Predicting the Content of Peer-to-Peer

Interactions

Paolo Besana

Doctor of Philosophy
Centre for Intelligent Systems and their Applications
School of Informatics
University of Edinburgh
2008

Abstract

Software agents interact to solve tasks, the details of hvheed to be described
in a language understandable by all the actors involved.olOgies provide a for-
malism for defining both the domain of the task and the terioigyused to describe
it. However, finding a shared ontology has proved difficulffedent institutions and
developers have different needs and formalise them inrdifteontologies.

In a closed environment it is possible to force all the p#taots to share the
same ontology, while in open and distributed environmentslogy mapping can pro-
vide interoperability between heterogeneous intera@utgrs. However, conventional
mapping systems focus on acquiring static information,@nchapping whole ontolo-
gies, which is infeasible in open systems.

This thesis shows that it is possible to harness the repetit similar interactions
between actors to predict mappings, simplifying dynamiotmgy mapping. The intu-
itive idea is that similar tasks are performed following 8anconventions and patterns,
possibly in the form of workflows, which can be reused. By gsiglg different runs
of these workflows it is possible to create a statistical nhadi¢he interaction, that
reflects the frequency of terms in messages and of ontologiedions between terms
in different messages. The model is then used during a rurkaban interaction to
compute the probability distribution for terms in receivegssages. The probability
distribution provides additional information, contextt@the interaction, that can be
used by a traditional ontology matcher in order to improverincy, by reducing the
comparisons to the most likely ones given the context, arssipty both recall and
precision, in particular helping disambiguation.

The predictor can be used in an open, distributed envirohrsech as the P2P
framework implemented in the OpenKnowledge project. Thitplbo create a model
that reflects real phenomena in this sort of environmentatuasted by analysing the
quality of the predictions, in particular verifying how vans features of the interac-
tions, such as their non-stationarity, affect the predicdi The actual improvements to
a matcher we developed are also evaluated.

Acknowledgements

These years have been extremely interesting and livelydithea opportunity to ex-
change ideas and learn from great people.

| would like to thank my supervisors, Dave Robertson for thipthe provided and
for the example he gives as a person, and Micheal Rovatsdlddrelp and for the
good times spent together.

I would also like to thank all the people | shared my time withd helped me in the
earlier stages and kept listening to my political grumblegtee destiny of the world:
thanks to Adam Barker, Thomas French, Li Guo and Jarred Mu&iithe great 4.15,
now spread in UK, in strict alphabetical order).

| want to thanks my partner, Luna De Ferrari, for her help amdtiie time we
spent together, and my parents who supported me and acdgptdtbusand miles of
separation.

Finally a great thanks to my friends back home in Milano, wkptkme connected
to my old world.

Declaration

| declare that this thesis was composed by myself, that th& wantained herein is
my own except where explicitly stated otherwise in the tart that this work has not
been submitted to any other degree or professional quaidicaxcept as specified.

[Paolo Besanh

Publications

e P.Besana, V. Patkar, D. Glasspool and D. RobertBastributed Workflows: the
OpenKnowledge experienc®:MELS '08, Monterrey

e F. Giunchiglia, F. McNeill, M. Yatskevich, J. Pane, P. BesaR. Shvaiko Ap-
proximate structure preserving semantic matchi@®BASE’08, Monterrey

e F. Giunchiglia, M.Yatskevich, F.McNeill, P. Shvaiko, Jrieaand P.Besanap-
proximate structure preserving semantic matchsigprt paper, ECAI'08, Patras

e P. Besana, D. Robertsonlow Service Choreography Statistics Reduce the On-
tology Mapping Probleminternational Semantic Web Conference 2007 in Bu-
san (Korea)

e P. Besana, D. RobertsoRrobabilistic Dialogue Models for Dynamic Ontology
Mapping Uncertainty Reasoning for the Semantic Web workshop in C3W
in Athens (GA)

e P. BesanaA Framework for Combining Ontology and Schema Matchers with
Dempster-Shafe©ntology Matching workshop in ISWC’06 workshop in Athens
(GA)

e D. Robertson, C. Walton, A. Barker, P. Besana, Y. Chen-BuiigeHassan, D.
Lambert, G. Li, J. McGinnis, N. Osman, A. Bundy, F. McNeillM&an Harmelen,
C. Sierra, F. GiunchigliaModels of Interaction as a Grounding for Peer to Peer
Knowledge Sharingn E. Chang, T. Dillon, R. Meersman and K. Sycara editors,
Advances in Web Semantics, vol 1, LNCS-IFIP (in press)

e P. Besana, D. Robertson, M. Rovats&xploiting interaction contexts in P2P
ontology mappingP2PKM’05 workshop in San Diego

e P. Besana, D. Robertso@ontexts in Dynamic Ontology MappingGontext and
Ontology: Theory, Practice and Applications workshop in/ANA5

1

Contents

Introduction 13
1.1 Objectives e
1.2 Contributionstoknowledge 5

1.3 Applications
1.4 Thesisstructure

Background 19
2.1 Introduction
2.2 Examplescenario
2.3 AgentsandPeers
2.4 Interactions
2.4.1 Dialogues and Interaction Models
2.4.2 Choreography and Orchestration
2.4.3 Workflow Language Features
2.4.4 Lightweight Coordination Calculus 4
245 Matchmaking
25 Ontologies
2.5.1 Ontology formalisation
2.5.2 Problemsofsharedontology
2.5.3 Sources of ontological heterogeneity 33
2.6 Ontologymatching
2.6.1 Ontology matching definition
2.6.1.1 Evaluating the matching systems
2.7 OpenKnowledge
2.7.1 WhatisapeerinOpenKnowledge
2.7.2 Matchmaking in OpenKnowledge
2.7.3 Ontology matching in OpenKnowledge

CONTENTS 5

2.8 Summary ... e e 41
3 Assumptions and Motivations 43
3.1 Introduction 43
3.2 Problemdefinition 44
3.3 Predicting the contentofmessages a7
3.4 Modellingtheinteraction 84
3.41 Aimofthemodel, 48
3.4.2 AsSSUMPLIONS 48
3.4.3 Mapping the assumptions to LCC interaction models 52
3.5 Goalsofprediction 53
3.5.1 Predicting forefficiency 53
3.5.2 Predictingforrecall 55
3.5.3 Predicting forprecision. 56
3.5.4 Predicting for extending ontologies 56
3.6 Summary e 57
4 Modelling context 59
4.1 Introduction 59
4.2 Architecture 59
4.3 Modelcreationandupdate 60
4.3.1 Modelrepresentation 61
4.3.2 Creating and Updatingthe Model 61
4.3.3 Example of creationandupdate 64
4.4 Predictionofyx e 66
4.4.1 Instatiatingtheassertions. 8 6
4.4.2 Combiningtheassertions. 69
4.4.3 Example of prediction L. 70
45 Summary e e e 72
5 Evaluation 73
5.1 Introduction 73
5.2 General Testing Methodology 73
5.3 \Verifying functionality L. 77
5.3.1 Specific methodology 78

5.3.2 GeneralResults 78

CONTENTS

5.3.3 Analysingtheresults,
5.3.4 Creatingthemodel

5.3.5 Contributions of the strategies
536 Caseanalysis

5.4 \VerifyingUsefulness oL
5.4.1 Specific methodology
542 Results

5.4.2.1 Comparing performance

55 Summary

6 Related Work

6.1 Introduction

6.2 Agent coordination and communication

6.2.1 Mentalisticapproach

6.2.2 The Normativeapproach
6.3 Web Service composition L L L.
6.3.1 Semanticapproach
6.3.2 Web Service Workflow languages

6.4 Ontology Matchingreview

6.4.1 Ontology mismatches classifications

6.4.2 Matchers’ Classifications

6.4.3 Elementary matching techniques

6.4.4 Matching composition
6.4.5 Projectsreview o

6.4.6 Approximate Structure-Preserving Semantic Matghin. . .
6.4.7 Dynamic Ontology Refinement

6.5 Natural Language Processing
6.5.1 Dialoguetranslation
6.6 Summary e e

7 Conclusion

7.1 Futurework

Bibliography

2.1
2.2
2.3
2.4
2.5
2.6
2.7
2.8
2.9
2.10
2.11
2.12

3.1
3.2
3.3
3.4
3.5
3.6
3.7

4.1
4.2
4.3

5.1
5.2
5.3

List of Figures

Activity diagram forthe scenario

Examplescenaria L 0o
LCCsyntax e
Rewrite rules for expansion of an interaction model clause
Request refinementinLCC
Finite State Machine for the entry roistomeiandsupplier . . .
Run of the interaction for refining an accomodation resgue. . .

Run of the interaction for refining a car rental request
Customerontology
Vendorontology
OpenKnowledgellifecycle.
Example of structure matching

Applying matching in an interaction
Bridges between the environments
Translationproblem o 0oL
Example of probability distribution fora variab@

Distribution of Google queries aboutiPhone
Distribution of Google queries aboutB&B
Uniform and Zipf's law distributions

Predictor feedback
Predictingavariable
Probability distribution for variableéProposal,

Interaction model template
Gaussian distributions with different standard deviason.
Different preference distributions of terms from a genedadntology.

LIST OF FIGURES

5.4 XML file describinganexperiment.
55 Ageneratedontology L oo
5.6 Average size of the suggestedAgtaverage success rate in finding t
initand average rankoffin A L L.
5.7 LearningCurve
5.8 How the model improves with interactions
5.9 Contribution of different types of assertions
5.10 Effect of different preference distributions
5.11 Recursive testinteractionmodel
5.12 Predictor behaviour when distribution changes over time
5.13 Splitting the probability distributionintosets.
5.14 Matching results when predictorisused.
5.15 Matching results when predictorisused.
5.16 Matching time when predictor is not used, is used with reagteand
withoutreattempt. L
5.17 Matching precision when predictor is not used, when useH weiat-
tempt strategy and without reattempt strategy.
5.18 Matching recall when predictor is not used, is used with texaipt and
withoutreattempt. L

6.1 Example of KQML dialogue.
6.2 Exampleof FIPAACLmessage.
6.3 FIPA semantics of nf or mandrequest

7.1 Specificinteractionmodel. 0oL
7.2 Genericinteractionmodel.

78

82
83
87

89
94

96

97

98

99

4.1
4.2

5.1
5.2

List of Tables

Typesofassertions 62
Statistical model of thecontext 67
Tree creation and alteration 90
Matchers used ipyontomap 93

Chapter 1
Introduction

One of the aims of information technology is to automate tiéipe or time-consuming
tasks, such as numerical computations or data storage arevaké When tasks be-
come more complex they often require the interaction betvagerent actors. An in-
teraction involves exchange of information between theragbbtained by exchanging
messages. Messages convey meanings encoded into sigrammnission: in order to
understand a message, a receiver should be able to map tisairsithe messages to
meanings aligned with those intended by the transmitter.

Therefore, actors should agree on the terminology useddoritie the domain of
the interaction: for example, if an agent wants to buy a paldir product from a seller,
it must be able to specify the properties products unamhiglyo Ontologies specify
the terminology used to describe a domain [28]. This is agsuim most of the web
service composition frameworks and it is enforced in a nmadgnt interaction frame-
work such as Electronic Institutions [57] by requiring thia¢ agents participating in
an interaction share the same ontology.

However, a shared ontology can be a strong assumption inemevironment, as
agents may come from different backgrounds and have diftemetologies, designed
for their specific needs.

In this kind of environment, communication implies tranigla. The standard ap-
proach is to create an alignment between the ontologieatingea sort of bilingual
dictionary. As we will see in Chapter 2 and then in more dataiChapter 6, most
available ontology mapping systems focus on acquistadic, a priori information
about ontology correspondences, and aim at the widestlgessitological commit-
ment between the ontologies. Depending on the approacltcheratmay compare
labels or ontology structures, or may use external dictiesdike WordNet to prove

10

Chapter 1. Introduction 11

similarity between nodes in hierarchies, or may learn hostances are classified to
find similarities between concepts, or combine informafrom different sources and
so on. Matching in advance, before the interactions, isasilide, as the agents may
be still unknown. Matching during the interactions may benpatationally difficult,
as many interactions with different actors can take placeitaneously.

This work tries to exploit the intuitive idea that interamts follow conventions and
patterns, and these patterns are repeated when similatisita arise. For example,
the brief talk between a customer and a waiter at the couritarcafe will always
be similar: “a coffee, please” can be followed by “black orit@R” or “espresso?”,
but unlikely by “It's 2 o’clock”. In this thesis we show thahé history of similar
interactions between actors, together with the state afiming interaction, can be used
to predict the correspondences in the current interactioaking dynamic ontology
mapping more tractable.

In order to model the properties of terms in messages andrilations, patterns
are extracted by analysing the interactions. If the computedel is representative
of a class of interactions, then it can provide the basis fedigting the content of
exchanged messages in future interactions. A predicti@pi®bability distribution
for the terms that can appear in a specific interaction messkgr example, in the
interaction about coffee seen above the customer may eXpestd on her previous
experiences, given that she simply said “a coffee, pleased cafi¢,ce in UK, that
the waiter will reply asking “black or white” with probabiyi 60%, “espresso” with
probability 20% and “macchiato” with probability 20%.

The distribution can be used to select a subset of most ldegiyis that any stan-
dard ontology matcher can evaluate. Accurate predictiansbe used to compensate
the lack of background knowledge in ontology mapping systeémproving their re-
call rate, and to reduce the ambiguity of the informationilatde, improving their
precision. Finally, the suggestions could be also usedynmescases, to drive the ex-
tension of the ontology, pointing at terms that are missings thesis shows that, after
a reasonably small number of interactions the predictosisbently provides reliable
suggestions.

The minimal requirement in order to use this system is to be tbdescribe and
identify the interaction sequences. In principle, any eysbased on workflow lan-
guage can provide this. Workflow systems are normally césé@d, but we have re-
cently shown in the OpenKnowledbproject, described in more detail in Section 2.7,

Lhttp://www.openk.org

Chapter 1. Introduction 12

that it is possible to achieve peer-to-peer based workflstesys.

1.1 Objectives

In Software Engineering decoupled systems are always notmest that intertwined
ones. Two systems knitted together are more exposed to thetebf changes: a
change in one system influences strongly the other.

A multi-agent systems, or a peer-to-peer networks thatiregall agents to share
the same ontology is brittle when facing changes, while wort where agents need
translation to communicate, it is possibly less efficient,ibis more robust to change
even if requires more complex technology. In the first cas#iaange in the representa-
tion (for example, a new type of product appearing on the etarkeeds to be applied
to all the peers before the communication can continue.drsétond case, the system
is inherently ready for differences and changes.

In the context of ontologies, this concept is normally chibatological commit-
ment Most of the mapping systems aim at matching the whole ogiesoof the peers,
increasing the ontological commitment between peers.

The aim of this work is taninimise the commitmengéquired for interactions be-
tween peers, focussing on matching only the terms that &teceto the specific con-
text of the interaction. Only what is strictly required far mteraction is mapped.

1.2 Contributions to knowledge

Context is often considered a “magic bullet” for many Al pierins [20, 21]. This con-
cept has been applied to knowledge representation (foiitkg@pconsistent knowledge
consistent within a context in [38]), or to language compredion (to understand the
implicit element in a sentence). However, most of these wdokmalise a context
definition, but it is often hard to understand how the context be created.

This work contributes to this discussion adding a furthedeidor the context
whose scope is limited to interactions between agents:es @t aim to be universal,
but it aims at being successfully applicable to the problefrt®mmunication between
semantically heterogeneous agents. The context of aragtien presented in this
work is a statistical model of the possible content of thehexged messages, and it
is built interaction after interaction. Model building isarated from model use: the

Chapter 1. Introduction 13

statistical model is instantiated into specific probayptiitstributions for the content of
the various interaction messages, depending on the stte ofteraction.

The context can be used to simplify the translation probleesgnted in the objec-
tive, by providing the boundaries needed to minimise theradment.

1.3 Applications

The open environment presented in the introduction is thadang assumption of the
OpenKnowledgéproject, that will be described in more detail in Chapter 2e®-
Knowledge provides the framework for the creation of p@epéer communities. The
peers share interaction models that specify how they havgdoact in order to per-
form various distributed tasks. The peers do not need teestwaiontology, and a lot
of effort is focussed on handling their heterogeneity. Bhae two situations in which
matching between semantically heterogeneous elementsauied: first, peers have
to match the shared interaction models to their capals|iaad then, during the inter-
action, they have to translate the content of the receivessages to their ontology.
The work presented in this thesis fits the second situatiopraving peers’ efficiency
and ability to handle heterogeneity.

1.4 Thesis structure

Chapter 2 - Background In this chapter | present the background concepts relevant
to this work: first | introduce the theory behind agent intti@ns and the formal-
ism used to represent them, then | provide an introducticontologies, and a quick
overview of ontology matching. At the end of the chapter,iéfly present the Open-
Knowledge project, as an example of implementation of mbteideas described in
Chapter 2.

Chapter 3 - Assumptions and Motivations In this chapter | introduce the theoreti-
cal concepts: | describe and justify the assumptions thagion the work, grounding
them in the approach chosen for defining the interaction. dihes of the work (im-
proving efficiency, recall, precision in ontology mappinglaguiding the extension of
ontologies) are also detailed.

2http://www.openk.org

Chapter 1. Introduction 14

Chapter 4 - Modelling context In this chapter, | first describe how the statistical
model is built, interaction after interaction, and then hibv model is used to predict
the content of messages in new interactions. | also provndexample of the process
of model creation and of computing the probability disttibn for a message.

Chapter 5 - Evaluation In this chapter | present the evaluation of the system, dis-
cussing first the approach used for testing and then thetsesihe evaluation at first
focuses on the ability of the predictor in providing a small sf suggestions that con-
tains the correct correspondences with arbitrary proligbénd then on the utility of
the computed distribution in improving the performance ofantology matcher. |
also discuss how the utility of the predictor depends onype bf interactions: some
interactions can benefit more than others.

Chapter 6 - Related work contains a more detailed literature overview of the relévan
concepts introduced in Chapter 2. | first describe the difiemapproaches to agent
communication and service integration, and then | reviewesof the main approaches
used in ontology matching.

Chapter 7 - Conclusion In this chapter | summarise the work, and present possible
further work based on the current results.

Chapter 2

Background

2.1 Introduction

The goal of this work is to ease the communication betweearbgéneous agents
in open systems. The aim of this chapter is to introduce thim mancepts in the
domain and to show their grounding in the OpenKnowledgegatojt is not a detailed
overview: Chapter 6 is already dedicated to the literatavéetv and presents the main
stances of the research community on the topics introduessl h

Communication is about exchanging information, and rexguthe interacting ac-
tors to share a common set of signs and meanings. This woknicecned with the
communication between software agents. What is meant wiherm agent is pre-
sented in Section 2.3. Different approaches have beerestfoli multi-agents interac-
tions: Section 2.4 in this chapter introduces the approalttvied in this work, based
on the concept of distributed workflows, which is at the basithe OpenKnowledge
project. A more in-depth overview of the various approadsgeesented in Chapter
6.

Assuming that all agents share the same set of signs and mgsana basic re-
quirement for communication - has proved hard in open nagents systems. Ontolo-
gies, described in Section 2.5, are the formalisation ofttkanings and signs used by
agents. Heterogeneous agents may not share the same gntofdglogy mapping
systems attempt to bridge different ontologies to allowiattions. Section 2.6 intro-
duces the ideas and the problems related to ontology mapgawion 6.4 in Chapter
6 provides a more detailed analysis of the different apgreaan the literature.

Finally, Section 2.7 introduces the OpenKnowledge progattmplemented frame-
work that deals with the issues presented in this chapter.

15

Chapter 2. Background 16

customer wendor

<< signal sending » >
reguest

<< signal receipts >
reguest

refine

< <signal receipt>

possible refinement - -
<-<signal sending > >
possible refinement

< <zignal sending> >
reject - -
>< <sighal receipt> >

reject

< <signal sending> >
accept - -
>< <signal receipts >

accept

Figure 2.1: Activity diagram for the scenario

2.2 Example scenario

While the interaction framework used for this thesis alladwsepresent and run com-
plex interactions involving any number of peers, a simpladkof interaction is pre-
sented as an example scenario.

The scenario used is a subset of the clasggtomer-vendoscenario. At the start
of such interactions, the customer asks the vendor for ayataot service he would
like to buy. However, as it is often the case, the customer us&ya generic term, that
can be interpreted in different ways. Therefore the vendesgnts to the customer a
selection of alternatives consistent with the request. distomer then chooses the
option he prefers, and the interaction continues, for eXargthe payment, or to the
definition of further details. The activity diagram in Figu2.1 shows the flow of the
messages between the customer and the vendor.

The interaction is generic and can be used in the purchasdfefett sorts of
products or services, as Figures 2.7 and 2.8 show. Howdwerexample followed
throughout this thesis is relative to the booking of an acomdation for a conference,
as shown in Figure 2.2. The participants are the customeraatnadvel agent: the
customer starts by asking for a generic accommodation anttakiel agent proposes
different accommodation options, one of which is then gelbby the customer.

Chapter 2. Background 17

Do you have accommodation
for November?
mmhm, no... ::
Do you have something else?,
In a bed and breakfast?
Yes, that's good

Customer
Vendor

Figure 2.2: Example scenario

2.3 Agents and Peers

There is no shared and universally accepted definition ot ahagent is. Wooldridge
[67] defines an agent as:

a computer system thatsstuatedin someenvironmentand that is ca-
pable ofautonomous actioim this environment in order to meet its design
objectives.

For the perspective used in this thesis, the autonomy ofdkata involved in an in-
teraction is not relevant, as the focus is on communicaiioour example, the agent
in the customer role may be a simple application used by a hursar to contact the
remote server of a travel agency, or a smart agent, instiugte user to search for the
best accommodation and entitled to spend real money.

We use agent as synonym of actor or participant in an interaci he termpeer
will also be used with the same meaning, particularly whéstee to the OpenKnowl-
edge project.

2.4 Interactions

Many activities require interaction between differentaast in the example scenario,
in order to book an accommodation an inquirer needs to coatéa@vel agency (or
more than one) or directly a number of hotels.

In the simplest version, communication between two agents message trans-
mitted from a sender to a receiver. According to speech aairih a message is a
performative act that changes the state of the world [54F dlassical example used
to explain this concept is thd to” utterance pronounced in front of a registrar that

Chapter 2. Background 18

causes the speaker to change his or her marital status. Borpd, a message sent
from agents to agentj to inform about¢g will likely change the beliefs of, adding
the belief aboutp. A more in-depth description of this “mentalistic” apprbao com-
munication can be found in Section 6.2. In our example, thleviing message, sent
from the customer agent to the agent representing hotel Y:

inform(booking, 11 Nov 2008, 15 Nov 2008, Mr Smith, single)

should make the hotel agent believe that a single room mustdsgved for the cus-
tomer from the 11 to the 13" of November. Belief does not need to be conceived
as the logical model described in the BDI architecture [Taf: belief we mean any
internal representation of the information inside the dagémthis specific case of the
example scenario, it can be a record in the database of teédystem.

Usually interactions are more complex than single messagles customer may
first check the availability of offers, or it may want to firsytsingle and then dou-
ble rooms. Moreover, the booking may require a deposit oeditcard number. Or
the hotel may inquire about other issues (breakfast, etaje to the booking. This
increased complexity, consisting in exchanges of mességksvs rules and conven-
tions: as the conversation unfolds, the content of new ngessia bound by the previ-
ously exchanged messages. A message failing to follow tiisewould surprise the
hearer as being off topic or even incomprehensible.

2.4.1 Dialogues and Interaction Models

Dialogues between software agents are, at least at the mpsim@pler and more re-
stricted than those between humans: they are carried outler to reach a goal (buy-
ing a product, booking a flight, querying a price, etc.) aretéhis no need to care about
digressions, unless relevant to the task. Therefore, ¢gmammars can be simpler than
those required for human interactions.

The rules and conventions that an interaction follows casthted as sequences
of messages hard-coded in the involved agents. They maydzktasexpress pre-
conditions and post-conditions for each each utteranceedpacts are considered
actions and are combined into plans [11]. They can be defim&rkflows that are
followed as a script by the agents.

These approaches offer different trade-offs between filiyiland efficiency: em-
bedding the interactions in the agents is the most inflexabtepossibly very efficient.
Planning offers the maximum flexibility but may require lyefiomputation at every

Chapter 2. Background 19

interaction, and conditions can be difficult to verify. Hoxge interactions are often
repeated, so planning them every time is a waste of resaungagflows represent a
good compromise and are currently the dominant solution.

2.4.2 Choreography and Orchestration

Workflows can either be conceived as centralised or digeihun a centralised work-
flow, expressed through an orchestration language like BRELor YAWL [62], a
single process executes the activities, and may call ther gthrtners that are usu-
ally passive. In BPEL, calls are usually grounded to Web Semalls. In a distributed
workflow, expressed through a choreography language likeGR% or LCC (see next
section), the activities are executed by the various pestitt communicate via mes-
sages.

In both approaches, a workflow describes an abstract setioti@s and exchanged
messages, not yet instantiated to particular values: titdenes where values come
from, and where they go. For example, the workflow for boolkanmgom starts expect-
ing an input from the customer, who needs to specify dategegsl and preferences.
The data are then forwarded to the hotel partner, that uses #s input for its local
processing. The output of the processing, for example theeast for further refine-
ment, is sent back to the customer agent, who will use it asinpwt for further
processing.

Workflows normally do not describe how the activities (lileqjuesting input, or
processing data) are performed: these are normally deldgaa calls, either to the
local agent or to a remote one via a web service. Agents aimsgvier invocations can
be set at design time, or can be found at execution time, #gxgcsome brokering
mechanism. These calls may just verify a condition on sorhefs#ata, or introduce
new data into the workflow: these calls am@ircesand introduce the problem of shared
semantics of the data.

A source introduces terms according to its local semantlusse terms may then
be used by the other partners in the interaction. This issliésevdealt in Section 2.5.
Before proceeding to the problem of semantics, we first défiegeneral requirements
that a workflows language must satisfy in order to be used byptkdictor and then
we describe the language that has been used in the impleimanta

Chapter 2. Background 20

2.4.3 Workflow Language Features

A protocol can be modelled with a Finite State Machine (FSbf)dach participant
where the transitions consist of received messages or iBtiodean results of con-
straints (success or failure). The FSMs are defined by thg-eole for the participant
peer and contain all the roles that the peer can take durimgt@raction.

During an interaction, the peer moves in the FSM, and createsce of the inter-
action. The variables in the trace are named and numberexiiniue. As interaction
models can be recursive, the variables are tagged withdppearance in the run trace
(in the example, the variableroposalis used twice, so there will be two random
variables name@roposal andProposa)).

2.4.4 Lightweight Coordination Calculus

The Lightweight Coordination Calculus (LCJp1, 52] is a choreography language
based orn-calculus and can be used as a compact way of representitniputisd
workflows. Most workflow languages can be formalised usiragpss calculi (such as
ri-calculus [48]). It is executable and it is adapted to peepder workflows. In the
original version, interaction models are declarativessticirculated with messages.
Agents execute the interaction models they receive by ampigwrite rulesto expand
the state and find the next move. Figure 2.3 defines the syfta®@. A full, formal
description of a computation method for LCC is describedbiB][A summary of the
rewrite rules is presented in Figure 2.4.

An interaction model in LCC is a set of clauses, each of whietings how a role
in the interaction must be performed. Roles are describatidiytype and by an iden-
tifier for the individual peer undertaking that role. Paggnts in an interaction take
their entry-roleand follow the unfolding of the clause specified using a corations
of the sequence operatotlferi) or choice operator @r’) to connect messages and
changes of role. Messages are either outgoing=t9)('or incoming from (=’) an-
other participant in a given role. A participant can takeriniy an interaction, more
roles and can recursively take the same role (for examplenvpnecessing a list). A
message input/output or a change of role is controlled bgttaimts defined using the
normal logical operators for conjunction and disjunctidiere is no commitment to
the method used to solve constraints, so different pagrmtgpmight operate different
constraint solvers (including human intervention).

Figure 2.5 shows the initial part of an interaction model miefy the interaction

Chapter 2. Background 21

Model := {Clause...}
Clause := Role:: Def
Role := a(Typeld)
Def := Role| Message Def thenDef| Def or Def
Message := M =- Role| M = Role~—C | M < Role|C +— M < Role
C := Constang P(Term...)|-C|CAC|CVC
Type = Term

Id := Constant Variable
M = Term
Term := Constant Variable| P(Term...)
Constant := lower case character sequence or number
Variable := upper case character sequence or number

Figure 2.3: LCC syntax

between a customer and a vendor described in Section 2.Bisih€C fragment, the
customer asks for a product and the supplier verifies if tlppiest must be refined.
If this is the case, the supplier will propose to the custoam@ther, more specific,
product. The customer, in turn, will analyse the proposal see if it fits its needs.
Interaction models are abstract descriptions of the inteyas: they are then instanti-
ated in real interactions. For example, the describedactean model can be used to
specify the type of accommodation sought by a customer (Eigwr) or to specify the
type of car a customer needs to rent (Figure 2.8).

A message in an interaction is a tuple, whose elements cdheegontent of a
single communication act:

m = (S1, ..., Sn)

As we have seen above, a tegs introduced by some source: in LCC, constraints
are sources. A terms is introduced by the agent solving thetcaint via unification
with its own knowledge base. In the example shown in Figure“accommodation”
is introduced by the customer, unifying the constravabt(Product) with its local
knowledge to obtaiwant(“accommodation’) .

Previous work on LCC includes the generation at run-timentéraction models
[39], the creation of successful teams for interactiond,[8& distributed relaxation

Chapter 2. Background

22

R:=BRMM,.C A E
T 7,
AjorA; RMiMo,.#0O E
Ao =

AjorA; RMiMo.”OE

AithenA RMiMy.#0 EthenA
AithenA RMjMy.#0 AjthenE

C — M<=ARMM — {mR,M<A)LZDc(M < A)

M= A —CRMM,.{mR,M <=A)} c(M=A)
null <« C RM;Mo.0 c(null)
aR1l) — CRMMy.0a(R,1)::B

if BRMMy,OE
_—
if —closedAy) A
A1 RMiMo.¥O E
_—

f —closedA;) A
ARMiM,.7 OE
_—

if A1RMiM,.”OE
_—
if closedA;) A
Ay RMiMo.0 E
_—
if mR,M<=A)eMA
satisfy(C)
if satisfied.”,C)
if satisfied.”,C)
if clausd.”,a(R1)::B)A
satisfied.”,C)

An interaction model term is decided to be closed as follows:

closedc(X))

closedAthenB «— closedA) A closedB) (2.1)

closedX :: D) « closedD)

satisfied.,C) is true if constrainC is satisfiable given the peer’s current state of

knowledge.

clausé.”, X) is true if clauseX appears in the interaction modef, as defined in

Figure 2.3.

Figure 2.4: Rewrite rules for expansion of an interaction model clause

Chapter 2. Background 23

Roles Constraints

— a(customer(S, Proposal),C):: |

ask(Product) => a(supplier, S) |<-- want(Product)

then
a(customer_refine(S,Product,Proposal),C).

—{a(customer _refine(S, Product, Proposal),C) :: |

ort:fer(ProposaI) <= a(supplier_refine,S)
then

accept(Proposal) => a(supplier_refine,S) <--|(Proposal == Product) or
acceptable(Product, Proposal)) [

or

(rejecth(ProposaI) => a(supplier_refine,S)
then

a(customer_refine(S, Product, Proposal),C)).

ask(Product) <= a(customer,C)
then
a(supplier_refine(ListRefined),S) [<- refine(Product,ListRefined)]

—{ a(supplier refine(ListRefined),S) ::= |
o;fer(Proposal) => a(customer_refine,C) <-- \ListRefined = [Proposal|Tail] 0—
then
accept(Proposal) <= a(customer_refine,C)

or
(rﬁject(ProposaI) <= a(customer_refine,C)
then
a(supplier_refine(Tail),S)).

Figure 2.5: Request refinement in LCC

of constraints [33] and the formal verification of propestigf the interaction models
[45].

LCC has been used in applications such as business procastsnent [31] and
e-science service integration [2]. In particular, it hasiehosen as the specification
language used for defining interaction models in OpenKndgdeas we will see more
in detail in Section 2.7.

Compared to other languages like BPEL or YAWL, LCC is surelyrencompact,
even though it does not allow the same level of specificati®@wmne of these limita-
tions have been overcome in OpenKnowledge, extending LG amnotations. Any
element in an interaction model can be annotated: it is pesdior example, to an-
notate a variable in a role, specifying its semantic typeweicer, the main difference
with the other orchestration languages is that it is posdiblexpress the behaviour of
all the participants. A YAWL or BPEL workflow defines the beiaw and keeps the
state of only one participant: the other are just passivepmrants that are invoked,
and are unaware of being involved in a run of a workflow. Moreptex interactions,
such as auctions where behaviour of all participants shibeldefined, are thus more
difficult to represent in languages YAWL or BPEL, based onmtredised paradigm.

Chapter 2. Background 24

|

a(customer)

|

a(supplier)

receive: ask(P)

refine(P,LstRef)

success

a(customer_refine) a(supplier_refine)

@eive: offer(Proposa))

receive: accept

Figure 2.6: Finite State Machine for the entry role customer and supplier

2.4.5 Matchmaking

Constraints in LCC, or service invocations in other workflamwguages, are performed
by some agent, that must be identified at some stage of thegsoc

In many orchestration-based languages like BPEL the patits are defined at
design time. In more flexible systems, agents and intenastc@n be composed at
run-time. Flexibility is reached through search: given ateraction, agents can be
found or, given a group of agents, an interaction can be sgle@daptors are often
required in open systems, where agents and interactionstdshare the same repre-
sentation. For example, languages like BPEL or YAWL provadset of operations
(based on XPath and XSLT) for transforming the data beforekimg services which
use different formats.

In simple client/server architectures, a client will séafor an appropriate server
in order to perform a task (like booking a room). The queryl wturn the possi-
ble servers, each with its specific interaction model thatdient will follow. Other
architectures, such as OpenKnowledge, decouple the @titmnanodels from the par-
ticipants: an agent may first look for an interaction fitting meeds, and then search
for other participants willing to take part in it.

Chapter 2. Background

want(Product)

want(accommodation)

acceptable(hostel,
accommodation)

acceptable(bed&breakfast,_‘

accommodation)

customer

—d

—>

—

supplier

ask(accommodation)

b——

offer(hostel)) «—
reject(hostel)

offer(bed&breakfast)

accept(bed&breakfast)

25

refine(accommodation,L)

refine(accommodation,
[hostel,bed&breakfast,...])

Figure 2.7: Run of the interaction model in Figure 2.5 for refining an accom-

modation request

want(Product)
want(car)

acceptable(car,
compact)

acceptable(economy,
car)

customer

—d

—

|

{

supplier

ask(car)

b——

offer(compact) —
reject(compact)

offer(economy)

accept(economy)

refine(car,L)
refine(car,
[compact,economy,...])

Figure 2.8: Runs of the interaction model in Figure 2.5 for refining a car rental

request

2.5 Ontologies

Interactions participants have their knowledge and skiley provide points of ac-

cess to information repositories, they provide serviceg ghrocess information and

so on. Ontologiesare used to name and define the elements in the knowledge bases

The termontology(from the Greek words meanirgeingandscience, study, theory

comes originally from philosophy, where it means the stufyloat exists, and forms

the main subject of metaphysics. In Artificial Intelligenebat exists is what can be

represented. According to Gruber:

An ontology is an explicit specification of a conceptualizai[28]

Chapter 2. Background 26

This definition was then extended to include the idea thattimeeptualisation should
be shared among different parties:

An ontology is a formal, explicit specification of a sharechceptualiza-
tion. [59]

Ontologies are often compared to database schemas, withwiey share some simi-
larities: they both provide a vocabulary of terms that désca domain of interest and
constrain the meaning of the terms used in the it. Howeveatadse schema does not
provide an explicit semantics for their data, while onteésgare logical systems, that
obey to some formal semantics: we can interpret the ontoébgiefinitions as a set of
logical axioms [43]. Ontologies are often distinguishedsir level of generality:

e Domain ontologies they capture the knowledge of a specific domain. Examples
of domain ontologies are:

— the Engineering Mathematics ontology [29],

— the Enterprise Ontology [61] and the TOVE ontology [30] fepresenting
business models,

— the Software Engineering Body of Knowledge (SWEB®D8],
— the Unified Medical Language System (UM3)360],

— the GeneOntology, providing actntrolled vocabulary to describe gene
and gene product attributes in any organiSin

— the United Nations Standard Products and Services Code P3ES

e Upper ontologies they attempt to describe general concepts valid across all
domains. Examples of upper ontologies are:

— Cye [37],
— the Suggested Upper Merged Ontology (SUM@2],

— the Descriptive Ontology for Linguistic and Cognitive Engering (DOLCE)
[42],

Lhttp://www.swebok.org/
2http://www.nlm.nih.gov/research/umis/
Shttp://www.geneontology.org/
“http://www.unspsc.org/
Shitp://www.cyc.com/
Shttp://www.ontologyportal.org/
"http://www.loa-cnr.it/DOLCE.html

Chapter 2. Background 27

— the Basic Formal Ontology (BF)[27]

The term of ontology is often used to refer to taxonomies féhierarchies of terms):
for example @OGLE uses the DMOZ ontology, result of a collaborative effort, to
categorise websites, while Amazon and eBay use ontologielassify their products.

2.5.1 Ontology formalisation

According to [65], an ontology is composed by definitions laisses, relations or in-
stances. The definitions of these entities are tuples:

Def = (T,D,C)
whereT is the term that identifies the entity to defirde{iniendummeaning “thing to
be defined” in Latin) and it is an atomic formula in a formaldaiage D is the formal
definition definiensmeaning “defining thing”) and it is a possibly compound faien
in a formal languageC is the concept description, obtained in the conceptuaisat
step, and can be expressed in natural language.

If the ontology is a simple taxonomy of classes, the definifiois the hierarchy
of the classes subsuming the entity to define. The conceptigiésn C can either
be explicitly written in the ontology (for example using ttegy rdfs:comment in a
rdf/owl ontology), or can be an implicit meaning conventidiy associated to the term,
and normally recognised in a dictionary.

Figures 2.9 and 2.10 show a portion of the customer and veonimiogies in
the example scenario. According to the definition aboverma tike “restaurant” in
customer’s ontology can be defined as:

T : restaurant
D : restaurant= (has cuisinecuising J eatery_ thing
C :“a building where people go to e4t°

Different formal languages have been developed to reptesealogies, at differ-
ent levels of expressivity (and computability): from Kifewkloped in the 90s, based
on first order logic and aimed at knowledge sharing, to the Cirhily [58], based
on different variants of Description LogicA# 0 .7 4 (2) for OWL-DL, the less
expressive” 7 7 7 (2) for OWL-lite), and oriented towards the Semantic Web.

8http://www.ifomis.uni-saarland.de/bfo/
Shttp://www.dmoz.org
0according to WORDNET 2.0

Chapter 2. Background 28

has_maker has_price

economy_car;

Figure 2.10: Vendor ontology

2.5.2 Problems of shared ontology

In the original vision of the semantic web, a common, shanmlogy would have
risen, allowing complete interoperability between therdge But imposing the same
ontology on all agents has been proved difficult and impeattiFirstly some "social”
problems arise. There is often a choice of different ont@sdor a specific purpose:
for example, we saw earlier that Cyc, SUMO, BFO or DOLCE aterahtive upper
ontologies. Who imposes which ontology should be used? Wioyld the others
accept it? Even in case one ontology is finally chosen, magety” ontologies keep
being used [32].

It is also difficult to keep track of the evolution of an ontglo some agents may
keep the pace with the updates, while others may remain witbfadate versions. As
described in [32], different versions of the same ontologg sometimes be treated
as different ontologies. In general, differences in theriests and needs can make it
difficult to create a consistent ontology that takes intcoact all the views.

As a clear indication of the number of developed ontologibs, entry page of
SwoocGLEM [12], a search engine for ontologies, stat&g&rching over 10,000 on-
tologies. Searching on the engine the synonytadging’ yields 12 different ontolo-
gies, the termhotel yields 62, and the terrfcar” yields more than 250.

Uhttp:/www.swoogle.org

Chapter 2. Background 29

2.5.3 Sources of ontological heterogeneity

Ontologies can differ for various reasons: Section 6.4ekents a classification of the
mismatches categorisations in literature. In brief, thematches can rise because:

¢ the same name or formal definition is given to different cptse
(T1 =TovD1 =D3) ACy # Cy. For example, the terrhankcan mean a slope,
an array of elements, or a financial institution, or a flighthoeuvre

¢ adifferent name or formal definition is given to the same epitic
(Ty # To vV D1 # D2) AC1 =Co. In the two example ontologieaccommodation
andlodgingmean the same concept, even though their name is differdrhair
formal definition is different (their superclasses areetiint and the properties
have a different name)

2.6 Ontology matching

The emergence of different ontologies, and the problem cdeigg on a shared one
have pushed researchers to study methods for bridging thém. various attempts
to reconcile ontologies can be divided imwerging aligning and integrating [32].
Merging is the act of building a new ontology by unifying seaeontologies into a
single one, typically when two big companies merge and neeadify their knowledge
bases; matching is used when sources must be made coheterttresistent, but must
be kept separated; finally, integrating entails buildingeev mntology composing parts
of other ontologies. However, matching ontologies lieshathhasis for both merging
and integration.

Ontology and schema matching are used in many fields. Toaditiapproaches
include catalogue integration for e-business, distridufeery processing, data ware-
housing. These applications are based on design time mgtoperation. Catalogue
integration, for example, requires to identify the corr@spences between entries, in
order to generate queries that translate data instancé® inatalogues, providing a
unified access point to the data [56].

In recent years, a new emerging set of applications, cheniaet! by dynamicity,
has been added. In these applications, ontology alignreesften performed at run-
time and used to provide interoperability between hetanegas peers in P2P systems,

Chapter 2. Background 30

allow agents to understand speech acts specified in differgnlogies [63], or allow
dynamic web service integration [46].

2.6.1 Ontology matching definition

An ontology matching algorithm is a function that receivwes bntologieD; andOo,
some auxiliary resourcd® (such as a thesaurus) and returns the aligni@drgtween
their entities:

match: O; x O, x R—C (2.2)

where the alignment contains all correspondences between entitie®+irand Oo.
The correspondence for a term € O1 is normally found by comparing it with a list
of termsT C Oy:

findCorrespondencew; x T x O x O, x R— p (2.3)

wherep is the correspondence and it is defined by the best relatiémund (among
the possible ones, such as similarity, equivalence, supsametc), with confidence
c, between the term; € O1 and anothet; € T (where normallyT = Oy):

p = (id, re, wi,tj,c)

The problem is how to verify the existence of a particulaatiein ry (Wi,tj) between
the termsw; andt; from two different ontologies. If the ontologies are mutyah-
consistent, as it is often the case, it may be impossible dwepthe relations using
logic reasoning from the definitions in the ontologies oereworse, wrong relations
may be derived. Therefore, matching algorithms need to tisr snethods to identify
relations between entities in different ontologies. Thesthods usually assume that
ontologies share some identifiable similarities. For exiampe similarities can be in
the label used to identify the entities, in their formal digfom, or in the description
(possibly implicit) of the concepts attached to the erditie

The task is made more difficult by the vagueness or ambigdithe terms (for
instance, the terms may have many different senses, witheof@w overlapping) and
by the lack or the imprecision of the information availalbiighe process (for example
aterm or a sense may not be included in a thesaurus).

The valuet; in the result of thefindCorrespondenctinction can be modelled as
arandom variable A priori, before applying the matcher, all the relationgvibeen

Chapter 2. Background 31

w; € Op and all termgj € T C O, are equally probable:

P(rc(wi,tj)) =P (rn(w,tg)) forw; € Orandvtj,tye T C O, (2.4)

The functionfindCorrespondenceses the result ahatcherghat extract information
about the similarities between termsandt;: the various techniques used in the liter-
ature are reviewed in Section 6.4 in Chapter 6. The operafigollecting information
can be qualitatively modelled as gaining evidence in ordeslitain an approximate
posterior probability distribution of the relations be®vey; and the terms in the other
ontology:

P(w; x Rx T|matchersresulis

where the domaim; x Rx T is the product between the foreign temm the possible
relationsR and the selected list of ternisto compare andhatcher resultss the list of
all the results of the comparisons betweegrand the terms iff . Assigning these pos-
terior probabilities is difficult, and often arbitrary. Fexample, a matcher using only
string comparison may have obtained an edit dist¥ho®l betweenw; andty andt;,
and equal or higher than 2 betwegnand the remaining terms. Without any additional
information, the probability that; is mapped by or t; is arbitrary, and could be set
- for example - to 50% each, excluding that terms with highstashces are the cor-
rect correspondence. Some matching algorithms work iveigit using more certain
information collected in previous iterations to increae available information: for
example, if the ternt, was already mapped with high probability to another tevp
in Oy, then it is possible to add this information in the evidenealable tor, (wi, ty);
similarly if the neighbours of the termy; are already mapped to the neighboursdiut
not to those ofj, then it is possible to increase the information available f(wi, ty).

2.6.1.1 Evaluating the matching systems

The quality of a matching system is usually measured byrésisionand itsrecall, or
their aggregation represented ByMeasure Given thatM+4ynq IS the set of correspon-
dences found by the mapping systeéyorrect IS the set of correct correspondences,
usually defined by human experts:

Precision is the ratio between the number of correct correspondenues@ those

number of alterations needed to transform one string irgather

Chapter 2. Background 32

found and the total number of found ones:
‘ M foundecorrect‘

Precision=
ecisio ‘Mfound|

Recall is the ratio between the number of found correspondencethartdtal number

of possible ones:
| Mfoundecorrect|
‘MCOTI'ECI|

Recall=

F-measure is the armonic mean of recall and precision:

2xPrecxRecall
F—measure= “Prec-Recall

While in toy ontologies most of the systems work well and abtagh precision and
recall, in real world ontologies the recall is fairly low, sisown in [17]. This is because
the matchers often lack the background - or domain specifitowkedge needed to
extract the similarities between two terms, and therefbiy tcannot influence the
probability distribution of the relations, making it impsibkle for the decision process
to select the best correspondence.

2.7 OpenKnowledge

The ideas presented in this chapter find a grounding in the lddd OpenKnowl-
edgé? project, that involves the universities of Edinburgh, eermsterdam, Barcelona
and the Knowledge Media institute (KMi) in the Open UniversiThe aim of the
project is to create an architecture for an open, coordihiat@wledge sharing system,
which anyone can join at any time: the result of this projecam executable peer-
to-peer framework®, in which peers interact using shared interaction modelsag
involved as software developer for the OpenKnowledge Keamel during the imple-
mentation of the framework we encountered many of the isptmsously discussed:
the engineering decisions taken to solve them represemtaresting comparison and
can help their understanding.

The core concept in OpenKnowledge are the interactions detwparticipants,
defined byinteraction modelswritten in LCC and published by the authors on the
distributed discovery serviogith a keyword-based description. The roles in the in-
teraction models are played by the participants, cglleers The peers that want to
perform some task, such as booking a room or providing a mgps@rvice, search for

L3nttp://www.openk.org
http://cordis.europa.eu/ist/kct/fp6_openknowledge.h tm
Lanttp://www.cisa.informatics.ed.ac.uk/OK/download/ok .zZip

Chapter 2. Background 33

published interaction models for the task, and then adsesttieir intention of inter-
preting one of its roles to the discovery service for the #metask by subscribing to
it. In the scenario relative to the interaction shown in Fega.7, a travel agendy;
has subscribed to perform the role sofpplier for a task“room booking”, while a
peerP, searching a room has subscribedcastomer , for a task described similarly
(for example, justroom”). For the interaction in Figure 2.8, a car rental ageRgy
has subscribed to perform the rolesopplier ~ for a task described dsar rental, car
hire”, and the peel, looking for a car has subscribed astomer , for a task defined
as“car rental”.

When all the roles are filled, the discovery service matchespeers which sub-
scribed for the same or similar tasks (for example, p&em@ndP, with their descrip-
tions “room booking” and “room” or peersP; and P, with their descriptions'car
rental, car hire” and“car rental”), and then chooses randomly a peer in the network
as coordinator for the interaction, and hands over the astesn model together with
the list of involved peers in order to execute it.

The coordinator first asks each peer to select the peers taeyte interact with
(a customer may want to buy from a specific vendor, and not fiagnvendor), com-
posing a mutually compatible group of peers out of the repkad then asks the peers
to commit. If the peers commit, then the coordinator can etesthe interaction, in-
stantiating a local proxy for each peer. The remote peers@méacted only to solve
constraints in the role they have subscribed. In the exampeaction model, the co-
ordinator will ask the peer that has subscribedustomer to solvewant(Product)

Figure 2.11 shows the lifecycle of the OpenKnowledge franr&nwfrom the selec-
tion of an interaction to its execution.

2.7.1 What is a peer in OpenKnowledge

A peer is simply a node in a peer-to-peer network. It can be dhiléased application,
directly used by a human user, or a server application. Tkeefoepeer network is ac-
cessed via thek-kerne] that provides the basic functionalities for sharing, skeng,
subscribing to or taking part in interactions.

Peers involved in an interaction are contacted by the coatdr in order to solve
constraints: to this end, they use the methods provided diy libcally installed com-
ponents.

Chapter 2. Background

A) Peer P1 has a task "tag" to perform

compare({im1,...,imn},{OKC1,...}) search(tag)

r1={P2,P3}
i

O isReady(IM;)

(5

B) Bootstrapping - phase 1: peers selection
IF IMi is ready

evaluatePeers(IMi,{P1,P2,P3})

selectRandomCoordinator()

evaluatePeers(IMi,{P1,P2,P3}) - ’ m
<

Discovery Service

q createCompatibleTeam
evaluatePeers(IMi,{P1,P2,P3}) s (P1->{P2},P2->{P1},P3->{P1})

P3

C) Bootstrapping - phase 2: commitment
IF can create mutually compatible team

evaluateCommitment(IMi)
fe)

evaluateCommitment(IMi)

commit ’
Coordinator

D) Interaction Run
IF enough peers have committed

solve(constraint)
[}

Run interaction locally,

solve(constraint)
® - between proxies of P1 and P2

Coordinator

P2

Every time there is

a constraint to solve
in the roles performed
by P1 or P2

Figure 2.11: OpenKnowledge lifecycle

r1={P2,P3}
2=(}

34

Chapter 2. Background 35

2.7.2 Matchmaking in OpenKnowledge

Selecting the interaction

A peer interested in performing a task queries the discoseryice for a published
interaction model matching a provided description. Theal®ry service returns the
list of all the models whose description is similar to theegivone.

The peer compares the list of received interactions withntle¢hods it has in its
local components, ranking the interactions based on italmages to perform them.
The ranking of the interactions can be influenced also by thapularity (how often
they have been used), a measure given by the discoveryservic

Selecting the peers

The peers proactively search interactions and activelgatlte to them: peers sub-
scribed to an interaction are peers interested in takingipahem. However, a peer
may not accept all combinations of peers: for example a bonggrwant to buy a prod-
uct only from vendor A, but not from vendor B, even though they both subscribed
as sellers to the same interaction.

Therefore, before taking part in an interaction, all therpesubscribed to it are
asked by the coordinator to select who they want to interatit. wPeers can have
internal models to represent the reliability of other pedepending on their previous
experience with them, and can share these information witlrs or use the ratings
already collected by others.

2.7.3 Ontology matching in OpenKnowledge

One of the founding motivation of OpenKnowledge is the ogssrof the system: as
we saw, any peer can join at any time, subscribing to a pdaticoteraction. Because
of this openness, peers can be widely heterogeneous, amdaditecthe alignment be-
tween different ontologies used by peers plays a fundarheriéa

There are two type of matchings that a peer needs to perforondier to partici-
pate meaningfully to an interaction: one offline (at suljgn time) and one online
(during the interaction).

Offline matching

Matchmaking requires offline matching:

Chapter 2. Background 36

refine » findRefinement
product ————» produce

refined-list confidence
\ refinement

Figure 2.12: Example of structure matching between the con-
straint refine(product, refined-Iist) and method
fi ndRef i nement (produce, confidence, refinenent)

in an OpenKnowledge component.

¢ the discovery service needs to expand queries to match tgamst the stored
descriptions of published interaction models

¢ the peers need to compare the constraints in the receivadation models with
the methods in their local components

The parameters in the constraints are annotated with theastic types. Similarly,
parameters in the methods of the local components are magkedth terms from an
ontology, possibly different from the one used in the intdien annotations. When a
peer needs to perform a task, asks the discovery servicdi&imd interaction models,
and matches them with its own components using tree mat§d@d.8]. The result of
the matchings provides a measure of the distance betweenténaction model and
the peer capabilities [23], together with the set of adapb@tween the constraints and
the methods in the peer's components. The peer selectstdragtion model that fits
best, and then uses the computed adaptors. An example dbgdaged to match the
constraintrefine(Product, RefinedList) in the scenario interaction model to a
method in a plug-in component, is shown in Figure 2.12.

Online matching

When a peer subscribes to an interaction often it cannot kmoeh other peers will
subscribe to the interaction: in the example interactibe, supplier subscribes first,
and then wait for the other peers to subscribe as customaig.vihen the interaction
starts the peers will be given the list of all the peers antiseilect those who they are
willing to interact with.

Even at this point they do not know yet who they will actualyeract with, be-
cause the coordinator use the preferences of all the sblesigoeers in order to make a
mutually compatible group of peers. Therefore it makesaémsthe peer to wait until
it receives the constraints with the foreign terms and mapntlat run-time. The ap-

Chapter 2. Background 37

proach presented in this thesis aims at tackling this probféhapters 3 and 4 discuss
it in detail.

2.8 Summary

This chapter has introduced the main concepts needed agrbackl knowledge for
understanding the research presented in this thesisitddicif the interaction among
heterogeneous agents.

We have seen that, while an agent is usually intended as anaubus actor, in
this work the term agent simply means participant in an atgon. We have also
seen that while interactions can be planned dynamicaltgnofgents only need to
repeat over and over the same type of interactions: exdeualrkflows can be used
as an efficient and clean compromise, and it has been chosatuéisn in this work.
Agent can execute different workflows depending on theiectdye. The interactions
are described in LCC, a declarative, executable languaggedoanrr-calculus: a LCC
script defines the distributed workflow the various agentstedecute.

Agents have ontologies, which formally define the terms tayuse in reasoning
about their domain. The agents involved in the interactioag not share the same on-
tologies, and therefore communication implies creatinddes between the ontologies
using some of the available ontology matching algorithms.

The OpenKnowledge project offers a running framework impating the ideas
presented in this chapter: it is a peer-to-peer system wpeees interacts through
shared interaction models written in LCC.

Chapter 3

Assumptions and Motivations

3.1 Introduction

We have seen in Chapter 2 that the most basic interaction ilsgéesnessage, that
changes the internal state of the recipient. This assuna¢slihagents in the interac-
tions are able to understand the messages, because theytrehantology defining the
possible terms. But this may not be the case: we have seesgbiats may have differ-
ent ontologies, and therefore they need to have access totrespondences between
them.

As we have introduced in Section 2.6 and will discuss in $acf.4, Many dif-
ferent ontology mapping systems have been developed aed teS he core problem
encountered by the mapping systems is that they aim at artdlagy commitment
between the agents: they try to find an agreement on the ngeahas many terms in
the ontologies as possible. As we have seen, this has prarddrthan expected. In

‘economy_car
~,

CD, . -
customer supplier

want(Product) - .

want(@ccommodation) | ‘ mapping__.......
ask(accommodation) (

r refine(accomodation,L)
offer(hostel)) refinefaccomodation;

@ @ e ——— | [hostel,bed&breakfast,...])

acceptable(hostel,

.. accommodation) .
R reject(hostel)
mapping .
offer(bed&breakfast) e .
4 ! refine(P.L) :- findall(X, subclassOf(P,X), L.
acceptable(bed&breakfast 1 book_room(Hotel,Night,Name) \
i 1 e
ClEESIEE ELow) — accept(bed&breakfast) 1 book flight(...)
\) ; accept_payment(...)
1 verify_room_availability(...)
'

" want(accomodation).
1 acceptable(b&b)
| place(Rome).

Figure 3.1: Applying matching in an interaction

38

Chapter 3. Assumptions and Motivations 39

an open system like OpenKnowledge it is infeasible to prgudmall the correspon-
dences offline, as itimpossible to know in advance all thé@pants in an interaction:
correspondences must be computed dynamically when ini@nadake place. For ex-
ample, as we have seen in Section 2.7, the supplier peer imtgraction shown in
Figure 3.1 cannot know the customer’s identity until therattion starts.

If the peers perform every time different tasks, using défe interaction models,
there would be little useful information that could be egteal by observing the inter-
action runs. However, when the peers need to perform the taskethey will likely
use the same interaction model, and will probably exchamg#as messages. This
repetition can be exploited to learn and build a model of th&ent of the interaction.
As we make clear in Section 3.4, the assumption is that thereedations between
terms in different messages, and that terms appear witerdiit frequencies. Terms
have relations because dialogues are constrainted byantksonventions, made ex-
plicit by the use of interaction models. Terms in a messagg Inaae different fre-
quencies because of three main reasons: first, some of the taay be unrelated to
the interaction model, and therefore will appear rarelgosel, their frequencies may
reflect the needs and desires of the community that uses td@dtion model in a
certain period of time, third, their use depends on the $igamntext of an interaction
run.

The model obtained analysing the content of various runsahteraction model
can be used to predict the content of future interactions. grldiction is a probability
distribution of the terms in a particular transition of ateraction, such as a received
message, given the current state and the history of thequrevuns of the interaction.
As we will see in Section 3.5, the prediction can be used fa@roving the efficiency of
the ontology mapping oracle, suggesting a subset of madyltkrms to verify. It can
be used as additional evidence to the information collebiethe mapping oracle in
order to improve its precision and recall. It can also be wsed source of suggestions
for extending the ontology.

3.2 Problem definition

The agents execute the interaction model inside a sepdrax&.“The “box” in which

an interaction model is run can be compared to the ideamwtextdescribed by Giunchiglia:
in [19] he defines a context as “partial” and “approximatétheory of the world, rep-
resented by the triplgl0;, Ai, 4i). In the tuple O; is the language local to the context,

Chapter 3. Assumptions and Motivations 40

e

I—kl(A,B,C)
k,(X,Y.2) —k,(A,D)
Kk, (F.X) J—k (C,D,E)
L(C.D,
kc(C,F,I)—_/—

k,(A,B,C) ——

k_(A,D,E) — k (T,G,R)
5 (T.G,
__kf(T,H,J)

Figure 3.2: Bridges between the environments

A is the set of axioms of the context, aAdis the inference engine local to the con-
text. Moreover, a reasoner can connect a deduction in ortextonith a deduction in
another usindpridge rules

For the context of an interaction model ran= (O, Ar,Ar), the languag®; is
composed by all the terms that can be introduced by the agemtived in the inter-
action; the axiomg\, are the role clauses ag is the interaction model expansion
engine (see Section 2.4.4).

Interaction models can be executed if it is possible to lerithg reasoning between
the interaction contexd; and the agent’s local contesd. This is accomplished finding
the bridge rules that connect the constraints in the intenacnodel with the predicates
in the agent’s local knowledge:

Cr: Kp(Wi, ..., \Wh)
Ca: Ka(T1, ..., Tm)

wherekp is a formula of an interaction model constraint akylis a formula in the
agent’s local knowledge, that can be satisfied only by ussxgwn languag®,, which
is the peer’s ontology.

In traditional ontology mapping, the bridges should bed/édir any value fromi,
andLg in two contextsc, andcg:

YW WheLr, 3Y1..YnELa. Crikp(WA,... Wh)—Ca : Kq(Tz,....Tm) (3.2)

or alternatively:
YW € O, dTj € Oa. ref(W) ~ ref(Tj) ~ Q
That is, for any value of\y,...,W, in Ky, itis possible to find the values fdg, ..., Ty
so thatca : Kq is equivalent tac; : k. In the example scenario, the correspondences

Chapter 3. Assumptions and Motivations 41

Entity referred to
by the symbols

Alignment found by
the Mapping Oracle

h;,,a(...,.wz-,)

Role 1
E
Ve
S
N
N
<
—~~
g
)
N
Role 2

Figure 3.3: Translation problem: a term wj; inserted by peer A needs to be
used in a constraint by peer B. The term w; refers to some unknown entity
Ok: the matching term ty, must refer to the same entity for the communication

to be meaningful.

should cover the possible requests from the customer agehtifing any element in
its ontology even if these interactions never take place.

This is a strong requirement: it assumes that it is possibfetl a corresponding
term in O, for every term inO;, and this may not always be the case. It is possible to
limit the correspondences to those needed to perform thermeg interactions, and
with no need to guarantee complete equivalence betweearttigaages. Therefore an
agent needs to map only the terms that appear ik in order to satisfyc, @ Kq :

that is a much weaker requirement. we need to find the value$;fa., T, so that
Ca : Kq Is valid for the given instances b¥,...,W,. In the example, it means that only
the correspondences required for booking the room are deede

Let us suppose that a peer, with ontolddy needs to satisfy a constrai(...,w;,...)
when in a specific state of an interaction, and that O, is the foreign term. The task
is to find what entitygy, represented in the agent’s ontology by the tépge O, was
encoded iny;. The termty, is the matching term: it is, in the agent’s ontology, the
closest to the intended entitg. For our work, the matching term is assumed to exist
in Oj.

The matching is performed by afapping oraclg whose specific implementation

Chapter 3. Assumptions and Motivations 42

is irrelevant for this work: any existing mapping systenglsas S-Match [24], would
fit smoothly in the framework.

In the example scenario of Figure 3.1, in order to satisfycthrestraintefine(Product,
ListRefined) , the supplier must map the tefilaccommodatiofito “lodging” in its
ontology.

3.3 Predicting the content of messages

The intended entityy represented by the foreign temm is, from the agent’s per-
spective, areventof a random variabl€), whose domain is the whole ontology. As
said before, an ontology mapping algorithm can be used &opret the sign; in the
message and finds the corresponding symyol

However, conventional ontology mapping algorithms do aé&etinto account the
context of the interaction , and consider, before applyirggrhatchers, all the terms in
the domain as equiprobable:

P(Qk=1t) =P(Qx=tj) forvtj,tj € Oa
As introduced earlier, dialogues follow conventions antksumade explicit by the
interaction model, and the content of the messages are mefgieby the local and the
general context: therefore the terms are not equiprobabtene will be more likely
than others.

Our main claim is that the random varialiizg has a conditional probability dis-
tribution, similar to the one in Figure 3.4, where the evidens the context of the
interaction:

P (Qk } IM state, IM history) = (3.4)

P(Qk:tl | IMstate IM history) >
P(Qk:tn | Mstate IM history)

wheret; . . .t, belong to the peer’s ontology an=ti |IMsiateMniswory) IS the probability
thatt; is the best matching term f@y, given the history of previous interactions and

the current state of the interaction.

Chapter 3. Assumptions and Motivations 43

0.1

0.141

0.121

o
s

0.084

0.06

P(Qg|Context)=t;

e o
o o
5 X

!

o
TR

i e L s s s s s e s B H
12 16 20 24 28 32 36 40 44 48 52 56 60

Terms

Figure 3.4: Example of probability distribution for a variable Qy
3.4 Modelling the interaction

3.4.1 Aim of the model

The predictor should be able to use the statistical modeh@firiteraction, obtained
analysing various runs of the same interaction model, toprdmthe probability dis-
tribution of terms for a variabl€)y, given the current state of the interaction.

In the design of the model we should not assume any specifadagies for the
other peer, but rely only on the peer’s own: for example, tieopeer in an interaction
could be a human, without a specific and formal ontology. H@rehe terms in the
received messages are first mapped into terms of the pedogyntothese mapped
terms are the ones used to create the model.

3.4.2 Assumptions

The founding assumption, as seen before, is that the sasradtipn model is repeated
when similar situations or tasks occur: in OpenKnowledge,example, a vendor
peer can subscribe to a purchase interaction model and leel &askake part in the
interaction every time a potential buyer subscribes to #mesinteraction model.

Following this assumption, we make four more assumptioasplovide the basis
for creating the model:

e terms in received messages have a prior probability digioh,

e terms in received messages may have a posterior probajugy previous mes-
sages and constraints,

e terms in received messages have ontological relationstetths in the agents
ontology,

Chapter 3. Assumptions and Motivations 44

e terms in received messages may have ontological relatiathsterms in other
messages and constraints.

We now analyse more in detail these assumption to verify indrdhey are reasonable.

Terms in received messages have a prior probability distrib ution
Within a specific type of interaction, some terms appear rfreguently than others.
The frequency of the terms depends on two factors:

1. the interaction itself. Different interaction models arsed for different pur-
poses. For example, peers using an interaction for purshagklikely use
terms related to this task. Interactions can be more spéhdit others, and this
is reflected in the distribution of terms, being narrowethia more specific ones.

2. how the various peers taking part in the interactionsimsate the variables. The
frequency of terms reflects “community” needs or desire.sBffeequencies may
change over time, as new needs or ideas appear. Using thdeGbregd toot,
it is possible to verify how many queries for particular terare made by people
in different parts of the world. For instance, queries ab®pple iPhone started
nearly suddenly at the beginning of 2007, as Figure 3.5 shbigsire 3.6 shows
how the amount of queries about B&B fluctuates periodicalhere is a peak
(narrower in Italy than in the world) of requests in summed @ decrease in
winter. Moreover, while the amount of world queries remamsilar in the same
seasons of different years, the Italian graph shows thabtimeber of requests
increases every yeatr.

This hypothesis does not require any further assumptioostaklations between the
terms in the interaction: it relies only on the wider contekthe interaction and of

the community in which it is used. It assumes that the othergyevhen taken as a
community, satisfy constraints according to some distidny and that requests are
not all equally likely. It also does not assume any structwstology on the side of

the peer that creates the model.

Terms in messages may have posterior probabilities given pr evious sent or re-
ceived messages and constraints

This assumption relies on the belief that the current sth&nonteraction depends

Lhttp://www.google.com/trends

Chapter 3. Assumptions and Motivations

Search volume EJ Gaogle Trends

ﬂ
L L il L o L | | L L

2004 2005 2006
1 i

Naws relerence walume

Figure 3.5: Distribution of GOOGLE queries about iPhone

World Trend

Search valume Googie Trends

0 i i i i i | i i | | |
2004 | 2005 ‘ 2006 | 2007
T 1
MNaws relerenca volumea

MWMMWW

Italian Trend

Search valume Google Trands

2004
1

T
News raleranca valuma

MWWWMW

Figure 3.6: Distribution of GOOGLE queries about B&B

45

Chapter 3. Assumptions and Motivations 46

on the value of some previous states. The number of previtatessaken into account
is usually a parameter of the system: the influence of prevgtates decreases with
temporal distance.

It does assume a relation between terms in a dialogue, buetatons are not
made explicit: it is only possible to verify that given onentein a specific point of the
interaction, another term is more or less frequent. If theraction model in Figure 2.5
is used for renting a car, then terms likketelor B&B will not appear in the offers from
the supplier, while terms likgan or compact camwill appear more likely. However,
it is not possible to know if there is some ontological redatbetween the terms: it is
just assumed that high conditional frequency implies dima

Terms in messages have ontological relations with terms in t he agent’s ontology

This assumption relies on the idea that terms in messagésfteih belong to the
same class. For example, the supplier may verify that thegeeceived in all the re-
quests are always subclasses of its own cld$sdging” or “flight” . This information
is an abstraction of the term frequency discussed abovay# that the term belongs
to a set with a certain probability. The set is the one obtaiisfying the relation with
the ontology: if the relation isubclas§Product ”lodging’) thenProductcan be any
of the subclasses éfodging” . It does not specify which subclass: any of them can
be the right one, but it include also terms that have not ajggeget in the performed
interaction, increasing its flexibility.

Terms in messages may have ontological relations with terms in other sent or
received messages and constraints

The ontological relations can also be verified between temasvariable and the
content of variables both in previous messages and contstyanaking the relations
between terms explicit. In the example scenario, the customay verify that the terms
appearing in the proposals sent by the supplier are frejusubclasses of the term
in its own request: the proposhbstelis a subclass of the requestcommodation
This information is an abstraction of the conditional freqay discussed above, as it
makes explicit the relation that is expressed in the comwaidti formula: the relation
assigns the frequency to all the terms that satisfy theioglagiven the value of the
other variable.

However, the peers involved in the interaction may haveediffit ontologies, and

one of the peers may lack in its ontology the relation thatdtier peer's ontology

Chapter 3. Assumptions and Motivations 47

has. Moreover, one peer may find relations even when theraare, obtaining a
“overfitting” of the relations.

3.4.3 Mapping the assumptions to LCC interaction models

We have repeated that the content of messages comes fromderteousources
such as peers in the OpenKnowledge framework or service®BLBvorkflows. A
source is responsible for the introduction of terms reldtethe interaction and fail-
ure to do so disrupts the communication. If the travel aggresr in out example,
after being asked for an accommodation, satisfies the @nstefine(Product,
ListRefined) with a choice of possible types of coffee, then the commuitindoses
meaning. Intuitively, sources fall into three main catéger

e Purely functional given a set of parameters, they always return the sameszalue
for examplemultiply(X,Y, Z) is supposed to always unify the variables with the
same numbers.

e Purely “preference-based”’they collect requests from users and their possible
values can differ every time. In the example, the constraamt(Product)
is preference-based; each peer will satisfy it accordingsttastes and needs.
Overall, the variables in preference-based sources wik lza(unknown) distri-
bution. These distributions may change with time, depamndim general shifts
of “tastes” and “needs” (fashions, trends, fads, ...) orhlib&erogeneity in the
peer group composition. A distribution can be more or legsvad: it can be a
uniform or it may follow a power-law distribution.

e Mixed they can be mainly functional, but the results may changededing on
external factors (availability, new products appearingtemarket, etc), or can
be mainly preference-based, but constrained by some otlrameters. In the
example, the constraingfine(Product,ListRefined) is mainly functional,
as it returns the list of possible subclasses of a term if trerygcan be refined.
The list of terms can however change depending on the speeiéic and with
time.

A purely functional source can be guessed when the functiamtological, that is
when it returns terms that are ontologically related to tipui term: for instance, they
can be its subclasses, or its siblings, or its instancess @roperties. The hypotheses

Chapter 3. Assumptions and Motivations 48

can be verified comparing the guesses with the feedback fneneritology matching

process. For the purely preference based, it is possibleuntdhe frequencies of the
terms and learn their prior probability distribution. Fbetmixed, it is possible to use
a mix of hypotheses and counting the frequencies. Sometimeemtology of the peer

does not allow him to formulate the correct ontological tiela (because the ontology
is structured differently from the agent that introducee térm), but it is still possible

to count the conditional frequencies, modelling the relatirom a purely statistical

point of view.

3.5 Goals of prediction

As described in Section 3.3, the predictor provides a pribipalistribution for the
terms that can appear in a particular message during araatien, given the previ-
ously exchanged messages and the history of similar iritersc This Section deals
with the possible uses of the resulting distribution: imping efficiency, recall, preci-
sion and providing a basis for extending the agent’s ontolog

3.5.1 Predicting for efficiency

The knowledge of the probability distribution of a varialg)e can be used to select a
subset\ C O of terms likely to appear in it. This sé&t, and not the whole ontology,
becomes the sét of terms to compare in Function 2.3 improving both the efficie
and the results of the ontology mapping systems, and makimgpie feasible to be
performed at run-time.

Assuming the knowledge of the probability distribution defil in Equation 3.4,
and assuming that the matching tetiexists (as we have stated in Section 3.3), the
probability that the correct matching tetgp belongs to a set is:

Ptme) = P (Qk =1 “Mstates IM history)
tic
To select the terms to insert ik it is necessary to set a threshale 1 for P (tm € A).

If the list Q contains the terms ordered from the most to the least preb#intn this
means solving the equation im

Chapter 3. Assumptions and Motivations 49

Q, distribution
0.

4
>

Uniform Zipf's law
0.5

=4

Cumulative probability

o
=~

0.4

> 4 >
= =
a a
© ©
8 0.3 803
< <)
a a

Cumulative probabilit

=3

~
o
N

0.1+

o
e

=3
[

T T T T T T T T T T T T T T° 071 ’T’T’T’T7T7T7T7T730
ordered terms - ordered terms

Figure 3.7: Uniform and Zipf's law distributions

< P(ti) ti€Q 3.5
T_,Zl (tj) tje (3.5)

That simply means taking the finstmost likely terms until their cumulative probability
is equal or greater than Fort = 1, then\ = O, while for 7 < 1 the sizeg/\| depends on
the probability distribution. For a uniform distributionwill be directly proportional to
T, while for a skewed distribution, it can BA| < 1|O|: it becomes useful to trade off
between the size of the s&tand the probability of finding the correct correspondence.
As shown in Figure 3.7, if the probability distribution ofetherms is uniform, then
p(tm € A) will be proportional to|A|. For example, ifO| = 1000, therP (Qx =t;) =
0.001 forvtj € O. Setting//A| =800 yieldsP (tm € A) = 0.8, and there is no strategy for
choosing the elements to addAo Instead, if the probability is distributed unevenly,
we can keep the most likely terms discarding the others, amging at the same time a
high probabilityt of finding the correspondentgin smallerA. For example, suppose
thatP (tj) is distributed approximately according to Zipf's law (an@ncal law that
states that the probability of an item is inversely propordl to its rank):
p(kisiN) = o7
wherek is the rank of the terms is a parameter (which we set to 1 to simplify the
example), andN is the number of terms in the list of items. The probabilityfinfling

tm becomes:

e)= 2038
for |O| = 1000, therP (tm € A) =0.70 for|A| = 110 and more remarkabB/(tm € A) =
0.5 for |A| = 25, as shown in Figure 3.7.

Therefore, given a probability distribution for the ternitsis possible to trade off
a decrement in the probability of finding the matching tegnmn A with an important

reduction of comparisons made by the oracle.

Chapter 3. Assumptions and Motivations 50

If the oracle cannot find any matching inside the suggested\sé& can move
to consider a wider set - in the worst case the whole ontoldgien thatt is the
threshold for the cumulative probability of terms/Apthe average number of evaluated
hypotheses will be:

E[nrevalhg=E[|A]]+ (1—1)(|O|—E]|A]])
where the operatdt [X] is the expected value of a random variaKlein the example
seen above, where terms are distributed according to Zighisandr is set to 0.7,
then:

E [nrevalhg =110+ 0.3% (1000—110) = 377
instead of 700.

3.5.2 Predicting for recall

Recall, as defined in Section 2.6, is the ratio between thebeuwf found correspon-
dences and the total number of possible ones, and when real ewdology mapping
systems are applied to real world scenarios, precisioniity faigh, but recall is of-
ten low (~ 30%) [17]. This usually depends on lack of information akttwet relation
between the term to map and terms in the agent’s ontology. iffoemation about
the relations, as said in Section 2.6, can be found in theastintstructure of the term
(similar strings), in the ontology structure (similar pon in the two ontologies), or
implicit in the meaning of the terms. In many case finding tieiation requires too
much background knowledge or too much domain specific kniydeind the existing
bridge between two terms is rejected, lowering the rec#éd.ra

If we do not have enough information to identify the relatioetween a foreign
term and a local term, then this means that all the terms adynequiprobable. The
proposed system provides, given the current state of tlegaation and the history
of previous runs of the same interaction, a probability ribstion for the value of
Qk. Given the probability distribution, different from the iform distribution we have
seen before, we are less uncertain about the real valQg:aolve have therefore more
information. This additional information comes simply inchaving repeated the in-
teraction, and knowing therefore what to expect.

This is an improvement over the situation described by Hqna.4, that stated
that in the classical approach an ontology matcher startwark considering all the
terms equally probable.

Chapter 3. Assumptions and Motivations 51

3.5.3 Predicting for precision.

As defined in Section 2.6, precision is the ratio between thaber of correct corre-
spondences among those found and the total number of fouesl &recision is low
when an ontology mapping system maps many foreign tevnts wrong terms in the
agent’s ontology. This is often due to lack of available miation that can disam-
biguate between two (or more) possible correspondencesexXample, if only the
string similarity is used, then the terfoars” has the same normalised edit distance of
0.25 with the term&car” , “cans”, and“cart” .

The context can provide the information necessary for teardbiguation, suggest-
ing the terms most likely given the state of the interactibrihe interaction is about
renting a car, then the most likely term for the matchintcer” , and the rest can be
discarded.

3.5.4 Predicting for extending ontologies

The three assumptions we made for the system are that thespondent ternty,
exists, the terms in messages have an ontological relatisbntevyms in the peer’s on-
tology and they may have relations with terms in previoussagss in an interaction.

These assumptions can also drive the extension of an ogtolbghe predicted
content forQy has a consistent relatioal (Qy, Qx_i) with a previous variabl€y_;, or a
relationrel (Qy, j) with a terme; in the ontology, but the ontology matcher cannot find
the corresponding terg, in the ontology because the term is missing, then this can be
an indicator that there is an important term, referred tovas other ontologies that
should be added to the ontology and should be in relatb(Qy, Qx_i) or rel(Qy, j)
with the other term.

For example, wheQy_; is “accommodation’; sometimeQ has the unknown
value of ‘residence’ the predictor may suggest that the contenQgfis a subclass
of “accommodatioh but the ontology matcher fails to find the corresponderi@eer
time, the repeated failure can be provide an indicationHerdurator of the customer
ontology that she should add a new term correspondirigegidence” as a subclass
of “accommodation”.

Chapter 3. Assumptions and Motivations 52

3.6 Summary

Ontology mapping systems usually do not consider the contigixin which the match-
ing is performed. This means that before applying the masgtadl correspondences
are equiprobable. However, if we use an ontology mappintgay$o dynamically map
terms in an interaction, we can assume that terms in messagesirs with different
frequencies. These frequencies are influenced by the speoiitext of the interac-
tion, by the previously exchanged messages and by the coityhafrparticipants in
the interaction.

By analysing similar interactions it is possible to obtaimadel that can be used
to compute the distribution of probabilities of terms in thessages of an interaction.
These probability distributions can be used to predict tlstriikely terms in a mes-
sage, focussing computationally expensive ontology niadchctivities on them and
improving efficiency. They can also be used as additionarmétion provided to the
matcher, increasing recall (usually low because of lackophdin specific knowledge)
and precision (by removing ambiguities).

Chapter 4

Modelling context

4.1 Introduction

While the previous chapter described the assumptions anddhls of the proposed
solution, this chapter presents the architecture and thetituning of the predictor.

In the proposed architecture, the predictor creates theemoidan Interaction
Model from the mapped terms fed back by the mapping oraclevetyeun of the
interaction. The model is composed of a set of assertionsdoh variable€y in the
interaction. An assertion states the frequency with whiehterms used foQy have
appeared in a specified set of terms that share the same fytopbe set can either
be defined by an explicit list or by an ontological relatiortivibeen the variable and
another term. Section 4.3 describes the model and how itdatep.

When the predictor is invoked for a variab@ during a run of an interaction, it
selects and instantiates the assertions for the variafdetheen computes the probabil-
ity distribution of all the terms in the peer’s ontology, pagy it to the oracle. Section
4.4 describes, together with an example, how assertionsedeeted and instantiated
and how their frequencies are combined to yield the proliglmf a term.

4.2 Architecture

As we have stated before, the aim of the system is to expleitepetitions of similar
interactions in order to predict the content of received sagss in future interactions.
The predictor works in two phases, linked by a feedback l@ghewn in Figure 4.1:

model creation: the predictor uses the correspondences found and fed batkeby

53

Chapter 4. Modelling context 54

Remote Peer environment

/s

Peer environment

Interaction Ontology
models —
(! — :
Yes . Ma in
Mstote No Predictor suggestions pping T
term already P(T|hist.) Oracle

?
mapped? T

feedback

Figure 4.1: The predictor feeds suggestions to the mapping oracle, that feeds
back the correct correspondences (when possible)
oracle and the peer’s ontology to create and update the model

prediction: itis performed when there is the need to map the content ofiable; the
result is a probability distribution for all the terms in tpeer’s ontology given
the past repetition of the interaction model and the curséate of the run.

The oracle receives the probability distribution computgdhe predictor, and uses it:

e to prioritise the comparison between the foreign tewnin the message and the
terms in the peer ontology

e as additional information, based on the context of the augon, about the cor-
respondences

The oracle may use the external ontology that defimeslepending on the algorithm
it uses, but it is irrelevant for the functioning of the syateThe best matching found
by the oracle is then fed back to improve the model for thei@algr interaction.

4.3 Model creation and update

The predictor receives the current model of the interackirthe peer's ontologp,
the current state of the interactidM sia:e and returns an updated version of the model
M’:

update M X O X IM state— M/

Chapter 4. Modelling context 55

4.3.1 Model representation

This solution, that | first suggested but did not evaluatelirahd then presented more
thoroughly in [5], is a statistical mod®l of the interactioriM in which the properties
of entities appearing in the random variallein different runs of the same interaction
model are counted and stored in a Aatf assertions

M= (IM,A)

An assertiorA € A about a random variabl@y appearing in a clause relative to a
role r keeps track of the frequendywith which, given a conditiorf, the entity has
been part of a sé¥ defined by some properties in the encountered dialogues:

A=(id,r,Q,¥,{, f) (4.1)

The condition{ can be emptyd) or can specify the value or a property of another
variable,Qj/tg. The set¥ can be specified as an explicit list of terdts, ...,t,}, or
with a set builderformula {x|@(x,e)}, wheree € O. The explicit list means that the
terms in it have appeared, in totdltimes inQx. The formula means that the relation
@(x,e) between the termt in Qx and another entitg has been verified times: the
setW includes all the terms whose property is in relatgpmvith e. The relation is an
ontological relationgubClasssuperClasssiblingOf domainOf rangeOf); the entity
e can be either a term from the agent ontology, or a variablepgreasious message in
the interaction. The possible types of assertions arallistdable 4.1.

The available ontological relations depend on the exprigsif the ontology used
by the agent: if it is a simple list of terms, then no relatimas be found, if it is a
taxonomy then it is possible to find subsumption relatiohpraperties are included
then range and domain relations can also be identified. Tdrnsbe an incentive to
develop rich ontologies, as they allow for more detailedtiehs to be found.

4.3.2 Creating and Updating the Model

Assertions are created and updated every time an intenactarel is executed. The
predictor works inside the agent’'s environment, and tlogeefvorks only with terms
from the local ontology. It receives the translated versibthe messages as feedback
from the mapping oracle, and then analyses the local ternteeofariables in the
messages in order to create and compute the assertionsgjiagcto different analysis

Chapter 4. Modelling context 56

Frequency of terms

<j7r0|e7Qki7 {tQ} 787 f>
Assertions can be about the frequency of the entities in gunaent, disregarding the
content of other variables in the dialogue.

For exampley1, customerProposal {b&b} , €,6) .
Conditional frequency of terms

<j7 r0|e7 Qk7 {tQ} 7Qi = th7 f>
More precise assertions can be about the frequency of aty gnten the content of
previously encountered variables.

For examplei1, customerProposal{b&b} , Product="accomodatiof, 4) .
Frequency of relations with terms in other variables

(J,role, Qi {X[rel(X,Qi)} ¢, f)
They can regard the relation with an argument of anotheatsaEy in the interaction
model.

For examplei1, customerProposal {X : subclas$X, Produc}}, ,24)
Frequency of relations with terms in ontolagy

(j,role,Qx, {X|rel (X,tx)},¢€, f)
They can be about an ontological relation between the eimtitie argument and an
entity tx in the agent’s ontology.
For examplei1, customerProposal { X : subclas$X,”product)}, €,24)

Table 4.1: Types of assertions

strategies that follow from the assumptions listed in S#c8.4. The strategies search
for different properties of the terms:

e Terms that appear in a variable are counted. Their propsersimply being
identical to a term already encountered or being a newly araet.tAn assertion
for each term is generated, and every time the same termeagephe frequency
of the assertion is increased.

e Terms that appear in a variable are counted, but assertiergeaerated with a
condition{ about the value of a previous variable. In this case the ptppéthe
terms is being identical to a previous term (or being new)fatidwing the same
term as the previous ones (or a new one). Every time the sameréappears,
satisfying the conditiod by following the same term in a previous variable, the
frequency of the assertion is increased. For example, tf#mslated value of the
variableProposal is “hotel’ and the translated value 8foduct in the previous

Chapter 4. Modelling context 57

message isdccommodatioh then an assertion about this case is created:
(...,customefProposaly, {“hotel' } ,Product = “accommodatioh 1)

If the same combination of terms appears in future intesastithe frequency of
this assertion will be increased. The maximum distance éetvthe variables is
a parameter of the strategy.

¢ Different ontological relations between the terms in aafale and terms in the
peer’s ontology are checked. An assertion for each satisdlation is generated,
and its frequency is increased every time the same relaticatisfied. All the
terms in the seW of the assertion share the same relation with the term in the
peer’s ontology.
More formally, the system searches the tesnso, ... € O for which the follow-
ing relations hold:
OF @1 (O, X1),0F @(0k, %1),O F @3(0k, Xa)s---
OF @1 (G, %2),0F @(0k; %2),0 F @3(0k; X2)---
The relation between the variall@ and the found ternx;, ¢;(Qx, Xi), is stored
if new or updated otherwise. In practice, the most usef@tieh to verify and
store is the one about the term that generalises the val@g oknowing the a
variable always contains objects of a certain class is aml finding by induc-
tion the type of the variable and help to predict the possiblgent of instances
of the same variable in future interactions.
For example, if hotel is the translated value for the varialfeoposal in the
receivedoffer() = message (see Figure 2.7), then the system tries to find its su-
perclass in the agent’s ontology. The resulting asseri@iout the set of terms
that are subclasses of the found superclascOmmodatioiiin this case):
(...,customefProposaly, {X : subClassO {X,’accommodation}, €, 1)
In future execution of the same interaction model, if theueabf Proposal is
translated into another subclass‘atcommodation’, such asb&b” , then the
frequency of the assertion is increased

¢ Different ontological relations between the terms in thealade and thenapped
value of previous variables are checked. An assertion foh eatisfied relation
is generated, and its frequency is increased every timeame selation is sat-
isfied. The terms in the s&#¥ of the assertion all share the same relation with
another variable in the same interaction model.
More formally, the system tries to prove which of the follogirelations hold,

Chapter 4. Modelling context 58

given the agent’s ontology as set of axioms:

OF @u(0k, dk—1),0F @ (k. Ok—1),O F @3k, Ok—1),---

OF @1(Gk, Uk—2),0F @(0k, Gk—2),0 - @3(Ck, Gk—2),---
The holding relations are stored, and if already encoudtare increased. For

example, if the value oProposal translates intdhotel” , and that ofProduct

into “accommodation’; the system tries to prove different ontological relations
between the terms: it checks‘ifiotel” is a superclass, a subclass, a sibling,
a property of‘accommodation”. The correct relation between the variables is
stored:

(...,customefProposaly, {X : subClassO {X,Product)},¢,1)

When the same relation reappears in another run of the ctiena for example
becauséroduct is “car” andProposal is “van”, the frequency of the asser-
tion is increased. The distance up to which search for mratis a parameter of
the strategy.

Table 4.2 shows the possible model for the content of thealkbgProposaj in the
interaction model in Figure 2.5, that the customer peer neagftreated after having
executed the interaction a number of times with differepetyof service providers.

4.3.3 Example of creation and update

In our example the customer peer uses the same interactidaltooperform different
tasks, such as booking car rentals and accommodationg)gleadh various suppliers.
The first interaction is depicted in Figure 3.1: the custormks ‘accommodatioh
and the supplier, possibly a travel agency or an hotel agepties with ‘hostet,
that is rejected, and then wittbéd&breakfast As we have seen in the figure, the
term in the second proposal must be mapped®b” in the customer ontology. The
predictor module receives as feedback the satisfied camistend sent messages with
the translated terms. In this case, the predictor receives:

1) constraint: want(*accommodation”),

2) messagein: offer(“hostel”),

3) constraint: acceptable(“hostel”, “accommodation”),

4) messagein: offer(*b&b”),

5) constraint: acceptable(“b&b”, “accommodation”)

The predictor stores the translated unfolding of the irdtoa for the length of the

run, in order to find relations between the terms in previpusteived messages. The

Chapter 4. Modelling context 59

constraints are only stored, while received messages ategsed and the statistical
model is updated.
When the firsinessagein arrives,offer(“hostel”) in this case, the predictor:

1. checks if there is an assertions about the frequency of teostel”. This is the
first time the interaction is used, so there are no assertamsit creates a new
one:

A1 = (1,customeProposaly, {“hostel' }), €,1)

2. checks if there is an assertion about the conditionaligaqgy of ‘hostet given
the value ‘accommodatiohin Product variable. Because there are no assertion
yet, it creates a new one:
Az = (2,customefProposaly, {“hotel' } ,product;/”accomodatioh, 1)

3. searches the superclass bbstet in the peer’s ontology, trying to satisfy the re-
lation superclass(X,“hostel”) , finding “accommodatioh It checks if there
is an assertions about the relation, and as this is the finst ameates a new one:
Az = (3,customefProposaly,{X : subClass0f(X,"“accommodatioh)},e,1)

4. tries to prove different relations betwedmostet and the terms in variables ap-
pearing in previous messages and constraints. In this itases to satisfy:
subclass(Proposal, Product), superclass(Proposal, Prod uct),
siblingOf(Proposal, Product), propertyOf(Proposal, Pro duct),

5. propertyOf(Product, Proposal)
Proposal is replaced byhostel andProduct is replaced by accommodatioh
and the only relation that can be provedsidclass(“hostel”, Product)
Being the first interaction, there are no assertions and aomews created:
A4 = (4,customefProposaly, {X : subClass0f (X,Product,)},€,1)

When the seconaiessagein is fed to the predictor, a similar process takes place. The
last two cases are verified again, 8&b” is a subclass of the termratcommodatioh
and therefore the assertions 3 and 4 are updated, increagindrequency.

If the same interaction is then used in the interaction shiowhgure 2.8 for rent-
ing a car, the predictor receives as feedback during the lrarfdllowing translated
interaction events:

1) constraint: want(car)

2) messagein: offer(compact_car)

3) constraint: acceptable(car,compact)

Chapter 4. Modelling context 60

4) messagein: offer(economy_car)

5) constraint: acceptable(economy_car,car)

When the first messagein event arrives, the predictor:

1.

checks if there is an assertions about the frequency of teompact_car”.
There is no assertion, so it creates a new one:
As = (5,customeProposaly, {“compactcar’}),€,1)

checks if there is an assertion about the conditionaligaqy of ‘compact_car
given the value “car” irProduct variable. There is no assertion yet, so it creates
anew one:

As = (6,customefProposaly,{“compactcar’} ,Product,/“car’,1)

. searches the superclass cbfmpact_carin the peer’s ontology, trying to satisfy

the relationsuperclass(X,“‘compact_car”) , finding “car”. It checks if there
is an assertions about the relation, and as there are nomates a new one:
A7 = (7,customefProposaly,{X : subClass0f(X,“car’)},¢,1)

. tries to prove different relations betweeropact_cat and the terms in vari-

ables appearing in previous messages and constraints.isloabe, it tries to
satisfy:

subclass(Proposal, Product), superclass(Proposal, Prod uct),
siblingOf(Proposal, Product), propertyOf(Proposal, Pro duct),
propertyOf(Product, Proposal)

Proposal is replaced by Compact_cdrandProduct is replaced by €ar”, and
the only relation that can be proveddsbclass(Proposal, Product) . An
assertion about this relation was created the previousdioamd therefore it is
only updated:

A4 = (4,customefProposaly, {X : subClass0f (X,Product,)},€,3)

After 12 runs of the interaction, the resulting model is showTable 4.2.

4.4

Prediction of Q

The predictor receives the moddl for the current interaction, the peer’s ontoloQy

and the current state of the interactilisiaie and returns the probability distribution
for Qx:

predict: M x O x IMstaie— P (Qk|M, IM state)

Chapter 4. Modelling context 61

Term frequency

A1 = (1,customefProposaly, {“hostel }), €, 6)

Ag = (8,customeProposaly, {“b&b"}), €, 4)

As = (5,customeProposaly, {“compactcar’}), €, 3)

A11 = (11 customelProposaly, {“hotel'} , &, 6)

A2 = (12 customelProposaly, {“economycar”’ }), €,5)

Conditional frequencies

Az = (2,customeProposaly, {“hostel } ,Product;/“accommodatich 6)

As = (6,customefProposaly, {“compactcar’} ,Product;/“car”’,3)

Ag = (9,customefProposaly, {“hotel'} ,Product;/“accommodatich 6)
Agp = (10, customeProposaly,{“b&b"} ,Product, /“accommodatioh 4)
Aq3 = (13 customeProposaly, {“economycar’ } ,Product,/“car’,5)

Ontology-variable frequencies

Az = (3,customefProposaly, {X : subClass0f(X,“accommodatioh},,16)
A7 = (7,customefProposaly, {X : subClass0f(X,“car’)},€,8)

Inter-variables relation frequencies
A4 = (4,customeProposaly, {X : subClass0f (X,Product;)}, £,24)

A4 = (14, customeProposaly,{X : sibling0f(X,Proposalx_i)},&,12)

Table 4.2: Statistical model of the context for the customer peer

Chapter 4. Modelling context 62

The predictor first selects the assertions relative theatsgiQy, then it instanti-
ates the abstract assertions, and finally it combines tlggidrecies from overlapping
assertions.

4.4.1 Instatiating the assertions

The assertions computed using the feedback from the majppauie reflect patterns
found in different runs of the same interaction model: whas dontent of a variable
Qx in a new run must be predicted, the e}, of assertions relative to the variable
must be instantiated with the current state of the intevactiThe state is given by
the unifications of the variables in the messages and camstencountered up Qy:
IMstate= {Q1/ti...Qu_1/tj }. The result is the set of instantiated assertiég?.

1. some of the conditional assertions Ay, may have a condition{ not
consistent with the current state of the interactibhgie for example
(... Qo {tj}, Qs =th, ...), whenQy_1 # th. These inconsistent assertions
are filtered fromAg, :
filter_inconsistent Ag, X IMstate— Aq,

The filter is done applying to each assertion Mg, the function
verify inconsistent

verify inconsistent A x IMgtate — boolean

The function can be expressed in functional, Haskell-ligen:

verify_inconsistent(_, , , .,),IMgtate)
Z € IMstate - true

otherwise = false

2. some of the relations in the remaining assertions aretabonstantiated vari-
ables. The variables in the relations must be unified withr trenslated values.
This is done by applying to each assertion the functioify
unify: Ax IMgtaie— A
That we can expressed in functional form:
unify ((id,r,Q, {X : rel (X,Qj) },Z,), IMstate)

Qj/th € IMstate = <id7r7Qk7 {X : rel (X,th)},Z, f>
otherwise = Error

Chapter 4. Modelling context 63

3. some of the assertions, at this point, will be have exgligtis (most of them
composed by a single term), while others will define setsughoontological
relations between the variable and another term in the ogyolThe implicit
set must be made explicit computing the relations. This isedapplying the
functioninstantiate—all to Ag,:
instantiate—all : Ag, x O — Ag,
that appliesnstantiateto each assertion:
instantiate A x IMgtate— A
This function can be expressed in functional form:
instatiate((id,r, Qx, {X : rel (X,ty)},{, f),0)

= (id,r,Q, { .- tg, ..}, {, f) Wtg: O Frel (tg, th)
Terms that have already been mapped in previous messades sdrne inter-
action can be removed from the resulting lists: if the fongigrm is known, the
prediction and mapping phases are bypassed and the terohlisé& directly
to the modeller.

As anticipated in Section 3.4, assertions about ontolbgetations create two prob-
lems. First, some of the relations can be spurious. Seconak selations may refer to
large sets, bringing little information. To deal with thesfitssue, only relations found
in a significant proportion of the cases are taken into caratibn. To deal with the
second issue, sets larger than a significant portion of tt@ayy are discarded.

4.4.2 Combining the assertions

The result of the previous steps is aA@k of possibly overlapping sets, each with an
assigned frequency. For example:

((o Qu{ta), . 1)

Ab, = ?:-::Qk;{tz},...,fg

(...Qk, {t1,t3,t5}, ...,))

To obtain a probability of each terty,t, in the agent’s ontology the predictor
needs to combine the sets and their frequencies. The fits ishow to assign weight
to single terms in sets. An initial consideration is that asemtion about ontological
relation makes no assumption about the distribution ofuesgies of the terms that
satisfy the relation: therefore, according to ghenciple of indifferencetheir frequency
can be considered as evenly distributed. From the assertion

Chapter 4. Modelling context 64

An= (.., Q{t, .., tn}, ...,)

it is possible to obtain a list of assertions about the sitgims:

Ahl:<...,Qk,{t1} > Tt tn}|>

Ahn:< ,Qk,{tn} Tty tn}|>

The result is that the same ternmay appear in different instantiated assertions,

obtained through different strategies (simple frequecopditional frequency, onto-
logical relations, etc). These frequencies can be sumngttier and normalised by
the frequencies of all the selected assertiégf to obtain the probability of the term
i

Aj(tieW)
> A

AEA

The three Kolmogorov axioms are satisfied:

P(Qu=ti) = (4.2)

e p(Qk=ti) >0 WVt € O: if aterm does not appear in any assertion its probability
will be O

® SicL, P(Qk=ti) = 1: the denominator is given by the sum of all the assertions
that can appear in the numerator

¢ the probability of disjoint terms is given by the their sum:

P(Q=t)Up(Q=tj) =p(Q=tiVt)) =p(Q="t)+p(QA=tj)

4.4.3 Example of prediction

The state of the interaction for the customer peer when itlsée predict the content
of Proposal, in the interaction shown in Figure 4.2 is:

Products = "accommodatioh
IM state = (4-3)

Proposal; = "hostef
Given that the mode¥l of the interaction model is shown in Table 4.2, and that2
(we have recursed once), in order to compute the probabibtyibutionP (Proposals|M, IMstate)
the customer peer must:

1. drop the conditional assertions whose condiifodoes not correspond to the
current state of the interaction; so assertidgsand A;3 are dropped because
their conditionProduct; = "car’ is inconsistent with the state in Equation 4.3,

Chapter 4. Modelling context 65

<,
@ -
P customer supplier @
standard

— Glandard)

Product;

lodgi
] ask(accommodation) L Cedaing>
—2sk{accommodation) |
A
PVDDOSB‘\
Offer) & 5 bed&breakfast
e —— | ChosteD

—4
- reject(hostel)

Proposal ,

offer(
—4
—)
>

Figure 4.2: Predicting a variable

2. unify the variables in relations with the current statéhafinteractionProduct,
in A4 is replaced with'accommodation”andProposalx_; in Aj4 is replaced
with “hotel” , obtaining:

A4 = (4,customefProposals, { X: subClass0f (X, “accomodatioh) } , €, 24)
A14 = (14 customelProposaly, {X: sibling0f(X,“hotel')},&,12)

3. compute the relations in the assertions using the peptagy in Figure 4.2,
obtaining sets of terms; assertiofhg A14, Az, A7 become:
Ay)(4,customenProposal, € {“hostel | “hotel’,“b&b”,“camping } , €, 24)
A14)(14,customeProposaly, {“hotel’,“b&b”,“camping } ,&,12)
Ag)(3,customefProposaly, {“hostel,“hotel’,“b&b",“camping } , €, 16)

LT3

A7)(13 customerProposaly, {“economycar”’,“compact car’,“vart' } , €, 8)

4. drop the assertions whose 8eéis larger than a certain proportion of the ontol-
ogy, as they do not carry useful information. In this cas&enis dropped.

In the example, the denominator of the formula is obtainedraing the frequencies of
the remaining assertio®s = {A;_s,A7_12,A14}. In order to compute the probability
that the concept iRroposal, is the term*hotel” , we select the assertions whose set
contains the ternihotel”, obtaining assertion8s, A4, Ag, A11, A14. The assertions
Az, A4, A14 contain more than one element, and therefore the frequessigreed to
“hotel” is computed dividing the frequency assigned to the set bysthe of the set to
obtain the following:

o "N 16/44-24/4+6+6+12/3 _ 26 _
P(Proposal, ="hotel") = grgzi3rsr676 121247 12716 = 92 — 0-282

The complete distribution of variable(Proposap = “hotel’
Figure 4.3.

Contexp is shown in

Chapter 4. Modelling context 66

F(Propesal,="hotel"')= —=—=0.282
- 92 92
P(Pr'aposafq='hosa‘ef')=w=£=0 229
- 92 92
P(Proposal,="bib ']=Lﬁ+3+4=£=0.228
' - ' 92 9
6+34+4_ 13
P(Proposal,="camping '|= ———=—=0.141
\ P 2 pmng o 9

cumulative probability
1

0.8

0.6

0.4 +

0.2 4

0

hotel hostel camping compact economy

suggested terms /

Figure 4.3: Probability distribution for variable Proposals

4.5 Summary

In this chapter we presented the architecture and the fumoty of the predictor. The
predictor creates a model for a varialfdg in an interaction model from the feedback
obtained by the mapping oracle. The model is composed oftemseabout the fre-
guency with which the term corresponding to the entit@ipappeared in a particular
set, defined either by an explicit list or by a set builder fakax An assertion can be
about the frequency with which a term has appeareg@ki(possibly given other terms
in previous messages), or about the frequency which anagital relation between
the content of the variabl®, and either a term in the ontology or another variable
Qk—j has been found.

The model is used to compute the probability distributiotenis for the variable
Qx selecting the assertions that are consistent with the mumgeraction run, instanti-
ating those defined by formulas and combining them for eath.te

Chapter 5

Evaluation

5.1 Introduction

In Chapter 3 we have introduced and explained the idea ofjuahistory of previous
interactions and the state of the current interaction ireotd compute the probability
distribution of the terms in a particular message in a definemtaction between agents.
In Chapter 4 we have provided an implementation for the ptedibased on collecting
statistics on the content of messages.

We now have to verify its functionality and its usefulnessswaering two main
questions: 1. Does it work? 2. Is it useful? The first questamswered in Sections
5.3.2 and 5.3.3, requires verifying whether the predidjor. the computed probabil-
ity distributions, are correct. The probability distribut computed by the predictor is
correct when it reflects the real probability distributicitlee messages’ content. An-
other element to verify is the robustness of the predictoemtine community of users
changes, influencing the real probability distributioniué tontent.

The second question, mainly answered in Section 5.4, resjagcertaining whether
the use of the predictor improves the performance of an ogfoatcher, measured
in computational time complexity, precision and recall.

5.2 General Testing Methodology

One way of testing my system is through real interaction agdes, using real ontolo-
gies and real workflows for the dialogues, but since thesseaece this would cover

only part of the testing space, without having the posskiti vary parameters in order
to verify the effects.

67

Chapter 5. Evaluation 68

a(r8a(0),I) :
m; (X,P) = a(r8b,0) «— Ky (P,X)
my(Y) <= a(r8b,0)
then| or

m3(M) <= a(r8b,0)

a(r8b,0) ::
m; (X,P) <= a(r8a,I)
my(Y) = a(r8a,0) < Ko(P,X,Y)
then| or

mz(M) = a(r8a,0) < K3(P,X,M)

Figure 5.1: Interaction model template

What is important, however, is to verify the ability of theegictor to statistically
model the way in which constraints are satisfied given thee sté the interaction.
And, as we have seen in Section 3.4, the constraints cdnrimtional preference-
based or mixed It is thus possible to simulate different real world scérsuusing
template interaction models executed by dummy peers tinatiig satisfy constraints
according to parametrisable rules and ontologies.

In order to test and evaluate the feasibility and the rdliigbof the model, we
developed a framework that can run different dialoguedyaireg the message content
in order to create models for the interactions, and thenyapglthem to predict the
content of messages in similar interactions.

Interaction Framework

The template interaction models must cover the basic pat{@esent in interactions.
For example, the interaction model in Figure 5.1 can modetyndifferent interac-
tions: M can be a request for informatiotaboutP (for example, the price of X),
with mp being the reply andns being the apology for not knowing the answer. Alter-
natively,my can be an offer (the produgt at priceP), with m; being the acceptance
and mg the rejection. By viewing interaction models abstractly @@ set up large
scale experiments in which we vary the forms of constrammts controlled way.

The functional constraints are ontological rules, the gm@rfice-based constraints
return terms according to probability distributions theflect a distribution of “needs”
and “tastes” over a community of peers, and mixed conssairg rules with an ele-

Chapter 5. Evaluation 69
ment of probability.

Ontologies

The ontologies are generated as graphs, composed by a eajiat corresponds to
the class taxonomy plus the instances, and links betweeridbges that represent the
properties.

Constraints

Peers introduce terms in interaction models satisfyingtramts. As we have seen in
Section 3.4, constraints can be:

e purely functional when given the input arguments, the output is always the
same. For example, the constramtltiply(X,Y,Z)should unifyZ always with
the same value given the saidandY

e purely preference base@vhen the output depends only on a probability distribu-
tion. For example, the constraiwaint(P)in the example scenario unifies values
that reflect the preference of the community of peers thatheseteraction

e mixed when the output depends on the input parameters, but itidetermin-
istic, and the possible set of terms in the output follow eopiulity distribution

The way constraints are solved is simulated in the agentgaiticular, preference
based constraints are solved returning terms according@mlaability distribution
whose parameters can be modified to verify the behavioureoptadictor in different
situations. A preference function takes an ordered liseohsR C O, whereO is the
full ontology, generates a numberO < |R| according to a probability distribution (in
the experiments, we used the half-normal distribution) f@bdrns the term at position
I insideR.

The width of a Gaussian distribution is given by its standdediationo: a higher
o means a more spreaded distribution. Figure 5.2 shows therelit probabilities
of terms ranking from 0 to 120 when Gaussian distributionthwlifferent standard
deviations used: witls = 5, the term ranked first is twice more probable than the term
ranked 48", while with o = 25 the probability remains nearly constant over all the
terms. Figure 5.3 shows the distributions obtained callivegpreference function over
a thousand times with the same set of terms and first with @atdrdeviatioro = 5,
theno = 10 and finallyo = 25.

Chapter 5. Evaluation

0.16
\
0.14 N
B» 0.12 \\
= 0.1 <
o
g 0.08 Q\
[y e S —
S 0.04 Jomen ittt 000 \-;-\.o DO
Fr——_——,—— e, e T e = = —
0.02 sy
0
0 20 40 60 80 100 120 140
term rank
______ sigma=5 sigma=10
........... sigma=15 — --- sigma=25

Figure 5.2: Gaussian distributions with different standard deviations

0.04

0.03] HH

0.02+

0.019

H [N MTeras E

Figure 5.3: Different preference distributions of terms from a generated on-

tology

Chapter 5. Evaluation 71

<batch>

<description>use of interaction model 1</description>
<involved_agent id="tagent1"/>

<involved_agent id="tagent2"/>

<experiment id="1">

<description>Learn the distribution of a variable (with si gma=40)</description>
<agent_param agent="tagentl" section="general" param=" feedback_results" value="true"/>
<agent_param agent="tagentl" section="randprefs" param ="totell" value="{ffile"’'tlpa’, 'sigma’.40}"/>

<institution name="prot1" repeat="200" dumpevery="10">
<start role="r8a" agent="tagent1">
<param>tagent2</param>
<[start>
<finstitution>
</experiment>

<description>Learn the distribution of a variable (with si gma=5)</description>
<agent_param agent="tagentl" section="randprefs" param ="totell" value="{'sigma’:5}"/>
</experiment>
</batch>

Figure 5.4: XML file describing an experiment

Running the experiments

The experiments consist of running repeatedly (betweera2d0400 times) a number
of different interaction models, the constraints of whicé satisfied using probability
distributions to simulate a large population of agents. rif\i® interactions, a set
of performance measures is logged. The performance meaatgeaveraged over a
sliding window of 30 interactions.

Each batch of experiments is described in an XML file: the imed agents are
listed first, then, for each experiment, the values for patans are defined (to allow
different behaviours in different experiments), and fipatlis specified what interac-
tion model must be run with which parameter settings and hamyntimes.

The file shown in Figure 5.4 describes two experiments udiegeikample inter-
action model in Figure 5.1. The only difference between the €xperiment, both
involving 200 repetitions of the interaction, is in the \@arce of the Gaussian distribu-
tion: the curve in the first experiment is narrower than ingkeond.

5.3 Verifying functionality

In this section we evaluate how close the predicted diginbus to the actual distri-
bution of terms. In this experiments | am not concerned wittotngy mapping, and

Chapter 5. Evaluation 72

Figure 5.5: A generated ontology

therefore the peers share the same ontology. Their goalyst@predict the content
of variables in messages before checking them: if the coetbdistributions are cor-
rect, then the peers will often guess the exact term. Theesigd sef\ of most likely
terms for a variable, described in Section 3.5, is the cater@n used in evaluating
the functionality. The average size of the set, the likadiththat the correct term is in
the set, and the average rank of the correct term in the seisat as indicator of the
ability of the predictor.

5.3.1 Specific methodology

The functionality experiments are run using three différemtologies, composed of
225, 626 and 1850 elements. These are generated varyingpilescand the average
numbers of children per node. Playing with these paraméterpossible to emulate

flat lists without hierarchy, simple ontologies with shallbierarchy, or more hierar-

chical structures. This allows to verify the performancehef predictor when dealing
with different types of ontologies. See Figure 5.5 for anmegke of a generated taxon-
omy.

5.3.2 General Results

The performance of the predictor is measured by:

the average success ratethat is the average probability thatis in the suggested set
A: avg[Po(tm € N\)] (whereavg|:] is the average operator),

the average sizeof the suggested sét avg[|A|],

Chapter 5. Evaluation 73

Average success rate Average size of the suggestion set
1 35
—
L == 009 30
08 PEPSr —— | —
o T — 25
e L o009
o 0.6 o1
< o 20
S N
3 04 o w15 /ﬂﬂ
/ -
10
0.2 7
5
0 0
50 100 150 200 0 50 100 150 200
nr interactions nr interactions

Average rank

14
12
I
—
< 10
I
o 8
o
c 6 * *>—o—
2
© 4 ./0’
2 —
l— [—
0
0 50 100 150 200
nr interactions

Figure 5.6: Average size of the suggested set /\, average success rate in

finding ty, in it and average rank of ty, in A

Number of interactions for reaching given score % reaching a score of 0.6 after N interactions
140 1.0
120 >
Fa d 0.8 >
ks) 100
S
O 80 0.6
© X //
L 60 0.4
£ 2
4
c ¥ 0.2
20 p -—
0 0.0
0 01 02 03 04 05 06 07 0.8 09 0 20 40 60 80 100 120
score nr interaction

Figure 5.7: Learning curve: average number of interactions needed to reach
a given score, and probability of having a score of 0.6 after an increasing

number of interactions.

the average rank that the corresponding tertg, has in the probability distribution:
avgrank (tm, P (Q))]

Let us assume we know the exact probability distribut®(Qy |IMstate M) of the
terms for a random variabl@y given the current context. As shown in Equation 3.5,
given the listQ of termst; € O ordered from the most likely to the least likely one the
correct sizen of A in order to obtain the desired success ra{ee. the probability of
findingtm in A) is:

avg[p(tme)] =1=31P(t;) wheretj O

Chapter 5. Evaluation 74

If the computed distributiof? (Qk|IMstate M) is a good approximation of the exact
distributionP (Qx|IM state M), then the average @f(tm € A) should converge towards
the average computed f&(Qx|IMstate M) and therefore towards the threshatd

lim avg[p(tmne N)] =avg[p(tmeN)] =1 (5.1)

nrinteractions—co
If the success rate of the predictor remains lower than tiestioldr, independently of
the number of interactions, then the computed distribusatifferent from the exact,
but unknownP (Q|IMstate M).

The size of the suggested gewill depend on the existence of relations between
variables in the interaction and on the unknown distributad terms in preference-
based constraints, as we have seen in Section 3.4. Thesewmkfistributions can
change over time - if the phenomena are non-stationary -oois\y decreasing the
success rate. The lack of relations or flat distribution$ e@lise large suggestion sets
N\, decreasing the usefulness of the predictor.

Another key issue to evaluate is the number of repeatedactiens needed for the
predictor to reach a stable behaviour. This number will Biedint for every type of
interaction. What is necessary is to find its probabilitytaisition, i.e. the probability
thatn interactions are enough to have a stable behaviour .

The results shown in Figure 5.6 were obtained averaging thesresults of 12
different batches, generated combining 6 interaction nspdeontologies (225, 626
and 1850 elements) and different settings for the prefereistributions (narrow and
wide distributions for the preference-based constraiitB)he batches were run with
a thresholdr = 0.8. The figure shows the average value of the size of the sugpjsst
A and the average value pfty, € A\), together with a band specifying the standard de-
viation of the measure. The limit in Formula 5.1 is verified the average score tends
to stabilise, logarithmically, around (the standard deviation, showing fluctuations in
success rate, decreases).

The average size remains small, independently of the sigeeodntology, but its
deviation tends to increase - albeit only logarithmicalidaemains well below 15%
of the smaller ontology. The relatively large deviation eefs the fact that differ-
ent batches have different relations between variablepegfdrence-based constraints
have different distributions: therefore to obtain the samecess rate the size Afmay
change meaningfully. However, the use of the filters on tiseri®ns (described in
Section 4.3) improved the results substantially: previesss run on the same batches
before the introduction of the filters returned the sameayescore, but a much higher

Chapter 5. Evaluation 75

average size (more than 150 elements instead of about 20).

The learning curve is, as stated, logarithmic: on averagestiimprovement (from
0 to nearly 70%) is obtained in the first 70-80 interactioniial is a small number of
interactions in large peer-to-peer communities as thogisiened in the OpenKnowl-
edge project. In the example scenario, the travel agenayqaeebe contacted by a
thousand peers, all making similar requests, while theornst may need to contact
several travel agencies before finding an appropriate acwmation.

Figure 5.7a shows the average number of interactions neededch different suc-
cess rates, while Figure 5.7b shows the probability of lgpaisuccess rate of 0.6 after
an increasing number of interactions: the threshotd 0.8 used in the experiments
is reached on average after after 140 interactions, whilen&dactions are normally
enough to reach a success rate @ 6n 80% of the experiments. Once in the stable
region, the predictor will go on updating its representatibut the behaviour should
change slowly or remain constant.

5.3.3 Analysing the results

We have discussed the average results shown in Figure 5i@&iprevious section:
in the following subsections we will analyse how the predliceact in different sit-
uations. We first show how the probability distribution cangxd from the model is
affected by different preference distributions over teimsnessages. In subsection
5.3.5 we discuss how the various strategies that analysett#ractions and update the
model contribute to the predictor performance. We thengirebow different pref-
erence distribution influences the performance, and hownastationary distribution
(one that changes over time) affects the predictor and @fyais strategies.

5.3.4 Creating the model

The fundamental assumption is that if terms appear in messaglifferent runs of a
interaction model according to an (unknown) probabilitgtdbution, then the system
should be able to model this, updating the model interaditer interaction. Figure
5.8 shows how the predictor creates the probability distidn of a variable whose
contentis generated by preference functions with standiardtiono =5 ando = 25,
after 30, 60 and 120 interactions. It is possible to see tiatiodel gets closer and
closer to the half-normal distribution with which the terrage generated, and that
the model moves more slowly towards the exact distributidrervthe terms in the

Chapter 5. Evaluation 76

after 30 interactions after 30 interactions

0.25 c=5 0.1 o=25
0.2 0.08

015 0.06
01 0.04

’ L
0.054 I I I I 0.02-
0 T
g g % 3 8
| 58 5

after 60 interactions after 60 interactions
0.25 o=5 0.1 o=25

after 120 interactions after 120 interactions
0.25] o=5 0.1 o=25

Figure 5.8: How the model improves after 30, 60, and 120 interactions with
o=5and 0 =25

predicted variable are distributed with a wider distrilboatio = 25).

5.3.5 Contributions of the strategies

In Section 3.4 we made four assumptions about the terms imteeactions, that we
transformed into four types of assertions, two based onrdgency of terms and two
based on their ontological relations, as we showed in Sedti®. We need to evaluate
how these assertions contribute to create the model, wiegrhiglp and when they do
not add useful information.

Figure 5.9 shows the different contributions of the stregedgo the performance
of the predictor: each batch of experiments was run usingg@lesistrategy for gener-
ating assertions and averaging the results obtained \@distributions and relations

Chapter 5.

Evaluation

Term frequency

Figure 5.9: Contribution of different types of assertions. Tagent3 predicts a

variable whose content is related to another known variable, while tagent4

predicts a variable whose content depends only on a preference distribution.

60 1.2 60 12
50 ey L1 50
oW A rt
< 40 X 40 Y minin i e
5 Fo.8 S k2 o8
g 30 @ S 30 L o
€ [Fo6 g 2 A L 600-0-3-0-0-0-00-0000 Los S
& 20 7 s 20 e &
[/ [
N 77 0.4 /I? 0.4
ERCR o~ Ginmmmny Ilﬁ‘LTI I w10 g}_i_ eI I IITI TH{JW
o | EaPTITITIITIL o o oo o iy L o2 o &RT TITTTTI LA LITTITT blg Lo2
-10 0 -10 0
50 100 150 200 250 300 350 50 100 150 200 250 300 350
nr interactions nrinteractions
‘—o— Avg size —— Rank —a— Score —o— Avg size —@— Rank —a&— Score
tagent3 tagent4
60 12 60 1.2
50 1 50 1
~ e ~
S 40 0.8 S 40 0.8
5 o - g
2 30 06 S 2 30 06 ©
o @ © &
& 20 0.4 8 20 0.4
o @
10 0.2 10 0.2
&
PRL LT 0 0 0
50 100 150 200 250 300 350 0 50 100 150 200 250 300 350
nr interactions nr interactions
—— Avg size —@— Rank ——a&—— Score —— Avg size —@— Position —#&—— Score
tagent4 tagent3
60 0.6 60 0.4
50 A 50
0.5
. TN AN L
B I TN 4, A/ B I - VG o
2 L _\/'"‘ s Los o 2 \ /"‘ Loz g
& 20 b c 20 A b3
[[
N0 d=133 0.2 N o333l \T /‘"
@ 555 @ T 1 Fo.1
0 0.1 oL TrrrrEe x.
-10 T T T T T T 0 -10 T T T T 0
50 100 150 200 250 300 350 50 100 150 200 250 300 350
nrinteractions nr interactions
—— Avgsize —@— Rank —A— Score —— Avgsize —@— Rank —a— Score
tagent3 tagent4

77

Chapter 5. Evaluation 78

between the terms in messages. In the gragent4 needs to predict a purely pref-
erence based variable, whiiggent3 needs to predict a variable that has a relation
with another variable.

The most consistent type of assertions is term frequencyhedistribution does
not change over time, as it generates a set that containstteetterm rather quickly.

Assertions about relations between variables are suadedsén there are relations
to find, and reach a high score very quickly. The size of thegeatjons depends
on the peer ontology (large and shallow ontologies behavsevihhan thin and deep
ones). However, these assertions are not created - or ai@diésl by the thresholding
mechanism when spurious ones are created - when there isatiomeand therefore
cannot help in these cases, as shown byatent4 graphs in Figure 5.9.

The experiments using only the conditional frequency stlibm@ useful results:
the success rate was always 0. One of the problems that ar@smlysing these re-
sults was the sparseness of the results: there were too reaestians, each capturing
one case with very low frequency. Conditional frequencyanbkes sense when the
vocabulary used in messages is small, otherwise it reqaikesst number of interac-
tions to provide useful information. For example, if the tamta of a first message
in an interaction is taken with a uniform probability from et ©f 20 terms, and the
contentb of the following message is taken from a set of 200 terms, whieere are
10 possible different terms for each termairthen after 200 interaction there might be
200 assertions, each stating one particular case. Anotissilge issue is the distance
considered between the variables: in the experiments amtistof 1 was used, but
it might be that meaningful relations are between variaBlegghtly further apart, as
shown by the ontological relations described before. Aargdgting extension could be
to store assertions about the posterior probabilitiesldhalvariables in an interaction
model, and then use only those that present higher fregeen8uch a strategy should
generate several assertions about unrelated variablels,vath very low frequency,
and fewer assertions with higher frequency about relatedivias.

Assertions about ontological relations between the temtheé messages and the
peer’s ontology tend to provide a rather unstable contidiouthe score of the predictor
fluctuates between 0.2 and 0.6 fagent3 and between 0.05 and 0.35 fiagent4
when it uses only this kind of assertion. The only relaticat ik verified and stored is
the subclass relation: when a tetrappears in the message fed back from the mapping
oracle, its superclagsC tj is found in the peer’s ontology and the assertion about the
subclasses df is stored or updated. However, it may not be the case thdteaflibling

Chapter 5. Evaluation 79

terms oft; are equally likely to appear, while the assertion makesabsmption.

5.3.6 Case analysis

Section 5.3.2 presented the general behaviour of the pogdénd the Figures 5.6 and
5.7 explained in the section are obtained averaging many ofidifferent types of
experiments. Section 5.3.5 evaluated how the differeatexjies used to analyse the
runs contribute to the overall results of the predictor. His tsection we will evaluate
the performance of the predictor in different scenariospdrticular we focus on how
the performance degrades when the distribution of ternpsesenting the preferences
of the community of users, varies in breadth, and when itegover time.

Wide vs narrow preference distributions

The content of messages in interactions can exhibit vatgwng of randomness. The
content of a message may alternate among only a few ternis,omé or two terms
more frequent than the others, or it can be any term from amaege of possible
ones where all are equally likely.

In my tests, this is simulated varying the width, given by skendard deviatioo,
of the Gaussian distribution used to generate the conteheahessages. Figure 5.10
shows the effects on the average size, the score and thefrdrgkamrrect term for three
distributions of increasing width, witlr equal to 5, 10, 15, 25. The interaction model
used is a variation of the standard one: a message, whosentatandomly chosen
according to the above distributions, is senttbgent3 to tagent4 . The recipient
replies with a term ontologically related to the receiveadiéfor example it can be a
subclass or a property). Therefotagent4 has to predict a term that depends only on
an external distribution, whileagent3 has to predict a term that depends on a term he
has chosen.

When the content of the message is ontologically relatech¢dheer known term,
as intagent3 case, the performance is not meaningfully influenced by tiaages in
the distribution of the known term. On the other hand, whendbntent depends only
on an external, unknown distribution, astagent4 , the performance is heavily influ-
enced. The average size of the suggesgtadcreases witto: after 200 interactions,
the average size is around 10 f@or= 5 and reaches nearly 50 for= 25. The score
always converges towards 1, but the slope steepness desredlo and oscillations

Chapter 5. Evaluation 80

increase with it. The average rank of the correct term ire@saalthough less than the
average size, but variation in rank increases notably.

Non-stationary distributions

As discussed in Section 3.4, results returned by preferbased constraints follow a
distribution that reflects the contingent preferences @udseof the user community.
As we have seen in Section 5.3.5, a variable whose value degawelusively on com-
munity preferences is modelled mainly by assertions desgyithe prior frequencies
of terms. If the preference distribution is not stationandahanges over time the
assertions built after a number of interactions may not rhtsgevariable distribution
correctly in new interactions. In particular, variablesogk values are predicted only
by assertions based on term frequencies will be affected, wbde variables depend-
ing on some rules or functions should be more robust wheremetes change, as
the assertions model the ontological relation betweendhm tn the variable and the
value of other variables that can be assumed to be indepeindemthe distribution of
terms.

To test the behaviour of the predictor when dealing with rtatiegnary preferences,
we run two batches of experiments, both using the recursiezaction model in Fig-
ure 5.11. In the interaction model, the agent performing rédl sends a message
aboutX, where the value oK is chosen from a preference distribution. The agent
performing roler9bl receives the message, finds a list of elements relatedand
starts sending them back to the first agent. The first ageneither accept the term,
or ask for more.

The first batch is used as a baseline: it is composed of threeriexents, each
of 300 interactions and the preference distribution foralale X is stationary. The
second batch is composed of three experiments, each d¢ogsi$t300 interactions.
In these three experiments the preference distributiondaableX is non-stationary
changing every 100 interactions. The performance measurdgge two batches are
averaged.

The results are shown in Figure 5.12. The prediction foraldaY that depends
on the value of the first variablé, quickly stabilises in both cases, and is not affected
by changes in the distribution of: the ontological rule found by the predictor is inde-
pendent of the distribution of the first variable. Performamegarding the prediction
of variable X, on the other hand, depends on whetherXhis stationary or not. If
variableX is stationary, average size and score grow logarithmicafig the position

Chapter 5. Evaluation

tagent3

Q
I
o

tagent4

60 12
60 1.2
50 F1
50 1 =
X~
~ e c 40 0.8
S 40 0.8 I [’
c : 30 <
° = 2 Lo6 S
s 30 0.6 § & 20 e
g oLk
8 20 104 0.4 TR s caatdMhaas = 04
w fﬁl T - -
104 TLITTTLLIT TIII IT 02 0 |t o o i 0.2
AT 11T : =
0 0 -10 0
50 100 150 200 250 300 350 50 100 150 200 250 300 350
nr interactions nr interactions
‘—0— Avg size —@— Rank —#— Score ‘ ‘—0— Avg size —— Rank —#&— Score
60 1.2 60 1.2
50 R 1 50 JM L,
< ol < a0 Phac
g 40 0.8 S }(Losg
- o 5 30 4]
2 30 06 S o f Lo06 O
° e & © 20 Lo a
=2 o g
N 207 04 N e eE=n I RE Sy LT - 0-4
0 il hgRRcSS) 02 N T T Lo
1L T 0 Tm¥
0+ 0 -10 0
0 50 100 150 200 250 300 350 0 50 100 150 200 250 300 350
nr interactions nr interactions
‘—0— Avg size —— Rank —&— Score ‘ ‘—0— Avg size —@— Rank —a&—— Score
60 1.2 60 1.2
50 L1 50 L1
< a0 .'{ 08 2 a0 /‘-‘ﬁw [t 08
© s © e s
5 30 @ S 3 4 o
kel fu - ";0- e
o Los © e / e Los O
20 & o 20 . —- 4+ @
2 e 1L T 04 & o LTIl 1] 04
(7]
1LL A w 11
. hny L | o’ , LTI |,
-
-10 0 -10 0
0 50 100 150 200 250 300 350 50 100 150 200 250 300 350
nr interactions nr interactions
—— Avg size —— Rank —&— Score ‘ ‘—0— Avg size —@— Rank —#&—— Score
60 1.2 60 5 1
50 i 1 50 A Ax ¥ 2 0 0d
0.8
x ‘lh ¥ 40 T;&!!
G 40 0.8 s L |
o 2 - 30 T 06 o
c 30 06 O c T 7T o
© [v) © B e o
i b 20 %= 3 T 04 Vv
g 20 04 8 T L gt
o 9 LT &
10 I I T 02 . LTI o
TLETTTTTLLIITTY, 1T IR
0 0 -10 0
0 50 100 150 200 250 300 350 0 50 100 150 200 250 300 350
nr interactions nr interactions
‘—0— Avg size —— Rank —#&—— Score ‘ ‘—0— Avg size —@— Rank —#&—— Score ‘

Figure 5.10: Effect of different preference distributions.t agent 3 predicts

a variable whose content depends on a variable with different preference

distributions, while t agent 4 predicts a variable whose content depends

only on the different preference distributions.

81

Chapter 5. Evaluation

a(r9a1(ID2),ID1) ::
m; (X) = a(r9b1,ID2) « kp9_1(X) then
a(r9a2(X),ID1)

a(r9a2(X),ID1) ::
mp(Y) <= a(r9b2,ID2) then
mz = a(r9b2,ID2) « kp9_2(X,Y)
or
mg = a(r9b2,ID2) then
(a(r9a2(X),ID1))

or
ms <= a(r9b2,ID2)

a(r9p1,1ID2) ::

m; (X) < a(rOal,ID1) then
a(r9p2(ID1,Lst),ID2) < kp9_3(X,Lst)

a(r9p2, (ID1,Lst),ID2) ::
my(Y) = a(r9a2,ID1) « Lst = [T|Tail] then
m3 <= a(r9a2,ID1)
or
mg <= a(r9a2,ID1) then
(a(r9b2, (ID1,Tail), ID2))
or

ms = a(r9a2,ID1)

Figure 5.11: Recursive test interaction model. The peer taking role r9al
starts the interaction solving constraint k9 1 in order to find a value for X.
It first sends the value to the peer in role r9b1 and then takes the recursive
role r9a2. The peer in role r9b1 obtains a list of options, stored in Lst,
from the received value X by solving the constraint k9 3. Then it takes the
recursive role r9b2 and sends the first option in Lst with message ma(Y).
If there are no options, it sends message ms. The initiator peer, now in role
r9a2, receives the message containing the option, evaluate it solving con-
straint k9_2 and either accepts it, sending message m3 or rejects it, sending
message my. If there were no options, it would have received message ms,
and it would have terminated the interaction. The peer in role r9b2 waits for
one of the two messages mzor my: if the acceptance arrives, it terminates the

interaction, otherwise recurses passing the remaining options.

82

Chapter 5. Evaluation 83
Stationary distribution
30 1.2 & 1
40
25+ LN rl 0.8
30
20 0.8
20 oe
154 0.6
0.4
10 Loa 109
54 0.2 0+ 0.2
0 T T T T T T 0 -10 T T T T T T 0
0 50 100 150 200 250 300 350 0 50 100 150 200 250 300 350
—&— Avg size —l— Position —aA— Score —o— Avg size —— Position —a— Score
VarY Var X
Non-stationary distribution
30 1.2 1
60 boaca y oA RaA
e 50 o8
0.8 404
0.6
0.6 301 (77
20 | L Lo.4
0.4
10
| Lil11y 0.2
0.2 04 i
0 T T T T 0 -10 T T T T 0
0 50 100 150 200 250 300 350 0 50 100 150 200 250 300 350
‘—O—Avg size —— Position —#&— Score ‘ ‘—O—Avg size —#— Position —&—Score ‘
VarY Var X

Figure 5.12: Predictor behaviour when distribution changes over time

of the correct ternty, increases during the first 50 interactions and remains mdesse
constant in the remaining ones. If variaMas non-stationary, then the score grows
as in the stationary case up to 85% until the distributiorhesnged, where it suddenly
decreases to 70%. The average size grows more rapidly héeshtange. The score
returns to its previous value after 100 interactions. Tteed change of distribution,
after 200 interactions, has a much lower impact, as it is anlyncrease of the spread
of the distribution. For variabl&, when the distribution changes, the sixafter 300
interactions is much bigger.

5.4 Verifying Usefulness

The main goal of the predictor is to provide a set of likelynterto an Ontology
Matcher, so that it can focus on them and find the correct spaedence for a for-
eign term using fewer computational resources. To evaltheecontribution of the
predictor, we tested the results of the predictions on aaa&logy matcher, using
peers with different ontologies.

Chapter 5. Evaluation 84

Tree alteration:
For each node apply:

¢ label replacement, with probability 0.01
e syntactic label alteration, with probability 0.2 (letteh®pped, added, changed)
e word addition or removal in labels, with probability 0.15

e word replacement in labels, with probability 0.4, choosiiragn:

— synonyms, hyponyms, hypernyms (extracted from WordNet sthg all
the possible parts of the speech of the word)

— related words (extracted from the Moby thesaurus)

e node deletion (the number of nodes to remove is computed)si@aussian
distribution with average 0 and standard deviation 0.9)

e new child addition, with probability 0.25
e children shuffling, with probability 0.4
Table 5.1: Tree creation and alteration process. The probabilities of the al-

teration operations have been chosen by trial and error in order to obtain

reasonably altered trees, without having completely unrelated trees.

5.4.1 Specific methodology

Two different ontologies are used. The first ontology is aggated tree: labels in nodes
are composed of a random number of words, selected from 90@dsvextracted from
part of the Brown Corpus, and the number of children for eamterfollows a Gaussian
distribution, with average 4, deviation 4. The maximum ¢iept4 and the overall size
is 986 nodes. The second ontology is obtained from the fipgilyang the changes
described in Table 5.1. Its overall size is 1000 nodes. Theelmea used is described
in the next section: applying it on the entire ontologiegheut the involvement of the
predictor, yields a recall rate of 0.7 and a precision of 0.85

Chapter 5. Evaluation 85

The Ontology Matcher

The aim of the experiment is to verify how the predictor capiave the performance
of a generic ontology matcher, and therefore a relativetypée matcher was selected.
The matchepyontomap [3] used in the experiments is composite matcher: it em-
ploys a set of standard elementary matchers (syntactigctatal and semantic) and
combines their results using a Dempster-Shafer [68] bakpaditom. While in the
Bayesian approach probabilities are assigned to singigesnin Dempster-Shafer the
mass is distributed osetsof propositions. The mass distribution is a functia) that
distributes a mass in the interval [0,1] to each element efpbwer set 2 of the set

of propositionsd = {64, 6,,...,6,} called theframe of discernmentThe total mass
distributed is 1 and thelosed world assumptias generally made: the frant® con-
tains the true hypothesis. This is expressed assigning dniasthe empty set 0, called
contradiction. The masg(©) assigned to the frame represents the mass that cannot be
assigned to any particular subset@f Different mass distributions can be combined
usingDempster’s rule of combinatiatihat computes the probability mass assigned to
C C ©givenAC © andB C ©, whereA is supported byny andB is supported byr:

¥ AnB=c M1 (A)Mp(B)
1-3 ango M (A)Mp(B)
Once the masses have been distributed and combined, ilessay to extract the most

m(C) =

(5.2)

likely entity from the mass distribution. Dempster-Shafeakes it possible to compute
the belief about a seA C © of propositions, as the sum of all the basic masses that
support its constituents:

Bel(A) = BZ m(B)
A

It also provides the formula for computimdausibility of the setA, that is the measure
of the extent to whict\ might be true:
PI(A) =1-Bel(A) = Z m(B)
BNAAD

In the matching process, a term from ontold@yis compared, using all the match-
ers, with all the terms from ontology listed in SBtC O,. The setT represents the
frame of discernment. The results of the comparisons pedrby an elementary
matcher are split into sets: each set contains terms thatcarally likely to be the
exact alignment, and it is given a mass representing thiHded that the exact match

Chapter 5. Evaluation 86

is contained. The sets generated by the different matchersoabined using Demp-
ster’s formula, and then belief is computed for each term.

For example, given the terimedin O; and the elementary matcher Edit-Distance,
the termsbid and bad from O, are equally likely to be the correct correspondence
(they both have a distance of 0.33), and are put in the sam&stgt containing terms
with distance between 0 and 0.2 are given weight 0.5, thogetenms having distance
between 0.2 and 0.3 are given 0.3, and finally those with teaxsg distance between
0.3 and 0.5 are given 0.2. Terms with greater distance acadisd, giving them mass
0. The mass that cannot be given to any term is assigned tetheS O, (that forms
the frame of discernmei@), and represents the “ignorance” of the matcher: a matcher
unable to find any similarity between a foreign term and altérms in peer ontology
will give all of its mass to the frame of discernment. Contimguwith the previous
example, if two matchers return:

e my ({bad bid}) =0.33,m; ({bed}) =0.5,m; (©) = 0.17
e my({but bid,bar}) = 0.1, m ({bed}) = 0.6,z (©) = 0.3

wheremy (©) andmp (©) are the masses given by the matchers to th& setO, and
represent the masses that cannot be assigned to any aretl The combined mass
distribution will be:

bad
My © My my ({ b‘?‘d }) —033 my ({bed}) = 0.5 m (@) = 0.17

i

but but

mp bid =01 M2 ({bid}) = 0.033 Mye2 (0) = 0.05 M2 bid =0.017
bar bar
mp ({bed}) = 0.6 M2 (0) =0.2 Mye2 ({bed}) = 0.3 M2 ({bed}) = 0.102
. bad
117] (@) =03 Mig2 ({bld}) =0.099 M2 bed =0.15 M2 (@) =0.051
e

The beliefs about the alignments are:

Bel({bed}) = 0.15+ 0.3+ 0.102= 0.552
Bel({bid}) = 0.033+0.099= 0.132

The matcher was configured to use the matchers in Table 5.2.

Chapter 5. Evaluation 87

infix (t1,t2) checksift; is contained irt; ort, in t;

postfixty,t2) checks ift; ends witht, or the otherway around
prefix(t1,t2) checksift; starts witht, or the otherway around
soundexty,t2) checks for soundex similarity betwegrandt,

editdistancets,tp) checks for the edit distance (number of string changes -tiaddideletion and
modification of characters - needed to reach one string frootleer) betweety andt,

initsmatch(ty,t2) checks if the initials of; correspond td, or the other way around
parentgty,to, O1,02) checks the edit distance of the parentgaindt,
children(ty,t2,01,02) checks the edit distance of the childrertpandt,

siblings(t1,t2,01,02) checks the edit distance of the siblinggpéndt,

Table 5.2: Matchers used in pyont onap

Using the predictor

As we have seen in Section 3.5, the probability distribuff(@Qy [IM state M) com-
puted by the predictor can be used:

1. to extract a subset of terms from the peer’s ontology to be compared with
the term in the message, reducing the resources requireddtrhing (setting
T=AN),and

2. as results of an additional matcher, able to exploit thditeshal information
available in the context of the interaction.

In the first case, if nothing is found by the matcher in the ®sgign sef\ (that is, there

is no term with belief higher than a given threshold), it ispible either to consider
that no possible match existsq reattemppolicy), or to extend the comparisons to the
rest of the ontology, posing the SBt= O,\A (reattemptpolicy).

If P(Qx|IMstate M) is used as the result of an additional matcher, the distdbut
is split into sets of terms equally likely to be the exact rhatod a mass is assigned to
each set, as shown in Figure 5.13. The thresholds for sygjittie probability distribu-
tion into sets and the masses assigned to the sets wereazb&mpirically.

Chapter 5. Evaluation 88

o
IS

o
w
!

probability
o
T

mobile
camera

o
o [
!
notebook
-

camcorder 7
computer |
ipod |

mp3 player |
hard disk T
flat screen]

g

I terms I I

ma'ss 0.5 mass 0.3 mass' 0.15

Figure 5.13: Splitting the probability distribution into sets
Running the experiments

Each performed experiment consists of running 400 interast first 200 interactions
are run between two agents with the same ontology with theddioreating a first
approximation of the statistical model, then 200 furtheeiactions are run replacing
one agent with another that uses a different ontology. Tkdiptor is not aware that
the ontology is shared in the first set of runs, and works asdad to predict and match
different ontologies. As described above, one ontologyeisegated, while the second
is a variation of the first ontology, obtained applying thehes described in Table
5.1.

Three different types of experiments were executed: onbowitthe use of the
predictor, as a baseline, and two using the predictor, tlse dsing theno reattempt
policy (no match exists if nothing is found W), and the second using theattempt
policy (extending the comparisons to the remaining ontpibgothing is found in\).
Each type of experiments was run 3 times to average the sesult

The experiments were run on a dual core laptop with two 1.88005CPUs and
1Gb of RAM.

5.4.2 Results

We have seen in Section 3.2 that the performance of an otolagcher is usually
measured by itprecisionandrecall. Given thatMsy,nq is the set of correspondences
found by the mapping system aMirect IS the set of correct correspondences:

precision is the ratio between the number of correct correspondentes@ those
found and the total number of correspondences found:

Chapter 5. Evaluation 89

‘ Mtound) Mcorrect|

Precision=
ecisio ‘Mfound‘

recall is the ratio between the number of correspondences founthartdtal number

of possible ones:
‘ Mtound) Mcorrect|
|Mcorrect|

Recall=

The average size and the average success rate of the pradftience the perfor-
mance of the matcher when the probability distribution iedusnly to generate the
suggested se\. If the no reattemppolicy is used, then a low success rate will surely
lower the recall, and possibly the precision. A low succede means that the corre-
sponding termiy, is often not in the suggested &t many possible correspondences
will be missed by the matcher that uses only the termA fior comparison withw;j,
reducing the sé¥¢,yng. Precision is lowered as well, but by a different mechanidm.
set/\ not containing,, may contain another terig, that is considered to correspond
tow; “well enough” by the matcher: the belief in its corresponceis lower than what
would be computed fai, if it was in A, but it might still be higher than the threshold,
and because there are no competitors, it is chosen as thedoestpondence, lowering
precision.

If the reattemptpolicy is used, then a low success rate will lower the precisor
the same reason as above, but recall will be affected lessthing is found im\, then
the remaining terms in the ontology are compared withincreasing the likelihood
of finding the correspondence.

If the probability distribution is used as a matcher, themiluences directly the
belief computed for the terms. If the probability assigned,fin P(Qk|IMstate M)
is consistently low, then a low mass will be assigned to thetehis influences the
belief inty,, as we have seen in Section 2.6.

Figure 5.14 shows the results of running the experiment Wighpredictor, with
theno reattemppolicy. What the graph shows is that the time required foraiaig
drops immediately, keeps decreasing for a while and themgiocreases. This trend
reflects the fact (mentioned in Section 5.3.2) that the @eesize ofA is low initially
and increases with every interaction: the number of corspas increases proportion-
ally with the size of/\. Precision and recall are small initially, and increaséofwing
the success rate of the predictor.

Figure 5.15 shows the results of running the experiment thiéhpredictor, using
thereattemptpolicy. Time decreases while the predictor improves itxess rate, and
stabilises when the predictor success stabilises. Rewalpeecision decrease initially

Chapter 5. Evaluation 90

1 1200

n e /‘”"‘_‘b@
0.9 \ A A A T
0.8 M\ N aeow - 1000
- 1 = == g M e G
07 \ A/r‘ _ VN e e e e
. \ = I 800
0.6 1 Nl s
) S
y iy
05 A= — - 600
0.4)%C e T e
03 A Tmg auuuua® I 400
. * N = F -
02 i\.ll" ==
. 200
0.1
0 0
0 100 200 300 400
‘+ prediction score —®— time —a&— recall —/—— precision

Figure 5.14: Matching results when predictor is used. Finding no corre-
spondences in the suggestions set A is considered equivalent as finding no

correspondence at all (no reattempt policy)

and then increase converging towards respectively 1 and 0.9

If, as described in the second use of the predictor, the jibtyadistribution
P(Qk|IMstate M) is used as an additional matcher, assigning a low probabdlithe
correct term and high probability to the wrong ones swayslss distribution com-
puted combining the mass distributions provided by therathélogy matchers. The
probability distributionP (Qy [IMstate M) is split into sets containing terms with sim-
ilar likelihood. If the probability distribution is not cogct, the wrong terms will re-
ceive more mass than the correct one, and the combinatiomsé@s computed using
Dempster’s rule will tend to sway mass towards the wrong $erirhis is particularly
problematic when the ontology matchers can assign onlg littass, and are forced
to assign most of their masses to the frame of discernmeriuisecof lack of infor-
mation about the relations between the terms to match. Thss mssigned using the
probability distribution will override the mass assignedtbe other matchers.

Initially, the predictor is bound to have the wrong disttilom, as the results pro-
vided earlier show: it takes at least 80-90 runs to obtainrssistent success rate of
60%. To compensate for this, the mass that can be assigneae pyddictor is initially
low, and increases over time, following a logarithmic cusimilar to the learning
curve obtained empirically and shown in Figure 5.7. During first runs of an inter-
action, the predictor splits a small amount of mass betweerséts of equally likely
terms, and assigns the remaining mass to the frame of disesin As the interaction
Is repeated, the statistical model gets better (on aveesagkhe mass that the predictor
can split between the sets increases.

Chapter 5. Evaluation 91

1.2 7000
[}I\.\.\
1 N - 6000
L 5000
0.8 =Y
O DD Lo oo o0
\ /A/K“\R %;f;/‘*‘y—o—.—Q—Q—HHH [- 4000
0.6 & —— v
Yy
— o e 3000
R A ALY
0.4
/ \-\l 2000
0.2 mgn g BwEN
: / s w g gaggunmET ~ ¥ +- 1000
0

0 100 200 300 400

‘+ prediction score —#— time —a&— recall —/— precision ‘

Figure 5.15: Matching results when predictor is used. When no correspon-
dence is found in the suggestions set /\, the matcher is used to compare the

remaining terms in the whole ontology (reattempt policy).

5.4.2.1 Comparing performance

Time

Figure 5.16 compares directly the computation times forthinee cases (no predic-
tor used, predictor used witteattemptpolicy and predictor used witho reattempt
policy). When no predictor is used, the number of compassemains constant over
400 interactions, and therefore time remains constantar@0000ms: as we said ear-
lier, matching is always performed and comparing terms ftbensame ontology is no
quicker than comparing from two different ones. Fluctuasiare due to different CPU
loads over time.

The use of the predictor reduces time complexity remarka¥dfjpen theno reat-
temptpolicy is used, matching time starts at a low value of 1200insofnpares al-
ways only the terms im\), decreases further to 350ms and remains low, increasing
only slightly to 600ms with the increasing size Af as we have seen before. When
the reattemptpolicy is used, the matching time starts at 6400ms becausaitial
success rate is only 0.4 and therefore in 60% of the casesothparisons are done
with the whole ontology. As the success rate increases,deueeases and stabilises at
around 1000-1200ms, a level twice the one obtained usingdhieattemppolicy but
nearly 10 times lower than that needed by the baseline salufihe average success
rate of the predictor, as we have seen before, is around Bi8nteans that in up to
20% of the cases nothing is found, and comparisons have tetiermed with the
remaining terms in the ontology. As pointed out in the intrciion of this section, if
the exact correspondentg is not in the suggested sAtthe wrong correspondence
can be found in it, reducing precision but also computatioretas a side effect (no

Chapter 5. Evaluation 92

12000

10000 WmA' —e—e_o e
8000
£ 6000 ""11\.\1
4000 = .
2000 o =
‘\.\‘_i_*_H_‘_‘__ Lol B B R -—ua T **i’H*H:

0 100 200 300 400
number of interactions

—— Time without predictor —#— Time with predictor with reattempt
—a—— Time with predictor without reattempt

Figure 5.16: Matching time when predictor is not used, is used with reattempt

and without reattempt.

further comparisons with the remaining terms in the ontglage required).

Precision

Figure 5.17 compares precision across the three expersmeéntthe baseline so-
lution, where no predictor is used, precision fluctuatesiado0.9 after the first 200
interactions in which the same ontology is used by both peers

In the experiments with the predictor, precision startsasg@bly lower than the
baseline and then linearly converges towards the baseliinere is no evident dif-
ference between the two policiesd reattempiandreattemp} when the predictor is
used.

We have seen in Section 5.3.2 that the success rate stadsmavalue, and there-
fore initially the suggested sét often does not contain the correct correspondence:
we have explained above that the matcher may find a tggmn A whose belief is
higher than the threshold, and it is wrongly chosen as theecbalignment, lowering
the precision.

We have also illustrated in Subsection 5.4.2 that if the @baily distribution
P(Qk|IMstate M) is used as an additional matcher, it may sway the combined mas
when it ranks as unlikely the correct term, especially whes dther matchers can
distribute little or no mass.

Recall

Figure 5.18 compares the recall trend in the three expetsnem the baseline,
where no predictor is used, recall stabilises around 0 &, te first 200 interactions
in which the same ontology is used. When the predictor is ,ussxll starts lower,
decreases and then converges towards the same value asd¢tiadaJsing theeat-

Chapter 5. Evaluation 93

1000000000000
ot ot
0.9 =)
—_
0.8 - -
0.7 i
S o6l a L {W
2 s '\-,; Ar—?t*
2 04 N
5 0 A
0.3
0.2
0.1
0
0 100 200 300 400
number of interactions
——— Precision without predictor —— Precision with predictor with reattempt
—a—— Precision with predictor without reattempt

Figure 5.17: Matching precision when predictor is not used, when used with

reattempt strategy and without reattempt strategy.

= i EE S NEE =
0.9 e 3

0.8

07 1Ay /./l/r s A kA s A A A A AAEET
0.6 A -\=/I/I A/‘/kr
05 P

oal 4 AET
03
0.2
0.1

recall

100 200 300 400
number of interactions

—— Recall without predictor ——®— Recall with predictor with reattempt
—a—— Recall with predictor without reattempt

Figure 5.18: Matching recall when predictor is not used, is used with reat-

tempt and without reattempt.

temptpolicy, recall overtakes the baseline, remaining congtdmgher. Using theno
reattemptpolicy, recall starts lower than with theattemptpolicy and remains lower
(15-20%) than the baseline for most of the experiment, mgettioser only towards the
end of the experiment.

Compared to the baseline, precision is sometimes improydtd additional in-
formation, but, as we have seen above, the failure to indloe@xact correspondence
in the suggestion sét can sway the matcher towards selecting the wrong term. Recal
on the other hand, is improved by the additional informapoovided by the predictor.

The fluctuations in both precision and recall depend alsdertérmsy; randomly
chosen for the messages: within the 10 interaction inteherde might be different
numbers of terms that the matchers cannot map correctly.

Chapter 5. Evaluation 94

5.5 Summary

In this chapter we have first evaluated the performance ottment predictor pre-
sented in Chapter 4 independently of its use and then tosasebenefits of using it
with an Ontology Matching system.

The evaluation was performed by simulation: the testedactens represent pat-
terns of common interactions, and the peers respond toreamisteither using a prob-
ability distribution over the possible values (to reflea fireferences of a community)
or according to some specific function.

As said in Chapter 4, the predictor computes a probabiliyritiution for a partic-
ular variable in a received message, using the contextrimdtion available from the
current and the past interaction runs. The probabilityriigtion can be used to select
the most likely terms (those whose cumulative probabisityigher than a given thresh-
old), and as a synthetised contextual information that @axploited by a matching
algorithm.

When evaluating the ability of the predictor in guessingdheect content of the
exchanged messages, no matching was involved: the peeradnsharing the same
ontology. The aim of this set of experiments was to evaluate diifferent interaction
scenarios could be handled by the predictor. The scenagos simulated varying the
preference distributions used to select the terms to inredn variables: narrow, wide
and time-varying distributions were used. The measuresidbpmance considered are
the size of the suggested gebf likely terms (see Section 3.5), the probability that the
set contains the exact term in the message, and the rank trtheén the set.

The usefulness of the predictor has been evaluated fedwrigsults into a matcher
that must map the foreign terms in the messages to local tefims performance is
compared with a baseline case in which the predictor is ned. u$he computational
time required by the matcher to find the correspondence,ikgdpe precision and
recall constant, is reduced by a factor of 8 to 10. On the offaexd, when a new
interaction is used recall and in particular precisiontdtaw, and increase at the same
rate of the success rate of the predictor. However after gmateractions, precision
reaches the same level of the baseline and recall reachightlyshigher level.

Chapter 6

Related Work

6.1 Introduction

Chapter 2 introduced the background for the work in thisighes explained, within
the context of the work, what is meant with the term agent, twhan interaction
between agents, what is an ontology and how different ogtetocan be matched. It
did not aim at providing an in-depth analysis of these idgas @mparison with the
state of the art. The goal of this chapter is to cover the aggres available in literature
alternative to the models chosen for this thesis’s work.

In Section 6.2 we describe different models for interactibetween autonomous
software agents. One of the main approaches to autonomeussagpordination in-
volve modelling the mental states of the other agents andidering the exchanged
speech acts as actions that changes these states. The mihmach uses norms to
specify the allowed, expected and forbidden behavioure@tfents.

In Section 6.3 we present alternative approaches in secangosition. In con-
trast with autonomous agents, services can be passivesartdrmay not be aware of
being involved in interactions. They can be invoked from kilorvs, that can be either
centralised or distributed.

Section 6.4 focusses on the problem of Ontology Matching.rst fpresent the
different categorisations in literature of the mismatchesveen ontologies and of the
matchers. | then describe the basic matching techniquedays@e available matching
systems, and finally | overview some of the most interesthuggots.

95

Chapter 6. Related Work 96

6.2 Agent coordination and communication

In Chapter 2, we have described inter-agent interactioad @C, that constrain the
agents to follow a predefined, stringent script. Literatpresents also different ap-
proaches, that give the agent varying levels of freedom aqdire different computa-
tional workloads.

The mentalisticapproach relies on agents modelling the internal stateeobther
agents, and planning interactions as sequences of actlmgxchanged messages,
that change these internal states. Applying our framewsikgithis approach to com-
munication is difficult: one of the strengths comes extragtinformation from the
repetition of the same interaction model. The mentaligtigraach also suppose a ra-
tional agent, able to reason over the received messagesaitttdhe next steps, while
our model does not make assumptions about the reasoninbiliggmof the agents.

The social approach is more oriented towards giving normative rulesmat
agents should do, without taking into account their intestate.

6.2.1 Mentalistic approach

In the mentalistic approach, speech actions are like axtitrey change the state of
the world, similarly to a physical actions [54]. Initial athpts such as [10] used for-
malisms like STRIPS: a speech acts could be defined by itopd#ons and post-
conditions, expressed in multimodal logic, that were usett¢ate plans. These early
attempts were then refined into a more general theory by Cahdri_evesque [11]:
speech acts are actions performed by rational agents thatyamg to fulfill their in-
tentions, according to their desires and current belielfie Model is also called Belief-
Desire-Intention (BDI) model.

The speech act theory has influenced the development ofugagigent communi-
cation languages (ACL): we will overview KQML and the stardisation effort at-
tempted by FIPA.

KQML

TheKnowledge Query and Manipulation Languagas initially developed in the early
90s as part of DARPA knowledge Sharing Effort to enhance tioevedge sharing and
not specifically for agents.

KQML ACL aimed at creating a set of performatives to captuaeous proposi-

Chapter 6. Related Work 97

(evaluate
'sender A :receiver B
‘language KIF :ontology travels
:reply-with g1 :content (val(price BA786)))
(reply
:sender B :receiver A
‘language KIF :ontology travels
iin-reply-to gl :content (= (price BA786) (scalar 225 pound)

Figure 6.1: Example of KQML dialogue

tional attitudes an agent wants to express. It has beenajmetto be independent of
low level transport layer, as well as of the content language ontology used.

A KQML message is composed by the locution and the contetd.p@hne core of
KQML is the speech act that wraps the content. The semargiossage is expressed
in terms of preconditions, postconditions and completionditions. Conditions are
expressed for both speakers and hearer of the utteranagreFadL, taken and adapted
from [67], shows a simple dialogue between an agent A, askinthe value of the
attribute price (defined in an ontology called “travels”)tbk flight BA786, and an
agent B replying with the requested value.

FIPA ACL

The Foundation for Intelligent Physical Agéris a standardisation body concerned
with issues of interoperability. One of its committee is racge of the development of
ACL. FIPA ACL is similar to KQML: it is based on speech acts anid BDI-centric.
Also the syntax of the individual locutions resembles KQML.

The specifications of messages provide an English desmmiptid a formal seman-
tics, expressed in a form of Modal Logic called Semantic Leage. The Semantic
Language is a Multimodal logic able to represent certainamzertain beliefs, desires
and intentions.

Each communication act is is defined by its feasible pred¢mmdi and its rational
effects. The feasible preconditions describe the appaitgornental state that the agent
must have before sending the message, if it wants to complytive standard. The
rational effects specifies the expected mental state, ghadrthe agent has performed

Lhttp://www.fipa.org

Chapter 6. Related Work 98

(inform
:sender agentl
‘receiver agent2
:content (price BA786 225)
‘language sl
:ontology travels

Figure 6.2: Example of FIPA ACL message

the communication. The rational effects are usually defioethe recipient, but they
do not need to hold in order to be compliant.

Figure 6.2, shows a simple message, sent fagentl to agent2 to inform about
the price of the flighBA786. Figure 6.3, shows the semantics for the messafEs
andrequest . Both figures are taken from [67].

6.2.2 The Normative approach
Electronic Institutions

With Electronic Institutions the authors have tried to mhrce the way humans have
developed social institutions, ranging from the state tegbe companies, to structure
their social interactions within social institutions.

In elnstitution the interactions between agents are dividdo scenes. In each
scene an agent can take only one role. The scene is descsibdtdrate State Machine.
The messages between agents causes the state of the iotetaacthange state. The
interactions between agents are constrained by normaties,rthat prescribe obliga-
tions and prohibitions for the agents in a particular sitwratThe scenes are connected
together to compose a workflow, and the specification of thekflaav describes how
agents can legally move from one scene to another.

In elnstitutions agents and roles can be institutionalxt@raals. The institutional
roles, and the agents that embody them, work to guaranté¢hhastitutional rules
are respected, while the external roles and agents arestglLi® conform to the insti-
tutional rules.

The institution prescribes a common language and a commimogyy to use, but
it makes no assumption about the internal structure of teatsg

Chapter 6. Related Work 99

(i,inform(j,¢))
feasibility preconditionB;¢ A —B; (Bifj¢ VUif;¢)
rational effect:B;¢
where B¢ means 'agent i believeg’, Bif;¢ means that 'agent j has a definite opinion one

way or another about the truth of falsity ¢f, and Uif;¢ means 'agent j is uncertain about
¢; An agent i sending annf or mmessage with contet respects the FIPA semantics if it
believesp, and it is not the case that it believes either that j believagstherg is false or true,
or that j is uncertain of the truth or falsity af.

(i,requestj,a))
feasibility preconditionBjAgent(a, j) A —Bjl;Done(a)
rational effect:Dong a)
where Agerta, j) means that 'the agent of actianis j’, and Donéa) means that 'the action

o has been done. The agent i requesting agent j to performragtioeans that agent i believes
that the agent able to perforimis j and that agent j does not currently intend tteais done.

Figure 6.3: FIPA semantics of i nf or mand r equest

An Electronic Institution can be regarded as social middieathat sits
between the external, participating agents and the chas@mainication
layer validating or rejecting their actions. [57]

There exists a tool, developed inside the OpenKnowledgggrdor converting e-
institutions into LCC.

6.3 Web Service composition

The mentalistic approach to agent coordination introdumeddre rely on autonomous,
smart agents able to take decisions and to plan interactimo$ving other similar
agents. The normative approach poses a lighter workloatl@adents, as it reduces
the search space for the actions forcing some behaviourdanking others. In a
framework like OpenKnowledge, the norms are specified bgradtion models, and
the autonomy of the agents is reduced to the possibility oicty what interaction to
run.

However, in many applications the simpler integration andchposition of dis-
tributedservicesnay be enough, leaving the services unaware of their innodré in
interactions.

Chapter 6. Related Work 100

While a service can be anything, the term is often used tcatdiaweb service
that is, according to W3C:
“A Web service is a software system designed to supportoptrable
machine-to-machine interaction over a network. It has aerface de-
scribed in a machine-processable format (specifically WSBDither sys-
tems interact with the Web service in a manner prescribedsogdscrip-

tion using SOAP messages, typically conveyed using HTTR antXML
serialization in conjunction with other Web-related starus.”[6]

The services’ preconditions and effects may be describddaviich ontology such as
OWL-S, and a centralised planner composes them, eithemauitwally or assisted by
a human, creating a plan of execution. Alternatively, andem@mmonly, the plan
may be designed a priori, as a centralised or distributedkflmv of activities and the
services are grounded, normally at design time, into thoseities. We first introduce
S-OWL in Subsection 6.3.1, and then overview two centrdliged one distributed

workflow languages in Subsection 6.3.2.

6.3.1 Semantic approach

OWL-S? is an ontology built on top of Web Ontology Language (OWL) by DARPA
DAML program as a replacement of the former DAML-S ontolof}yis an ontology,
written in OWL, for describing Semantic Web Services, wihk im of enabling users
and software agents to automatically discover, invoke, mmsa, and monitor Web
resources offering services, under specified constraints:

e Automatic Web service discover@WL-S aims at helping software agents to
discover the Web Services that fulfill a specific need witloms quality con-

straints, without the need for human intervention.

e Automatic Web service invocatiogenerally, it is necessary to write a specific
program to invoke a Web Service, using its WSDL descriptldsing OWL-S a
software agent should be able to automatically read therigéisn of the Web
Service’s inputs and outputs and invoke the service.

e Automatic Web service composition and interoperationa Web where many
services are available, it should be possible to perforrmaptex task, involving

2http://www.daml.org/services/owl-s/

Chapter 6. Related Work 101

the coordinated invocation of various Web Services, baséyson the high-
level description of the objective. OWL-S aims at helpinghe composition
and interoperation of the Services in order to enable theraatic execution of
this task.

The OWL-S ontology is composed by the parts:

e the service profilelescribes what the service does. This information is piymar
meant for human reading, and includes the service name autijokon, limita-
tions on applicability and quality of service, publishedaiontact information.

e the process modalescribes how a client can interact with the service. This
description includes the sets of inputs, outputs, pre-itimms and results of the
service execution.

¢ the service groundingpecifies the details that a client needs to interact with the
service, as communication interaction models, messageafis; port numbers,
etc.

6.3.2 Web Service Workflow languages
A workflow is a:

“reliably repeatable pattern of activity enabled by a syst&c organi-
zation of resources, defined roles and mass, energy andnafmm flows,
into a work process that can be documented and learnt. “

Web services composition follows two alternative appr@schrchestrationor chore-
ography Their primary difference is their scope. An orchestratinadel provides a
scope specifically focussing on the view of one participanstead, a choreography
model covers all parties and their associated interactyiviag a global view of the
system. The orchestration and the choreography distime@we based on analogies:
orchestration describes central control of behaviour asradactor in an orchestra,
while choreography is about distributed control of behavihere individual partici-
pants perform processing based on outside events, as ineogftaphed dance where
dancers react to behaviours of their peers:

“Dancers dance following a global scenario without a sirgpent of
control"[9]

Chapter 6. Related Work 102

In orchestration, a central process takes control and coates the execution of differ-
ent operations on the involved web services. The web serdoenot know that they
are involved in a composition process: only the central @ssds aware.

Choreography does not rely on a centralised coordinatah ®eb service knows
when to execute its operation and with whom to interact. H illaborative effort
focussing on the exchange of messages. All participants toelge aware.

In the following subsections first | overview two orchestat languages, one
business-oriented (BPEL), and one more academic (YAWLd than a choreography
language (WS-CDL).

BPEL (Business Process Execution Language)

BPEL (Business Process Execution Language) for Web senge@m orchestration lan-
guage. Itis an XML-based language designed to enable temkag for a distributed
computing or grid computing environment - even across mild@trganisations - using
a combination of Web services. Written by developers fronABEystems, IBM, and
Microsoft, BPEL combines and replaces IBM’s WebServiceswHLanguage (WSFL)
and Microsoft's XLANG specification.

A BPEL process receives a request and to fulfill it it invokes involved web ser-
vices and then responds to the caller. Defining a BPEL prasessentially defining a
new web service that is the composition of existing serviéeBPEL process consists
of steps: each step is calledtivity, that can be primitive or structure. A primitive
activity can be an invocation of a web service, waiting aydmm an asynchronous
call, generating responses for synchronous operationsipmiating variables, indicat-
ing faults, waiting specified intervals, terminating thegess. A structure activity is
a composition of primitive ones. Primitive activities ca@ @domposed in sequence, in
parallel, in loops, or as branches with conditions.

YAWL (Yet Another Workflow Language)

In recent years many different workflow products have apgsbaeach with its own
semantics and constructs. The task of comparing them hageaddresearchers, in
particular those in Van der Aalst group in the Eindhoven @nsity, to identify the
most frequently used patterns applied in the developmentaskflows [64]. The
workflow patterns are pragmatically used to compare theesgivity of the different
workflow languages. A more formal foundation to represemt emmpare workflow

Chapter 6. Related Work 103

is provided by Petri nets, even though some patterns areuiffio represent even
with extended petri nets. To overcome these difficulties,\tan der Aalst groups has
developed another workflow language, YAWL [62], based ongoas, and defined in

terms of a transition system. A workflow specifcation in YAV a set of process
definitions which form a hierarchy. Tasks are either atoragks or composite tasks.
Each task refers to a process definition at a lower level irhteerchy. Atomic tasks

are leaves of the graph-like structure.

WS-CDL (WS-Choreography Description Language)

The Web Service-Choreography Description Language [38] $pecification by the
W3C defining a XML-based business process modeling langteg&lescribes com-
mon and collaborative observable behaviour of multipleises that need to interact
in order to achieve some goal. WS-CDL describes this bebafiom a global or
neutral perspective rather than from the perspective ofargyparty. WS-CDL is a
description and not an executable language.

Peer-to-peer protocols described in WS-CDL do not have &ralesed point of
control: each party remains autonomous and no party is magte any other. There
are no global variables, conditions or workunits, as it wioidquire centralised stor-
age and orchestration. WS-CDL permits a shorthand notati@mable variables and
conditions to exist in multiple places, but this is syntadugar to avoid repetitive
definitions. There is also an ability for variables residingne service to be aligned
(synchronised) with the variables residing in another iservgiving the illusion of
global or shared state.

In WS-CDL all messages are described as information typdgtaare is no dis-
tinction between application and infrastructure messagishat WS-CDL describes
is the ordering rules for the messages which dictate ther andehich they should be
observed. When these ordering rules are broken WS-CDL derssithem to be out-of-
sequence messages and this can be viewed as an error inmanfi& of the services
that gave rise to them against the WS-CDL description.

Services are any form of computational process with whioh iy interact, ex-
amples are a buying process and a selling process that alenmapted as computa-
tional services in a Service Oriented Architecture (SOAasa Web Services imple-
mentation of an SOA: WS-CDL is not explicitly bound to WSDLdatherefore it can
play the same global model role for both SOA services and Véebi&es. It is possible
to use WS-CDL to describe a global model for services with n®DA descriptions

Chapter 6. Related Work 104

(they can have Java interfaces) as easily as it is to des®itveces that do have or will
have WSDL descriptions.

6.4 Ontology Matching review

We have seen in Section 3.2 how the success of the ontologgebrbught a wealth
of ontologies, not their standardisation. We have presehtsv this heterogeneity is
tackled using Ontology Matching algorithms. In this seetiee will first introduce dif-
ferent classifications for the sources of mismatches betwea&ologies in Subsection
6.4.1 and for the matching algorithms in Subsection 6.4&n toverview the elemen-
tary matching techinques in Subsection 6.4.3 and finallierea group of interesting
projects in Subsection 6.4.5.

6.4.1 Ontology mismatches classifications

Sleeman [32] distinguishes three perspective in the dleaBon of mismatches.

Knowledge Representation Perspective

According to [65], ontologies can differ because of two meategories of mis-
matches:conceptualisatiorand explicationmismatches. The first category of mis-
matches originates from the initial phase of conceptutitisaf the domain. Concep-
tualisation mismatches include class and relation mishegtcfor example, classes can
be divided into different subclasses (for example, thescdesmal can be subclassed
into mammalsbirds, reptiles fishesin one ontology and intdierbivores carnivores
andomnivoresn another), or attributes can be assigned to differenselagfor exam-
ple, two ontologies can have the same classeseraanddigital_camerathe second
subclass of the first, and the attriblémsmay be attached tcamerain one ontology
and todigital_cameran the other). Explication mismatches are caused by difieze
in the way the conceptualisation is specified in a formal legpe: for example, there
might be ambiguities derived from using the same term totifledifferent entities (for
example bankmeaningfinancial institutionin one ontology andidge in another), or
from using different terms to identify the same entity (faaenple,car andautomo-
bile).

Database perspective

Wiederhold [66] proposes a different set of mismatchesguoaented to data sources:

Chapter 6. Related Work 105

key difference: different naming for the same concept

scope difference: distinct domains, or distinct coverage of domain members
abstraction grain: varied granularity of detail among the definitions
temporal basis: mismatches concerning time, periods, intervals

domain semantics: distinct domains, and the way they are modelled.

value semantics: differences in the encoding of values (date format, cuiies)c.)

Knowledge Elicitation Perspective

Shaw and Gaines [55] described four dimensions to map krumgelelicitation situ-
ations likely to be encountered when experts are involveterprocess of developing
a knowledge-based system:

Conflict: when experts use the same term for different concepts
Correspondence: when the experts use different terms for the same concept
Constrast: when the experts use different terms and have differentejatsc

Consensus:when all the experts use the same term for the same concept

6.4.2 Matchers’ Classifications

Different ontology mapping surveys have been compiledughothe recent years [56,
49, 34]. They offer a classification of the ontology matchaygtems and a review of
the techniques at the state of the art.

Shvaiko and Euzenat, in their [56], distinguish three disiens for the classifica-
tion:

input dimensions: these dimensions are about the kind of input on which an algo-
rithm operate:

¢ the data/conceptual model in which the ontologies are esp(E-R schemas,

OO structures, XML, RDF or OWL ontologies)

e the type of data that the algorithm exploits for finding cependences:
schema data (the conceptual model of the ontology), inetdata, or both

Chapter 6. Related Work 106

process dimensions:the type of computation involved, that can be either exact or
approximate

output dimensions: what result is returned to the user: one-to-one correspuete
between the entries in the ontologies, graded or all-ohingtanswers, and the
kind of relations that between the entries (similarity, igglence, subsumption,

)

Rahm and Bernstein, in their paper [49], classify the methaskd for matching be-
tween:

elementary matchers

combination of matchers

6.4.3 Elementary matching techniques

The elementary matchers can be classified in many differapt @hvaiko and Euzenat
propose two classifications, based on:

granularity and input interpretation that divides the matchers alement-levebnes,
that analyse the entities in isolation ignoring their nelas with other entities, or
structure-levematchers, that analyse how entities appear together inictste

kind of input that divides the matchers based on the type input (syniastiernal or
semantic)

Element-level techniques

String-based techniques ~ They consider names, labels and comments as sequence
of characters. Often the strings are normalised beforegosampared: they are con-
verted to lowercase, characters with diatric symbols (aaghccents or cedillas) are
replaced with their more common versioisdgo e, i¢, oo n, etc), spaces are trimmed,
and finally hyphens, apostrophes, punctuation symbolsgiisdire removed.

e substring verifies if one string is a substring of another (can be ayres in in
integerandint, a postfix, as inelephoneandphong

Chapter 6. Related Work 107

e Hamming distance counts the number of positions in which the two strings

differ. For examplesynchroniseandsynchronizénave an Hamming distance of
1.

¢ edit distancetakes two strings and counts the minimum number of insestio
deletions, substitutions of characters required to t@mnsfone string into an-
other (usually normalised by the length of the longest gjtifror examplear-
ticle andaricle have a distance of 0.14, whigticle andpaperhave a distance
of 1.

e n-gram takes two strings and counts the number of commgnams (sequences
of n characters). For examplarticle andaricle have a similarity of 0.5article
andpapera similarity of O whilearticle andpatrticle have a similarity of 0.83.

Comparing only the labels of the entities in two ontologiaamot handle synonyms
(different words that name the same entity) and homonynmésaord used to name
different entities).

Language-based techniques In order to deal with the problems caused by syn-
onyms and homonyms, more sophisticated matchers consatdswn label to have a
structure and a meaning, derived by their use in some ndamglage. Euzenat and
Shvaiko distinguish betweantrinsic andextrinsictechniques.

In intrinsic techinques, the text is normalised to redueeftmm to a standard form
that is more easily recognised:

e tokenisation is the process of demarcating and possibly classifying@es of
a string of input characters. For example, the senteade&nces in imaging
technology becomes the list of strings“advances”, “in”, “imaging”, “tech-
nology”>.

¢ lemmatisation strings of tokens are morphologically analysed to redinesnt
to a normalised, standard form. In many languages, wordsapp several in-
flected forms: for example, in English, the vétb walk’ may appear asvalk’,
‘walked’, ‘walks’, ‘walking’. The base form;walk’, that one might look up
in a dictionary, is called the lemma for the word. The Ksadvances”, “in”,
“imaging”, “technology”™> would become<advance”, “in”, “image”, “tech-
nology”>.

Chapter 6. Related Work 108

e elimination words that carry little meaning (like articles or prepasis) are
dropped. For example, in the list above the tokieh would be dropped yield-
ing <"advancé, “image”, “technology”>.

e term extraction morphologically similar phrases are recognised, usirttepas

learnt from large corpora. This is normally obtained idgmtig the role of the
words (whether they are noun, verb, ...) and then compahegdsulting struc-
tures. For exampléloun; Noun, andNoun, of Noun; are considered equivalent,
and thereforénewspaper article”would be considered equivalentarticle of
newspaper”

In extrinsic techniques, use external common knowledgeoanain specific thesauri
to match the entities:

e lexicons or dictionaries, are set of words with a definition in natlaaguage.

e multi-language lexiconsare dictionaries where the definition is replaced by a

word in another language

¢ thesauri are lexicons where the relations between words are madeigx@ne
of the most commonly used thesaurus is WordNet [41].

Extrinsic techniques help in dealing with synonyms. Howewerds are often used
with different meanings, and a resource such a theaurushzam deceiving relations,

increasing the false positives and consequently decrgasiecision. To deal with

this problem the words used in labels need to be disambiduedstricting the senses
to those consistent with the context. The probability distion computed by the

predictor can help here, providing additional contexta&imation.

Alignment reuse They store alignment used in previous matching, assumiag th
many ontologies or schemas can be similar to previously meatones.

Structure-level techniques

Internal structure techniques Deal with internal constraints applied to definitions
of the entities: data types, cardinality of attributes,...

Chapter 6. Related Work 109

Graph-based techniques ~ They consider the input ontologies as labelled graphs, and
are based on the intuition that if two nodes in two ontologies similar, then their
neighbours will be likely similar.

e graph matchingsearches the maximally common directed subgraphs

¢ children matchingthe similarity between two inner nodes is computed based on

the similarity of their children nodes

e |eaves the similarity between two inner nodes is computed basethersimi-
larity of their leaves nodes

e relations the similarity between two nodes is computed based on takitions
with other nodes (properties)

Semantic based techniques

In a semantic method the model-theoretic semantics is wsgdtify the results [16]:
deductive methods are used on preprocessed ontologies.

Upper level Ontology ~ The lack of common ground between the ontologies to map
is covered by upper level formal ontologies like SUMO or DAL (22] to provide a
logical based system that the matcher can use to reasontaleardrrespondences.

Deductive techinques ~ They give a semantic interpretation to the ontologies, a&d u
well grounded deductive methods:

e SAT baseddecompose the tree to a set of node matching problems|atizgs
each node matching into a propositional formula
axioms— rel(context, contexp)
and check the validity of the formula. The axioms encode #ukground knowl-
edge

e Description-Based technigues/ercome some of the limitation of the SAT based

approach

Chapter 6. Related Work 110

6.4.4 Matching composition

6.4.5 Projects review

Following the classification used in [16], we divide the oxrew of the projects into
thoseschema basednd thosenstance basedA project is schema based when exploit
mainly the conceptual definitions of the ontologies to finel tbrrespondences, while
Is instance based when uses the instances of the ontolotgyefeomparisons.

Schema based

Mafra Developed by Maedche, Silva and Rocha [44], MAFRA is oridritehelp
human users to map ontologies from different institutions.

The conceptual framework divides the process of matchimgomtologies into five
steps, and four transversal tasks. The process startsibg tiy uniform the language
in the source and the target ontologies. Once the syntastidexical heterogene-
ity have been reduced, it proceeds to discover the simjlatween the entities in
the ontologies using a multi-strategy and multi-algorithrocess, that analyse both
the lexical and the property similarity of terms. Once thaikrities have been com-
puted, they are used to create semantic bridges betweentitiesin the source and
target ontologies. Then the process continues, evaluétegemantic bridges and
transforming the instances from the source ontology todinget ontology. Finally, a
post-processing is executed to improve the alignment.

Similarity Flooding It uses an hybrid matching algorithm based on similarityppro

agation. Consider the schemas as directed labeled grapbgedhnique starts from a

string-based comparison between vertices nodes in orderdan initial alignment.

It then iterates, spreading the similarity from similar esdo adjacent neighbours

through propagation coefficients. The similarity incresasetil the fix point is reached.
It consider the alignment as a solution to a clearly stateurogation problem.

S-Match The S-Match project [24], developed by Giunchiglia and $kvaat the

University of Trento, is a rationalised re-implementatminCTXMatch [7]. It takes

two trees, and computes the strongest semantic relatiorekateach pair of nodes.
The process is organised into four macrosteps:

1. Compute concepts of labels, for all labels in the two treBEsis macrostep is
divided into tree substeps:

Chapter 6. Related Work 111

(a) tokenise labels: labels composed by more than a word igiged into
separated tokes

(b) lemmatise tokens: the lemma of the word is obtained gbliorms con-
verted to singular, etc)

(c) use oracle (WordNet) to obtain senses of lemmatisedntkeifferent
senses are joint with a disjunction to form a propositionatfula for each
label. Tokens from expression like “wines and cheeses” fauiisjunction
(wineV cheesg while terms from expression like “Italian cheeses” form a
conjunction {talian A cheesg

2. Compute concepts at nodes as conjunction of the concdabelf formulae in
the concept path to root

3. Compute semantic relations between pairs of labels framwo trees

4. Compute semantic relations between pairs of nodes frerwth trees

The semantic relations between pairs of labels are usedpas for computing the
relations between nodes. The system tries to verify the ditam

axioms— rel (contex, contexg)

Theaxiomsare the computed relations between labels, winlletexiandcontexgare
the concepts at the nodes. As the propositional solversagisdiability checkers, the
formula is then converted to:

axiomsA —rel (contexk, contexg)

In [25] the developer of S-Match present an improved versibtiheir work, that
exploit the structure of the formulae above to increase peed of satisfiability com-
putation.

In their work, the concepts at the nodes are divided into tvnnoategories:

e Conjunctive conceptall the labels contains only conjunctive concepts
¢ Disjunctive conceptssome of the labels contains disjunctive concepts

If all the concepts are conjunctive, the CNF formula is a Hionmula, and its satisfi-
ability can be computed in linear time with the unit resaduatrule.

If some of the concepts are disjunctive, it is not possiblassume anything about
the structure of the formulae. However, it is possible toi@gvbe space explosion that

Chapter 6. Related Work 112

may arise converting the formula to CNF: the disjunctioresraplaced with variables
and it is stated that this variables imply the subformulay tbubstitute.

The optimised version of S-Match is particularly efficiemt large classification,
where it perform much better than COMA and than the origireabkion of S-Match,
and it requires much less memory than Similarity Flooding.

COMA/COMA++ The COMA project [13] is a schema matching system, and can be
applied to XML or databases schemas. The schemas are teahgdalirected acyclic
graphs that are then compared to find correspondences. mtralédeain COMA is to
combine different matching algorithms to find better resuMatching is an interactive
and iterative process, composed by three main steps:

e Optional user feedback:the user can manually provide match correspondences,
confirm or reject proposed matches

e Execution of matchers: multiple matchers are used independently to obtain
several similarity measures. Matchers can be simple, ydsrreuse-oriented.

e Combination of individual match results: the results are aggregated into a
combined value for each pair, using some strategy (like tieesge or the maxi-
mum of the results), and then the candidates with the besdbsityvalues above
a threshold are chosen.

COMA introduces also the reuse of past alignments, in tha foirwhole schemas or
fragments of them.

COMA++ [1] extends COMA improving the graphical interfaaa fa better user
interactivity, improving the reuse of past alignments agplacing the internal repre-
sentation language to support schemas and ontologiegmiitdifferent languages.

Instance based

Glue Glue [14] combines different machine learning techniquesrd correspon-
dences. The matching is based on a representation of siyitetween concepts
formally defined as their joint distribution. The similaribetween two concepsand

B is given by their joint distributiorAN B. Computing the joint distribution means
finding instances that belongs to both conceptdB. Usually instances of the two
concepts are separated: to solve this problem they use nelelairning to develop two
classifiers for the instances.

Chapter 6. Related Work 113

The instances oA are used to create a classifier farthat is then used to classify
the instances d8, and vice versa. Deciding which learning algorithm to usg\a&hich
information to exploit is difficult, and therefore a multaming strategy is used. The
predictions supplied by the algorithms are then combined bneta-learner.

Available domain constraints and general heuristics is ated to improve accu-
racy.

Mixed approach

QOM The QOM project [15] addresses the problem of efficiency itolmgy map-

ping and considers the trade off between efficiency and tyudlhis is done introduc-

ing the idea of filtering correspondence candidates thatialikely to be verified.
The matching process is iterative, and the main steps are:

e Selection of candidate pairswhose similarity should be checked: candidates
are selected using different strategies to classify thamnmore promising and
less promising ones. The strategies can use the labels pathse(only similar
ones are kept), the hierarchy of the ontology (the ontokbgre mapped from the
top down), the result of previous iterations (only termsseléo terms mapped in
the previous iteration are mapped) or a combination of these

e Similarity computation: the similarity is computed using a range of similarity
functions. These can measure the string similarity of tbellg can check if the
concepts share the same properties, the same descendarsi@te siblings...

e Similarity aggregation: the measures given by these functions are then com-
bined. The candidates with low aggregate measures aradésahen bijective
candidates (candidates for which the relation can work ith lairections) are
kept and finally the candidates with the strongest aggregatesure are kept.

These steps are repeated until no new correspondence caarize f

6.4.6 Approximate Structure-Preserving Semantic Matchin g

Most of the projects described above aim at finding corredpooes between terms
in ontologies. In open systems, such as the one envision€&pbypKnowledge, they
can be used for thenline mappingf the contentof messages, or of theontentof

Chapter 6. Related Work 114

invocations to web services: for example a product may bledalifferently in a
customer and in a seller peer.

However, it is often necessary to adapt structures: for ghanas we have seen
in Section 2.7, in OpenKnowledge peers need to offimetheir methods to the con-
straints in the interaction models (parameters can becualith different names, they
might be in different positions, or their structure might téferent). Similarly, it
might be necessary to dynamically map the invocation of a sebice, as defined in
a workflow, to the WSDL interface of the web service.

Often it is not possible to map exactly every element in the sivucture: how-
ever, it can be enough to be able to invoke the service, pgssith some parameters
set to a default value. The work presented in [22] deals wighgroblem of approx-
imate matching of structures. In this work, Web services@mesidered first-order
predicates (that is, inputs and outputs are all argumeantsl)are then transformed into
trees. Trees are matched, finding the correspondencesdretive nodes and evaluat-
ing whether they are similar enough.

The matching is performed in two steps: first the nodes aremedt and then the
trees. Node matching considers only the labels at the nautesha context provided
by the tree. It uses S-Match, described above, to find thdoekabetween the nodes
of the two trees: the concept at each node is expressed agallfmymula, and the
relation is verified using a SAT algorithm.

The correpondences found by node matching are then filtesad) lbstraction
theory. Abstraction theory categorises the type of abstra®perations. Among the
them, some operations provide the only possible ways toalfiest-order term chang-
ing its signature but mantaining completeness. Some of dheespondences found
in the node matching do not represent these operation: ftrerg may happen that
functions are wrongly mapped to variables, or variablesutacfions. These corre-
spondences are dropped, leaving only those that maintaipleteness.

Tree edit distance is used on the allowed correspondencesitpute the similarity
between the trees. In its formulation, tree edit distangesicer the basic operations
that can be applied to a tree to change it into another treditiad, removal and
replacement of a node. The abstraction operations seereavevmapped to these
basic operations, and a cost is assigned to them. The d&gocbmputes the minimal
cost of transforming one tree into another.

At the end of the whole procedure, we have a set of correspmedebetween
nodes (that, in the context of service invocation, can berpneted as correspondences

Chapter 6. Related Work 115

between parameters), and a value that summarises therdiyrletween the trees. If
the similarity is above a certain threshold, the matchingassidered valid, and the
correpondences can be used.

In OpenKnowledge, as we have seen in Section 2.7, this puoeésiused to eval-
uate the capability of a peer to perform an interaction mdiyetomparing the con-
straints in it with the peer’s services, and to create theptmta used during the run of
the interaction to call the services provided by the peemwanstraints are met.

6.4.7 Dynamic Ontology Refinement

This approach, developed by Fiona McNeill, Alan Bundy andddaSchorlemmer
at the University of Edinburgh [40], tries to tackle the a#@s in plan execution due
to mismatch of ontologies between the involved agents. Timei@to improve the
robustness of planning, adapting the theory behind thesibe after failures. It is not
exactly an ontology mapping system, but it deals with irteoa among agents that
do not share the same ontology.

In this model the plan is accompanied by a justification ofngwtep. The justi-
fication is produced by a "plan deconstructor” that analysegplan produced by the
planner and explains the theory that motivate each stepthduy is the knowledge
of the world that the agent has, represented by its ontology.

If the execution of the plan fails, the agent tries to find tkaat point in the plan
where the failure has occurred, and then tries to underdtamndthe justification for
the step caused the failure. For example the ontology migin loversimplified the
domain, and thus it might have justified a wrong decision.

Then, if possible, the agent tries to refine the ontologysiidg interacting with
the other agent, to adapt it better to the domain, and repeattmmunication process.
In the current version, the changes yielded by the refinesremet permanent.

6.5 Natural Language Processing

Some of the ideas at the basis of the work presented in thisstbeginates from the
field of Natural Language Processing. One of these ideas ig#iisation that dialogue
norms and conventions appear at syntactic level: a reqsesirmally followed by
an answer, an offer by an acceptance or a rejection. Thetiongiabout syntactic
norms has prompted researchers in NLP to study the posgiildialogue grammars

Chapter 6. Related Work 116

that have often been represented as finite state machinese whe speech acts are
the transition states between admissible states of theglial The use of statistical
analysis of corpora in order to extract the posterior praigiof a term in a text given
the previous terms has inspired quite clearly the basidgtiohs behind this thesis.

6.5.1 Dialogue translation

For example, in automatic dialogue translation in facdatme situations, the ability to
predict the type of incoming dialogue speech acts (suchcagests, replies, rejections)
can improve the results: following the method used in to tedords in texts, in
[50], a corpus of manually tagged dialogues is analysed deroto extract the pos-
terior probability of a speech aclj given the history of the previous aats...j_1 .
Being impossible to determine the probability of arbithadleng sequences, they use
n-grams only N previous speech acts are usefl:ny1...dj—1. In the paper the au-
thors analyse the possibility of using a dialogue gramnmathé form of a Finite State
Machine that encodes the state of a dialogue (starting pleask proposal or reac-
tion). First, they tried to exploit the knowledge provideglthe grammar by training
directly the grammar attributing probabilities to the statind to the transitions, but
this approach yielded results consistently worse thanithple statistical one. Then,
they included the knowledge in the interpolation formuliagd dhen they replaced old
dialogue acts with states: being the number of states |lessttte number of speech
acts, they were able to cluster more results with the sanasdat

Finally, the authors studied the possibility of exploitthg knowledge of the speaker.
They tagged each speech act with the contributing spealedingnthe explicit the di-
rection of the acts: if speaker A poses a question, and thealema further utterance,
it is likely to be an explanation or a correction; if the sedanterance is produced by
speaker B, then it is likely to be a reply. The use of this kremlgle was shown to
improve the performance of the predictor.

6.6 Summary

In Chapter 2 we introduced the concepts relevant to the workemted in the thesis,
in particular those related to the communication betweesntsgand to the problem
of tackling heterogeneity in the communication. In this Qiea we overviewed the
various approaches available in literature.

Chapter 6. Related Work 117

We have first described the mentalistic and the social appesato comunication
between autonomous agents; we have then moved towardsrtiposiion of passive
services, either by planning using rich services’ desii, or by designing a work-
flow of activities grounded to the services. The OpenKnogtegdroject described
in Section 2.7 lays between the two models: the peers arefprean the choice of
pre-defined interactions.

We then analysed the problem of Ontology Matching. Firstpvesented the clas-
sifications available in literature for the source of misohais between ontologies, and
the classifications used in the main reviews for the ontologyching algorithms. Sec-
ond, we described the basic techniques used in the matdgogtams, and finally we
overviewed a set of interesting and relevant projects.

Chapter 7
Conclusion

We increasingly require software applications to inte@ae with another: they are
becoming access points for services distributed in the axtvwwvorking as providers
or brokers for these services. However, applications artenrby different develop-
ers with different goals in mind, and they also evolve overeti their main common
feature is their diversity.

The idea behind the semantic web is to define these servickshandata they
process using a machine-readable language, defined in alogytin order to find
and combine them automatically. However, while there hasnkeeslow but steady
adoption of a small set of common syntaxes (such as RDF or QiN&de has been no
agreement over the semantics used: many different onegpgiost of them written
in RDF or OWL, are used to describe the services and their data

To overcome this heterogeneinty, a variety of ontology mmiaig algorithms have
been developed. They aim at statically matching two or matelogies, finding all
the possible correspondences between them. However, Wwheaim of the matching
is to allow communication between agents, they do not ekgileiadditional informa-
tion provided by the context of the interaction itself. Thditional information can
improve efficiency, by removing the need to compare termedyiko be unrelated to the
interaction, and can improve both completeness (recdatgndow because of a lack of
domain-specific information, and correctness (precisibynyeducing ambiguities that
a lack of context normally bring.

The work presented in this thesis is a system that first aaalyee history of similar
interactions in order to create a statistical model of ometgf interaction and then
uses this model to compute a probability distribution far tontent of the exchanged
messages in new interaction runs. The probability distidims can be forwarded to

118

Chapter 7. Conclusion 119

an ontology matching algorithm that focuses its computei@ffort on verifying the
suggested hypotheses, without wasting time on evaluatirggpondences not related
to the interaction. The model is updated feeding back to tediptor the results of the
matching process.

The model is based on two main assumptions about the corftémt snessages:
the terms in the messages appear with a frequency reflecpngpability distribution
in the community of users and the context of the interactiadehitself; the terms in
messages may have relations with other terms in previousages. The relations can
be simple correlations, can be implicit or explicit ontaleay relations that the system
is able to understand.

The evaluation of the proposed method shows that a relgtsrelall number of
interaction is often enough to obtain a remarkable improxenof the efficiency of
the matcher (about 10 times quicker), while keeping prenisind recall close to the
same values of the baseline model that does not use the faredicproblem discov-
ered during the evaluation process is that a wrong prolgbiistribution can sway the
matcher, decreasing both precision and recall. This hapgaring the initial period,
when the model is still unstable and unprecise: after thiogdethe computed distri-
bution tends to reflect the actual distribution. The testelshown that, if even if we
trade off precision for efficiency, recall remains higheanithe baseline.

The main requirement is to use a framework that allows thergesn of the
interaction sequence: workflow based systems provide thetifinality, but are often
centralised. With the OpenKnowledge project we have shtvatthese results can be
obtained in a purely peer-to-peer environment.

7.1 Future work

During the work presented in this thesis | had to decide whigas to cover more in
detail, and which areas to leave out for lack of time and spaceing the development,
limitations were identified and | often had to opt for simg@l#tions, as the solutions,
although intellectually interesting, had implication® teast to be tackled in a single
thesis. This section tries to present some of the ideas fordwork that could extend
and improve the current state of the system.

Chapter 7. Conclusion 120

Drop assertions that are not consistent.

When the predictor needs to instantiate the statisticalehtadthe current interaction

in order to compute the probability distribution of termg #ovariable, it only drops
assertions whose conditi@nhis not consistent with the current state of the interaction.
For example, as we have seen in Section 4.4, assertionstalequbsterior probability

of the offer being about a compact car, given that we askedrf@ccommodation, are
removed. However, assertions about the prior probabifithe offer being a compact
car are not removed. Introducing a basic reasoner that remyar discounts, asser-
tions about terms considered to be inconsistent might irgtioe performance of the
predictor.

Matching different interactions

One of the limitation of the work presented here is that thelehof an interaction is
strictly bound to one interaction model. Over time, the pg#rcreate many of these
models for the different interactions it is involved in. Hever, if the interaction model
used for a particular task changes, the knowledge collemetie previous version of
the interaction becomes useless: the peer has to staiingeatew model.

Therefore, recognising similar interactions would be aenasting development.
When a peer starts an interaction it has never seen befa@,ld match it against all
those previously encountered, possibly finding one or mionéay. Then, it could use
the information contained in the corresponding modelsgiveid by some measure of
confidence in the similarity, to predict the content of thevmeteraction.

Extending ontologies

It was suggested as one of the applications of the predict8ection 3.5, but it was
not analysed in detailed. The assertions about ontologatations can be used to
drive the extension of the ontology when failures to find magp occur. When a
message arrives with a foreign tesn that does not correspond to any known téym
in the peer’s ontology, it can be possible to verify what wise ontological relations
in the model that the term should have most likely satisfiédhd same event takes
place with a certain frequency, the system could suggesathew term, satisfying the
ontological relations in the model, should be added to thelogy.

Chapter 7. Conclusion 121

a(customer,C) ::
null < wantSLR()
then
slr_model(Brand,Model) = a(camera_vendor,V)
«— brand(Brand) and model(Model)
or
compact(Brand,Model,Lens = a(camera_vendor,V)
< «— brand(Brand) and model(Model) and lens(Lens) >

Figure 7.1: Specific interaction model

Expressivity of ontological relations

At the moment only basic ontological relations are used leyathtological strategies:
subclassOf , superclassOf |, siblingOf , propertyOf , domainOf andrangeOf . An
interesting development could be to increase the expiigssif/the relations in the
assertions. However, the search strategy should be re\aséte moment, all the pos-
sible alternative relations are verified, but it would beaadtible if the set of relations
grows due to the increased expressivity. Some heuristiteinhoice of the alternative
relations to evaluate should be found.

Types of dialogues and predictor usefulness

The predictor helpsun-time (also calledon-line) matching: it helps matching terms
that arrive in messages during the execution of an intemactiNot all interactions
benefit from using the predictor: interactions where thetennof messages is strictly
defined before the run do not gain from the predictor. In thetaactions most of the
matching is off-line (for example, between constraints #re@lmethods in the plug in
components used in OpenKnowledge).

A specific interaction about buying a digital camera like ¢me shown in Figure
7.1 is strictly defined. This interaction has constraintsdbtaining resolution, type
of lens, brand, and so on. In a model like OpenKnowledge, @mado match at
subscription time these constraints with the methods ipbhg-in components locally
installed in a peer, as described in Section 2.7. These reomist will be satisfied
by providing very specific information, possibly only nunoad values (resolution) or
elements from a list known a priori (available brands foraega). Matching is mainly

Chapter 7. Conclusion 122

a(customer,C) ::
ask(Product) = a(vendor,V) < want(Product)
then

a(c_refine,C)

a(c_refine,C)

inquire(PProperty) < a(v_refine,V)

then

definition(PProperty,Value) = a(v_refine,V)
«— define(PProperty,Value)

then

a(c_refine,C)
or

offer(0Offer) < a(v_refine,V)

Figure 7.2: Generic interaction model

offline, performed both for finding the proper interactiorrtm (I need to buy a digital
camera, not an analogue camera), and then to bridge theraiotstwith the peers’
capabilities (methods in the OpenKnowledge, as we have@est).

A more generic interaction about buying a product, like the shown in Figure
7.2, requires more run-time matching: constraints haveetmbre generic, and some
of the requests are defined at run-time. For example, whéiatts should be asked to
a customer depends on what is asked by the customer, andtdandefined a priori.
The offline matching is rather minimal, while most of the wéiks to be performed at
run-time.

In the first case, the interaction model designer enforcésa semantics, in the
second case the community of users will define the semangtiasihg it.

It would be interesting to study how different interactigresifications can influ-
ence the usefulness and the efficacy of the predictor.

Appendix A - Formalisms and

Conventions

Font use

e LCC code, LCC variable names and LCC constraints are writtegpewriter

font: Product, refine(Product,Refinement), ...

e The content of LCC variables, usually terms from one of thergeontologies,
are written in italics and surrounded by quotésccommaodation’, “hotel” ,...

Ontology mapping

e An ontology is represented bY; where the index refers to the origin of the
ontology:

— In the examplesQ;, is the agent’s ontology, whil®; is the ontology of
interaction run, formed by the union of the terms used by tiiferdnt
agents.

e W is the term to be mapped from a foreign ontology to a téyrm the local
ontology

Probability
e P(x) is the probability of the eveng

e P(X) is the probability distribution of a random variab¥e and corresponds to
the vector:
P(X) = (P(X=xX1),...,P(X=Xn))

123

Chapter 7. Conclusion 124

Sets

e A setis written with a Greek or Latin capitalised lett&t; M.

e The symbol|W| is used to indicate the cardinality &f: if W = {a b,c}, then
|W|is 3

Bibliography

[1] D. Aumueller, Hong-Hai Do, S. Massmann, and E. Rahm. 8ehand ontology
matching with coma++. II8IGMOD ’'05: Proceedings of the 2005 ACM SIG-
MOD international conference on Management of dgiages 906—908, New
York, NY, USA, 2005. ACM Press.

[2] A. Barker and B. Mann. Agent-based scientific workflow qasition. InAstro-
nomical Data Analysis Software and Systems Ydfume 351, pages 485-488,
2006.

[3] P. Besana. A framework for combining ontology and schematchers with
dempster-shafer. IRroceedings of the 1st International Workshop on Ontology
Matching (OM-2006)volume 225. CEUR-WS.org, 2006.

[4] P. Besana and D. Robertson. Probabilistic dialogue nsddedynamic ontology
mapping. InProceedings of the Second ISWC Workshop on UncertaintyoReas
ing for the Semantic Welolume 2. CEUR-WS.org, 2006.

[5] P. Besana and D. Robertson. How service choreographigtgta reduce the
ontology mapping problem. I/ sWC20072007.

[6] D. Booth, H. Haas, F. McCabe, E. Newcomer, M. ChampionF&rris, and
D. Orchard. Web services architecture. http://www.w3/6Ry2004/NOTE-ws-
arch-20040211/, February 2004. W3C web site.

[7] P. Bouquet, L. Serafini, and S. Zanobini. Semantic cowtion: a new approach
and an application. 2003.

[8] P. Bourque, R. Dupuis, A. Abran, J. W. Moore, and L. Tripphe guide to the
software engineering body of knowledgéEEE Software 16(6):35-44, 11-12
1999.

125

Bibliography 126

[9] M. Carbone, K. Honda, and N. Yoshida. Structured gloagpamming for com-
munication behaviour. http://www.pidtech.com/xwikitbriew/research/papers,
2006.

[10] P. R. Cohen and C. R. Perrault. Elements of a plan basatiof speech acts.
Cognitive Scienge3:177-212, 1979.

[11] P.R. Cohen and H.J. Levesque. Rational interactioh@gasis for communica-
tion. Intentions in Communicatigmpages 221-256, 1990.

[12] Li Ding, T. Finin, A. Joshi, R. Pan, R. Scott Cost, Y. Pey Reddivari, V.C.
Doshi, and J. Sachs. Proceedings of the thirteenth acmreoie on information
and knowledge management. Pnoceedings of the Thirteenth ACM Conference
on Information and Knowledge Managemezi04.

[13] Hong Hai Do and E. Rahm. Coma - a system for flexible cortiddm of schema
matching approaches. VLDB, pages 610-621, 2002.

[14] A. Doan, J. Madhavan, R. Dhamankarse, P. Domingos, arttbfevy. Learning
to match ontologies on the semantic wekhe VLDB Journal12(4):303-319,
2003.

[15] M. Ehrig and S. Staab. Qom - quick ontology mappingniternational Semantic
Web Conferenggpages 683—697, 2004.

[16] J. Euzenat and P. Shvaikontology matchingSpringer, Heidelberg (DE), 2007.

[17] J. Euzenat, H. Stuckenschmidt, and M. Yatskevitchrobhition to the ontology
alignment evaluation 2005. IAroceeding of Intergrating Ontologies workshop
at K-CAPO 20052005.

[18] F.McNeill-P. Shvaiko J.Pane F. Giunchiglia, M.Yatgisdh and P.Besana. Ap-
proximate structure preserving semantic matching=eGAI 2008 2008.

[19] F. Giunchiglia. Contextual reasoning. Technical neptRST, Istituto per la
Ricerca Scientifica e Tecnologica, 1992.

[20] F. Giunchiglia. A context-based framework for menggbresentation. Technical
Report 9807-02, IRST Istituto per la ricerca scientificaantdogica, July 1998.

Bibliography 127

[21] F. Giunchiglia and P. Bouquet. Introduction to contettreasoning: an artificial
intelligence perspective. Technical report, IRST - Idttper la Ricerca Scien-
tifica e Tecnologica, 1997.

[22] F. Giunchiglia, F. McNeill, M. Yatskevich, J. Pane, Reddina, and P. Shvaiko.
Approximate structure preserving semantic matchingDDBASE’'08 2008.

[23] F. Giunchiglia, F. McNeill, M. Yatskevich, C. Sierrana J. Sabater. Evaluating
good answers in open knowledge. Technical report, Openkaume, 2007.

[24] F. Giunchiglia, P. Shvaiko, and M. Yatskevich. S-mateim algorithm and an
implementation of semantic match. Rroceeding of the European Semantic
Web Symposiunpages 61-75, 2004.

[25] F. Giunchiglia, M. Yatskevich, and E. Giunchiglia. Efént semantic matching.
In ESWC’05 pages 272—-289, 2005.

[26] F. Giunchiglia, M. Yatskevich, and F. McNeill. Structupreserving semantic
matching. InProceedings of the ISWC+ASWC International workshop on On-
tology Matching (OM)Busan (KR), 2007.

[27] P. Grenon and B. Smith. Snap and span: Towards dynanaitasntology.
Spatial cognition and computatipd(1):69-104, 2004.

[28] T. R. Gruber. A translation approach to portable onggispecificationsKnowl-
edge Acquisition5(2):199-220, 1993.

[29] T. R. Gruber and G. R. Olsen. An ontology for engineenmathematics. KR,
pages 258—-269, 1994.

[30] M. Gruninger and M. Fox. The logic of enterprise modwejli 1995.

[31] Li Guo, D. Robertson, and J. Chen-Burger. A novel apphofor enacting the
distributed business workflows using bpel4ws on the mgérd platform. In
IEEE Conference on E-Business Engineerpages 657-664, 2005.

[32] A. Hameed, A. Preece, and D. Sleemddntology Reconciliationpages 231—
250. Springer Verlag, Germany, 02 2003.

[33] M.F. Hassan, D. Robertson, and C. Walton. Addressimgtaint failure in agent
interaction protocol. IfProceedings of the 8th Pacific-Rim International Work-
shop on Multi-Agents (PRIMA '052005.

Bibliography 128

[34] Y. Kalfoglou and M. Schorlemmer. Ontology mapping: gtate of the artThe
Knowledge Engineering Reviet8(1):1-31, 2003.

[35] N. Kavantzas, D. Burdett, G. Ritzinge, T. Fletcher, Yafan, and
C. Barreto. Web services choreography description languagysion 1.0.
http://www.w3.0rg/TR/2005/CR-ws-cdI-10-20051109/ Mémber 2005.

[36] D. Lambert and D. Robertson. Matchmaking multi-partieractions using his-
torical performance data. IRroceedings of the Fourth International Joint Con-
ference on Autonomous Agents and Multi-Agent Systems (8ANA pages
611-617, 2005.

[37] D. Lenat and R. Guha.Building Large Knowledge-Based System&ddison
Wesley, 1990.

[38] J. McCarthy. Notes on formalizing context. Rroc. of the 13th International
Joint Conference on Artificial Intelligenc€hambery, France, 1993.

[39] J. McGinnis and D. Robertson. Realizing agent dialeguih distributed proto-
cols. 2004.

[40] F. McNeill, A. Bundy, and M. Schorlemmer. Dynamic oragly refinement. The
University of Edinburgh, 2003.

[41] G. A. Miller. Wordnet: a lexical database for engli€€fommun. ACM38(11):39—-
41, 1995.

[42] I. Niles and A. Pease. Towards a standard upper ontologyOIS '01: Proceed-
ings of the international conference on Formal Ontologyrifokmation Systems
pages 2-9, New York, NY, USA, 2001. ACM Press.

[43] N. Noy and M. Klein. Ontology evolution: Not the same afiema evolution.
Knowledge and Information Systens428—440, 2004.

[44] S. Nuno and J. Rocha. Mafra - an ontology mapping franmkviar the semantic
web. InProc. of the 13th European Conf. on Knowled#/899.

[45] N. Osman, D. Robertson, and C. Walton. Run-time modekkimg of inter-
action and deontic models for multi-agent systemsPinceedings of the Third
European Workshop on Multi-Agent Systepages 248-259, Brussels, Belgium,
December 2005.

Bibliography 129

[46] M. Paolucci, T. Kawmura, T. Payne, and K. Sycara. Sermanatching of web
services capabilities. IBemantic Web - ISWC2002002.

[47] J. Pasley. How bpel and soa are changing web servicedapauent. Internet
Computing, IEEE9, issue 3:60— 67, May-June 2005.

[48] F. Puhlmann and M. Weske. Using the pi-calculus for falimng workflow
patterns. Ir8rd International Conference, BPM 200&0lume 3649/2005, pages
153-168. Springer, 2005.

[49] E. Rahm and P. A. Bernstein. A survey of approaches tomaatic schema match-
ing. VLDB Journal: Very Large Data Basg$0(4):334-350, ???? 2001.

[50] N. Reithinger, R. Engel, M. Kipp, and M. Klesen. Prettigtdialogue acts for a
speech-to-speech translation systemPtac. ICSLP '96 volume 2, pages 654—
657, 1996.

[51] D. Robertson. A lightweight coordination calculus fagent systems. IBeclar-
ative Agent Languages and Technologgsges 183-197, 2004.

[52] D. Robertson. Multi-agent coordination as distrilmlitegic programming. In
International Conference on Logic Programmijr&ant-Malo, France, 2004.

[53] D. Robertson, C. Walton, A. Barker, P. Besana, Y. ChemngBr, F. Hassan,
D. Lambert, G. Li, J. McGinnis, N. Osman, A. Bundy, F. McNgill van Harme-
len, C. Sierra, and F. Giunchiglia. Models of interactioraagounding for peer
to peer knowledge sharingdvances in Web Semantids in press.

[54] J.R. Searle.Speech acts: an essay in the philosophy of langudg@mbridge
University Press, 1969.

[55] M. Shaw and B. Gaines. Comparing conceptual structiCessensus, conflict,
correspondence and contrast, 1989.

[56] P. Shvaiko and J. Euzenat. A survey of schema-basedmgtapproacheslour-
nal on Data Semanti¢cg:146—-171, 2005.

[57] C. Sierra, R.J. Aguilar, P. Noriega, J. Arcos, and M.d¥at Engineering multi-
agent systems as electronic institutiortsuropean Journal for the Informatics
Professional4, 2004.

Bibliography 130

[58] M. Smith, C. Welty, and D. McGuinness. Owl web ontologydg, raccomanda-
tion. web, February 2004.

[59] R. Studer, V. Benjamins, and D Fensel. Knowledge ereging: Principles and
methods Data and Knowledge Engineering5:161-197, 1998.

[60] Willis J. Tilley CB. Unified medical language system luas National Library of
Medicine, 2004. course presentation.

[61] M. Uschold, M. King, S. Moralee, and Y. Zorgios. The eptése ontology.
Knowledge Engineering Reviet3, 1998.

[62] W.M.P. van der Aalst and A.H.M. ter Hofstede. Yawl: Yetather workflow
languagelnformation System$80(4):245-275, 2005.

[63] R. van Eijk, F. de Boer, W. van de Hoek, and J.J. Meyer. @madically gener-
ated ontology translators in agent communicatirternation Journal of Intel-
lignet Systemsl6:587—607, 2001.

[64] W.M.P. var der Aalst, A.H.M. ter Hofstede, B. Kiepuszty and A.P. Barros.
Workflow patterns. Technical report, http://www.workfloatperns.com/, 2001.

[65] P.R. S. Visser, D. M. Jones, T. J. M. Bench-Capon, and.RR. $have. An anal-
ysis of ontological mismatches: Heterogeneity versugapterability. InAAAI
1997 Spring Symposium on Ontological EngineerBiginford, USA, 1997.

[66] G. Wiederhold. Mediators in the architecture of futiméormation systems. In
Michael N. Huhns and Munindar P. Singh, editdReadings in Agenigages
185-196. Morgan Kaufmann, San Francisco, CA, USA, 1997.

[67] M. Wooldridge. An Introduction to Multiagent Systemsdohn Wiley and Sons,
2002.

[68] R. Yager. Advances in the Dempster-Shafer Theory of Eviderkshn Wiley,
New York, 1994.

