
An Algorithm for Evolving Protocol

Constraints

Mark Collins

Doctor of Philosophy

Artificial Intelligence Applications Institute

School of Informatics

University of Edinburgh

2006

Abstract

We present an investigation into the design of an evolutionary mechanism for multi-

agent protocol constraint optimisation. Starting with a review of common population

based mechanisms we discuss the properties of the mechanisms used by these search

methods. We derive a novel algorithm for optimisation of vectors of real numbers and

empirically validate the efficacy of the design by comparing against well known results

from the literature. We discuss the application of an optimiser to a novel problem

and remark upon the relevance of the no free lunch theorem. We show the relative

performance of the optimiser is strong and publish details of a new best result for the

Keane optimisation problem. We apply the final algorithm to the multi-agent protocol

optimisation problem and show the design process was successful.

iii

Declaration

I declare that this thesis was composed by myself, that the work contained herein is

my own except where explicitly stated otherwise in the text, and that this work has not

been submitted for any other degree or professional qualification except as specified.

(Mark Collins)

iv

A testimony to the art of the moving target.

For:

All who loved me, and all I loved.

Disclaimer:

All contents of this work are my own,

rendered to the best of my ability.

Naturally any errors or omissions are also mine.

Mark Collins, 2005�

v

Table of Contents

1 Introduction 1

1.1 Motivation . 1

1.1.1 Automation of design . 1

1.2 Hard problems . 2

1.2.1 Benchmarking functions . 4

1.2.2 Multi-Agent systems . 4

1.2.3 Protocols and multi-agent system design 5

1.3 Contribution of this work . 6

1.4 Synopsis . 7

2 Multi-agent systems 9

2.1 Overview . 9

2.2 Multi-agent systems . 10

2.2.1 The LCC . 11

2.3 Scope of control . 13

2.4 Protocol optimisation . 14

2.4.1 A dynamic optimisation process 16

2.5 A proof of concept . 17

2.5.1 Objective of the system . 18

2.5.2 Implementation of the system 18

2.6 A more advanced multi-agent system 19

2.6.1 The basic structure . 20

2.6.2 Recreating the SADDE system 21

2.6.3 Expanding the SADDE system 26

2.7 Extended SADDE system . 26

2.7.1 Negotiation engine . 27

2.7.2 Parameters . 31

vii

2.7.3 A new fitness function . 32

2.7.4 Conversion to protocols and experiments 32

2.8 Summary . 34

3 Real number optimisation 45

3.1 Chapter overview . 45

3.2 Optimisation of real number parameters 45

3.3 Properties of real number optimisation 46

3.3.1 An example: The Rastrigin problem 47

3.3.2 Dimensionality in the Rastrigin problem 48

3.3.3 Dimensional precision in the Rastrigin problem 49

3.3.4 Constraints : More complicated problems 50

3.3.5 Keane’s function . 51

3.3.6 Penalty functions . 52

3.4 Dangers in optimisation . 52

3.4.1 Dangers in optimisation : Over-fitting 53

3.4.2 Dangers in optimisation : Exploits 54

3.4.3 Dangers in optimisation : Not the No Free Lunch 55

3.4.4 Avoiding dangers . 61

4 Population based real number optimisation. 65

4.1 Chapter overview . 65

4.2 Pseudo-code . 67

4.3 The genetic algorithm . 68

4.3.1 The canonical genetic algorithm 68

4.4 Differential evolution . 72

4.5 Evolutionary strategies . 72

4.6 Evolutionary programming . 73

4.7 Particle Swarm Optimisation . 74

4.8 Ant algorithms . 76

4.9 Hybrid mechanisms . 76

4.10 Our design process . 77

4.10.1 Representation . 77

4.10.2 Modeling precision . 77

4.10.3 Initialisation and clustering 78

4.10.4 Mechanics of movement . 79

viii

4.10.5 Replacement and longevity 79

4.10.6 Auto-adaptivity . 80

4.11 In summary . 80

5 Formally dodging the no free lunch 81

5.1 Preliminaries . 81

5.2 Structure in the benchmarking problems 82

5.2.1 Structure and prior information 83

5.3 Application to a novel problem . 85

5.3.1 Use of restarts . 92

5.4 No Free Lunch : reprise . 94

5.5 Summary . 94

6 Algorithm design 97

6.1 Optimisable landscapes . 98

6.1.1 The requirement of detectable gradients 98

6.1.2 Improving sampling of optimisers 99

6.2 Rationale behind the design . 100

6.2.1 Non-optimality of our design 102

6.3 Representation . 102

6.4 Initialisation . 104

6.5 Population and individual operators 105

6.6 Population sizing . 105

6.7 Scales of operation . 106

6.7.1 Local microscopic techniques 107

6.7.2 Local macroscopic techniques 113

6.7.3 Local population based techniques 117

6.7.4 Pan-population techniques 125

6.8 Controlling the search . 129

6.8.1 Auto-adaptivity . 132

6.8.2 Inference via sampling . 133

6.8.3 Replacement policy . 134

6.8.4 Population diversity . 135

6.8.5 Elitism and abandoning points 135

6.8.6 Dealing with constraints . 137

6.8.7 Sacrificing convergence . 140

ix

6.8.8 Parameterisation . 140

6.9 Comments on our design . 141

7 Surrogate evaluation functions 145

7.1 General comments on reports . 145

7.2 Ackley’s function . 146

7.2.1 Best results : Ackley’s function 146

7.3 De Jong’s sphere function . 148

7.3.1 Best results : Sphere function 148

7.4 Griewank’s function . 150

7.4.1 Best results : Griewank’s function 151

7.5 Keane’s function . 151

7.5.1 Best results : Keane function 151

7.5.2 A new result . 155

7.6 Michalewicz’s Constraints Suite . 156

7.6.1 Constrained function #1 . 157

7.6.2 Constrained function #2 . 158

7.6.3 Constrained function #3 . 158

7.6.4 Constrained function #4 . 159

7.6.5 Constrained function #5 . 160

7.6.6 Best results : Michalewicz’s constrained function Suite 160

7.7 Powell’s 4-Dimensional function . 163

7.7.1 Best results : Powell’s function 163

7.8 Rastrigin’s function . 165

7.8.1 Best results : Rastrigin’s function 165

7.9 Rosenbrock’s function . 167

7.9.1 Original Rosenbrock . 167

7.9.2 Whitley’s N-Dimensional Rosenbrock 168

7.9.3 The common N-Dimensional Rosenbrock 169

7.9.4 Best results : Rosenbrock function 169

7.10 Schwefel’s sum . 169

7.10.1 Best results : Schwefel’s sum 171

8 Validation of design 173

8.1 Parameters used . 174

8.2 Our results . 174

x

8.2.1 How to read the tables . 176

8.3 Discussion of our results . 177

8.3.1 Unconstrained problems . 177

8.3.2 Constrained problems . 181

9 Multi-agent experiments 185

9.1 Experiments . 185

9.2 Comparative technologies . 186

9.2.1 Random search . 186

9.2.2 Random mutation hill climbing 186

9.2.3 Simple genetic algorithm . 186

9.2.4 Prototype algorithm . 187

9.3 The proof of concept system . 187

9.3.1 Experimental conditions . 187

9.3.2 Results . 187

9.3.3 Discussion . 188

9.4 The extended SADDE multi-agent system 188

9.4.1 Experimental conditions . 188

9.4.2 Results . 189

9.4.3 Discussion . 189

10 Conclusions 195

10.1 Summary of the work . 195

10.2 Stages in this work . 195

10.3 Contributions . 197

10.4 Conclusion . 198

10.5 Further work . 198

Bibliography 201

xi

List of Figures

2.1 Syntax of LCC dialogue framework, see section 2.5 for an example

agent system defined in this syntax. 13

2.2 Extended system parameter meanings. 22

2.3 Negotiation cycle . 28

2.4 Utility and proposal functions . 29

2.5 Negotiation tactics . 30

2.6 Tick function . 36

2.7 EntradaMat function . 37

2.8 Production function . 38

2.9 Maintenance function . 39

2.10 Salary function . 40

2.11 Negotiation function . 41

2.12 Extended system parameters . 42

2.13 Fitness function . 42

2.14 The basic SADDE negotiation protocol 43

3.1 The 2D Rastrigin function. 51

3.2 Detail of the 2D Rastrigin function near the optimum. 52

3.3 The 2D Keane function. 53

3.4 A Keane function boundary exploit 56

5.1 A simple deceptive trap . 87

5.2 Self similarity in the proof of concept multi-agent problem 89

5.3 Self similarity in the SADDE multi-agent problem 90

5.4 Self similarity in the 2D De Jong sphere 92

5.5 No self-similarity . 93

6.1 Hill climbing : Sample placement and the trial vector. 109

xiii

6.2 Mutation; an exponential time search operator. 116

6.3 Point-wise extrapolation : Sample placement and the trial vector. . . . 122

7.1 Table of notable results for the Ackley function 147

7.2 Table of notable results for the Sphere function 149

7.3 Table of notable results for the Griewank function 152

7.4 Table of notable results for the Keane function 153

7.5 Table of notable results for the Michalewicz constraint test suite func-

tions 1, 2 and 3 . 161

7.6 Table of notable results for the Michalewicz constraint test suite func-

tions 4 and 5 . 162

7.7 Table of notable results for the Powell 4D function 164

7.8 Table of notable results for Rastrigin’s function 166

7.9 The 2D Rosenbrock function. 168

7.10 Table of notable results for the Rosenbrock function 170

7.11 Table of notable results for the Schwefel sum function 172

8.1 Benchmarking our algorithm, zero error 178

8.2 Benchmarking our algorithm, error � 10�14 179

9.1 Results on 5 agent problem . 190

9.2 Results on 10 agent problem . 191

9.3 Results on 20 agent problem . 192

9.4 Table of the results on the proof of concept multi-agent domain, these

results are also graphed in figures 9.1, 9.2 and 9.3. 193

9.5 Table of the results on the SADDE protocol domain. Because the dif-

ferences between performances are relatively slight relative to the val-

ues involved, this set of results has not been graphed. 194

xiv

Chapter 1

Introduction

1.1 Motivation

This work is motivated by the requirement for a mechanism capable of effectively

searching large complicated spaces with very small numbers of sample evaluations.

We were obliged to create such a mechanism by the demands of optimising the per-

formance of multi-agent systems. Multi-agent systems are increasingly common, but

automatic parameterisation of the systems is technically challenging. This work ad-

dresses the causes of these challenges, and describes a development process which

uses surrogate evaluation functions to create an algorithm that is capable of optimising

multi-agent systems.

1.1.1 Automation of design

The design of complex systems is increasingly being automated. Of the multitude of

motives for this, the cheap availability of massive brute-force computing power has

been the primary development. Computers are now powerful enough to simulate large

complex systems with reasonable accuracy. This ability to simulate complex systems,

along with the parallel development of optimisation techniques which are capable of

giving human competitive performance, set the stage for the automation of complex

system design. However, the replacement of human system designers in optimisation

tasks has merely moved the bottleneck in our understanding. Our previous ignorance

of how to solve optimisation problems has now been replaced by our ignorance of how

to create mechanisms to solve optimisation problems.

Racing to fill this void in our knowledge are a plethora of proposed techniques.

1

Many proposed optimisers are population based and are loose analogues of natural

systems : Ant Colony Optimisation [19], Particle Swarm Optimisation [50] and Ge-

netic Algorithms [40, 42] to name a few. Each of these has been extensively tested and

offers good performance on some hard problems. Unfortunately the development of

these systems is somewhat complicated by a scarcity of people who understand how

they work well enough to optimise them. The paucity of explanatory knowledge in

this field is best exemplified by the huge number of papers that offer new parameter

tweaks and new operators for algorithms without justification for why the operators

are employed or why they are effective or on which problems. Commonly a field

fragments and subdivides in the pursuit of better and better optimisers on smaller and

smaller ranges of problems. The subdivision of real number optimisation into linear

and non-linear (constrained) optimisation is a classic example, where algorithms are

not expected to perform strongly on both fields and so become segregated.

This work aims to contribute to the understanding in the field of real number opti-

misation. We wish to avoid producing yet another work on “The optimal parameteris-

ing of algorithm X” where we might publish one-off results that are not scientifically

useful. Instead we wish to define our work in relation to the properties of a problem

that it is designed to engage with, where, if we are successful, further development

will build upon this design and increase our understanding of the consequences of our

design decisions. Consequently the heart of this work is structured slightly differently

from others: We begin by reviewing the properties of notable algorithms and their rel-

ative performances on common test functions. The main properties of the common

designs are selected and used to guide design of an algorithm that has better properties

overall than each of its components has in isolation. We then use this algorithm to

optimise both common benchmark problems and more obscure hard design problems

from the multi-agent literature. We show that the algorithm performs well over a range

of functions without parameterisation. From these comparisons we conclude that the

algorithm development has been successful and the design is likely to be a good choice

for problems within this class. Finally we invite further analysis.

1.2 Hard problems

In general, hard optimisation problems can be classified as having at least one of two

properties; those problems that are hard because the space is complicated and confus-

ing to search, and those problems that for reasons of evaluation cost or other limits al-

low a very low number of samples to be taken from the space. The distinction between

the two cases is founded on the amount of information that is available to work with.

The information obtained through sampling may reveal a very complicated structure,

in which case the difficulty of searching the space is located in correctly interpreting

this complicated structure. Alternatively the number of samples available for use may

be insufficient to reveal the true structure at all. The difficulty in this instance may be

compounded two fold, in arranging the samples so as to obtain the best possible repre-

sentation of the structure and then in interpreting the revealed structure, which may in

addition be complicated.

In the first case, sampling can tell quite a lot about the space. It is possible, locally

at least, to map the space and make informed decisions. Performing well on these

spaces is a matter of balancing exploitation and exploration - attempting to not be

deluded by the eccentricities of the space. The majority of common benchmarking

problems are in this class.

In the second case, the complexity of the space is typically unknown. The algo-

rithm must do the best it can with the few samples it has. The second case is the harder

of the two since the problem may also be a member of the first class. In the few sam-

ples that are available, it is frequently impossible to characterise the space that is being

searched. This presents a challenge to a search algorithm. Multi-agent systems, like

the majority of large scale optimisations, are in this second class. We will return to this

discussion in chapter 2.

Never unduly discouraged, in this work we attack both classes simultaneously. We

aim to create an effective optimiser for specific multi-agent system optimisation prob-

lems. We use examples from the first class of problems as surrogate evaluation func-

tions to create an algorithm that is effective when applied to problems from the second

class. The motivation for this is simple: The use of surrogate functions dramatically

reduces the development time of the algorithm. This tactic also carries associated risks

requiring that precautions be taken to identify and avoid common mistakes in design.

The use of surrogate evaluation functions in the design also entails a potential conflict

with the No Free Lunch theorem, which we avoid falling foul of in chapter 5.

Successfully using surrogate evaluation functions requires careful thought. The

chosen development process is not easy. Competitive performance in the optimisation

of the surrogate functions, which are drawn from the benchmark functions used by the

real number optimisation community, is a hard task in its own right. However, once

we have succeeded in overcoming these obstacles we will then have developed a much

stronger optimiser, in a much shorter time, than we would have had by attempting to

optimise the multi-agent problem directly.

1.2.1 Benchmarking functions

Due to the high profile and ubiquity of benchmarking functions, there are many papers

published in the field of real number optimisation which report improvements against

benchmarks. Obtaining good results in the field is a commendable achievement and is

vigorously pursued. It should be mentioned, that not all improvements in the field are

equally meritorious. Some algorithms, particularly if the chosen set of benchmarks is

small, are over-fitted. Over-fitting occurs when the solver has become unacceptably

specialised and performs well only on the test cases. Over-fitting makes the discov-

ery of a better result somewhat easier but reduces its general utility. In this work we

compare and contrast the performance of our algorithm against the best found results

published by researchers in other domains. We use the benchmarking functions to il-

lustrate various complexities faced when optimising in these complicated spaces and

also use them to warn against the dangers of over-fitting by providing an example of a

“best-ever” algorithm that does nothing more than use an exploit against the properties

of the solution space.

1.2.2 Multi-Agent systems

A multi-agent system is any collection of autonomous agents capable of reasoning

about their environment and acting accordingly. A designer of a multi-agent system

attempts to exert control over the interactions of a potentially enormous heterogeneous

system, one where autonomous agents are employed on behalf of different users to

achieve a variety of private objectives. The design of multi-agent systems is an active

research topic. Understanding such systems is complicated by the inherent dynamics

of the participating agents - trust and deceit, agent overloading and failure, imperfect

information etc. Despite the problems, engineering and applying effective multi-agent

systems has significant promise and economic consequence. Multi-agent systems (and

implicitly their designers) perform a role that is likely to increase in importance in the

future.

Unfortunately the complexity of understanding and controlling the behaviours of

multi-agent systems increases as the participating agents grow in number, size, scope,

and responsibility. Engineering agents to participate in a large scale system involv-

ing heterogeneous autonomous agents engaged in achieving undisclosed objectives is

in itself a hard problem. The search space is, for all but the most trivial of systems a

very large space, and search for optimal parameters necessarily involves evaluating and

omitting sections of the search space. The complexity of performing the generalisa-

tions required to omit sections of the search space is greatly increased by the possiblity

of non-trivial interactions between parameters, requiring that samples be invested to

test proposed configurations of multi-agent systems. Unfortunately detailed simula-

tion of a multi-agent system is also extremely expensive in terms of computation time.

Thus searching for good configurations of multi-agent systems is a hard problem that

fits both of the criteria specified in section 1.2.

1.2.3 Protocols and multi-agent system design

In this work we use evolutionary search techniques to optimise an interaction protocol

with regard to the emergent behaviour of simulated multi-agent systems. Lightweight

Coordination Calculus (LCC) protocols [70] are a method which simplifies the agent

design problem by ignoring the agents themselves and concentrating on defining and

controlling the interactions between participating entities. There are several good rea-

sons why the protocol based approach is of interest, and these will be expounded later.

The multi-agent systems community has traditionally examined the problem of

developing complex systems through the eyes of an intimate designer, one who knows

the specifications and capabilities of each of the agents in detail.

Frequently this system design decision leads to the bespoke development of spe-

cial agents with characteristics and behaviours which are unique within the multi-agent

system. System efficiency is attained by maximally exploiting the unique character-

istics of the agents. Even without bespoke agents, exploiting individual agents is a

popular design strategy e.g. [80]. Due to the significance of individual agents, large

systems constructed in this manner are difficult to predict, particularly in the event of

dynamic agent participation. Maintenance and design of such systems is knowledge

intensive and complicated. The unpredictable interactions between the agent’s unique

behaviours make the design of such systems frustrating to automate.

An alternative design strategy [70] is to abstract the agent design to a specification

of the communication behaviours which an agent must implement to be accepted as

part of the system. The exact implementation of the agent is not critically important to

the functionality of the system. By abstracting away agent specific details, the system

can be shown to have particular properties irrespective of the composition of the agent

collective which composes the system. Agents may join and leave a system at any time

for a multitude of reasons; completion of their objective, change in interests/objectives

of user, introduction/referral by another agent, resource bounds and opportunistic ex-

ploitation by other agents, activity/availability cycles, communication noise/failure,

agent/system failure, etc. The agents which remain actively participating in the system

may change capabilities themselves over the duration of the interaction and the role of

the system itself may also be modified.

Clearly to be able to predict the performance of multi-agent systems in the face of

highly variable circumstances is extremely valuable. In this work we extend on work

by [70] which shows how a basic protocol can be declared which guarantees a basic

behaviour of the system if all participating agents in the system interact through the

protocol. We then show how modification of the protocol to include constraints on the

interactions between participants can modify the behaviour of the entire multi-agent

system. Finally we show how evolutionary techniques can be used to search the space

of possible constraints to optimise the performance of the system with regard to a set

of performance measures and show how the quality of the solution resists degradation

in spite of changes in the agent performance, number and capabilities.

1.3 Contribution of this work

This work contributes to the fields of both evolutionary algorithms and multi-agent

systems. Succinctly it is characterised as “a development of an evolutionary algorithm

that has been applied to the problem of multi-agent design”.

We discuss the applicability and robustness of evolutionary algorithms and their ap-

plication to the multi-agent design problem, We contribute to the field of evolutionary

algorithm design by the introduction of a new system which exploits developments in

sampling methodology. We justify the design of the algorithm and give results against

well known benchmarks. We contribute to the field of multi-agent systems by provid-

ing a further step in the automatic optimisation of protocol specifications. We provide

empirical evidence for the consistent robustness of solutions thus derived.

We also make secondary contributions by publishing a new result for the Keane

function, and providing an argument for why the no free lunch theorem need not pro-

hibit improvement of optimisation methods.

1.4 Synopsis

Chapter 1 is this chapter, and is an overview of the work. Those chapters that remain

are laid out as follows.

Chapter 2 introduces the topics of protocols and multi-agent systems. These topics

form the backbone of the thesis and define the problems that will form the basis of the

algorithm development.

We introduce the reader to the complexities of real number optimisation in chap-

ter 3. We give examples of the difficulties faced by optimisers solving real number

optimisation problems, and review some of the more common features of such prob-

lems with the aid of two examples taken from the literature

We then review some of the common forms and motivating principles behind mod-

ern evolutionary and population based algorithms in chapter 4. We highlight the as-

pects of their design which we believe contribute to their success, and we consider

what lessons the relative performance of the algorithms might have for an algorithm

designer.

The limits of algorithm design are considered when we review the no free lunch

theorem in chapter 5. Understanding of the no free lunch theorem and its implications

provides the evaluation context against which the successes of this thesis should be

measured.

The detail of our algorithm design is found in chapter 6 which builds on the dis-

cussion from chapter 4 to elaborate the objectives of the design and the mechanisms

which we employ to achieve them.

We discuss common benchmarking functions from the literature in chapter 7, and

discuss the properties of the algorithms and best results by notable authors.

We then validate the performance of our algorithm in chapter 8 by comparison

against the results detailed in chapter 7 and discuss the evidence for adequacy of the

algorithm.

In chapter 9 we present the results of applying the developed algorithm to the ex-

ample multi-agent problem we introduced in chapter 2. We discuss the performance of

the algorithm on the multi-agent problem and the quality of the results found.

We conclude this work with a discussion of the achievements and possible direc-

tions for future work in chapter 10.

Chapter 2

Multi-agent systems

This work is focused on creating a search algorithm that can optimise protocol based

multi-agent systems. The simulation of multi-agent systems is very time consuming,

making the use of simulated multi-agent systems in the design process impractical. For

instance the simulation of a single detailed multi-agent system of 256 agents over 1000

simulated interaction timesteps took minutes to perform. Obviously, to perform search

over the space of possible optimisers requires performing sufficient tests to provide

an adequate guarantee that the results are not subject to excessive noise. The maxi-

mum number of tests that can be performed is severely constrained by the disposable

computing power.

Instead we turn to surrogate evaluation functions to permit rapid development of

the search algorithm. In pursuing this development strategy we address the concerns

raised by the No Free Lunch theorem. Once satisfied that the algorithm is functioning

correctly, we then apply the prototype algorithm to the optimisation of the multi-agent

systems.

2.1 Overview

This chapter describes the multi-agent systems which form the context for the later

developments in this work. We describe the role of protocols in controlling multi-

agent systems, the properties of multi-agent systems, the motivation for using protocols

and the limitations and capabilities that the use of protocols implies. We provide a

proof of concept system as evidence that constraints within protocols can be used to

manipulate the behaviour of a multi-agent system, and we then prove the scalability of

the approach by extending the system to a problem from the literature.

9

Fragments of this chapter, particularly the text on the proof of concept problem

are based, in part, on work published in the AMEC VII workshop in Utrecht, part of

AAMAS 2005.

2.2 Multi-agent systems

“Multi-agent systems” is a loose term, used to denote processes that are characterised

by the participation of collections of interacting autonomous agents. In common usage

it is implied, but not required, that the interacting agents are synthetic. Each agent is

empowered to make autonomous decisions and acts and reacts in its environment in

accordance with obtaining its objective. The purpose of design in multi-agent systems

is to create a system which can facilitate a user in obtaining an objective through the

use of a multi-agent system.

At the risk of understating the task, the multi-agent system design problem is com-

plicated. The objective of the system is typically an emergent property of the inter-

actions of all participating agents. To make matters worse the agents engaged in the

system are not necessarily cooperative, nor do they necessarily receive the same in-

formation. Agents do not normally have the same capabilities, nor do they usually

possess the same resources. In fact, multi-agent systems may be extremely dynamic,

agents may join and leave the system, they may malfunction or even be malicious and

the communication between agents is subject to delays and failures.

Initial approaches to multi-agent system design have been focused on the design of

agents themselves. By equipping agents with certain behaviours, preferences and rea-

soning systems, the architecture of the whole system can be shaped. This system works

well for small groups of agents where the system dynamics may be relatively easily

predicted. Unfortunately the complexity of the interactions between agents rapidly

grows as the system scales, and the interaction of agents developed by different design

stables is, to say the least, unpredictable. The agent-centric design method places a

heavy burden on the human designers who build, deploy and then maintain the multi-

agent systems. The complexity of the agent orientated design process, and the diffi-

culty of maintaining deployed systems is one reason for the scarcity and simplicity of

systems currently deployed.

It is apparent that scaling the traditional design methodology to large open real

world communities of heterogeneous agents is going to be a challenge. Reasoning

about and predicting the consequences of interactions in heterogeneous multi-agent

systems is inherently complicated, but the designer of a multi-agent system faces fur-

ther complications and restrictions.

Firstly, it is unreasonable to expect owners of currently active and deployed agents

(which may use sensitive information or have been configured for multiple behaviours)

to permit another designer access to each agent’s configuration [7].

Secondly, even if full access to agents were granted, agents are likely to be multi-

roled and currently participating in several endeavours. It is optimistic to expect system

designers to have sufficient understanding of the roles and mechanisms used by the

agents to be able to modify an agent’s behaviour without error or compromising the

agent’s behaviour in other roles. This is particularly true if the agent’s configuration is

the product of an non-intuitive design process like evolution.

Certainly, for systems involving numerous agents, it is unrealistic to expect design-

ers to be able to choose the best modifications to make to a subset of participating

agents in order to achieve the dual objectives of optimisation of system performance

and minimising interference and knock-on consequences.

Instead, if we wish to have these capabilities, we should consider other methods for

defining, designing and modifying multi-agent systems. We must use design methods

in which the validity of the design is not dependent on the componentry of the indi-

vidual agents. This necessitates a change of design focus from the control of agents

themselves to the control of the interaction between agents. One method of achieving

this abstraction is by specifying system interactions through protocols.

2.2.1 The LCC

The Lightweight Coordination Calculus (LCC) [69] is a logic programming language

for the process calculus. A set of behavioural clauses specified in the LCC syntax is

sufficient to define the relevant message passing behaviour expected of the implement-

ing agents. Agents action changes in their environment by direct action and request

other agents to perform tasks by message passing. Constraints may be imposed on the

messages that agents send and receive. The overall system behaviour is an emergent

property of the individual agent actions and the inter-agent behaviours defined by the

collection of message passing clauses.

The main advantage of pursuing a protocol based approach rather than an agent

design based approach is that it changes the emphasis of the design from focusing on

the capabilities of individual agents to the capabilities of the agent interactions. This

frees the designer from having to consider the peculiarities of the individual agents

in the population, making the quality of the design independent of properties of the

agents themselves. Consequently the design is considerably more robust to changes in

the constitution of the agent population.

The agent-independent robustness of protocol based multi-agent system design al-

lows the use of results obtained by simulation of protocol based multi-agent systems

to be used in qualitative comparisons without concern that the parameterisation is ex-

ploiting unique properties of the agent’s internal architecture. Qualitative comparison

of simulated systems allows search to occur; we have the necessary facilities to per-

form automated optimisation of chosen properties.

Figure 2.1 shows the syntax of the LCC. The author is grateful to Dave Robertson

for providing the definition. Figure 2.1 describes the message passing events that are

possible in the LCC syntax, where null denotes an event which does not involve mes-

sage passing, e.g. an agent changing role subject to some constraint Cons. Term is a

structured term in Prolog syntax and Id is either a variable or a unique identifier for the

agent. M � Agent �Cons, should be read as the agent role being defined will send

a message M to another agent Agent subject to constraints Cons, Cons�M � Agent

means the agent being defined receives a message M from an agent Agent also subject

to constraints. Further, the symbols then and or mean: the following action follows

as a consequence of the first or there is a disjunction of actions. Figure 2.1 shows only

the basic syntax; LCC is a more powerful system than we really use in this work. LCC

also defines additional symbols that are not relevant to our discussion, e.g. instructions

for parallelisation of execution.

Although LCC is the basis of the multi-agent system descriptions, the choice of

LCC is not significant to this work. Using the constraint mechanism provided by

LCC has benefits, but any mechanism capable of abstracting agents sufficiently to

allow qualitative comparison of multi-agent system configurations would have been

sufficient. As a consequence of the choice of LCC as the control medium, the focus

of this work is on protocol based interaction. This work investigates the potential

of automatically designing robust multi-agent systems to exhibit desirable emergent

behaviour through the control mechanism of constraints applied to an agreed protocol.

Framework :� �Clause� � � ��
Clause :� Agent :: Dn

Agent :� a�Type� Id�

Dn :� Agent �Message �Dn then Dn � Dn or Dn

� null �Cons

Message :� M � Agent �M � Agent �Cons

�M � Agent �Cons�M � Agent

Cons :� Term �Cons�Cons �Cons	Cons

Type :� Term

M :� Term

Figure 2.1: Syntax of LCC dialogue framework, see section 2.5 for an example agent

system defined in this syntax.

2.3 Scope of control

In this work we will use the LCC protocol specification [69, 54, 55] to provide the tools

for design at the interaction level. The LCC protocol specification permits detailed

control of the roles and obligations, but, unlike agent centric design methods, does not

normally extend to specifying precise roles for particular agents.

This choice raises the question of whether or not the mechanisms available through

the use of protocols are powerful enough to produce satisfactory optimisations of inter-

esting systems without exploiting unique agent properties. We answer this question in

two parts, initially using a small system to prove the feasibility of message passing and

constraints as a control mechanism before turning to the literature for an interesting

large problem. The computational burden of simulating genuine message passing is

great. In order to be able to simulate the large problem with the available facilities, we

abstract the message passing mechanism once it has been shown to be effective in the

proof of concept system.

We prove the concept of using constraints for optimisation of protocols by creating

a simple fully fledged trading system which fully implements a simple negotiation and

exchange protocol. Using this small problem we show how the standard features of

LCC allow for optimisation of the behaviour of the multi-agent system using proto-

cols. To do this a basic protocol will be elaborated by the addition of constraints on

when certain messages are passed. These constraints effectively limit agent behaviour

without penetrating the layer of abstraction, which makes predicting the consequences

of such additions feasible. We then demonstrate optimisation of the system by manip-

ulating the constraints to optimise the system for high trade volumes.

Having proven the basic concept, and demonstrated optimisation through manipu-

lation of protocol constraints we extend our experiments and apply the same approach

to a known problem from the literature. We have chosen to recreate the multi-agent

system from the SADDE work published by Sierra et al [80]. Having reimplemented

the problem from the literature, the second stage is to convert the original problem

representation to one that is capable of being controlled by a suitable protocol based

form. Genuine message generation, passing, and parsing is expensive to simulate. To

increase the simulation speed of the SADDE system, we do not use a real string based

message passing and parsing protocol in the actual simulation of the SADDE inspired

system. Instead we simply achieve the necessary effects by intervention in the agents’

state. This allows us to simulate a system that is larger and more complicated than that

which we would have had resources for otherwise. To ensure we remain within the re-

mit of protocol based manipulation of the agent behaviours, we modify only role based

behaviours using constraints, as proven effective in the proof of concept protocol.

2.4 Protocol optimisation

A protocol specifies particular properties regarding an agent’s obligations in a particu-

lar role during a transaction between agents. Constraints may be placed on the protocol

to alter behaviour, usually to keep the system within consistent boundaries. An exam-

ple of such a constraint is requiring successive bids in an English or Vickrey auction

to be ascending in value. This can be simply encoded by the extension of a functional

auction protocol with a constraint that any returning offer must be greater in value than

the previous offer.

Constraints also offer a sensible place within the protocol framework to place en-

codings of relationships that are uncertain or likely to alter. Retraction and revision of

a complete protocol is complicated. Agents may not have implemented the facilities to

meet the requirements of a new protocol.

An agent using a protocol has to be capable of a certain calculus – of manipulating

certain values as specified by the protocol. As long as the modifications to the proto-

col remain within the limits of this calculus modifications may be made freely without

alienating participating agents. Such changes are “safe”, at least in terms of contin-

uing participation. Agents are free to decline to participate under the new protocol

specification. Agent autonomy is not compromised by such changes.

Safe modifications are easily identified. Within a single scenario, such as an auc-

tion, there is a minimum well defined vocabulary which must be understood by all

participating agents. For instance, if it might be known that an agent manipulates free

variables that represent the price and quantity of some goods. If so, then it is “safe”

to define constraint based protocol modifications relative to these terms. The safety

comes from the fact that it is known that all participating agents must have some repre-

sentation of these quantities. To successfully participate in a protocol based exchange,

agents which used these terms in negotiations must also have standardised their denom-

inations. It would be “unsafe” to specify a protocol modification based on a concept

that was not guaranteed to be well defined amongst all the participating agents. Using

an unsafe modification would risk alienating any currently participating agents who

were unable to parse the new protocol.

Constraints allow a system designer safe and easy access to variables that indirectly

alter agent behaviours. A designer may use this access to the constrained aspects of a

protocol definition to modify the multi-agent system to maximise user specified objec-

tives. The designer is not capable of directly influencing agent behaviours through a

protocol specification, for instance the participating agents may default and withdraw

from the system, thus compelling a particular agent to perform a particular action is not

within the system designer’s remit. This has the consequence that the designer is not

able to manipulate the agents themselves into satisfying the required system dynamics.

Instead a designer alters the specification of agent roles, and by implication the scope

of activities available to any agents which choose to participate in these roles.

In a protocol based multi-agent system the emergent behaviour of the system is

not a consequence of the precise characteristics of the participating agents, but is more

correctly a consequence of the roles in which the participating agents interact. This

approach to multi-agent system design leads to greater robustness against changes in

the agent population, since individual agents are not design critical. The increased ro-

bustness comes at a cost however, since systems designed in this manner are unable to

exploit agent specific properties, and may under-perform relative to a more fragile sys-

tem that does exploit such properties. See section 3.4.2 for an alternative interpretation

of this type of fragility.

Properties desired by the user of the multi-agent system are typically non-trivial

emergent properties like “maximise my rate of transactions”, or “maximise my profit”.

These properties are extremely difficult to determine analytically. Fortunately, though

computationally expensive, it is possible to simulate the behaviours of the multi-agent

system. The ability to simulate the multi-agent system allows the evaluation of differ-

ent constraint values, and so we have the ability to search for potential constraints that

best satisfy the users objectives. In this work we do not consider the mechanism for

translating a user’s objective to a set of constraints, instead we focus on the optimisa-

tion problem of locating the best set of constraints.

2.4.1 A dynamic optimisation process

The dynamic aspect of optimising multi-agent systems is more complicated than might

first appear. Agents are deployed by users seeking to achieve one or more objectives.

It is reasonable to expect the users to modify the agents they employ in response to

perceived opportunities in the system. It is also reasonable to expect this modifica-

tion of agent behaviour to provoke counter actions by other participants not wishing

to be exploited. In addition the multi-agent systems themselves will be modified by

the system architects in response to the need to maximise their objective yield, all of

which in turn feeds back into the system and shapes the characteristics of participating

agents. The continual evolution of the multi-agent system is something that the system

designer should expect and prepare for. Protocols inherently provide for this eventu-

ality by reducing system dependence on agent characteristics and providing tools for

cleanly manipulating active systems.

Covering all eventualities by predictive design is difficult. Given the degree to

which other users’ objectives are unknown, the tactics used by participants are also un-

known. Any successful parameterisation of a multi-agent system with such dynamic

participants may be transient. Basic behaviours may be ensured by careful protocol

design, but more complicated emergent behaviours are not predictable without sim-

ulation. Once deployed, a multi-agent system will, in all but the simplest of cases

require frequent re-calibration and tuning to maintain the desired behaviour. Part of

the motivation for modifying the system is reactive, attempting to keep the system on

track in response to changes in the interacting agent community. Part of the moti-

vation for re-calibrating the system is pro-active, as the analysis of the historic data

indicates better choices for future interaction models. The system will, in any case,

require re-calibration as the user’s circumstances and objectives change. The optimi-

sation process is dynamic and ongoing. The tools that are used should facilitate this

process as much as possible.

In this work we are considering the optimisation of a multi-agent system in which

the properties of the participants remain consistent throughout the simulation period.

Use of interaction protocols gives independence of any particular agent characteris-

tics, however, a significant change in the behaviour or resources of the participating

agents could invalidate properties which are important to the optimisation. Continued

satisfactory system performance would then require re-calculation of the system pa-

rameters. The optimisation of a multi-agent system is not then a one off event with

results that persist. Each optimisation of the system parameters is a single step in an

on-going cycle. Maintaining satisfactory system performance is a continuous process,

in which the participants are both the initiators and enactors of opportunities and are

also simultaneously reactive to the actions of other participants or fluctuations in global

variables.

2.5 A proof of concept

In the first of two multi-agent system applications we demonstrate the evolution of

constraints on a small proof of concept protocol. The objective of the experiment is to

demonstrate the use of constraints in a simple maximisation of trade scenario. The aim

is to clearly show the mechanism by which the modification of protocol constraints

can be used to alter the behaviour of a multi-agent system. The proof of the feasibility

of this mechanism for controlling a multi-agent system is a necessary step to justify

further development.

Because it is a proof of concept, the primary significance of this work is in demon-

strating the constraint mechanism in action, thus in this demonstration there is no sig-

nificance to the protocol used, nor the objective chosen, both of which are chosen on

grounds of simplicity. In spite of the apparent simplicity of the problem, the reader

should not be deluded into thinking that searching for emergent properties of a multi-

agent system is an easy task. The simulation time severely constrains the number

of simulations that can be performed, limiting the number of evaluations that can be

made. Optimising an unknown system with very few samples is extremely hard.

2.5.1 Objective of the system

We implement a simple system that has many of the properties of a full multi-agent

system, but which has been abstracted of any unnecessary detail. We consider a group

of agents involved in a trading system, where some “goods” are bought and sold ac-

cording to conventional economics. We simulate the producers and end consumers,

and concern ourselves with optimising the trading between agents in the middle layer.

The details of the monetary transactions are also abstracted, and the traders negotiate

only the quantities offered, requested and then exchanged.

The optimisation objective of the system is chosen to be easy to understand: In-

creasing the volume of trade is beneficial to the user and is rewarded. The problem

is complicated by the fact that agents have limited resources and can only store a cer-

tain quantity of goods. Agents which have too little or too much are considered to be

underutilised or over-loaded respectively and incur penalties. The performance of the

system is evaluated by summing the volume traded and any penalties incurred over the

entire group.

2.5.2 Implementation of the system

Implementation of the proof of concept system requires a set of agents all of whom

are capable of realising a simple trading protocol. The protocol message passing is

constrained to achieve control of the system trading behaviour. Optimising the perfor-

mance of the system with regard to an emergent property demonstrates the plausibility

of using a constrained protocol to optimise the system behaviour.

The agents all implement the following simple protocol:

a�node�N� :: a�supplier�S� or

a�buyer�B�

a�supplier�S� :: request�TR� � a�buyer�B� then

offer�TO� � a�buyer�B�

�ConsS�TR�TO�

a�supplier�T � :: a�buyer�T ��Cons�bs

a�buyer�B� :: request�TR� � a�supplier�S�

�ConsB�TR�

offer�TO� � a�supplier�S�

a�buyer�T � :: a�supplier�T ��Cons�sb

An agent which initially starts out in an untyped ‘node’ role, chooses a role at

random. An agent in the buyer role seeks an agent currently in the supplier role using

a randomised yellow pages/matchmaker agent. The buyer then requests TR amount of

goods from the supplier. An agent in the buyer role forms its purchase request subject

to a buying constraint ConsBTR. An agent in the supplier role waits for a request for

some quantity of goods TR from an agent in the buyer role and then offers a quantity

of goods TO to the buyer as constrained by the supplying constraint ConsS�TR�TO�.

Agents may determine their role by deciding whether their current role is justified by

the quantity of goods they possess; the protocol has constraints for changing roles from

a buyer to a supplier Cons�bs and from a supplier to a buyer Cons�sb.

Over or under-loading of an agent is calculated relative to an agent’s starting load

of goods Qstart plus or minus a certain margin Qmargin and breaches of this margin are

penalised on a linear basis. When an agent changes roles from a buyer to a supplier (or

vice versa) the services which it had been advertising are no longer available, and new

services must be advertised, consequently changing an agent role (e.g. from buyer

to supplier or vice versa) is considered undesirable and is also penalised on a linear

basis. The setting of constraints on the agent protocol is then a straight forward multi-

objective optimisation with the set of optimal choices likely to include near maximal

throughput, near minimal overburdening and relatively low frequencies of role change.

2.6 A more advanced multi-agent system

The proof of concept system tests the feasibility of using protocol constraints to alter

the behaviour of a multi-agent system. The simplifications made to the system which

allow it to be used as a demonstration of protocol constraint based control also result in

a system that is too simple to be of interest as a challenging application for evolutionary

computation, for this we need a more sophisticated problem.

For a more interesting and complicated multi-agent system with challenging sys-

tem dynamics, we turn to the SADDE work on evolving multi-agent systems published

by Sierra, Robertson and Walton et al. in [80, 81, 79, 82, 88] as part of the SLIE project.

We are extremely grateful to Jordi Sabater for providing us with the archived source

code from the project. The work is a natural choice for a more sophisticated multi-

agent system. It is recent work and apparently well documented with a series of papers

describing the application of an evolutionary process to multi-agent system configura-

tion problems derived from the main project. There is also evidence that the project

used vast amounts of processing power to achieve the results published [80]. The use

of grid computation and parallelisation of the search process imply the project was

only borderline feasible with the processing power available at the time. This makes

the project interesting because the optimisation process that was used was too expen-

sive to allow comparison of the quality of different approaches: in such circumstances

using an optimiser that is expected to perform well is important.

The purpose of the SLIE/SADDE (Social Agents Design Driven by Equations)

work was to describe the implementation of a complete system under the SADDE

methodology. The SADDE framework is a design methodology for building a multi-

agent system using equation based models. SADDE is a waterfall life cycle consisting

of four main stages. The first phase of design in SADDE consists of building an equa-

tion based model that describes the desired global behaviour of the system. The next

step is to examine what is required of the social interactions between agents to achieve

the desired behaviour. The third phase of the SADDE design process is to create agents

with the basic rationalities and the necessary awareness required to interact in the envi-

ronment. In this last stage, agents are provided with internal variables for maintaining

references to their current state and negotiation engines to allow them to interact with

other agents. The final stage in the SADDE methodology is to create the behavioral

configuration for the multi-agent system that extracts from the many potential system

configurations the one that most closely matches the original equation based model of

behaviour. In the original SADDE methodology a genetic algorithm was used to search

for suitable agent centric parameterisations of the multi-agent system. In the SADDE

framework the parameterisation was only performed to prove that the model proposed

by the equation based model could be realised by an actual multi-agent system. The

quality of the parameterisation was not considered a priority in the SADDE work. Any

parameterisation that came close to matching the expected behaviour of the equation

based model was acceptable.

2.6.1 The basic structure

The multi-agent system described in the SADDE work is more complicated than the

proof of concept system in several regards. Firstly, there are now distinct types of

agent roles, termed producers, manufacturers and consumers, each of which have dif-

fering capacities and capabilities. The agents are arranged in a tiered trading system:

producing agents generate and sell a product to manufacturers, manufacturers sell the

product to consumers, and consumers dispose of the product and receive a salary from

some external source. The trading system is also more advanced, and agents’ negoti-

ations involve both a product and money; agents involved in trading must be aware of

both resources if they are to be successful and maximise utility in their trading. Lastly

agents have non-linear negotiation behaviours, which may be altered to influence the

trading behaviour of the system. Maximising trade by influencing these negotiation

behaviours is the objective of the optimisation.

2.6.2 Recreating the SADDE system

We encountered some difficulties with recreating the experiments reported in the SADDE

work. There is not enough information available in the reports to precisely recreate

the same system that was used in the evaluation of the system. Consequently direct

comparison against the results in the literature is unfortunately not possible. Here we

describe some of the difficulties we encountered whilst recreating the SADDE system.

Despite the difficulties the SADDE system is far from useless to us. We describe the

changes we made to the SADDE system in section 2.6.3.

Recreating the multi-agent system described in the SLIE/SADDE literature is com-

plicated by significant differences between the systems described in the various reports.

There are significant differences in the flow equations and the parameterisation of the

experiments between the reports and the source code. These differences seem to indi-

cate the source code was in the process of being upgraded to support a more advanced

system when the project was terminated. Since the flow equations used in the source

code are unlike any that are used in published work they can not be used to patch

information that is missing from the other reports.

2.6.2.1 Flow equations

The basic flow equations used in the SADDE system are described in [80, 88]. The

flow equations should be considered a partial specification. They refer to variables that

are not defined (Cons), and define equations for variables that are not used (Delivery2).

The flow equations also contain inequalities that are never satisfied under normal con-

ditions (MaxStockOuti � StockOuti � ProdRatei). Harder to guess are the variable

ranges that are left undefined for some parameters. In particular the ranges of the pa-

rameters tmax and β which are used to optimise the system trading behaviour are not

clear.

In section 6.1.1. of the annex to [80] a range for tmax is given, but the same descrip-

tion refers to variables that are not in the flow equations: (maxPriceIn�minPriceIn�maxPriceOut

and minPriceOut which are maximum and minimum prices for buying and selling be-

haviours for each type of agent).

When interpreting the flow equations certain assumptions must be made to main-

tain integrity. Additionally certain limits on behaviours are necessary, for instance it is

sensible to assume that agents are protected against performing division by zero. It is

also sensible to attribute significance to the amount of cash an agent starts the simula-

tion with; that the amount of cash an agent has access to is finite, and that agents may

not go into debt. Agents are thus forced to cease buying when they have exhausted

their cash reserves.

For clarity and ease of reference when reading this work, we define the meanings

of our variables in figure 2.2.

Variable Meaning

role � �prod�man�cons� Producer, manufacturer or consumer role

minPriceInrole The minimum buying price

maxPriceInrole The maximum buying price

minPriceOutrole The minimum selling price

maxPriceOutrole The maximum selling price

maxStockInrole The raw material storage capacity

maxStockOutrole The refined goods storage capacity

prodRaterole The rate at which raw material is made into goods

maintenancerole The maintenance costs

prodCostsrole The cost of refining one unit of goods

delayrole The time taken to refine a unit

initialCashrole The initial amount of money

salaryrole The payment per time unit

Figure 2.2: Extended system parameter meanings.

.

2.6.2.2 The number of negotiations

All the documents describing the SADDE multi-agent system describe a configuration

consisting of A � 60 agents in total, subdivided into 30 consumers, 20 manufacturers

and 10 producers. In [80, 81] the number of negotiations per generation is described

as N
T
 �A
2 �

A
3 �, where N � 30 is the number of individuals in the gene pool, each

performing T � 10 iterations of the trading routine. The trading routine consists of

negotiations between the layers. There are A
2 consumers, and every consumer attempts

to trade with a manufacturer. There are A
3 manufacturers and similarly every manufac-

turer attempts to trade with a producer. Thus there are 30 genes in a generation, each

being simulated for 10 cycles, where each cycle consists of 50 negotiations per cycle,

a total of 15,000 negotiation processes per generation.

However, in the same paragraph that describes this evaluation of a generation (sec-

tion 3.2.3 of [80], section 5.2 of [81]) both the documents describe the system as requir-

ing 24,900 negotiations per cycle. Assuming that the values for N and T are correct, to

achieve this number of negotiations in a generation the number of agents in the simu-

lation A would have been 100, and not 60 as reported. This would partially explain the

considerable effort that was reported to be expended in the evaluation, and the fact that

the first values for the plots of total cash in the system on page 23 of [88] are multiples

of 100 but not of 60. In this work one of our objectives is to ensure the system works

well on different sizes of multi-agent system. Thus we alter the number of agents in

our experiments, usually in the range 6 to 192. We retain the ratios between the agent

roles.

2.6.2.3 The fitness function

In the documents available, the fitness function used to evaluate the system varies

significantly. No description is complete enough to permit its use in a reimplemen-

tation. As we shall see, the source SADDE code is also inappropriate for our needs,

not least in the fact it describes a system that is not in the published literature. In the

SADDE work, the purpose of the genetic algorithm was to validate the design of the

multi-agent system by comparing its best performance to that predicted by the equation

based model. In all descriptions of the SADDE multi-agent system, the fitness func-

tion involve a comparison against expected values obtained from a partially described

equation based model; [88] is an overview and does not describe the fitness function at

all.

The fitness function described in [82] describes an exponential reward function

based on a comparison between the regressions of the equation based model and the

actual multi-agent based model. The equation based model is not given. This fitness

specification is confirmed when examining the source code, which contains a fitness

function that is described for a specific regression value of the cash at the production

and manufacturing levels of the system. The fitness function in the source code re-

wards optimal fitness for cash accumulation regression values of 44.224 and 53.935

respectively. The source code also contains a parameterisation file which defines val-

ues for the initialisation and runtime dynamics of the multi-agent system that could

have been used to bypass the requirement for a complete specification of the equation

based model.

Sadly the parameterisation given in the source code does not create a system ca-

pable of creating the necessary regression values, which, when reimplemented and

simulated are missed by some considerable margin. Without a complete description

of the initialisation and the system properties that were used to create the expected

regression values through the equation based model, the fitness function can not be

used. Since we do not have access to the equation based model, we are thus unable

to recalculate the equation based model values and are unable to use any of the fitness

formulations that are dependent upon a precise regression of the equation based model

value. This rules out the recreation of any of the fitness functions from the SADDE

documentation or source code.

Instead of directly reimplementing the fitness functions used in the SADDE exper-

iments, we create a new function based on the same principles. All the descriptions

of the fitness functions have in common that they are based on the accumulation of

wealth in the producers and manufacturers [81, 82, 79, 80] and fitness is attributed by

some form of comparison between the simulated rate of accumulation of this wealth

and the values predicted by an equation based model. Most descriptions of the fitness

functions also award fitness based on the levels of stock, except [82] which considers

levels of cash only. In calculating the fitness of the system, the levels of stock which

are held by the agents at the various levels of the system are considered explicitly in

[81] and implicitly in [80, 79].

A direct interpretation of [81] is that the objective of the multi-agent system is

simply to obtain a “moderate linear increase” in the amount of money owned by the

producers and manufacturers, and that “there is a positive flow of goods along the

chain”. The rationality of the negotiation engine ensures that no agent will sell a good

for less than it bought it for, which ensures that the flow is always positive along the

chain. Agents pay upkeep costs every iteration of the simulation, additionally producer

agents pay a cost to produce a unit of goods. These costs are non-negotiable; agents are

obliged to pay these costs. Agents with no cash resources are forced to stop trading.

The difficulty of parameterising such a system is not in getting the system to work,

which should be an automatic consequence of basic good design, but in getting it to

work well.

2.6.2.4 A re-implementation failure

The following discussion refers to the description of the SLIE/SADDE work in [80];

page numbers used in this discussion are relevant to that document. Following the

description on pages 13, 14 and 21 [80] gives an implementation of the SADDE multi-

agent system, which when equipped with the negotiation model given on pages 16 and

17 results in a system that is unresponsive to the optimisation parameters. Part of the

problem is that the description on page 21 specifies that the simulation of the multi-

agent system occurs for only 10 time steps, which is a duration too short to permit

significant trading to occur. Correcting this to 500 cycles, a figure supported by the

other evidence in the text (page 39) permits enough trading to occur to allow testing of

the effects of the parameterisation.

We searched for possible parameterisations using Monte Carlo sampling. We con-

centrated our search on the simplest prerequisites required for success in the SADDE

system: we search for possible settings that produce an increase in wealth of non-

consumer agents. We found no suitable parameterisations in 10,000 samples.

Concerned by our lack of success, we performed a more thorough search based on

enumeration of possible behaviours. First we simplified the search space by converting

the agent centric design to a role based protocol design. This involves partitioning

the space into homogeneous behaviours for producers, manufacturers and consumers.

Under this partitioning, the behaviours that are available to an individual in a particular

role are the same as those available to all individuals in the same role. This approach

reduces the number of free variables from 120 in the SADDE definition to just 6, two

for each of the three roles (see section 2.7.1 for a description of the parameters used

in the SADDE simulations). Partitioning the space is required to reduce the number of

variables to a manageable number. With just 6 variables to search, we have sufficient

resources to search the possible combinations of the variables at a resolution of 10

different values for each variable. Since producers and manufacturers simply have to

make a profit from the sale of their goods, and are not in competition with each other

to achieve the sale, homogenising the behaviours and partitioning the space in this

way does not create any inherent conflicts which would obviously prevent successful

parameterisation of the system.

We found no parameterisations that produced a positive growth in wealth of the

producer or consumer agents, confirming that the combination of the fragments of

descriptions in the SADDE related literature is insufficient to produce a feasible opti-

misation landscape.

There is one other source for a parameterisation that could be used to create a

functional reimplementation of the SADDE system. In the annex A of [80] there is a

description of an implementation which is supposed to relate to the flow equations in

the same document. Unfortunately the values contained in the annex require different

flow equations since they describe maximum and minimum prices for buying and sell-

ing at each tier, properties that are not represented in the published flow equations. It

is therefore necessary to expand rather than merely reimplement the SADDE system.

2.6.3 Expanding the SADDE system

Given the great difficulty involved in re-implementing the multi-agent system as de-

scribed in the SADDE literature, we must recognise that re-implementation has failed

and we are not going to be able to use comparisons against results published in the

literature. Instead we use the opportunity to expand the multi-agent system described

in the source code, creating a multi-agent system that is based on the description in the

SADDE literature, but that is adapted to protocols and optimised with regard to a more

portable fitness function.

We wish to remain as faithful as possible to the SADDE design for a multi-agent

system. Using a peer reviewed system created by a different research group helps

to prevent intellectual incest and the scale of the SADDE system and the difficulty

that was reported in optimising the system guarantees protection against charges of

triviality. The SADDE design has proven to represent a complicated problem which is

costly to search, and the optimisation of the system has been previously tackled with

evolutionary computing.

Using the SADDE design as a template for publishing a new problem specification

allows us to retain the justifications of the scale of the simulations, whilst simultane-

ously allowing us to publish a new, unambiguous, and hopefully complete specification

which can be used in future research.

2.7 Extended SADDE system

We attempted to minimise the changes made to the SADDE system, nonetheless it was

necessary to make several changes. We expanded the abilities of agents in the multi-

agent system to allow inclusion of the properties referred to in annex A of [80], we

then referred to the source code for instruction on how to modify the flow equations.

We also made modifications to the flow equations to allow floating point values for

cash and included kinder handling of cash, allowing an agent to manufacture goods in

quantities that it can afford rather than the bulk quantities used in the SADDE source

code. Finally we changed the mechanism by which the system is parameterised to a

role based rather than an agent-specific mechanism, to better represent the limited type

of control available when using protocols.

In the following sections we give a description of the major components of the

extended SADDE system.

2.7.1 Negotiation engine

The basic design of the negotiation engine is unchanged from that specified in [80].

Agents negotiate by exchanging propositions for the value of the goods they are to

exchange. Initially the seller approaches the buyer, a quirk of how the trade is tiered

in the SADDE system. The buyer then makes the first proposition to trade. The seller

then compares the utility of the buyer’s offer of exchange against the utility of the

counter offer they are prepared to make to the buyer. The deal is acceptable to both

parties when the recipient of a proposal evaluates the utility of a received proposal as

greater than the utility of the counter offer it is prepared to send next. If an offer is

not acceptable then the prepared counter offer is sent, and the process continues until

either an agreement is reached or an agent withdraws from the negotiations.

The possible interactions in the negotiation model are limited. Over a period of

time agents lower their offers towards their reserve price, gradually decreasing their

utility. The negotiation process performed by an agent is characterised by two values,

β which alters the type of tactic an agent uses when it falls back to its reserve price

and tmax which controls the rate at which an agent falls back to its reserve price, and

so specifies the maximum period of time an agent will engage in negotiations. After

tmax time steps of the negotiation, the agent will be at its reserve price and will cease

to negotiate further. Negotiations may be concluded by agreement or by an agent

withdrawing from the negotiation process after exceeding their tmax limit.

The possible states in the negotiation cycle are shown in figure 2.3. Initially an

offer is made from the buyer to the seller. The seller considers the offer and chooses to

either withdraw from the negotiation, accept the offer and trade under the conditions

specified by the buyer or reject the buyer’s offer and propose a counter offer. By

proposing a counter offer the seller returns control of the trade to the buying agent. In

figure 2.3 the states in which the buying agent has control of the negotiation process

are coloured. As is normal in a state transition diagram the start state for the process

(state 1) has a heavy border, and the final states are marked by double borders.

Once a proposition has been accepted the trading agents are committed to exchange

1 2 3
P(Buyer)

W

Reject P(Seller)

Reject P(Buyer)

Seller
withdraws

Buyer
withdraws

accepts
Seller

P(Buyer)

Buyer
accepts
P(Seller)

Offer P(Buyer)

Offer P(Seller)
Buyer offers

A

Figure 2.3: The negotiation cycle. Negotiations commence when a buyer in state 1 of-

fers a proposed trade P�Buyer� to a seller, the seller now has control of the negotiation

process (state 2) and can accept the offer (A), withdraw from the negotiations (W) or

change to state 3 by proposing a counter proposal P�Seller� to the buyer. The buyer

is now in control and may now either accept the seller’s proposal, withdraw from the

negotiations or continue by issuing another offer to the seller and returning the cycle to

state 2

the goods at the price agreed. Goods are transferred in integer quantities. The actual

quantity of goods transferred is determined by the raw material storage capacity, and

finances of the buying agent and the selling agent’s stock availability. The maximum

quantity that the buyer can afford is given by � cash
price�. Once stock has been bought

it is removed from the seller’s available stock and placed into the buying agent’s raw

material. Consumer agents dispose of purchased raw material immediately and so a

consumer is never limited by their storage capacity, nor are they subject to a processing

delay.

An agent’s negotiation tactics are described as either “boulware” or “conceder”

depending upon whether they slowly or rapidly fall back to their reserve price as they

approach their maximum negotiation time [80]. Agents have minimum and maximum

price bounds and a function α that determines the difference between an agent’s reserve

price and their current bid. α is a time dependent function, characterised by tmax and

β.

α � t
tmax

1
β

proposalbuyer � �minPriceIn�α�maxPriceIn
minPriceIn��

proposalseller � �minPriceOut ��1
α��maxPriceOut
minPriceOut��

utilitybuyer�offer� �

�����
����

0� if offer � maxPriceIn

1� if offer � minPriceIn

o f f er�minPriceIn
maxPriceIn�minPriceIn otherwise

utilityseller�offer� �

�����
����

0� if offer � minPriceOut

1� if offer � maxPriceOut

maxPriceOut�o f f er
maxPriceOut�minPriceOut otherwise

Figure 2.4: The utility and proposal generation formulas, the main constituents of the

negotiation mechanism

Figure 2.4 shows the formulas used by negotiating agents to calculate their current

bids. These formulae are taken directly from [80] and are in the SADDE source code.

Note the role dependent generation of proposals and calculation of utility.

In all our experiments the variable tmax, which represents the amount of time an

agent will spend in negotiation, is in the range �1�100�. The tactic parameter β is

permitted in the range �0�10�. These values are essentially arbitrary, however the value

of tmax defines a limit on the number of negotiation ticks that will be tried before

an agent withdraws from the negotiation process, and therefore directly affects the

simulation time.

Agents calculate the utility of a proposed exchange by comparison of the offered

value against the maximum and minimum values that they would use in that role.

Figure 2.5 shows the possible range of α values available to agents. We follow the

description in [80] precisely. It is interesting to note that agents are encoded with only

one tactic variable β, forcing agents to use the same tactic in both buying and selling

negotiation roles. An agent which has a high α value will negotiate prices close to its

reserve price. An agents β value alters how the α value changes during the negotiation

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 20 40 60 80 100

A
lp

h
a

Negotiation time (percentage of t_max)

Beta = 0.2

Beta = 0.1

Beta = 1.0

Beta = 5.0

Beta = 10.0

Figure 2.5: Each agent uses a tactic in negotiating a deal. In this example we are con-

sidering a selling agent. So called “conceder” agents rapidly fall back to their reserve

price (a high α) long before exhausting their time limit. “Boulware” agents on the other

hand persist in maintaining a low α value until finally rapidly conceding to their reserva-

tion price in the final stages. The choice of tactic is encoded in the values of β assigned

to each agent, the effect on α of different values of β are shown here. The relation

between α and buying price is given in figure 2.4.

period.

The time used by agents in negotiations is independent of the world clock, so an

agent that takes many exchanges to complete its negotiation does not find that it is

disadvantaged relative to agents that have negotiated deals quicker, despite this clearly

being the case in the real world.

The simulation of the supply chain is performed for 500 ticks. Each tick of the

clock replenishes the consumables in the supply chain and updates agent’s production

schedules and stock availability, as well as charging the agents maintenance costs. In

one tick the following actions are performed in order (see also figure 2.6).

� Raw materials are introduced to the producer agents by the entradaMat function

(figure 2.7).

� Producer and manufacturer agents perform one step of their production process

according to the production function (figure 2.8).

� Consumer agents get paid a quantity of cash by the salary function (figure 2.10).

� All agents pay maintenance costs, simulated by the maintenance function (fig-

ure 2.9).

� One complete round of agent trading takes place.

� A record is made of the levels of cash in the production and manufacturing

agents, for use in the fitness evaluation.

The population performs one complete cycle of negotiations per tick. The ne-

gotiation function is as shown in figure 2.11. Every production agent performs one

negotiation as a seller with a buyer selected without replacement from the set of manu-

facturing agents. Next, every manufacturing agent performs one negotiation as a seller

with a buyer selected without replacement from the set of consumers.

2.7.2 Parameters

In the flow equations in [80, 88], the agents have properties such as minPricei which

control the trading behaviour of level i agents. The experiment description in the ap-

pendix of [80] details the same variables but distinguishes the role of buyer and seller,

thus minPricei becomes two distinct values; minPriceIni and minPriceOuti. This for-

mulation is also used throughout the source code.

Table 2.12 gives the parameters used in our experiments. The agent role types are

denoted by the subscripts; prod, man and cons indicating a producer, a manufacturer

and a consumer role respectively. The symbols in the table have the same meanings as

in the SADDE work, minPriceIn, maxPriceIn and minPriceOut, maxPriceOut specify

the minimum and maximum range of prices that agents are willing to purchase and

sell goods. Stock held by an agent may be unprocessed raw material (stockIn) or

processed goods ready for sale (stockOut), both of which are subject to storage limits;

maxStockIn and maxStockOut.

Agents are charged a tax regularly by the function maintenance, which deducts

cash from agents, simulating subsistence costs. Producers and manufacturers have a

maximum production rate prodRate, which determines the maximum rate at which

the unprocessed material may be converted to processed goods. Processing of goods is

performed periodically, according to a processing delay delay. Processing goods costs

money, and so agents pay prodCosts per unit of goods manufactured, consequently

production and manufacturing agents require a quantity of cash to process their goods

for resale. To cover initial production costs and kick-start the flow of goods in the

supply chain, production and manufacturing agents are initialised with a quantity of

cash; initialCash. To maintain the flow of cash through the system consumer agents

receive a regular payment salary, which combined with the injection of goods to pro-

duction agents allows a well configured supply chain to maintain the flow of trade.

Flow through the supply chain stalls when participating agents have insufficient money

to cover the costs of purchasing or producing more goods. Stalled agents may be re-

deemed if they find a buyer of any products they have remaining, in the meantime they

will be unable to pay maintenance costs.

2.7.3 A new fitness function

We create a fitness function that is based on the same properties valued in the fitness

function of the SADDE agent system; an increase in net wealth in the production and

manufacturing levels of the supply chain. We do not have an equation based model

to compare the performance to, instead we simply view the fitness of the system from

a capitalist perspective, and aim for maximisation of the profit accumulated. As in

[80] our fitness function is based on a record of the cash levels of the production and

manufacturing agents at each global tick of the simulation. The objective of optimising

our extended version of the SADDE multi-agent system is to maximise the fitness of

the system according to the fitness function given in figure 2.13.

2.7.4 Conversion to protocols and experiments

The multi-agent system described in the SADDE literature is implemented from an

agent-centric perspective. In an agent centric design, individual agents are identifiable

and the trading behaviour of each agent can be manipulated directly. In this work

we are interested in the parameterisation of protocol based multi-agent system design

methods. General protocols do not normally identify behaviours for particular agents,

since this restricts their range of applicability. We need to express the behaviours

available to each type of agent, rather than encoding behaviours for each agent.

There are three possible roles an agent may take in a protocol based interpretation

of the SADDE supply chain. Each role has a trading behaviour specified by a (tmax,

β) pair. Optimisation of the protocol in this instance is the task of searching the space

of possible trading behaviours to maximise the fitness function given in figure 2.13 for

a population of some number of agents. The SADDE work used a population of 60

agents in the proportions 10 producers, 20 manufacturers and 30 consumers. We keep

these relative proportions for our experiments.

As shown in figure 2.14 the basic negotiation protocol implemented by the SADDE

system is almost identical to that of the proof of concept system. Agents do not change

role in the SADDE system so this aspect of control is fixed once the role has been

assigned. As befits the granularity of a protocol based control mechanism, agent be-

haviours are controlled through the identification of their participating role; the pro-

tocol does not distinguish agents individually. Agents trade by offering exchanges.

Exchanges are limited to occurring between producers and manufacturers or manufac-

turers and consumers. The trade conditions offered by a producer are denoted TPO,

similarly, offered trade conditions offered by manufacturers and consumers are indi-

cated by TMO and TCO respectively. All offered trade conditions are calculated subject

to the constraint imposed on the roles’ trade negotiation behaviour ConsPNeg�TPO�TMO�

indicating the constraint acting on a producer’s negotiation behaviour when evaluat-

ing the utility of the currently tabled trade offers TPO and TMO. The mechanism of

applying this constrained negotiation behaviour is through specifying values for β and

tmax as discussed earlier. Similar constraints apply to the negotiation behaviour of the

manufacturers and consumers. Note that the manufacturer is capable of fulfilling two

roles, that of buyer when dealing with producer agents, and that of seller when dealing

with consumer agents.

It is clear that the proof of concept system, which is used to prove the utility of

message passing protocol based control is of a very similar form to the SADDE ne-

gotiation protocol. Both systems use role based characterisation of behaviours, the

control of the emergent system dynamics is performed through the manipulation of

constraints applied to the behaviours available to these roles.

Unlike the proof of concept system, the actual SADDE negotiation protocol is

never implemented as a message passing system. The SADDE system is much larger

than the proof of concept system. The additional burden of generating, exchanging and

parsing exchanged messages is great and is unnecessary when the same effect may be

simulated directly. This abstraction does not bear adversely upon the findings of the

work. The SADDE system is fundamentally the same in operation and scope, but this

alteration in the details of the implementation allows us to simulate larger systems than

we would have otherwise been able.

The control of a multi-agent system can be viewed as the task of imposing correct

constraints on behaviours. The constraints within a protocol definition are adjustable

without having to retract and then reissue the full protocol. The constraints may be

modified almost arbitrarily as long as the modification remains “safe” with regard to

the capabilities of the participating agents. Constraints within a protocol definition es-

sentially allow indirect access to the concepts manipulated by agents. By modifying

the relationship between variables in the constraints the designer may alter the be-

haviour of the system as a whole. The task of optimising a multi-agent system that

is based on a constrained protocol may then be reformulated as a real number opti-

misation problem with no loss of expressive power. It is this connection that allows

us to then use the resources of the real number optimisation fraternity for optimising

multi-agent systems. The rest of this thesis is devoted to describing and developing

these tools.

2.8 Summary

The control of multi-agent systems is complicated, and the task is genuinely inter-

esting in itself. As multi-agent systems grow in complexity, so does the complexity

of their development and maintenance. If such systems are to reach maturity and be

deployed in a meaningful and useful sense the systems themselves (and not only the

agents in them) must be adaptable. Suitably skilled human caretakers are rare and

have a tendency to be too expensive to invest the time required to perform everyday

maintenance. Reactive systems that are capable of adapting to changing user or sys-

tem objectives are a desirable asset. Optimisation of reactive systems is also desirable.

Mechanisms that are capable of searching the space of system parameterisations will

have to be developed, and constitute a significant design challenge.

This work concerns the design of an algorithm for optimisation of multi-agent sys-

tems. It is a case study in building a mechanism to optimise a previously unknown

system. The design process is difficult; we are building a mechanism for which there

is no large body of relevant past works to guide efforts. To complicate matters the

test function is computationally expensive (and arguably incompletely specified), and

so can not be directly used in the algorithm development. Instead the optimisation

algorithm must be designed and tested against test functions that are thought to reflect

expected properties in the domain.

The multi-agent system in terms of an optimisation objective, has no particular

significance to this work, and could just have easily been one of any number of similar

real number optimisation problems drawn from the physical sciences or robotics. The

major challenge of the problem is to find optimal parameterisations despite the problem

complexity inherently causing a a chronic lack of samples in the search.

The multi-agent system does impact upon the choice of functions that are used in

the construction of the algorithm. The parameterisation of the agent system is a real

number optimisation task so real number representation and manipulation are required.

The problem is likely to have multiple optima and so the algorithm must be robust at

locating global optima in spaces with many false attractors. The agent problem space

may be subject to constraints (in the real number optimisation sense) and so be likely to

have large discontinuities in the space of acceptable solutions. The algorithm must be

capable of searching effectively in spaces that are constrained or otherwise discontin-

uous. The agent system is computationally expensive to simulate, limiting the number

of evaluations that may be used and making effective search of the space difficult. The

algorithm should therefore be efficient in its use of samples. The agent system may

change over time, and the optimisation algorithm performing the adaptation must not

be fragile in the face of this change. The algorithm should therefore not be sensitive to

its parameters, and whichever parameterisation is used should have a strong likelihood

of successfully operating on any related problem.

The results of our experiments on the multi-agent systems described in this chapter

are in chapter 9, after we have described the design process of creating an algorithm

capable of optimising on such problems.

// the simulation of a supply chain is performed for a period of ticks

function simulate(int ticks) �
// reset the cash tracking values, and the maintenance default counter

// these are used in the fitness calculation figure 2.13

producerCash = 0

manufacturerCash = 0

maintenanceDefaults = 0

for(t = 0; t � ticks; t++)�
tick()

�
�

// each tick is a complete cycle of production, payment, maintenance, and negotiation

function tick() �
for each agent�

entradaMat()

production()

salary()

maintenance()

�
negotiatePopulation()

recordValues()

�

// a utility function that records cash levels for use

// in establishing the fitness of the supply chain

function recordValues() �
// fitness is based on the total quantity of cash that

// has been held by the producers and the manufacturers

producerCash += ∑�producers
p�0 cash held by producer p

maufacturerCash += ∑�mau f acturers
m�0 cash held by manufacturer m

�

Figure 2.6: The tick function used in one cycle of the system simulation

function entradaMat() �
// do nothing unless producer

if(not producer)�
return

�
// calculate the price per item

price = minPriceIn + � �maxPriceIn�minPriceIn�
�stockIn�stockOut�

�0�5��maxStockIn�maxStockOut��

�
// if can afford to produce an item

if(cash � price)�
// examine the constraints on production:

// the amount of free storage

spareCapacity = maxStockIn - stockIn

// the amount that can be payed for

affordableQty = � cash
price�

// the (randomised) amount actually generatable

roughMaterial = random(minRoughMaterial, maxRoughMaterial)

// the actual amount produced by the agent

materialFlow = min(spareCapacity, affordableQty, roughMaterial)

� else �
materialFlow = 0

�
// move the stock into stockIn

stockIn += materialFlow

// reduce cash by appropriate amount

cash -= materialFlow*price

�

Figure 2.7: The function used to introduce material to the producing agents

function production() �
// do nothing unless producer or manufacturer

if(not producer or manufacturer)�
return

�
// goods are produced only after a delay has expired:

if(productionDelayTime == 0)�
// the amount producable is limited by: production rate,

// raw material and the capacity for storing the product:

availableQty = min(prodRate, stockIn, maxStockOut - stockOut)

// the production quantity that can be afforded :

affordableQty = cash / prodCosts

// the amount that will be produced

quantity = min(availableQty,affordableQty)

// the cost to the producer

cost = quantity * prodCosts

// effect the transfer of stock

stockIn -= quantity

stockOut += quantity

cash -= cost

// reset the production delay counter

productionDelayTime = delay

�else�
productionDelayTime = productionDelayTime - 1

�
�

Figure 2.8: The function used to simulate production of goods from raw materials by

the production manufacturing agents

function maintenance() �
// each agent type pays a different maintenance cost

if(producer)�
cash -= maintenanceprod

� else if(manufacturer)�
cash -= maintenanceman

// otherwise must be a consumer

� else �
// erode unspent cash cash = cash / 2

�
if(cash � 0)�

// no agent can have negative cash

cash = 0;

// record the failure to pay maintenance

// for the fitness evaluation

maintenanceDefaults ++

�
�

Figure 2.9: The function used to simulate maintenance costs experienced by trading

agents. An agent that has bankrupted itself has its back account returned to zero and is

permitted to continue trading, the failure to manage to pay the maintenance is recorded

and will be used in the calculation of the fitness of the multi-agent system

function salary() �
// do nothing unless consumer

if(not consumer)�
return

�
// increase cash reserve by the consumer salary

cash += salary

�

Figure 2.10: The function used replenish the cash of consumers, permitting continued

trading and stimulating the flow of goods

function negotiatePopulation() �

// trade between producers and manufacturers

// a list of potential buyers

L = the list of manufacturers

for(each producer, P)�
locate a manufacturer M

negotiate: P sells to M

// remove M from the list of buyers

remove M from L

�

// trade between manufacturers and consumers

// refresh the list of potential buyers

L = the list of consumers

for(each manufacturer, M)�
locate a consumer C

negotiate: M sells to C

// remove C from the list of buyers

remove C from L

�
�

Figure 2.11: The negotiation function. Every tick of the simulation involves one at-

tempted negotiation by the producer and manufacturer agents.

Variable Value Variable Value

minPriceInprod 10 maxPriceInprod 50

minPriceOutprod 50 maxPriceOutprod 100

minPriceInman 10 maxPriceInman 100

minPriceOutman 80 maxPriceOutman 135

minPriceIncons 10 maxPriceIncons 150

maxStockInprod 5000 maxStockOutprod 5000

maxStockInman 5000 maxStockOutman 5000

maxStockIncons 5000 prodRateprod 2000

prodRateman 1000 maintenanceprod 20

maintenanceman 40 prodCostsprod minPriceInprod�2

prodCostsman minPriceInman�2 delayprod 5

delayman 5 initialCashprod 50000

initialCashman 25000 salarycons 4000;

number of producers 10 number of manufacturers 20

number of consumers 30

Figure 2.12: Extended system parameters

function fitness() �

// initialise the fitness

fitness = 0

// we reward the enrichment of producers and manufacturers

fitness += producerCash

fitness += manufacturerCash

// we reward processing of raw material to product

fitness += 4 * total processed by producers

fitness += 3 * total processed by manufacturers

// we reward the maintenance of a cash reserve

fitness += 1000 * sum of final cash held by producers

fitness += 100 * sum of final cash held by manufacturers

// we penalise every instance an agent has failed to pay

// their maintenance costs

fitness -= 1000 * maintenanceDefaults

return fitness

�

Figure 2.13: The fitness function rewards the following properties : The sum of the

cash at each level throughout the simulation. The quantity of goods processed by

producers and manufacturers. The total flow of goods, represented by the quantity of

goods consumed. The final quantity of cash held by producers and manufactures. The

fitness function penalises any failure of an agent to pay their maintenance costs.

a�node�N� :: a�producer�P�

a�manu f acturer�M�

a�consumer�C�

a�producer�P� :: offer�TMO� � a�manu f acturer�M� then

offer�TPO� � a�manu f acturer�M�

�ConsPNeg�TMO�TPO�

a�manu f acturer�P� :: offer�TPO� � a�producer�P� then

offer�TMO� � a�producer�P�

�ConsMNeg�TPO�TMO�

a�manu f acturer�P� :: offer�TCO� � a�consumer�C� then

offer�TMO� � a�consumer�C�

�ConsMNeg�TCO�TMO�

a�consumer�C� :: offer�TMO� � a�manu f acturer�M� then

offer�TCO� � a�manu f acturer�M�

�ConsPNeg�TMO�TCO�

Figure 2.14: The basic SADDE negotiation protocol

Chapter 3

Real number optimisation

3.1 Chapter overview

In this chapter we discuss the problem of optimisation of problems parameterised by

real numbers. Some example problems are presented and explained and the twin curses

of the search process - dimensionality and precision - are introduced in the context of

an example problem. We also discuss common sleight of hand in the field of real

number optimisation and how to detect and avoid it.

3.2 Optimisation of real number parameters

Consider the task of designing a turbine blade. The most simple design process is

to iteratively create and test blade designs, a costly and time consuming enterprise.

Fortunately, the critical characteristics of a blade design can be expressed mathemati-

cally as parameters to equations, and more importantly the behaviour of the blade can

be more rapidly predicted by a fluid dynamic model based on these parameters. The

blade never has to actually exist in order for the design to be evaluated. The design

process considers not a physical turbine blade but a series of values.

Indeed, most design problems can be reduced to the consideration of a number of

parameters, which interact in some manner to produce a system with certain observable

properties. The designer’s objective is to find the best set of parameters given the

limited time and costs available for their search. Most systems may be approximated

by a computer model, which, when used as a surrogate with which to search for suitable

parameterisations, greatly speeds the evaluation process.

Having automated the evaluation of parameters, it is logical to also automate the

45

search for new parameterisations, entirely removing the role of the human designer

from the design process. The idealised manifestation of the process would be the

fabled “black box general optimiser” which efficiently and effectively optimises any

given problem. Unfortunately such a general device does not exist, at least not one that

performs better than random search.

Instead we obtain improved specific performance by sacrificing the generality of

the optimiser, which searches using structures that are expected to exist in the search

space. The closeness of the pairing of the search algorithm to the search space is

directly responsible for the quality of the search results over those of a randomised

search. Many different search algorithms have been proposed, and even within one

field, such as theoretical real number optimisation, there are a vast number of search

techniques.

Which method is best employed to solve a particular parameterisation problem

is dependent upon the precise properties of the problem. Some properties are non-

negotiable, such as the number of system performance evaluations which can be af-

forded by the user (this may be very low in a physics or complex system simulation),

or the requirement of an “anytime” answer provision service which requires that a valid

solution (though not necessarily the best solution) be available for use at all stages of

the search. Other properties of the problem are not immediately apparent and must be

discovered by exploring the relationships between the various parts of the parameteri-

sation space. This second set of properties are the most interesting, and it is the more

complex of these, which manifest themselves to the observer as interactions between

the variables, which give a problem its specific characteristics.

3.3 Properties of real number optimisation

Many design and decision processes can be expressed as a vector of real values. Each

dimensional component of the vector relates to a parameter setting in the problem.

The space of vectors is then the same as the space of all possible parameter settings.

By searching the space of possible vectors it is possible to locate the best assignment

of values to the vector, and subsequently solve the problem. In practice the problem

is doubly complicated. Most problems have high dimensionality, making conducting

even a low resolution mapping of the space infeasibly expensive. The real number

system also allows for solutions to be expressed in infinite precision, forcing consid-

eration of the limits of the numeric representation system. In some systems optimality

may never be reached. Genuine but infinitesimally small progress is possible for all so-

lutions involving irrational number representations simply by increasing the precision

of the representation.

Thus a search algorithm is doubly damned, once by dimensionality and the in-

significance of the volume of sampled points relative to the size of the space, and once

again by precision and the absence of atomic granularity in the search - there may sim-

ply never be a precise answer, the space may never be exhausted of possibilities. This

problem with precision becomes antagonistic when deciding what granularity to use

in the search. Unless enumerating the space it is never safe to exclude the possibility

that the search is just too coarse grained, and should be modified to examine the space

as closely as the representation permits. In most cases this is not possible; using very

fine grained search takes a prohibitive number of samples to locate an optimum. As a

way of explanation we will review the well known Rastrigin function.

3.3.1 An example: The Rastrigin problem

Rastrigin contributed [85, 63] a minimisation test problem which has become a stan-

dard benchmark problem in the field of real number optimisation. The function has the

following definition.

frastrigin��x� � a�n�∑n
i�1��xi�

2
a�cos�ω�xi��

�x � �x1� ���xn��
5�12� xi � 5�12

where a � 10 and ω � 2π are constants and n is the number of

dimensions.

frastrigin�optimum� � 0 (at (0,0,...0))

The Rastrigin function is simple to visualise. The first important component of the

function is the x2
i term which dominates the structure creating a bowl shaped function

in each of its dimensions. The second component of interest is the cosine of xi which

creates a (co)sinusoidal wave function which is phased to cycle once per each integer

increment of xi (due to the arbitrary choice of 2π as a constant multiplier). The sum

simply collects together the results over all dimensions. Please see fig. 3.1. Notice that

this function is clearly solvable by optimisation of one dimension at a time. Realisation

of this function in all dimensions greater than 1 produces valleys in the landscape

where the search may proceed towards a solution without being forced to cross every

peak. The function has one global optimum of height zero and for the default parameter

range has 11n
1 other optima.

3.3.2 Dimensionality in the Rastrigin problem

This landscape is not very complicated and yet has some challenging features which

make it hard for a naive optimisation strategy. The function is well defined over all

dimensions but is generally used in 25 or 30 dimensions. The apparent rationale for

using this level of dimensionality is that it appears to create problems which are just

beyond the solvable threshold for most approaches given the the ‘standard’ amount

of evaluations. They are thus informative in comparing the relative performance of

different solvers. We will look at the different evaluation contexts when we review the

reported performances of other techniques in the 7th chapter of this work.

If we consider a close up of the two dimensional case (figure 3.2), we can see the

difficulty faced by any strategy searching for an optima. Figure 3.2 has five points

of interest marked on it. The global optimum is at �0�0� and is marked by the label

optimum. Four other points are marked on the graph, labeled A through to D.

Position A is the point at �
0�5�1�5� and is representative of the situation of op-

timising towards a global optimum that is not in the immediate neighbourhood of the

search. The prospect of successful search from Position A is impeded by the presence

in the immediate vicinity of Position A of 4 local minima. With very high probability

a greedy optimiser that starts in Position A will fail to reach the optimum. Though not

likely, it is however possible to descend monotonically from Position A to the global

optimum by following the route that descends to the saddle point between Position A

and Position B and then skirting Position B at the same height until descending again

to the global optimum.

Position B is at �
0�5�0�5� and so is in the neighbourhood of the global optimum

but without further information simple search has a one in four chance of descending

into the correct basin. Once misled a simple algorithm may find it hard to distinguish

the following two cases: 1. that the algorithm has been deceived and is in the wrong

basin, and 2. that the algorithm simply needs to further refine the point a little to locate

the optimum. Successfully responding to situation 1. requires long range movement

to escape the basin, whilst situation 2. would require very small movements.

Position C at �
0�25�0� is in the basin of the global optimum. From this position,

where one dimension of the position is optimally chosen most optimisers would be

expected to locate the optimum. However, as the number of dimensions in the problem

increases the difficulty of finalising the remaining values increases. This problem, of

identifying which dimensions require further adjustment, is the first of the two curses

of high dimensional optimisation. Quite aside from the sheer size of the space, locating

and then fixing a minority of miss-set values is hard, even in linear space. This prob-

lem is the cause of the exponential time complexity in search based on probabilistic

mutation, see the discussion on mutation operators in section 6.7.2.

Optimising from Position C moves you towards the optimum and reduces the pro-

portion of the space that remains into which successful movements may be made.

This is represented by Position D which is at �
0�1�0�. From this position, a mere

2�996
10�4 of the space is closer to or equally distant from the optimum. Precision,

in terms of the accuracy required of an acceptable answer, has a clear influence on

the difficulty of the search. The choice of precision implicitly determines the size of

movements made in the search. The uncertainty in knowing if these steps were the

right size is the source of the second curse of high dimensional optimisation.

The probability of making random moves towards the optimum is clearly propor-

tional to the relative volume of the space nearer the optimum, which is also clearly

adversely affected by the dimensionality of the space. Consequently getting within ε
of the optimum in n dimensional space is considerably easier than getting within the

same distance in n�1 dimensional space.

3.3.3 Dimensional precision in the Rastrigin problem

Understanding why high dimensionality should prove antagonistic to precision comes

from realising that not all dimensions will be optimised at an equal rate. As shown ear-

lier, once a dimension is approximately correct any change will with high probability

worsen the performance. As the search progresses and more and more of the problem

is solved the proportions of the dimensions which are set relative to those still to be set

increases. The net effect is a decrease in the probability of a random change being at-

tempted only against those dimensions which remain to be improved. The actual space

of movement which can offer an improvement in any dimension decreases, as does

the number of dimensions against which effective improvement can be made. Thus as

the solver gets closer to the solution and solves or approaches optimal choices in dif-

ferent dimensions, it suffers from a reduction of effective power. The first problem is

the problem of precision in movement and the relative volumes involved in the search

space, the second is the “coupon collector’s paradox” in the guise of the problem of

randomly selecting dimensions. The coupon collector’s paradox occurs when attempt-

ing to accumulate a collection of “coupons” that are provided at random (in a cereal

packet or similar). As the proportion of the collection owned by the collector grows

they find that the majority of coupons now collected are already in the collection, and

progress made in collecting the remaining coupons slows dramatically.

It is possible to remedy some of these effects. Consider Position C in figure 3.2.

The probability of any local movement improving the score is limited to one half (for

infinitely small movements) and this probability decreases as the distance moved in-

creases. Making small movements is then more likely to be successful in a bowl shaped

landscape than making large movements.

The area which qualifies as a local improvement from Position C is shaded differ-

ently for the reader’s convenience. The situation faced when very close to the opti-

mum is harder still. Position D is at �
0�1�0� and suffers from the same problems that

searching from position C did, however now the movements have to be smaller still if

there is to be any hope of improving further. Fixed length movements are unsuitable

for this type of finessing of solutions, since any length small enough to optimise from

Position D is also going to take a very long time to get from Position A to Position D.

Most real number optimisers have a strategy for adjusting the length of movement to

overcome this precision deficit. To the best of our knowledge there are no techniques

for adequately handling the selection of dimensions.

3.3.4 Constraints : More complicated problems

The Rastrigin function is simple to visualise and properties learnt from studying low

dimensional variants remain faithful in higher dimensions. Part of the reason why

the Rastrigin function is easy to understand is that the problem is consistent over the

entire range of values and between dimensions. Unfortunately this is not true for the

vast majority of problems. Frequently in real number optimisation there are non-linear

interactions between the dimensions of the problem that make certain combinations of

values illegal as solutions. These are frequently found in applications where physical

constraints are in operation. An example would be where several machines have to be

used to process some goods, but the machines may not be operational all at the same

time due to their power usage. There is then a hard constraint on which combinations

of machines are permitted to operate at the same time.

-4
-2

 0
 2

 4
-4

-2

 0

 2

 4

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

Figure 3.1: The 2D Rastrigin function.

3.3.5 Keane’s function

In [47, 48] Keane gave details of a function he was using to test the ability of an

algorithm to follow a ridge of constrained values. The function defines a maximisation

problem and has the following form:

fkeane��x� �
�∑n

i�1�cos4�xi��2∏n
i�1�cos2�xi�����

�∑n
i�1�ix

2
i ��

�x � �x1� ����xn�� 0� xi � 10

where ∏n
i�1�xi�� 0�75�∑n

i�1�xi�� 7�5n

n = 20 or 50 is the number of dimensions.

fkeane�optimum� � unknown

Michalewicz [59] applied GENOCOP III (a highly specialised variant of a ge-

netic algorithm) to several constrained non-linear optimisation problems including the

Keane function with good results. GENOCOP III has bespoke mechanisms precisely

designed to overcome the discontinuities in the space created by the constraints. In fig-

ure 3.3 a plot of the surface of the 2 dimensional Keane function is given. Only points

within the constrained region are plotted, illegitimate parameter combinations are not

shown. The Keane function is similar to the Rastrigin function. The denominator

-1

-0.5

 0

 0.5

 1
 0

 0.5
 1

 1.5

 0
 10
 20
 30
 40
 50

 D

 C

 B

 A

Optimum

Figure 3.2: Detail of the 2D Rastrigin function near the optimum.

shapes the landscape such that better values are located near the origin, the constraint

∏n
i�1�xi� � 0�75 cuts across the optimal values, creating a landscape that rewards ex-

tremely fine adjustment against a hard boundary.

3.3.6 Penalty functions

Functions that have constraints in their definition can be converted to linear non-

constrained functions by the adoption of a penalty function into the function definition.

The role of the penalty function is to differentiate between infeasible points on the ba-

sis of the number of constraints they breach. This allows the solver to approach the

problem in two stages: the first is minimisation of the number of constraints violated,

the second is the finessing of a valid solution. These techniques have particular value

if the proportion of valid to invalid space is small since without this information the

search is likely to remain trapped in an infeasible part of space.

3.4 Dangers in optimisation

The purpose of research in this field should be to improve understanding of what oc-

curs during a population based real number optimisation. For reasons unknown, it

 0

 2

 4

 6

 8
 2

 4

 6

 8

 10

 0

 0.2

 0.4

 0.6

 0.8

 1

Figure 3.3: The 2D Keane function.

is common to see reviewed results published which suffer from one or more failings

which weaken their contribution to this understanding. Here we give a quick introduc-

tion to some of the more common flaws which occur through deliberate misdirection

or genuine mistake. We hope that by identifying these dangers now, we can prevent

ourselves and others from wasting their time.

3.4.1 Dangers in optimisation : Over-fitting

Unless very well supported, finding better results on a single function is useless in

terms of contributing to the understanding of algorithm design. Given enough patience

and funding, anyone persistent enough can obtain an algorithm which performs “bet-

ter” on a particular test case or problem. The mechanism is simple: either through

developing understanding of the space or through blind search of the parameters and

techniques available it is possible to develop an algorithm that performs better on a

problem by being more closely matched to the problem structure than the competing

algorithms. Under these circumstances, one of two things may have happened. The

first possibility is that the algorithm has been improved in a true sense: it is just less

wasteful than previous versions and is still applicable to the same range of problems.

The alternative is that the algorithm is actually over-fitted, and is consequently depen-

dent upon a non-generalisable property of the problem for its success. Improving the

performance of an optimiser is simply the task of removing only wasted evaluations.

To validate that an improvement is genuine we need to show its performance against

multiple and diverse benchmarks. To a certain extent we also need to be able to explain

why the algorithm is performing better, at least to the level of detail to be sure that it is

not simply exploiting an obvious common artifact of the benchmark functions.

3.4.2 Dangers in optimisation : Exploits

On some problems it is possible, with a little thought, to create operators that rely

on the author’s knowledge of the problem for improved probability of success. For

instance in [60, 74] Michalewicz and co-authors create a system to tackle Keane’s

function (see 3.3.5). The method they employ uses a system to generate sample points

that are only on the boundary of the feasible and infeasible space. This exploits the

author’s knowledge that, on this problem, the location of the optimum is precisely on

this boundary. The increased utility of these operators is dependent on a property of

the problem that is not explicit in the problem definition and not deduced during the

search. As such, despite the good results this operator combination gives, they are

none the less results of exploits that dramatically reduce the difficulty of the problem.

In general the ability to calculate operators capable of using such exploits declines

as the complexity of the boundary surface increases. The Keane function has only one

constraint crossing the global optimum which is the requirement that ∏n
i�1�xi�� 0�75.

It is thus trivial to create a mechanism that creates initialisation values that observe

the constraint ∏n
i�1�xi� � 0�75. The mechanism used in [60, 74] works by generat-

ing pairs of numbers that always balance to give the correct product, and thus only

works for dimensions of even cardinality. It is more difficult to create a mechanism

that successfully incorporates multiple non-linear constraints, and it is even harder to

calculate from sampling the space during the run when/if such a mechanism should be

employed.

Using the same knowledge you can create a different exploit that will improve

performance on the Keane function. All you do is create an operator that ignores

the result of the Keane function evaluation and attempts to move samples as close

as possible to breaching the product constraint. Since the highest values are always

located on the boundary this will improve any given sample that is not already on the

constraint boundary. Application of this method as a “finishing” tactic for another

generalised search method should give good results.

The code given in figure3.4 is an example of how a very simple method can be

used to “finish” results off such that they are closer to the product constraint boundary

than before. Unlike the exploit used in [60, 74], this does not force the positioning of

all points on the boundary. It thus a less gratuitous exploit. The point is only modified

if the new point is better. Search using this type of constraint boundary exploit will

search both sides of the constraint boundary, and will only move to the boundary if the

boundary offers an improvement in score. Please see section 4.2 for an explanation of

the pseudo-code used in this work.

The most common exploit is accidental and is best described as “the amazing aver-

age finding algorithm”. This exploit is commonly induced when the problem suite that

is being tested against contains a preponderance of functions with their optimum val-

ues at or very near the centre of the space. The exploit occurs by reducing an initially

well distributed population towards a predetermined objective. For example, consider

an algorithm that starts from a random cluster and calculates the average of the cluster.

If it then replaces a random candidate in the cluster with the new found average can-

didate, it will progressively tend to the centre of the space. Which also happens to be

the location of the optimum. For precisely the same reason points nearer the origin are

likely to be better scoring than those further away. Which means the adoption of a “re-

place worst in cluster if new average point is better” policy instead of the randomised

replacement policy only accelerates the convergence. Sadly these results do not persist

if the optimum is randomly relocated off the origin, or indeed is unfortunate enough to

be found outside the initial cloud of points.

3.4.3 Dangers in optimisation : Not the No Free Lunch

The “No Free Lunch” theorem [93, 94] is a result that holds for certain classes of

computation. It can be shown that if search is an ordering of sampling points from

the space without replacement, and if the solution could be any of the points in the

space, then all functions that search by ordering the points behave the same when

evaluated over all possible searches (orderings) in the space. What is not so frequently

understood about the no free lunch theorem is that we are not always interested in

improving performance in all possible searches.

function exploit (vector point)�
// copy the current point and save the old score

temp = copy(point)

oldScore = fitness(temp)

// select a random dimension of the point

dimension = random integer modulo number of dimensions

counter = 0

while(counter � number of dimensions)�
// back up the value from that dimension

oldValue = temp[dimension]

// calculate the product of the dimensions without

// the current dimension

temp[dimension] = 1

product = product of all dimensions of temp

// calculate the “repair” needed to bring the

// product to 0.75

repair = 0.75 / product

temp[dimension] = repair

// check the answer for validity

if(0 � repair � 10 � fitness(temp) � oldScore)�
return temp

�else�
temp[dimension] = oldValue

index = (index + 1) mod number of dimensions

counter = counter + 1

�
�
return point

�

Figure 3.4: An exploit that tests towards the ∏n
i�1�xi� � 0�75 boundary of Keane’s

function

The no free lunch theorem is often erroneously interpreted to mean “all algorithms

perform the same” or “nothing can do better than this”. For this reason the no free lunch

theorem is sometimes seen as an impediment to optimising search. It has also become

somewhat infamous as a “get out of jail free” card for parameter sweeps that fail to

make anything other than sporadic improvements. It is common to see the theorem

invoked as an incantation against failure when it is seen that none of the settings chosen

by an author completely out-performs the other (e.g. [72]) but without first establishing

that the theorem holds. In such cases it is simply used as a one-size-fits-all excuse for

why an optimisation failed. The failure to locate an operator or operator combination

that completely outperforms others on a suite of test functions is not necessarily as

a consequence of the no free lunch theorem. It is quite possible that the choices of

combinations used were just unfortunate.

Igel and Toussaint [44] believe the conditions required for the no free lunch theo-

rem to hold are quite fragile, and actually not that common outside of artificial com-

binatorial optimisation problems. It is also common to see the no free lunch theorem

name-checked to indicate the awareness of the authors who are going to try to opti-

mise against a subset of functions anyway (e.g. [66, 62]). Justification for why it is

believed that this may be plausible is rarely given, however the rate of progress made

in optimising against broad ranges of functions seems to indicate that these authors are

correct, indeed, we are not optimal yet.

The no free lunch theorem is worth understanding in the context of optimisation

of search. We address it several times in this work. First in this section, starting with

section 3.4.3.1, we give an informal argument to familiarise the reader with the topic

and set the scene for our main argument. Later in chapter 5 we provide a more formal

explanation.

3.4.3.1 An optimisation game

The no free lunch theorem can be confusing and for our purposes it is best considered

from the following point of view, which is based on the game playing view of the

no free lunch theorem proposed by Culberson in [13]. Consider an optimisation task,

played against a malicious but honest opponent, which requires the selection of an

integer value from a range. Your adversary is obliged to reveal nothing about the

manner in which the evaluations are performed and simply responds “Yes” or “No” to

your proposals. This is clearly a laborous pursuit. The order in which the values are

proposed is actually irrelevant. In the worst case the adversary may actually be playing

the strategy of “Say no until there is only one number left, then say yes”. No strategy

can be better than another against such an opponent. Under these circumstances and

the no free lunch can clearly be seen to hold - all searches are the same.

The no free lunch result is not dependent on a malicious opponent. In the non-

malicious case, the adversary initially chooses a fixed goal at random and is consistent

and honest. The search will on average span half the space. Since the goal is chosen at

random all search methods are equivalent, the no free lunch theorem holds again.

3.4.3.2 Gradients in optimisation

If the game from section 3.4.3.1 is modified such that the opposition has to reveal

slightly more than the “Yes”/“No” minimum of information about the values the prob-

lem changes character. If instead of confirming or denying success the opponent says

“Closer” or “Further” depending on the relative distance to a fixed goal then the amount

of information each answer reveals about the problem changes significantly.

The first difference is that the range of antagonistic strategies available to the op-

ponent is greatly reduced. The malicious opponent no longer has the option of freely

relocating the goal anywhere in the space, but instead must remain consistent with pre-

vious evaluations given. Eventually the requirement to remain consistent with previous

evaluations constrains the options available to the opponent until there is but one op-

tion remaining. This is analogous to playing the game of hangman against a malicious

opponent. Hangman is a word guessing game, played by two players. The objective

is to guess the component letters of a word known to the opponent in fewer than 10

guesses. If the opponent is malicious, every time a letter is guessed by the player, the

opponent checks if there is a word that is consistent with all the letters tried so far in

which the guessed letter is absent, if so then this word becomes the goal, and the letter

is added to those searched and failed. If there is no such word then the opponent is

forced to concede and the letter is added to those searched and found to be successful.

The finite lexicon and the requirement of consistency between the past and the current

guesses creates locality in the hangman search space. All methods of search that utilise

this locality are better at this kind of search task than those that simply select from the

space.

First let us define some concepts that will recur in our discussion:

Gradient locality: A property of one point is partially or wholly present in its neigh-

bours, thus gradients exist over sub-sections of the space.

Continuity: Gradient locality is to some extent continuous throughout the space.

GC Landscape: An idealised landscape where both gradient locality and continuity

hold.

Optimisable: A property of an interaction between a landscape and an optimiser,

where without use of an exploit, the optimiser is likely to approximate an op-

timum sample to within a satisfactory margin.

If a landscape does have gradient locality then “Closer” or “Further” is all that is

required to detect the direction of the local optimum. If the landscape has global con-

tinuity at some scale then it is possible to detect the direction of the global optimum

from a distance; sample based movements are all that are required to move towards the

optimum. Continuity in a landscape subsumes the property of causality – that move-

ment by some distance in the domain has a resulting change in evaluation bounded

proportional to the magnitude of the move. A completely continuous landscape is also

fully differentiable, a property that is inherent in the definition of locality.

Note that by assuming the properties of gradient locality and continuity we define

a class of structured landscapes. In doing so we then also accept the possibility of

optimising search on such landscapes by creating mechanisms that better exploit the

structures which are common between all such landscapes. Sampling and inferring

the local gradient could be improved to better infer the direction of the optimum, and

mechanisms that detect (dis)continuities in the space could be used to move between

the basins of attraction of local optima. An algorithm that ignores or mishandles the

information provided by the samples will always be worse on average over GC land-

scapes than one that guides the search using the information in the structure of the

landscape.

Note that we are not claiming that the space need be a totally continuous GC land-

scape to be optimised. When sampling using a finite number of samples the relative

strengths of the locality and continuity properties compose a signal to noise ratio for

the samples. Loss of locality creates a misleading sample – one where extrapolation

and interpretation under the assumption of locality will not necessarily lead to the opti-

mum. Loss of continuity creates sections of the space which are potentially conflicting

when interpreted under the assumption of locality.

The perfect landscape has no discontinuities and strong locality and no samples in

the space are misleading. This makes it easier to search, but does not make it trivial,

since the range of influence of the global optimum may be so small proportional to the

size of the space that saturating the space sufficiently to detect it costs a lot of samples

and the problem remains hard.

To be optimisable, in the sense that proximity to the global optimum is obtainable,

there has to be a significant probability of a sample landing in the basin of attraction of

the global optimum during the search. The competence of the search method should

ensure that when within the basin of attraction the search is directed towards the opti-

mum. For this placement of samples to occur the space must be reasonably continuous

relative to the number of samples available. Without this property the search is more

likely than not to sample only from sub-optima. The most extreme form of this type of

problem is a “needle in a haystack” problem, where there is no information indicating

the location of the optimum.

There are also problems which mislead the search, such as Goldberg’s deceptive

trap functions, where a large proportion of the space is deceptive and all local optima

are maximally distant from the global optimum. The deceptive trap functions are well

explained in [34]. If there is a very low probability of sampling from the basin of

attraction of the global optimum during the search, the problem is not generally opti-

misable, irrespective of how competent the search mechanism is at following gradients

toward local optima. We will demonstrate the performance of random sampling and a

basic hill climber on a simple deceptive problem in section 5.3.

In summary, the most important part of understanding no free lunch in function

optimisation is the realisation that to be optimisable a landscape has to possess to some

degree the properties of locality and continuity: There must be some signal against

which the optimisation is expected to proceed. In all other cases the optimisation is

degenerate; it is simply blind search. Thus all non-exhaustive searches must assume

some degree of gradient locality and continuity.

In justifying the design of the algorithm used in this work (section 6), we will return

to the concepts of locality and continuity and will more formally define the reason

optimisation is likely to succeed even with the no free lunch theorem. We will show

that if a landscape is optimisable in a true sense then these properties hold (at least in

part) both macro and microscopically. We also consider the possibility of there being

insufficient information in the samples taken to permit detection of the true signal.

3.4.4 Avoiding dangers

Thus to be of use as a basis for future work, we must avoid the three most tempt-

ing sirens in the field of real number optimisation: Over-fitting and her close relative

Exploitation, and the mistaken use of appeals to the No Free Lunch theorem.

The most common occurrence of over-fitting is in the blind search for synergistic

interaction between operators/settings. This is likely to lead to over-fitting, particularly

if the suite against which the parameter sweep is performed is the same as that for

which the results are announced. A warning sign that over-fitting may be present is

if beneficial interactions occur only infrequently, e.g. a parameter setting is better but

only for a subset of the problem suite.

All non-enumerative optimisation is based on the detection of features in the prob-

lem space. An improvement to an optimisation algorithm – such as removing redun-

dant evaluations – does not affect the generality of the algorithm and is simply an

improvement. Optimisation algorithms may also be improved by better implementing

search mechanisms, so they are better matched to the features that are known to exist

in all optimisable problems, such as gradients and basins of attraction. These results

are of interest to all researchers who encounter similar structures in their research.

The author of an algorithm also has the opportunity to include problem specific

knowledge which is not part of the problem specification and which could not have

been known without prior experimentation. This tends to take the form of limiting

the search to a manifold or subsection of the space, or employing operators which

probabilistically do the same. Searches performed using an exploit are not found under

the normal search processes, and the inclusion of the exploit generally greatly changes

the character of the problem. Consequently results located using an exploit tend to tell

little about how to improve the fundamental design of the algorithm.

Exploits have a more damaging effect than simply inconveniencing future learning.

Because an exploit is problem specific, often to a precise formulation, it only conveys

performance improvement over the set of precisely similar problems. On all other

problems the exploit is highly detrimental to the search. The point of this objection

is that the improvement in performance from employing an exploit comes from the

wrong place; instead of locating weakness in the algorithm design and making the

search more efficient the problem was made easier. The contribution such an effort

makes to improving the quality of the algorithm design is doubtful.

It is useful to clarify that the critical distinction of when exploitation has been used

depends on the objective of the optimisation process. Optimisation of a single problem

instance can, by definition not be exploited, since generality of the optimisation result

is never claimed. To retain general applicability to a problem class the techniques and

knowledge used in the optimisation process must not restrict the applicability of the

algorithm to a smaller subset of the problem class. If such a restriction is imposed

it must be announced that the optimisation is now targeting a smaller, simpler set of

problems. Despite the frequency of authors using such restricting assumptions, the

consequential loss of generality is rarely remarked upon [74, 60, 59].

As a rule of thumb, exploitation is present if knowledge from prior experimentation

is added to either the problem definition or the search algorithm in such a way as to

generate a simplified version of the problem for the algorithm to optimise. To be of

interest good performances have to be repeatable over many different functions with

the same or very similar algorithm parameter settings: there has to be a quality of

generality in the findings. Otherwise, we will fail in our primary task; which is to

inform the reader so our findings may be built upon. To be informative the algorithm

design should be rationally justified.

The final concern is that the no free lunch theorem can not be used to explain a

lack of success unless it is also shown that the preconditions of the theorem hold, it

is far more likely that the given algorithm is wasteful and has been poorly optimised

than it is that the algorithm is truly squeezed against the performance boundary of no

free lunch. Since there is no clear method of casting optimisation of the GC class of

landscapes into a no free lunch context, until informed otherwise, we assume immunity

and continue to expect significant progress to be obtainable against a range of such

landscapes.

In this work we will attempt to avoid over-fitting by using a large variety of prob-

lems from the real number optimisation literature. Where necessary we will modify

the problem to remove known exploits. We will also discuss why our algorithm design

has the properties it does and what features of the space these properties are expected

to operate effectively on. We provide evidence for how the design handles different as-

pects of real number optimisation and we show how significant performance benefits

may be seen across the test cases. We deliberately avoid extensive parameter sweeps

that “optimise” our design. One of the contributions of this work is the demonstration

that these kinds of results are still possible, with a little bit of thought and without

finessing the algorithm. The results published in this work are thus unlikely to be

the best that they could be; they are however, significantly better than the vast major-

ity of population based real number optimisation methods over significantly greater

ranges of problems, which is a strong result and unlikely to be an artifact of the testing

methodology.

Chapter 4

Population based real number

optimisation.

4.1 Chapter overview

In this chapter we review the population based technologies currently deployed for

real number optimisations. We give an overview of their salient features and where

possible discuss the motivation behind the different tactics employed.

These techniques all have similar properties, they all use a population of candidates,

which are evaluated relative to an objective function. Guided by the result of this

evaluation, new candidates are created as modifications or replacements of current

candidates. It is hoped that by proceeding in this way the algorithm will progress

towards better solutions.

Because the representation of a proposed solution is frequently not convenient to

manipulation or representation, a genotype-phenotype representation method is fre-

quently used. The genotype/phenotype terminology is borrowed from biology where

it is used to distinguish between a creature’s inherited genetic material (its “genotype”)

and its actual physical expression (its “phenotype”). This is simply a recognition of the

fact that an encoding genotype is always expressed relative to an environment, where

upon it becomes a particular phenotype. If expressed in different environments the

same genotype could render as different phenotypes.

In real number optimisation the use of genotype/phenotype terminology is used

for the case where candidates are represented in one form (the genotype) to the opti-

miser and are translated into another form (the phenotype) for expression and for the

purposes of evaluation. For instance if each of the values encoded by the genotype

65

(“genes”) are expressed as 12-bit strings, the genotype has the characteristic of being a

sequence of some multiple of 12 ones-and-zeros. The optimiser then has the option of

working at the bitwise level in the genotype – if the designer believes this may help –

which is not available to other genotype encodings. To be evaluated the genotype must

be interpreted relative to an encoding (usually Gray [14] or binary encoding) to trans-

late it into a number. The numeric form of the genotype is then expressed relative to

the objective function which in turn calculates a result. This result is used to identify

solutions to the problem and by comparison with other results indicates the relative

merit of the expression encoded in the genotype in question.

The choice of the genotype representation and genotype to phenotype mapping can

have significant impact on the performance of the algorithm. Clearly the choice of

search operators and encoding create a remapping of the search space by altering the

notion of locality under the search operators. Less obviously, the choice of encoding

also alters the relative size of the space. A genotype composed of genes with each

allele encoded using 16 bits represents an encoding space of 65536 distinct values per

allele. Reducing the accuracy of the representation to 12 bits per gene cuts the search

space to 1
16

th
of that at 16 bits, a mere 4096 distinct values are representable per allele.

For historical reasons many functions in the literature are defined over dimensional

domains of range [-5.11,5.12]. The precision a 12 bit encoding offers is increments of

approximately 0.0025, whilst most floating point encodings are accurate to increments

of 10�14 or smaller. The implicit sub-sampling of the landscape by a low precision

representation may create a landscape that is radically different. Properties such as the

number of optima in the landscape and the relative number of steps required to traverse

the space are all reduced.

Some of the results reported in this work used binary encodings of limited preci-

sion. Where this has been noted by the original publishing author it is also noted here.

This does not mean the results are incomparable, but that the representation space the

authors chose to work in was decidedly different. For reasons justified fully in sec-

tion 6.3 all work by this author avoids working directly with binary encodings and

uses genes of double precision floating point numerical values (transparently encoded

in 64-bit IEEE 754 floating-point number representation). Thus neither exhausting the

allele space nor performing binary operations is possible. The mapping of the encoding

of genes to the interpreted gene value is transparent and consistent throughout.

4.2 Pseudo-code

It is occasionally necessary to unambiguously describe algorithmic processes in a cod-

ified manner. Rather than use a particular language and risk alienating part of the

readership, we use an easy to read pseudo-code. To clarify and give examples of its

use, the pseudo-code used in this work has the following structures:

All comments start with the symbols “//” and continue to the end of the line. Func-

tions are defined by the “function” keyword. If the function takes arguments then these

are listed in brackets immediately following the function name. The scope of the func-

tion is emphasised by indentation and bracketing. Here we declare a function called

“example” that takes one integer called “limit” as its argument.

function example (int limit)�
...

�

Variable initialisation is written using the equality sign. If the initialisation is more

clearly defined in English than pseudo-code then this is used instead. Variables are not

typed, and comments are frequently used to disambiguate the possible meanings.

// initialise a variable x to the value 10

x = 10

// re-initialise x to the set of even integers

x = the set of even integers

A control loop, typically a “while” or a “for” loop, has the following representation.

The loop controls are declared in the brackets immediately following the loop type.

// a for loop

for (i = 0, i � limit, i++) �
...

�

// a while loop

while (true) �
...

�

It is sometimes preferable to avoid giving unnecessary detail to code sections that

are not relevant to the discussion. Where this is the case expressions such as “Create a

random individual x” will be understood to mean that using whatever creation mech-

anism is appropriate, the variable x now contains a randomly created individual; the

meaning of any unspecified terms, e.g. “random” and “individual” being drawn from

the default use in the literature or the context of the use.

4.3 The genetic algorithm

The Genetic Algorithm (GA) attributed to Holland [41] (though Goldberg [33, 34] is

mainly responsible for popularising the technique) is the most common of all evolu-

tionary algorithms. Based directly on simplified evolutionary dynamics the genetic

algorithm has been successfully applied to many real number optimisations. This is in

spite of the general warning issued by De Jong [17] that simple genetic algorithms are

not good at optimising by searching for ever smaller improvements. De Jong was cor-

rect. The canonical genetic algorithm as originally proposed did not include automatic

preservation of the best found candidates (as it is not found in biological systems)

and consequently could lose good candidates that were not frequently rediscovered.

Once the required preservation feature, known in the genetic algorithm community

as ‘elitism’ is included, the genetic algorithm does become a function optimiser, it-

eratively attempting to locate better replacements whilst preserving the best known

candidate. This does not mean that the algorithm is guaranteed to reach the optimum.

Since the current best candidate may not be within a traversable distance of the global

best solution, it is sometimes beneficial to the algorithm’s overall progress to abandon

the current best candidate if doing so releases the population from being trapped in a

local optimum.

4.3.1 The canonical genetic algorithm

The general form of the genetic algorithm is as given in the following pseudo-code.

//Pseudo-code of the simple genetic algorithm

function GASearch ()�
Generate a population of N individuals at random.

While (Still have time left)�

for (i = 0; i � population size; i++)�
Select a candidate

Put candidate into breeding population

�

for (i = 0; i � population size - 1; i+=2)�
Breed members i, i+1 of breeding population

Mutate the offspring

Put offspring into next population

�

Replace current population with next population

Check for termination conditions

�
�

The canonical genetic algorithm is characterised by the use of a fitness proportional

representation when selecting candidates for breeding and by the use of simple one-

point crossover and mutation rates proportional to the length of the chromosome. Fit-

ness proportional representation awards breeding opportunities proportionally to the

ratio of the candidate’s fitness against the average population fitness. Single point

crossover simply selects a location of the genotype representation and exchanges all

material after that point with the other parent.

4.3.1.1 Problems with the canonical genetic algorithm

The canonical genetic algorithm is somewhat of an antique, and suffers from signif-

icant design flaws. The fitness proportional representation can grant high likelihood

of breeding to only one individual, particularly if that individual is the first to exploit

a property of the problem and consequently outperforms the rest by a large margin.

The problem with this type of response to improvement is that it is largely myopic.

Populations quickly become overwhelmed by close relatives of the first candidate to

show significant improvement. The population based search deteriorates to a cluster

of hill climbers as the population diversity collapses and crossover is no longer able to

exploit significant differences between candidates.

Ranking and tournament based selection are the most commonly proposed replace-

ments for the flawed fitness proportional selection, and instead of using the scale of

performance differences between candidates simply use a ranking system, relieving

the problems associated with large fitness differences in selection. Ranking selection

awards selection opportunities proportional to the position of the candidate in the or-

dered ranked population. Tournament selection selects the best candidate from a small

group (usually 2) selected at random from the population. It is known that the tourna-

ment selection and ranking selection are essentially the same [35], but of the two tour-

nament selection is much more frequently used. Both techniques rely on obscuring the

magnitude of relative fitness differences between candidates to protect the population

from being swamped by large successes.

Single point crossover, whilst superficially similar to the biological inspiration of

the genetic algorithm is hopelessly flawed for the vast majority of problems. The

biggest problem with single point crossover is that it does not allow equal mixing of the

alleles of the genotype. Since the probability of being exchanged increases as you ap-

proach the middle of the chromosome the crossover driven exploration of the genotype

space is not fairly distributed. This is particularly excruciating if the genotype contains

linkage between non-consecutive genes since it is impossible for a single application

of single point crossover to successfully hybridise two candidates if they have over-

lapping gene sequences. Uniform crossover is now widely regarded as the standard

default crossover operator; in uniform crossover alleles are selected from either parent

entirely at random. This ensures a thorough mixing of alleles during the crossover and

promotes more even handed sampling. Incestuous crossover preserves sub-populations

and crossover between different sub-populations encourages exploration and allows for

the possibility of successful hybridisation of alleles with complicated linkage patterns.

4.3.1.2 Real number optimising genetic algorithms

Genetic algorithms specifically designed to operate on real number optimisation prob-

lems have a number of modifications to allow them to search more effectively. All such

algorithms use real number encodings. Binary encodings are obsolete in this field due

to the discontinuities such an encoding creates in the space. Because the lion’s share

of the performance of genetic algorithms is attributed to the effects of the crossover

operator (in the genetic algorithm community mutation alone is considered only a hill

climber) great research effort has been expended to create new and better real parame-

ter crossover methods.

Crossover operators used in real number optimisation have three distinct types.

The first type are direct analogues of the uniform crossover and exchange whole al-

lele values between genotypes. This type of crossover is a monotonically decreasing

hypercube operator, either maintaining or decreasing the allele space spanned by the

genotypes each time it is applied. Over long periods this convergence of alleles leads

to loss of diversity and effective cessation of the search. Algorithms using this type

of search have the unfortunate property of having no method of exploring outside the

hypercube of alleles currently contained by the genotypes and are consequently de-

pendent upon mutation to provide a mechanism for exploratory progress. Since the

mutation operator in independence is essentially a hill-climber, this combination of

operators has a very low probability of successfully exploring complicated space be-

yond the boundary of the initial population’s hypercube.

The second type of operator uses an arithmetic [59] or geometric [60] based blend-

ing function to combine the values of the parents. In arithmetic crossover, two val-

ues for an allele c1�c2 are merged according to the rule c�1 � a�c1 ��1
 a��c2�c�2 �

�1
a��c1�a�c2 where a� �0�1� is either a constant or related to the stage of the search.

Geometric operators work in exactly the same manner but instead have a merging rule

c�1 � cω
1 �c1�ω

2 �c�2 � c1�ω
1 �cω

2 . Notice that both these variants remain monotonically

decreasing hypercube operators.

The expansion of merging crossover operators to merge values selected from neigh-

bourhoods following a uniform, exponential or fuzzy (bi-modal triangular) probability

distribution gives the final class of homogeneous crossover operators. The offspring

are created by random selection from the relevant distribution. This class of crossover

operators has the common potential (also in geometrical crossover) to explore beyond

the hyperspace of the samples, and has been found to be beneficial to the reliability of

the algorithm.

With the realisation that one crossover operator may not have all the properties

that are desired, heterogeneous crossover operators, which are composite operators in

which one offspring is created by one operator and the other offspring is created by an-

other operator, have been investigated. Heterogeneous crossover operators have some

of the best results against common benchmarking functions of any genetic algorithm

based real number optimiser so far published. It is reasoned that the strengths and de-

ficiencies of one operator are being traded against the strengths and deficiencies of the

other, resulting in a more balanced and capable search.

4.4 Differential evolution

Differential evolution is a search strategy that is strongly reminiscent of the genetic

algorithm structure. It differs from the real number optimising genetic algorithm in

the way in which it performs recombination. Differential evolution uses a monotonic

improvement based replacement strategy, where candidates are only replaced if a fit-

ter alternative is found. The recombination operator uses information from multiple

candidates and is typically defined using four parents. The recombination mecha-

nism is very similar to geometric crossover. A new candidate is created by mixing the

original candidate with a vector created from the weighted difference vector of two

randomly selected vectors and one other vector selected from the population. That

is �x� ��x� ��w�F��y
�z��, where F represents the weighted rescale of the difference

vector and � represents the uniform crossover operator. Zelinka in [99] has a good

graphical overview of the differential evolution crossover mechanism and an interest-

ing discussion on the causes of search failure in small populations. As reported by

Hansen [38] the differential evolution mechanism fails to handle rotations of the prob-

lem space, however, Vesterstrøm [86] reports several extremely strong results using

the differential evolution mechanism. The algorithm has interesting properties in spite

of its allegedly weak sampling.

4.5 Evolutionary strategies

An evolutionary strategy is a generational mutation based evolutionary algorithm. Two

different forms are distinguished based on how the intermediate population is formed.

A �µ�λ� strategy has a population of size µ which from which it generates λ offspring

and then selects the next generation of µ members by selecting the µ best of the µ�λ
candidates. A �µ�λ� strategy on the other hand generates λ offspring and then selects

the next generation of µ members by choosing the µ best from the λ offspring only. A

third notation occasionally seen; �µ�ρ� λ� or �µ�ρ�λ� denotes that the evolutionary

strategy is using recombination over ρ parents in creation of at least part of the λ
offspring.

On landscapes with many local optima it is considered that the �µ�λ� strategy is

generally better performing, the ability to lose well performing candidates allowing a

temporary worsening of the algorithm sufficient to escape a local optimum. In 1993

Bäck in [4] considered the �µ�λ� to be the state of the art in evolutionary strategies, an

opinion that is still current today.

Evolutionary strategies use two basic types of recombination, discrete and inter-

mediate, each with global and two-parent variants. Discrete recombination selects the

allele value from one parent or the other. Intermediate recombination alters the current

allele value by some factor of the difference between the parent alleles. Global re-

combination allows the reselection of new parents from the population for each allele,

two-parent recombination uses the same parents for all allele operations [24].

Each individual in an evolution strategy is usually a pair of vectors; the first vec-

tor �α represents the domain values and is termed the object vector, the second vec-

tor �β represents the deviations of the Gaussian mutation operator applied to �α. The

individual is capable of not only adapting its position within the search space, but

also the mutation rates to which it will be exposed. Mutation modifies �β according

to β�i � βi � exp�τ�N�0�1�� τNi�0�1�� and �α according to α�
i � αi �β�iNi�0�1�, where

N�0�1� is function returning a normally distributed random variable with expectation

0 and standard deviation 1. Ni�0�1� indicates the random value is re-sampled for each

i. The values τ� � �2n��1�2, and tau � �2
�

n��1�2 are the “learning rates” of the al-

gorithm. The detail of this explanation is due to Eiben [24] who cites Bäck [3] as the

original author.

It has become common to calculate the covariance matrix, which can be decom-

posed by its eigenvalues to give directions for the elliptical mutation sampling. This

becomes clear if it is understood that an evolution strategy with the same adaptive

mutation rate for all values of the object vector explores a space consisting of a hy-

persphere. Using distinct mutation rates for each value in the object vector creates a

hyperellipse, and calculating the covariance matrix allows the hyperellipse to be ro-

tated. This is a powerful mechanism, and the evolutionary strategies that use it (e.g.

CMA-ES [38]) record some of the best results on many real number optimisation func-

tions. Rechenberg [68] developed the initial theory of the evolutionary strategies and

proposed an optimal mutation rate for the �1�1� strategy; the “ 1
5 success rule” where

mutation intensity should be increased if the historic success probability over recent

generations was greater than 1
5 and decreased if it was lower.

4.6 Evolutionary programming

Evolutionary programming is a mutation only based strategy that uses, to borrow from

the evolutionary strategy terminology, a �µ� µ� replacement strategy. Like evolution-

ary strategies the domain values are maintained as a vector with a separate variance

vector, permitting self adaption of the mutation rates. The object vector �α is modi-

fied by the variance vector�β as follows; α�
i � αi �

�
βi �Ni�0�1� and β�i � βi �

�
γβi �

Ni�0�1�. Here γ is a parameter that ensures the variance remains positive; if a mutation

should render a variance of zero or smaller, then γ is set to a small positive value.

As pointed out by Bäck in [4], both evolutionary strategies and evolutionary pro-

gramming share the same purpose in the modification to the variance vector, however

due to the implementation differences they have distinct sampling properties. Selection

in evolutionary programming is performed by 2µ tournaments between n candidates

randomly selected from the µ parents and µ mutated offspring, the best µ forming the

next population.

4.7 Particle Swarm Optimisation

The Particle Swarm Optimisation algorithm is due to Eberhart and Kennedy [21, 50].

Particle swarm optimisation represents the state of the search by a population of points

in the search space. The points are considered particles, and at any time t have a

position vector pt and velocity vector vt . The search progresses by moving particles to

a new position by addition of the old position and the velocity vector. pt�1 � pt � vt .

To guide the search, the particle retains the best point from its search history pbest and

also has access to gbest , the best point from the global search history. This information

is used when the velocity vector of each particle is updated every time step. The

next velocity vt�1 is a combination of the previous velocity vt , the vector to gbest and

the vector to pbest , vt�1 � ω�vt � random�0�φ1��pbest
 pt� � random�0�φ2��gbest

pt�, where ω is an ‘inertia’ weighting altering the relative significance of the previous

velocity, φ1�φ2 control the relative contributions of the pbest and gbest respectively and

random�x�y� is a function that uniformly randomly returns a value in the range �x�y�.

Velocity vectors are normally limited in magnitude. Initially each particle is assigned

a random position and velocity. As the algorithm progresses the population converges

towards the best found values. To assist in this process it is common to change the

inertia values during the run [22].

Particle swarm optimisation algorithms have generated a lot of literature regarding

the correct parameterisation on different landscapes. Multi-modal landscapes cause

particular concern because the influence of only one best found optimum can lead

to extreme convergence and loss of search ability. Consequently the simple particle

swarm optimisation algorithm has been elaborated by several patches. Clerc [9] sug-

gests the additional evaluation of one or several centre of mass “queen” particles, and

in [11] describes “tribes” – cliques of information sharing particles – between which

information is shared. The design of tribes also borrows from the field of evolution-

ary computation in using a particle generation method which is capable of performing

removal and replacement of particles in a tribe.

Significantly contributing to its popularity, the population size required by particle

swarm optimisation is consistently smaller than that of most other algorithms for op-

timisation of the same problems. Shi in [78] shows the particle swarm optimisation

mechanism is not overly sensitive to the population sizing.

In [22, 23] Eberhart and Shi show how the use of a constriction factor can improve

performance by reducing the velocity each generation. This constriction factor helps

combat the poor convergence properties of the particle swarm optimisation algorithm

and improves results by focusing search effort on promising areas of the space. Con-

vergence towards the end of the search is a desirable property for any algorithm with

purely probabilistic local search, since increasing the sampling density raises the prob-

ability of landing close to the local optimum. Controlling convergence to balance the

collapse in population diversity against the rate of approach to the optimum is very

difficult.

Each particle in the population of a particle swarm optimiser has a primitive mem-

ory. The best position reached by the particle during the search is stored, and the short

term movement history of the particle is implicitly recorded in the current velocity. The

swarm also has access to the position of the best particle in the swarm, and, through it,

is influenced by the global best position discovered in the search.

Particle swarm algorithms are amenable to modification of the communication

topology. By creating small world local networks [49, 11] of particles which share

influence, the algorithm designer hopes to create conditions in which local knowledge

is correctly balanced against global exploitation. Kennedy reported that overall, a sim-

ple Von Neumann neighbourhood where connections are based on a two dimensional

square lattice served the best and the star topology where all individuals are connected

to the same individual performed badly. Kennedy attributes the performance differ-

ences between the topologies to the rapidity of convergence on early best solutions.

The various topologies, with differing rates of communication, are in some way bal-

ancing the convergence rates of the algorithm, in much the same way that selection

intensity is considered to control the behaviour of the genetic algorithms [6].

4.8 Ant algorithms

The family of ant algorithms, originating with the work of Dorigo [19], is a hybrid of

reinforcement learning and random search. Using the analogy of foraging ants laying

down pheromone trails and automatically discovering the shortest path to objectives,

the algorithm probabilistically searches variants of the best solution(s).

Ant algorithms are frequently explained in terms of swarm intelligence, however,

as Clerc showed in [10] the ant algorithm is actually only a series of local searches. Ant

algorithms have primarily been applied to discrete combinatorial optimisation prob-

lems, where “the shortest path” analogy is easily maintained, the path being analogous

to an allocation decision, and the length being the total assignment cost. The applica-

tion of ant algorithms to real number optimisation problems has received little atten-

tion, partly due to difficulty of creating pheromone update rules that are successful at

searching real number spaces.

Despite the difficulties, Socha in [83] made progress in producing an ant algo-

rithm with reasonable performance on low dimensional problems. Extending the ant

algorithm to higher dimensions is complicated, and we know of no ant based algo-

rithm which is competitive over larger real number optimisation problems. One of the

difficulties with extending the ant based search is it has a strong commitment to incre-

mental solution development, whereas some problems are considerably easier if more

non-linear operations are possible.

4.9 Hybrid mechanisms

Recently the population based search community has started to examine in more detail

the concepts of hybridising techniques from one or more previously distinct fields. For

instance when building the “swarm algorithm framework for numerical optimization”

Xie [95] hybridises search methods from differential evolution and particle swarm and

even tests but does not deploy a neural network controller. Xie reports some of the

better results on constrained optimisation using this strategy. Yong in [97] uses sim-

ulated annealing to control the replacement policy in an evolutionary strategy, and

Parsopoulos [65] uses differential evolution to tune particle swarm optimisation. The

combination of mechanisms as complementary search techniques is promising. We

will also use mechanisms inspired from several search mechanisms. For our purposes

we are uncertain as to the utility of using one technique to parameterise another, since

this requires repeated evaluations and is in conflict with our general desire to minimise

evaluations.

4.10 Our design process

The literature though diverse and difficult to homogenise on a conceptual level gives

several indicators as to the properties that should be considered in the design of real

number optimisers. We briefly review the range of properties available to the designer

and relate them to the task of designing a population based optimiser for a general

multi-agent parameterisation problem. Wherever possible we should avoid creating

fragile mechanisms that require significant parameterisation. Full details of the design

are given in chapter 6.

4.10.1 Representation

The use of a binary encoding (binary genetic algorithms) or a real number represen-

tation (almost all other algorithms) alters the range of operations that are possible,

and to a certain extent may alter the complexity of the landscape detected through the

sampling. We desire accuracy from our representation, and speed from our optimiser.

The known mechanisms for manipulating high accuracy binary encodings are compar-

atively slow, requiring more iterations than lower accuracy encodings to traverse the

same distances. It is notable that there are no binary encodings of comparable accuracy

of the real number representations currently in competitive use. The desire to reduce

the number of evaluations used in the search whilst maintaining accuracy indicates

we are likely to be using a real number representation. The same constraint requires

that the population size used in the work be as small as possible whilst still providing

reasonable performance.

4.10.2 Modeling precision

Evaluation functions which are slow or expensive to calculate can be approximated by

the use of a lower precision model [45] or by inference from previous related evalu-

ations [73]. Typically instead of using the full system for every evaluation, the low

precision model is used instead. Sufficiently good results found using the low preci-

sion model may then be re-evaluated precisely using the full model. Ideally the model

should be cheap and fast to compute, but these factors alone are insufficient. The model

must be as accurate as possible, and typically must be built from only a few genuine

samples of the space. The model should be optimistic, it should not under value results

and thereby accidently exclude true optima. Conversely the function should not be

overly generous either. To be of use in evaluating the space the low precision function

has to direct the search towards interesting areas and the creation of false optima in

the low precision function that are not in the real function will waste evaluation effort.

Increasing the fidelity of the approximation is a challenge in its own right.

We are unable to simplify the specification of the multi-agent system to obtain an

adequate approximate model because long term behaviour exhibited by the multi-agent

system may be a product of any of the interactions of any of the agents in the system.

Instead we keep simulation of the system feasible through control of the number of

agents in the model, manipulating both the numbers of agents and the number of in-

teractions simulated to speed the evaluation process. Once we have proven the basic

concepts of the design process we then extend our experimental scale and evaluate

over larger and more complicated multi-agent systems for the full evaluation of the

optimisation process.

4.10.3 Initialisation and clustering

Generally the entire search space is available for initialisation. Some algorithms (such

as adaptive cluster covering) use clustering to iteratively narrow the region that is

searched. The initialisation range, and the mechanism of narrowing (if any) signif-

icantly alter the search. Narrowing mechanisms must balance the rate at which the

algorithm is capable of detecting interesting points with the rate the space is narrowed.

Clearly this gets very difficult in landscapes for which sampling reveals separate ar-

eas of promising candidates – an arbitrary decision must be made to concentrate the

resources on only one. In general we expect the landscapes over which we are opti-

mising to be multi-modal; we must then consider mechanisms that can prevent the loss

of interesting points. Since the concept of an interesting point is one which is future

directed, (a point is only interesting if it leads somewhere) such a decision can not

be made on the basis of the current point’s value, but by an evaluation of the point’s

potential for movement. We need a method of evaluating when a point has ceased to

be likely to progress.

4.10.4 Mechanics of movement

The search may be defined over sections of hyperplanes (stochastic tunneling), vertex

sampling of hypercubes (genetic algorithms), velocity vectors of particles with mo-

mentum (particle swarm) or implicit gradient estimation (evolutionary strategies and

similar). Each brings a separate definition of locality to the search: many are defined

over narrow ranges of the space, most are complementary. As far as possible, we wish

to take representative techniques from each major movement class. For ease of un-

derstanding the interactions we are interested in the simplest mechanisms capable of

performing, though this almost certainly reduces the algorithm’s overall performance.

More complicated mechanisms may be introduced in future research.

Cooling strategies and other mechanisms for encouraging convergence are effec-

tive if correctly calibrated to the search landscape. Auto-adaptive mechanisms relieve

the necessity of using a cooling strategy, and the additional burden of calculating the

correct parameterisation of the cooling strategy is unattractive.

4.10.5 Replacement and longevity

The selection of which individuals persist in the population, either by deterministic

methods as in the evolutionary strategies and differential evolution, or by probabilistic

methods as preferred in genetic algorithms, alters the algorithm’s sensitivity to popu-

lation diversity and alters the time span in which search mechanisms must be applied.

If a good candidate is expected to be lost from the population after a certain num-

ber of iterations, it is beneficial to ensure the sample has been subjected to sufficient

trials within this period to have had a chance of improving and or disseminating its

information.

Using a deterministic replacement policy ensures that at all times the candidates in

the population are in some way relevant and trustworthy, having “earned” their position

through competition. The population is then a model of the points from the sampled

landscape that are considered relevant by the replacement policy. If the replacement

policy is well chosen and the sampling has been sufficient, the points are representative

of significant points in their immediate locale. Points refined through local search

sample the local region around single points; merit is then best assessed over this range.

Crossover on the other hand generally samples between points in the population, and

the merit of a crossover operation is best judged relative to the population. It is then

desirable to have a replacement policy that evaluates the replacement of points relative

to the local sampled topology, the locality of the point being defined by the range of

the operator that creates it.

4.10.6 Auto-adaptivity

Most mechanisms are auto-adaptive in at least some of their parameters (constriction

in particle swarm, mutation rates in evolutionary strategies and evolutionary program-

ming). Which mechanisms are capable of being adapted in a meaningful way depends

strongly on the operator. Simple auto-adaptive methods such as constriction or mu-

tation of variance rates in evolutionary strategies are effective. If there is sufficient

understanding of the mechanism to permit their use, more complicated adaptive be-

haviours such as calculation of the covariance matrix (evolutionary strategies) bring

performance benefits.

4.11 In summary

At this point in this work it is beneficial to review what has been discussed, where this

fits into the strategic development of the algorithm and what has yet to be delivered.

We have given details of both the multi-agent systems we will be using in this work

and shown how their parameterisation is translated into a real number optimisation

task. We have also discussed optimisation of real number functions, and we have

highlighted and discussed significant aspects of various established and successfully

employed algorithms.

We will use the conceptual foundations lain in these chapters when we create our

algorithm for optimisation of the multi-agent systems. To decrease the algorithm de-

velopment time to a feasible time horizon we will be using surrogate functions. First

though we must show that this choice of development path and in particular the pro-

posed use of surrogate functions does not have any inherent flaws. Superficially the

use of surrogate functions is forbidden by the no free lunch theorem. Thus before pro-

ceeding with the development, we must show that we have addressed the no free lunch

theorem.

In the forthcoming chapters, we first examine the no free lunch theorem and show

that our development strategy will not contradict the theorem. We then create and test

our algorithm using surrogate functions, and lastly test the algorithm on the multi-agent

system.

Chapter 5

Formally dodging the no free lunch

5.1 Preliminaries

The no free lunch theorem [93, 94] states that when viewed over all possible objectives,

any search which is an ordering of samples taken without replacement from a finite

domain will produce the same mean performance. What the no free lunch theorem

had shown was that, in general, optimisation is a zero sum game. The corollary that all

improvement on one subset of functions is necessarily paid for by reduced performance

on another is a significant finding in computer science. The no free lunch theorem has

been extended and improved since its conception, but the basic result itself is sound.

One critical feature of the original no free lunch theorem is the assumption that

one is interested in optimising over all possible objectives. Clearly, if the objective

“select domain value A first” is in the set of all possible objectives, then so are all the

related objectives “select domain value A second”, “select domain value A third”, etc,

and “select domain value A last”. The same is true for all the possible domain values.

Clearly no fixed ordering can simultaneously produce the desired domain value first,

last and all places inbetween.

This observation leads to a refinement of the no free lunch theorem. It has been

proven in [75] that the smallest subset of functions on which the no free lunch theorem

holds is the permutation closure of a single function. Igel [44] proved the no free lunch

theorem holds for a uniform probability distribution on a set of functions if and only if

the set of functions is closed under permutation. A set of functions F � � f : X � Y�
is declared closed under permutation if for any function f � F and any permutation

π : X � X the function f oπ is also in F . This ensures that for every function f in

F , F contains, amongst others, its inverse. This is necessary and sufficient for the no

81

free lunch theorem to hold. Igel [44] showed that the fraction of uniformly distributed

functions that are actually closed under permutation is vanishingly small.

As remarked by Droste [20], consideration of the space of all functions is useless

in a practical sense, the fragment of the space of all functions that can be represented

or evaluated is tiny, the space of all functions is simply not realisable.

The no free lunch theorem is of direct relevance to this work on two accounts.

The main thrust of the thesis applies a technology developed on one set of problems

to another set of problems. The no free lunch theorem prohibits general improvement

over the set of all problems thus requiring proof that the surrogate problems used in the

development are related to the multi-agent problems. For the same reason, the no free

lunch theorem only permits improvement of algorithm performance against a set of

benchmark problems if none of the current results are optimal. A naive interpretation

of the no free lunch theorem might be used to infer that no general improvement can

be made against the set of benchmark problems, but this is (as we shall see) equivalent

to claiming pareto optimality of the current performances.

5.2 Structure in the benchmarking problems

The following discussion is heavily dependent upon the techniques described by Chris-

tensen in [8] and considers the distribution of new samples taken from the domain.

The reader may also wish to familiarise themselves with the original works by Wolpert

[93, 94], and the notable works by Culberson [13], Droste [20], English[28, 29, 26, 27],

Igel [44] and Schumacher [75].

We wish to demonstrate that the set of problems spanned by the frequently used

benchmark problems is one that exhibits a definite structure and consequently is a true

subset of the set of all problems. That the set of random functions is not represented

in the benchmarking literature is obvious; each value in the co-domain of the func-

tion is derived only from manipulation of the value(s) in the domain. This excludes

random functions; the total complexity of the outputs of the system is bounded by the

complexity of the system and the inputs.

Examination of the problem definitions reveals that the traditional benchmark func-

tions are basically different perturbations of low order functions. Consider the Rast-

rigin function which in every dimension is a composition of a sinusoidal perturbation

and a bowl shaped second degree function. The dominant feature of the Rastrigin func-

tion is the hyper-dimensional bowl shaped structure; the sinusoidal wave is essentially

an embellishment, creating local maxima and minima. Similar properties are evident

in the Keane function, which is a sinusoidal perturbation of a slope dominated by the

product term in the denominator.

This general gradient property is trivially present in De Jong’s sphere function, and

examination of any of the benchmarks in the suite will reveal similar properties, though

the reader may find it easier to consider the sphere function in the remainder of the

discussion. These gradient structures enforce a general trend in the co-domain values

of the space. Samples taken from the domains of these functions have higher than

average probability of being of above average evaluation in the co-domain if they are

close to other domain samples of above average co-domain value. Since the function

is not random, the maximum deviation a sample x� ε may have from the next nearest

sample x is less than the diameter of the range. This skews the mean of the evaluation;

the sampled neighbourhood in the proximity of any given point is structured. How far

this structure maintains is not actually important for this discussion, but it certainly

is a calculable metric, for instance the minimum distance that the structure extends is

calculable from the minimum movement in the domain required for the accumulated

maximum deviation to span the range.

5.2.1 Structure and prior information

Recall the optimisation game from section 3.4.3.1, where the objective is to guess an

integer from a range of possible values. As mentioned in section 3.4.3.2 if instead of

only confirming or denying success the opponent says “Closer” or “Further” depending

on the relative distance to the fixed goal then the amount of information each answer

reveals about the problem changes significantly. The utility of the information trans-

ferred from the opponent to the player is dependent upon a common understanding of

the property of “distance”.

The existence of a structure between the domain values and the evaluation val-

ues necessarily implies local continuity in the function, and the function permutations

that maintain this type of local continuity define an optimisation class. This type of

mapping is easily imagined by adding an constant offset mapping to each of the do-

main values, creating a new landscape which is identical but relocated. The rotation

mappings are also in this class, as are any homomorphic set operations.

The set of possible homomorphous mappings of the benchmark functions is the

smallest set that we can operate over whilst resisting the charge of overspecialisation.

The set of mappings defines a set of attendant properties of benchmark functions; prop-

erties which are observed in all homomorphic remappings of a benchmark function,

and represent the structure common to the entire set of related benchmark instances.

In this discussion we are considering the challenge faced by an algorithm designer

who seeks to improve performance on a set of benchmark problems. The entire set

of such properties represents the collective types of structures that are present in the

benchmarking problems. It is these properties that an optimiser would require as prior

information to be able to perfectly optimise all possible variants of the set of bench-

marks. We will consider them the set of benchmark properties Pbenchmark. For the

purposes of this discussion, the set of benchmark properties defines the universe of

problems in which the algorithm will optimise. The astute reader may have noticed

that optimisation over the set of homomorphisms constitutes the basis for another in-

terpretation of the no free lunch theorem, which we will discuss in detail in section 5.4

The difference between the prior information encoded into the optimiser’s design

Pprior and the actual set of properties of the problem set Pbenchmark defines an informa-

tion gap, leading to properties incorrectly used by the algorithm Perror:

Perror � �p : p � Pprior �� Pbenchmark���p : p � Pbenchmark �� Pprior�

Examples of such properties could include known limits on the gradients in the

space, correlations between subsets of parameters or known limits on the extent of

noise or the function distribution that generated the noise in the landscape (e.g. a

Gaussian noise distribution is a common event). Other properties could refer to the

maximum and minimum feature sizes represented in the space or to the nature and

maximum degree of the generating function.

Attempts to exploit properties that are not present in the problems, or failure to

exploit properties that are in the problems results in a reduced relative performance.

The information gap, and the proportion of the search volume that it accounts for,

gives the degree of differentiation in performance between an algorithm equipped with

prior information Pprior and an optimal search over this set of problems.

Correctly identifying the presence of properties in the problem cases, and incor-

porating this knowledge in the algorithm’s prior knowledge Pprior increases the pro-

portion of possible search instances that are informed. As long as the information is

relevant to the optimisation, increasing the proportion of the search that is informed

reduces the proportion of the search which is blindly probabilistic, and so raises the

average performance of any algorithm so informed. Whilst there remains an informa-

tion gap, optimisation of a search algorithm is then possible over a set of problems

by reducing the gap. The unlikely situation of a zero response gap would imply the

algorithm wasted no information, and was optimal.

The problem set of common benchmark problems and their homomorphisms de-

fines a subset of the space of possible functions which have certain properties. By

improving the use of these properties the creation of better optimisation methods is

possible. A possible source for improvement in performance is better matching of the

algorithm to properties of the optimisable problem structures. We have shown the role

of the no free lunch theorem in the face of such improvements: we “pay” for the im-

proved performance on problems that have optimisable characteristics by increasing

the degree of appropriate structure in our search. We do not breach the no free lunch

theorem since by making these commitments we may now perform worse on problems

that do not have these properties. The properties we attempt to encode as prior infor-

mation are properties that are capable of being interpreted as signaling the location of

optima. Using these properties is the only method that can be used for optimisation

faster than random search. All informed search methods attempt to use this source

of information. Identifying and encoding these properties with less noise, so they are

more effectively tested when the search is conducted, creates better quality search over

all problems that have these properties. We have then formally discharged our obliga-

tions to the no free lunch theorem where improving performance relative to the set of

benchmark problems are concerned.

5.3 Application to a novel problem

Unfortunately, the fact an optimiser is well suited to a particular sub-set of problems is

no guarantee that the optimiser will be well suited to any other problem drawn at ran-

dom from the set of all problems; the “design a good optimiser and apply it” strategy is

potentially flawed. In the following section we consider the limits of the repercussions

and discuss what options this leaves a designer who is faced with exactly this task.

An algorithm that is equipped with a particular form of prior information is only

better than random search for those problems with matching structure; over all prob-

lems that are not in this class the algorithm will necessarily perform worse. We are mo-

tivated by the need to demonstrate as far as possible that the set of problems spanned by

the benchmark problems used in the algorithm design are related to the set of problems

spanned by the multi-agent problems.

One may be tempted to use arguments from history: that the benchmark problems

are selected because they represent particular problems that are relevant in the real

number optimisation domain. This reasoning is flawed precisely because the bench-

marks are chosen from past problems that have been encountered, and say nothing

about the future problems that may occur.

So what are the properties of the agent problem that can be known a-priori? Some

properties are obvious, for instance it is not a random system. True random systems

are excluded by the bounds on the complexity – a system creates outputs only as com-

plex as the inputs to the system and the system itself. Even a non-random system may

have high degrees of dynamical instability, a sensitivity to initial conditions that ren-

ders the long term prediction of the system futile. It is then reasonable to assume the

existence of neighbourhoods within the space. What form these neighbourhoods take

is however unknown – they may not be exploitable. Application of an optimiser to an

unknown domain is then a gamble. There is the reassurance that if any of the type of

structures that are encoded into the prior knowledge of the optimiser are also present

in the problem then the optimiser will have at least some improved ability. Equally if

these properties are not present the optimiser can be no better than random search.

To know whether the optimisation methodology is well founded we must consider

what type of landscapes could be present, and show that these are similar to the prop-

erties we encoded into the prior information of the optimiser.

There are landscapes with a general gradient towards the optimum, general gradient

away from the optimum, and with no general gradient. The first is the class of problems

on which we intend to base our optimiser, the second is the class of deceptive problems,

and the latter class consists of needle in a haystack problems, plateau problems and

random landscapes. We must consider the possibility that the multi-agent optimisation

problem is either deceptive or random. We know that the true random landscapes

are not part of the multi-agent problem, but the pseudo-random landscapes may be. A

pseudo-random landscape that holds none of the properties of the benchmark problems

has no properties of local self-similarity.

If we consider optimising on the landscapes with general gradient towards the op-

timum, it is clear that the landscape retains some properties which will be similar to

those present in the benchmark optimisation set; better points are on average located

near similar points. We should thus expect our optimiser to perform better than ran-

dom search in this case. The second set – of deceptive problems – contains structures

identical to the first set with the difference that they lead away from the optimum. Fol-

lowing local improvements will in the long-term result in a lower overall achievement

than ignoring the gradients and using random sampling would.

To empirically validate that the optimisation landscape is fully deceptive is hard,

since it requires knowledge of the optimum and the topology of the space. The major-

ity of deceptive spaces are only partially deceptive, such that some proportion of the

space has a gradient that leads towards a sub-optimal point and the remainder is either

gradient neutral or leads towards the true optima. This means that the gradient infor-

mation may be useful some of the time, but not always, and distinguishing the two

instances requires an exhaustive knowledge of the structures in the space. Only the

fully deceptive problems require that the gradient information be ignored at all times;

all partially deceptive problems are honest for the fragment that is non-deceptive.

Even in a deceptive landscape “better than random” optimisation, by which we

mean a better average performance than that of a random sampling algorithm, is not

ruled out. A basically competent hill climbing type algorithm may be expected to out

perform random search if the probability of the hill climber landing in the basin of

attraction of the global optimum is sufficiently high, and the probability of a random

sample landing in the global optimum is sufficiently low.

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 10 20 30 40 50 60 70 80 90 100

C
o-

do
m

ai
n

va
lu

e

Domain value

Figure 5.1: A simple one dimensional deceptive trap function. The objective is to max-

imise the co-domain value. Only 10% of the space is actually structured in a manner

that leads to the optimum.

The relationship between structure, deception and random search success proba-

bility may seem counter-intuitive; figure 5.1 helps to clarify the situation. The figure

shows a simple one dimensional real valued deceptive trap function. There are two

optima in the space, a deceptive optimum at x � 0� f �x� � 90 and a true optimum at

x � 100� f �x� � 100. 90% of the space is deceptive; simple hill climbing in the de-

ceptive space leads towards the optimum at x � 0. The remaining 10% of the space

is honest and hill climbing here leads towards the global optimum at x � 100. If the

initial samples are placed at random, the samples have a 1 in 10 chance of starting in

the honest domain range, and a 9 out of 10 chance of starting in the deceptive domain

range. On average we would therefore expect to place 6.57 samples before one were

likely to occur in the honest region of the domain. For the sake of simplifying this

argument, we imagine the informed search is a very effective hill climbing mechanism

that is capable of moving over 1% of the domain in the “uphill” direction (increas-

ing co-domain values) each and every iteration. When the hill climber is incapable of

further improvement it randomly restarts. This performance is rather better than one

might normally expect, but it will serve the purpose for this demonstration.

The average initial co-domain value in the deceptive range is x � 45� f �x� � 40,

and the average co-domain value in the honest range is x � 95� f �x� � 50. On average,

a sample placed in the deceptive range will reach the deceptive optimum after 45 iter-

ations, and a sample placed in the honest domain range will reach the true optimum of

f �x� � 100 in 5 iterations. We are now in a position to calculate the expected number

of iterations until success of the hill climber. We expect to perform 6.57 restarts, each

with an average cost of 45 iterations, before using a final 5 iterations to locate the ex-

act optimum. The hill climber is expected to reach the absolute optimum after 300.65

iterations.

If the goal of the search is to reach a termination value of x � 99� f �x� � 90, our

hill climber is expected to take 299.65 iterations. Randomly sampling from the space

is expected to need 68.97 samples before a sample greater than or equal to 99 is taken

from the domain range. Clearly under these circumstances the random sampling will

on average be successful before the hill climber. However if the termination accuracy is

slightly tightened, to f �x�� 99�9 then the random sampling is expected to sample from

the termination domain range after some 692.8 iterations. Under these circumstances

the simple hill climber will out perform random sampling even though the hill climbing

mechanism is being deceived the majority of the time.

To confirm that the optimisation is well based, we are therefore obliged to use ran-

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 9000

 0 2000 4000 6000 8000 10000 12000

A
ve

ra
ge

 c
o-

do
m

ai
n

va
lu

e
of

 n
ei

gh
bo

ur
ho

od

Co-domain value of initial point

Figure 5.2: Self similarity in an instance of the proof of concept multi-agent problem,

estimated using a 10% standard deviation normal Gaussian distribution. The y-axis

values are the average of the co-domain values of the cluster of domain points sampled

from the hyperspherical distribution centered on the initial point. Correlations in this

graph indicate structure between the domain and co-domain values.

dom sampling of the multi-agent problem to demonstrate the existence of neighbour-

hoods within examples from the multi-agent domain. It is necessary to implement the

multi-agent problem (which is defined fully in chapter 2) for this validation. We can

not directly measure the structure in the space without an exhaustive enumeration, and

so we use self-correlation over Gaussian distributed samples to provide an estimate: we

select a point at random and then compare the co-domain value of the point with the

average co-domain value of some of its neighbours in the domain. The average fitness

of these sampled points is dependent on the topology of the space and the radius of the

Gaussian distribution and we can use this to characterise the level of continuity in the

space. For obvious reasons, we consider only local Gaussian distributions; a distribu-

tion over the entire space fails to be meaningful. Strong continuity in neighbourhood

properties results in correlation for closely distributed samples, resulting in the mean

fitness of the cluster being similar to that of the centre point. This measure reveals the

presence of self similarity, and allows us to identify whether particular instances of the

multi-agent optimisation landscape are pseudo-random or structured.

 0

 2e+08

 4e+08

 6e+08

 8e+08

 1e+09

 1.2e+09

 1.4e+09

 0 2e+08 4e+08 6e+08 8e+08 1e+09 1.2e+09 1.4e+09 1.6e+09 1.8e+09

A
ve

ra
ge

 c
o-

do
m

ai
n

va
lu

e
of

 n
ei

gh
bo

ur
ho

od

Co-domain value of initial point

Figure 5.3: Self similarity in an instance of the SADDE multi-agent problem, estimated

using a 10% standard deviation normal Gaussian distribution. The y-axis values are

the average of the co-domain values of the cluster of domain points sampled from

the hyperspherical distribution centered on the initial point. Correlations in this graph

indicate structure between the domain and co-domain values.

A self-correlation plot from the proof of concept multi-agent domain is given in

figure 5.2. This example is from a system configured with 4 agents trading for 1000

rounds. A self correlation plot from the SADDE multi-agent system is given in fig-

ure 5.3. The SADDE system, here shown configured with only 12 agents is lightly

structured. The majority of configurations of the SADDE system have non-zero scor-

ing trading behaviours. A hill-climber pursuing the average trend in the configurations

will in general improve performance. Relative to the value of the initially sampled

point the comparative low average value of the Gaussian clustered co-domain values

indicates that either there is no general structure or that the 10% sampling resolution

is too large, effectively stepping over local continuity structures.

Each point in the plot shows the relative fitness of a randomly selected point and the

average fitness of its Gaussian sampled neighbourhoods. These samples were collected

using a Gaussian sample of standard deviation spanning 10% of the parameter space,

and expectation of zero. The line overlain on the plot indicates the actual regression

value. A perfect correlation would indicate that all the points sampled had exactly the

same performance as their neighbouring points.

To make comparison easier, figure 5.4 shows the same measure calculated for the

highly continuous 2 dimensional De Jong sphere problem. We have also included the

same measure from a pseudo-random function with no self similarity in figure 5.5. As

you would expect, there is no correlation. The value of the initial sample has no effect

on the the average value of the sampled neighbourhood.

High degrees of self similarity indicate structure within the problem. The SADDE

system does not exhibit the same kind of continuity in its self similarity plot as is

present in the other examples. The plot itself is divided into two distinct groupings,

a low valued group composed of those that have initial co-domain sample values of

20,000,000 or less and a high valued group containing those that have higher initial

co-domain sample values.

In the low valued group, the large number of points with a near zero valued initial

sample and a much higher valued average co-domain sample indicates that there are

large areas of the domain space with very low co-domain values. Within the sample

radius of these low valued initial domain samples there are instances which are of

relatively high value, thus raising the average of the sampled cluster.

Of those initial samples with high co-domain values, there is a correlation between

the increasing co-domain value in the initial sample and the average co-domain value

of the sampled neighbourhood. The evidence presented informs us that parts of the

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 18000

 0 2000 4000 6000 8000 10000 12000 14000 16000 18000 20000

A
ve

ra
ge

 c
o-

do
m

ai
n

va
lu

e
of

 n
ei

gh
bo

ur
ho

od

Co-domain value of initial point

Figure 5.4: Self similarity in the 2 dimensional De Jong’s sphere problem, estimated

using a 10% standard deviation normal Gaussian distribution. The y-axis values are

the average of the co-domain values of the cluster of domain points sampled from

the hyperspherical distribution centered on the initial point. Correlations in this graph

indicate structure between the domain and co-domain values.

SADDE optimisation domain are structured, but it is impossible to foretell at this stage

whether this structure is one which we are capable of utilising.

5.3.1 Use of restarts

Without an ability to identify the global optimum we are never in a position to differ-

entiate between the basin of attraction of the global optimum and that of a deceptive

optimum. All partially deceptive landscapes have optimisable segments but their loca-

tion is unknown.

In order to increase the probability of an algorithm sampling from the optimisable

segments, random seeding of the initial search points is required. We must balance this

requirement for restarting the search with the optimising behaviour of the algorithm,

and so should only invoke random restart once an optimum has been reached. Once an

optimum has been reached, the search should restart in a random location, mimicking

random search and maximising the probability of the restarted search landing within

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 9000

 10000

 0 2000 4000 6000 8000 10000 12000

A
ve

ra
ge

 c
o-

do
m

ai
n

va
lu

e
of

 n
ei

gh
bo

ur
ho

od

Co-domain value of initial point

Figure 5.5: Self similarity in a random landscape, estimated using a 10% standard

deviation normal Gaussian distribution. The y-axis values are the average of the co-

domain values of the cluster of domain points sampled from the hyperspherical distri-

bution centered on the initial point. Correlations in this graph indicate structure between

the domain and co-domain values.

an optimisable neighbourhood of the global optimum. Identifying an optimum is not

trivial, and in this work we make the decision to restart on an approximation. A com-

promise algorithm is desired, that locates optima through structure based search when

optimisation is possible, and reverts to random search for re-seeding search points

when optimisation not possible. This type of algorithm that restarts stalled searches

has increased chances of searching within the basin of attraction of the global opti-

mum than an algorithm that does not restart searches.

5.4 No Free Lunch : reprise

We are now in a position to clarify our statement made in section 3.4.2, regarding

the use of the no free lunch theorem in regard to justifying aspects of an algorithm’s

performance.

Consider a hypothetical algorithm that is designed to perform on several distinct

landscape types. If this algorithm’s performance is claimed as optimal, it is by defini-

tion pareto optimal over the expected set of landscapes. Pareto optimality means any

further “improvement” in performance on one landscape necessarily implies a loss of

performance on at least one other. An optimal algorithm is inherently subject to a no

free lunch with regard to future modification, so a pareto optimality claim implies a no

free lunch. Since any non-trivial algorithm that has an optimal behaviour on a set of

landscape types actually has pareto optimal behaviour, it may not be improved other

than altering this behaviour along the pareto front. If an algorithm is subject to no free

lunch with regard to a set of problems, then there exist no modifications that could

improve the algorithm over the entire set of problems. Such an algorithm is therefore

pareto optimal over the set of problems, so a no free lunch implies a pareto optimal

behaviour. We can then see that no free lunch theorem is nothing more than a restate-

ment of pareto optimality in terms of problem sets. This means appeals to the no free

lunch theorem to explain an algorithm’s performance over a subset of problems are

also invoking a claim of pareto optimality over the set of problems. This consequence

is rarely undersood.

5.5 Summary

The multi-agent problems are novel, the properties of the optimisation space are cur-

rently unknown. The landscape properties must be estimated, since the extensive

search required to correctly classify the landscape of the problem is too expensive

to consider. For the same reason the algorithm development can not be performed on

the actual multi-agent problems and instead development is performed on a set of sur-

rogate functions. The no free lunch theorem threatens to strike twice in this work. The

first occasion is when we wish to justify the expected retention of search ability when

we change focus from the surrogate set of problems to the multi-agent problems. The

second time is when we suggest that general improvement over the set of benchmark

problems should be possible. In both cases we avoid contradicting the no free lunch

theorem by appealing to the notion of structure in search.

In general, if we expect the optimisation to be successful relative to a random

search, it is necessary to show that there are topological features that are true of the

general set of problems and may be encoded in the prior information of the algorithm.

These properties of self-similarity have been shown for the set of benchmark prob-

lems, which being fundamentally geometric functions exhibit strong self-similarity and

structure. We hope to use encodings of this structure to guide the search. Most evo-

lutionary algorithm design is based on interpretations of naturally occurring systems

and uses one or two search mechanisms to explore the possible structures. We believe

that creating mechanisms to better explore structures known to exist in optimisable

landscapes will result in better encodings of prior information. Implicitly we assume

that current algorithms are not optimal encoders of this information. It follows that

we expect performance on the benchmark problems to continue to improve and not

be bound by the no free lunch theorem until optimality of the information used in the

decision process can be proven.

We have shown that the multi-agent problem is not random, nor pseudo-random.

It is computationally impractical to determine whether or not the space is deceptive,

requiring an exhaustive enumeration of the parameter space. The evidence does indi-

cate some degree of self-similarity, which is sufficient to provide structure to at least a

subsection of the space.

The change from the surrogate problems to the multi-agent problems risked being

an unsupported extrapolation. The arguments in this chapter illustrate that there is a

form of self-similarity structure in the multi-agent domains. The creation of mech-

anisms designed to use this form of structure and then testing the algorithm design

against similarly structured surrogate problems is not unreasonable.

Whilst other development courses may have been preferable, the nature of sam-

pling the multi-agent problem left us with little choice. Under the circumstances, the

choices made here are the best that can be expected to be achieved. The algorithm

is unlikely to be a bad starting point for optimising the multi-agent problem, and per-

formance on the problem is expected to improve as more samples of the landscapes

become available and initial operator choices can be refined.

Chapter 6

Algorithm design

In this chapter we combine different concepts, each with their own terminologies and

natural thought model. We also describe and visualise concepts regarding search mech-

anisms and objective functions using analogies and terminology that designed to con-

vey the properties that are considered relevant to our objective. Many terms that are

used here and in the literature are interchangeable: a sample from the search space

when viewed in terms of a population is an individual, and in a competition is a can-

didate, all of which are terms representing the same thing – a point in the domain of

the objective function. The objective function may be referred to as a fitness, implying

it has been applied to a point, or as a landscape, defined over some implicit ordering

of samples. Naturally we normally define the ordering by Euclidean distance of points

in the domain. Under certain circumstances, when the operators involved are well de-

fined, we may discuss the “local” points. These are the sets of points that are within

a low number of operations of the currently considered point or points, and may not

be geometrically local at all. We may also use properties of these visualisations in

descriptions; slopes, edges and ridges, peaks and troughs, etc. are terms relating to

landscapes, and thus are really shorthand for the appropriate properties in the differen-

tial calculus of the hyper-dimensional surface.

The design of optimisers is a dark art. Research is conducted under hunches and

prejudices about what properties an optimiser will have to sample in order to be able

to detect relevant information from the landscapes on which it is expected to oper-

ate. These mechanisms describe and attempt to manipulate different properties of the

space. It is hoped that by selecting mechanisms that operate over mutually complemen-

tary resolutions and that cover the major search methods reported in the literature we

will produce an algorithm that is in some sense more complete. The sampling methods

97

employed are only a facet of the design. How they are combined, how sampling effort

is divided and how points are maintained are significant aspects of the design. Follow-

ing the establishment of the necessary definitions we approach the description of the

design in two major sections, section 6.7 where we describe the devices of exploration,

and section 6.8 where we describe the logic behind the relative distribution of effort

and the population management mechanisms.

6.1 Optimisable landscapes

Truly random landscapes offer no hope for optimisation. The optimum may be located

anywhere in the space, and there is zero correlation between landscape features at all

scales. On such landscapes all algorithms that do not repeat samples perform equally

on average. There is no pattern to learn, so no pattern exploiting optimisation may

occur. Introducing a level of correlation between the landscape features creates a signal

in the space. The strength of this signal must be higher than the minimum signal

strength detectable by the optimiser for the landscape to be searched and the optimum

found in a consistently successful manner. This is more complicated if the signal is

only local since the probability of detecting the signal whilst sampling is reduced.

Optimisable landscapes by their definition must contain a pattern that leads to the

optimum. A perfectly optimisable landscape would consist only of the pattern to be

optimised, and the pattern would be clearly discernible irrespective of how the initial

samples were taken. Such perfect landscapes do not exist. Even the simplest opti-

misable landscape, the n-dimensional slope is not disambiguated clearly by all sample

placements. It appears to be flat if all the samples are placed in a line perpendicular to

the optimum. There is thus the (very slight) possibility of failing to sample adequately

even in the simplest of landscapes.

6.1.1 The requirement of detectable gradients

Locality is always defined “in the eyes of the algorithm”. A local region in a space is

all those points which may be reached in a low number of applications of the search

algorithm’s operators. Conversely a distant region is one that is likely to be reached

only by many applications of the search algorithms operators. Locality is then rep-

resentative of the order in which the algorithm is likely to search the points from the

space. Different search operators generate different point sequences from the space

and consequently have different local regions.

In section 3.4.3.2 we introduced the concept of gradient locality and of continuity

in the property of gradient locality. Without gradient locality there is no local landscape

at all, without continuity at any resolution there is no global landscape. Thus there is a

continuum of landscapes, each with greater or lesser degree of locality and continuity.

An algorithm may overcome discontinuities and contradictions in the landscape by

lucky sampling. Repeatedly overcoming such difficulties is in general unlikely since

it amounts to blind search in a space, which is potentially populated with deceptive

attractors.

Exploring different landscapes may be viewed as detecting a signal – the function

dictating the location of the optimum – against a background of noise – misleading and

contradictory sample points. Certain landscapes are more misleading than others, with

corresponding increase in search difficulty. If the signal to noise ratio falls below that

which the algorithm is capable of detecting with high probability, the algorithm begins

to fail. Where one algorithm fails, it is possible that a different algorithm using better

placement of samples might, without prejudicing the problem, be able to extract more

of the signal. In which case, all other things being equal it should have proportionally

higher success.

The efficiency of the search then depends upon the detection and efficient verifi-

cation of indicative gradients in the space. Locality is a required property, there must

be a sampling resolution at which such gradients are resolvable. Continuity is also a

required property, for without it there is no large scale indicator as to where the global

optimum may be.

6.1.2 Improving sampling of optimisers

A perfect optimiser would invest only the number of samples required to disambiguate

the pattern that defines the location of the optimum and then jump directly to the so-

lution. Even in perfect circumstances there are distinct differences in the complexities

of different landscapes. Higher order functions take more points to disambiguate than

lower order functions. In general the dimensionality of the pattern is not known in

advance, and so placement of the samples is less than optimal even when examining a

perfect landscape. A real optimiser does not know the rules governing the landscape,

and instead infers the pattern in terms of general trends indicated by the samples col-

lected. It is thus dependent upon two properties that are not universally true; that the

sampled trends are representative of the real trends in the space and that the real trends

lead to the optimum.

Under the assumption that they will be applied to locally optimisable landscapes.

optimisers may be improved by reducing the rate at which they “waste” samples. The

definition of a “wasted sample” needs to be precise. There are samples that are placed

that do not give any information with respect to the current model of the space. These

are wasted. There are samples that are placed in a non-optimal manner but still reveal

properties of the space. These are not wasted samples, but perhaps could be better

placed to reveal more information.

All optimisers will place samples that are not directly leading to the optimum and

which when further information becomes available are seen to have been badly placed.

In general when establishing the dimensionality and direction of gradients in the space,

it is impossible to consistently place perfect samples without prior knowledge. There

are however ways in which the samples may be placed which change the amount of

information gained by placing that sample. The improvement of real number opti-

misation algorithms occurs by improving the placement of samples relative to those

already taken to maximise the information yielded per sample. By relying on the as-

sumption of generalised locality the algorithm may then focus on the best samples and

iteratively map the space until reaching the optimum. However, the locality assump-

tion may not hold over the entire landscape, or alternatively the initial sample may

have been unlucky and missed the basin of attraction of the optimum. In either case,

even an algorithm placing locally perfect samples will proceed directly to optimise to

a non-global optimum, where-upon the algorithm will stall. This is a result of being

deceived by early samples. Real number optimisation may be improved by improving

the way in which the effort of optimisation is divided between all promising localities

instead of concentrating on just one. Some techniques exist which attempt to do just

that (niching and crowding mechanisms in evolutionary search, the multiple queens

technique from particle swarm optimisation). The difficulty is in obtaining the correct

balance between attempting to improve the best found so far and seeking or improving

other localities.

6.2 Rationale behind the design

The objective of the design is to create an optimiser that is effective and efficient for

problem domains that share a common set of properties; gradients and approximate

global continuity, which we believe are useful in optimisation.

We desire a mechanism with strong local search capabilities, that can sample both

probabilistically and topologically over as many scales of the representation space as

is practical. Population convergence concentrates search effort in a small section of the

space. If we successfully obtain a strong local search that can reliably detect gradients,

we can relax the requirement for population convergence by depending on the quality

of the local search to finalise local movements towards local optima. Relaxing the pop-

ulation convergence requirement allows the continual recycling of exhausted samples

from the population, which in turn allows a smaller population to sample more points

than would otherwise be the case. If there is a limit to the number of evaluations of the

objective function that are available, the distribution of those evaluations amongst the

members of the population can be critical to the success of the search.

A smaller population of samples gives us a better ratio of evaluations of the ob-

jective function per sample, and in the case of a long drawn out pursuit through a

thread-like fraction of the space (i.e. the Rosenbrock function) will, all other things

being equal, get closer to the optimum than a larger population. We require a design

that can dispose of points irrespective of their quality to release the algorithm from

local optima. We desire that the mechanism for selecting points for removal be based

on the evidence that the point has ceased to progress, and it should not be random or

fitness based. By evaluating the evidence that a point is unlikely to be further improved

before permitting its deletion from the population we reduce the incidence of culling

low quality but promising points.

We intend to use different mechanisms to explore different substructures in the

search space. Clearly the operators should be selected to work in a complementary

fashion, but further they should be implemented to be independent modules that share

only the necessary resources. Modularity in the implementation of the mechanisms,

such that interactions are minimised between the separate operators, allows the algo-

rithm to be modified by “plugging in” new and better mechanisms as they become

identified. Modularity also has a potential cost. Some algorithms are dependent upon

complex interactions between their components to function, and, in creating a Franken-

stinian algorithm created by cutting up other techniques, we risk losing the “magic

ingredient”. If the modular design is successful however, the algorithm is successful

solely because of the composite of the abilities of the modules. There is no magic

ingredient. This facilitates future analysis of the algorithm performance, and offers the

promise of the identification and replacement of under-performing modules.

6.2.1 Non-optimality of our design

In reading the following it will become apparent that there are many aspects of the

algorithm design that are un-optimised. All major design decisions are based on some

form of reasoning, the validity of which is judged en masse by the performance of the

algorithm. Thus there is no individual proof of validity to show each component of the

algorithm is correctly configured from the huge space of possible configurations : Con-

sideration of the huge parameter space and the possible interactions between operators

foretold of a potential lifetime spent parameterising, deterrent enough to delay the task

until proven necessary. In this regard, the adequacy of the components is considered as

testified by the performance of the algorithm as an entity, which, if successful neatly

sidesteps the problems of experimental control of operator interactions and avoids the

need for further experiment. Optimal settings for the design decisions would only have

been investigated if the initial experiments proved inconclusive or unsatisfactory. At

the risk ruining the suspense, and the punch-line of chapter 8 where we discuss the al-

gorithm’s performance on the test suite of surrogate evaluation functions, the algorithm

actually performs as hoped, and further refinement of the search process was consid-

ered unnecessary to achieve the objective of the current work. Further development

may of course be pursued and will almost certainly bring benefits.

6.3 Representation

The original genetic algorithm work used binary encodings, and many researchers still

publish work based on their use (Whitley foremost). To represent a vector as a binary

string a particular resolution and encoding has to be chosen. Whitley has shown that

under certain circumstances a Gray encoding is more effective than a traditional bi-

nary encoding. Whitley also has results that show that changing between distant Gray

encodings may help the search avoid getting stuck in local optima.

Another problem with binary representation is that it requires the user to have some

knowledge of the precision to which a representation will be required to resolve the

landscape. This property remains unaltered during the run. Higher precision repre-

sentations require longer genotypes and consequently are slower to converge on the

optimum.

Without knowledge of how fast the algorithm converges on the optimum, the user

can not know what precision they may use to represent the values and still approach

the optimum in under a certain number of evaluations. The lack of accuracy permitted

by low level binary representations can be alarming. The 10 dimensional Griewank

function as defined over the conventional domain range is a large space : �
600�600�10.

The precision of the representation is the size of the represented space divided by the

number of unique representable values, (i.e. for a binary string of n bits the precision

is given by �valuemax
 valuemin���2n
 1�). Homaifir in [43] also uses this definition

of precision. If the representation chosen for domain values of the Griewank function

uses 10 bits per dimension (e.g. Whitley and Barbulescu [91, 5]), the genome is 100

bits and can resolve each dimension down to no better precision than increments of

1.173. Doubling the length of the genome to a 20-bit per value representation improves

the resolution limit on the standard Griewank function to 0.00114, but is reported to

significantly slow the progress of the search.

The alternative is to use a real number encoding where the algorithm manipulates

the values, not the representation of the values. Clearly the values themselves are en-

coded in binary at some point, but in the age of arbitrary precision maths, this need

not be relevant to the algorithm. Using a real valued encoding has several advan-

tages over a binary encoding. A real number encoding avoids the problem of choosing

and modifying representations and removes one layer of potential complexity from

the algorithm design. The interpretation of the values represented is direct, modifi-

cations to the values have obvious Euclidean analogues making visualisation easier,

and the representation preserves the property of strong causality at least between the

representation and the genotype. Weak causality is the principle that the same initial

circumstances lead to the same outcome, and is natural in these systems. Strong causal-

ity is the principle that small changes in initial circumstances cause small changes in

the outcomes, and is not guaranteed between phenotype and phenotype evaluation. It

should be mentioned that the use of an arbitrary precision representation necessitates

the use of either an iteration limit or a termination precision for the search, where the

search is terminated after a certain accuracy is reached. This guards against the situa-

tion of the true optimum being an irrational number, which otherwise would result in

non-termination.

When searching a bounded space using a vector based mechanism there is the po-

tential for simple operations like vector addition to exceed the permitted value bound-

aries. When this occurs, for the sample to continue to have relevance it must be re-

stored to within the normal boundaries of legal space. The mechanism that enforces

the boundary can have a very strong impact on the properties of the search. For ex-

ample, enforcing a hard boundary that limits large values by rounding to the breached

limit will tend to accumulate samples on the very edge of the space. Ideally the renor-

malisation mechanism should not alter the distribution of the samples – samples placed

uniformly at random in the bounded space should be indistinguishable from samples

placed uniformly at random in a larger space that has been renormalised. Simultane-

ously it is desirable for vector based analysis of the space that relative directions and

distances should persist : Two points should have the same difference vector following

the renormalisation of one or both of them as they had before. To achieve as close

to this ideal as is practicable we consider all spaces toroidal. Renormalisation is sim-

ply continuation. This representation is used throughout this work, and several of the

operators rely on the properties of the toroid. For the vast majority of functions this

creates at least one large discontinuity at the “seam” of the toroid. There are many

other equally plausible mechanisms. One alternative mechanism is to “reflect” the

value back into the space. We have not investigated the relative merits of the different

renormalisation schemes.

6.4 Initialisation

The ideal initialisation on an unknown landscape is one which gives maximum infor-

mation from every sample. The placement of the samples should therefore be chosen to

give maximum coverage throughout the space. Unfortunately the placement of some

number of equidistant points into a high dimensional space is a form of the hyper-

sphere packing problem, and is unsolved. The most common strategy is to initialise

each value from the appropriate range independently at random. This is the strategy

that is used in this work. It is also possible to initialise at least some of the values at the

extremes of the permissible range. Initialisation at the edges of the hyperspace favours

search mechanisms that are better at interpolation than extrapolation.

Michalewicz’s initialisation from [60] in which candidates are initialised on the

boundary of feasible space is an exploit. The knowledge necessary to use this ini-

tialisation mechanism is simply not available in the general case. The majority of

constrained optimisation problems have more constraints than are active at the global

optimum. Using such an exploit under these circumstances necessitates selecting a

subset of constraints which are believed to be active at the global optimum – which

requires knowing the location of the global optimum – and then initialising feasible

candidates : this is not an easy task.

Some authors follow Angeline [2] in using an initialisation routine that deliberately

avoids the subspace containing the global optimum. Such an approach greatly favours

algorithms that are good at extrapolation and is somewhat suspect in its applicability to

real problems, where a lucky initialisation may indeed solve the problem. The majority

of published results are initialised over the full domain. We also follow this tradition.

6.5 Population and individual operators

This work uses several distinct operators and methods to search the space of candi-

dates. These operators are of two types, distinguished by their use of other members of

the population. Population based operators use information from both the current sam-

ple and from samples in the current population of candidates to create new samples.

Individual operators use only the point itself to create new samples in independence

of other samples in the population. Transient auxiliary samples may be created as

references to aid this process.

6.6 Population sizing

Traditionally large populations are considered “de rigueur” in Genetic algorithm re-

search. A large population contributes to the search in several ways.

Firstly, a large population gives a large initial sample, and if large enough allows a

probabilistically complete sample of combinations of a certain size. This is a hangover

from the dominance of the building block hypothesis, where for recombination to be

effective the population had to be appropriately sized to contain with a high probability

any given required component. There are several problems with the building block hy-

pothesis in real number optimisation. In real number representations what constitutes

a building block is debatable, and further most non-trivial functions have a degree of

precision required of each of the variables that the probability of possessing them in an

initial population of any size is small.

Secondly, a large population is slower to succumb to dominance by one candidate,

allowing for larger sub-populations to form during the run and consequently greater

chance of recombinative operators to succeed. This is true even if mechanisms are

used to protect sub-populations from loss, since the larger population allows greater

diversity within a sub-population.

Thirdly, a large population has a greater palette of individuals in which to try mu-

tations. As a candidate reaches population dominance (through replication or incestu-

ous crossover) the gene sequence it represents is subjected to an increasing degree of

search. Large populations also improve the capability of an algorithm to interpolate

between samples by increasing the sample density in the hyperspace spanned.

Still, real number genetic algorithms have traditionally had large population sizes,

whilst particle swarm methods have tended to use small populations. Shi [78] provides

evidence that is interpreted as meaning the performance of particle swarm optimisation

is insensitive to population size. This is more or less true, however, they do record bet-

ter results for larger populations. Unfortunately they also permit a proportionally larger

number of function evaluations to be made, so the question of how population size al-

ters particle swarm search performance with a fixed number of function evaluations is

unanswered.

There are also specific arguments for keeping a population small. When subject

to a function evaluation limit, a large population has proportionally fewer evaluations

per candidate. An iterative search making small incremental progressions is therefore

likely to get further using a small population than one which must increment a large

number of candidates. If a population is too small, the genetic diversity it may contain

is very limited. Without protection it will be rapidly overwhelmed by the best candidate

and the population based operators will begin to degenerate.

We attempt to obtain the best of both worlds in this work. We use a very small

population (20 individuals) to keep the iterations per candidate ratio high allowing

each sample to undergo a greater number of the modification/evaluation cycles before

exhausting the evaluation resources (please see section 6.2 for an explanation of this

concept). We prevent wastage of population space by using mechanisms to prevent

straight cloning of candidates in the population. Additionally, when required, since a

small population is typically insufficient to provide detailed gradient information, we

obtain higher resolution sampling by generation of local points.

6.7 Scales of operation

This algorithm is designed to operate at several distinct levels of optimisation simul-

taneously. The rationale is simple. Population based techniques such as crossover are

very fast at interpolating between candidates, but are ineffective at finessing parameter

settings. Local search mechanisms on the other hand fail to resolve enough informa-

tion over the whole landscape to guide search globally. Each particular operator, local

search, crossover, centroid location, etc. have a particular resolution at which they are

effective. Thus we distinguish the componentry of the algorithm by the resolution at

which it is expected to operate. The aim of the design is to explore all plausible types

of locality at all relevant resolutions simultaneously. We do not quite manage this (it

is quite a tall order) but we do come close. The known shortcomings of the algorithm

design are discussed in section 6.9.

6.7.1 Local microscopic techniques

The smallest resolution that a search can be conducted at, under limits of the repre-

sentation, will be referred to as microscopic optimisation. Techniques which deal with

landscapes at this resolution are highly likely to witness continuous gradients. At this

resolution, population members are typically much further apart than the desired sam-

pling resolution of the search. Population based techniques are unlikely to detect the

required level of detail. The best known mechanisms for optimising single points in

the presence of continuous gradients are hill climbers.

Traditional hill climbing techniques operate by making random changes to the rep-

resentation and then evaluating the result. If the result is equally good or better then

the result is kept, if it is worse, it may be kept with a certain probability (simulated

annealing) or may be discarded (random ascent hill climber) depending upon the de-

sign. The magnitude of the changes made to the representation are either constant

throughout the run or are subject to a “cooling strategy” which reduces the size of the

movement during the search. For the uninitiated, simulated annealing is a method of

randomised search which always makes a considered move if it improves the condition

of the search, and will perform a considered move that worsens the condition of the

search with a probability proportional to a “temperature”. The temperature is lowered

throughout the search, and it is proven that with an infinitely small decrement in tem-

perature (and consequently a rather long run time) the search will always converge on

the optimum.

There are several aspects of a traditional hill climber that can be improved for

operation on real valued spaces. Due to the “coupon collector’s paradox” the traditional

“random generate and test” mechanism for locating gradients degenerates as the ratio

of optimised to optimisable dimensions increases. The magnitude of the changes made

also has to be well chosen to efficiently optimise the landscape. A simple cooling

strategy only begins to fine tune towards the end of the search, irrespective of how

long the point has been known. Some kind of self adaptive mechanism is then required,

one that will allow points that are stationary to explore the fine tuning landscape, and

one that allows movement over various resolutions when the landscape permits. See

section 3.3.2 and 3.3.3 for more discussion on these topics.

6.7.1.1 Auto-adaptive hill climbing

A codified explanation of the hill climb process described herein follows this descrip-

tion. It is sometimes much easier to read algorithmic concepts in code than English.

The simplest form of hill climbing is to repeat the same vector addition that was

known to be effective the last time. We will refer to the current position as x and the

direction taken previously as the historic vector�h. We use an auto-adaptive parameter

d which defines the distance of sampled points from the current point. Initialisation

and the mechanism of auto-adaption of d is dependent upon other properties of the

search and so is explained later.

The sample point at the position h � x� d��h is the anticipated continuation of the

current particle direction in the space. This is very similar to the concept of momentum

used in particle swarm optimisation. If better than the current point x we set h as the

proposed next point xnext . This mechanism is simply exploitative, it is incapable of

initiating or changing direction. If the historically predicted point fails to improve

upon the current point we need to re-acquire the gradient direction. We use a local

scattering of random points to detect the gradient in the local space.

Figure 6.1: The adaptive gradient sampling mechanism of the auto-adaptive hill climber

on a minimisation problem. If the historic direction of travel has failed to provide contin-

ued progress, re-sampling of the gradient is required. The samples, labeled n1,n2 and

n3, are placed at random on the hypersphere represented by a circle. The samples n2

and n3 are better quality than the current sample x, and serve as attractors. Sample

n1 is worse quality than the current sample and acts as a deterrent. The sample vec-

tors are summed to create a normalised composite vector, which is then used to place

samples in the scalar ranges. The scalar ranges shown in this example are sectioned

as follows: a to b 0.5 to 0.75, b to c 0.75 to 1.5, c to d 1.5 to 2.5. One sample is placed

in each of the scalar ranges, and if better a better sample is found the point is moved to

its position.

A simplified example of the sampling method is illustrated in figure 6.1. Each of

the n scattered points, labeled n1�n2 and n3 in the figure, is positioned randomly on a

hypersphere of radius d centered on x, represented by a circle in the figure. To facil-

itate low dimensional search the hypersphere of n�2 of the samples is generated with

reduced dimensionality. This is necessary because the default generation mechanism

is extremely unlikely to sample low dimensional vectors. This type of movement is

necessary for finalising the last dimensions of the search. The mechanism of achieving

this is to simply mask some equiprobably selected proportion of the dimensions of the

sampled point against the current point x, resulting in a sampled point that differs from

the current point only in the selected dimensions. Each of the n scattered points ni is

compared to the current point x and provides δ f �ni� � f �x�
 f �ni� landscape gradient

information. Though for simplicity only 3 sampling points are shown in the figure,

we used 5 sample points for this work. Thus two points were allocated to searching

low-dimensional vectors, and three are allocated to the search of the full dimensional

space. Use of more sample points improves the probability of correctly detecting the

true gradients in the space. However, this improvement in sampling accuracy comes

at a great cost. The hill climbing mechanism is used frequently, and so increasing the

number of samples used per hill climbing iteration significantly reduces the number

of evaluations that the algorithm may allocate to other forms of search. This is one

area of the algorithm that might benefit from auto-adaption, allowing the algorithm to

allocate samples relative to the apparent difficulty of the sampling. The best ratio of

low dimensional samples to full dimensional samples is also unexplored. For this work

it was only necessary that the capability of this type of movement was maintained.

We collate the information gathered from the scattered points to create a composite

vector�c. The composite vector�c is initialised to the zero vector. If δ f �x� from x to the

sampled point ni is beneficial with regard to the search then the vector ��ni
 x� is added

to the composite vector. This reinforces the composite vector in the direction of the

beneficial points. Similarly if δ f �x� indicates that moving in the direction of ni may

be detrimental to the search the vector is subtracted, thus reinforcing the composite

vector in directions away from poor points. In figure 6.1 the point n1 is a repulsor, and

points n2 and n3 are attractors. The composite vector �c is then rescaled to absolute

length d and added to the current point to create a sample reference based point p. The

sample based point is then evaluated and compared to the current point. If the sample

based point p is not better with respect to the search, but one of the random samples

rbest was better then the construction of the composite vector failed. The point p is

then replaced by the best of the random samples rbest . Failure to create a consistent

composite vector can be caused by unlucky sampling, or the search being located on

a saddle point or other region with a zero second order derivative. If none of rbest � p�h

offer improvement over the current point, the local search has failed and the function

will return. In response to this failure, which may be caused by either an incorrect

estimation of the gradient or by taking an inappropriate length step, we reduce to one

quarter of its value the range at which samples will be taken. The gradient information

does not have to be modified because if necessary it will be re-estimated in the next

round of hill climbing. We use a factor of one quarter for the reduction because the

scalar ranges are based on an expected reduction in step size of 0.5 times, and an

expected increase in step size of 2.0 times. By scaling the radius to one quarter of

its former value, we then expect the next round of samples to be placed just within

the radius sampled by the failed iteration. Repeated failures then explore a series of

concentric rings from the hyperspace, each smaller than the last. Re-establishment

of successful sampling restarts the normal scalar based auto-adaptive control of the

sample radius.

If one of rbest � p�h are better than the current point, then, relative to the current

position, we have found a better point, call it xnext . The relative direction of xnext from

the current point indicates the direction of a better sample, and forms the optimisation

vector�z. We invest in sampling a further m samples to estimate what scaling of�z is

best. This information is used to auto-adapt the sample radius parameter d. Auto-

adaption requires that at least two points be tested, one at a greater distance and one

closer. We use three points, based on the three obviously interesting scalings of �z :

0.5, 1.0 and 2.0. Using only these three vector scalings would be clumsy, resulting in

a fixed step size scalar adaption. Instead we use randomly distributed scalings in the

ranges 0.25 to 0.75, 0.75 to 1.5, and 1.5 to 2.5. Having generated the m scalars, we

then generate the corresponding scalar based sample points sm which if better replace

xnext . This concludes the active sampling of the hill climbing search. The current point

is moved from x to xnext and the auto-calibrated sample distance is updated to be the

distance between them.

The number of samples used to hill climb is then dependent upon the difficulty the

hill climber is having with the gradients in the space. If previous directions are still

adequate, then the hill climber uses only one sample to move up hill. Failure of the

historic direction indicates the gradient information needs to be refreshed, at a cost of

n samples to try to detect the new gradient at the current resolution and m samples to

try to detect the changes in resolution.

6.7.1.2 Pseudo-code for hill climbing

// adaptively hill climb a point x

function hillclimb(vector x)�

create the next point, xnext , initialise to null

// test for easy hill climbing

// exploit the historic movement direction:

if (have a movement history for the point x)�
create a point at extrapolation from historic position, h.

// if better than current point remember it

if((maximiser � fitness(h) � fitness(x)) �
(minimiser � fitness(h) � fitness(x)))�
xnext = h

�
�

// if historic information failed then

// sample the gradient information instead

if (xnext == null)�
create n samples at distance d, with best called rbest

create composite vector c, initialise to zero vector

for (each sample)�
// if it is pointing to improvement use as attractor

if((maximiser � fitness(sample) � fitness(x)) �
(minimiser � fitness(sample) � fitness(x)))�
c = c + sample;

// otherwise use as deterrent

�else�
c = c - sample

�
�
scale c to absolute length d

// sample the point suggested by the gradient

create sample p at point + c

// select the best point

xnext = best of p, rbest

�

// test for scaling adjustment

create vector z = x - xnext

create m scalars

for (each scalar)�
create samples s = x + m z

if((maximiser � fitness(s) � fitness(xnext)) �
(minimiser � fitness(s) � fitness(xnext)))�
xnext = s

�
�

// update the resolution information

d = distance between x xnext

// move the point

x = xnext

return

�

6.7.1.3 Hill climber objectives

The basic auto-adaptive hill climber is designed to use as few points as possible whilst

being able to exploit persistent gradients in the space, detect the need for adaptation of

the direction of exploitation and detect the changes in the resolution at which the space

may be exploited. The lean use of sampling results not in the strongest hill climber that

achieves these properties, but one that is sufficient. With greater investment of samples

the hill climber could be made considerably more robust.

The auto-adaptive hill climber is initialised with a sample radius of one twenty

thousandth of the maximum distance representable in the space. This is a somewhat

arbitrary initialisation value and places heavy reliance on the auto-adaptive mechanism

to locate a more profitable resolution.

6.7.2 Local macroscopic techniques

Movement at the microscopic scale is too slow to be used for exploring the space, and

since the mechanisms it uses are dependent upon the local continuity of the gradient

information, it is vulnerable to misdirection by local discontinuities. Consequently

the local search properties available to the algorithm for point-wise exploration of the

space need an operator which performs over larger distances. Detection of the gra-

dients, only really feasible in the local space, is expected to be handled by the mi-

croscopic techniques. This leaves us with the requirement for point-wise exploration

mechanisms capable of searching both the global range of possible points, and the

local proximate space. Since the expected range of distances searched by these op-

erators is a significant proportion of the space we refer to them as macroscopic. We

consider it unlikely that accurate gradient information is obtainable over these resolu-

tions without large amounts of sampling effort. We thus use techniques that do not rely

on gradient sampling but instead are probabilistic operators which sample at random

from the permitted range. Such operators have an iteration-wise probability of discov-

ering an improvement defined by the relative volume of better samples from the range,

irrespective of the gradients or local complexities of the space.

We use classical genetic mutation techniques to explore the dimensional move-

ments of individual samples. Classical genetic mutation is simply the alteration of one

or more values in the representation of the solution, typically by an amount selected

from a Gaussian or Cauchy distribution. We use the same method, but we select the

mutated value either randomly from the full range of available values or from a Gaus-

sian distribution. Ranging mutation is a powerful local and global method for sampling

different dimensional values, and can be used to rapidly approximate aspects of solu-

tions even in the presence of discontinuities. Gaussian mutation tends to be local and is

capable of jumping over small gradient discontinuities in the space. Gaussian mutation

is an excellent complement to strong gradient based local search precisely because it

is not a gradient based method, and an algorithm equipped with both is much harder

to trap in a local optimum. Both distributions have advantages, and to choose one over

the other prejudices the problems on which the mutation operator will be effective.

Instead we use both. We select the mutation distribution by random binary choice.

We recognise that use of full range mutation is unorthodox. Full range mutation

allows the algorithm to have a non-zero chance of reaching any point in the space in

one step, irrespective of the current condition of the search. Gaussian mutation allows

the locality principle to be tested at a moderate scale. The Gaussian distribution places

samples with very high probability in the immediate vicinity of the current value, we

use this to exploit the mid-ranged locality that may occur in the space. To improve the

exploration of lower dimensional moves we select the number of dimensions to mutate

from a uniform random distribution. This is necessary because when approaching an

optimum, the approach is rarely uniform. Certain dimensions approach or reach their

optimal value before others. Consequently the number of dimensions in which it is

probable for a mutation operator to make an improvement decreases.

It is important that the mutation range be sufficient to have a non-zero probability

of reaching all the points in the space, a property referred to as Ergodicity. Ergodicity is

necessary for ensuring that under mutation alone the algorithm has at all times a non-

zero chance of reaching better positions, if they exist. Many algorithms (simulated

annealing, genetic algorithms with non-uniform mutation) use a cooling schedule to

reduce mutation activity during the search. The reduction in mutation activity or range

leads to more localised and exploitative mutations in the later stages and reduces the

distance that mutations are likely to move the sampling in the samples that are left. This

loss of probable effective range means an algorithm must be close to the optimum in

the later stages of the search. Creating an effective cooling strategy is difficult because

it requires prediction of the conditions the optimiser will be encountering at all stages

of the search. Cooling strategies are typically necessary to allow the algorithm to

adjust towards a microscopic search strategy and finesse the best found points. We

use a custom hill climbing mechanism to handle the microscopic search detail, and

consequently have no requirement for a cooling strategy. The mutation operator thus

maintains the desirable ergodic property throughout the search, and we are relieved of

the burden of having to predict the search landscape to create the cooling strategy.

The genetic mutation operator is not without its flaws. Consider optimising the

unitation value of a bit-string using a bit flipping mutation operator, choosing and

setting a bit at random. This operator has a 50% chance of correctly setting a given

bit. As more bits are set correctly, the probability of unsetting a correct bit increases,

whilst the probability of correctly setting an incorrect bit decreases. The expected time

to reach full unitation (known as the MAXONES problem) can be calculated from the

inversion of the fundamental matrix of the Markov chain describing the bit transitions,

and can be demonstrated to increase exponentially as the number of bits to optimise

increases linearly. Figure 6.2 shows the expected number of operations that a bit-flip

mutation operator is expected to take to solve the first few instances of the MAXONES

problem. Note the log scale in use for the y axis.

In the domain of real number optimisation, a similar condition occurs, where val-

ues replace bits and the probability of correctly setting the bit is typically significantly

less than 0.5. We recognise therefore that the mutation operator alone, though ergodic,

is vulnerable to probabilistic stagnation. To ensure continued progression in the search

a more elaborate replacement mechanism must be employed – we only replace candi-

dates with those that are better scoring relative to the objective function. Because the

 1

 100

 10000

 1e+06

 1e+08

 1e+10

 1e+12

 1e+14

 1e+16

 0 5 10 15 20 25 30 35 40 45 50

E
xp

ec
te

d
tim

e
to

 c
om

pl
et

e
un

ita
tio

n
(lo

gs
ca

le
)

Number of bits

Figure 6.2: Mutation; an exponential time search operator.

choice of replacement policy has ramifications beyond the mutation operator alone, we

discuss this decision separately in section 6.8.3.

6.7.2.1 Pseudo-code for mutation

// mutate a point X

function mutate(vector X)�
if (random boolean == true)�

use gaussian distribution

�else�
use uniform distribution

�

create Y a clone of X

select dimensions to mutate at random

for (each dimension to mutate dm)�
if (use gaussian distribution)�

Y[dm] += random gaussian distributed value

�else�

Y[dm] = random value from domain of dimension

�
�

if (Y is better than X)�
X = Y

�
�

6.7.2.2 Objectives of mutation operations

The mutation operator is designed to perform moderate to long range movement within

the search space. We deliberately avoid using gradient based or population distribution

dependent mechanisms. The majority of the mechanisms used in this work do depend

on such sampling. For completeness we require at least one mechanism that simply

explores the probabalistic space. The mutation operator explores two types of space,

either exploring globally with the use of the uniform random sampling mechanism or

locally with the Gaussian distributed sampling.

6.7.3 Local population based techniques

The position of the individuals in the population is a model of the landscape formed

from points that are considered significant. Geometric inference of properties sug-

gested by this model may, if the model is accurate, be beneficial to the search. For

instance, in a population based search, it is highly likely that at some point in the

search, a proportion of the population will explore the same portion of space simulta-

neously. Once more than one member of the population is located in the same basin of

attraction it is possible to use the relative positions and directions of the candidates to

infer geometric properties of the space.

6.7.3.1 Centroid location

One such inference mechanism is already widely used in the field of particle swarm

optimisation. “Queens” due to Clerc [9] is a mechanism for locating the centre of mass

of the swarm. It is trivially extended to permit the location of the centre of mass of

sub-sections of the swarm. The principle that is employed to good effect is that if the

swarm is centering on a single attractor, then the sampling error made by individual

samples may be smoothed out by averaging over all samples, revealing the collective

view of the location of the attractor.

We also use a centroid location mechanism which places samples at the average

position of some sub-sample of the population. However, we must avoid creating a

mechanism that simply replaces candidates with the mean of all samples. The loss of

population diversity is not acceptable, and the assumption that the entire population is

centered on the same attractor is almost certainly false. Under certain circumstances

merciless use of such mechanisms can result in unwarranted exploitation of the space

(see section 3.4.2), where the search collapses towards the centre of the sampled space

irrespective of the nature of the landscape.

We use the same replacement policy throughout this work – samples are only re-

placed by those that are better. Regulating the replacement of samples by their relative

merit helps to prevent increasingly intense sampling of the centre of the cluster. The

cluster of samples does not change in distribution unless there is a net benefit in terms

of fitness. In recognition of the locality of the landscape, we use clusters smaller than

the whole population, allowing separate clusters to form and search the local land-

scape.

The mechanism of forming a cluster of individuals is to select an individual at

random from the population and then locate the n individuals that are closest to it in

toroidal space. This allows us the potential to search all the possible clusters of a

certain size in the population. Cluster sizes have to balance the improved precision

gained by using large clusters of samples against the desire to be able to maintain

several independent clusters within the population. We use clusters of size n � 3,

preferring to use planar sampling and sacrifice accuracy of the cluster estimation for

increased flexibility offered by using the smallest possible meaningful cluster.

There are two reasons for choosing small clusters. Small clusters reduce the num-

ber of points that have to be within a basin of attraction to be capable of forming

meaningful centroid samples. In our work we use very small populations, thus it is

also preferable that clusters should be small to allow multiple clusters to form even

in populations of this size. Though the individual iterations of the centroid location

mechanism will be less accurate as a consequence, over a series of iterations the popu-

lation within the basin of attraction of an optimum will nonetheless converge towards

the optimum.

6.7.3.2 Pseudo-code for centroid location

// locate the centroid of those nearest a

// random sample chosen from the population P

// replace based on the best of N samples (N = round(P/20))

function centroid(population P,number of centroid samples N)�

// somewhere to keep a reference to the best sample

// found when forming the clusters :

create integer Bestsampled

// somewhere to keep a reference to the best centroid

// sample found :

create point Bestcentroid

// for each centroid sample, we choose a starting point and

// then find the neighbouring samples from which to form

// the centroid.

for each centroid sample �
// first we select a random member of the population

select integer X randomly from range [0,P-1]

if(bestsampled is unset �
P[X] is better than P[bestsampled])�
Bestsampled = X

�
from P, choose the N points closest to P[X], called Pcluster

create point Xcentre initialised to zero

// obtain the average score of the components

calculate P̄cluster, the average score of the points in Pcluster

// create the weighted sum of the components

for each point i in Pcluster �
// weight points, fitness ∝ magnitude

scale Pi
cluster relative to average fitness P̄cluster

add scaled Pi
cluster to Xcentre

�
evaluate fitness of Xcentre

if(Xcentre is better than Bestcentroid)�
Bestcentroid = Xcentre

�
�

// only replace if the samples indicate

// a general improvement. If so, replace the

// appropriate member of the population

if(Bestcentroid is better than P[Bestsampled])�
replace P[Bestsampled] by Bestcentroid

�
return

�

6.7.3.3 Centroid location objectives

The centroid mechanism is primarily designed to re-centre good samples that are well

placed but are within clusters which implicitly contain better placement information.

Indirectly the mechanism is designed to increase sampling of interesting areas if a

better point can be found. In many ways the centroid location mechanism is very

similar to Clerc’s queens method; we use a weighted average and sub-samples of the

population in our calculations.

There are two significant oddities in the design of our centroid mechanism which

alter its behaviour significantly. The first is that the point from which the cluster is

defined is not part of the averaging process and so has no influence on the creation of

the weighted average point, however, it is considered in the evaluation of the created

centroid sample and replacement is considered only for these cluster defining points.

This process attempts to replace a point in the centre of a cluster with a better point,

but without significantly altering the density of the cluster, the point will just have been

better “centered”. The second aspect of note is that we have employed a mechanism

for moderating the normally aggressive replacement rate. If more than one centroid

sample is taken then only one replacement is made, and the replacement is evaluated

against all the central samples used in forming the clusters used in the search. Replace-

ment is only performed if there is an improvement made against the fitness of the best

point sampled from the population. This greatly slows the replacement rate, replacing

the normal aggressive centering behaviour of the centroid based searches with one that

only replaces already good points with better ones, whilst maintaining a high sampling

rate of potential replacements.

We use auto-adaptive hill climbing to make small scale refinements to points which

are successfully replaced by the centroid location mechanism. The centroid mech-

anism is an interpolative mechanism which explores the centre ground of clusters.

When iterated in the basin of attraction of an optimum the centroid mechanism will

tend to reduce the volume spanned by the cluster within the basin.

6.7.3.4 Point-wise extrapolation

Figure 6.3: The sampling mechanism of the extrapolation mechanism on a maximisa-

tion problem. The extrapolation of the trend between two points P, Q gives an expected

firection of continued improvement, which is then used to place samples in the scalar

ranges. The scalar ranges shown in this example are sectioned as follows: a to b 0.5

to 0.75, b to c 0.75 to 1.5, c to d 1.5 to 2.5. One sample is placed in each scalar range,

and if better the best sample replaces the worst of the pair of points, P.

It is common for population based techniques to have to climb slopes in the land-

scape. Mechanisms which explore the extrapolation space from samples of points

are typically more successful on such landscapes. Most modern crossover operators

designed for use in real number optimisation tasks are extended to incorporate both ex-

trapolative search and the more conventional interpolation. This use of extrapolation is

termed in the genetic algorithm literature “explorative” search – search beyond that of

simple interpolation between points, which is deemed the “exploitative” region. The

curious reader is referred to [39, 64, 60] and the references therein for a description of

a large number of such operators.

We use a second local macroscopic mechanism which is designed to explore the

boundaries of the population, using extrapolation from pairs of points. We choose the

first point at random from the population, and use the closest neighbouring point from

the population for the second. Unlike the attempts to extend the reach of crossover

operators, the mechanism we use for exploring possible extrapolations is a completely

separate mechanism to that which we use to perform interpolation. By keeping the

interpolative and extrapolative mechanisms distinct, we hope that they may be better

engineered.

Interpolation and extrapolation are in general quite distinct. For interpolation we

use a weighted centre mechanism to calculate the centroid of the hyperspace enclosed

by a cluster of samples. This requires at least three points, extrapolation on the other

hand, only requires two. Calculation of the weighted centre gives an exact location

which is expected to offer an improved sample if the cluster is spanning a basin of

attraction. Extrapolation on the other hand simply gives a vector which is expected to

generally lead towards improved samples if the two points from which the extrapola-

tion was made are positioned on the same slope. The conditions under which extrap-

olation may be expected to be successful and indicating a vector of improvement give

no indication as to the range at which such an improvement may be resolved. This

is an important consideration, since the basic extrapolation may be sound, but local

anomalies may result in some choices of sampling range being worse than others.

We use an auto-adaptive ranging mechanism, identical to that used in the auto-

adaptive hill climber to overcome the same difficulty with judging appropriate move-

ment distances that we encountered with hill climbing. This is necessary because

whilst the extrapolation vector may be correctly formed and indicative of a general

trend of the landscape towards improvement, the landscape is unlikely to be smooth.

The likely presence of local perturbations in the landscape requires that search be used

to locate at which resolution the perturbations may be avoided. We thus use a further

three samples generated using scalings selected from ranges of [0.25, 0.75], [0.75, 1.5]

and [1.5, 2.5], allowing the adaption of sample spacing to closer, approximately the

same, or larger distances. The extrapolation vector is scaled and added to the first

point to create a sample. The best of the samples is compared to the worst of the two

points, and if better replaces it in the population. Unlike the microscopic hill climbing

case there is no requirement to store additional information about the last move made

or the distances involved for the adaption to occur, since this information is encoded in

the placement of the samples.

6.7.3.5 Pseudo-code for extrapolation

// extrapolate between points

function extrapolate(point P)�

Search population and locate Q the closest point to P

// an indicator as to which of P or Q is to be replaced

boolean replaceP = false;

boolean replaceQ = false;

// create the indication vector

if (P is better than Q) �
create vector R from Q to P

// mark Q (the worst) for replacement

replaceQ = true

�else�
create vector R from P to Q

// mark P (the worst) for replacement

replaceP = true

�

// we now need to calculate the preferred scaling

create M, a set of scalars

// somewhere to store the best sampled point

create a point Best

for (each scalar)�
create sample S = P + M R

if(S is better than Best)�
Best = S

�
�

// if an improvement has been made,

// replace the appropriate member

// of the population

if (replaceP � Best is better than P)�

P = Best

�else if (replaceQ � Best is better than Q)�
Q = Best

�
return

�

6.7.3.6 Point-wise extrapolation objectives

The point-wise extrapolation operator is essentially a mechanism for sequentially hop-

ping pairs of points through the space in the direction suggestive of general improve-

ment. It is designed to require the least information from the population to be able

to rapidly exploit the implicit information encoded in the relative positioning of the

individuals in the population.

The extrapolation mechanism alone can fail, and used in isolation is very unlikely

to successfully search the space, since it does not search off the line of the extrapolation

vector. This is a potential weakness, but one that is hard to correct at this resolution.

The off-vector search space is very large, and without placing further samples there

is little guidance. We use the auto-adaptive hill climbing mechanism to search for

refinements of successfully extrapolated samples. Hill climbing all samples is too

expensive. The hill climbing mechanism is capable of moving in all directions in the

space, and can move points away from the extrapolation vector.

One significant advantage of an extrapolation mechanism is in accelerating the

process by which samples are taken from the near perimeter of the hyperspace spanned

by the population. This allows rapid ascents of gradients that are on the edge of the

population, and thus we have a medium range hill climber that is relatively robust

against small irregularities in a generally regular local space and is much faster over

long distances than the microscopic hill climber could be.

6.7.4 Pan-population techniques

All of the informed operators considered so far are geometrically based; they consist

of moves calculated relative to gradients or vectors sampled within the space. None

of the operators so far mentioned consider the population as a resource for storing

and retrieving partially completed searches, only as a resource for directing the cur-

rent search. All of the operators considered so far operate only on individuals or local

clusters of samples. If you consider the informed alteration of points as communica-

tion between points in the space, then all of the search mechanisms discussed so far

gather and disseminate information locally. We need a mechanism which is capable of

disseminating information globally and thereby communicating between individuals

distant in the geometric space. This is the largest resolution which we will consider

in this work. Larger resolutions are possible, parallel searches with multi-deme pop-

ulations for instance have the potential to resolve the problem at the inter-population

level, but we do not have a requirement for such mechanisms yet.

6.7.4.1 Crossover

The traditional genetic algorithm places great emphasis on the importance of the crossover

mechanism to perform search. The precise nature of the contributions a crossover op-

erator makes to the search is unknown. Crossover operators vary widely in design

and capability, varying from hypercube restricted operators through full geometric in-

terpolation and extrapolation mechanisms to bitwise disruptive techniques. In the cen-

troid location mechanism and the point-wise extrapolation mechanism we already have

methods designed to perform interpolation and extrapolation. We do not have a mech-

anism that is capable of exploring the vertices of the hypercube of possible population

recombinations.

Crossover requires two or more candidates from which to copy the values. In the

genetic algorithm literature the samples are typically referred to as parents, and the

product or products of the recombination are termed the child, children or offspring.

We will follow this naming convention.

Each unique dimensional value in the parent set defines a unique vertex in a hy-

percube of alternatives; when selecting a value for a dimension of the child, the legal

values are only those present in the same dimension of the parents. Thus the possible

samples that may be made by this type of recombination is restricted to the vertices of

the hypercube.

This type of search is potentially useful because whilst independent optimisation

of each dimension may occur, it does not occur synchronously between all points. In-

dividually samples may be considered to be exploring the space in parallel. Each may

have better values for certain dimensions than others. By swapping values between

candidates and selecting for better performance, it is possible to recombine better val-

ues from distinct individuals which were fortunate enough to discover them into one

composite individual, a process which is potentially quicker than waiting for them to

be optimised in isolation. This is in essence the thinking behind Holland’s [42] much

disputed “building block hypothesis”. Part of the controversy over the building block

hypothesis comes from it being interpreted as an attempt to explain all the phenomena

of genetic search by a single mechanism. The failure of the hypothesis to be gener-

ally accepted as the only mechanism by which genetic search is performed does not

invalidate its utility as a potential search mechanism.

We use the uniform crossover operator as the basis of our technique. The uniform

crossover operator creates an offspring by selection of values from either of the par-

ents at random. Conventionally the crossover operator is used with two parents. Where

there are more parents contributing material to the offspring the term multi-parent is

used. The use of multi-parent crossover operators is still rare in the evolutionary algo-

rithm community, and several empirical analyses have proven inconclusive (see [24]

for a comprehensive list). Multi-parent recombination allows the formation of new

combinations of values that could not have been achieved with any significant proba-

bility by single step recombination. It also permits the generation of the same combina-

tions that could have been achieved by conventional two-parent recombination. The set

of possible recombinations obtainable using two parents is totally contained within the

superset of recombinations obtainable using multi-parent recombination. Multi-parent

recombination is quite common in the evolution strategies literature, and is regarded

as potentially beneficial [25]. On balance we consider that the potential benefit of us-

ing multi-parent crossover operators is convincing. We allow the crossover operator

to generate new individuals using dimensional values donated by any individual in the

current population. Every time an individual is created by the crossover operator and

accepted into the population it creates copies of the donated values and potentially

reduces the population diversity. Consequently we only keep individuals created by

the crossover operator if they are better than the best known candidate in the current

population, which if beaten, is replaced.

This “replace the best” selection is extremely hard. Very few of those individuals

generated by crossover will be better than the best member of the population. The

purpose of this choice of replacement is to maintain the same context for replacement

comparisons as is used for the generation of new crossover candidates. Any replace-

ment that occurs during crossover represents a genuine improvement in the state of the

search. Without a niching mechanism or some other similarity metric, other types of

crossover replacement can not be permitted without risking significant population con-

vergence. By replacing the best candidate with the offspring of successful crossover

operations we make the next replacement more difficult and prevent the crossover op-

eration from simply converging the entire population on local optima. Conventional

crossover mechanisms replace the parents involved in the recombination and may con-

verge in the vicinity of an optimum by producing and accepting a series of permuta-

tions of the current best individual. Niching mechanisms are frequently used to attempt

to prevent such premature convergence, but these require further parameterisation and

are significantly complicated. By using a “replace the best” crossover replacement

policy we avoid the thorny issue of selecting a niching mechanism appropriate to the

problem structure. We also avoid premature convergence since the population can not

be converged by the crossover operator unless there is a continuous fitness benefit in

doing so.

6.7.4.2 Pseudo-code for crossover

// crossover candidates to create composites

// and replace the best individual if better.

function crossover (population Pop)�

// somewhere to store the best

// of the samples

create point Compositebest

for (each crossover sample)�
create point Composite

for (each dimension d)�
choose parent P from Pop at random

// copy the dimensional value from the parent

Composite[d] = P[d]

�
if (Composite is better than Replacement)�

Replacement = Composite

�
�

locate Populationbest , the current best

if (Replacement is better than Populationbest)�
Populationbest = Replacement

�
�

6.7.4.3 Crossover objectives

The crossover operator is designed to allow the “dice and splice” type of recombina-

tive search to proceed as effectively as possible whilst protecting the population from

loss of diversity through genetic drift and the over investment in exploiting optima.

We use the recombination operator to make copies of significant dimensional values

only if the improvement offered by the new recombination is significant relative to the

current population. In terms of search effort duplicated dimensional values are subject

to greater search than those which are unique in the population. If the replacement

point is derived from the current best point, then the point has been simply refined and

should be replaced, the basic distribution of search effort has only slightly changed. If

the replacement point is not derived from the current best point then the replacement of

the current best point removes one set of duplicate dimensional values from the popu-

lation and replaces it another. This effectively moves the focus of the search from one

set of values to another, without directly causing the loss of the original donors of the

values. If a crossover operation successfully replaces a candidate, the replacement is

the target of an auto-adaptive hill climb attempt.

6.8 Controlling the search

The skeleton of our algorithm is as follows:

function search�

// generate the initial population

create M individuals at random

// storage for the best of the search

create individual Best

while (have more evaluations)�

// try to refine some points

randomly select Nhc members of the population,

for (each Ni of the Nhc selected)�
// microscopic level adjustment

hillclimb(Ni)

�

// try to expand the span of the population

randomly select Nex members of the population,

for (each Ni of the Nex selected)�
// pointwise extrapolation

extrapolate(Nex)

�
// test crossover operations

crossover(population)

// explore the centroid

centroid(population,Nctr)

// search for good mutations

randomly select Nm members of the population,

for (each Ni of the Nm selected)�
mutate(Nm)

�

// update the best found

locate the best of the population Currentbest ,

replace Best with Currentbest if better

�

// return the best individual found

return Best

�

For all experiments reported in this work we use a population size of 20, per gen-

eration the number of hill climbing attempts Nhc is 1, the number of point-wise extrap-

olation attempts Nex is 10, the number of crossover attempts Ncr is 20, the number of

centroid location attempts Nctr is 1.

The large scale structure of the algorithm is dictated by a rough attempt to balance

the relative performance strengths of the various mechanisms against the preferred

types of optimisation. Operations such as crossover are, generally speaking, unlikely

to create change in the population even when such changes are possible. This is in part

because of the requirement of our crossover mechanism to improve the quality of the

population as a whole, and partly because the probabilities of performing a successful

crossover operation are quite slim, even under ideal circumstances. Dimensional val-

ues do not necessarily have to be independent to be successfully optimised in subsets.

Thus we expect that separate development of dimensional values may occur, and if it

does that recombination may save effort relative to the difficulty of rediscovering the

same development. We thus assign crossover a high proportion of the evaluations.

The distribution of samples used in a cycle of evaluations is detailed in the follow-

ing. It should be understood that each of the “evaluations” referred to in the following

indicates a novel evaluation of the objective function. The word novel has been om-

mited from the phrase to avoid monotonous repetition.

If configured as described in this work, each of the Nhc members of the population

that are hill climbed consumes either 4 or 9 evaluations, depending on the quality of

the historic vector. The Nex extrapolation attempts each consume 3 evaluations, and if

successful, the auto adaptive hill climb mechanism is then employed involving a further

4 or 9 evaluations per success. There are as many crossover attempts made as there

are members in the population, each using one evaluation. Every time the crossover is

successful the best known candidate is replaced. The replacement candidate is then hill

climbed, which uses another 4 or 9 evaluations. The Nctr centroid operations each use

1 evaluation, and successful replacements are hill climbed at the cost of a further 4 or 9

evaluations. The mutation operator uses one evaluation for each of the Nm candidates

that are mutated. Mutations are not hill climbed, since the mutation operator involves

Gaussian sampling which frequently produces very small improvements. To hill climb

every slight improvement made by the mutation operator would result in the use of

vast numbers of evaluations.

6.8.1 Auto-adaptivity

Under certain circumstances, such as when the hill climbing mechanism must traverse

a space which is very large relative to the hill climb step size, or when the extrapola-

tion mechanism is approaching a discontinuity, auto-adaption is the only mechanism

by which the search maintains a reasonable probability of success. The ranging mech-

anisms used in the microscopic hill climbing and the extrapolation mechanisms are

essential to their operation. It is tempting to extend the auto-adaptivity notion to em-

brace the larger scale decisions, such as the distribution of evaluation effort between

the various operators.

Auto-adaptation of the algorithm structure is complicated and we considered achiev-

ing it in a probabilistic manner. Probabilistic adaptation is achieved by the analysis of

the relative success of the various operators. By identifying the operators that appear

to make the most progress in the recent sampling period, the proportions of the oper-

ators which are applied in the next round of sampling may be modified. The task is

significantly complicated by the variability in the operator success rates, and the dis-

tinct resolution differences over which they operate. Some operators like mutation are

irregularly successful yet are capable of searching large spaces, some like hill climbing

are regularly successful but only make small alterations to the points. Which is more

relevant depends upon the current status of the search, and how close the candidates

are to the global optimum and their relative probability of improvement, all of which

are very difficult to ascertain from the current sampling conditions.

Auto-adaptivity of the distribution of effort between operators is not obvious. For

instance, following a successful mutation, the resultant point is likely to be easy to

improve through hill climbing. The inference that further mutation operations may be

useful for the population as a whole ignores the unique properties of the point that has

been mutated. The effect of the mutation is more likely to be faster shared amongst

similarly placed points by a crossover operator, than waiting for each point to be in-

dividually mutated in a similar manner. Xie [95] reports the use of a simple neural

network as a potential control medium, but does not provide convincing evidence of

its effectiveness. See section 4.9 for a discussion of hybrid techniques in the literature.

The difficulties of designing an effective and justifiable auto-adaptive algorithm

control mechanism are significant. We do not pursue auto-adaptive structural modifi-

cations in this work.

6.8.2 Inference via sampling

An optimisation algorithm is designed to distinguish and optimise a certain class of

landscapes. Samples taken from the domain are interpreted relative to prior models

of the structure and used to imply confirmation as to what properties the landscape

apparently holds. The samples taken are the only source of confirmation the algorithm

has. We believe that the evidence collected by the sampling process instructs the best

future direction for the search. Consequently, we also consider that all decisions re-

garding which points are of interest should be evidence based, being qualified by an

actual improvement in the objective value of the considered sample.

It is common in stochastic search to permit an algorithm to make moves that worsen

the quality of the solution, in the hope that by doing so the search may be released

should it have become trapped in a local optimum. By permitting the worsening move

it is hoped that the search will be released from the local optimum and may now be able

to improve. Detection of the local optimum is not typically performed, for instance in

simulated annealing the worsening moves are controlled by a probabilistic method

which decreases in likelihood as the search progresses.

We use only evidence inferred from the sampling to instruct the maintenance and

replacement of samples. The samples maintained in the population are the current

best model of the landscape. Ignoring the sampling and randomly worsening solutions

without evidence that such a move is appropriate is potentially harmful to the search.

At the same time a mechanism is required to release the algorithm from becoming

trapped in local optima. We permit such down-climbing moves to be performed only

on candidates that we believe have ceased to have a reasonable probability of further

movement.

We detect the failure of a candidate through the failure of the most robust and

highest resolution operator, the hillclimbing operator. We then attempt to mutate the

cadidate, to try to explore the local area before finally restarting the candidate. The

main characteristics of the downclimbing mechanism, which is invoked as part of the

hillclimbing mechanism are given in the following code.

function downclimb{

// under what conditions do we restart a point?

int failedClimbs = hill climb failures;

if(failedClimbs > hillClimbLimit &&

failedClimbs < totalClimbLimit){

try mutation

}else if(failedClimbs > totalClimbLimit){

reset the point

failedClimbs = 0

}

}

6.8.3 Replacement policy

The algorithm does not have an identifiably separate candidate selection process, in-

stead selection is distributed throughout the algorithm. Candidates are selected for

inclusion in operations randomly from the population, the new candidates produced by

these operations are kept based on their relative fitness. This allows the selection and

replacement method to be customised for each operation. Some operators such as the

centroid location mechanism or the point-wise extrapolation mechanism operate over

small groups of clustered individuals. Selection for inclusion in the operation is then

an automatic consequence of the selection of the first point. In general, we use a policy

of only replacing candidates if they are improved, or equally well performing, relative

to the group over which the operator is operating. This type of choice allows the algo-

rithm to alter the distribution of samples in the population only if it locates points that

are better. The expected relative scale of the operation is taken into consideration when

comparing relative performance. The short ranged microscopic hill climber only has

to improve relative to the initial sample, in contrast the crossover operator manipulates

information from the whole population, and relative improvement is judged against the

whole population.

Our sampling method lends itself to very aggressive exploitation of local optima,

and the “replace only if better” policy ensures new candidates must offer tangible im-

provement. Unfortunately selection based on monotonic improvement easily traps the

algorithm in sub-optimal positions. It will be necessary to sacrifice some samples to

continue the exploration of the space. Since all samples maintained in the population

are there on merit, removal of samples should also be performed on merit, however

we do not perform a simple “replace the worst” cull. Replacing the worst samples in

a population is short sighted, primarily because some samples may have longer devel-

opment times; they may take longer to approach areas of interest than others. These

relatively slow moving samples will be prematurely culled before they have explored

their local space. The decision to terminate an exploration should not be made in

terms of absolute quality of the candidate, but rather in terms of the likelihood of fur-

ther progress. The diagnosis of exhausted points, and their re-initialisation is described

in section 6.8.5.

6.8.4 Population diversity

Our population is small. We have a strong interest in maximising the utility of each

sample. Occasionally the search operators such as crossover will produce candidates

which are identical clones of other candidates already in the population. With such a

small population it is important to prevent the population from becoming prematurely

dominated by a single candidate. At the same time, significant effort is expended

in other algorithms (such as simulated annealing) to ensure that the final stages of

the search are spent refining the current candidate. We thus detect and reject clones

created by likely mechanisms such as crossover and the centroid location mechanism,

preferring to maintain population diversity and rely on the power of the local search

mechanisms.

6.8.5 Elitism and abandoning points

Elitism, where the best candidate in the population is guaranteed to persist, is com-

monly used in population based searches. The principle is sound, that without protec-

tion an algorithm that loses samples may unfortunately dispose of the best candidate.

It is generally considered that elitism is required for the general purpose genetic al-

gorithm to effectively optimise. The traditional form of elitism maintains the best

candidate in the breeding population. Maintaining the best candidate in the population

without remission, combined with the normal disseminative operators, places a strong

convergence pressure on the population. The search performed by the population is

likely to be heavily influenced by any such perpetual members.

To avoid the domination of the population by any one candidate we do not use any

form of elitism and do not distinguish between the best of the population and any other

member. Combined with the replacement policy of replacing candidates which have

failed to progress, this means all candidates have a limited time-span they can remain

stationary – irrespective of their quality. We are interested in the absolute best solution

found at anytime during the search, not only at the termination of the search, and so we

keep a copy of the best solution discovered so far. This copy is purely for book keeping

and reporting purposes, and has no further influence on the progress of the search.

It should perhaps be underlined that this algorithm does not have a mechanism for

removing the worst candidates from the population. Instead samples are allowed to

persist until they are trapped by the landscape. The sampling history of a point gives

some indication of when a point is trapped and has ceased to progress. The failure to

progress after some number of iterations is indicative of either a failure in the sampling

mechanism, or, if the sampling is working correctly, the high probability of an absence

of anything of interest. We designed the sampling mechanisms as robustly as we could,

and must assume them to be competent. A sustained failure to progress, then, implies

the exhaustion of the point. The microscopic hill climbing mechanism generally con-

tributes the smallest scale of improvement to the search and is the hardest mechanism

to exhaust. When successive iterations of hill climbing have failed to locate improve-

ment, we consider the point to be locally trapped. Trapped points are considered as

unlikely to improve. By the time the microscopic search has stagnated for several iter-

ations the point will have been in the population for some time. If the search operators

are functioning correctly any influence the point can have on the search is likely to

occur within this period, and so the contribution of this point to the search is likely to

have already occurred; it may be removed with confidence.

When a point has been observed to halt, and hill climbing has failed to make

progress for some period of time, we must consider the local search conducted by

the point to be stalled, and will have to replace the point with one that may be more

profitable. However significant investment in the sample has already been made, and

total replacement of the point may not be necessary. If the point is trapped in a lo-

cal optimum that hill climbing can not escape it is feasible that mutation may release

the point. Instead of replacing stalled points immediately we attempt to use mutation

to “jolt” the point, working from the premise that the local area may contain benefi-

cial points. If the mutation operations also fail to locate improvement. We decide the

point is stalled and curtail our investment in the area, we replace the sample with one

randomly generated from the domain of the function.

Abandoning and re-initialising stalled points allows a small population to process

a large number of distinct points during a run. We use the repeated failure of micro-

scopic search to diagnose stalled points. By definition the degeneration of gradient

based search at this resolution implies the point is trapped in some form of local opti-

mum. Whether the search has degenerated because it is trapped in a genuine optimum,

or because the search operator is badly sampling is actually irrelevant. Either way,

continued investment in the same process is unlikely to yield improvement. Because

we probabilistically sample, it is obviously a guess as to at what stage the search has

truly degenerated. The balance may be summarised as: the more persistent the search,

the better the results of each exploration will be refined, but fewer explorations will be

made. We allowed points to persist for ten iterations of the hill climb operator before

considering them stalled. Once classified as stalled points, we attempted to jolt the

point using mutation five times, after which the point was considered to be unpromis-

ing and was re-initialised.

6.8.6 Dealing with constraints

To allay suspicions of over fitting we wish to use the algorithm on a wide variety

of problems. A large group of functions are well defined over the full range of the

domain, and are referred to as unconstrained functions. Constrained functions on the

other hand, such as Keane’s function (introduced in section 3.3.5 and described in

detail in section 7.5) are only valid for a subset of the domain space. In these functions

the interactions between the variables defining the acceptable region of the domain is

controlled by one or more constraint functions defined separately from the objective

function.

Search mechanisms operating over the full domain are likely to create values that

fall into the illegitimate region. A constraint handling mechanism must steer the search

away from illegitimate regions of the space. Typically such mechanisms work by

penalising candidates that use illegitimate domain values. The more sophisticated

mechanisms treat the constraints as objective functions in their own right, and use a

multi-objective approach to solve the whole problem. The interested reader is directed

towards Michalewicz’s book [59] for a comprehensive treatment of the topic. Clearly

the better the penalty mechanism is at smoothing out disruption caused by the con-

straints the better the continuity in the space and the algorithm has a better chance of

navigating the space successfully.

As noted by Hedar in [67], there is the possibility that the feasible space is fractured

and separated by infeasible regions, requiring that both the feasible and infeasible re-

gions be searched. When handling the Keane function, Michalewicz and Schoenauer

[74] use a constraint handling technique that explores only the boundary of the feasible

and infeasible space. Even within the test suite proposed by Michalewicz in [59] the

majority of functions have optima that are not fully constrained, and so searching only

the constrained boundary is not a generally applicable technique.

Surry in [84] suggests that the majority of constraint handling techniques are sen-

sitive to their free parameters. We avoid the issue of selecting the best constraint han-

dling technique and use a trivial “parameterless” option instead: All of the possible

algorithm specific free variables are held constant throughout all of our experiments.

Our mechanism attempts to direct the search of the infeasible region towards search-

ing the feasible region. Solutions from the feasible domain are evaluated by the ob-

jective function. Solutions from the infeasible region are evaluated according to their

penalty. To distinguish feasible and infeasible solutions through the fitness function

all infeasible solutions are penalised a large fixed value, chosen to be large enough

to be significantly worse than the expected worst performance of feasible candidates.

All the constrained functions we used had limited feasible values to within a few hun-

dred thousand of zero or smaller: to be on the safe side we used an initial penalty of

one million. This allows the algorithm to differentiate between feasible and infeasi-

ble solutions with a selection pressure on choosing the feasible solutions. To be able

to distinguish between the various magnitudes of constraint infringement, we need a

proportional second penalty. For each constraint that is breached the magnitude of the

breach is scaled by one million and added to the penalty. This allows the algorithm to

differentiate between solutions with various degrees of constraint infringement.

It should be noted that although we use a single number for representing the quality

of solutions, which we do because the of the binary nature of the decision, there are

other ways that could have been used that may have kept the number of constraints

breached seperate from the result of the evaluation. Other than complicating the algo-

rithm, maintaining this distinction makes little difference to the actual decision making

process, since decisions of comparative quality still necessitate a prioritisation of the

number of breached constraints relative to the result of the evaluation. In this case

we have used a large scalar to prioritise meeting constraints more than improving the

result of the evaluation.

6.8.6.1 Pseudo-code for penalty function

// evaluate a point X with regard to

// some constraints and an objective function.

function evaluate(X)�

// somewhere to store the penalty (if any)

penalty = 0

for (each constraint)�
if (constraint is breached)�

// penalty direction is dependent upon objective

if(minimiser)�
penalty += 1,000,000 * magnitude of breach

�else�
penalty -= 1,000,000 * magnitude of breach

�
�

�

if (no constraints are broken)�
// if there are no broken constraints

// the point is legitimate and may be evaluated

// directly using the objective function

return fob jective(X)

�else�
// ensure even minor constraint breaches are

// clearly identified

if(minimiser)�
penalty += 1,000,000

�else�
penalty -= 1,000,000

�
return penalty

�

�

6.8.6.2 Objectives of penalty function

The main advantage of the mechanism described here is it is extremely simple. There

are no parameters to consider. As long as the initial penalty is large enough to separate

the majority of the feasible space from the infeasible space the penalty function will

guide the search towards feasible space. Once within feasible space, the function trans-

parently returns the objective function evaluation. We do not claim the mechanism to

be better than those expounded in other works, rather we claim it is sufficient to allow

our algorithm to operate on constrained functions, which being radically different to

the conventional unconstrained test suites are an important addition to our test suite.

6.8.7 Sacrificing convergence

The convergence of a population on an optimum is considered a desirable property in a

population based search. Concentrating search effort on a particular location has obvi-

ous performance benefits if the location is well chosen. Convergent behavior is weak-

ened as a direct consequence of the decision to use the restart mechanism to remove

stalled points. Population convergence is often used as an indicator of stabilisation in

the search. The loss of the convergence property of the algorithm means there is no

obvious marker by which the termination of the effective search period may be judged.

We are also not able to guarantee the concentration of the search effort and instead rely

on the quality of our local search operators to detect opportunities for improvement.

We consider the loss of population convergence to be untroubling, having effectively

exchanged the possibility of convergence for the possibility of improved sampling.

6.8.8 Parameterisation

Parameterisation is the hidden cost of modern search heuristics. Many algorithms are

capable of producing extremely strong results when properly tuned, but tuning can be

difficult. Clerc’s TRIBES mechanism is auto-parameterising [11], and Parsopoulos

[65] even uses a differential evolution method to on-the-fly parameterise a simple par-

ticle swarm optimisation algorithm. As Monson points out in [62] the Kalman swarm

parameterisation space can be greater than the space of the function to be optimised.

The amount of effort the researcher invests in the parameterisation of the algorithm is

significant in evaluating the true quality of the reported performance.

Our algorithm has many complicated internal mechanisms, and the full parameter-

isation set is rather large. Clearly we are in danger of following the Kalman swarm

algorithm into parameterisation hell. To avoid this, and to make the author’s life eas-

ier, we created an auto-parameterisation mechanism which maintains the same ratios

between the various critical parameters, scaling in proportion to the population size.

Having found our initial settings to be promising, we were not particularly precious

about the precise parameterisation of the algorithm and are certain that better choices

for these ratios will be found by future research. All our experiments against the bench-

mark functions used the same population size, and consequently received exactly the

same search heuristic parameterisation.

Obviously we depend on the user for those parameters that define the problem; the

objective function, the dimensionality, iteration limit and the accuracy with which it

is desired to locate the optimum (if known). A typical call to the optimiser as used to

generate the results in this work is then only four arguments, with no scope for problem

specific parameterisation or tweaking.

6.9 Comments on our design

There are several immediate aspects of the design of this algorithm which attract im-

mediate attention. As further research unveils more detail of the interactions between

the various aspects of the design, we expect to discover more aspects of the design

which could have been better chosen.

One obvious compromise is that the ranges of values used in the auto-adaptive

mechanisms is not perfect. The ranges 0.25 to 0.75, 0.75 to 1.5, and 1.5 to 2.5 give

mean expected scalings of 0.5, 1.125 and 2.0. An ideal choice would have produced

means of 0.5, 1.0 and 2.0. We considered the minor effect this is expected to have on

the sampling of ranges to be insignificant.

Similarly the auto-adaptive ranges themselves are arbitrary, selected to form the

basis of a binary search. The hill climbing auto-adaptive mechanism uses three samples

per iteration to locate preferred scalings of the direction vector. Three samples are used

because two samples are the minimum required to auto-adapt and using three samples

allows the approximate maintainence of the current step size. It is possible that other

choices of ranges could be more appropriate.

The auto-adaptive hill climber uses only 5 randomly distributed points to estimate

gradients in very high dimensional spaces. Using more samples in the estimation of the

gradient is beneficial in high dimensional spaces. The effort invested in tracking the

gradient should be proportional to the difficulty encountered, which we estimate by the

time the hill climbing algorithm has spent stalled. Increasing the number of samples

used as the search begins to stall could be achieved without inflating the search cost

by proportionally reducing the number of auto-adaptive hill-climbing attempts that are

made before the point is abandoned.

It is a point of oversight that the last position is not used in calculating the hill

climbing gradients for the next move. If the last move was a hill climbing step then

it is guaranteed that the last position is on the hypersphere of the next set of samples.

It would have been trivial to check the utility of the last point and include this source

of information, which would have contributed an additional sample to the information

of one of the most sample-starved operators. This method is equivalent to including

the historic direction vector in the construction of the composite vector. If the hill

climber is collecting samples then the historic direction vector is known to have failed

to improve the sample quality. Its inclusion as a deterrent is thus likely to bring an

improvement in the sampling of the hill climbing.

There are aspects of the comparisons made when deciding between points that

could be further refined. For instance before restarting points we attempt a series

of mutations. As the algorithm stands, if the mutation improves upon the previous

point then the point is retained. Otherwise, if the point is not improved then it will

be restarted. It has been pointed out that the comparison is somewhat unfair, because

of the comparison between a point that has been through the hill climbing process

(the fatigued point) and one that has not (the proposed mutant). We can not afford to

perform hill climbing on all points that are mutated. Instead we could store the points

value before hill climbing was performed, and use this as an indicator of the potential

differences between the points.

The hill climbing mechanism assumes a simple gradient structure, thus it does

not consider the relative magnitude of improvements when constructing the composite

vector. It is unknown under what conditions this assumption degenerates and causes

poorer sampling than would have been performed if the composite vector was con-

structed using components scaled by their delta in the objective function.

The representation uses toroidal mapping to maintain the closure of the space for

all vector operations. This is an arbitrary choice, and as remarked earlier is likely to

create discontinuities in the evaluation function at the “seam” of the toroid. It is worth

considering the alternatives, including using a geometric “reflection” to maintain the

integrity of the vectors.

The mutation mechanisms are strongly aligned along dimensional separations of

the space. This is potentially a major weakness in the mid-range search mechanism.

Though the algorithm performance has not been exposed as significantly weak, ex-

tensions to this work should consider the inclusion of mutation operators capable of

more complete exploration of the space. Additionally the hill climbing mechanism

is not employed following mutation to reduce the consumption of novel evaluations

of the objective function. The hill climbing mechanism is employed after all other

major disruptive search operations, and it could be argued that it should also be em-

ployed following range mutations. We do not employ the hill climbing mechanism

to save evaluations of the objective function from being wasted on attempting to hill

climb small embellishments which are better searched by the hill climbing mechanism

directly.

The crossover mechanism uses comparison against the best candidate in the popu-

lation as the context for replacement decisions, which is not precisely the same as the

context of a random sample from the population which is the context used for gener-

ating potential replacements. This makes the crossover operator less likely to perform

a successful replacement than otherwise might be the case, and simultaneously im-

pedes the convergence of samples generated by the crossover operator. We believe,

that given the small population, the reduced rate of population convergence merits this

minor asymmetry.

We could also break the modules apart and try running sections of the algorithm

in isolation, to try to determine what the manifest contribution of each of the modules

actually was. This opens up a whole section of further experimentation, and offers the

promise of significant performance rewards if the underperforming components could

be identified.

Chapter 7

Surrogate evaluation functions

The following test functions are used as surrogate evaluation functions in this work.

Several test functions have a variety of dimensionality or range settings in common

use. A few (like the Rosenbrock) actually have distinct function definitions referred

to by the same appellation. Care should be taken to ensure the discussed function is

correctly identified.

Where reliable results have been discussed in the literature, the best known to the

author are presented in the appropriate tables. These are not definitively the best results

ever located, but are representative of the common state of the art. The literature review

on which these tables are formed was performed in the August of 2005.

Where relevant properties are known, short notes are provided. For definitive algo-

rithm descriptions and full details of implementation conditions the reader should refer

to the referenced documents. Where an author has published several results, rather than

repeat the annotation for each result published by the author, we remark only upon the

first result.

7.1 General comments on reports

The functions used in this evaluation suite are chosen because they have two properties,

they are diverse and they are widely reported by many authors using many optimisation

techniques. The technical difficulty of some of these functions is no longer as great

as once might have been assumed, however, they still serve as universal arbitrators of

performance, which if chosen over a wide enough range of functions is hoped to reflect

generality over the class of like functions.

Some functions are constrained (Michalewicz’s test suite and the Keane function)

145

and so we include reported results that are known not to breach the constraints. Due to

the constraint handling mechanisms involved, it is possible that the results published

for the constrained functions are from the illegitimate region, but that the violation is

by less than the acceptable measure. We follow the tradition in the field by considering

such solutions acceptable.

Occasionally authors presented unusual aspects of the algorithm’s performance, or

used unclear definitions or terminology. Under such circumstances attempts have been

made to normalise the presentation. Ambiguity was resolved by erring on the side of

generosity. Generally if the result is questionable and no clarification could be obtained

from the author we have had no choice but to omit the reported result. If the result was

however the best reported performance in the literature we are obliged to include it –

with suitable cautionary notes.

Most evaluation functions have a domain definition as as part of the function spec-

ification. Despite this the reported functions are evaluated over a large variety of do-

mains. Where an author has not specified the domain they have used, and none of their

other work gives indication of the domain chosen, they are assumed to be using the

default domain.

7.2 Ackley’s function

fAckley��x� �
aexp
b
�

1
n ∑n

i�1 x2
i
 exp 1

n ∑i�1 ncos�ωxi��a� e

�x � �x1� ����xn��
32�768� xi � 32�768

where a � 20 b � 0�2 ω � 2π
n is the number of dimensions.

fAckley�optimum� � 0 at �0�0� ����0�

7.2.1 Best results : Ackley’s function

Herrera (25 dimensions, row 1) used an elitist GA applying the “non-uniform” muta-

tion operator [59] which is a form of cooling mutation. The result reported by Her-

rera is the best of a sweep of 25 heterogeneous and homogeneous crossover operator

choices. The best crossover operator used on the Ackley problem in the Herrera work is

the “Dynamic Heuristic” crossover operator. This operator combines two distinct fea-

tures, a heuristic exploitative method that produces offspring in close proximity to the

R
ow

D
om

ai
n

E
va

lu
at

io
n

B
es

t
M

ea
n

Po
p

.
A

ut
ho

r
N

ot
es

ca
lls

(S
td

.d
ev

)
si

ze

1

��

32

�10
20

0,
00

0
–

1.
5e

-3
(1

.5
4e

-2
)

10
0

D
as

[1
6]

D
E

-T
V

SF
In

iti
al

is
ed

to

�1
5�

32

�10

2

��

32

�7
68

�10
12

5,
00

0
–

2.
34

e-
16

(1
.0

7e
-1

5)
12

5
Se

ttl
es

[7
7]

B
S

in
er

tia
(G

A
/P

SO
hy

br
id

)

1

��

32

�7
68

�25
10

0,
00

0
1.

52
e-

7
3.

81
e-

7
(1

.6
7e

-7
)

61
H

er
re

ra
[3

9]
G

A

1

��

32

�7
68

�30
30

0,
00

0
–

4.
67

7e
-9

(1
.9

6e
-9

)
10

0
O

rt
iz

-B
oy

er
[6

4]
G

A
us

in
g

C
IX

L
2

cr
os

so
ve

r
op

er
at

or

2

��

32

�30
40

,0
00

–
0.

10
43

23
20

C
le

rc
[1

2]
E

&
S

PS
O

al
go

ri
th

m

3

��

32

�30
50

0,
00

0
–

-1
.1

90
15

91
e-

15
(7

.0
3e

-1
6)

10
0

V
es

te
rs

tr
øm

[8
6]

D
E

4

��

32

�30
1,

50
0,

00
0

–
1.

1e
-3

(8
.8

e-
2)

30
0

D
as

[1
6]

D
E

-R
A

N
D

SF
In

iti
al

is
ed

to

�1
5�

32

�30

5

��

32

�7
68

�30
25

0,
00

0
–

5.
74

e-
15

(3
.5

e-
15

)
12

5
Se

ttl
es

[7
7]

B
S

co
ns

tr
ic

tio
n

(G
A

/P
SO

hy
br

id
)

6

��

32

�7
68

�30
20

,0
00

–
7.

41
37

0
e-

7
20

M
on

so
n

[6
2]

B
ar

eB
on

es
PS

O

1

��

32

�10
0

5,
00

0,
00

0
–

8.
02

32
11

7
e-

15
(1

.7
4

e-
5)

10
0

V
es

te
rs

tr
øm

[8
6]

D
E

2

��

30

�10
0

2e
5

w
ith

ou
tc

ha
ng

e
–

1.
5e

-2
–

V
es

te
rs

tr
øm

[8
7]

A
R

PS
O

Figure 7.1: Table of notable results for the Ackley function

best parent, and an explorative “dynamic” operator that protects against convergence.

The algorithm reduces the amount of exploration in favour of heuristic exploitation

during the run, resulting in the final stages of the run being highly dedicated to finess-

ing the best results. This is an extremely strong cooling strategy, giving good results

on a large number of problems.

In [87] Vesterstrøm publishes the best results for the ARPSO variant of particle

swarm optimisation without the population size nor the number of evaluations used

to reach the value reported. The experiment was terminated when 200,000 evaluation

calls had passed without improvement. The value reported by Vesterstrøm in [86] is

actually impossible. In a personal communication from Vesterstrøm we were informed

that it is believed to be due to rounding error and an imprecise representation of the

number e. If so, the rounding is problematic since the introduced error is large com-

pared to the precision with which the system is solving the problem. All of the results

from [86] are best considered as accurate rounded to 14 decimal places, since this is

the precision of the constants used.

Monson [62] published his results in graphical format. The precise results used

here are from a personal communication of the exact result set used. Though [62] does

not include published results for the Ackley function, the Ackley function is present

in the result set and those results are reproduced here by the kind permission of the

original author.

7.3 De Jong’s sphere function

Due to De Jong [18] and one of the more common test functions, approached by [39]

amongst many others. The function is very simple, it is unimodal with the optimum at

�0� ��0�. This function is clearly solvable by a hill climber.

fSphere��x� � ∑n
i�1��xi�

2�

�x � �x1� ����xn��
5�12� xi � 5�12

n is the number of dimensions.

fSphere�optimum� � 0 at �0� ��0�

7.3.1 Best results : Sphere function

The best results for the De Jong’s Sphere function are listed in figure 7.2.

R
ow

D
om

ai
n

E
va

lu
at

io
n

B
es

t
M

ea
n

Po
p

.
A

ut
ho

r
N

ot
es

ca
lls

(S
td

.d
ev

)
si

ze

1

��

5�

12

�10
15

0,
00

0
0

0
20

L
iu

[5
2]

M
eS

w
ar

m
(P

SO
)

2

��

15

�10
62

,5
00

–
0.

38
23

(0
.1

02
9)

12
5

A
ng

el
in

e
[1

]
H

yb
ri

d
PS

O

3

��

10
0�

10
20

0,
00

0
–

0
(�

�

10

�

8
)

–
V

es
te

rs
tr

øm
[8

7]
PS

O
In

iti
al

is
ed

to

�5
0�

10
0�

10

4

��

10
0�

10
16

,7
40

(m
ea

n)
–

1e
-4

10
0

D
as

[1
5,

16
]

D
E

-R
A

N
D

SF
In

iti
al

is
ed

to

�5
0�

10
0�

10

1

��

5�

12

�25
10

0,
00

0
1.

35
e-

15
1.

37
e-

14
(9

.6
3e

-1
5)

61
H

er
re

ra
[3

9]
G

A
(s

ee
se

ct
.7

.2
.1

)

1

��

5�

12

�30
30

0,
00

0
–

1.
07

7e
-1

6
(1

.0
0e

-1
7)

10
0

O
rt

iz
-B

oy
er

[6
4]

E
G

N
A

B
G

e

2

��

20

�30
40

,0
00

–
0

(�
�

10

�

6
)

20
C

le
rc

[1
2]

E
&

S
PS

O
al

go
ri

th
m

4

��

10
0�

30
15

0,
00

0
–

4.
16

e-
5

10
0

Y
ao

[9
6]

Fa
st

E
P

(G
au

ss
ia

n
an

d
C

au
ch

y
m

ut
at

io
n)

5

��

10
0�

30
15

0,
00

0
?

7.
9e

-6
4.

2e
-4

10
0

Fo
ge

l[
31

]
E

xt
in

ct
io

n
E

A
(C

au
ch

y
m

ut
at

io
n)

6

��

5�

12

�30
50

0,
00

0
–

0
(�

�

10

�

25
)

10
0

V
es

te
rs

tr
øm

[8
6]

D
E

7

��

5�

12

�30
15

88
9.

5
(m

ea
n)

–

�
�

10
�

2
30

E
be

rh
ar

t[
22

]
PS

O
w

ith
co

ns
tr

ic
tio

n

8

��

15

�30
12

5,
00

0
–

5.
21

81
(0

.4
93

5)
12

5
A

ng
el

in
e

[1
]

H
yb

ri
d

PS
O

9

��

50

�30
20

,0
00

–
4.

72
3

20
M

on
so

n
[6

1]
K

al
m

an
Sw

ar
m

(P
SO

)

10

��

10
0�

30
20

0,
00

0
–

0
(�

�

10

�

8
)

20
V

es
te

rs
tr

øm
[8

7]
PS

O
In

iti
al

is
ed

to

�5
0�

10
0�

30

11

��

5�

12

�30
15

2,
07

0
(m

ea
n)

–
1e

-4
30

0
D

as
[1

5,
16

]
PS

O
-D

V
In

iti
al

is
ed

to

�5
0�

10
0�

10

12

��

50

�30
20

,0
00

–
1.

05
44

3e
-2

9
20

M
on

so
n

[6
2]

PA
K

S
(K

al
m

an
sw

ar
m

)

1

��

5�

12

�10
0

5,
00

0,
00

0
–

0
(�

�

10

�

25
)

10
0

V
es

te
rs

tr
øm

[8
6]

D
E

Figure 7.2: Table of notable results for the Sphere function

In [39] Herrera reports a result for a 25 dimensional function found with a GA using

the homogeneous Dynamic Heuristic crossover operator. The EGNABGe referred to by

Ortiz-Boyer [64] is the “Estimation of Gaussian Network Algorithm”, an estimation of

distribution algorithm. Yao [96] used a modified Evolutionary Programming method

called the Improved Fast Evolutionary Programming algorithm. The significant design

feature of the algorithm is that 2 offspring are created for each mutation step, one by

Gaussian mutation and one by Cauchy mutation. The best of the two is kept. Fogel

[31] uses Yao’s results as the basis for his experiments. The number of fitness function

evaluations is not clearly indicated in the paper but it is implied to be derived from the

settings used by Yao.

The performances published by Eberhart [22] though low precision are (according

to Eberhart) the best results known up to the time of the publication of that work

(2000). Das et al [15, 16] reports values of 0.0001 for the Sphere function, which are

the stopping criteria for his search. How much better the values could have been if

the search had continued is unknown. Since all methods tried by Das achieved the

desired accuracy for 10, 20 and 30 dimensions of the sphere function there is nothing

to distinguish the reported results other than the mean number of generations required

to reach the desired accuracy. All other benchmark results published in [15, 16] have

distinct differences in the mean best score found and are so distinguished by this metric.

7.4 Griewank’s function

Created by Griewank [36] the function is used as a scalable multi-modal test function.

As was noted by Whitley [90] and Locatelli [53] this function undergoes a collapse in

complexity as it is scaled to higher dimensions. Despite the failure of higher dimen-

sional variants to fulfill the promised complexity of the lower dimensional versions, it

is still an interesting problem and one for which a large number of results are published

by numerous different authors.

fGriewank��x� �
1

4000 ∑n
i�1�xi�

2
∏n
i�1 cos� xi�

i
��1

�x � �x1� ����xn��
600� xi � 600

n is the number of dimensions.

fGriewank�optimum� � 0 at �0�0� ����0�

7.4.1 Best results : Griewank’s function

in [39] Herrera publishes a result which has the best mean performance (for the dy-

namic heuristic crossover operator) here marked by †, but also has a result (found us-

ing a fuzzy recombination operator) that gives a better absolute best and a marginally

worse mean ‡. Liu’s results on the Griewank function are unusually high. The failure

to approach the optimum for the 10 dimensional function is troubling, especially since

all the comparison experiments in [52] also strongly approach 1 - this may be a typo-

graphic error and zero may be intended. The author was contacted in September 2005

to verify the situation, but no response has been received as of November 2005. The

mean number of evaluation calls reported by Eberhart [22] is calculated from the 17 of

the 20 repeats which are successful with less than 300,000 evaluation calls.

7.5 Keane’s function

Due to [47] and tackled in [48, 59, 60, 74] amongst others. Keane’s function is a

challenge due to the positioning of the optimum exactly on the feasible boundary. The

precision with which the boundary may be resolved is then of critical importance to

the ability of the algorithm to optimise this function. Several of the results reported

here are achieved with the aid of techniques expressly derived for solving the Keane

function.

fKeane��x� �
��∑n

i�1�cos4�xi�����2∏n
i�1�cos2�xi�����

�∑n
i�1�ix

2
i ��

�x � �x1� ����xn�� 0� xi � 10

where ∏n
i�1�xi�� 0�75�∑n

i�1�xi�� 7�5n

n = 20 or 50 is the number of dimensions.

fKeane�optimum� � unknown

7.5.1 Best results : Keane function

Table 7.4 lists the best results known for the Keane function. No further details are

available for the Keane function results provided by Michalewicz in [59]. The re-

ported performances are the best results found. They do not describe the number

of repetitions, the mean nor the standard deviation of the results. Schoenauer and

R
ow

D
om

ai
n

E
va

lu
at

io
n

B
es

t
M

ea
n

Po
p

.
A

ut
ho

r
N

ot
es

ca
lls

(S
td

.d
ev

)
si

ze

1

��

60
0�

10
15

0,
00

0
–

1
(0

)
20

L
iu

[5
2]

M
eS

w
ar

m
(P

SO
)

2

��

60
0�

10
62

17
9

(m
ea

n)
–

0.
00

1
(0

.0
05

)
–

W
hi

tle
y

[9
1]

(1
0-

bi
t?

)
C

H
C

[3
0]

3

��

60
0�

10
13

76
1.

5
(m

ea
n)

–
0.

10
8

(5
.8

e-
2)

30
0

W
hi

tle
y

[9
1]

10
-b

it
G

E
N

IT
O

R

4

��

60
0�

10
14

4,
02

4
(m

ea
n)

–
0

(0
)

30
0

W
hi

tle
y

[9
1]

10
-b

it
G

E
N

IT
O

R
w

ith
R

an
do

m
B

it
C

lim
bi

ng

5

��

60
0�

10
24

,3
54

(m
ea

n)
–

0
50

B
ar

bu
le

sc
u

[5
]

10
bi

tC
H

C
(s

hi
ft

in
g)

6

��

15

�10
62

,5
00

–
11

.9
85

(3
.4

30
5)

12
5

A
ng

el
in

e
[1

]
PS

O

7

��

60
0�

10
20

0,
00

0
–

3.
26

e-
2

20
V

es
te

rs
tr

øm
[8

7]
PS

O
in

iti
al

is
ed

to

�3
00

�6
00

�10

8

��

60
0�

10
25

0,
00

0
–

5.
61

e-
3

(4
.7

e-
2)

10
0

D
as

[1
5]

M
PS

O
-T

V
A

C
in

iti
al

is
ed

to

�3
00

�6
00

�10

9

��

60
0�

10
12

5,
00

0
–

1.
51

2e
-2

(1
.9

5e
-2

)
12

5
Se

ttl
es

[7
7]

B
S

co
ns

tr
ic

tio
n

(G
A

/P
SO

hy
br

id
)

1

��

60
0�

25
10

0,
00

0
3.

21
e-

9
7.

71
e-

3
(9

.6
e-

3)
61

H
er

re
ra

[3
9]

G
A

(s
ee

se
ct

.7
.2

.1
)

†

2

��

60
0�

25
10

0,
00

0
1.

76
e-

12
9.

67
e-

3
(1

.3
2e

-2
)

61
H

er
re

ra
[3

9]
‡

1

��

60
0�

30
30

0,
00

0
–

1.
31

5e
-3

(3
.4

7e
-3

)
10

0
O

rt
iz

-B
oy

er
[6

4]
G

A
us

in
g

E
xt

.F
cr

os
so

ve
r

op
er

at
or

2

��

60
0�

30
40

,0
00

–
2.

09
5e

-3
20

C
le

rc
[1

2]
E

&
S

PS
O

al
go

ri
th

m

3

��

60
0�

30
20

0,
00

0
–

1.
6e

-2
(2

.2
e-

2)
10

0
Y

ao
[9

6]
Fa

st
E

P
w

ith
C

au
ch

y
m

ut
at

io
n

4

��

60
0�

30
50

0,
00

0
–

0
(�

�

10
�

25
)

10
0

V
es

te
rs

tr
øm

[8
6]

D
E

5

��

60
0�

30
93

78
(m

ea
n)

–
�
�

0�

1
30

E
be

rh
ar

t[
22

]
PS

O

6

��

15

�30
12

5,
00

0
–

2.
51

45
(1

1.
34

68
)

12
5

A
ng

el
in

e
[1

]
PS

O

7

��

60
0�

30
20

,0
00

–
0.

99
6

20
M

on
so

n
[6

1]
K

al
m

an
Sw

ar
m

(P
SO

)

8

��

60
0�

30
20

0,
00

0
–

1.
18

e-
2

20
V

es
te

rs
tr

øm
[8

7]
SE

PS
O

in
iti

al
is

ed
to

�3
00

�6
00

�30

9

��

60
0�

30
1,

50
0,

00
0

–
1.

6e
-3

(2
.2

e-
3)

30
0

D
as

[1
5]

PS
O

-D
V

in
iti

al
is

ed
to

�3
00

�6
00

�30

10

��

60
0�

30
25

0,
00

0
–

3.
94

4e
-3

(5
.3

08
e-

3)
12

5
Se

ttl
es

[7
7]

G
A

11

��

60
0�

30
20

,0
00

–
1.

11
02

23
e-

16
20

M
on

so
n

[6
2]

PA
K

S
(K

al
m

an
sw

ar
m

)

1

��

60
0�

10
0

5,
00

0,
00

0
–

5.
42

10
10

9e
-2

0
(0

)
10

0
V

es
te

rs
tr

øm
[8

6]
D

E

2

��

60
0�

10
0

20
0,

00
0

w
ith

ou
tc

ha
ng

e
–

3.
74

e-
2

–
V

es
te

rs
tr

øm
[8

7]
A

R
PS

O

3

��

60
0�

10
0

2,
00

0,
00

0
–

1.
25

e-
2

–
V

es
te

rs
tr

øm
[8

7]
PS

O

Figure 7.3: Table of notable results for the Griewank function

R
ow

D
om

ai
n

E
va

lu
at

io
n

B
es

t
M

ea
n

Po
p

.
A

ut
ho

r
N

ot
es

ca
lls

(S
td

.d
ev

)
si

ze

1

�0

�1
0�

20
70

0,
00

0
0.

80
35

10
67

–
70

M
ic

ha
le

w
ic

z
[5

9]
G

E
N

O
C

O
P

II
I

2

�0

�1
0�

20
90

0,
00

0
0.

80
35

53

�
�

0�

80
29

64
30

Sc
ho

en
au

er
&

M
ic

ha
le

w
ic

z
[7

4,
60

]
G

A

3

�0

�1
0�

20
35

0,
00

0
0.

80
35

15
0.

78
19

75
(2

e-
2)

(2
0,

30
0λ

)
R

un
ar

ss
on

&
Y

ao
[7

2]
E

S

4

�0

�1
0�

20
1,

40
0,

00
0

0.
79

95
3

0.
79

67
1

70
K

oz
ie

l&
M

ic
ha

le
w

ic
z

[5
1]

A
L

G
g

25
-b

it
pr

ec
is

io
n

E
A

5

�0

�1
0�

20
22

7,
83

2
(m

ea
n)

0.
75

49
12

5
0.

37
17

08
1

(9
.8

e-
2)

(5
0,

2)
H

ed
ar

[6
7]

Fi
lte

re
d

Si
m

ul
at

ed
A

nn
ea

lin
g

6

�0

�1
0�

20
1,

50
0,

00
0

0.
78

5
0.

59
(1

00
+

30
0λ

)
H

am
id

a
[3

7]
A

SC
H

E
A

E
S

7

�0

�1
0�

20
24

0,
00

0
0.

80
36

01
0.

78
52

38
(1

.6
75

7e
-2

)
(1

00
+

30
0λ

)
M

ez
ur

a-
M

on
te

s
[5

6,
57

]
M

od
ifi

ed
E

S

8

�0

�1
0�

20
14

0,
00

0
–

0.
78

28
70

X
ie

[9
5]

SW
A

F
(C

R
=

0.
1)

9

�0

�1
0�

20
35

0,
00

0
0.

79
26

08
0.

72
17

49
50

Z
av

al
a

[9
8]

PE
SO

(m
od

ifi
ed

PS
O

)

1

�0

�1
0�

50
15

0,
00

0
0.

78
5

0.
77

9
25

0
K

ea
ne

[4
8]

G
A

12
bi

t

2

�0

�1
0�

50
70

0,
00

0
0.

83
31

93
78

–
70

M
ic

ha
le

w
ic

z
[5

9]
G

E
N

O
C

O
P

II
I†

3

�0

�1
0�

50
–

0.
83

48
–

–
B

ilc
he

v
vi

a
M

ic
ha

le
w

ic
z

[5
9]

U
nk

no
w

n

4

�0

�1
0�

50
90

0,
00

0
0.

83
31

93
7

�
�

0�

83
30

Sc
ho

en
au

er
&

M
ic

ha
le

w
ic

z
[7

4,
60

]
G

A
‡

5

�0

�1
0�

50
20

0,
00

0
?

0.
82

8
�
�

0�

81
4

10
0

?
Su

rr
y

&
R

ad
cl

if
fe

[8
4]

C
O

M
O

G
A

(G
A

)

Figure 7.4: Table of notable results for the Keane function

Michalewicz’s 20 dimensional results (line 2) are from a GA that uses an exploit

against the location of the optimum. It is thus a result that is illustrative of a strong

result.

The 3rd of the 50 dimensional results, reportedly found by Bilchev, is unrepeatable,

since it is referenced as a “personal communication”. Interestingly, two different 50

dimensional results (here marked with † and ‡ on lines 2 and 4) both report exactly

the same result for the 50 dimensional case, however, in [59] Michalewicz does not

mention the exploit used in [74, 60] and used GENOCOP III with different population

sizes and different maximum evaluation limits. For the purposes of this research we

shall assume that each result was independently obtained via the two different methods,

and it is simple coincidence that the results are exactly the same to 9 decimal places.

Neither work refers to the results of the other, though both [74, 60] cite [59] for other

details.

Surry’s results in [84] do not have reliable data for the algorithm parameters. The

phrase “evaluations” is used to refer to both the number of generations and the num-

ber of function calls when describing other authors’ work. Their own results for the

COMOGA algorithm are described as using 200,000 evaluations for an untuned CO-

MOGA algorithm. The same paper describes an application of the COMOGA algo-

rithm to a real world problem, in which the graphs show a population size of approx-

imately 100 individuals. It is thus possible that the 200,000 evaluations reported here

for the COMOGA algorithm were in fact 20,000,000 evaluations.

Hedar [67] uses a form of simulated annealing. The search retains a population

of 50 ranked points from which annealing starts. The annealing process involves the

generation of 2 individuals per iteration. Stalled searches are restarted from one of the

ranked points.

7.5.1.1 Detailed results

In [48] Keane reports values less than 0.8 for all his experiments of up to 140,000 eval-

uations. Keane used a 16-bit representation and a bitwise genetic algorithm equipped

with the popular Fiacco-McCormick constraint penalty function, niching and elitism.

Because the optimum is unknown for this function, we use this opportunity to publish

the best found domain values for reference. The best published results (found without

exploits) on the 20 dimensional case were due to Michalewicz using GENOCOP III

[59]. In [72] Runarsson reports a value of 0.803619 as being the best known. The

actual domain values are not given, and the result does not occur in any of the tabled

results reported. The circumstances of its location are therefore unknown.

Michalewicz found a value of 0�80351067 for candidate :

3�16311359�3�13150430�3�09515858�3�06016588�3�03103566�

2�99158549�2�95802593�2�92285895�0�48684388�0�47732279�

0�48044473�0�48790911�0�48450437�0�44807032�0�46877760�

0�45648506�0�44762608�0�44913986�0�44390863�0�45149332

Michalewicz also found the best non-exploit based result for the 50 dimensional

case, which is identical to the result reached using an exploit by Schoenauer.

Michalewicz/Schoenauer found a value of 0�83319378 for candidate :

6�28006029�3�16155291�3�15453815�3�14085174�3�12882447�

3�11211085�3�10170507�3�08703685�3�07571769�3�06122732�

3�05010581�3�03667951�3�02333045�3�00721049�2�99492717�

2�97988462�2�96637058�2�95589066�2�94427204�2�92796040�

0�40970641�2�90670991�0�46131119�0�48193336�0�46776962�

0�43887550�0�45181099�0�44652876�0�43348753�0�44577143�

0�42379948�0�45858049�0�42931050�0�42928645�0�42943302�

0�43294361�0�42663351�0�43437257�0�42542559�0�41594154�

0�43248957�0�39134723�0�42628688�0�42774364�0�41886297�

0�42107263�0�41215360�0�41809589�0�41626775�0�42316407

7.5.2 A new result

Out of curiosity, we sought and obtained a new result on the 20 dimensional Keane

function. We wish to emphasise that this is not a normal result, having been obtained

through deliberate search and the utilisation of a known exploit to help remedy our poor

constraint handling. The best value we obtained was the following, which was found

using the standard initialisation. We allowed 3,000,000 evaluations and allowed the use

of the simple exploit from section 3.4 for the last 2,780,000 evaluations. The exploit is

used to finesse the finish of the search, it is designed to encourage search towards the

boundary of the feasible space. By 100,000 evaluations the best candidate has a fitness

value of over 0.798. The exploit was engaged after 220,000 evaluations, at which

point the value was 0.8027744572783648. The final result scores 0.803618805983517,

which is reached after 2,124,834 evaluations. No further progress is recorded and the

rate of progress up to this point was slowing exponentially. This result is extremely

strong, equaling that mentioned by Runarsson in [72], which Runarsson believes to be

the best known for this problem. We provide our result below for reference.

Using an exploit we record a value of 0�803619 for the candidate:

3�162444814275533�3�1285976379280918�3�0942874132206226�

3�061314881522329�3�0278010372528987�2�9929127819363748�

2�959260697548787�2�9215432094458897�0�495324807306084�

0�48896307270866224�0�4822586741532266�0�4768060677713827�

0�4708439953127678�0�46665737783951794�0�46084960040891815�

0�45670617975408057�0�4526007702090502�0�44811737287940506�

0�444187015959455�0�4402210840106526

This candidate avoids breaching the ∏n
i�1�xi� � 0�75 constraint by a mere 6.96e-

13. While tabulating our results we have noticed that we have difficulty manipulating

very small values, due to a break down in floating point precision. It is possible that

the improvement of this result further would require a more accurate representation,

see section 8.2 for more details.

7.6 Michalewicz’s Constraints Suite

These functions are constrained. Parts of the space are unacceptable as solutions. All

five of the functions in this suite are from Michalewicz [59]. The reader is referred

there for authoritative discussion.

7.6.1 Constrained function #1

fmc f 1��x� � 5x1 �5x2 �5x3 �5x4
5∑4
i�1 x2

i
∑13
i�5 xi

�x � �x1� ����x13�� 0� xi��1�����9� � 1, 0� x10�11�12 � 100

Subject to constraints :

2x1 �2x2 � x10 � x11 � 10

2x1 �2x3 � x10 � x12 � 10

2x2 �2x3 � x11 � x12 � 10

8x1 � x10 � 0

8x2 � x11 � 0

8x3 � x12 � 0

2x4
 x5 � x10 � 0

2x6
 x7 � x11 � 0

2x8
 x9 � x12 � 0

fmc f 1�optimum� �
15 at �1�1�1�1�1�1�1�1�1�3�3�3�1�

This function (fmc f 1) has six of the nine constraints active at the optimum.

7.6.2 Constrained function #2

fmc f 2��x� � x1 � x2 � x3

�x � �x1� ����x8�� 100� x1 � 10000, 1000� x2�3 � 10000, 10� xi��4�����8� � 1000

Subject to constraints :

1
0�0025�x4� x6�� 0

1
0�0025�x5� x7
 x4�� 0

1
0�01�x8
 x5�� 0

x1x6
833�33252x4
100x1 �83333�333� 0

x2x7
1250x5
 x2x4 �1250x4 � 0

x3x8
1250000
 x3x5 �2500x5 � 0

fmc f 2�optimum� � 7049�330923 at

�579�3167�1359�943�5110�071�182�0174�295�5985�217�9799�

286�4162�395�5979�

All constraints are active at fmc f 2�optimum�.

7.6.3 Constrained function #3

fmc f 3��x� � �x1
10�2 �5�x2
12�2 � x4
3 �3�x4
11�2�

10x6
5 �7x2

6 � x4
7
4x6x7
10x6
8x7

�x � �x1� ����x7��
10� xi � 10

Subject to constraints :

127
2x2
1
3x4

2
 x3
4x2
4
5x5 � 0

282
7x1
3x2
10x2
3
 x4 � x5 � 0

196
23x1
 x2
2
6x2

6 �8x7 � 0

4x2
1
 x2

2 �3x1x2
2x2
3
5x6 �11x7 � 0

fmc f 3�optimum� � 680�6300573 at �2�330499�1�951372�
0�4775414�

4�365726�
0�6244870�1�038131�1�594227�

Two of the four constraints are active at fmc f 3�optimum�.

7.6.4 Constrained function #4

fmc f 4��x� � ex1x2x3x4x5

�x � �x1� ����xn��
2�3� x1�2 � 2�3,
3�2� x3�4�5 � 3�2

Subject to constraints :

x2
1 � x2

2 � x�32 � x2
4 � x2

5 � 10

x2x3
5x4x5 � 0

x3
1 � x3

2 �
1

fmc f 4�optimum� � 0�0539498478 at �
1�717143�1�595709�

1�827247�
0�7636413�
0�7636450�

Due to the equality constraints and the imprecise nature of floating point arithmetic,

this function is generally relaxed to an inequality based form where each equality x � y

is replaced by a broader y� x� ε� y for some small violation value ε typically 0.001

or 0.0001 [58, 72].

7.6.5 Constrained function #5

fmc f 5��x� � x2
1 � x2

2 � x1x2
14x1
16x2�

�x3
10�2 �4�x4
5�2 ��x5
3�2 �2�x6
1�2�

5x2
7 �7�x8
11�2 �2�x9
10�2 ��x10
7�2 �45

�x � �x1� ����x10��
10� xi � 10

Subject to constraints :

105
4x1
5x2 �3x7
9x8 � 0

10x1 �8x2 �17x7
2x8 � 0

8x1
2x2
5x9 �2x10 �12� 0

3�x1
2�2
4�x2
3�2
2x2
3 �7x4 �120� 0

5x2
1
8x2
 �x3
6�2
3x2

5 � x6 �30� 0

x2
1
2�x3
2�2 �2x1x2
14x5 �6x6 � 0

0�5�x1
8�2
2�x2
4�2
3x2
5 � x6 �30� 0

3x1
6x2
12�x9
8�2 �7x10 � 0

fmc f 5�optimum� � 24�3062091 at �2�171996�2�363683�8�773926�

5�095984�0�9906548�1�430574�1�321644�9�828726�8�280092�8�375927�

Six of the eight constraints are active at fmc f 5�optimum�.

7.6.6 Best results : Michalewicz’s constrained function Suite

Surry’s results in [84] are not clear as to the parameters used. Michalewicz in [59]

gives results for a real number GA using various constraint handling tactics. Here

we list only those results that are not breaching constraints. The majority are from

using the GENOCOP II constraint handling mechanism. The dynamic penalties used

to obtain the 4th result for fmc f 5 are due to Jiones and Houck [46] and are described

in [59] page 142. Hedar [67] uses a simulated annealing algorithm with a ranked

re-annealing pool of 50 independent individuals. During the annealing process two

points are generated each iteration. If the search stalls the search is restarted from one

of the unused individuals in the ranked pool. Though the results in [67] specify an

average of 404.501 fitness function calls when solving fmc f 5, this is almost certainly

supposed to read 404,501 : None of the other average fitness calls in the work are

reported as a decimal, and it is implausible to create the fractional part by division by

R
ow

E
va

lu
at

io
n

B
es

t
M

ea
n

Po
p

.
A

ut
ho

r
N

ot
es

ca
lls

(S
td

.d
ev

)
si

ze

Fu
nc

tio
n

nu
m

be
r1

f m
c

f1

1
35

0,
00

0
-1

5.
0

-1
5.

0
(2

0,
30

0λ
)

R
un

ar
ss

on
&

Y
ao

[7
2]

E
S

2
1,

40
0,

00
0

-1
4.

78
64

-1
4.

70
82

70
K

oz
ie

l&
M

ic
ha

le
w

ic
z

[5
1]

A
L

G
g

25
-b

it
pr

ec
is

io
n

E
A

3
–

-1
4.

99
7

�
�

-1
4.

99
4

10
0

?
Su

rr
y

&
R

ad
cl

if
fe

[8
4]

C
O

M
O

G
A

(G
A

)

4
35

0,
00

0
-1

5.
0

-1
5.

0
70

M
ic

ha
le

w
ic

z
[5

9]
G

A
w

ith
G

E
N

O
C

O
P

II
pe

na
lti

es

5
20

5,
74

8
(m

ea
n)

-1
4.

99
10

5
-1

4.
99

33
16

(4
.8

e-
3)

(5
0,

2)
H

ed
ar

[6
7]

Fi
lte

re
d

Si
m

ul
at

ed
A

nn
ea

lin
g

6
1,

50
0,

00
0

-1
5

-1
4.

84
(1

00
+

30
0λ

)
H

am
id

a
[3

7]
A

SC
H

E
A

E
S

7
24

0,
00

0
-1

5
-1

5
(1

00
+

30
0λ

)
M

ez
ur

a-
M

on
te

s
[5

6,
57

]
M

od
ifi

ed
E

S

8
14

0,
00

0
–

-1
5

70
X

ie
[9

5]
SW

A
F

(C
R

=
0.

1)

9
35

0,
00

0
-1

5
-1

5
50

Z
av

al
a

[9
8]

PE
SO

(m
od

ifi
ed

PS
O

)

Fu
nc

tio
n

nu
m

be
r2

f m
c

f2

1
35

0,
00

0
70

54
.3

16
75

59
.1

92
(5

.3
e-

2)
(2

0,
30

0λ
)

R
un

ar
ss

on
&

Y
ao

[7
2]

E
S

2
1,

40
0,

00
0

71
47

.9
81

63
.6

70
K

oz
ie

l&
M

ic
ha

le
w

ic
z

[5
1]

A
L

G
g

25
-b

it
pr

ec
is

io
n

E
A

3
–

70
81

.4
3

�
�

83
22

.5
1

10
0

?
Su

rr
y

&
R

ad
cl

if
fe

[8
4]

C
O

M
O

G
A

(G
A

)

4
35

0,
00

0
73

77
.9

76

�
�

96
52

�9
70

M
ic

ha
le

w
ic

z
[5

9]
G

A
w

ith
G

E
N

O
C

O
P

II
pe

na
lti

es

5
24

3,
52

0
(m

ea
n)

70
59

.8
63

50
75

09
.3

21
04

42
.3

4)
(5

0,
2)

H
ed

ar
[6

7]
Fi

lte
re

d
Si

m
ul

at
ed

A
nn

ea
lin

g

6
1,

50
0,

00
0

70
61

.1
3

74
97

.4
34

(1
00

+
30

0λ
)

H
am

id
a

[3
7]

A
SC

H
E

A
E

S

7
24

0,
00

0
70

51
.9

02
83

2
72

53
.0

47
00

5
(1

36
.0

23
71

6)
(1

00
+

30
0λ

)
M

ez
ur

a-
M

on
te

s
[5

6,
57

]
M

od
ifi

ed
E

S

8
14

0,
00

0
–

72
14

.1
76

70
X

ie
[9

5]
SW

A
F

(C
R

=
0.

9)

9
35

0,
00

0
70

49
.4

95
45

2
70

99
.1

01
38

6
50

Z
av

al
a

[9
8]

PE
SO

(m
od

ifi
ed

PS
O

)

Fu
nc

tio
n

nu
m

be
r3

f m
c

f3

1
35

0,
00

0
68

0.
63

0
68

0.
65

6
(3

.4
e-

2)
(2

0,
30

0λ
)

R
un

ar
ss

on
&

Y
ao

[7
2]

E
S

2
1,

40
0,

00
0

68
0.

91
68

1.
16

70
K

oz
ie

l&
M

ic
ha

le
w

ic
z

[5
1]

A
L

G
g

25
-b

it
pr

ec
is

io
n

E
A

3
–

68
0.

66
3

�
�

68
0.

75
5

10
0

?
Su

rr
y

&
R

ad
cl

if
fe

[8
4]

C
O

M
O

G
A

(G
A

)

4
35

0,
00

0
68

0.
64

2

�
�

68
0.

95
5

70
M

ic
ha

le
w

ic
z

[5
9]

G
A

w
ith

G
E

N
O

C
O

P
II

pe
na

lti
es

5
32

4,
56

9
(m

ea
n)

68
0.

63
00

8
68

0.
63

64
2

(1
.4

5e
-2

)
(5

0,
2)

H
ed

ar
[6

7]
Fi

lte
re

d
Si

m
ul

at
ed

A
nn

ea
lin

g

6
1,

50
0,

00
0

68
0.

63
0

68
0.

64
1

(1
00

+
30

0λ
)

H
am

id
a

[3
7]

A
SC

H
E

A
E

S

7
24

0,
00

0
68

0.
63

15
92

68
0.

64
34

10
(1

.5
52

9e
-2

)
(1

00
+

30
0λ

)
M

ez
ur

a-
M

on
te

s
[5

6,
57

]
M

od
ifi

ed
E

S

8
14

0,
00

0
–

68
0.

63
0

70
X

ie
[9

5]
SW

A
F

(C
R

=
0.

9)

9
35

0,
00

0
68

0.
63

00
57

68
0.

63
00

57
50

Z
av

al
a

[9
8]

PE
SO

(m
od

ifi
ed

PS
O

)

Figure 7.5: Table of notable results for the Michalewicz constraint test suite functions 1,

2 and 3

R
ow

E
va

lu
at

io
n

B
es

t
M

ea
n

Po
p

.
A

ut
ho

r
N

ot
es

ca
lls

(S
td

.d
ev

)
si

ze

Fu
nc

tio
n

nu
m

be
r4

f m
c

f4

1
35

0,
00

0
0.

05
39

57
0.

06
75

43
(3

.1
e-

2)
(2

0,
30

0λ
)

R
un

ar
ss

on
&

Y
ao

[7
2]

E
S

2
–

0.
05

8

�
�

0.
57

10
0

?
Su

rr
y

&
R

ad
cl

if
fe

[8
4]

C
O

M
O

G
A

(G
A

)

3
35

0,
00

0
0.

05
4

�
�

0.
55

7
70

M
ic

ha
le

w
ic

z
[5

9]
G

A
w

ith
G

E
N

O
C

O
P

II
pe

na
lti

es

4
12

0,
26

8
(m

ea
n)

0.
05

39
49

8
0.

29
77

20
4

(0
.1

88
7)

(5
0,

2)
H

ed
ar

[6
7]

Fi
lte

re
d

Si
m

ul
at

ed
A

nn
ea

lin
g

5
24

0,
00

0
0.

05
39

86
0.

16
63

85
(0

.1
76

85
5)

(1
00

+
30

0λ
)

M
ez

ur
a-

M
on

te
s

[5
6,

57
]

M
od

ifi
ed

E
S

6
35

0,
00

0
0.

08
14

98
0.

62
68

81
50

Z
av

al
a

[9
8]

PE
SO

(m
od

ifi
ed

PS
O

)

Fu
nc

tio
n

nu
m

be
r5

f m
c

f5

1
35

0,
00

0
24

.3
07

24
.3

74
(6

.6
e-

2)
(2

0,
30

0λ
)

R
un

ar
ss

on
&

Y
ao

[7
2]

E
S

2
1,

40
0,

00
0

24
.6

20
24

.8
26

70
K

oz
ie

l&
M

ic
ha

le
w

ic
z

[5
1]

A
L

G
g

25
-b

it
pr

ec
is

io
n

E
A

3
–

24
.3

40

�
�

24
.7

1
10

0
?

Su
rr

y
&

R
ad

cl
if

fe
[8

4]
C

O
M

O
G

A
(G

A
)

4
35

0,
00

0
25

.4
86

�
�

42
.3

58
70

M
ic

ha
le

w
ic

z
[5

9]
G

A
w

ith
dy

na
m

ic
pe

na
lti

es

5
40

4,
50

1
(m

ea
n)

24
.3

11
24

.3
79

52
71

(7
.1

62
5e

-2
)

(5
0,

2)
H

ed
ar

[6
7]

Fi
lte

re
d

Si
m

ul
at

ed
A

nn
ea

lin
g

6
1,

50
0,

00
0

24
.3

32
3

24
.6

63
6

(1
00

+
30

0λ
)

H
am

id
a

[3
7]

A
SC

H
E

A
E

S

7
24

0,
00

0
24

.3
26

71
5

24
.4

74
92

6
(0

.1
32

38
5)

(1
00

+
30

0λ
)

M
ez

ur
a-

M
on

te
s

[5
6,

57
]

M
od

ifi
ed

E
S

8
14

0,
00

0
–

24
.3

06
70

X
ie

[9
5]

SW
A

F
(C

R
=

0.
9)

9
35

0,
00

0
24

.3
06

92
1

24
.3

71
25

3
50

Z
av

al
a

[9
8]

PE
SO

(m
od

ifi
ed

PS
O

)

Figure 7.6: Table of notable results for the Michalewicz constraint test suite functions 4

and 5

30 (the number of repeats performed). Runarsson’s Stochastic ranking [72] is at the

time of writing (2005) widely regarded as the state of the art algorithm for constrained

optimisation [98].

7.7 Powell’s 4-Dimensional function

fPowell��x� � �x1 �10x2�
2 ��x2
2x3�

4 ��
�

5x3
 x4�
2 ��

�
10�x1
 x4�

2�2

�x � �x1� ����x4��
5�12� xi � 5�12

The function is defined for four dimensions only

fPowell�optimum� � 0 at �0�0�0�0�

Powell’s four dimensional function is a non-separable function that uses a four di-

mensional version of what Whitley terms a “weighted wrap” [89] expansion function.

The net effect of such a combination is that there is no “start” dimension from where

the problem unravels, but all the dimensions have strong interactions and have to be

approached collectively. It is informative to contrast this characteristic with the Whit-

ley Rosenbrock function RosenbrockI which also shares this property and the common

Rosenbrock function RosenbrockII which does not.

7.7.1 Best results : Powell’s function

It is notable that all the reported results for optimisation of the Powell four dimensional

problem are using binary encodings. The precision of a 10-bit representation as used

by Whitley (line 1) is much lower than that of the 20-bit representations. The 20-bit

representations are also significantly slower to converge than the 10-bit alternative,

so the results on lines 2 and 5 are particularly impressive. The method employed by

Barbulescu to achieve the result included a shifting representation method. See the

discussion of the same algorithm in section 7.4.1 for more details. All representations

used in the algorithms reported here are of lower precision than that of a typical floating

point representation. A 20 bit representation over this range has an increment size of

9.77e-6.

R
ow

D
om

ai
n

E
va

lu
at

io
n

B
es

t
M

ea
n

Po
p

.
A

ut
ho

r
N

ot
es

ca
lls

(S
td

.d
ev

)
si

ze

1

��

5�

12

�4
4,

00
0,

00
0

–

�

1e
-1

3
50

0
W

hi
tle

y
[8

9]
10

bi
tI

sl
an

d
m

od
el

G
E

N
IT

O
R

2

��

5�

12

�4
20

0,
99

8.
1

(m
ea

n)
–

0.
0

(0
)

–
W

hi
tle

y
[9

1]
(2

0-
bi

t?
)

C
H

C
[3

0]

3

��

5�

12

�4
50

0,
00

0
–

2.
92

e-
4

(7
.2

4e
-5

)
30

0
W

hi
tle

y
[9

1]
20

-b
it

G
E

N
IT

O
R

4

��

5�

12

�4
26

2,
93

1.
2

(m
ea

n)
–

3.
46

e-
9

(9
.0

7e
-9

)
30

0
W

hi
tle

y
[9

1]
20

-b
it

G
E

N
IT

O
R

w
ith

Q
ua

d
Se

ar
ch

5

��

5�

12

�4
96

,4
97

–
0

50
B

ar
bu

le
sc

u
[5

]
20

bi
tC

H
C

(s
hi

ft
in

g)

Figure 7.7: Table of notable results for the Powell 4D function

7.8 Rastrigin’s function

fRastrigin��x� � a�n�∑n
i�1��xi�

2
a�cos�ω�xi��

�x � �x1� ���xn��
5�12� xi � 5�12

where a � 10 and ω � 2π are constants and n is the number of

dimensions.

fRastrigin�optimum� � 0 at �0�0� ���0�

7.8.1 Best results : Rastrigin’s function

In [89] Whitley solves the 10 dimensional Rastrigin function using a 10 bit represen-

tation and the GENITOR algorithm. It is difficult to tell if the results are indicative

of a precise solution, however this is likely. The low resolution of the representation

encourages the finalisation of near solutions. It is thus reported here that the system

solved the 10 dimensional Rastrigin function in 50,000 evaluations, though the exact

figure may be slightly more or less.

Yong et al [97] also have results for the 20, 200, 400 and 500 dimensional Rastrigin

function, requiring 3700, 4600, 5375, 6400 fitness evaluations by their Annealing Evo-

lution Algorithm respectively. We have not included these results, since they have the

property of requiring a linear increase in function evaluation calls for an exponential

increase in problem complexity. Such imperviousness to the problem complexity casts

doubt upon their generality. Using 6400 function evaluations Yong reports achieving

the same 4 digit accuracy for the 10 dimensional Griewank function as the 500 dimen-

sional Rastrigin function. There are approximately 4�9e535 local optima in the space.

The differentiation of the local and global optimum with 6400 samples has strong in-

dications of an exploit. Of the other results in the Yong paper the results on the 2 and 4

dimensional common Rosenbrock function are far more conventional and are included

in this work. No explanation has been provided for how the optimiser described in

[97] can search the space so fast, nor has the technique gained popularity since its

publication in 1995.

Barbulescu [5] uses a binary representation and Whitley’s shifting Gray codes to

restart the alogrithm with a different Gray encoded mapping of the space every time

the algorithm ceases to progress. This is an interesting ability. Essentially it allows

the algorithm to search for representions that make solving the problem temporarily

R
ow

D
om

ai
n

E
va

lu
at

io
n

B
es

t
M

ea
n

Po
p

.
A

ut
ho

r
N

ot
es

ca
lls

(S
td

.d
ev

)
si

ze

1

��

5�

12

�10
50

,0
00

0?
–

50
0

W
hi

tle
y

[8
9]

10
bi

tI
sl

an
d

m
od

el
G

E
N

IT
O

R

2

��

5�

12

�10
15

0,
00

0
–

1.
95

62
9

(0
.7

60
97

)
20

L
iu

[5
2]

M
eS

w
ar

m
(P

SO
)

3

��

5�

12

�10
22

,2
97

(m
ea

n)
–

0
50

B
ar

bu
le

sc
u

[5
]

10
bi

tC
H

C
(s

hi
ft

in
g)

4

��

15

�10
62

,5
00

–
10

.9
65

(0
.2

38
3)

12
5

A
ng

el
in

e
[1

]
H

yb
ri

d
PS

O

5

��

10

�10
20

0,
00

0
–

1.
8e

-3
20

V
es

te
rs

tr
øm

[8
7]

G
A

In
iti

al
is

ed
to

�2

�5
6�

5�

12

�10

6

��

5�

12

�10
30

0,
00

0
–

1.
4e

-3
(3

.9
e-

3)
10

0
D

as
[1

5]
PS

O
-D

V
In

iti
al

is
ed

to

�2

�5
6�

5�

12

�10

7

��

5�

12

�10
12

5,
00

0
–

0
12

5
Se

ttl
es

[7
7]

B
S

co
ns

tr
ic

tio
n

(G
A

/P
SO

hy
br

id
)

1

��

5�

12

�25
10

0,
00

0
8.

52
e-

13
1.

13
e-

11
(1

.0
9e

-1
1)

61
H

er
re

ra
[3

9]
G

A
(§

7.
2.

1)

1

��

5�

12

�30
30

0,
00

0
–

2.
18

9
(1

.4
17

)
10

0
O

rt
iz

-B
oy

er
[6

4]
G

A
us

in
g

B
L

X
(0

.3
)

cr
os

so
ve

r
op

er
at

or

2

��

5�

12

�30
40

,0
00

–
57

.1
94

13
6

20
C

le
rc

[1
2]

E
&

S
PS

O
al

go
ri

th
m

3

��

5�

12

�30
50

0,
00

0
–

4.
6e

-2
(1

.2
e-

2)
10

0
Y

ao
[9

6]
Fa

st
E

P
w

ith
C

au
ch

y
m

ut
at

io
n

4

��

5�

12

�30
50

0,
00

0
–

0
(�

�

10
�

25
)

10
0

V
es

te
rs

tr
øm

[8
6]

D
E

5

��

5�

12

�30
64

03
.5

0
(m

ea
n)

–
�
�

10
0

30
E

be
rh

ar
t[

22
]

PS
O

co
ns

tr
ic

tio
n

6

��

15

�30
12

5,
00

0
–

42
.8

44
(1

.7
71

8)
12

5
A

ng
el

in
e

[1
]

H
yb

ri
d

PS
O

7

��

5�

12

�30
20

,0
00

–
53

.2
93

20
M

on
so

n
[6

1]
K

al
m

an
Sw

ar
m

(P
SO

)

8

��

10

�30
20

0,
00

0
–

0.
45

41
20

V
es

te
rs

tr
øm

[8
7]

SE
PS

O
In

iti
al

is
ed

to

�2

�5
6�

5�

12

�30

9

��

5�

12

�30
1,

50
0,

00
0

–
1.

6e
-3

(0
.2

77
)

30
0

D
as

[1
5]

PS
O

-D
V

In
iti

al
is

ed
to

�2

�5
6�

5�

12

�10

10

��

5�

12

�30
25

0,
00

0
–

1.
78

e-
16

(6
.4

1e
-1

6)
12

5
Se

ttl
es

[7
7]

B
S

co
ns

tr
ic

tio
n

(G
A

/P
SO

hy
br

id
)

11

��

5�

12

�30
20

,0
00

–
29

.8
48

74
7

20
M

on
so

n
[6

2]
PA

K
S

(K
al

m
an

sw
ar

m
)

1

��

5�

12

�10
0

5,
00

0,
00

0
–

0
(�

�

10

�

25
)

10
0

V
es

te
rs

tr
øm

[8
6]

D
E

2

��

5�

12

�10
0

20
0,

00
0

w
ith

ou
tc

ha
ng

e
–

0
(�

�

5

�1
0�

11
)

–
V

es
te

rs
tr

øm
[8

7]
A

R
PS

O

Figure 7.8: Table of notable results for Rastrigin’s function

easier.

Herrera’s 25 dimensional result is the best result from a sweep of different crossover

operator combinations. See the discussion in section 7.2.1 for more details.

7.9 Rosenbrock’s function

The Rosenbrock function [71] forms a very shallow gradient banana shaped bowl

with the optimum towards one end of the “banana”. The difficulty of this function

is twofold. The gradient is extremely weak approaching the optimum and continues

to diminish up to the optimum. The diminishing gradient makes the pursuit of the

optimum very challenging, since the signal strength indicating the location of the op-

timum is decreasing as the optimum is approached, causing the surface to resemble

a large plateau to the optimiser. The second challenge of optimising the Rosenbrock

function is that the approach to the optimum is non-linear - banana shaped in fact - and

thus a simple mechanism to get you across the plateau like remembering the previous

gradient information (e.g. inertia in particle swarm optimisation) will fail with high

probability. See the example in section 7.9.1 for more details.

Rosenbrock’s original function was two dimensional. There are two distinct man-

ners of expanding the function to multiple dimensions. One method of expansion is

the Whitley n-dimensional weighted wrap [89]. This is less common than the more

obvious linear chaining expansion. The difference in the expansion methods create

different networks of interactions, resulting in significant differences in the landscapes

and alteration of the order in which the correct setting of variables may be correctly

diagnosed.

7.9.1 Original Rosenbrock

fRosenbrock��x� � �1
 x�2 ��105�y
 x2�2�

�x � �x�y��
2�048� xi � 2�048

The function is only defined for two dimensions.

fRosenbrock�optimum� � 0 at �1�1�

An example of the surface defined by the two dimensional Rosenbrock function is

given in figure 7.9.1. The areas where fRosenbrock�x�y�� 10 and fRosenbrock�x�y�� 1 are

-2

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

 2 -2
-1.5

-1
-0.5

 0
 0.5

 1
 1.5

 2

 0
 500

 1000
 1500
 2000
 2500
 3000
 3500
 4000

Figure 7.9: The 2D Rosenbrock function, areas where fRosenbrock�x�y� � 10 and

fRosenbrock�x�y�� 1 are highlighted in different colour

highlighted in different colour. Compared to the magnitude of the function elsewhere

in the space, the “banana” section of the space is extremely flat. The curvature of the

region near the optimum forces a search navigating within the space to make constant

corrections; extrapolation of previous samples has a high error probability. These cor-

rections require sampling, but the gradient diminishes as the optimum is approached.

7.9.2 Whitley’s N-Dimensional Rosenbrock

fRosenbrockI ��x� � ∑
� n

2 �
i�1 fRosenbrock�x2i�1�x2i��∑

� n�1
2 �

i�1 fRosenbrock�x2i�1�x2i�

�x � �x1� ����xn��
2� xi � 2

n is the number of dimensions.

fRosenbrockI �optimum� � 0 at �1�1� ����1�

7.9.3 The common N-Dimensional Rosenbrock

fRosenbrockII ��x� � ∑n�1
i�1 �100�xi�1
 �xi�

2�2 ��xi
1�2

�x � �x1� ����xn��
5�12� xi � 5�12

n is the number of dimensions.

fRosenbrockII �optimum� � 0 at �1�1� ����1�

7.9.4 Best results : Rosenbrock function

Herrera [39] has two results of interest, a best mean performing algorithm † (using

heterogeneous crossover operator: Dynamic Heuristic and Simulated Binary Crossover

with µ of two) and a best peak performance algorithm ‡ (using heterogeneous crossover

operator : Uniform and Simulated Binary Crossover with µ of 5). We include both here

since both the properties, the mean and the best of best, are of interest. The strength

of Vesterstrøm’s results on the Rosenbrock function is impressive. To the best of our

knowledge, these are the best results on the common Rosenbrock function. Whitley

[92] is the only author known to publish results on the Whitley Rosenbrock function.

The results shown here are found using a Steepest Ascent Bit Climber (SABC) (a

bitwise hill climber) with a coordinate rotation mechanism using Principal Component

Analysis (PCA).

7.10 Schwefel’s sum

fSchwe f elSum��x� � ∑ j�n
j�1�∑

i� j
i�1 xi�

2

�x � �x1� ����xn��
65�536� xi � 65�536

n is the number of dimensions.

fSchwe f elSum�optimum� � 0 at �0�0� ����0�

Originally proposed by Schwefel [76] the doubled sum is a harder version of the

sphere problem. Its primary difficulty comes from the fact that gradient based meth-

ods are apparently misled by the interactions between the variables [64]. Interaction

between variables is sometimes termed epistasis. In this case, according to [64] this

causes gradient only based search to take considerable time to reach the vicinity of the

R
ow

D
om

ai
n

E
va

lu
at

io
n

B
es

t
M

ea
n

Po
p

.
A

ut
ho

r
N

ot
es

ca
lls

(S
td

.d
ev

)
si

ze

T
he

W
hi

tle
y

R
os

en
br

oc
k

fu
nc

tio
n

(R
os

en
br

oc
k I

)

1

��

5�

12

�5
14

8,
04

2
(m

ea
n)

5.
3e

-7
2.

4e
-6

(1
.3

e-
6)

–
W

hi
tle

y
[9

2]
PC

A
SA

B
C

2

��

5�

12

�10
2,

49
6,

20
1

(m
ea

n)
3.

8
e-

6
5.

9e
-6

(2
.2

e-
6)

–
W

hi
tle

y
[9

2]
PC

A
SA

B
C

T
he

co
m

m
on

R
os

en
br

oc
k

fu
nc

tio
n

(R
os

en
br

oc
k I

I)

1

��

20
00

�2
95

25
2.

1e
-6

–
50

Y
on

g
[9

7]
A

nn
ea

lin
g

E
vo

lu
tio

n
A

lg
or

ith
m

2

��

5�

12

�2
48

4,
00

1
4.

2e
-8

–
50

C
or

an
a

re
po

rt
ed

by
Y

on
g

[9
7]

Si
m

ul
at

ed
A

nn
ea

lin
g

3

��

50

�2
40

,0
00

–
0

(�
�

10

�

6
)

20
C

le
rc

[1
2]

E
&

S
PS

O
al

go
ri

th
m

1

��

20
0�

4
53

,3
50

2e
-5

–
50

Y
on

g
[9

7]
A

nn
ea

lin
g

E
vo

lu
tio

n
A

lg
or

ith
m

2

��

5�

12

�4
1,

26
4,

00
1

5.
9e

-7
–

50
C

or
an

a
re

po
rt

ed
by

Y
on

g
[9

7]
Si

m
ul

at
ed

A
nn

ea
lin

g

1

��

5�

12

�10
15

0,
00

0
–

1.
05

86
7e

-4
(3

.5
42

98
e-

4)
20

L
iu

[5
2]

M
eS

w
ar

m
(P

SO
)

2

��

15

�10
62

,5
00

–
38

.0
49

(7
.8

66
2)

12
5

A
ng

el
in

e
[1

]
H

yb
ri

d
PS

O

3

��

5�

12

�10
20

0,
00

0
–

1.
41

97
20

V
es

te
rs

tr
øm

[8
7]

PS
O

4

��

10
0�

10
30

0,
00

0
–

4.
9e

-3
(1

.2
1e

-2
)

10
0

D
as

[1
6]

D
E

-R
A

N
D

SF
In

iti
al

is
ed

to

�1
5�

30

�10

5

��

30

�10
12

5,
00

0
–

3.
71

e-
6

(2
.9

2e
-6

)
12

5
Se

ttl
es

[7
7]

B
S

co
ns

tr
ic

tio
n

(G
A

/P
SO

hy
br

id
)

1

��

5�

12

�25
10

0,
00

0
16

.5
21

.2
(1

.2
6)

61
H

er
re

ra
[3

9]
G

A
(s

ee
se

ct
.7

.2
.1

)†

2

��

5�

12

�25
10

0,
00

0
4.

2e
-2

29
.7

(2
4.

7)
61

H
er

re
ra

[3
9]

‡

1

��

2�

04
8�

30
30

0,
00

0
–

24
.6

3
(1

.3
3)

10
0

O
rt

iz
-B

oy
er

[6
4]

G
A

w
ith

C
IX

L
cr

os
so

ve
r

2

��

10

�30
40

,0
00

–
39

.1
18

48
8

20
C

le
rc

[1
2]

“T
yp

e
1”

PS
O

al
go

ri
th

m

3

��

30

�30
2,

00
0,

00
0

–
5.

06
(5

.8
7)

10
0

Y
ao

[9
6]

Fa
st

E
P

w
ith

C
au

ch
y

m
ut

at
io

n

4

��

30

�30
50

0,
00

0
–

0
(�

�

10

�

25
)

10
0

V
es

te
rs

tr
øm

[8
6]

D
E

5

��

5�

12

�30
20

06
2.

5
(m

ea
n)

–

�
�

10
0

30
E

be
rh

ar
t[

22
]

PS
O

co
ns

tr
ic

tio
n

6

��

15

�30
12

5,
00

0
–

71
1.

04
(1

25
.4

46
8)

)
12

5
A

ng
el

in
e

[1
]

H
yb

ri
d

PS
O

7

��

10
0�

30
20

,0
00

–
3.

28
e3

20
M

on
so

n
[6

1]
K

al
m

an
Sw

ar
m

(P
SO

)

8

��

10
0�

30
20

0,
00

0
–

15
.4

37
5

20
V

es
te

rs
tr

øm
[8

7]
SE

PS
O

In
iti

al
is

ed
to

�1
5�

30

�30

9

��

50

�30
1,

50
0,

00
0

–
2.

27
e-

2
(0

.1
82

)
30

0
D

as
[1

5]
PS

O
-D

V
In

iti
al

is
ed

to

�1
5�

30

�30

10

��

30

�30
25

0,
00

0
–

6.
24

8
(4

.2
11

)
12

5
Se

ttl
es

[7
7]

B
S

co
ns

tr
ic

tio
n

(G
A

/P
SO

hy
br

id
)

12

��

10
0�

30
20

,0
00

–
7.

36
25

58
20

M
on

so
n

[6
2]

T
R

IB
E

S
(P

SO
)

1

��

30

�10
0

5,
00

0,
00

0
–

0
(�

�

10

�

25
)

10
0

V
es

te
rs

tr
øm

[8
6]

D
E

2

��

10
0�

10
0

20
0,

00
0

w
ith

ou
tc

ha
ng

e
–

88
.7

1
–

V
es

te
rs

tr
øm

[8
7]

A
R

PS
O

Figure 7.10: Table of notable results for the Rosenbrock function

optimum. However, to the casual observer it appears to be identical to the sphere func-

tion with a heavy and accumulating emphasis on optimising the early values. This,

like the RosenbrockII function has a distinct sequence in which it is easier to solve.

The lower dimensions are repeatedly summed by the squared sum emphasis. An im-

provement of an earlier dimension consequently alters a larger number of summations

than an improvement of a later dimension, including the sets of sums that could be

altered by any change to a later dimension. These summations are then squared and

summed leading to a large difference in value. As an example consider a five dimen-

sional vector �5�5�5�5�5� to which we can make one improvement; we may change

any five to a four. If we alter the last dimension we get the vector �5�5�5�5�4� which

produces the score 1326 � ∑5
i�1�∑

j�i
j�1 x j�

2 � 52 � 102 � 152 � 202 � 242. If instead

we had chosen to alter the first dimension we would have had the vector �4�5�5�5�5�,

which gives the score 1230 � ∑5
i�1�∑

j�i
j�1 x j�

2 � 42�92�142�192�242. Clearly the

influence of optimising the initial dimensions is significantly greater than the influence

of optimising the later dimensions. The entire problem thus comes unravelled from the

first dimensions onwards. The epistatisis between variables appear to be nothing more

than strong reinforcement of the location of the optimum and the overall challenge of

the problem is questionable.

7.10.1 Best results : Schwefel’s sum

Herrera’s result on line 1 marked † is questionable, and there may be a typographic

error in the printing of [39]. In Herrera’s work the shown version of the Schwefel

sum function is ∑n
i�1 ∑ j�i

j�1 x2
j which sums the sums of the squares of the values. If true

this would make the problem easier and into a direct analogue of the Sphere function,

however, the published results are not anomalous, so this may be a bracketing error.

The EGNABGe used by Ortiz-Boyer and referred to on line 1 of the 30 dimensional re-

sults is an estimation of distribution algorithm, specifically the Estimation of Gaussian

Network Algorithm.

R
ow

D
om

ai
n

E
va

lu
at

io
n

B
es

t
M

ea
n

Po
p

.
A

ut
ho

r
N

ot
es

ca
lls

(S
td

.d
ev

)
si

ze

1

��

65

�5
36

�25
10

0,
00

0
6.

06
e-

2
4.

55
(4

.4
5)

61
H

er
re

ra
[3

9]
G

A
(s

ee
se

ct
.7

.2
.1

)†

1

��

65

�5
36

�30
30

0,
00

0
–

1.
99

5e
-3

(2
.2

8e
-3

)
20

00
O

rt
iz

-B
oy

er
[6

4]
E

G
N

A
B

G
e

2

��

65

�5
36

�30
50

0,
00

0
–

1.
6e

-2
(1

.4
e-

2)
10

0
Y

ao
[9

6]
Fa

st
E

P
w

ith
C

au
ch

y
m

ut
at

io
n

3

��

10
0�

30
50

0,
00

0
–

0
(�

�

10

�

25
)

10
0

V
es

te
rs

tr
øm

[8
6]

D
E

6

��

10
0�

10
0

5,
00

0,
00

0
–

0
(�

�

10
�

25
)

10
0

V
es

te
rs

tr
øm

[8
6]

D
E

Figure 7.11: Table of notable results for the Schwefel sum function

Chapter 8

Validation of design

We validate the design of our algorithm by comparing its performance against signifi-

cant results found in the literature. Good comparative performance provides evidence

that the algorithm is performing in an acceptable manner on these problems. Bad per-

formance would indicate a deficiency in the algorithm design, some property of the

search that had not been considered and would indicate the need for further work. We

extrapolate from this result and expect the algorithm to perform comparably on similar

problems.

An objective of this work has been to keep to a minimum the parameterisation

needed to deploy an effective algorithm against known difficult problems. To this end

we use only the minimum of parameters that are required to clearly define the prob-

lem and the maximum number of objective function evaluations. All other required

parameterisation, such as the allocation of fitness calls to the various solving strategies

is performed automatically and consistently - there is no difference between initialisa-

tions on different problems. As a consequence, properties which may have been used

for better problem specific performance have not been explored. The parameterisation

is not customised, but rather is the first that successfully combined the properties that

local testing implied were necessary. It is likely that searching for a better set of pa-

rameters would produce better overall benchmark results than those reported here and

it is known that problem specific parameterisation would produce better performance

in each individual case.

Beating the benchmarks is not the point of the research, however satisfying when it

occurs. The benchmarks are intended to reflect properties of real number optimisation

problems that are regarded as hard and appropriate by the community as a whole.

The hope is that generally good performance on a diverse set of benchmark problems

173

will extrapolate to unseen but similar domains. The performances reported against

benchmarks tend to be fleeting, with algorithms performing well only for a fragment of

the set. In order to obtain the benchmark results published, many authors went to great

lengths to customise and improve their algorithms. The results that are published are

the best that are reached by any means. Performing comparably on all the benchmarks

is then to be considered “good enough”; beating some of them would be excellent, but

is not necessary to vindicate the algorithm design. In summary, we consider general

ability over the set of benchmarks to be more important than outstanding success in a

few isolated examples.

To ease the comparison across the diverse sets of benchmark functions and initial-

isation and termination criteria used by other authors we choose a simple tactic: we

select the most impressive mean and the most impressive best performances from the

tables of results in chapter 7 and try to obtain the same performances in the same num-

ber of evaluations. We believe this is the fairest way of choosing comparison points,

since it gives results without ambiguity. To prevent confusion we clearly identify the

results we believe are outstanding and the parameter settings we used. Where authors

use different sized function domains, we use the largest to maintain comparability. This

means for some functions (e.g. Schwefel’s double sum) we have used domains larger

than that of some the techniques we are comparing against. It is generally accepted

that there is no benefit to be gained by searching a larger domain.

8.1 Parameters used

In all our work we used a population size of 20 candidates. We used a static auto-

calibration method that calculated the proportions of fitness calls to allocate to the

various search mechanisms from the population size. The population size and the

proportionate allocations were static through-out the run. All experiments are results of

repeats over 30 independent runs using distinct random seeds. We wish to emphasise

that the same algorithm parameter settings were used for all the experiments in this

work.

8.2 Our results

Whilst tabulating these results an interesting phenomenon was observed. For certain

functions the larger dimensional problems are easier to solve to termination than their

lower dimensional brethren. Clearly the space is not easier to explore, so how can

this be? Investigating the cause shows our results to also be (as were Vesterstrøm’s) a

victim of rounding and mathematical precision. For these experiments the termination

criterion is zero error in function evaluation from the known optimum.

Due to implementation details each real coded value in the vector has a minimum

value below which it fails to accurately represent the floating point values. When the

represented values are sufficiently close to zero, the mathematical operators which are

used to evaluate the objective function breach the representable threshold and round

to zero. The level at which this occurs is dependent upon the number and type of op-

erations applied. Candidate solutions to n dimensional problems are represented by

n element vectors. Most scalable functions are characterised by repeated application

of operator combinations over the vector length. The number of applications of the

operators is thus greater in higher dimensions. For certain mathematical operations

error is incurred, and lengthening the vector may raise the value at which the result of

evaluation of the operators (which is for instance a product of the values) rounds to

zero. It is in general unlikely that a zero error could ever be achieved by a randomised

iterative approximation method. Where zero error is recorded in our results, the mech-

anism by which it was achieved is almost certainly exhaustion of the accuracy of the

representation.

Two sets of results are thus presented. The first set, which is presented in table 8.1

show the results from our attempts to solve each of the problems to zero error. The

second set of results is presented in table 8.2 and shows the same experiments evaluated

to within an “acceptable” error margin of the optimum. In this case, Keane’s function,

not having a known optimum, is simply repeated. We chose 10�14 as the desired level

of accuracy, since this allows us to maintain direct comparison with the significant

results published by Vesterstrøm and is, relative to the magnitude of the domain ranges,

a considerable degree of accuracy. Several of the accompanying statistics gathered

during runs indicate that during division mathematical precision has been lost at the

10�11 level and it has been recorded that due to the phenomenon of “catastrophic

cancellation” [32] the subtraction operator generates errors at the level of 10�14.

To keep the tables of manageable size, all results have been rounded to 6 decimal

places. This can cause incongruities; none of our searches solved the Michalewicz

constrained function fmc f 1 to the desired accuracy (error of � 10�14). The mean score

was -14.999999999998037, which when rounded for presentation in the table becomes

-15. We do not know why the search degenerated at this level of precision.

We have included the proportion of the runs that reached the desired level of accu-

racy. In the same column the mean number of evaluations used by the search is also

included. It should be noted that this is the mean over all the experiments - not only

those which were successful, and so reflects the expected cost of running the algorithm

to obtain the reported result. Due to the generational nature of our algorithm, it checks

for termination conditions and will cease operation only after the termination of the

current batch of processes. It may therefore exceed the maximum permitted fitness

calls by up to P
 1 calls for a population size of P candidates. This is of little conse-

quence to our results. The magnitude of this error is tiny compared to the number of

evaluations used during the run. In the experiments reported in this section the shortest

run is 22,000 evaluations; we used a population size of 20 for all our experiments. Our

maximum over-spend of evaluations is then less than 19 iterations, equivalent to 0.1

percent in the worst case and typically much lower.

8.2.1 How to read the tables

The simplest way to read our results tables is as a straight comparison between the no-

table authors from the literature and ourselves. The experiments are arranged such that

the problem definitions are directly comparable, or (as in the case of unusual domain

ranges) at least not in our favour.

The iteration limits are chosen to be equal to or lower than those reported by the

author of the work against which we compare. Where the other author has published

a mean number of iterations, we have had no choice but to use this mean performance

as the iteration limit.

We tabulate our results on two separate tables, corresponding to the two levels of

acceptable error from the known optimum that were used in our work. In both tables

the success rate is given as a percentage and shows the actual rate at which the algo-

rithm reaches the desired level of accuracy. A 40% success rate would indicate that the

algorithm reached within the acceptable error margin of the objective in 40% of runs.

The other 60% of the runs reached the iteration limit. In such a case, it could be con-

cluded that the conditions of the test were in this instance found to be too demanding;

the algorithm failed to consistently reach the desired performance. Conversely a 100%

success rate indicates the objective accuracy was reached within the iteration limit by

all of the experimental runs. The percentage of times that the objective accuracy is

reached within the iteration limit is an approximate indication of how easy the optimi-

sation was found to be. We have indicated in bold all the experiments that obtain 100%

success.

Failing to obtain 100% success does not imply a failure. On some benchmark

functions no other author has achieved the desired level of accuracy either. It is possible

for an experiment to fail to reach success and still be the best performance reported. For

instance consider the 25 dimensional Rosenbrock experiments from table 8.1. We do

not reach our desired level of accuracy and have a 0% success rate, but we do obtain

a mean performance that compares favourably against the performance reported by

Herrera in [39]. There are several such results where we miss the target accuracy but

obtain mean results at least as strong as those reported by the other authors. These are

marked in italic.

8.3 Discussion of our results

Our results show an acceptable performance from the algorithm and do not suggest

the requirement for further design modifications of the algorithm itself. This level

of performance across such a diverse set of benchmark problems is encouraging, and

suggests that further development may produce an even stronger optimiser. The signif-

icantly poorer performance on the constrained problems, particularly those with chal-

lenging constraint interactions at the optimum (fmc f 4 and Keane’s function) seems to

indicate that our constraint handling mechanism, whilst acceptable, could be improved.

To aid the reader, discussion of each result is accorded a new paragraph headed by the

function name in bold font.

8.3.1 Unconstrained problems

The suite of unconstrained test functions consist of the Ackley, De Jong sphere, Griewank,

Powell, Rastrigin, common Rosenbrock, Whitley Rosenbrock and Schwefel’s double

sum problems. Our performance on the unconstrained problem set is strong, and only

Vesterstrøm on the 30 and 100 dimensional common Rosenbrock function records re-

liably better performance.

Ackley function. When solving the Ackley function to zero error, we are poten-

tially outperformed on the 10 dimensional version by results reported by Settles. We

record 80% of runs reaching zero error. Our mean performance is 7.105e-16 with a

standard error of 1.445e-15. Settles on the other hand records a mean error of only

Dimension Evaluation Best Mean Success rate Notable

calls (Std. dev) (mean evaluations) authors

Ackley’s function ��32�768�n Unlimited precision

10 125,000 0 7.105427e-16 (1.445379e-15) 80% (72,660.167) Settles [77]

25 100,000 0 1.657933e-15 (1.802705e-15) 53.333% (79,303.467) Herrera [39]

30 250,000 0 7.105427e-16 (1.445379e-15) 80% (125,088.233) Settles [77]

100 5,000,000 0 0 100% (106,295.6) Vesterstrøm [86]

De Jong’s Sphere function ��100�n Unlimited precision

10 150,000 3.500244e-259 1.850179e-82 (1.013385e-81) 0% (150,003.567) Liu [52]

25 100,000 1.805402e-100 2.328288e-64 (1.274222e-63) 0% (100,004.7) Herrera [39]

30 500,000 0 2.156987e-156 (1.181426e-155) 10% (497,128.267) Vesterstrøm [86]

100 5,000,000 0 1.131350e-316 (0) 60% (2,699,306.5) Vesterstrøm [86]

Griewank’s function ��600�n Unlimited precision

10 24,000 0 0.005001 (0.006620) 40% (21,804.833) Barbulescu [5]

25 100,000 0 0 100% (31,745.433) Herrera [39]

30 500,000 0 0 100% (37,463.733) Vesterstrøm [86]

100 5,000,000 0 0 100% (81,598.1) Vesterstrøm [86]

Keane’s function

20 140,000 0.791540 0.771918 (0.015743) 0% (140,001.233) Xie [95]

20 240,000 0.792571 0.784278 (0.010214) 0% (240,001.933) Montes [56, 57]

20 900,000 0.795240 0.788151 (0.007143) 0% (900,002.633) Schoenauer [74, 60]

20 1,400,000 0.797905 0.790505 (0.004230) 0% (1,400,002.133) Koziel [51]

50 150,000 0.775609 0.713626 (0.030212) 0% (150,003.4) Keane [48]

50 900,000 0.824547 0.806703 (0.010705) 0% (900,004.1) Schoenauer [74, 60]

Michalewicz’s constrained functions Unlimited precision

fmc f 1 140,000 -15 -15 (2.282932e-12) 0% (140,002.5) Xie [95]

fmc f 2 350,000 7049.807989 7132.580275 (97.619079) 0% (350,002.967) Zavala [98]

fmc f 3 350,000 680.629031 680.630288 (3.517030e-4) 100% (134,892.7) Zavala [98]

fmc f 4 350,000 0.059920 0.229140 (0.186962) 0% (350,003.1) Runarsson [72]

fmc f 5 350,000 24.305719 24.373420 (0.058825) 3.333% (349,694) Zavala [98]

Powell’s function ��5�12�n Unlimited precision

4 96,000 2.731008e-125 1.444205e-72 (7.906350e-72) 0% (96,002.567) Barbulescu [5]

Rastrigin’s function ��5�12�n Unlimited precision

10 22,000 0 0.004549 (0.024709) 83.333% (19,078.733) Barbulescu [5]

25 100,000 0 0 100% (55,271.033) Herrera [39]

30 250,000 0 0 100% (69,683.433) Settles [77]

100 5,000,000 0 0 100% (289,130.6) Vesterstrøm [86]

Whitley’s Rosenbrock function RosenbrockI ��30�n Unlimited precision

5 148,000 0 7.687302e-27 (3.795481e-26) 43.333% (122,913.633) Whitley [92]

10 2,496,000 0 1.801766e-29 (4.723938e-29) 83.333% (889,575.267) Whitley [92]

Common Rosenbrock function RosenbrockII ��30�n Unlimited precision

2 40,000 0 1.897260e-24 (5.002308e-24) 10% (39,746.033) Clerc [12]

4 53,000 0 3.632764e-22 (1.944882e-19) 6.667% (52,622.2) Yong [97]

10 125,000 8.393973e-30 1.480022e-22 (8.055590e-22) 0% (125,003.5) Settles [77]

25 100,000 2.821536e-4 7.410229 (3.898546) 0% (100,003.6) Herrera [39]

30 500,000 1.345640e-25 1.669340e-4 (6.389568e-4) 0% (500,003.5) Vesterstrøm [86]

100 5,000,000 7.915798e-19 16.420428 (7.016641) 0% (5,000,003.667) Vesterstrøm [86]

Schwefel’s function ��100�n Unlimited precision

25 100,000 7.655976e-48 5.987809e-28 (2.672039e-27) 0% (100,003.733) Herrera [39]

30 500,000 4.173794e-174 2.644485e-84 (1.267983e-83) 0% (500,004.1) Vesterstrøm [86]

100 5,000,000 0 1.552339e-298 (0) 10% (4,809,376.367) Vesterstrøm [86]

Figure 8.1: Table of our results for the benchmark functions, zero permitted error. Bold

indicates 100% success at obtaining the target error, italic indicates failure to achieve

the target error, but still achieving better mean performance than the compared author.

Dimension Evaluation Best Mean Success rate Notable

calls (Std. dev) (mean evaluations) authors

Ackley’s function ��32�768�n precision � 10�14

10 125,000 3.552714e-15 6.394885e-15 (1.445379e-15) 100% (26,658.067) Settles [77]

25 100,000 3.552714e-15 6.631732e-15 (1.228336e-15) 100% (53,501.767) Herrera [39]

30 250,000 3.552714e-15 6.394885e-15 (1.445379e-15) 100% (53,930.767) Settles [77]

100 5,000,000 0 4.618528e-15 (2.313736e-15) 100% (110,361.267) Vesterstrøm [86]

De Jong’s Sphere function ��100�n precision � 10�14

10 150,000 1.448823e-21 3.023500e-15 (2.903050e-15) 100% (10,394.8) Liu [52]

25 100,000 8.234157e-17 4.637034e-15 (3.543359e-15) 100% (17,850.867) Herrera [39]

30 500,000 2.236094e-16 4.408824e-15 (2.790458e-15) 100% (20,346.667) Vesterstrøm [86]

100 5,000,000 7.115315e-16 6.124634e-15 (2.341497e-15) 100% (48,771.233) Vesterstrøm [86]

Griewank’s function ��600�n precision � 10�14

10 24,000 2.220446e-16 0.002306 (0.004682) 63.333% (20162.2) Barbulescu [5]

25 100,000 3.330669e-16 6.124730e-15 (2.572184e-15) 100% (31,603.7) Herrera [39]

30 500,000 9.992007e-16 6.735353e-15 (2.548487e-15) 100% (40,096.367) Vesterstrøm [86]

100 5,000,000 1.110223e-16 6.764959e-15 (3.014207e-15) 100% (75,282.633) Vesterstrøm [86]

Keane’s function

20 140,000 0.792037 0.767180 (0.017007) 0% (140,003.533) Xie [95]

20 240,000 0.792383 0.783684 (0.009208) 0% (240,023.7) Montes [56, 57]

20 900,000 0.794588 0.790127 (0.003710) 0% (900,002.567) Schoenauer [74, 60]

20 1,400,000 0.795396 0.788625 (0.007838) 0% (1,400,003.7) Koziel [51]

50 150,000 0.770846 0.705050 (0.030483) 0% (150,002.7) Keane [48]

50 900,000 0.821289 0.804965 (0.011491) 0% (900,024.1) Schoenauer [74, 60]

Michalewicz’s constrained functions precision � 10�14

fmc f 1 140,000 -15 -15 (1.400288e-12) 0% (140,064.63) Xie [95]

fmc f 2 350,000 7045.675505 7157.928128 (86.934044) 0% (350,019) Zavala [98]

fmc f 3 350,000 680.630117 680.630418 (1.334872e-4) 100% (121,162.667) Zavala [98]

fmc f 4 350,000 0.062678 0.297280 (0.178877) 0% (350,019.3) Runarsson [72]

fmc f 5 350,000 24.307399 24.372032 (0.052355) 0% (350,019.1) Xie [95]

Powell’s function ��5�12�n precision � 10�14

4 96,000 1.658434e-18 4.741058e-15 (2.715405e-15) 100% (13,226.3) Barbulescu [5]

Rastrigin’s function ��5�12�n precision � 10�14

10 22,000 0 2.646061e-12 (1.449307e-11) 96.667% (17,734.2) Barbulescu [5]

25 100,000 0 0 100% (54,740.767) Herrera [39]

30 250,000 0 0 100% (64,712.833) Settles [77]

100 5,000,000 0 0 100% (289,004.167) Vesterstrøm [86]

Whitley’s Rosenbrock function RosenbrockI ��30�n precision � 10�14

5 148,000 1.472437e-16 4.436683e-15 (2.657605e-15) 100% (28,205.333) Whitley [92]

10 2,496,000 1.756040e-16 6.407862e-15 (2.742831e-15) 100% (82,180.8) Whitley [92]

Common Rosenbrock function RosenbrockII ��30�n precision � 10�14

2 40,000 1.70803e-16 4.574030e-15 (3.102918e-15) 100% (11,508.333) Clerc [12]

4 53,000 6.419875e-16 4.908578e-15 (2.686512e-15) 100% (23,019.667) Yong [97]

10 125,000 2.526701e-16 5.647693e-15 (3.006637e-15) 100% (69,104.3) Settles [77]

25 100,000 4.879615e-6 7.689351 (4.104761) 0% (100,121.933) Herrera [39]

30 500,000 3.305567e-15 0.003414 (0.011147) 53.333% (463,905.4) Vesterstrøm [86]

100 5,000,000 6.037577e-15 18.292482 (6.422111) 3.333% (4,986,244.533) Vesterstrøm [86]

Schwefel’s function ��100�n precision � 10�14

25 100,000 2.425078e-16 6.326215e-15 (3.006701e-15) 100% (57,114.2) Herrera [39]

30 500,000 4.543354e-16 5.812169e-15 (2.368716e-15) 100% (65,889.833) Vesterstrøm [86]

100 5,000,000 2.084813e-16 6.014375e-15 (2.857634e-15) 100% (148,964.833) Vesterstrøm [86]

Figure 8.2: Table of our results for the benchmark functions, permitted error � 10�14.

Bold indicates 100% success at obtaining the target error, italic indicates failure to

achieve the target error, but still achieving better mean performance than the compared

author

2.34e-16, with a standard deviation of 1.07e-15. The difference is well within the stan-

dard deviation of both results. Solving the 10 dimensional Ackley function to an error

of 10�14 or smaller 100% of our runs reach the desired accuracy, requiring an aver-

age of 26,658 evaluations to do so. For all the other scalings of the Ackley function

(25, 30 and 100 dimensions) we record significantly better results in terms of the mean

performance or the mean number of evaluations used or both.

De Jong’s sphere. Our results on the 10, 25, 30 and 100 dimensional variants of

De Jong’s sphere problem either achieve a better accuracy than that recorded by other

authors or achieve the desired accuracy in fewer function calls.

Griewank function. On the ten dimensional Griewank function the 10 bit algo-

rithms used by Whitley [91] and Barbulescu [5] appear to offer better performance.

We chose to compete against the results reported by Barbulescu who used a mean of

24,354 evaluations to reach a mean of zero error. Attempting to obtain zero error, we

use a limit of 24,000 evaluations and reach a mean of 0.005 with a standard deviation

of 0.0066, 40% of our runs reach the objective of zero evaluation error. Raising the

level of the acceptable error to 10�14 we obtain a mean performance of 0.0023 with a

standard deviation of 0.0047, 63% of runs reach within 10�14 of the objective. For all

other forms of the Griewank function (25, 30 and 100 dimensional) we record 100% of

runs obtaining zero error within the desired iteration limits. It is interesting to note that

on the standard Griewank domain the 10 bit representation has a precision of 1.173

units. The smallest non-zero fitness value that can be achieved using this represen-

tation against the Griewank 10 dimensional function is then 0.068355, significantly

larger than the mean performance we obtain.

Powell’s 4D function. On the Powell function, we record better results in terms of

absolute minimal mean error, or in terms of the number of runs reaching the desired

error of less than 10�14. We record a mean score smaller than the smallest non-zero

value that can be achieved using a 20 bit representation, in 24,000 evaluations.

Rastrigin’s function. On the 10 dimensional Rastrigin function, as with the Griewank

function, we have good performance on all except the 10 dimensional variant. Once

again it is the 10 bit encodings which beat us. We reach a mean error of 0.004549

with 83% of our runs reaching zero error in 22,000 evaluations. The large standard

deviation indicates the series of experiments recorded at least one result of large error.

When searching to within an error of 10�14, we obtain a mean error of 2.65e-12 and

96.7% of runs (i.e all but one) reach the desired accuracy using an average of 17,734

evaluations.

Our performance is challenged by Barbulescu using a 10 bit encoding and reach-

ing zero error with 100% of runs within a mean of 22,297 evaluations. Barbulescu

reports results using the average number of fitness calls consumed. Because of this

vagary and slightness of the performance differences, we do not claim superiority over

Barbulescu’s results despite the strong evidence of competitive results. For all other

forms of the Rastrigin function (25, 30 and 100 dimensional) we record 100% of runs

successfully reaching zero error within the specified iteration limits.

In both the 10 dimensional Griewank and 10 dimensional Rastrigin cases, the tech-

nologies that were competitive with or beat our results used a 10 bits per dimension

representation. It is worth recalling the arguments presented in section 6.3, where we

demonstrated that the precision of the 10 bit representation was poor.

Rosenbrock’s function. Whitley’s Rosenbrock function (RosenbrockI) appears to

be easier to optimise than the common Rosenbrock function (RosenbrockII). This is

almost certainly due to the much shorter chain of interactions present in the Whitley

Rosenbrock function, allowing the variables to be optimised in a less order dependent

manner or equivalently more variables to be optimised at any one time, depending

upon your preferred perspective. On the common Rosenbrock function RosenbrockII

Vesterstrøm records better results than us on the 30 and 100 dimensional variants.

Vesterstrøm’s results are outstanding. On the other (2, 4, 10 and 25) dimensional vari-

ants of the common Rosenbrock function we have consistently stronger results, judged

by the metric of mean performance, than those published elsewhere. Vesterstrøm’s

performance would seem to indicate that further improvement of the performance on

the common Rosenbrock function is possible and should be an objective of further

research.

Schwefel’s double sum. Our results on Schwefel’s double sum function are signif-

icantly stronger in terms of absolute smallest error than any reported by other authors.

We attain the desired accuracy of an error of 10�14 or smaller in 100% of runs.

8.3.2 Constrained problems

The performance on the constrained problems (Michalewicz’s test suite and the Keane

function) is actually very good, despite appearing disappointing relative to our per-

formance on the unconstrained problems. In no small part this is due to the crude

constraint handling mechanism. Despite this apparent short coming, we have recorded

results comparable with those published by other authors for all of the constrained test

cases using precisely the same algorithm and the same parameters throughout.

Michalewicz’s constrained functions. We equal the best reported performance

for the first and third Michalewicz constrained functions fmc f 1 and fmc f 3. Only Zavala

[98] has a better mean performance for the second constrained function fmc f 2. We

are comprehensively beaten by Hedar [67], Montes [56, 57] and Runarsson [72] on

the fourth of Michalewicz’s constrained functions fmc f 4, which contains four equality

constraints. Xie [95] has an outstanding result on the fifth of Michalewicz’s constrained

functions which neither the results obtained using our technique nor any other reported

performance is close to matching. In comparison, on the fifth function (fmc f 5) we have

comparable performance to that of the second strongest results, as reported by Zavala

[98] and Runarsson [72], which have mean performances within one standard deviation

of our mean performance.

The Keane function. The Keane function proves difficult for our optimiser. The

lack of a known optimum means there is no difference between the conditions reported

in table 8.2 and table 8.1. The differences in performance between the two tables are

due to the use of different random seeds and are reassuringly slight. Because there

is a general lack of consensus amongst the reporting authors, we have repeated our

experiments on the Keane function with various evaluation limits to clarify relative

standing.

The 20 dimensional variant of the Keane problem has far better representation in

the community. Of the results reported, using 240,000 evaluations (due to Mezura-

Montes [56, 57]) we compare favourably with four of them (Runarsson & Yao, Hedar,

Hamida and Zavala) having advantage in either mean score, number of evaluations or

both. We perform comparably against Mezura-Montes having a difference in mean

performance within one standard deviation, however Mezura-Montes does record a

higher best result than we do. We are definitively outperformed by Schoenauer &

Michalewicz, who record a significantly better mean performance using a mechanism

that searches only the boundary of the feasible space. Our mean results using the same

number of evaluations as Xie (140,000) are within one standard deviation of the results

published in [95]. The standard deviation for Xie’s results is not published.

We have found only 3 results for the 50 dimensional Keane function against which

meaningful comparisons may be made. Once again Schoenauer & Michalewicz obtain

the best performing result in terms of mean score. Surry & Radcliffe also record a

strong result, though the conditions under which this result was obtained are unclear.

Keane’s own result on the fifty dimensional problem, published in [48], is significantly

better than that which we record using the same number of evaluations. We do not have

results indicating how much better the results may have been with a higher evaluation

limit. We record a higher standard deviation on this problem configuration than on any

of the other Keane function tests.

With the exception of the 50 dimensional experiment over 150,000 evaluations

mentioned above, the standard deviation of the results on the Keane function are low

relative to the magnitude of the mean value. We do not therefore expect our results

to improve significantly with longer experimental runs. Further improvement would

seem to require modification of the algorithm.

Chapter 9

Multi-agent experiments

9.1 Experiments

As described earlier in this work, the evidence that one particular optimiser should

be better than another on the multi-agent protocol optimisation problem is based on

argument that the problem retains properties of other optimisation problems. To judge

whether the development was successful, we need other results for comparison.

We select three other optimisation techniques for use in generating that compari-

son; random search, random mutation hill climbing and the simple genetic algorithm.

Comparison against these 3 techniques illustrates whether the problem has any ex-

ploitable structure at all, whether the structure is trivial, and whether the new algorithm

design choices were constructive.

The multi-agent systems used in this work are expensive to compute, consequently

it is impractical to obtain sufficient empirical results to mitigate the influence of ran-

domised initialisation. To permit empirical comparison over a smaller set of samples

than would otherwise be necessary, we use paired testing, and identically initialise

the starting conditions of each of the compared runs. This is achieved through the

synchronisation of the random seeds used to initialise the pseudo-random number gen-

erator. Two seeds are used in each experiment, one for the search algorithm, and one

for the multi-agent system simulation. Consequently, irrespective of its consumption

of random values, each search algorithm is faced with optimising the same multi-agent

system, and the relative performances are due to differences in search and not differ-

ences in the initialisations of the simulated multi-agent system.

185

9.2 Comparative technologies

In the SADDE work, a genetic algorithm was used to search for suitable parameter-

isations. Equally other techniques could have been used. We present the results of

optimising the multi-agent problems described in chapter 2 using four optimisation

techniques. Comparison between the techniques gives insight into the relative differ-

ences in the quality of search performed. Here we describe the configuration of the

other techniques used in the comparison.

9.2.1 Random search

The random search method is the simplest blind search mechanism. Random search

proceeds by creating candidate solutions independently and at random. This is repeated

for as many evaluations as are permitted and at the end of the search the best candidate

sampled is returned.

The performance of random search is expected to equal other methods if there

is no structure in the space. Random search may also out perform informed search

if a large proportion of the structure in the space is deceptive (see section 5.3 for a

discussion of when this is expected to occur). Random search represents the baseline

of performance, against which all performances may be compared.

9.2.2 Random mutation hill climbing

Random mutation hill climbing is quite simply the iterated application of Gaussian mu-

tation to a random candidate, where any improvement that is made replaces the current

candidate. The process is iterated until the iteration limit is reached. Random mutation

hill climbing is dependent upon the efficacy of the mutation operator for the progress

of the search. As shown in earlier discussion (see figure 6.2) pure mutation search

mechanisms scale poorly. Despite this inability to finalise search, random mutation

hill climbers are considered generally effective and robust to search conditions. With

its single member search, and non-adaptive operator, random mutation hill climbing is

representative of the most primitive form of informed search.

9.2.3 Simple genetic algorithm

The simple genetic algorithm is implemented using real number encoding, pairwise

tournament based selection, simple reselection based mutation, and uniform crossover.

The population is 100 individuals, crossover rate is a standard 80%, and the mutation

rate is also typical at 1%. The simple genetic algorithm is not a trivial search algorithm.

In this context the simple genetic algorithm represents the application of a sophisticated

search mechanism which has not had the benefit of problem specific optimisation.

9.2.4 Prototype algorithm

The algorithm introduced in this work is termed a “prototype”, to reflect its status

and allow a curt moniker to be used in the presentation of the results. The prototype

algorithm is initialised precisely as it has always been initialised throughout this work,

the population size and relative proportions of operator usage are exactly as reported

earlier in section 8.1 and the algorithm structure is as described in chapter 6.

9.3 The proof of concept system

The role of the proof of concept system is to verify that the protocol encoding of

a constraint is an effective means to extract desired behaviours from a multi-agent

system. It also provides an interesting optimisation problem in its own right. We

include results of optimisations by each of the techniques on the proof of concept

problem.

9.3.1 Experimental conditions

The proof of concept multi-agent system is a maximisation problem concerning the

parameterisation of a protocol encoding the behaviours of some number of agents and

a simulation of their interaction space. We create experiments with 5, 10, and 20

agents participating in the system. We also experiment with different iteration limits,

allowing 3000, 4000 or 5000 iterations per experiment. Each experiment is repeated

10 times. More repeats would have been desirable but are not currently feasible with

the computing power at the author’s disposal. The mean result, best result, and the

standard deviation of the experiments are reported.

9.3.2 Results

Figures 9.1 9.2 and 9.3 graphically show the mean, best and standard deviation of

optimising the system for 5, 10 and 20 agents respectivly. The precise results of the

experiments using the proof of concept multi-agent system are provided in table 9.4.

Each experiment is repeated with an iteration limit of 3000, 4000 and 5000 evalua-

tions. The graphs show the relative performances of the different search techniques.

The problem is a maximisation problem. Higher results are better. For a large propor-

tion of the experiments the best results of all other techniques tested are worse than

one standard deviation below the mean result of the prototype algorthm. In all cases,

the prototype algorithm has a mean performance better than that of any of the other

techniques.

9.3.3 Discussion

Figures 9.1 9.2 and 9.3 show the results tabled in figure 9.4 in a graphical format. The

prototype algorithm, the design of which has been the main body of this work, has been

applied without modification to the proof of concept multi-agent optimisation problem.

The results are strong and consistent, the prototype algorithm clearly outperforming

the comparison algorithms in this instance. This is taken as indication that the design

decisions made earlier were sound, and the prototype algorithm performs well on all

tested experimental configurations.

9.4 The extended SADDE multi-agent system

The SADDE multi-agent system and the necessary extensions that have been made to

it are described in chapter 2. The problem defines an optimisation of 6 real number

values, which dictate a trading pattern in a simulated multi-agent supply chain. The

aim of the problem is to maximise the objective function.

9.4.1 Experimental conditions

The SADDE multi-agent system was used as the basis for a series of experiments with

different numbers of agents. We experimented with configuring systems with 6, 12,

48, 96 and 192 agents, using a genetic algorithm, random mutation hill climber, a ran-

dom sampling algorithm and the prototype algorithm to perform the optimisation. The

SADDE multi-agent system is slower to evaluate than the proof of concept system, so

we do not experiment with different iteration limits. In each optimisation process 5000

evaluations of the objective function were permitted. Each experiment is repeated 10

times. This is the maximum number of experiments that could be feasibly performed.

9.4.2 Results

Only one set of iteration limits was used in these experiments. All searches were

performed with a maximum iteration limit of 5000 samples of the objective function.

We perform experiments with different numbers of agents, simulating the requirement

for reparameterisations as agents join and leave the system. The stable performance of

an optimiser when performing a system reparameterisation is an important property.

Figure 9.5 shows the mean result, the best result, and the variance represented as one

standard deviation below the mean.

9.4.3 Discussion

As table 9.5 shows, the results of the optimisations on the extended SADDE multi-

agent system are similarly structured to the results on the proof of concept optimista-

tion domain in table 9.4. In all the experiments on multi-agent domains, the prototype

algorithm has a better mean performance than that of any of the other techniques.

In both the multi-agent system parameterisation problems the prototype algorithm

performs acceptably without requiring modification. Using the same parameterisation

that we first used for the successful optimisations against the benchmark problems we

deliver a reliable optimisation against two multi-agent problems that are difficult to

optimise. The fact that all of the optimisations reported in this work are the result of

one parameterisation of the search algorithm is especially satisfying, since it implies

that the design decisions were, collectively at least, valid. This raises confidence that

the successes found here are potentially going to transfer equally strongly onto other

similar domains.

 12000

 12500

 13000

 13500

 14000

 14500

500040003000

M
u
lt
i-
a
g
e
n
t
s
y
s
te

m
 p

e
r
fo

r
m

a
n
c
e

Simulations allowed in search

Genetic algorithm
Random

Hill climber
Prototype

Figure 9.1: Results for the proof of concept multi-agent problem involving 5 agents

with 3000, 4000 and 5000 function evaluations per search. Error bars are estimates,

the top bar is the best result recorded, the lower is one standard deviation from the

mean. “Random”, “Hill climber”, “Genetic algorithm” and “Prototype” indicate the results

achieved by random search, random mutation hill climbing, the simple genetic algorithm

and the algorithm described in this work respectively

 21000

 22000

 23000

 24000

 25000

 26000

 27000

 28000

500040003000

M
u
lt
i-
a
g
e
n
t
s
y
s
te

m
 p

e
r
fo

r
m

a
n
c
e

Simulations allowed in search

Genetic algorithm
Random

Hill climber
Prototype

Figure 9.2: Results for the proof of concept multi-agent problem involving 10 agents

with 3000, 4000 and 5000 function evaluations per search. Error bars are estimates,

the top bar is the best result recorded, the lower is one standard deviation from the

mean. “Random”, “Hill climber”, “Genetic algorithm” and “Prototype” indicate the results

achieved by random search, random mutation hill climbing, the simple genetic algorithm

and the algorithm described in this work respectively

 46000

 48000

 50000

 52000

 54000

 56000

 58000

 60000

500040003000

M
u
lt
i-
a
g
e
n
t
s
y
s
te

m
 p

e
r
fo

r
m

a
n
c
e

Simulations allowed in search

Genetic algorithm
Random

Hill climber
Prototype

Figure 9.3: Results for the proof of concept multi-agent problem involving 20 agents

with 3000, 4000 and 5000 function evaluations per search. Error bars are estimates,

the top bar is the best result recorded, the lower is one standard deviation from the

mean. “Random”, “Hill climber”, “Genetic algorithm” and “Prototype” indicate the results

achieved by random search, random mutation hill climbing, the simple genetic algorithm

and the algorithm described in this work respectively

A
ge

nt
s

30
00

ev
al

ua
tio

ns
40

00
ev

al
ua

tio
ns

50
00

ev
al

ua
tio

ns

m
ea

n
m

ea
n

-
σ

be
st

m
ea

n
m

ea
n

-
σ

be
st

m
ea

n
m

ea
n

-
σ

be
st

G
en

et
ic

al
go

ri
th

m

5
13

49
4.

24
00

00
13

23
5.

95
80

01
13

85
3.

35
00

00
25

94
1.

28
50

00
25

43
0.

06
80

28
26

64
7.

45
00

00
56

31
1.

16
00

00
55

21
7.

45
74

39
57

11
6.

05
00

00

10
13

67
5.

37
50

00
13

52
3.

72
88

89
13

85
3.

35
00

00
26

17
5.

42
50

00
25

92
1.

40
00

55
26

45
5.

30
00

00
56

52
6.

77
00

00
56

22
7.

17
48

36
56

81
7.

40
00

00

20
13

82
5.

29
00

00
13

61
3.

34
22

28
14

22
7.

40
00

00
26

52
8.

53
00

00
26

08
6.

18
31

21
27

19
5.

25
00

00
56

59
6.

89
50

00
56

14
4.

06
07

08
57

16
8.

35
00

00

H
ill

cl
im

be
r

5
13

47
7.

09
00

00
13

07
6.

91
61

05
14

19
9.

45
00

00
25

41
4.

11
00

00
24

32
8.

83
73

59
26

49
9.

65
00

00
55

52
9.

43
00

00
54

08
4.

64
00

18
57

02
9.

65
00

00

10
13

59
9.

31
00

00
13

27
0.

03
73

46
14

00
3.

85
00

00
25

98
1.

95
50

00
25

45
2.

06
20

98
26

72
1.

60
00

00
56

52
9.

72
00

00
55

98
3.

16
91

42
57

27
9.

40
00

00

20
13

76
9.

30
00

00
13

57
2.

13
75

66
14

05
2.

40
00

00
26

35
9.

33
00

00
26

02
5.

35
59

07
26

79
0.

45
00

00
56

85
8.

84
50

00
56

33
7.

11
21

75
57

78
2.

25
00

00

Pr
ot

ot
yp

e

5
14

05
9.

25
00

00
13

94
8.

21
84

33
14

20
2.

15
00

00
27

03
2.

55
00

00
26

81
6.

41
65

34
27

37
4.

75
00

00
57

59
3.

73
50

00
57

45
1.

56
12

08
57

82
1.

75
00

00

10
14

15
7.

85
00

00
13

98
1.

22
30

99
14

37
4.

60
00

00
27

12
6.

95
50

00
26

92
8.

03
29

21
27

42
6.

40
00

00
57

62
6.

29
50

00
57

46
8.

55
20

26
57

79
8.

10
00

00

20
14

20
3.

40
50

00
14

09
2.

86
69

39
14

42
5.

25
00

00
27

20
4.

23
00

00
27

09
5.

09
23

62
27

34
2.

10
00

00
57

83
2.

27
00

00
57

65
1.

94
57

78
58

18
5.

95
00

00

R
an

do
m

Sa
m

pl
in

g

5
12

72
7.

24
00

00
12

12
1.

87
77

58
13

27
9.

20
00

00
24

50
1.

37
00

00
22

89
9.

01
67

19
26

64
5.

50
00

00
51

79
9.

72
50

00
46

13
8.

16
77

64
56

80
2.

55
00

00

10
12

92
0.

25
00

00
12

37
0.

47
43

65
13

83
2.

80
00

00
24

28
9.

04
00

00
22

69
2.

96
54

20
26

64
5.

50
00

00
52

39
8.

26
50

00
48

47
6.

49
85

47
56

12
0.

00
00

00

20
12

82
0.

92
50

00
12

36
1.

78
44

42
13

26
7.

50
00

00
23

88
4.

08
00

00
21

95
0.

17
28

59
26

64
5.

50
00

00
54

03
1.

18
00

00
51

22
9.

35
25

81
56

77
9.

90
00

00

Figure 9.4: Table of the results on the proof of concept multi-agent domain, these results

are also graphed in figures 9.1, 9.2 and 9.3.

Number Performance

of Agents mean mean - σ best

Genetic algorithm

6 893,738,467 874,928,779 925,889,852

12 3,564,027,433 3,505,828,200 3,645,955,584

48 7,112,287,460 7,037,991,008 7,210,508,565

96 14,212,365,340 14,145,700,508 14,335,988,830

192 28,390,572,258 28,242,011,650 28,594,883,603

Hill climber

6 892,870,325 876,044,728 921,243,257

12 1,774,836,839 1,743,295,170 1,813,421,373

48 7,042,423,220 6,963,997,528 7,165,357,049

96 14,063,507,758 13,983,049,192 14,174,877,954

192 28,092,746,881 27,836,132,461 28,285,812,109

Prototype algorithm

6 906,863,446 889,780,708 930,471,094

12 3,584,205,701 3,533,140,996 3,644,685,365

48 7,161,112,326 7,104,865,812 7,248,106,298

96 14,298,566,393 14,219,798,397 14,443,658,665

192 28,477,630,500 28,392,315,556 28,591,351,980

Random sampling

6 850,709,167 834,176,571 884,642,150

12 1,722,032,719 1,685,488,578 1,807,678,851

48 6,796,911,956 6,664,205,042 6,997,197,634

96 13,600,422,886 13,357,038,915 13,970,903,443

192 27,289,176,329 26,809,852,264 28,136,447,061

Figure 9.5: Table of the results on the SADDE protocol domain. Because the differences

between performances are relatively slight relative to the values involved, this set of

results has not been graphed.

Chapter 10

Conclusions

10.1 Summary of the work

The purpose of this work has been to guide the reader through the decisions that were

made in building a population based algorithm to evolve constraints for a multi-agent

system. In the process, we have reviewed the major current real number optimisation

technologies, and identified some of the properties that they are believed to use. For

the success of this project we rely on the literature in the community and use sets of

benchmarks from the literature to test the design of the algorithm, which is seen to

perform adequately and not exhibit any obvious failings.

We apply the prototype algorithm to the problem of parameterising constraints

in multi-agent systems. Two aspects of multi-agent systems are examined, the first

demonstrates the use of protocols in controlling negotiations, the second system is a

difficult optimisation problem which is known to have presented difficulties in the past.

We provide evidence of strong performance on both problems.

Incidental to obtaining this result we also provide a new best result for the 20

dimensional Keane function and contribute an argument as to why the no free lunch

theorem should not (yet) be expected to hinder improvement of optimisation methods.

10.2 Stages in this work

An ideal development process would have directly manipulated properties of the test

domain and mapped the relevance of the various properties of the optimisation land-

scape. We were unable to use this approach in this instance because of the extraordi-

nary cost of evaluating the multi-agent system. We are capable of demonstrating the

195

existence of structure in the search space. Proof of the existence of structure in the

space requires a self similarity measurement, which we graphically illustrated in chap-

ter 5. Without this proof of the existence of correlated structure within the domain,

development of an algorithm to exploit structure in the search would have been on

dubious ground.

Off-the-shelf optimisation methods all rely on properties in the landscape struc-

ture. In some cases what these properties are is unknown and the optimisation method

is itself the subject of investigative research. Confident application of an optimisa-

tion technique requires both knowledge of the landscape that the optimiser is going

to perform on, and a clear understanding of how this landscape is complemented by

the properties utilised by the optimisation process. This intimacy of knowledge of

the optimisation landscape is not obtainable within the limits on the number of sam-

ples available. Instead, using the knowledge that there is local self-correlation in the

landscape we build a a composite algorithm designed to use obvious forms of local

correlation to locate optima.

We verify the strength of this design by matching the performance of the new op-

timiser against the best results we could locate. The performance of the algorithm

is shown to be exceptional, exhibiting high standards of performance across an ex-

tremely wide range of problems. We beat several of the best reported performances

and use an exploit to publish a result for the Keane function. Contrary to the majority

of search techniques which are biologically or sociologically inspired, the new algo-

rithm is designed to use properties predicted to exist by basic optimisation theory. The

contributions of each component in the design of the algorithm are clearly understood,

and the performance of the whole algorithm can be explained as nothing more than the

sum of its parts.

Having established the power of the new algorithm in external competition, we turn

to the multi-agent system optimisation task. Without external standards to verify the

performance, we use exemplar technologies for comparison, each chosen to illustrate

the use of different degrees of structure within the search. By proving the new algo-

rithm clearly offers an advantage on the tested multi-agent system parameterisation

problems, we prove, to as great an extent as is practicable, that the design decisions

were both correct and effectively implemented.

10.3 Contributions

This work examines the difficulty of designing a population based algorithm for opti-

misation of a multi-agent system parameterisation domain on which very little a-priori

information is available. In part, this lack of information is caused by the unwieldy

nature of sampling in the problem domains; domain samples are extremely time con-

suming to evaluate. For this reason it is inappropriate to directly use the domain in de-

velopment of the the optimisation algorithm, a process which even for simple integrity

testing is likely to consume millions of samples. The use of surrogate evaluation func-

tions in the algorithm design stages is unorthodox, and parts of this work deal with the

repercussions of this decision.

In tackling the difficulties of designing an optimiser for the multi-agent system

parameterisation domain, we contribute both to the fields of evolutionary algorithm

design and to the field of agent protocol design. We also make significant contributions

to the understanding of the scope of the no free lunch theorem in optimisation, and

provide several strong benchmark results. Out of curiosity and academic interest, we

locate and publish a new result on the much studied Keane’s function.

In turn the main contributions of this work are:

1. Evidence that a simple “first principles” modular design can compete with the

strongest published results in the field.

2. New best results on several optimisation benchmarks.

3. Publish best result on the 20 dimensional Keane problem, show evidence that

further improvement will require a higher precision representation.

4. Discussion of the “No Free Lunch” theorem in optimisation, where we show

that the no free lunch theorem will not necessarily withhold further improvement

from well designed optimisers, at least until optimality in search is reached.

5. A re-interpreted, repeatable implementation of the SADDE multi-agent system

for future comparative work.

6. A self-similarity measure that allows the detection of structure in an optimisation

domain.

7. Comparative results between the new optimisation algorithm and three common

types of search algorithms show that, under these circumstances, the new algo-

rithm is better suited to optimisation on these domains.

The greatest contribution of this work is demonstrating what can be achieved, given

the right circumstances, from such apparently unpromising beginnings. Despite the po-

tential difficulties of using surrogate evaluation functions the algorithm design process

was successful in developing an algorithm that performs well in optimising the multi-

agent parameterisation problem. The results reported in this thesis, both against the

surrogate evaluation functions and the multi-agent problems are strong.

10.4 Conclusion

This work achieved the objective of designing an optimisation algorithm for searching

the constraint space of a multi-agent system protocol. The majority of the design ef-

fort was aimed at extrapolating relevant optimisation characteristics from well known

problems in the real number optimisation literature. In order for this effort to be legiti-

mate, we have to relate our design method to the context of the no free lunch theorem.

We show the existence of structure in at least one form of the multi-agent problem. We

then place a gamble on the structure in the multi-agent problem being of an orthodox

type, and apply the prototype optimisation algorithm. For comparative purposes we

also implement and apply random search, random mutation hill climbing and a simple

genetic algorithm. The prototype algorithm is shown to have consistently better results

than the other methods.

10.5 Further work

The algorithm implemented here is actually relatively simple. Each component of the

algorithm is as basic as the required functionality permits. The algorithm structure:

multiple levels of search performed with intelligent sampling and replacement, shows

strong potential. Using a modular design has the appealing property of allowing the

selection of various mechanisms for the different tasks.

Several of the problems referred to in section 6.9 are relatively easy to fix, and

should be investigated before further work proceeds. Future work should focus on the

identification of the different aspects of the search. Once these are identified the focus

should move onto the identification of the best mechanisms for achieving each aspect

of the search. Ultimately the goal will be to incorporate these mechanisms, so that

mechanisms formerly used in isolation are incorporated as functional components in a

modular search superstructure.

Thanks

The author would like to thank John Levine for starting him on this path, and Jacques

Fleuriot and Dave Robertson for keeping him on it.

Bibliography

[1] P. J. Angeline. Using selection to improve particle swarm optimization. In ICEC-

98, pages 84–89, Anchorage, Alaska, 1998. IEEE World Congress on computa-

tional intelligence.

[2] Peter J. Angeline. Evolutionary optimization versus particle swarm optimization:

Philosophy and performance differences. In Evolutionary Programming, pages

601–610, 1998.

[3] Thomas Bäck. Evolutionary Algorithms in Theory and Practice. Oxford Univer-

sity Press, New York, 1996.

[4] Thomas Bäck and Hans-Paul Schwefel. An overview of evolutionary algorithms

for parameter optimization. Evol. Comput., 1(1):1–23, 1993.

[5] Laura Barbulescu, Jean-Paul Watson, and L. Darrell Whitley. Dynamic repre-

sentations and escaping local optima: Improving genetic algorithms and local

search. In AAAI/IAAI, pages 879–884, 2000.

[6] Tobias Blickle and Lothar Thiele. A comparison of selection schemes used in

genetic algorithms. Technical Report 11, Gloriastrasse 35, 8092 Zurich, Switzer-

land, 1995.

[7] W. Brauer, M. Nickles, M. Rovatsos, G. Weiss, and K. F. Lorentzen. Expectation-

oriented analysis and design. Lecture Notes in Computer Science, 2222 / 2002,

2002. Springer-Verlag GmbH.

[8] Steffen Christensen and Franz Oppacher. What can we learn from no free lunch?

a first attempt to characterize the concept of a searchable function. In Lee Spec-

tor, Erik D. Goodman, Annie Wu, W.B. Langdon, Hans-Michael Voigt, Mitsuo

Gen, Sandip Sen, Marco Dorigo, Shahram Pezeshk, Max H. Garzon, and Ed-

mund Burke, editors, Proceedings of the Genetic and Evolutionary Computation

201

Conference (GECCO-2001), pages 1219–1226, San Francisco, California, USA,

7-11 July 2001. Morgan Kaufmann.

[9] M. Clerc. The swarm and the queen. towards a deterministic and adaptive paricle

swarm optimization. The 1999 Congress on Evolutionary Computation CEC 99,

1999, 1999.

[10] M. Clerc. When ant colony optimization does not need swarm

intelligence, 2000. Unpublished manuscript. Available from htt p :

��clerc�maurice� f ree� f r�pso�aco�ACO swarm intelligence�zip.

[11] M. Clerc. Tribes - un exemple d’optimisation par essaim particulaire sans

paramtres de contrle. Proceeding of the Optimisation par Essaim Partic-

ulaire 2003 (OEP 2003), 2003. English version available at :: htt p :

��clerc�maurice� f ree� f r�pso�Tribes�Tribes doc�zip.

[12] M. Clerc and J. Kennedy. The particle swarm - explosion, stability, and conver-

gence in a multidimensional complex space. IEEE-EC, 6:58–73, February 2002.

Draft at :: htt p : ��clerc�maurice� f ree� f r�pso�.

[13] Joseph C. Culberson. On the futility of blind search: An algorithmic view of “no

free lunch”. Evolutionary Computation, 6(2):109–127, 1998.

[14] Bei C. D. and Gray R. M. An improvement of the minimum distortion encod-

ing algorithm for vector quantization. IEEE Transactions on Communications,

COM33 (10):1132–1133, 1985.

[15] Swagatam Das, Amit Konar, and Uday Kumar Chakraborty. Improving particle

swarm optimization with differentially perturbed velocity. In GECCO, pages

177–184, 2005.

[16] Swagatam Das, Amit Konar, and Uday Kumar Chakraborty. Two improved dif-

ferential evolution schemes for faster global search. In GECCO, pages 991–998,

2005.

[17] K. De Jong. Genetic algorithms are not function optimizers. 1993.

[18] Kenneth A. De Jong. An analysis of the behavior of a class of genetic adaptive

systems. PhD thesis, University of Michigan, Ann Arbor, 1995. Dissertation

Abstracts International 36(10), 5140B; UMI 76-9381.

[19] Marco Dorigo, Vittorio Maniezzo, and Alberto Colorni. Ant system: Optimiza-

tion by a colony of cooperating agents. IEEE Trans. on Systems, Man, and

Cybernetics–Part B, 26(1):29–41, 1996.

[20] Stefan Droste, Thomas Jansen, and Ingo Wegener. Optimization with random-

ized search heuristics – the (A)NFL theorem, realistic scenarios, and difficult

functions. to appear: in a special issue of the Journal of Theoretical Computer

Science, 2001.

[21] R. Eberhart and J. Kennedy. A new optimiser using particle swarm theory. Sixth

international symposium on Micro Machine and Human Science, 1995. 0-7803-

2676-8/95.

[22] R. C. Eberhart and Y. Shi. Comparing inertia weights and constriction factors in

particle swarm optimization. The 2000 Congress on Evolutionary Computation

CEC 00, 2000, 2000.

[23] R. C. Eberhart and Y. Shi. Particle swarm optimization: Developments, applica-

tions and resources. The 2000 Congress on Evolutionary Computation CEC 00,

2000, 2001.

[24] A.E. Eiben. Multi-parent Recombination, chapter 3.7. IOP Publishing Ltd and

Oxford University Press, 1995.

[25] Agoston E. Eiben and Thomas Bäck. Empirical investigation of multiparent

recombination operators in evolution strategies. Evolutionary Computation,

5(3):347–365, 1998.

[26] Thomas English. No more lunch: Analysis of sequential search. In Proceed-

ings of the 2004 IEEE Congress on Evolutionary Computation, pages 227–234,

Portland, Oregon, 20-23 June 2004. IEEE Press.

[27] Thomas English. On the structure of sequential search: Beyond “no free lunch”.

In Jens Gottlieb and Günther R. Raidl, editors, Evolutionary Computation in

Combinatorial Optimization – EvoCOP 2004, volume 3004 of LNCS, pages 95–

103, Coimbra, Portugal, 5-7 April 2004. Springer Verlag.

[28] Thomas M. English. Evaluation of evolutionary and genetic optimizers: No free

lunch. In Lawrence J. Fogel, Peter J. Angeline, and Thomas Bäck, editors, Evo-

lutionary Programming V: Proc. of the Fifth Annual Conf. on Evolutionary Pro-

gramming, pages 163–169, Cambridge, MA, 1996. MIT Press.

[29] Thomas M. English. Practical implications of new results in conservation. In

Marc Schoenauer, Kalyanmoy Deb, Günter Rudolph, Xin Yao, Evelyne Lutton,

Juan Julian Merelo, and Hans-Paul Schwefel, editors, Parallel Problem Solving

from Nature – PPSN VI, pages 69–78, Berlin, 2000. Springer.

[30] Larry J. Eshelman. The chc adaptive search algorithm: How to have safe search

when engaging in nontraditional genetic recombination. In FOGA, pages 265–

283, 1990.

[31] Gary B. Fogel, Garrison W. Greenwood, and Kumar Chellapilla. Evolution-

ary computation with extinction: Experiments and analysis. In Proc. of the

2000 Congress on Evolutionary Computation, pages 1415–1420, Piscataway, NJ,

2000. IEEE Service Center.

[32] David Goldberg. What every computer scientist should know about floating-point

arithmetic. ACM Computing Surveys, 23(1):5–48, 1991.

[33] David E. Goldberg. Genetic Algorithms in Search, Optimization and Machine

Learning. Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA,

1989.

[34] David E. Goldberg. The Design of Innovation: Lessons from and for Competent

Genetic Algorithms. Kluwer Academic Publishers, Norwell, MA, USA, 2002.

[35] D.E. Goldberg and K. Deb. A comparison of selection schemes used in genetic

algorithms. pages 69–93. Addison-Wesley, 1991.

[36] A. O. Griewank. Generalized descent for global optimization. Journal of Opti-

mization Theory and Applicalions, 34:11–39, 1981., 1981.

[37] Sana Ben Hamida and Marc Schoenauer. ASCHEA: New results using adaptive

segregational constraint handling. In David B. Fogel, Mohamed A. El-Sharkawi,

Xin Yao, Garry Greenwood, Hitoshi Iba, Paul Marrow, and Mark Shackleton, ed-

itors, Proceedings of the 2002 Congress on Evolutionary Computation CEC2002,

pages 884–889. IEEE Press, 2002.

[38] Nikolaus Hansen and Stefan Kern. Evaluating the CMA evolution strategy on

multimodal test functions. In PPSN, pages 282–291, 2004.

[39] F. Herrera, M. Lozano, and A. M. Sanchez. Hybrid crossover operators for real-

coded genetic algorithms: An experimental study. In press 2005.

[40] John H. Holland. Genetic algorithms and the optimal allocation of trials. SIAM

Journal of Computing, 2(2):88–105, June 1973.

[41] John H. Holland. Genetic algorithms and the optimal allocation of trials. SIAM

J. Comput., 2(2):88–105, 1973.

[42] John H. Holland. Adpatation in Natural and Artificial Systems. University of

Michigan Press, Ann Arbor, MI, 1975.

[43] Abdollah Homaifar, H. Y. Lai, and Vance E. McCormick. System optimization of

turbofan engines using genetic algorithms. Appl. Math. Modelling, 18(2):72–83,

1994.

[44] Christian Igel and Marc Toussaint. On classes of functions for which no free

lunch results hold. Information Processing Letters, 86:317–321, 2003. See also

Los Alamos Preprint cs.NE/0108011.

[45] Y. Jin. A comprehensive survey of fitness approximation in evolutionary compu-

tation. Soft Computing Journal, 2003.

[46] J. Joines and C. Houck. the use of non-stationary penalty functions to solve

nonlinear constrained optimization problems with gas, 1994.

[47] A. Keane. Genetic algorithms digest thursday, may 19, 1994 volume 8 : Issue 16.

[48] A. J. Keane. A brief comparison of some evolutionary optimization methods,

February 21 1996.

[49] J. Kennedy and R. Mendes. Population structure and particle swarm perfor-

mance. In David B. Fogel, Mohamed A. El-Sharkawi, Xin Yao, Garry Green-

wood, Hitoshi Iba, Paul Marrow, and Mark Shackleton, editors, Proceedings of

the 2002 Congress on Evolutionary Computation CEC2002, pages 1671–1676.

IEEE Press, 2002.

[50] James Kennedy and Russell C. Eberhart. Particle swarm optimization. In Pro-

ceedings of the 1995 IEEE International Conference on Neural Networks, vol-

ume 4, pages 1942–1948, Perth, Australia, IEEE Service Center, Piscataway, NJ,

1995.

[51] Slawomir Koziel and Zbigniew Michalewicz. Evolutionary algorithms, homo-

morphous mappings, and constrained parameter optimization. Evolutionary

Computation, 7(1):19–44, 1999.

[52] Bo-Fu Liu, Hung-Ming Chen, Jian-Hung Chen, Shiow-Fen Hwang, and Shinn-

Ying Ho. Meswarm: memetic particle swarm optimization. In GECCO, pages

267–268, 2005. full paper available on request.

[53] M. Locatelli. A note on the griewank test function. Journal of Global Optimiza-

tion, 25:169 – 174, 2003. Issue 2.

[54] J. McGinnis and D. Robertson. Dynamic and distributed interaction protocols.

In Proceedings of the Fourth Symposium on Adaptive Agents and Multi-Agent

Systems, pages 45–54, 2004.

[55] J. McGinnis and D. Robertson. Realising agent dialogues with distributed pro-

tocols. In Proceedings of the Autonomous Agents and Multiagent Systems Work-

shop on Agent Communication, 2004.

[56] Efrén Mezura-Montes and Carlos A. Coello Coello. A simple evolution strategy

to solve constrained optimization problems. In Bart Rylander, editor, Genetic

and Evolutionary Computation Conference Late Breaking Papers, pages 227–

234, Chicago, USA, 12–16 July 2003.

[57] Efrén Mezura-Montes and Carlos A. Coello Coello. An improved diversity mech-

anism for solving constrained optimization problems using a multimembered

evolution strategy. In GECCO (1), pages 700–712, 2004.

[58] Zbigniew Michalewicz. Genetic algorithms numerical optimization and con-

straints. In ICGA, pages 151–158, 1995.

[59] Zbigniew Michalewicz. Genetic Algorithms + Data Structures = Evolution Pro-

grams. 1999. 3rd, rev. and extended ed. 1996. Corr. 2nd printing, 1998 ISBN:

3-540-60676-9.

[60] Zbigniew Michalewicz, Girish Nazhiyath, and Maciej Michalewicz. A note on

usefulness of geometrical crossover for numerical optimization problems. In Evo-

lutionary Programming, pages 305–312, 1996.

[61] Christopher K. Monson and Kevin D. Seppi. The kalman swarm: A new approach

to particle motion in swarm optimization. In GECCO (1), pages 140–150, 2004.

[62] Christopher K. Monson and Kevin D. Seppi. Bayesian optimization models for

particle swarms. In GECCO ’05: Proceedings of the 2005 conference on Genetic

and evolutionary computation, pages 193–200, New York, NY, USA, 2005. ACM

Press.

[63] H. Mühlenbein, M. Schomisch, and J. Born. The parallel genetic algorithm as

function optimizer. In Proc. of the Fourth International Conference on Genetic

Algorithms, pages 271–278, San Diego, CA, 1991.

[64] D. Ortiz-Boyer, C. Hervs-Martnez, and N. Garca-Pedrajas. Cixl2: A crossover

operator for evolutionary algorithms based on population features. Journal of

Artificial Intelligence Research, Volume 24, pages 1–48., 2005.

[65] K. E. Parsopoulos and Michael N. Vrahatis. Recent approaches to global op-

timization problems through particle swarm optimization. Natural Computing,

1(2-3):235–306, 2002.

[66] Riccardo Poli, Cecilia Di Chio, and William B. Langdon. Exploring extended

particle swarms: a genetic programming approach. In GECCO ’05: Proceedings

of the 2005 conference on Genetic and evolutionary computation, pages 169–176,

New York, NY, USA, 2005. ACM Press.

[67] Abdel rahman Hedar and Masao Fukushima. Derivative-free filter simulated an-

nealing method for constrainted continuous global optimization, 05 2005. This

paper was originally published in April 2004, then revised in April 2005.

[68] Ingo Rechenberg. Evolutionsstrategie: Optimierung technischer Systeme nach

Prinzipien der biologischen Evolution. frommann-holzbog, Stuttgart, 1973. Ger-

man.

[69] D. Robertson. A lightweight method for coordination of agent oriented web ser-

vices. In Proceedings of AAAI Spring Symposium on Semantic Web Services,

California, USA, 2004.

[70] David Robertson. A lightweight coordination calculus for agent systems. In

DALT, pages 183–197, 2004.

[71] H. H. Rosenbrock. An automatic method for finding the greatest or least value of

a function. Computer Journal, (3):175-184, 1960., 1960.

[72] Thomas P. Runarsson and Xin Yao. Stochastic ranking for constrained evolution-

ary optimization. IEEE Transactions on Evolutionary Computation, 4(3):284–

294, 2000.

[73] Mehrdad Salami and Tim Hendtlass. The fast evaluation strategy for evolvable

hardware. Genetic Programming and Evolvable Machines, 6(2):139 – 162, 2005.

[74] Marc Schoenauer and Zbigniew Michalewicz. Evolutionary computation at the

edge of feasibility. In Hans-Michael Voigt, Werner Ebeling, Ingo Rechenberger,

and Hans-Paul Schwefel, editors, PPSN, volume 1141 of Lecture Notes in Com-

puter Science, pages 245–254. Springer, 1996.

[75] C. Schumacher, M. D. Vose, and L. D. Whitley. The no free lunch and problem

description length. In Lee Spector, Erik D. Goodman, Annie Wu, W.B. Lang-

don, Hans-Michael Voigt, Mitsuo Gen, Sandip Sen, Marco Dorigo, Shahram

Pezeshk, Max H. Garzon, and Edmund Burke, editors, Proceedings of the Genetic

and Evolutionary Computation Conference (GECCO-2001), pages 565–570, San

Francisco, California, USA, 7-11 July 2001. Morgan Kaufmann.

[76] H. P. Schwefel. Evolution and optimum seeking., 1995.

[77] Matthew Settles and Terence Soule. Breeding swarms: a GA/PSO hybrid. In

GECCO, pages 161–168, 2005.

[78] Yuhui Shi and Russell C. Eberhart. Empirical study of particle swarm optimiza-

tion. In Peter J. Angeline, Zbyszek Michalewicz, Marc Schoenauer, Xin Yao, and

Ali Zalzala, editors, Proceedings of the Congress of Evolutionary Computation,

volume 3, pages 1945–1950, Mayflower Hotel, Washington D.C., USA, 6-9 July

1999. IEEE Press.

[79] Carles Sierra, Jordi Sabater, Jaume Agustı́, and Pere Garcia. Evolutionary pro-

gramming in SADDE. In Maria Gini, Toru Ishida, Cristiano Castelfranchi, and

W. Lewis Johnson, editors, Proceedings of the First International Joint Confer-

ence on Autonomous Agents and Multiagent Systems (AAMAS’02), pages 1270–

1271. ACM Press, July 2002.

[80] Carles Sierra, Jordi Sabater, Jaume Agusti, Pere Garcia, Steve Phelps, Simon

Parsons, Peter McBurney, Elizabeth Sklar, and David Robertson. Adaptive com-

putation and ecological modeling, 2002.

[81] Carles Sierra, Jordi Sabater, Jaume Agustı́-Cullell, and Pere Garcia. Evolutionary

computation in MAS design. In ECAI, pages 188–192, 2002.

[82] Carles Sierra, Jordi Sabater, Jaume Agustı́-Cullell, and Pere Garcia. Integrating

evolutionary computing and the SADDE methodology. In AAMAS, pages 1116–

1117, 2003.

[83] Krzysztof Socha. ACO for Continuous and Mixed-Variable Optimization.

In Marco Dorigo, Mauro Birattari, and Christian Blum, editors, Proceedings

of ANTS 2004 – Fourth International Workshop on Ant Colony Optimization

and Swarm Intelligence, volume 3172 of LNCS, pages 25–36. Springer-Verlag,

Berlin, Germany, 5-8 September 2004.

[84] Patrick D. Surry and Nicholas J. Radcliffe. The COMOGA Method: Constrained

Optimisation by Multiobjective Genetic Algorithms. Control and Cybernetics,

26(3):391–412, 1997.

[85] Aimo A. Törn and Antanas Zilinskas. Global Optimization, volume 350 of Lec-

ture Notes in Computer Science. Springer, 1989.

[86] Jakob Vesterstrøm and Rene Thomsen. A comparative study of differential evo-

lution, particle swarm optimization, and evolutionary algorithms on numerical

benchmark problems. In Proceedings of the 2004 IEEE Congress on Evolution-

ary Computation, pages 1980–1987, Portland, Oregon, 20-23 June 2004. IEEE

Press.

[87] Jakob S. Vesterstrøm and Jacques Riget. Particle swarms: Extensions for im-

proved local, multi-modal, and dynamic search in numerical optimization. Mas-

ter’s thesis, Department of Computer Science, University of Aarhus, 2002.

[88] Christopher Walton, Virginia Biris-Briehante, Stephen Phelps, and David Robert-

son. Review of slie framework and experiments, 2003.

[89] Darrell Whitley, Soraya Rana, and Robert B. Heckendorn. Exploiting separabil-

ity in search: The island model genetic algorithm. Journal of Computing and

Information Technology, v. 7, n. 1, p33-47 1999. (Special Issue on Evolution-

ary Computing), 1998. This paper physically titled: The Island Model Genetic

Algorithm: On Separability, Population Size and Convergence.

[90] Darrell L. Whitley, Keith E. Mathias, Soraya Rana, and J. Dzubera. Evaluating

evolutionary algorithms. Artificial Intelligence, 85:245–271, 1996.

[91] L. Darrell Whitley, Deon Garrett, and Jean-Paul Watson. Quad search and hybrid

genetic algorithms. In GECCO, pages 1469–1480, 2003.

[92] L. Darrell Whitley, Monte Lunacek, and James N. Knight. Ruffled by ridges:

How evolutionary algorithms can fail. In GECCO (2), pages 294–306, 2004.

[93] David H. Wolpert and William G. Macready. No free lunch theorems for search.

Technical Report SFI-TR-95-02-010, Santa Fe, NM, 1995.

[94] David H. Wolpert and William G. Macready. No free lunch theorems for opti-

mization. IEEE Transactions on Evolutionary Computation, 1(1):67–82, April

1997.

[95] Xiao-Feng Xie and Wen-Jun Zhang. SWAF: Swarm algorithm framework for

numerical optimization. In GECCO (1), pages 238–250, 2004.

[96] Xin Yao and Yong Liu. Fast evolutionary programming. In Evolutionary Pro-

gramming, pages 451–460, 1996. Revised 1999.

[97] Liu Yong, Lishan Kang, and David J. Evans. The annealing evolution algorithm

as function optimizer. Parallel Computing, 21(3):389–400, 1995.

[98] Angel E. Muñoz Zavala, Arturo Hernández Aguirre, and Enrique R. Villa Di-

harce. Constrained optimization via particle evolutionary swarm optimization

algorithm (PESO). In GECCO, pages 209–216, 2005.

[99] Ivan Zelinka and Jouni Lampinen. On stagnation of the differential evolution

algorithm, July 28 2000.

