve PSMs is
by competence matching. In this case, candidate PSMs are selected
if their postcondition statement fulfills the goal of the task, and if
their preconditions do not contradict the assumptions of the task. It
is not always clear what “goal” means in a UPML context. Here it
makes sense to interpret the goal as the postconditions of the task,
where suitable PSMs have postconditions stronger than those of the
task. Crubézy et al. (2003) note that, in general, such reasoning re-
quires full first-order logic theorem proving support, which is not part
of the current implementation of the IRS. The important issue is to
design contents-specification formalisms, which strike the right bal-
ance between expressiveness and efficiency in support of matching. In
this respect, we refer the reader to Section 4.4.1 for a discussion on
UPML’s expressiveness in relation to capability matching.

PSM configuration This step is similar to the task configuration step, at
the level of the selected PSM: the IRS guides users in specifying the
domain entities that fill-in the input and output roles of the PSM.
Some of the roles for the PSM are “inherited” from the configured
task, through a corresponding PSM-task bridge. If not already pro-
vided in the library, the IRS supports the creation of such a bridge to
map the inputs and outputs of the configured task to the ones of the
selected PSM. In addition, the PSM may define supplemental input
and output roles. Like with task configuration, mapping relations to

40

domain knowledge may be needed, which would then be stored in a
PSM-domain bridge.

PSM verification This step focuses on verifying that the selected PSM
can be applied to the task and the domain in accordance with the
assumptions of the PSM and the results of the configuration process.
It is essentially the same as the task verification step. The IRS notifies
users about the domain inputs that do not satisfy the assumptions or
preconditions of the PSM.3 In this case, the IRS guides users back
either to the task configuration step or to the PSM configuration step,
to re-specify the inputs that are not satisfied.

Application execution This final step consists in running the configured
PSM to realize the specified task, with domain case data entered by
the user. The IRS first acquires case data from the user and instanti-
ates the case inputs of the PSM by interpreting the various mapping
relations built. The IRS also checks the preconditions of the PSM
and task on the mapped case data. The IRS then invokes the PSM
code with the mapped inputs, by running a code interpreter either
locally or remotely. Knowledge about location and type of PSM code
is stored in the pragmatics field of the UPML description of the PSM.
Finally, the IRS fills in the domain outputs with the results of PSM
execution, possibly transformed with domain-PSM mapping relations
defined during the PSM configuration step.

Discussion

It should be clear that performing all eight steps represents the “worst case
scenario”: the simpler the system the more likely some steps will be trivial.
The approach is a clear reminder that KBS systems are in fact complex,
large software systems, that can take a lot of effort to configure, during
which human intervention is indispensable. This is in contrast with the
work done in F-X (see Section 4.1), which aims for as much automation
as possible. We will make a short comparison between the two approaches
in Section 4.4.1. Here, we also refer to recent work that recasts some of
the work on the KMi IRS implementation in a Web services setting (Motta
et al. 2003). We discussed some features of this prototype in Section 2.2.5.

3.1.2 Brokering as assumption discovery

The above approach layed out the different steps to take in order to select
and configure UPML components from a library. The work we discuss in this
section addresses how to actually build the components to fill this library.

3This appears to be a particular case where preconditions can be checked in advance
during the system building process (compare Section 2.1.5).

41

Fensel, Schönegge, Groenboom & Wielinga (1996) present a formal approach
for the specification and verification of UPML-based KBSs. Formal speci-
fications of UPML elements are first built and subsequently matched with
others using an interactive theorem prover. As mentioned in Section 2.1.2,
UPML uses abstract data types and a variant of dynamic logic as the formal
means to specify the different architectural elements. This entails that, as
pointed out in the previous section, a first or higher order theorem prover
will be needed to match tasks with PSMs.

Architectural constraints

A consistent specification is built based on architectural constraints. These
help to ensure that the different elements, when taken together, define a
consistent system. The architectural constraints of UPML consist of require-
ments that are imposed on the intra- and interrelationships of the different
parts of the architecture. They can ensure either:

• A valid part (for example, a task or a problem-solving method) by
restricting possible relationships between its subspecifications

• A valid composition of different elements of the architecture (for ex-
ample, there are constraints on connecting a problem-solving method
with a task)

The constraints on well-defined components apply for tasks, domain
models, and PSMs. The constraints for composition are introduced by con-
straints that apply to bridges. An example of a architectural constraint for
a task ontology is that:

axioms ∪ preconditions ∪ assumptions

must have a model; i.e. a task ontology must be consistent (see (Fensel
et al. 2003, pages 28-33) for a list of all constraints). As we shall explain
below, these architectural constraints act as proof obligations for the theorem
prover. Because the different elements in UPML can be reused, not all of
these proof obligations will have to be repeated for every application though.

Discovering assumptions

These architectural constraints provide a starting point for specifying knowl-
edge components. Fensel et al. (1996) employ the Karlsruhe Interactive Ver-
ifier (KIV) as theorem prover. As described on the KIV website,4 at the
heart of the KIV system is a tactical theorem prover in the tradition of the

4Web site: http://i11www.ira.uka.de/~kiv/

42

Edinburgh LCF system. Construction of proofs is done by applying tactics5,
thereby reducing goals to subgoals. The selection of tactics is mostly done
by the heuristics implemented in the KIV system, which leads to a high de-
gree of automation. If all (selected) heuristics fail to succeed, the user may
interact by selecting tactics or heuristics, backtracking, pruning the proof
tree or introducing lemmas.

In our particular case, KIV is used to discover where in the specification
extra assumptions need to be introduced in order to arrive at a consistent
specification, either at the component level or at the KBS level. KIV sup-
ports this discovery by analysing failures of proof attempts based on the
architectural constraints. Gaps found in a failed proof provide initial char-
acterizations of missing assumptions. They appear as sublemmas that were
necessary to proceed with the proof. An assumption that implies such a
sublemma is a candidate for becoming a new assumption to the component.

Fensel et al. (1996) give the following example. Consider a PSM which
performs hill-climbing search with the competence to find a local minimum
in a graph. Suppose we have a task under concern which requires to select
an optimal element from a set. In this case, there are two possibilities to
close the gap between task and PSM:

• Strenghten the domain assumptions: one can introduce additional
requirements (assumptions) on domain knowledge that enable hill-
climbing to find a global optimum.

• Weaken the application functionality : one can weaken the task defi-
nition by introducing extra assumptions on it, in such a way that the
PSM competence is now sufficient to realize the task.

In the example, using KIV would indeed make clear that the task as-
sumptions are too weak to guarantee equivalence of task definition and PSM
competence. As such, one could then decide to add extra assumptions over
the input of the task.

Discussion

Fensel et al. (2003, page 35) note that assumptions found in this way are
sufficient to guarantee the correctness of the proof, but often they are neither
necessary for the proof nor realistic in the sense that application problems
will fulfill them. This remains a problem for this approach to address.

When comparing the KIV approach with other work, Fensel et alea
point out that the UPML approach is more general than, for instance,
the AMPHION system, which uses deductive synthesis of programs.6 Pro-

5A tactic is a function from goals to subgoals but it is also more than that. It provides
a way of constructing a proof data structure.

6Web site: http://ase.arc.nasa.gov/docs/amphion.html

43

grams constructed with KIV are combinations and instantiations of domain-
independent PSMs, rather than simply a sequence of calls of subroutines
from a library. We will mention the use of deductive synthesis again at the
end of this chapter, when we discuss assembly of Grid applications. In Sec-
tion 4.4.1, we briefly compare the brokering used in the F-X system with
the KIV approach.

3.1.3 Configuration as parametric design

A third proposal for configuring knowledge-based systems can be found in
(ten Teije, van Harmelen, Schreiber & Wielinga 1998). This approach has
no intention to discover hidden assumptions in components. Rather, it ac-
knowledges that some assumptions are simply too hard to satisfy anyway,
for instance due to inherent incompleteness of data or knowledge (e.g. lack
of good heuristics) in AI-problems. Based on this insight, the work presents
a framework to think about additional aspects of the PSM lifecycle, in par-
ticular automated PSM construction, validation and monitoring.

Constructing problem-solving methods

Say we have a library of problem-solving methods. Which problem-solving
method is optimal for a given problem type ? In general, the choice of
an appropriate PSM will depend on the goal of problem solving, and on
characteristics of the specific input. As a result, PSMs must be selected or,
as first considered by (ten Teije et al. 1998), constructed. In the former case,
methods are selected from a predefined set, while in the latter case parts of
existing methods or newly defined parts are combined to construct a new
method.

Such a selected or constructed method possibly does not guarantee the
satisfaction of all the intended goals, for example due to lack of sufficient
knowledge about when to apply a PSM, or due to incompleteness of data
or knowledge inherent to AI-problems. Because the intended goals are not
guaranteed, one has to validate the constructed method. If this validation
fails, we can iterate the selection and construction process, using the results
of the validation.

In (ten Teije et al. 1998) and (ten Teije & van Harmelen 2003), the au-
thors (semi-) automatically construct PSMs by exploiting certain restrictions
in the shape of the configuration search space. The approach is based on the
correspondence between the construction of problem solvers and parametric
design.

Configuration of PSMs as a parametric design task

The approach of (ten Teije et al. 1998) to automated configuration of prob-
lem solvers relies on a uniform representation of (the functionality of) problem-

44

Figure 3.2: Configuration as search (ten Teije et al. (1998))

solving methods. Below we largely follow their exposition. The central idea
of the uniform representation is that the functionality of a class of PSMs is
captured in a single schematic formula. Some of the predicates and terms
from that formula are regarded as parameters that must be further instan-
tiated to capture different members of the class. Thus, different members
of that class correspond to different definitions for the parameters occuring
in the formula.

A configuration task can be seen as the task of building configurations
which satisfy all the given requirements. A configuration consists of a set
of components and a description of the connection between the components
in the set. The basic inputs of the configuration task in the context of
configuring PSMs are:

• The set of possible definitions of the components in the schematic
formula. These possible definitions are the building blocks of the con-
figuration and are given beforehand.

• The schematic formula which represents the PSM class. The map-
ping to a configuration problem is possible, because of the uniform
representation available for PSMs.

• Constraints between PSM components and constraints between un-
derlying assumptions of the components.

• Static and dynamic goals (see the next subsection) that have to be
fulfilled.

Under this approach, a possible configuration is a method that contains
a definition for each component of the general method schema. A valid
configuration is a method that expresses a PSM and has no conflicts with the
assumptions under which the method must operate. A suitable configuration
is a method that satisfies the desired goals (see Figure 3.2).

Because the schema is fixed and the possible definitions of each compo-
nent can be considered as the range of the parameters in a given formula,
this configuration task can be interpreted as parametric design.

45

Static and dynamic configuration

The goal of automated construction of methods is to construct a method
that produces acceptable solutions for a given problem under particular
assumptions and desired goals. The approach is to first configure and then
validate a method, and, if this validation fails, to iterate the configuration
step.

The construction before validation is called static configuration (“Which
PSM is optimal?”) and configuration using the validation results results in
dynamic configuration (“What should be done if the PSM does not give
the desired solution?”). Using the distinction between static and dynamic
configuration, static and dynamic goals can be identified. Static goals are
requirements that can be guaranteed only on the basis of the description of
the method. Dynamic goals are requirements of the solution that can only
be validated after executing the method. This distinction between static and
dynamic goals is not fixed. It depends on the knowledge that is available
about methods.

Solving the configuration task

To solve the task of configuring the PSM, the authors use a PSM which
is known as Propose-Critique-Modify (PCM). Characteristic of a PCM
method is that when a configuration is not suitable, the configuration process
does not continue with a completely new configuration, but uses the test
results for determining a new configuration instead of generating a new one
from scratch. PCM family (Chandrasekaran 1990) methods consist of four
steps: propose, verify, critique and modify. When applying the PCM method
in the current context, it acts as follows:

• The propose step proposes a configuration. It starts by giving a partial
or complete configuration. The parameters in the schematic formula
are proposed based on the required static goals. These partial propos-
als are then completed by proposing values for the remaining param-
eters, and we end up with an instance of the general schema that we
use for representing PSMs.

• The verify step involves checking that the proposed configuration sat-
isfies the constraints and the user-requirements. Constraints on the
components and on the assumptions can be directly calculated or es-
timated by means of domain specific formulae (“static” verification).
Required “behaviour” however can be derived only by validating the
method by execution (“dynamic” verification). Based on the result of
these tests the dynamic goals can be verified. In the case that not all
goals are met, the results of verification contains the failing goals, as
well as the method that failed to meet these goals.

46

• The critique step is an analysis of why the verification failed, or why
the method is not appropriate. It comprises solving the diagnostic
problem of mapping from undesired behaviour to the parts of the con-
figuration which are possibly responsible for this behaviour (i.e. assign
blame). To do this it needs information about how the structure of
the device contributes to the desired behaviour. In our case, this is
knowledge of how properties of the components of the PSM schema
relate to properties of the complete schema. In this phase, one can use
diagnostic knowledge about goal violations and repairs.

• The modify step uses the repair information from the critique step to
find an appropriate modification and executes the repair action. It
changes the configuration to get closer to the specifications. In our
case, this is the adaptation of the PSM. A modification action can
consist of modifying an individual component, an entire method, or
tuning components so that they become more compatible.

Discussion

Much of this work can be recast in terms of Semantic Web Services. Service
libraries are expected to vary in dimensions of generality, formality and
granularity. A central question for SWS would then become “Which service
is optimal given a particular task?”. In particular, an agent will be looking
to solve some task, and has a few options to choose from in a UDDI-like
service library. If a service is selected and it matches, we are done. In
contrast, if the match is not immediate, rather than give up, an iterative
brokering process should determine whether an appropriate new service can
be constructed, albeit closely related to the current service.

In addition, the distinction between static and dynamic goals stands.
In the context of SWS, one could think of the task of booking a trip to
Germany. An example of a static goal for a travel agency service could be
whether it offers trips to Germany. A dynamic goal could be to (try to)
book on-line a room under 60 euros with a selected partner.

The main motivation for (ten Teije et al. 1998) using PCM as a brokering
method was to the need to prevent expensive tests of dynamic goals (in
casu, performing diagnosis). The same condition seems to hold for SWS :
checking a dynamic goal could require access to other people’s systems and
could even imply rollback operations, which can be costly (in terms of time
and resources required).

ten Teije & van Harmelen (2003) report that the main difficulty in re-
alising the PCM-based approach lies in the identification of knowledge for
the critique and revise steps. If certain goals are not achieved by the cur-
rent task definition, which knowledge must then be exploited to identify and
repair it in order to improve the match ? For SWS to be able to use PCM-

47

style brokering, in addition, one would need to be able to identify generic
classes of web services. The early experiences of (Wroe et al. To appear)
in the myGrid project seem to suggest that this should be doable once the
application domain is determined. It is less clear how domain-independent
classes of web services would be characterised.

Finally, the authors use their scheme to construct one predifined problem-
solving method. One could argue that, if a schematic formula for a composed
service were built, with different possible instantiations, then this approach
could equally serve as a way to perform (guided) service composition. We
refer the reader to the brokering section in Section 4.4.1 for a discussion on
further synergies with the F-X framework.

3.2 Other approaches

Although our focus for this thesis is on brokering techniques used for PSMs,
here we refer to two additional techniques which in our opinion carry a lot
of potential for service composition.

3.2.1 Planning

Planning is nowadays a popular way to think about service composition.
The idea is to conceive each Web service as an action. The advantage of
exploiting an action metaphor is that it lets us use all earlier research on
reasoning about action. We refer to (Wickler 1999, Chapter 9) for a good
overview of brokering strategies with regard to action formalisms.

3.2.2 Deductive synthesis

As noted in the previous chapter, DAML+OIL is not, by itself, sufficiently
rich to describe programs. In the context of the Grid and e-Science, (Bundy
& Smaill 2002) have recently started work on a logic that is sufficient for
deductive synthesis, by either extending DAML+OIL or by translating it
into a richer logic. Recent work is investigating the potential of event logic
for this purpose (Bundy, Smaill & Yang 2003). Event logic is a mathemat-
ical structure based on constructive Type Theory designed to express the
key features of a distributed computing system at the level of abstraction
appropriate for specifying interactive behaviours.

The aim is to support rapid (re-)assembly (i.e. composition) of a depend-
able, high quality Grid application from available Grid services. As (Bundy
& Smaill 2002) explain, in deductive synthesis, a program is built automat-
ically as a side effect from a constructive proof that this program’s specifi-
cations can be met. An automated reasoning system is required to prove a
conjecture of the form:

∀inputs.∃output.spec(inputs, output)

48

where spec is the specification of a relationship between the inputs and
the output. Provided that the logic is constructive, i.e. excludes pure ex-
istence proofs, then the proof will implicitly define the construction of this
output from all possible inputs (Bundy & Smaill 2002).

Once synthesised, it becomes possible to re-synthesise or revise the pro-
gram, e.g. with a slightly different specification. Even if the original syn-
thesis proof had required human interaction, this new process might be
completely automated via the use of analogy, since many of the previously
hard steps may now be simply transcribed to the new proof (Bundy &
Smaill 2002). One application here could be the automated recovery from
failure of a Grid application, for example because of one particular Grid
service going down.

In the next chapter, we focus on a lightweight alternative for the pre-
viously mentioned approaches. We will confront our insights from PSM
brokering with this new approach and look for synergies.

49

Chapter 4

F-X: brokering lightweight
formal capability descriptions

In previous chapters, an array of different languages possibly relevant to
service description was displayed. This chapter introduces yet another lan-
guage for describing service capabilities, but one which stands out by the
particular angle chosen. The aim of the continuing work on the F-X sys-
tem at Edinburgh is to design a service specification language which is as
lightweight as possible, while retaining those elements that are essential to
automated service composition. In what follows, we describe the rationale
and technology behind F-X, and analyse in detail the differences and simi-
larities with UPML and DAML-S (see Chapter 2), two important proposals
on the current Semantic Web Services scene.

4.1 Rationale

The F-X system (Robertson 2001) aims to provide a general architecture
for formal knowledge management systems, spanning the entire knowledge
management lifecycle. F-X considers a knowledge management system to
be a large and distributed collection of components capable of expressing
knowledge in some form. The knowledge captured inside these components
can be pretty much anything : knowledge bases, programs, text, interfaces
with humans, . . .

From this general definition, it follows that different kinds of automa-
tion will be required, and a unifying framework to cater for them should
be in place. To this end, F-X proposes a standard, lightweight notation for
describing knowledge components, a brokering algorithm tho exploit these
descriptions, and a “low level” architecture for communicating between com-
ponents. These various elements are explained below.

50

4.2 Technology

To kickstart our overview of F-X technology, first we describe F-Comp’s lan-
guage tenets. Subsequent subsections zoom in on the brokering support of-
fered for services and how brokering results are communicated. We conclude
with an example. The reader should note that these subsections basically
summarize work described in (Robertson 2001) and Potter (2003a, 2003b),
but that we add our own comments and figures throughout the text.

4.2.1 F-Comp : capability descriptions for F-X

The aim of F-X’s component representation language, dubbed “F-Comp”,
is to describe knowledge components in as simple a style as possible, allow-
ing communication between components to be achieved while imposing few
constraints on the internal design of the individual component (Robertson
2001).

There is a clear tension between keeping the number of language primi-
tives down and the language simple, while at the same time trying to support
efficient reasoning across the range. In its design, F-X makes no claims of
having resolved this issue. However, unlike other proposals, it does make
this trade-off explicit and provides a clean starting point to experiment with
possible extensions.

F-Comp is inspired by and combines work on coordination between dis-
tributed agents (Robertson, Silva, Vasconcelos & de Melo 2000) and ef-
forts on the Unified Problem-solving Method description Language (Fensel
et al. 2003) (see also Section 2.1).

F-Comp distinguishes between ontologies, domain descriptions, tasks,
and problem-solving methods. Figure 4.1 below provides an architectural
overview of F-Comp. It also provides some insights as to how F-Comp differs
from UPML (compare with Figure 2.1 in Section 2.1). In this subsection
we limit ourselves to F-Comp’s elements. Section 4.4 will contrast F-Comp
with its main “contenders”.

Ontologies

An ontology in F-X is of the form:

ontology(Name, {T1, . . . , Tn}, {A1, . . . , A2})

where:

• Name is a constant used to identify the ontology uniquely.

• Each T describes the type of an element of the ontology.

• Each A is an axiom of the form U → E, where

51

Figure 4.1: F-Comp architecture (adapted from (Fensel et al. 2003))

– U is a unit term which is valid in the ontology

– E is any expression constructed from the expressions of the on-
tology and the normal logical connectives.

For example, breathes(X)→ animal(X)∧alive(X) would be a struc-
turally correct axiom. As hinted at in this example (with two terms
in the head of the clause), F-X is intended as an architecture that can
take any First Order Predicate Calculus (FOPC) fragment. However,
to date, most experiments with F-X have concentrated on the Horn
logic case (where the number of clauses in the head is limited to one).

Domain descriptions

The Domain description introduces domain knowledge, merely the formulas
that are then used by problem-solving methods and tasks. The essential
components of a domain description in F-Comp are: the name of the ontol-
ogy it uses; the properties of the knowledge expressed in the domain model;
and the domain knowledge itself. A domain description thus is of the form:

domain(Name,O, {P1, . . . , Pn},D})
where:

• Name is a constant used to identify the domain description uniquely.

• O is the name of an ontology.

52

• Each P specifies a property of the domain model, described as a FOPC
expression in which each unit term is valid in the domain’s ontology.
The properties (synonym for theorems) can be derived from the do-
main knowledge and they are visible to and directly used by the broker.

• D is the domain model itself, which may be in any of a number of
knowledge representation languages. As mentioned above, the core
F-X architecture is neutral to the choice of representation language in
D.

Problem-solving methods

The essential components of a problem-solving method in F-Comp are: the
name of the ontology it uses; the competences1 which it provides; and
the problem-solving mechanism delivering these competences. A problem-
solving method in F-X is therefore of the form:

psm(Name,O, {C1, . . . , Cn},M)

where:

• Name is a constant used to identify the problem-solving method uniquely.

• O is the name of an ontology.

• Each Cx specifies a competence of the problem solver, of the form

c(C, I,O,Ce)

where:

– C is a competence specification of the form G ← P , where G is
a goal which is claimed to be satisfiable by the problem solver,
given the conditions P .

– I is a set of constraints on variables in C which are required to
hold before we attempt to utilize that competence.

– O is a set of constraints on variables in C ← P which should hold
after we have successfully utilised that competence.

– Ce is a set of competence specifications which must be satisfied
externally to the problem solver. Normally this is achieved by
utilising the competences of other problem solvers.

• M is the problem-solving mechanism, which may be in any program-
ming language. The core F-X architecture is neutral to the choice of
programming language for M.

1In this report, the term competence is used interchangeably with the term capability.

53

Potter (2003a, 2003b) reformulates the F-Comp form for problem-solving
methods into “Semantic Web Services speak”. This version is not compatible
with the one used above however. As such, we recast it in the above format:

service(AgentName,AgentURI,AgentOntology, {C1 , . . . , Cn})

where:

• AgentName is a constant used to identify the service (in conjunction
with the AgentURI).

• AgentURI contains the location of the service.

• AgentOntology is the name of an ontology against which the agents
competences are to be understood.

• Each Cx specifies a competence of the web service, of the form

c(C, InputRoles,OutputRoles,ExternalCompetences)

where:

– C is a competence specification of the form Name← Preconditions,
where Name is a goal which is claimed to be satisfiable by the
web service, given the conditions Preconditions.

– InputRoles is a set of constraints on variables in C which are
required to hold before we attempt to utilize that competence.

– OutputRoles is a set of constraints on variables in Name ←
Preconditions which should hold after we have successfully utilised
that competence.

– ExternalCompetences is a set of competence specifications which
must be satisfied externally to the problem solver.

The reader will notice that a new term AgentURI was added to indicate
where the service resides on the network. This now caters for the situation
where services have the same AgentName. This situation is commonplace
in for example bioinformatics, where multiple mirrors can exist of the same
service.

More fundamentally, one can also see that the problem-solving mech-
anism M is missing. This makes sense, as this term provides no support
whatsoever during the F-X brokering process (see the next subsection). We
will revisit this issue later, but, for now, suffice it to say that if F-X wishes
to position itself as a lightweight brokering environment for service lifecycle
management, it makes sense to strip away most information about service
pragmatics and operation.

54

Bridges

Knowledge components may use different ontologies so there must be trans-
lation between terms in these different ontologies if the components are to
communicate. A bridge defines this translation. A bridge in F-X is of the
form:

bridge(Name,Of , Ot, {T1, . . . , Tn})

where:

• Name is a constant used to identify the bridge uniquely.

• Of is the name of the ontology from which a translation is being made.

• Ot is the name of the ontology to which a translation is being made.

• Each T specifies a translation from a unit term of Of to a unit term
of Ot, of the form t(Xf ,Xt, C) where:

– Xf is a unit term used in Of .

– Xt is a unit term used in Ot.

– C is a constraint describing the conditions under which the trans-
lation is considered valid.

4.2.2 Reasoning with F-Comp

Assembling knowledge components automatically

Robertson (2001) formulates the vision for the F-X broker as follows. If
we have an open knowledge management architecture then we must assume
that our set of available knowledge components can change and that there
will be too many of these to search manually. We therefore need some form
of automated brokering mechanism to identify the assemblies of knowledge
components appropriate to a task we wish to achieve. The purpose of the
the broker is to do this using the information in the F-Comp specifications.

A four-step brokering process

The way F-X regards brokering is as a means of orchestrating problem solv-
ing among agents, where each agent contains one or more knowledge com-
ponents and is capable of utilising these to solve problems. The brokering
task is then to identify, from all the available agents, a subset which contains
collections of knowledge components appropriate to our task.

Ideally we would like this set to contain precisely and only those agents
which will perform the task. In practice this is unlikely because the only

55

way to be sure a task can be performed is for the agents to run the ap-
propriate confederation of knowledge components. If we were able to prove
appropriate properties of all our components then we might not be in this
situation but such extensive use of verification appears impractical.

A more realistic approach is, by reasoning about the specification of
knowledge components, progressively to reduce the size of the set of agents
which appear appropriate until we reach the point where the set is suffi-
ciently small that we have a high probability that the components selected
from it will be able to perform the task.

To support this idea, F-X brokering — in the most general case — con-
sists of the following steps:

1. Find components with ontology signatures that matches to those of the
task. The components found in this step are using the same ontology
(possibly with translation/bridging).

2. Within those componenents, find signature matches with consistent
ontological axioms. The remaining components are consistently using
the same ontology (possibly with translation/bridging).

3. Match competences of tasks and components. The resulting compo-
nents offer the competences necessary to solve the problem.

4. Run the problem solvers. This makes clear which components were
actually sufficient to solve the problem.

Agent-broker interaction

Agents advertise their competences simply by sending these to the broker,
which records the competences and the agents who claim to be able to sup-
ply them. In the next stage, another agent sends a query to the broker.
The broker constructs from its competence descriptions (now detached from
the agents) its internal description, which is called a “brokerage structure”
of how the query might be answered based on those competences. It then
translates its brokerage structure into a sequence of KQML-like performative
statements describing the messages which it thinks should enable the query
to be satisfied by requesting appropriate agents to discharge their compe-
tences. The brokerage structure itself is built in a Definite Clause Grammar
(DCG) style, where the grammar is used to generate the sequence of ter-
minal symbols, corresponding to performatives, by unpacking the brokerage
structure (see Appendix and (Robertson 2001) for details). We provide an
example of a brokerage structure in the Section 4.3. Note that the sequences
constructed using this approach are constrained to be linear, in that there
will be no alternative paths within a sequence: disjunctions are represented
through distinct complete sequences.

56

In the final stage this performative information is used by the agent
which sent the query to select which agents to contact; to send appropriate
messages to them; and await appropriate responses.

The method does not prescribe that the agents submitting queries must
be different from the agents supplying competences. It also does not pre-
scribe that there must physically be a single, centralised broker to which all
the agents advertise and to which all queries must be addressed. It would
be possible to use the method to in a decentralised brokering, provided that
each agent had a copy of the brokering mechanism and there was a way of
broadcasting competences to groups of agents.

We provide a concrete example of a brokering scenario below. See
(Robertson 2001) for an example from the system dynamics domain and
(Potter 2003b) for a ticket-office scenario.

4.2.3 Communication in F-X

For transporting service requests from a component to the broker and for
returning brokering results to a component, F-X relies on the AKT Bus. The
AKT Bus, built at the University of Aberdeen, allows for communication
between problem solvers. As Robertson (2001) writes, the Bus uses a Linda
server to manage concurrent access and adaptation of a tuple space in Prolog
(where tuples can be considered as Prolog facts).2

4.3 F-X in action

Now that all elements have been described and the supporting reasoning
mechanism explained, we demonstrate how F-X works in practice, drawing
on a trip-booking example.

4.3.1 F-X implemented in Prolog

Before we walk through the example in the next section, we need to under-
stand how F-X gets translated to Prolog. In particular, a service description

service(AgentName,AgentURI,AgentOntology, {C1 , . . . , Cn})
contains a number of competences Cx, each of the form

capability(Name← Preconditions, InputRoles,OutputRoles,

ExternalCompetences)

In Prolog, the different elements can be interpreted as follows (slightly
adapted from (Potter 2003a)):

2For further information about the AKT Bus, see
http://www.csd.abdn.ac.uk/research/akt/aktbus/aktbus-1.0/

57

Competence name The name can be thought of as a Prolog goal, plus
the (input and output) variables associated with it.

Preconditions The preconditions describe some state of affairs (in terms
of a list of Prolog goals) that must be known (or, if not known, then
proven) to be true before this goal can be discharged.

Input and output roles The goal will contain input variables (i.e., in
Prolog terms, instantiated variables) and output variables (uninstan-
tiated variables which will, on successful execution of the compe-
tence, become instantiated appropriately). The input and output roles
are two lists which serve to explicitly declare which variables are in-
puts and which outputs respectively, as well as providing some typing
(against either the service ontology or some assumed common type on-
tology (providing integer, string, float, etc.)) of their expected values.

Required external competences A list of goals which are required by
this agent during execution for the successful discharge of this com-
petence, but which can not be achieved internally: the agent must
invoke the competences of a second agent if this competence is to be
provided, and hence, at execution time, the environment must contain
an agent capable of supplying each of these external competences for
this particular competence to be considered.

Note that in the version of the brokering algorithm we are using for
our example below, capabilities that have external competences are actually
separated out into a different construct p capability.

A query agent requests a service by sending the desired goal description
(containing instantiated or uninstantiated variables, or some combination
of the two) to the broker. Upon receipt of a query, the broker attempts to
generate one or more sequences of performatives, which, if executed, will
result in the successful discharge of this goal.

The brokering algorithm involves locating a service that matches the
current goal, determining that there are additional services available that
will satisfy both the preconditions and the external calls of this service, and
adding the information necessary to invoke these services in the appropriate
order into the current sequence. This algorithm is repeated until no more
unique sequences are found; these sequences are then returned as alternative
solutions to the current query (Potter 2003a). The complete algorithm in
Prolog code can be found in Appendix A.

4.3.2 A trip-booking example

Our example describes the following simple scenario. A user (machine or
human) is looking for information on making a return trip, which includes

58

a return flight and a hotel stay at the destination. In the scenario, this user
relies on a travel agent to make this happen. The travel agent is able to
offer trip information and to facilitate booking the trip.

There are three agents to support this process, which all publish their
competences with the broker.3

Airline agent aa

One actor in this scenario is the airline agent aa, which is able to inform
other agents of flight availability, based on time period, departure point and
destination. Here we restrict ourselves to one agent, but obviously multiple
airline agents would be possible. The agent also accepts bookings, on the
condition that payment follows. The agent has the following capability
descriptions. We use the capability construct to represent competences that
do not require external agents to achieve their competence.

capability(aa, (informFlight(D,A,LD,RD,F) : −

departure(D), arrival(A), leavingDate(LD), returnDate(RD), f light(F))).

capability(aa, (bookF light(F) : −flight(F), payF light(F))).

capability(aa, departure(D)).

capability(aa, arrival(A)).

capability(aa, leavingDate(LD)).

capability(aa, returnDate(RD)).

capability(aa, f light(F)).

capability(aa, payF light(F)).

The first capability requires that all variables are correctly typed through
its input and output roles. It imposes preconditions nor postconditions.

aa also publishes a second capability. As before, the capability requires
for the output to be properly typed (i.e. flight(F)). In addition, it imposes as
a postcondition that when a booking of a flight F is made, payment follows.
We simplify the scenario by not including personal identification data for
payment (which is plausible if, for instance, the airline has a list of partner
travel agents that have a running account). Alternatively, we could include
an additional credit-checking agent. The remaining capabilities provide typ-
ing support.

3The reader should note that once again we will use the terms capability and competence
interchangeably. The brokering algorithm we use (given in Appendix A) is slightly out of
touch with the latest F-X web services notation, but the core functionality remains the
same.

59

Hotel agent ha

The second agent, ha, is capable of informing interested parties of available
hotel accommodation in a number of locations, based on the desired period.
Its competence also includes accepting hotel bookings. For any practical
application, one would have multiple hotel agents publishing with the broker.

capability(ha, (informHotel(L, ID,OD,HS) : −

inDate(ID), outDate(OD), location(L), hotelStay(HS))).

capability(ha, (bookHotel(HS) : −hotelStay(HS), payHotel(HS))).

capability(ha, inDate(ID)).

capability(ha, outDate(OD)).

capability(ha, location(L)).

capability(ha, hotelStay(HS)).

capability(ha, payHotel(HS)).

The first capability carries the same kind of typing restrictions as the pre-
vious aa agent. Also analogous to aa, the next capability demands that
payment comes through after booking. The remaining capabilities again
support correct typing.

Travel agent ta

Finally, there is a travel agent ta, which can either inform the user of trip
availability, or book a trip with the other agents on the user’s behalf.

To achieve this, the travel agent relies on the other agents. Consequently,
this is the part where the broker will have to combine the capability of differ-
ent agents in order to satisfy a query. The p capability construct represents
a (partial) capability that depends on competences offered by other agents.
It is of the form:

p capability(K,C,E)

denoting that agent K can deliver capability C if external capability E is
available.

60

Trip information In our example, the first partial capability of ta de-
scribes what it expects in order to offer trip information:

p capability(ta, (informTrip(D,A,LD,RD,F,HS) : −departure(D)),

(informFlight(D,A,LD,RD,F), informHotel(A,LD,RD,HS))).

In order to discharge successfully, both informFlight and informHotel
must be satisfied. We use LD (leaving date) and RD (return date) in in-
formTrip (instead of informHotel’s InDate and OutDate) since those two
dates will always be marking the start and end of a trip (see below).

The broker algorithm we work with requires a precondition on a partial
capability, and for this reason we insert departure(D). This condition is
redundant, as it would be checked by aa anyway. See (Robertson 2001) or
Appendix A for the broker algorithm used.

For simplicity, we assume that, when flying, the traveller still arrives at
her destination the same day. In addition, we assume hotel check-in is on
the same day as when the outbound leg arrives, and check-out occurs on the
day of the inbound leg. Therefore, we can reuse the informTrip variables
LD and RD again when instantiating the informHotel variables ID (in date)
and OD (out date).

Nevertheless, these are different concepts, and one could think of sce-
narios where they do not correspond so well. In such a case, one would
specify their relationship explicitly using a bridge, to improve de-coupling
and maintainability. Similarly, L (location) and A (arrival) could be mapped
explicitly using a bridge. A bridge has the following structure in the bro-
kering algorithm:

corresponds(K1, C1,K2, C2, G)← P

where C1 is a capability in agent K1 which corresponds to capability C2 in
agent K2 with the constraint G restricting the acceptable substitutions for
variables in C1 and C2. The precondition P is an optional conjunction of
other correspondences upon which the main correspondence depends. We
refer to (Robertson 2001) for an implemented example of a bridge.

Trip booking The second partial capability of ta publishes trip-booking
capability and has the following structure :

p capability(ta, (bookTrip(D,A,LD,RD,F,HS) : −departure(D)),

(informFlight(D,A,LD,RD,F), informHotel(A,LD,RD,HS),

bookF light(F), payF light(F),

bookHotel(HS), payHotel(HS))).

61

This specifies that, if both flight and hotel are available (through other
agents), then we will move forward with their respective booking and pay-
ment.4

Running the example

Based on these capability descriptions, the broker can deduce which (group
of) agent(s) are most likely to execute a query successfully.

A simple query to ask the broker might be:

?− brokerable(informFlight(karlsruhe, edinburgh,′ 210803′,′ 230803′

Flight), Result).

This results in the following (hard to read) result (which we have shortened
a bit). Below we show an example of a set of performatives such a result is
translated to. Note that this result does not yield an answer to the question
of which flight to take. Rather, the broker returns information on which
constellation of agents to contact that together will be able to answer this
question. We refer the reader to (Robertson et al. 2000) for a more detailed
exposition of the algorithm (based on the solution structures)

Result = c(aa, dq(informFlight(karlsruhe, edinburgh,′ 210803′,′ 230803′, F light),

c(conj, co(c(aa, departure(karlsruhe)), c(conj, co(c(aa, arrival(edinburgh)),

c(conj, co(c(aa, leavingDate(...)), c(conj, co(...))))))))))

A more difficult query might be to ask the broker how to achieve a booking
for a trip from Karlsruhe to Edinburgh (including a hotel stay):

?− brokerable(bookTrip(edinburgh, karlsruhe,′ 210803′,′ 230803′, F light,

HotelStay), Result).

We obtain the following (again shortened) answer:

Result = c(ta, pdq(bookTrip(edinburgh, karlsruhe,′ 210803′,′ 230803′, F light,HotelStay),

c(aa, departure(edinburgh)), c(conj, co(c(aa, dq(informFlight(edinburgh,

karlsruhe,′ 210803′,′ 230803′, F light),

c(conj, co(c(aa, departure(...)), c(conj, co(...)))))),

c(conj, co(c(ha, dq(informHotel(karlsruhe,′ 210803′,′ 230803′,HotelStay),

c(conj, co(...)))), c(conj, co(c(aa, dq(...)), c(conj, co(...))))))))))
4In the scenario, we ignore the issue of locking database transactions.

62

This result gets translated into a more readable series of KQML-like perfor-
matives that show how to contact the different agents and in which order:

Performatives = [ask(aa, departure(edinburgh)), ask(aa, departure(edinburgh)),

ask(aa, arrival(karlsruhe)), ask(aa, leavingDate(′210803′)),

ask(aa, returnDate(′230803′)), ask(aa, f light(Flight)),

ask(aa, (informFlight(edinburgh, karlsruhe,′ 210803′,′ 230803′,

F light) : −departure(...), ..., ...)),

ask(ha, inDate(′210803′)), ask(ha, outDate(...)), ask(...)|...], ...
We can see from this example that both the aa and ha agent will be heavily
involved in the problem-solving process.5

4.4 F-Comp compared

Now that we have a fair idea of the inner workings of the broker, we show
how F-Comp compares to the approaches we reviewed earlier. First we study
the relationship between F-Comp and UPML, which is followed by F-Comp
versus DAML-S. Based on this analysis, in the next chapter we will propose
a number of changes to F-X.

4.4.1 F-Comp and UPML

In this section we analyze how F-X differs from UPML. We compare the re-
spective interpretations of tasks, problem-solving methods and assumptions.
We also contrast the differing approach to brokering, and study possible syn-
ergies.

Tasks

For Robertson (2001), tasks and PSMs in UPML relate to each other as
follows.

Task descriptions in UPML are similar in structure to problem-
solving methods. Both are declarative descriptions of problem
solving but the former is intended to describe the problem to
be solved while the latter is intended to be able to solve prob-
lems with a given set of competences. Thus, essentially, task de-
scriptions are PSMs which do not commit to a specific method,

5One can also see that departure(edinburgh) is tested twice. This is due to the redun-
dant precondition we had to insert earlier. We could easily add an extra clause in the
brokering algorithm in Appendix A to remedy this situation.

63

defining only the competences necessary to complete a task. For
simplicity, F-X assumes that competences are only advertised
when methods exist to utilise them, therefore we do not use task
descriptions. It is, however, possible that task descriptions may
be re-introduced later.

As a result, in F-X at present, the notion of a task is equal to a run-time
query in Prolog. By rejecting the notion of (stored) tasks, F-X both gains
and loses.

F-X gains mainly in terms of simplicity and understandability. The
query-based approach of the broker provides a lean and a well-understood
architecture.

Below we provide a few arguments that could be made in favour of using
stored tasks. The notion of tasks has potential for KBS construction and for
matching Web services. It must be said that it is hard to assess the value
of these arguments as to date, very few task-based systems have actually
made it into practice.

Supporting KBS construction In Knowledge Engineering, the differ-
ent problem types are well known. However, often people also know these
problems cannot be solved, for example due to their computational com-
plexity. When a task competence cannot be achieved for sure, one would
still like a way to express this, if only to give a broker clues into how to
“build bridges” toward more doable PSM competences — this was the first
argument that was made in Section 2.1.3.

The second argument in that section argued that tasks, other than intro-
duce desired functionality, also introduce a generic description of the type
of domains they can be instantiated to — i.e. they provide templates. As
such, one can guide the user in building sensible tasks (see also (ten Teije &
van Harmelen 2003)).

Supporting Web services The above arguments generalize only partly
to general software components. Unlike a broker for knowledge engineering,
a broker for general software components will never be able to anticipate
all possible types of problems. Nevertheless, it is clear that in some fields
general classes of tasks do exist, where templates could be instantiated. For
instance, bioinformaticians often perform a number of standard computa-
tional tasks which they execute in a rather strict order (see (Wroe et al. To
appear)).

In addition, analogous to knowledge engineering, in some cases, clearly
insoluble competences (e.g. time or cost based) would still get advertised,
and a broker might use this information to come up with proposals of more
realistic competences.

64

More generally, by dropping the concept of a task, F-X excludes itself
from all brokering scenarios where requesters publish their “tasks” in public
registries (see Section 1.2.2).

Finally, getting rid of the task concept (obviously) means there is no
way to map between tasks and services. This prohibits the n-to-m matching
scenario for tasks and services suggested in Section 2.1.1. In F-X, currently
“task names” (i.e. query names) have to match service competence names
exactly. Clearly, one cannot hope to automate the mapping problem, but
that is not to say there is no room for improvement here.

Problem-solving methods

Contrary to UPML, F-X makes no distinction when it comes to complex
and primitive PSMs. The only information that is published about the
reasoning process of a PSM is the external competences required. These
roughly correspond to the notion of subtasks used in UPML’s complex PSMs
(but one has to take into account the simplistic notion of a task in F-X).
F-X PSMs do specify a problem-solving mechanism, but this mechanism is
not used during the brokering process. In our view, it should therefore be
removed, in the same way that F-X PSMs do not incorporate the notion of
pragmatics.

Interestingly, PSMs specified in UPML each publish only one compe-
tence, whereas PSMs in F-X offer multiple competences per PSM. One rea-
son for this might be that F-X stems from an agent tradition, whereas UPML
describes software methods, which typically perform a specific function.

Finally, as far as PSM communication goes, both F-X and UPML remain
agnostic about how to implement the communication layer, and show little
interest to hook up with industry efforts. F-X implemented the AKT Bus
to support communication, while within IBROW some work was done using
FIPA.

Assumptions and domain knowledge

The notion of assumptions, which is so prominent in UPML, is discarded
in F-X. In F-X, constraints formulated on inputs through input roles are
meant to capture both the dynamic and static aspects of such restrictions.

Evidently, this means that in F-X no assumptions can be formulated on
domain knowledge. In UPML, domain descriptions (called Domain Models)
consist of three elements: properties, meta-knowledge, and domain knowl-
edge itself. Meta-knowledge is meant to capture the implicit and explicit
assumptions made while building a domain model of the real world. Meta-
knowledge is assumed to be true, i.e. it has not been proven or cannot be
proven. Since F-Comp has no notion of assumptions, no notion of meta-
knowledge is available in its Domain descriptions. What remains are the

65

properties and domain knowledge.

Brokering

We now contrast F-X with the three approaches to PSM brokering we re-
viewed in the previous chapter.

Configuring knowledge-based systems The first brokering mechanism
used the IRS methodology (Crubézy et al. 2003). On the one hand, F-X
cannot compare to the support for mapping present in the Protégé Internet
Reasoning Service. On the other hand, one cannot compare IRS to the
competence matching functionality present in F-X. Thus, it seems natural
to think about ways to link both approaches.

One way to achieve this would be to use F-X as a plugin to the IRS
in order to handle competence matching. In this scenario, F-X could still
reside on a remote location, but one would outsource all IRS competence
matching to it.

The reverse — IRS as a plug-in to F-X — sounds less plausible, but
improved mapping support would make a welcome addition to F-X. In this
context, we note that Stanford Medical Informatics are about to release
a stand-alone mapping tool.6 Such a tool would bring valuable support
for building bridges and refiners. At the moment, there is only limited
experience available in the F-X setting with regard to the first two steps of
the four-step brokering process outlined in Section 4.2.2. Improved mapping
support would help remedy this situation.

It is unclear whether KMi’s classification PSM library (Motta & Lu 2000)
could be used in F-X in a non-trivial way. The way this library is constructed
makes the PSM selection process rather trivial — all the intelligence is in
configuring a task, whereas F-X is more about matching tasks with PSMs.

Brokering as assumption discovery In Section 3.1.2 we mentioned
some difficulties that arise when discovering assumptions using theorem
proving. F-X stays clear of such issues, and leans more towards the prac-
tical, engineering side. F-X shows little interest in formal software verifica-
tion techniques. Rather, it provides support for building an environment of
problem solvers of a reasonable scale (for instance, the F-X broker is being
considered to serve as central broker for the AKT project, linking together
many separate efforts).

Configuration as parametric design Currently, F-X offers no support
to adapt the behaviour of the broker depending on the results returned. To

6Details at http://protege.stanford.edu/workshop_vi/Monica_Crubezy_

PWS-PSMLibrarian-Jul03.pdf

66

some extent, this is to be expected, since there are no general principles how
to rank results, and F-X aims for generality. However, F-X should at least
offer the framework in which it would be easy to specify such heuristics. One
strong point of the “Configuration as parametric design”-approach is that
it is rooted in the well-founded reflection architecture of (ten Teije & van
Harmelen 1996). In addition, in contrast to F-X, this approach can handle
both dynamic and static goals as part of an interactive brokering process.
In our opinion, F-X would benefit from a similar mechanism to influence the
number of results yielded during and between different “brokering cycles”.
The case-study we present in the next chapter can be considered a first step
toward this goal.

4.4.2 F-Comp and DAML-S

We limit our comparison between F-Comp and DAML-S to those features
that are different from the earlier “UPML versus DAML-S”-exercise of Sec-
tion 2.2.5. We concentrate on the respective object languages and the form
of each service ontology.

Object language F-Comp service descriptions are specified in Horn clauses,
whereas DAML-S relies on the Web-enabled Description Logic DAML+OIL
and thus relies on SHOQ(D). Horn clauses are well known and well under-
stood. In terms of the established user base, SHOQ(D) DL is much less of
a standard.

The specification of services in F-Comp is flat, whereas DAML-S allows
to specify services in a lattice, and to have service classification occur dy-
namically based on properties. The case-study in the next section introduces
some notion of hierarchy in F-Comp, based on generalization relationships
between competence descriptions.

It is well known that ABox reasoning does not perform well in DLs.
The way this is currently “solved” in DAML-S Profile matching is that in-
stances are classified as concepts among the concepts when doing service
discovery (see (Li & Horrocks 2003) for an example). It is likely this restric-
tion will turn against DAML-S once many service instances are published
in a service ontology, unless more efficient techniques for A-Box reasoning
are proposed (see (Motik, Maedche & Volz 2003) for a promising approach
in this respect). Modelling services in a Logic Programming setting (e.g.
Prolog) is more attractive from this perspective : instance reasoning can
become more efficient (In contrast to DLs, LP can rely on techniques such
as bottom-up computation and “magic sets” (see (Volz, Motik, Horrocks &
Grosof Submitted) and (Motik et al. 2003) for more details)).

Service ontology F-Comp roughly corresponds to the functional part of
the DAML-S Profile. It has little correspondence with the Process Model,

67

except that it publishes external competences. External competences indi-
cate some aspect of service behaviour, and hence in DAML-S those would
get modelled in the Process Model. Given that the result of a brokering
cycle in F-X is described in terms of a sequence of performatives, in the-
ory one could publish this result in the Process Model as a new composite
service, based on the sequence construct. Since these services are generated
dynamically, one would consider such an option only for caching purposes.

F-Comp preconditions can be any Prolog constraint. This is in contrast
with the limitations in place for specifying rules in DAML+OIL, which we
already mentioned in Section 2.2.4. There is no deep conceptual difference
between preconditions and postconditions in F-Comp. Since F-X adopts
an algebraic specification view of the world, these conditions are just con-
straints, which claim nothing about states of the world. In addition, F-Comp
has no notion of effects in the world.

To conclude, below we provide a comparative overview of all three lan-
guages. In the next chapter, we will build on the lessons we learned from
this comparison, and try to combine the best of both worlds. In particular,
we will extend the F-X environment with a notion of hierarchy and more
flexible competence matching.

68

69

Chapter 5

Towards more flexible
competence matching using
query relaxation

In this chapter, we use a query relaxation mechanism to add flexibility to
the F-X competence matching process. Part of the presented technique
relies on the use of OWL domain ontologies, which we import into F-X and
subsequently exploit for matchmaking.

In Section 4.3.2 we presented an example scenario where a travel service
helps to book a trip using two other services. These additional services
offered hotel and flight information as well as booking facilities. Here we
will further build on this example to illustrate the ideas.

5.1 Current situation in F-X

At the moment, in F-X we can match competences between services through
exact string matching between competence names, and using bridges.

Just to remind the reader, in UPML, to warrant the use of the term
“bridge”, one must be connecting different types of elements of the soft-
ware architecture. Refiners on the other hand connect elements of the same
kind. In F-X, a bridge is typically used to overcome differences in vocabu-
lary between competences. The use of a bridge in F-X could thus be seen
as bridging between competences (with the same core functionality) and
different domain models (i.e. a kind of domain-PSM bridge).

Further, in UPML, if the functionality of one PSM is more specific than
that of the other, one can try to connect these using PSM refiners (see Sec-
tion 2.1.2). However, automated software refinement is not doable in the
general case. Indeed, in AI, a whole subculture is working on software com-
ponent generalization. Given F-X’s aim to be as general as it is lightweight,
no claims are made toward refiners.

70

5.2 Relax and obtain better results

Having said this, in practice it could still be useful to have some (less general)
notion of refinement available. Our proposal in this section makes few claims
with respect to general applicability, but does provide an additional handle
on how to relate competences in practice. The notion of relaxation used here
could thus be regarded as adding an operational dimension to refinement of
problem solvers, with an application range limited to logic programming.

One important reason to introduce relaxation is to enable better man-
agement of the number of results yielded by the broker. Currently, such
a notion of control is underdeveloped in F-X. We would like to arrive at a
scheme similar to the one described in Section 3.1.3, where the PSM lifecycle
was extended with monitoring. This issue is not orthogonal to the current
brokering architecture, since it involves more than simply awaiting a broker
run, and then reformulating a query based on those (final) results. Rather,
an adaptation of the core brokering algorithm is needed.

To give a concrete example, if during the brokering process the bro-
ker cannot find a particular competence, it could attempt to generalize the
current query. If successful, the broker should incorporate these additional
results as part of the returned brokering structure.

Conversely, a user may not be interested in getting back thousands of
results after several days of waiting. Rather, approximate results may be
sufficient — and more relevant. Hence, if too many competences match
during brokering, one needs a possibility to draw in the reins and introduce
search heuristics. One would then continue the remainder of the brokering
process based on a reduced subset of the solution space.

5.3 Query relaxation based on taxonomic informa-
tion

Since the brokering algorithm we focus on is implemented in Prolog, we
turn our attention to relaxation techniques for logic programming (LP). In
particular, we draw on work that has its origins in database query relaxation,
but which was adapted for LP. Gaasterland, Godfrey & Minker (1991) and
Gaasterland (1997) introduce a method they call relaxation for expanding
deductive database and logic programming queries. The resulting query-
answering system “answers not just the user’s literal query, but the intended
query”.

The authors discuss three ways to relax a query:

• Rewriting a predicate into a more general predicate

• Rewriting a constant (term) into a more general constant

• Breaking a join dependency across literals in the query

71

Below we focus on the first two options: predicate generalization and
term rewriting. These are realised in a uniform framework based on so-called
taxonomy clauses. In F-X, these clauses would either be added within the
broker environment in a separate module (see Figure 5.1 on page 5.1), or
offered by an external agent, which the broker would then have to consult
during the brokering process.

5.3.1 Predicate generalization

We apply the technique of Gaasterland et al. (1991) for relaxing predicates
of competences within F-X. We first discuss the role of taxonomy clauses,
then move on to reciprocal clauses and conclude the section with an adapted
version of their relaxation algorithm.

Taxononomy clauses

In our trip booking example, one example of a predicate generalization would
be the following (to keep our example readable, we abstract from precondi-
tions and input/output constraints):

informTravel(D, A, LD, RD, Travelticket) :-
refiner(Travelticket,Flightticket),
informFlight(D, A, LD, RD, Flightticket).

informTravel(D, A, LD, RD, Travelticket) :-
refiner(Travelticket,Trainticket),
informTrain(D, A, LD, RD, Trainticket).

These taxonomy clauses describe what the authors call an “implicit”
taxonomy. Here we have an implicit taxonomy with informTravel ← in-
formFlight and informTravel ← informTrain. In general, a taxonomy clause
contains the following atoms:

• The body atom in a taxonomy clause that would appear in the hier-
archy is called a key atom. In our case this would be informFlight.

• The non-key predicates serve to relate variables appearing in the clause.
Taxonomy clauses capture type relations over constants as well as over
predicates. To rewrite a predicate, one must know how the parameters
of predicates are related. These may differ in type, intent, order and
number. In our setting, it seems to make sense to call these non-key
predicates domain refiners. Domain refiners are adapters that map a
domain to another domain, and here we map TravelTicket with the

72

Tickets for the other modes of travelling. Somewhat surprisingly, we
thus model a domain refiner within a PSM refiner.1

Reciprocal clauses

For each taxonomy clause, a reciprocal “relax” clause is added automatically
to the knowledge base, where:

• The head of a reciprocal clause contains the key atom of a taxonomy
clause.

• The head atom in the taxonomy clause appears in the body of the
reciprocal clause.

• The non-key predicates of the taxononomy clause are in the body of
the reciprocal clause.

In our example, the reciprocal clauses look as follows:

relax(informFlight(D, A, LD, RD, FlightTicket)) :-
refiner(TravelTicket,FlightTicket),
informTravel(D, A, LD, RD, TravelTicket).

relax(informTrain(D, A, LD, RD, Trainticket)) :-
refiner(Travelticket,Trainticket),
informTravel(D, A, LD, RD, Travelticket).

Relaxation process

Drawing on the taxonomy and reciprocal clauses, a relaxation process can
now infer the “more general” predicates / competences. A competence may
be relaxed if it unifies with any key in any taxonomy clause.

Before relaxation, a query must be variable substituted so that the con-
stants are moved out into separate atoms. This enables the handling of
each kind of rewrite uniformly. Variable substitution replaces constants and
repeated variables in a query with new unique variables. Then it equates
the original constants and variables to the new variables.2

The relaxation process is closely intertwined with deduction. To per-
form deduction and relaxation together, (Gaasterland et al. 1991) define a
meta-interpreter that takes as input a variable-substituted query and uses
a knowledge base of rules, facts and taxonomy clauses to return first direct
answers and then relaxed answers. It processes the query in two steps: find-
ing the query’s next relaxation, and then finding all answers for the relaxed
query.

1The UPML documentation stays silent on the kind of relationships that are possible
between various refiners.

2See the coming section on term rewriting for a brief example.

73

We use the following meta-interpreter to implement this overall process.
We adapted this from (Gaasterland et al. 1991), removing support for pro-
cessing a list of goals. relax solve works on every competence description
that is invoked when the brokering algorithm runs.

relax_solve(Q) :- clause(relax(Q), T), solve(T).

The relax step finds a new relaxed query by looking for a taxonomy
clause that matches the input query. The solve step performs deduction.
Note that we could also be interested in restraining the query, rather than
relax it, in which case it would be helpful to mark those clauses with a
different name, e.g. restrict(). It would be up to the meta-interpreter to
process these clauses differently.

We did not implement our adapted version of the broker, nor did we
experiment with the performance degradation these extra checks bring with
them. We also did not implement an example of heuristics to order brokering
results (these would have to be domain dependent since a general solution
to this is not available).

The notion of user preferences/constraints would also make a welcome
addition. User preferences are somewhat related to the notion of stored
tasks, since typically such preferences would be kept over time. They can
heavily influence the competences searched for. Gaasterland (1997) de-
scribes how to handle both user constraints and result ordering, based on
the above framework. Given her results, we expect these extensions will not
to be too hard to implement.

Representing relaxation clauses in OWL

Since taxonomy and reciprocal clauses rely on the notion of hierarchy, we
could consider using OWL DL as a Web-enabled and standardized KR for-
malism to describe these clauses, and possibly share them.

However, since OWL DL is a Description Logic at heart, the above rules
are very hard to represent. One issue at play here is that the arity of
taxonomy clauses may be higher than 2, whereas DL concepts correspond
to predicates with arity one (e.g. father(X)), and DL properties translate
to predicates with arity two (e.g. fatherOf(X,Y)) (see (Grosof, Horrocks,
Volz & Decker 2003) for details). Still, we could consider rearranging the
predicate into a number of properties that relate to a central concept.

More seriously though, in DL one cannot express queries with arbitrary
structure (from (Motik et al. 2003) and (Grosof et al. 2003)). They have
the so-called tree-model property, which says that a DL class C has a model
(or interpretation) iff C has a tree-shaped model, i.e. the interpretation of
properties defines a tree-shaped directed graph.

This implies that all Description Logic concept descriptions can be rep-
resented as rules where predicates chained according to variables appearing

74

in them form a tree. Yet, this also means that a concept such as Oedipus-
ComplexPerson (that is, a concept containing all people having the same
mother and wife) cannot be expressed in DL. It can easily be expressed in
a deductive database however:

OedipusComplexPerson(X) :-
Person(X), hasMother(X, Y), hasWife(X, Y).

This rule cannot be represented as a tree: starting from the Person, one
must traverse the hasMother link and the hasWife link, and should then
arrive at the same object.

5.3.2 Rewriting terms

Other than relax the predicates of our F-X competences, we also want to
be able to generalize terms. Gaasterland et al. (1991) give the following
example of what they understand under term generalization.

cousin(jack, steve).

rewrites to

cousin(jack, X), male(X).

In this case, the constant steve can be replaced with a variable whose
domain is restricted to male. As such, a constant is replaced with a variable
whose domain includes constants related to the original somehow. If all we
know about Steve is that he is male, we can loosen to consider other males
if steve fails.

Term relaxation is again handled within the framework of taxonomy
clauses. We do not repeat the above discussion here, but limit ourselves to
an example of a term rewrite in our trip-booking example. Say that, if the
departure place X has no airport, we should look what region this place is
a part of, and check whether another city (NearbyCity) in that region does
have an airport (called NearbyAirport). The concrete relaxation in this case
might look as follows:

relax(hasAirport(X,Y)) :- partOf(X,Z), wholeOf(Z,NearbyCity),
hasAirport(NearbyCity,NearbyAirport)).

Flight booking services often lack such a feature in practice. For in-
stance, Kelkoo.co.uk is a service that collects flight information from vari-
ous airlines.3 At Kelkoo, a user can check for flight information by entering
a departure point. However, when this departure point is not an airport,

3Web site: http://www.kelkoo.co.uk

75

the system comes back to the user empty-handed. Since one may not know
which airport is the closest by (for example being foreign abroad), with a
relaxation clause there is room for improvement here.

Note that, for this to work, we expect there to be either a partOf clause
in the broker’s knowledge base, or that an ontology server publishes as a
competence that it can determine whether a particular departure place is
part of a bigger geographical entity (see the next section for more detail).
This entity subsequently may well prove to have an airport at its disposal.
So, the idea behind this is that when the inputted departure does not result
in valid flight information, we look for a part-of property that covers a bigger
entity.

We would thus be relying on taxonomic knowledge to still find us some
answers, whereas before the query would simply fail. This brings us back to
the idea of using ontologies to represent (part of) the information captured
in the competence descriptions.

Earlier we remarked that representing rules is not a stronghold of DL
ontologies. This still applies for rewriting terms: we could think of rules that
DLs would not be able to represent. Nevertheless, DLs are very good for
specifying definitions of domain concepts and properties, and to organize
these in a clear way: using taxonomies. For this reason, in the following
section we experiment in building and accessing an OWL domain ontology
in support of our travel scenario.

5.4 Importing OWL ontologies in F-X

In the previous, we focussed our attention on a technique for more flexible
competence matching. We now build a subset of a travel ontology in OWL,
containing the basic vocabulary used in the competences and competence
relationships introduced above. Using a translation mechanism, we are then
able to access this OWL ontology from our Logic Programming setting.

We give an overview of our approach in Figure 5.1. From a workflow
point of view, the work described in the current section happens (at least
partly) before specifying the relaxation clauses. Of course, establishing a
feedback loop between these two steps will be useful.

5.4.1 Motivation

As we discussed in Section 1.2, ontologies are touted as the key to reusable
domain knowledge on the Web. It is expected that the OWL language(s)
will serve as the central KR formalism here. With the move towards the
Semantic Web, it will be useful for F-X to have access to this worldwide
repository of knowledge. Hence, it makes sense to think about what (at the
slogan level) we might call “importing the Semantic Web into F-X”. In par-
ticular, we could define certain terms in the competences based on publicly

76

Figure 5.1: Overall architecture and workflow

available OWL ontologies. These would typically include the typing restric-
tions on variables (i.e. input and output roles). Examples of already freely
available OWL ontologies include (part of) the MIT Process Handbook for
business processes (Bernstein & Grosof Submitted) and the Gene Ontology
for molecular biology.4

Importantly, using such an approach opens up the way to exploit the
structure present in these ontologies. In particular, as mentioned at the end
of the previous section, we would like to use this taxonomic knowledge to
help steer the brokering process.

5.4.2 From Description Logics to Logic Programs

Ideally, we have a complete translation from Description Logic to Logic Pro-
grams. We already saw in the previous section that this will be impossible,
however. Instead, recent work has explored the intersection between the two
formalisms. Grosof et al. (2003) made an initial translation from (a limited
subset of) DL to LP, resulting in the Desciption Logic Programs (DLP)
formalism. This formalism was recently extended by Volz et al. (Submit-
ted), making “a commonly used subset of OWL” available for use in Horn
Logic. The translation starts from the correspondence of both OWL DL
and Horn Logic with First-Order Logic. In Table 5.1 we show a few of the
logical sentences that can be used in specifying our domain ontology while
staying compatible with LP. DLP can also express minimum and maximum
cardinality of one (i.e. functional restrictions), existential property restric-
tions, and nominals (classes which are defined by direct enumeration of its

4For the Gene Ontology, see http://gong.man.ac.uk/ and http://protege.

stanford.edu/plugins/owl/owl-library/index.html

77

instances) (see Volz et al. (Submitted) for details).

DL FOL
� true.
a : C C(a)
〈a, b〉 : P P (a, b)
C
 D ∀x.C(x)→ D(x)
C1 � . . . � Cn C1(x) ∧ . . . ∧ Cn(x)
∃P.C ∃y.(P (x, y) ∧ C(y))
∀P.C ∀y.(P (x, y)→ C(y))

Table 5.1: Part of the DL FOL equivalence (from Volz et al. (Submitted)).
C represent a class, P stands for a property, and a is an instance.

The reader will notice that negation and disjunction are not included
in this overview. Volz et al. (Submitted) explain why a general DL-to-
LP translation of negation and disjunction is not possible. Negation used
in Description Logics is classical FOL negation, whereas logic programming
usually provides negation-as-failure. LP systems typically assume something
to be false if it cannot be proven to be true. This is related to the closed-
world assumption: a logic program assumes that it knows all relevant facts
and eveythings else is assumed to be false, whereas a Description Logic
assumes it does not know all the facts, so it must be explicitly told which
facts are false (open-world assumption). Translating disjunction is equally
problematic in Logic Programs, given that negation and disjunction are
closely related by De Morgan’s Law: ¬(P ∨Q) ≡ ¬P ∧ ¬Q.

Recent work by (Motik et al. 2003) tackles this limitation by moving the
translation to a disjunctive databases setting. The authors are able to trans-
late all of ALC, which is the foundation of almost all other more expressive
description logics. Since here we are mostly interested in using OWL on-
tologies within the Prolog broker environment, we do not experiment with
this translation. Current work by Boris Motik and Ulrike Sattler extends
this translation to disjunctive databases by trying for SHIQ, an expressive
DL very close to OWL DL.

5.4.3 Building a domain ontology

Our goal in building the ontology is not to come up with an extensive con-
ceptualisation of all things concerning travel. Rather, the goal is to show in
a simple way how we could support the trip booking scenario. Even building
a small ontology takes a lot of effort. Here we report on our major findings
during this process.

78

Ontology construction by reuse

In order not to reinvent the wheel, first we try to reuse as much of the
existing body of knowledge as possible. There are two approaches to on-
tology modelling: bottom-up, starting with the most specific concepts, and
top-down based on upper ontologies.

Bottom-up ontologies It is hard to find existing bottom-up ontologies
for the travel domain. Both the OntoLingua repository and the Protégé
ontology library have no detailed ontologies available.

Top-down ontologies One excellent candidate here is OpenCyc, “the
world’s largest and most complete general knowledge base and common-
sense reasoning engine”.5 OpenCyc was recently released to the public free
of charge. Before we can reuse some of the Cyc concepts, the first job is to
understand the slightly different notation it uses for denoting classes (col-
lections) and properties (properties if they are unary predicates, and rela-
tionships if binary predicates). IS-A relationships have similar counterparts
(gnls for classes and genlpreds for properties).

Our next task is to learn to navigate the Cyc knowledge base in order to
retrieve reusable concepts. Navigation in Cyc is quite straightforward, with
many forward and backward references. Still, in places, Cyc can be rather
unpredictable and incomplete. For example, it knows that Departure be-
longs in the collection LeavingAPlace, but does not know about the Arrival
concept. Moreover, it has no knowledge of the concept of Hotel, Booking,
or Flight.

While disappointing, completeness is not what commonsense knowledge
bases are about. We do find Cyc to be very good at specifying abstract
notions such as Place, Time or Movement. For instance, Cyc defines Place
as follows:

“A specialization of both SpatialThing-Localized and Some-
thingExisting. Each instance of Place is a spatial thing which has
a relatively permanent location. Thus, in a given microtheory,
each Place is stationary with respect to the frame of reference of
that microtheory.”

Modelling a return trip in Cyc In order to promote reusability across
applications, we should try to think about a conceptualizing a trip in terms
of Cyc’s fundamental concepts. Searching and navigating the Cyc knowl-
edge base teaches us that a trip can be modelled as a translation: a motion
of a body in which every point of the body moves parallel to and the same

5Web site: http://www.opencyc.org

79

distance as every other point of the body. However, because we are talking
about a round trip, things get quite subtle. A round trip really is a trans-
lation with no location change, because at the end of the trip we end up in
the same position.

If we model this in OWL using the Protégé plugin6, we obtain the deeply
nested structure illustrated in Figure 5.2. Many properties have little direct
bearing on our actual problem scenario. For instance, hasFromLocation
and hasToLocation have to be modelled as being equal, since the movement
starts and ends at the same place. We invite the reader to have a look at
the other properties that are needed. The same wealth of concepts arises
when trying to model concepts such as Place and Time.

It should be clear from the above that using all these concepts is really
overkill. It adds dimensions to the scenario that have little relevance for our
problem (e.g. from physics). To our knowledge, there are no workarounds
for this in Cyc, e.g. in the form of different views on the ontology.

In our setting, we find Cyc to be useful mainly as a way to confront our
own ideas about the problem domain. For instance, how does Airport relate
to City or Place ? Cyc models Airport as FixedStructure under Place,
as opposed to City, which is a GeographicalRegion under Place. For us
this is a useful distinction to make. Unfortunately, there is no easy way to
export these concepts to other environments. Recently, OpenCyc announced
to support the DAML initiative, which could remedy this situation in the
future.

A simple domain ontology in OWL

In what follows, we limit our focus to properly modelling one particular
domain concept (departure place) in support of the travel booking scenario.
From this, we show how an ontology can support relaxation based on its
concept and property definitions. The example should be read in conjunction
with the earlier section where we were looking for ways to support more
flexible matching for competences. The relaxation clause presented there
aims to find a nearby airport in case the current departure place has no
airport.

In our ontology, the Place class has two subclasses, GeographicalRegion
and FixedStructure. GeographicalRegion has Country, CountrySubsidiary
(e.g. a county) and City as its subclasses. The complete place ontology is
shown in Figure 5.3. Figure 5.4 shows a couple of instances. In what follows
we explain how we went about modelling the part-whole relationships in our
small ontology.

6Web site: http://protege.stanford.edu/plugins/owl

80

Figure 5.2: Modeling a return trip based on top-level Cyc concepts (rendered
with the Protégé OWL plugin)

81

Figure 5.3: Modeling a small ontology for places

82

Modelling part-whole relationships As far as semantics are concerned,
it would be wrong to model the relationship between City and CountrySub-
sidiary as a subclass relationship. Their relationship is one of part-whole,
and subsumption could easily be abused to model this. From a formal point
of view however, subsumption can only be used to indicate that all instances
of the subclass are necessarily instances of the superclass. Every subclass
that can exhibit the properties of the superclass must exhibit these prop-
erties (Guarino & Welty 2002). In our example, the essential properties
of CountrySubsidiary (for instance, has a regional capital) do not apply to
City, and hence City is not a subclass. Likewise, CountrySubsidiary is not
a kind of Country.

In the context of OWL, the following approach to modelling part-whole
relationships has been proposed (from a presentation by Guus Schreiber7):

• Create a subclass part-whole property as a subclass to the OWL prop-
erty metaclass

• State for each property denoting a part-whole relation that it is an
instance of the part-whole metaclass e.g. parts such as feet of a piece
of antique furniture

• Attach the appropriate semantics to the part-whole metaclass

At the time of writing, the Protégé OWL editor did not allow to play with
the OWL metaclasses. As a result, we modelled our part-whole relationships
with partOf and wholeOf properties. An example of this can be seen on
Figure 5.3, where CountrySubsidiary has a partOf property with a role (i.e.
slot or property) value restriction of “Country”. CountrySubsidiary also
has a wholeOf property, which links it to City (see Figure 5.4). City and
Country link back to CountrySubsidiary using the reverse properties.

5.4.4 Dealing with DLP domain ontologies in the broker

Armed with our place ontology, we can now think again about supporting the
relaxation clause introduced in Section 5.3.2. To achieve this, as illustrated
in Figure 5.1 on page 77, first we have to make the place ontology available
in a format the broker can handle. Once this is done, we can ask the question
how much of this domain ontology should actually get published in F-X.

Importing the place ontology into the broker Importing the place
ontology into the broker consists of two steps. First, we translate the ontol-
ogy from OWL to DLP. We start by exporting the ontology to an OWL/RDF
format using Protégé (see Appendix C for a listing). Next, we make use of

7Web site: http://homepages.cwi.nl/~lynda/WGI/jun2002/schreiber.ppt

83

Figure 5.4: A few instances of CountrySubsidiary

84

the OWL API and DLP engine developed at the Universities of Manchester
and Karlsruhe to generate the Horn clauses.8

As a result, the place ontology is available as a collection of Horn clauses
(shown in Appendix D and detailed below), ready for use in the broker.

The role of domain knowledge in F-X The question then becomes :
“How much of this domain information should be made available within the
broker environment ?” We see two ways the broker might access domain
knowledge:

Using T-Box and A-Box knowledge One alternative is to have all on-
tology information stored within the F-X broker as a separate module.
In this case, one would import both the T-Box (concepts and prop-
erties) and the A-Box (instances) into the broker. The advantage of
this approach is that less service calls will be made during service
execution, since the broker would already have solved some part of
the execution (i.e. the queries concerning domain knowledge). This
approach raises questions of how to do subsumption within logic pro-
grams. At least for the DLP fragment of OWL, all subsumption can
be reduced to Prolog query answering (see (Volz et al. Submitted) for
a step-by-step guide).

Using only T-Box knowledge Another alternative chooses to keep the
broker as slim as possible. Here, one would introduce an additional
agent, the ontology agent oa, which is capable of telling other agents
whether, for instance, X is a departure place, whether X hasAirport
Y, or whether X is a partOf Z. oa would publish such capabilities with
the broker. In this approach, all T-Box elements, i.e. the concepts and
properties, get published as capabilities. Other agents can then use oa
to check whether their particular input and output variables adhere
to the ontology. The ontology agent would have (private) knowledge
of the A-Box (i.e. instances), which would be used at execution time
(i.e. after the broker returns its sequence of performatives).

The former approach seems in contradiction with the design rationale of
F-X. One should remember that the broker is not intended to solve actual
problems: rather it indicates which composition of services together will be
able to solve such a problem. In what follows, we will stick to the first
approach, and assume that an agent oa publishes the T-Box in the form of
capabilities.

The place ontology in DLP Below we show the T-Box part of the
place ontology returned by the DLP engine. We refer to Appendix D for

8Web site: http://kaon.semanticweb.org/alphaworld/dlp/view

85

a complete listing of the output (including the A-Box), and an explanation
of some of the “extra’s” that this tool outputs. As explained there, the
“ ext”-predicates shown below have to do with the support for Datalog, and
do not change the core behavior — they just add another step in the flow
from concepts to instances.

airport(X) :- airportof(X,Y).
geographicalregion(Y) :- airportof(X,Y).
geographicalregion(X) :- wholeof(X,Y).
geographicalregion(X) :- partof(X,Y).
geographicalregion(X) :- hasairport(X,Y).
airport(Y) :- hasairport(X,Y).
countrysubsidiary(X) :- countrysubsidiary_ext(X).
partof(X,Y) :- partof_ext(X,Y).
airport(X) :- airport_ext(X).
airportof(X,Y) :- airportof_ext(X,Y).
country(X) :- country_ext(X).
city(X) :- city_ext(X).
hasairport(X,Y) :- hasairport_ext(X,Y).
wholeof(X,Y) :- wholeof_ext(X,Y).
geographicalregion(X) :- geographicalregion_ext(X).
geographicalregion(X) :- country(X).
fixedstructure(X) :- airport(X).
place(X) :- fixedstructure(X).
geographicalregion(X) :- city(X).
geographicalregion(X) :- countrysubsidiary(X).
place(X) :- geographicalregion(X).
countrysubsidiary(X1) :- wholeof(X,X1), country(X).
countrysubsidiary(X2) :- partof(X,X2), city(X).
city(X3) :- wholeof(X,X3), countrysubsidiary(X).
country(X4) :- partof(X,X4), countrysubsidiary(X).

To remind the reader, in the relaxation example of Section 5.3.2, we
used the predicates hasAirport, partOf and wholeOf. We can see here that
hasAirport(X,Y), partOf(X,Y) and wholeOf(X,Y) are all part of the DLP
translation. In the next section, these will get published as competences of
oa, in the same way as how we specified agent capabilities in Section 4.3.

5.5 Trip-booking scenario revisited

Now that all building blocks for our scenario are in place, we put them
together and provide a summary of the different steps in the scenario. To
this end, we refer back to the architectural overview on page 77. In a

86

nutshell, we have facilitated the use of domain ontologies in F-X, and used
such knowledge to support more flexible competence matching.

In Section 4.3 we introduced a scenario in which a user could book a re-
turn trip via a travel agent. In this chapter, we started from the observation
that there may exist more flexible ways to competence matching than string
matching. To this end, we introduced the notion of relaxation. Relaxation
covers both predicate relaxation and term rewriting within competence de-
scriptions. We illustrated the concept in our trip booking scenario via a
term rewriting example. The idea is that rewrite rules can be specified on
the basis of an ontology by using some of the ontology concepts in these
rules, and that this same ontology is later used again when the relaxing
rules are fired during competence matching to test the rules. To this end,
the ontology needs to be available to the broker, and we argued why having
the T-Box published as competences of an ontology agent is the cleanest
way to handle this.

5.6 Related and future work

We conclude this chapter by formulating what work is related to ours here,
and by pointing out a few directions that may be worthwile to investigate
in the future.

5.6.1 Related work

The work on query relaxation by (Gaasterland 1997) does not address the
issue of importing ontologies. She presumes all information will be readily
available in the knowledge base. The author also is not concerned with
service description : her examples are about querying knowledge bases.

Recent work by (Grosof & Poon 2003) (Working paper dating July 12
2003) also explores using DLP in a service context. However, the authors
are mainly interested in accessing simple concepts from the DLP ontology
(which contains predicates from the MIT Process Handbook), and do not
exploit the ontology’s structure for complicated query answering. They do
not consider service composition or relaxation.

The work by (McIlraith & Son 2002) is very close to ours, since they also
use a Prolog environment (Golog to be exact) to do service composition. In
addition, they employ user preferences to steer the process, which we, at the
moment, do not. They do not consider the use of DLP to import service
vocabulary, however, and they also do not take relaxation into account.

5.6.2 Future work

Future work would be useful in the following areas:

87

• It would be useful to extend the work of (Gaasterland 1997) with
control knowledge that can actually handle “constraining relaxations”
as part of the knowledge base. Her approach foresees that only user
contraints would be limiting the set of possible solutions.

• As opposed to the current divide, it would be cleaner to have a unified
reflection framework which captures both the internal relaxation steps
(captured by relaxation clauses) that occur during the brokering cycle,
and the revise and modify knowledge that is necessary to guide the
broker between various broker cycles (as explained in Section 3.1.3).

• In addition, as we remarked multiple times throughout the text, there
is a divide between brokering approaches that can handle tasks, but
offer poor automated reasoning support, and the approaches that are
able to automate brokering but have a simplistic notion of a task. It
would be worthwile to further explore the spectrum between queries,
user constraints and stored tasks, and the trade-offs making a choice
brings with it.

• We think it would be worthwile to investigate if and how interoperabil-
ity between services specified in different world views (i.e. service as
action versus program) can be ensured. This is an issue that plagues
DAML-S at the moment, but one which probably will not go away
easily.

• Finally, we would like to explore further whether DLP ontologies are
able to capture most of the logical constructs needed for specifying
service ontology vocabulary. This is an empirical question, and would
need to be answered through experience with real-world examples.

88

Chapter 6

Conclusions

This thesis started with an overview of Semantic Web Services, a new con-
cept indicating the convergence of two major drivers on today’s Internet:
Web services and the Semantic Web. We cautioned for over-optimism and
made the comparison with an earlier similar vision.

We then developed a comparative framework which contrasts two major
approaches to brokering service capabilities, namely UPML and DAML-
S. We identified the major strenghts and weaknesses in both approaches
and we showed how they are similar and where they differ. UPML and
DAML-S both use a great deal of language constructs. UPML is even more
general than DAML-S: it puts no restrictions on the object language and
explicitly disentangles the concepts of Task, Problem-Solving Method and
Domain model using the notion of an Adapter. This is explained by UPML’s
background: it was conceived to support the construction of knowledge-
based systems, whereas DAML-S is a more recent phenomenon inspired by
modular Web services.

Next, we provided a comparison of how UPML and DAML-S relate to
the F-X lightweight formal brokering system. F-X aims at fully automated
brokering and makes a number of clear design choices because of this.

We also reviewed brokering techniques developed for problem-solving
methods based on UPML, and made the link with Semantic Web Services for
each technique. We contrasted these brokering techniques with the strategy
used by F-X, and identified a number of synergy areas.

Based on this analysis of different approaches to capability brokering,
we isolated one area to improve the F-X broker. A prototype was developed
which extends the F-X brokering system with a more flexible way to do com-
petence matching. To this end, we combined work from deductive databases
and the Semantic Web area. In particular, we applied work on relaxation
to specify generalization relationships between competence descriptions.

We imported a OWL ontology into the F-X brokering environment us-
ing a recent translation mechanism (Description Logic Programs), which is

89

based on the intersection of Description Logics and Horn Logic. In doing
so, we introduced a notion of hierarchy in this otherwise flat Logic Pro-
gramming environment. The ontology’s vocabulary is used to specify the
competence descriptions and competence relationships, as well as to answer
ontological queries during a later phase. In a nutshell, we have facilitated
the use of domain ontologies in F-X, and used such knowledge to support
more flexible competence matching.

Among the areas we identified to do further work in, we think the need
for interoperability between action-based formalisms (which includes some
of the DAML-S descriptions) and service capabilities based upon algebraic
specifications (such as the ones specified in F-X) could become pressing in
the future.

Further empirical experimentation would be required to evaluate whether
the DLP formalism is sufficient for representing the majority of (domain vo-
cabulary used in) services.

90

Appendix A

F-X brokering algorithm in
Prolog

See Section 4.2.2, (Robertson et al. 2000) or (Robertson 2001) for details.

brokerable(Q, c(S,Q)) :-
capability(S, Q).

brokerable(Q, c(S,dq(Q,QC))) :-
capability(S, (Q :- C)),
brokerable(C, QC).

brokerable(Q, c(S1,pdq(Q,QC,QP))) :-
p_capability(S1, (Q :- C), P),
brokerable(C, QC),
ext_brokerable(P, S1, QP).

brokerable((Q1,Q2), c(conj,co(CQ1,CQ2))) :-
brokerable(Q1, CQ1),
brokerable(Q2, CQ2).

brokerable(Q2, c(S2,cn(Q2,Constraint,c(S1,BQ)))) :-
corresponds(S1, Q1, S2, Q2, Constraint),
brokerable(Q1, c(S1,BQ)).

ext_brokerable(Q, Sn, c(S,Q)) :-
capability(S, Q),
\+ S = Sn.

ext_brokerable(Q, Sn, c(S,dq(Q,QC))) :-
capability(S, (Q :- C)),
\+ S = Sn,
brokerable(C, QC).

ext_brokerable(Q, Sn, c(S1,pdq(Q,QC,QP))) :-
p_capability(S1, (Q :- C), P),
\+ S1 = Sn,

91

brokerable(C, QC),
ext_brokerable(P, S1, QP).

ext_brokerable((Q1,Q2), Sn, c(conj,co(CQ1,CQ2))) :-
ext_brokerable(Q1, Sn, CQ1),
ext_brokerable(Q2, Sn, CQ2).

ext_brokerable(Q2, Sn, c(Sn,cn(Q2,Constraint,c(S1,BQ)))) :-
corresponds(S1, Q1, Sn, Q2, Constraint),
brokerable(Q1, c(S1,BQ)).

% The following code unpacks the above structure
% into performatives using Definite Clause Grammar.

assemble(c(S,dq(Q,QC))) --> !,
{dependent_queries(QC,DQ)},
assemble(QC),
[ask(S,(Q :- DQ))].

assemble(c(S1,pdq(Q,QC,QP))) --> !,
{dependent_queries(QP,DQ)},
assemble(QC),
assemble(QP),
[ask(S1,(Q :- DQ))].

assemble(c(conj,co(CQ1,CQ2))) --> !,
assemble(CQ1),
assemble(CQ2).

assemble(c(S,cn(Q,C,CQ))) --> !,
assemble(CQ),

[test(C), tell(S,Q)].
assemble(c(S,Q)) -->

[ask(S,Q)].

dependent_queries(c(_,cn(Q,_,c(_,_))), Q) :- !.
dependent_queries(c(conj,co(CQ1,CQ2)), (DQ1,DQ2)) :- !,

dependent_queries(CQ1, DQ1),
dependent_queries(CQ2, DQ2).

dependent_queries(c(_,dq(Q,_)), Q) :- !.
dependent_queries(c(_,Q), Q).

92

Appendix B

Prolog code for trip-booking
scenario

See Section 4.3.2 for more information.

capability(aa, (informFlight(D, A, LD, RD, F) :- departure(D),
arrival(A), leavingDate(LD), returnDate(RD), flight(F))).

capability(aa, (bookFlight(F) :- flight(F), payFlight(F))).

capability(aa, departure(D)).
capability(aa, arrival(A)).
capability(aa, leavingDate(LD)).
capability(aa, returnDate(RD)).
capability(aa, flight(F)).
capability(aa, payFlight(F)).

capability(ha, (informHotel(L, ID, OD, HS) :- inDate(ID),
outDate(OD), location(L), hotelStay(HS))).

capability(ha, (bookHotel(HS) :- hotelStay(HS), payHotel(HS))).

capability(ha, inDate(ID)).
capability(ha, outDate(OD)).
capability(ha, location(L)).
capability(ha, hotelStay(HS)).
capability(ha, payHotel(HS)).

p_capability(ta, (informTrip(D, A, LD, RD, F, HS) :- departure(D)),
(informFlight(D, A, LD, RD, F), informHotel(A, LD, RD, HS))).

p_capability(ta, (bookTrip(D, A, LD, RD, F, HS) :- departure(D)),
(informFlight(D, A, LD, RD, F), informHotel(A, LD, RD, HS),

bookFlight(F), payFlight(F), bookHotel(HS), payHotel(HS))).

93

Appendix C

Place ontology as OWL/RDF

This is the Place ontology as exported by Protégé. For clarity, we provide
the abbreviated version of the OWL/RDF format the tool uses. The actual
ontology fed into the OWL API contains the full syntax.

<rdf:RDF
xmlns:j.0="http://owl.protege.stanford.edu#"
xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#"
xmlns:owl="http://www.w3.org/2002/07/owl#">

<owl:Ontology rdf:about="">
<owl:imports rdf:resource=

"http://protege.stanford.edu/plugins/owl/protege"/>
</owl:Ontology>
<owl:Ontology/>
<owl:Class rdf:ID="Airport">

<rdfs:subClassOf>
<owl:Class rdf:about="#FixedStructure"/>

</rdfs:subClassOf>
</owl:Class>
<owl:Class rdf:ID="Country">

<rdfs:subClassOf>
<owl:Restriction>

<owl:onProperty>
<owl:ObjectProperty rdf:about="#wholeOf"/>

</owl:onProperty>
<owl:allValuesFrom>
<owl:Class rdf:about="#CountrySubsidiary"/>

</owl:allValuesFrom>
</owl:Restriction>

</rdfs:subClassOf>
<rdfs:subClassOf>

94

<owl:Class rdf:about="#GeographicalRegion"/>
</rdfs:subClassOf>

</owl:Class>
<owl:Class rdf:ID="Place">

<owl:equivalentClass>
<owl:Class>

<owl:intersectionOf rdf:resource=
"http://www.w3.org/1999/02/22-rdf-syntax-ns#nil"

rdf:type="http://www.w3.org/1999/02/22-rdf-syntax-ns#List"/>
</owl:Class>

</owl:equivalentClass>
</owl:Class>
<owl:Class rdf:ID="GeographicalRegion">

<rdfs:subClassOf rdf:resource="#Place"/>
</owl:Class>
<owl:Class rdf:ID="FixedStructure">

<rdfs:subClassOf rdf:resource="#Place"/>
</owl:Class>
<owl:Class rdf:ID="City">

<rdfs:subClassOf>
<owl:Restriction>

<owl:onProperty>
<owl:FunctionalProperty rdf:about="#partOf"/>

</owl:onProperty>
<owl:allValuesFrom>
<owl:Class rdf:about="#CountrySubsidiary"/>

</owl:allValuesFrom>
</owl:Restriction>

</rdfs:subClassOf>
<rdfs:subClassOf rdf:resource="#GeographicalRegion"/>

</owl:Class>
<owl:Class rdf:ID="CountrySubsidiary">

<rdfs:subClassOf>
<owl:Restriction>

<owl:onProperty>
<owl:ObjectProperty rdf:about="#wholeOf"/>

</owl:onProperty>
<owl:allValuesFrom rdf:resource="#City"/>

</owl:Restriction>
</rdfs:subClassOf>
<rdfs:subClassOf>
<owl:Restriction>

<owl:onProperty>
<owl:FunctionalProperty rdf:about="#partOf"/>

95

</owl:onProperty>
<owl:allValuesFrom rdf:resource="#Country"/>

</owl:Restriction>
</rdfs:subClassOf>
<rdfs:subClassOf rdf:resource="#GeographicalRegion"/>

</owl:Class>
<owl:ObjectProperty rdf:ID="wholeOf">

<rdfs:domain rdf:resource="#GeographicalRegion"/>
</owl:ObjectProperty>
<owl:ObjectProperty rdf:ID="AirportOf">

<rdfs:domain rdf:resource="#Airport"/>
<rdfs:range rdf:resource="#GeographicalRegion"/>

</owl:ObjectProperty>
<owl:ObjectProperty rdf:ID="hasAirport">

<rdfs:domain rdf:resource="#GeographicalRegion"/>
<rdfs:range rdf:resource="#Airport"/>

</owl:ObjectProperty>
<owl:DatatypeProperty rdf:ID="hasName"

rdf:type="http://www.w3.org/2002/07/owl#FunctionalProperty">
<rdfs:range rdf:resource=

"http://www.w3.org/2001/XMLSchema#string"/>
<rdfs:domain rdf:resource="#Place"/>

</owl:DatatypeProperty>
<owl:FunctionalProperty rdf:ID="partOf"

rdf:type="http://www.w3.org/2002/07/owl#ObjectProperty">
<rdfs:domain rdf:resource="#GeographicalRegion"/>

</owl:FunctionalProperty>
<j.0:Country rdf:ID="Instance_14"

j.0:hasName="Germany">
<j.0:wholeOf>
<j.0:CountrySubsidiary rdf:ID="Instance_6"

j.0:hasName="Badem-Wurttemberg">
<j.0:partOf rdf:resource="#Instance_14"/>
<j.0:wholeOf>
<j.0:City rdf:ID="Instance_13"

j.0:hasName="Karlsruhe">
<j.0:partOf rdf:resource="#Instance_6"/>

</j.0:City>
</j.0:wholeOf>
<j.0:wholeOf>
<j.0:City rdf:ID="Instance_7"

j.0:hasName="Baden-Baden">
<j.0:partOf rdf:resource="#Instance_6"/>

</j.0:City>

96

</j.0:wholeOf>
<j.0:wholeOf>
<j.0:City rdf:ID="Instance_8"

j.0:hasName="Mannheim">
<j.0:partOf rdf:resource="#Instance_6"/>
<j.0:hasAirport>
<j.0:Airport rdf:ID="Instance_12"

j.0:hasName="Frankfurt">
<j.0:AirportOf rdf:resource="#Instance_14"/>
<j.0:AirportOf>
<j.0:GeographicalRegion rdf:ID="Instance_11"

j.0:hasName="Badem-Wurttemberg">
<j.0:hasAirport rdf:resource="#Instance_12"/>

</j.0:GeographicalRegion>
</j.0:AirportOf>

</j.0:Airport>
</j.0:hasAirport>

</j.0:City>
</j.0:wholeOf>
<j.0:hasAirport rdf:resource="#Instance_12"/>
<j.0:hasAirport>
<j.0:Airport rdf:ID="Instance_5"

j.0:hasName="Koln">
<j.0:AirportOf rdf:resource="#Instance_14"/>
<j.0:AirportOf rdf:resource="#Instance_6"/>

</j.0:Airport>
</j.0:hasAirport>

</j.0:CountrySubsidiary>
</j.0:wholeOf>

</j.0:Country>
<j.0:Airport rdf:ID="Instance_20"

j.0:hasName="Edinburgh">
<j.0:AirportOf>
<j.0:Country rdf:ID="Instance_10">

<j.0:hasName>United Kingdom</j.0:hasName>
</j.0:Country>

</j.0:AirportOf>
<j.0:AirportOf>
<j.0:CountrySubsidiary rdf:ID="Instance_15"

j.0:hasName="Scotland">
<j.0:partOf rdf:resource="#Instance_10"/>

</j.0:CountrySubsidiary>
</j.0:AirportOf>

</j.0:Airport>

97

<rdf:Description>
<rdf:rest rdf:parseType="Resource">
<rdf:rest rdf:parseType="Resource">

<rdf:rest rdf:parseType="Resource">
<rdf:rest rdf:parseType="Resource">

<rdf:rest rdf:resource=
"http://www.w3.org/1999/02/22-rdf-syntax-ns#nil"/>

</rdf:rest>
</rdf:rest>

</rdf:rest>
</rdf:rest>

</rdf:Description>
<j.0:CountrySubsidiary rdf:ID="Instance_16"

j.0:hasName="Bayern">
<j.0:partOf rdf:resource="#Instance_14"/>

</j.0:CountrySubsidiary>
<rdf:Description>

<rdf:rest rdf:resource=
"http://www.w3.org/1999/02/22-rdf-syntax-ns#nil"/>

</rdf:Description>
<j.0:Country rdf:ID="Instance_9"

j.0:hasName="Belgium"/>
<rdf:Description>

<rdf:rest rdf:parseType="Resource">
<rdf:rest rdf:resource=

"http://www.w3.org/1999/02/22-rdf-syntax-ns#nil"/>
</rdf:rest>

</rdf:Description>
<rdf:Description>

<rdf:rest rdf:parseType="Resource">
<rdf:rest rdf:parseType="Resource">

<rdf:rest rdf:parseType="Resource">
<rdf:rest rdf:resource=

"http://www.w3.org/1999/02/22-rdf-syntax-ns#nil"/>
</rdf:rest>

</rdf:rest>
</rdf:rest>

</rdf:Description>
<j.0:City rdf:ID="Instance_22"

j.0:hasName="Koln">
<j.0:partOf rdf:resource="#Instance_6"/>
<j.0:hasAirport rdf:resource="#Instance_5"/>

</j.0:City>
<rdf:Description>

98

<rdf:rest rdf:parseType="Resource">
<rdf:rest rdf:resource=

"http://www.w3.org/1999/02/22-rdf-syntax-ns#nil"/>
</rdf:rest>

</rdf:Description>
<j.0:CountrySubsidiary rdf:ID="Instance_19"

j.0:hasName="England">
<j.0:partOf rdf:resource="#Instance_10"/>

</j.0:CountrySubsidiary>
<j.0:CountrySubsidiary rdf:ID="Instance_18"

j.0:hasName="Wales">
<j.0:partOf rdf:resource="#Instance_10"/>

</j.0:CountrySubsidiary>
<j.0:Country rdf:ID="Instance_17"

j.0:hasName="France"/>
<j.0:City rdf:ID="Instance_21"

j.0:hasName="Frankfurt">
<j.0:partOf rdf:resource="#Instance_6"/>
<j.0:hasAirport rdf:resource="#Instance_12"/>

</j.0:City>
</rdf:RDF>

99

Appendix D

Place ontology as Horn
clauses

This appendix provides the exact output as generated by using the OWL
API and DLP-engine. It should be stressed that the DLP tool is still in a
prototype phase, and hence the output has not been tailored to each par-
ticular output format. Currently, it caters for translation to RuleML, XSB
and disjunctive databases. The output should be read with the following in
mind:

• Protégé uses an internal naming scheme for denoting instances (e.g.
instance 16 stands for Bayern). Currently, because of this naming
(datatype) information gets lost in the translation.

• The table-clauses are due to the support for XSB. It can be safely
disregarded for our purposes.

• The hu() clauses give the Herbrand Universe, which we do not exploit
in our brokering scenario, but which can be useful when working with
disjunctive databases to handle negation.

• The DLP engine is designed for use in Datalog, which explains why
concepts and properties are extended with an “ ext” version. This has
little implications for our scenario in Prolog. Datalog relies on the dis-
tinction between EDB (Extensional DataBase) and IDB (Intensional
Data Base). The extra predicates are used to guide bottom-up com-
putation.

:- table airport/1.
:- table geographicalregion/1.
:- table countrysubsidiary/1.
:- table partof/2.

100

:- table airportof/2.
:- table country/1.
:- table city/1.
:- table hasairport/2.
:- table wholeof/2.
:- table fixedstructure/1.
:- table place/1.

airport(X) :- airportof(X,Y).
geographicalregion(Y) :- airportof(X,Y).
geographicalregion(X) :- wholeof(X,Y).
geographicalregion(X) :- partof(X,Y).
geographicalregion(X) :- hasairport(X,Y).
airport(Y) :- hasairport(X,Y).
countrysubsidiary(X) :- countrysubsidiary_ext(X).
partof(X,Y) :- partof_ext(X,Y).
airport(X) :- airport_ext(X).
airportof(X,Y) :- airportof_ext(X,Y).
country(X) :- country_ext(X).
city(X) :- city_ext(X).
hasairport(X,Y) :- hasairport_ext(X,Y).
wholeof(X,Y) :- wholeof_ext(X,Y).
geographicalregion(X) :- geographicalregion_ext(X).
geographicalregion(X) :- country(X).
fixedstructure(X) :- airport(X).
place(X) :- fixedstructure(X).
geographicalregion(X) :- city(X).
geographicalregion(X) :- countrysubsidiary(X).
place(X) :- geographicalregion(X).
countrysubsidiary(X1) :- wholeof(X,X1), country(X).
countrysubsidiary(X2) :- partof(X,X2), city(X).
city(X3) :- wholeof(X,X3), countrysubsidiary(X).
country(X4) :- partof(X,X4), countrysubsidiary(X).

airport_ext(instance_20).
airport_ext(instance_5).
airport_ext(instance_12).

partof_ext(instance_18, instance_10).
partof_ext(instance_13, instance_6).
partof_ext(instance_7, instance_6).
partof_ext(instance_19, instance_10).
partof_ext(instance_8, instance_6).
partof_ext(instance_6, instance_14).

101

partof_ext(instance_16, instance_14).
partof_ext(instance_15, instance_10).
partof_ext(instance_21, instance_6).
partof_ext(instance_22, instance_6).

hasairport_ext(instance_21, instance_12).
hasairport_ext(instance_22, instance_5).
hasairport_ext(instance_11, instance_12).
hasairport_ext(instance_6, instance_12).
hasairport_ext(instance_6, instance_5).
hasairport_ext(instance_8, instance_12).

countrysubsidiary_ext(instance_18).
countrysubsidiary_ext(instance_19).
countrysubsidiary_ext(instance_6).
countrysubsidiary_ext(instance_15).
countrysubsidiary_ext(instance_16).

city_ext(instance_21).
city_ext(instance_22).
city_ext(instance_13).
city_ext(instance_7).
city_ext(instance_8).

geographicalregion_ext(instance_11).

country_ext(instance_17).
country_ext(instance_10).
country_ext(instance_14).
country_ext(instance_9).

hu(instance_20).
hu(instance_21).
hu(instance_10).
hu(instance_22).
hu(instance_11).
hu(instance_12).
hu(instance_5).
hu(instance_6).
hu(instance_13).
hu(instance_14).
hu(instance_7).
hu(instance_15).
hu(instance_8).

102

hu(instance_9).
hu(instance_16).
hu(instance_17).
hu(instance_18).
hu(instance_19).

airportof_ext(instance_12, instance_11).
airportof_ext(instance_5, instance_14).
airportof_ext(instance_12, instance_14).
airportof_ext(instance_20, instance_10).
airportof_ext(instance_20, instance_15).
airportof_ext(instance_5, instance_6).

wholeof_ext(instance_6, instance_13).
wholeof_ext(instance_14, instance_6).
wholeof_ext(instance_6, instance_7).
wholeof_ext(instance_6, instance_8).

103

Bibliography

Aitken, S. & Tate, A. (2003), Applying DAML languages and ontologies in
CoSAR-TS, Technical report, University of Edinburgh.

Ankolekar, A., Huch, F. & Sycara, K. (2002), Concurrent execution seman-
tics for DAML-s with subtypes, in ‘The First International Semantic
Web Conference (ISWC)’, Sardinia, Italy.

Baader, F., Calvanese, D., McGuinness, D., Nardi, D. & Schneider, P. P.
(2003), The Description Logic Handbook : Theory, Implementation and
Applications, Cambridge University Press.

Berners-Lee, T. (1999), Weaving the Web : The Original Design and Ul-
timate Destiny of the World Wide Web by its Inventor, Harper, San
Francisco.

Bernstein, A. & Grosof, B. N. (Submitted), Beyond monotonic inheritance:
Towards semantic web process ontologies.

Borst, W. (1997), Construction of Engineering ontologies, PhD thesis, Uni-
versity of Twente, Enschede.

Box, D., Skonnard, A. & Lam, J. (2000), Essential XML. Beyond Markup,
Addison-Wesley.

Bray, T., Paoli, T. & Sperberg-McQueen, J. (1998), ‘Extensible markup
language (xml) 1.0. w3c recommendation’, W3C Web site.

Brickley, D. & Guha, R. (2000), Resource Description Framework (RDF)
Schema Specification. W3C Candidate recommendation.

Broekstra, J., Fluit, C. & van Harmelen, F. (2000), ‘The state of the art on
representation and query languages for semistructured data’, On-To-
Knowledge Project Deliverable 8.

Bundy, A. & Smaill, A. (2002), ‘The application of deductive synthesis
techniques to the rapid assembly and re-assembly of grid applications’,
eScience and the Grid Grant proposal, Case for Support.

104

Bundy, A., Smaill, A. & Yang, B. (2003), The application of deductive
synthesis techniques to the rapid (re-)assembly of grid applications,
Technical report, University of Edinburgh.

Chandrasekaran, B. (1990), ‘Design problem solving: A task analysis’, AI
Magazine 11, 59–71.

Chinnici, R., Gudgin, M., Moreau, J.-J. & Weerawarana, S. (2003), ‘Web
services description language (wsdl) version 1.2 w3c working draft’,
W3C Web site.

Crubézy, M., Motta, E., Lu, W. & Musen, M. (2003), ‘Configuring online
problem-solving resources with the internet reasoning service’, IEEE
Intelligent Systems 18(2), 34–42.

Crubézy, M. & Musen, M. (2003), Handbook on Ontologies in Information
Systems, Springer, chapter Ontologies in Support of Problem Solving.

DAML-S Consortium (2003), ‘DAML-S and related technologies’, DAML
Web site http://www.daml.org/services.

DAML+OIL Joint Committee (2001), ‘Daml+oil’, DAML Web site http:
//www.daml.org/2001/03/daml+oil-index.html.

Davis, R., Shrobe, H. & Szolovits, P. (1993), ‘What is a knowledge presen-
tation?’, A.I. Magazine 14(1), 17–33.

Decker, K., Sycara, K. & Williamson, M. (1997), Middle-agents for the
internet, in ‘Proceedings of the 15th International Joint Conference on
Artificial Intelligence’, Nagoya, Japan.

Fensel, D. (2000), Problem-Solving Methods, LNAI 1791Springer-Verlag,
Berlin Heidelberg.

Fensel, D. (2002), Language standardization for the semantic web: The long
way from oil to owl, in J. Plaice, P. G. Kropf, P. Schulthess & J. Slonim,
eds, ‘Distributed Communities on the Web (DCW), 4th International
Workshop’, Vol. Lecture Notes in Computer Science 2468, Springer,
Sydney, Australia.

Fensel, D., Benjamins, V., Decker, S., Gaspari, M., Groenboom, R., Grosso,
W., Musen, M., Motta, E., Plaza, E., Schreiber, G., Studer, S. &
Wielinga, B. (1999), The component model of upml in a nutshell, in
‘Proceedings of the First Working IFIP Conference on Software Archi-
tecture (WICSA1)’, San Antonio, Texas.

Fensel, D. & Bussler, C. (2002), ‘The web service modeling framework
WSMF’, Electronic Commerce Research and Applications 1(2).

105

Fensel, D., Crubézy, M., van Harmelen, F. & Horrocks, I. (2000), OIL and
UPML: a unifying framework for the knowledge web.

Fensel, D., Motta, E., Benjamins, R., Crubézy, M., Decker, S., Gaspari, M.,
Groenboom, R., Grosso, W., van Harmelen, F., Musen, M., Plaza, E.,
Schreiber, G., Studer, R. & Wielinga, B. (2003), ‘The unified problem-
solving method development language’, Knowledge and Information
Systems 5(1).

Fensel, D., Motta, E., Benjamins, R. V., Decker, S., Gaspari, M., Groen-
boom, R., Grosso, W., Musen, M., Plaza, E., Schreiber, G., Studer, R.
& Wielinga, B. (1999), The unified problem-solving method develop-
ment language UPML, Technical report, IBROW Deliverable 1.1.

Fensel, D., Schönegge, A., Groenboom, R. & Wielinga, B. (1996), Specifi-
cation and verification of knowledge-based systems, in ‘Proceedings of
the ECAI’96 Workshop on Validation, Verification and Refinement of
Knowledge-Based Systems at the 12th European Conference on Artifi-
cial Intelligence (ECAI-96)’, Budapest.

Fensel, D. & van Harmelen, F. (2001), ‘Oil: an ontology infrastructure for
the semantic web’, IEEE Intelligent Systems .

Fensel, D., van Harmelen, F. & Horrocks, I. (1999), OIL: A standard pro-
posal for the semantic web, Technical Report 0, OnToKnowledge EU
IST Project.

Gaasterland, T. (1997), ‘Cooperative answering through controlled query
relaxation’, IEEE Expert pp. 48–58.

Gaasterland, T., Godfrey, P. & Minker, J. (1991), Relaxation as a platform
for cooperative answering, Technical Report CS-TR-2818, University
of Maryland, College Park.

Garlan, D. (2001), Software Architecture. Encyclopedia of Software Engi-
neering, John Wiley and Sons.

Grosof, B. N., Horrocks, I., Volz, R. & Decker, S. (2003), Description logic
programs: Combining logic programs with description logic, in ‘WWW
2003’, Budapest, Hungary.

Grosof, B. & Poon, T. (2003), SweetDeal : Representing agent contracts
with exceptions using XML rules, ontologies and process descriptions.

Gruber, T. (1993), Toward principles for the design of ontologies used for
knowledge sharing, in Guarino & Poli, eds, ‘Formal Ontology in Con-
ceptual Analysis and Knowledge Representation’, Kluwer.

106

Guarino, N. & Welty, C. (2002), ‘Evaluating ontological decisions with ON-
TOCLEAN’, Communications of the ACM 45(2), 61–65.

Horrocks, I. (2002), ‘Daml+oil: a description logic for the semantic web’,
Bulletin of the IEEE Computer Society Technical Committee on Data
Engineering 25(1), 4–9.

Horrocks, I. & Tessaris, S. (2002), Querying the semantic web: A formal
approach, in I. Horrocks & J. Hendler, eds, ‘Proceedings of the First
International Semantic Web Conference’, Springer, Sardinia, Italy.

IBM Web Services Architecture Team (2000), ‘Web services architecture
overview’, IBM Web site.

Klein, M., Fensel, D., van Harmelen, F. & Horrocks, I. (2000), The re-
lation between ontologies and schema-languages: Translating OIL-
specifications in XML-schema, in V. R. Benjamins, A. Gomez-Perez
& N. Guarino, eds, ‘Proceedings of the Workshop on Applications of
Ontologies and Problem-solving Methods, 14th European Conference
on Artificial Intelligence (ECAI 2000)’, Berlin, Germany.

Klein, M., Fensel, D., van Harmelen, F. & Horrocks, I. (2001), ‘The relation
between ontologies and xml schemas’, Linköping Electronic Articles in
Computer and Information Science 6(4).

Lasilla, O. & Swick, R. (1999), ‘Resource description framework (rdf) model
and syntax specification. w3c recommendation’, W3C Web site.

Lemahieu, W. (2001), Web service description, advertising and discovery:
Wsdl and beyond, in J. Vandenbulcke & M. Snoeck, eds, ‘New direc-
tions in Software Engineering’, Leuven University Press, pp. 135–152.

Leymann, F. (2001), ‘Web services flow language (wsfl 1.0)’, IBM Software
Group Web site.

Li, L. & Horrocks, I. (2003), A software framework for matchmaking based
on semantic web technology, in ‘In Proc. Of the Twelfth International
World Wide Web Conference (WWW 2003)’.

Lomuscio, A. R., Wooldridge, M. & Jennings, N. R. (2001), A classifica-
tion scheme for negotiation in electronic commerce, in F. Dignum &
C. Sierra, eds, ‘Agent-Mediated Electronic Commerce: A European
Perspective’, Springer Verlag, pp. 19–33.

Magkanaraki, A., Karvounarakis, G., Anh, T. T., Christophides, V. & Plex-
ousakis, D. (2002), Ontology storage and querying, 2002 308, Research
and Technology Hellas, Institute of Computer Science, Information Sys-
tems Laboratory.

107

Mandell, D. & McIlraith, S. (2003), A bottom-up approach to automat-
ing web service discovery, customization, and semantic translation, in
‘WWW 2003 Workshop on E-Services and the Semantic Web ESSW’
03’.

McCarthy, J. & Hayes, P. (1969), Some philosophical problems from the
standpoint of artificial intelligence, in B. Metlzer & D. Michie, eds,
‘Machine Intelligence’, Edinburgh University Press, pp. 463–502.

McGuinness, D. L. & van Harmelen, F. (2003), ‘Web ontology language
(owl): Overview. w3c working draft’, W3C Web site.

McIlraith, S. A. & Martin, D. L. (2003), ‘Bringing semantics to web services’,
IEEE Intelligent Systems .

McIlraith, S. & Son, T. (2002), Adapting golog for composition of semantic
web services, in ‘Proceedings of the Eighth International Conference on
Knowledge Representation and Reasoning (KR)’, Toulouse, France.

Mitra, N. (2002), ‘Simple object access protocol (soap) version 1.2 part 0:
Primer. w3c candidate recommendation’, W3C Web site.

Motik, B., Maedche, A. & Volz, R. (2003), Optimizing Query Answering
in Description Logics using Disjunctive Deductive Databases, in ‘10th
International Workshop on Knowledge Representation meets Databases
(KRDB-2003)’, Hamburg, Germany.

Motta, E., Domingue, J., Cabral, L. & Gaspari, M. (2003), IRS-II: A frame-
work and infrastructure for semantic web services, in ‘Proceedings of
the 2nd International Semantic Web Conference (ISWC 2003)’.

Motta, E. & Lu, W. (2000), A library of components for classification prob-
lem solving, in ‘PKAW 2000: The 2000 Pacific Rim Knowledge Acqui-
sition Workshop’, Sydney, Australia.

Musen, M. (2000), Ontology-oriented design and programming, in J. Cuena,
Y. Demazeau, A. Garcia & J. Treur, eds, ‘Knowledge Engineering and
Agent Technology’, IOS Press.

Narayanan, S. & McIlraith, S. (2002), Verification and automated com-
position of web services, in ‘Eleventh International World Wide Web
Conference (WWW2002)’, pp. 77–88.

Narayanan, S. & McIlraith, S. (To appear), ‘Analysis and simulation of web
services’, Computer Networks .

Neches, R., Fikes, R., Finin, T., Gruber, T., Patil, R. et al. (1991), ‘Enabling
technology for knowledge sharing’, AI Magazine 12(3).

108

Omelayenko, B., Crubézy, M., Fensel, D., Benjamins, R. V., Wielinga, B.,
Motta, E., Musen, M. & Ding, Y. (2003), UPML: The Language and
Tool Support for Making the Semantic Web Alive, The MIT Press,
Cambridge, MA, pp. 141–170.

Paolucci, M., Kawamura, T., Payne, T. & Sycara, K. (2002), Importing the
semantic web in UDDI, in ‘Proceedings Web Services, E-Business and
Semantic Web Workshop, CAiSE 2002’.

Park, J., Gennari, J. & Musen, M. (1997), Mappings for reuse in knowledge-
based systems, Technical Report 97-0697, Stanford Medical Informat-
ics.

Patel-Schneider, P. F. & Horrocks, I. (2003), ‘Web ontology language (owl)
abstract syntax and semantics. w3c working draft’, W3C Web site.

Poole, D., Mackworth, A. & Goebel, R. (1998), Computational Intelligence:
A Logical Approach, Oxford University Press.

Potter, S. (2003a), Broker description document, Technical report, Univer-
sity of Edinburgh.

Potter, S. (2003b), ‘Knowledge brokering in AKT. Presentation for the PEA-
POD workshop on synthesis’.

Ratnakar, V. & Gil, Y. (2002), A comparison of (semantic) markup lan-
guages, in ‘Proceedings of the 15th International FLAIRS Conference,
Special Track on Semantic Web’, Pensacola, FL.

Robertson, D. (2001), ‘F-X: A formal knowledge management system’, (un-
published).

Robertson, D. S., Silva, F. S. C. D., Vasconcelos, W. W. & de Melo, A. C. V.
(2000), A lightweight capability communication mechanism, in R. Lo-
ganantharaj & G. Palm, eds, ‘Intelligent Problem Solving, Methodolo-
gies and Approaches, 13th International Conference on Industrial and
Engineering Applications of Artificial Intelligence and Expert Systems,
IEA/AIE’, Springer, New Orleans, Louisiana, USA, pp. 660–670.

Sabou, M., Richards, D. & Splunter, S. V. (2003), An experience report
on using DAML-s, in ‘Workshop on E-Services and the Semantic Web
(ESSW ’03) at theTwelfth International World Wide Web Conference’.

Schlenoff, C., Gruninger, M., Tissot, F., Valois, J., Lubell, J. & Lee, J.
(2000), ‘The process specification language (PSL): Overview and ver-
sion 1.0 specification’, NISTIR 6459, National Institute of Standards
and Technology, Gaithersburg, MD.

109

Shadbolt, N. (2003), ‘Grandly challenged’, IEEE Intelligent Systems .

Stefik, M. (1995), Introduction to Knowledge Systems, Morgan Kaufmann,
San Francisco, California.

Studer, R., Benjamins, R. & Fensel, D. (1998), ‘Knowledge engineering,
principles and methods’, Data and Knowledge Engineering 25, 161–
197.

Sycara, K., Widoff, S., Klusch, M. & Lu, J. (2002), ‘Larks: Dynamic
matchmaking among heterogeneous software agents in cyberspace’, Au-
tonomous Agents and Multi-Agent Systems 5(2).

ten Teije, A. & van Harmelen, F. (1996), ‘Using reflection techniques for
flexible problem solving (with examples from diagnosis)’, Future Gen-
eration Computer Systems, Special issue : Reflection and Meta-level
AI Architectures 12, 217–234.

ten Teije, A. & van Harmelen, F. (2003), ‘Task and method adaptation’,
IBROW Project Deliverable 12a.

ten Teije, A., van Harmelen, F., Schreiber, A. T. & Wielinga, B. J.
(1998), ‘Construction of problem-solving methods as parametric de-
sign’, International Journal of Human-Computer Studies, Special issue
on problem-solving methods 49(4).

Thompson, H. (2002), ‘Web services and the semantic web: Separating hype
from reality’, Global Grid Forum presentation, Edinburgh.

Thompson, H., Beech, D., Maloney, M. & Mendelsohn, N. (2001), ‘Xml
schema part 1: Structures. w3c recommendation’, W3C Web site.

van Harmelen, F. (2002), ‘How the semantic web will change kr: challenges
and opportunities for a new research agenda’, The Knowledge Engi-
neering Review 17(1).

Volz, R., Motik, B., Horrocks, I. & Grosof, B. (Submitted), Description
Logics Programs: An evaluation and extended translation.

W3C (2001), ‘Semantic web activity statement’, W3C Web site.

Wickler, G. (1999), Using Expressive and Flexible Action Representations
to Reason about Capabilities for Intelligent Agent Cooperation, PhD
thesis, University of Edinburgh.

Wroe, C., Stevens, R., Goble, C., Roberts, A. & Greenwood, M. (To appear),
‘A suite of daml+oil ontologies to describe bioinformatics web services
and data’, International Journal of Cooperative Information Systems .

110

