
Flexible Service Composition

Adam Barker

Doctor of Philosophy

Centre for Intelligent Systems and their Applications

School of Informatics

University of Edinburgh

2007

Abstract

Service-oriented architectures are a popular architectural paradigm for building soft-

ware applications from a number of loosely coupled, distributed services. Through a

set of procedural rules, workflow technologies define how groups of services coordi-

nate with one another to achieve a shared task. A problem withworkflow specifications

is that often the patterns of interaction between the distributed services are too com-

plicated to predict and analyse at design-time. In certain cases, the exact patterns of

message exchange and the concrete services to call cannot bepredicted in advance, due

to factors such as fluctuating network load or the availability of services. It is a more

realistic assumption to endow software components with theability to make decisions

about the nature and scope of their interactions at runtime.

Multiagent systems offer a complementary paradigm: building software applications

from a number of self interested, autonomous agents. This thesis presents an inves-

tigation into fusing the agency and service-oriented architecture paradigms to facil-

itate flexible, workflow composition. This proposed agent-based approach to work-

flow composition is founded on the concept of shared interaction protocols that allow

groups of agents to communicate in open systems. By adoptingan agent-based ap-

proach to workflow composition, active autonomous agents can utilise the typically

passive service-oriented architectures, found in Internet and Grid systems. In con-

trast with statically defined, centralised workflows, decentralised agents can perform

service composition at runtime, allowing them to operate inscenarios where it is not

possible to define the pattern of interaction in advance.

Application to real scenarios is a driving factor behind this research. By working

closely with a number of active Grid projects, namely AstroGrid and the Large-Synoptic

Survey Telescope (LSST), a concrete set of requirements forscientific workflow have

been derived based on realistic science problems. This research has resulted in the

MultiAgent Service Composition (MASC) language to expressscientific workflow,

methodology for system building and a software framework which performs agent-

based web service composition, in order to enact distributed e-Science experiments.

Evaluation of this thesis is conducted through case study, applying the language, method-

ology and software framework to solve a motivating set of workflow scenarios.

iii

Acknowledgements

I would like to express my sincere gratitude for the expert supervision provided by Dr.

Dave Robertson, Dr. Chris Walton, Dr. Bob Mann and ProfessorAustin Tate. Without

their guidance, patience and advice this thesis would not have been possible.

During my time at the School of Informatics I have been integrated into a thriving

research environment, I feel privileged to have been given the opportunity to work

alongside such enthusiastic, passionate academics. Thanks to everyone at the Institute

I have called home for the past three years; the Centre for Intelligent Systems and their

Applications (CISA). Particular thanks to the men of office 4.15: Paolo Besana, Jarred

Mcginnis, Guo Li, Fadzil Hassan and Tommy French, surely thefinest office in all of

Informatics.

v

Declaration
I declare that this thesis was composed by myself, that the work contained herein is

my own except where explicitly stated otherwise in the text,and that this work has not

been submitted for any other degree or professional qualification except as specified.

(Adam Barker)

vi

Publications List

Throughout the course of this degree, I have taken advantageof the immeasurably

helpful input provided by the peer review system. Most of theideas developed in this

thesis have been presented or published for a number of conferences and workshops:

• Adam Barker and Robert G. Mann. Flexible Service Composition. In Lecture

Notes in Artificial Intelligence, Volume 4149, pages 446-460, Springer Verlag,

2006.

• Adam Barker and Robert G. Mann. Agent-Based Scientific Workflow Composi-

tion. In Astronomical Data Analysis Software and Systems XV, pages 485-488,

2006.

• Adam Barker. Agent-Based Service Coordination For The Grid. In IEEE/WIC/ACM

International Conference on Intelligent Agent Technology, pages 611-614, 2005.

• Adam Barker. Agents, Consumers of Service Oriented Architectures. In Pro-

ceedings of The First European Young Researchers Workshop on Service Ori-

ented Computing, April 2005.

• C. Walton and Adam Barker. An Agent-Based e-Science Experiment Builder. In

Proceedings of The 1st International Workshop on Semantic Intelligent Middle-

ware for the Web and the Grid, European Conference on Artificial Intelligence

(ECAI), Valencia, Spain, August 2004.

vii

Table of Contents

1 Introduction 1

1.1 Contributions to Knowledge . 2

1.1.1 Requirements of Scientific Workflow 2

1.1.2 Service Composition through Interaction Protocols 4

1.1.3 Agent-Based Service Composition Language and Framework 4

1.1.4 Agent-Oriented Software Engineering Methodology 5

1.1.5 Application to Live Grid Project 6

1.2 Summary of Thesis . 7

2 Literature Review 9

2.1 Service-Oriented Architectures 10

2.1.1 Web Services . 11

2.1.2 Composing Service-Oriented Architectures 14

2.1.3 The Semantic Web . 16

2.1.4 Grid Computing . 17

2.2 Scientific Workflow Systems . 18

2.2.1 myGrid . 19

2.2.2 ICENI . 22

2.2.3 Kepler . 25

2.2.4 Related Projects . 28

2.3 Agent Oriented Software Engineering 29

2.3.1 Smart Agents . 31

2.3.2 Smart Coordination . 32

2.3.3 Agent Communication . 33

2.3.4 Interaction Protocols . 34

2.3.5 Electronic Institutions . 35

ix

2.4 Chapter Conclusions . 37

3 Scientific Workflow Scenarios 39

3.1 Virtual Observatory Technology .40

3.1.1 AstroGrid . 40

3.2 Scenario 1: Batch Processing . 43

3.3 Scenario 2: Knowledge Acquisition46

3.3.1 Data Retrieval . 46

3.3.2 Data Analysis . 47

3.3.3 Data Visualisation . 49

3.4 Requirements Analysis Part I . 51

3.4.1 Requirement 1: Rapid Prototyping 52

3.4.2 Requirement 2: User Interaction 53

3.4.3 Requirement 3: Workflow Reuse 53

3.4.4 Requirement 4: Fault Tolerant Execution54

3.4.5 Requirement 5: Suitable Abstraction55

3.4.6 Requirement 6: Legacy System Integration55

3.4.7 Requirement 7: Provenance Data 56

3.4.8 Requirement 8: Smart Component Choice 57

3.4.9 Requirement 9: Semantic Mark-Up 57

3.4.10 Requirement 10: Data Presentation 58

3.5 Chapter Conclusions . 58

4 A Counterexample 61

4.1 Large Synoptic Survey Telescope (LSST) 61

4.1.1 Scenario 3: Runtime Coordination - Automated Stage 63

4.1.2 Scenario 3: Runtime Coordination - Unknown Stage 66

4.1.3 Scenario 3 Extension: Contract Negotiation and Scheduling . 69

4.1.4 Requirements Analysis Part II and Problem Statement 71

4.2 Chapter Conclusions . 72

5 MultiAgent Service Composition (MASC) 75

5.1 Service Composition through Interaction Protocols 75

5.1.1 Combined Requirements Analysis 76

5.2 MASC Language Syntax . 79

5.2.1 Terms, Types, Identifiers and Configuration Pairs 80

x

5.2.2 Scenes . 80

5.2.3 Action Set . 82

5.2.4 Operation Set . 90

5.2.5 Protocol Execution . 91

5.2.6 Dataflow . 92

5.3 Chapter Conclusions . 96

5.4 Complete MASC Language Syntax 97

6 An Agent-Based Web Services Composition Framework 99

6.1 MASC Language Representation . 100

6.2 Scene Implementation . 102

6.2.1 Building the Execution Model and Resolving Dependencies . 102

6.2.2 Initialisation of Agents . 104

6.2.3 Enacting the Workflow . 106

6.3 Composing Scenes into More Complex Workflows110

6.4 Chapter Conclusions . 113

7 Evaluation By Use-Case 115

7.1 Coordination-Oriented Programming Methodology 116

7.1.1 Interaction Engineer . 117

7.1.2 Experiment Engineer . 119

7.1.3 Agent Engineer . 120

7.2 Solving the Motivating Workflow Scenarios 120

7.2.1 Solving Scenario 1: Batch Processing 121

7.2.2 Solving Scenario 2: Knowledge Acquisition 123

7.2.3 Solving Scenario 3: Runtime Coordination130

7.3 Discussion: A Better Approach to Workflow? 140

7.3.1 Possible Limitations of the Approach 145

7.4 Chapter Conclusions . 145

8 Conclusions and Further Work 147

8.1 Summary and Contributions to Knowledge 147

8.2 Further Work . 150

A MultiAgent Service Composition (MASC) XML Schema Definition 153

B XML Implementation of Scenario 1: Batch Processing 163

xi

C XML Implementation of Scenario 2: Knowledge Acquisition 167

D XML Implementation of Scenario 3: Runtime Coordination 177

Bibliography 195

xii

List of Figures

1.1 Research overview . 3

2.1 Service-oriented architecture stack overview 12

2.2 Putting web service standards together 13

2.3 Workflow reference model - components & interfaces 14

2.4 The life-cycle of an in-silico experiment [52] 20

2.5 Levels of semantic information in ICENI 23

2.6 ICENI architecture overview . 24

2.7 The Kepler actor model . 26

2.8 The Kepler GUI [71] . 27

2.9 Multiagent systems . 29

2.10 Intelligent coordination vs. intelligent agents 31

2.11 Interaction protocols . 34

2.12 General practitioner scene .36

2.13 A convergence of interests . 37

3.1 Overview of AstroGrid architecture 41

3.2 Batch processing scenario - obtaining photometric data. 44

3.3 Batch processing scenario - spectroscopic data, ANNz, HyperZ 45

3.4 Knowledge acquisition scenario - data retrieval 48

3.5 Knowledge acquisition scenario - data analysis 48

3.6 Knowledge acquisition scenario - data visualisation 50

4.1 An example of a subtracted image 64

4.2 Runtime coordination scenario - automated processing 65

4.3 Runtime coordination scenario - overview 67

4.4 Runtime coordination scenario - contract negotiation/scheduling . . . 70

xiii

5.1 MASC formal scene and role definitions81

5.2 MASC formal action and operation set definitions 83

5.3 Overview of MASC action set . 84

5.4 Overview of reasoning and external services 85

5.5 Overview of operation set . 90

5.6 MASC protocol execution . 91

5.7 MASC formal dataflow definitions 92

5.8 MASC user interaction . 94

5.9 Example dataflow mapping . 95

6.1 JAXB architecture overview . 100

6.2 Scene architecture overview . 102

6.3 Scene Initialisation algorithm .. . 103

6.4 Sample XML protocol - initialising agents 105

6.5 Agent architecture . 107

6.6 Service invocation algorithm .107

6.7 Sample execution output . 109

6.8 Protocol execution algorithm .110

6.9 Sample XML protocol - dataflow mapping 112

7.1 MASC layers of abstraction . 116

7.2 Interaction engineer methodology 117

7.3 Experiment engineer methodology119

7.4 Batch processing scenario - rsm role definition 121

7.5 Knowledge acquisition scenario - Interaction Model 125

7.6 Knowledge acquisition scenario - bcg role definition 126

7.7 Knowledge acquisition scenario - extraction role definition 127

7.8 Runtime coordination scenario - Interaction Model 133

7.9 Runtime coordination scenario - classification role definition 134

7.10 Runtime coordination scenario - ContractNet role definition 135

7.11 Runtime coordination scenario - observatory role definition 136

7.12 Runtime coordination scenario - extraction role definition and dataflow

mapping . 137

xiv

List of Tables

5.1 Requirements analysis . 76

5.2 MASC valid dataflow mappings . 94

7.1 Knowledge acquisition scenario Service Model 124

7.2 Runtime coordination scenario service model 132

xv

Chapter 1

Introduction

Building distributed systems is a difficult task; it has beenclaimed that such develop-

ment projects are amongst the most complex construction tasks undertaken by humans

[34]. With the adoption of pervasive network access and increased bandwidth there

has been a trend towards building distributed systems usingthe service-oriented ar-

chitecture (SOA) [45] paradigm. A service-oriented architecture is an information

technology approach or strategy in which applications makeuse of (or rely on) ser-

vices available in a network, such as the World Wide Web. A service provides a set

of functionalities. This can be a single discrete function,such as converting between

two currencies, or it can be composed from a set of inter-connected functions, such as

the process of reserving a seat on a flight. Multiple servicescan be glued together to

perform more complex operations, otherwise known as a workflow [31].

A problem with workflow specifications is that often the patterns of interaction be-

tween the distributed services are too complicated to predict and analyse at design-time

[10]. In certain cases the exact patterns of message exchange and the concrete services

to call cannot be predicted in advance, due to factors such as: changing network load

or availability of software components etc. It is a more realistic assumption to endow

software components with the ability to make decisions about the nature and scope of

their interactions at runtime.

Multiagent systems offer a complementary paradigm for building complex distributed

systems, and are currently the focus of much research. A multiagent system is com-

posed of multiple interacting software entities, known as agents. Although the term

agent has many competing definitions, it is generally accepted that an agent is a com-

1

2 Chapter 1. Introduction

puter system that is situated in an environment, and is capable of autonomous action

in this environment in order to meet its design objectives [73].

This thesis presents an investigation into fusing the agency and service-oriented archi-

tecture paradigms to facilitate flexible, workflow composition. More specifically the

problem of service composition in a scientific domain (commonly known as scientific

workflow) is addressed. This proposed agent-based approachto workflow composition

is founded on the concept of shared interaction protocols that allow groups of agents

to communicate in open systems. By adopting an agent-based approach to work-

flow composition, active autonomous agents can utilise the typically passive service-

oriented architectures, found in Internet and Grid systems. In contrast with statically

defined, centralised workflows, decentralised agents can perform service composition

at runtime, allowing them to operate in scenarios where it isnot possible to define the

pattern of interaction in advance.

This thesis is a discussion of fusing the agency and service-oriented architecture paradigms.

More specifically we addresses the problem of service composition in a scientific do-

main (commonly known as scientific workflow) and propose using a decentralised,

agent-based approach to provide a flexible solution to the service composition prob-

lem. Active, autonomous agents can consume the typically passive service-oriented

architectures, found in Internet and Grid systems, facilitating dynamic, runtime com-

position of services in scenarios where the patterns of interaction are too complex to

define at design-time.

1.1 Contributions to Knowledge

An overview of the research presented by this thesis is illustrated by Figure 1.1, each

of the individual contributions to knowledge will now be discussed in turn.

1.1.1 Requirements of Scientific Workflow

Scientific workflow has an extra set of requirements, which gobeyond the function-

ality that traditional workflow languages and execution engines provide. There is a

need to support the knowledge discovery and exploration processes which lead from a

scientific hypothesis, to a concrete workflow specification.As as result of the push for

1.1. Contributions to Knowledge 3

Figure 1.1: Research overview

4 Chapter 1. Introduction

ubiquitous computing through e-Science and Grid technologies, there is an increased

interest in this area of research. This is demonstrated by the currently running projects:

myGrid [53], Imperial College e-Science Networked Infrastructure (ICENI) [41], Ke-

pler [6] and Triana [54]. However, it is only recently that scientific workflow has

become a sub-field of workflow, this research area is still relatively new and as a result

there are very few languages targeted specifically at scientific workflow.

This thesis has worked closely with a number of active Grid projects, focused on Vir-

tual Observatory engineering; namely AstroGrid [4] and theLarge Synoptic Survey

Telescope [56] (LSST). As a result of working with these projects a set of concrete

workflow scenarios have evolved, based on: batch processingof pre-defined services,

knowledge acquisition, knowledge discovery and runtime composition of services.

These workflow scenarios act as a motivating factor behind this research work and

are a valuable commodity in their own right. By understanding the processes behind

these workflows and researching existing systems this thesis has been able to identify

a concrete set of requirements for scientific workflow. This contribution is discussed

in Chapters 2, 3 and 4 and illustrated by the first stage of Figure 1.1.

1.1.2 Service Composition through Interaction Protocols

The analysis of existing service composition techniques and workflow scenarios taken

from the live Grid projects form the requirements analysis for this thesis. In order to

meet these requirements this research views the service composition problem in a fun-

damentally different way. The flexible coordination technique ofinteraction protocols,

from the field of multiagent communication, has been appliedto the problem ofscien-

tific workflow modelling, found in the Grid community. This has allowed the typical

features and requirements of a scientific workflow to be understood in terms of pure

coordination and executed in an agent-based, decentralised, peer-to-peer architecture.

Section 2 of Figure 1.1 illustrates this contribution.

1.1.3 Agent-Based Service Composition Language and Framew ork

The product of this research is a formal interaction protocol language and state-of-the-

art web services composition framework to model and enact scientific workflows. The

detailed breakdown of the language and framework will be discussed in Chapters 5

1.1. Contributions to Knowledge 5

and 6, however to provide an overview (illustrated by section 3 of Figure 1.1), this

framework offers:

• Formal language: The MultiAgent Service Composition (MASC) language

is an agent-based solution to the service composition problem and is centred

around the concept of interaction protocols. The language directly addresses the

requirements of scientific workflow, discussed throughout this thesis.

• Dataflow language:Depending on the user, the MASC language can be utilised

to model scientific workflow at varying levels of abstraction. Scientists don’t

want to concern themselves with the intricacies of protocoldesign, this is a time

consuming and error prone task, due to the modelling of concurrent processes.

To this end, a high level dataflow language has been designed which sits on top

of the protocol layer. By treating protocol code as black boxes of computation, a

scientist can compose an experiment from the top-down usingthe dataflow lan-

guage to wire components together. An experienced engineeron the other hand

can model experiments from the bottom-up, by writing protocol code which co-

ordinates a group of agents and web services.

• Agent-based service composition framework:As well as providing a formal

language, theZorro framework is a full, state-of-the-art, open-source imple-

mentation of the concepts addressed by this thesis. Given a protocol and a group

of web services, the execution engine allows protocol code to be executed dy-

namically, in a distributed, peer-to-peer environment.

1.1.4 Agent-Oriented Software Engineering Methodology

In addition to providing a language and framework for scientific workflow composi-

tion, this thesis also introduces thecoordination-oriented methodologywhich provides

users with guidance on how to build systems using these techniques (section 4 of Fig-

ure 1.1). This methodology is discussed in detail in Chapter7 and categories system

building at various levels of abstraction, a user can then adopt one of three distinct

roles:

• Experiment engineer: A user at this level is concerned with the cycle of events

for taking a scientific hypothesis and designing a workflow which attempts to

prove or disprove that hypothesis. This is the most abstractlayer, a user treats

6 Chapter 1. Introduction

protocol components and services as parameterisable blackboxes of computa-

tion.

• Interaction engineer: The primary concern of an interaction engineer is to take

a software specification and divide it into a number of distinct agent roles, spec-

ifying the details of how these roles coordinate with one another (within a mul-

tiagent system) to achieve the overall aim of the specification.

• Agent engineer: This is the least abstract level and gives guidance on how en-

gineers should construct individual, intelligent agents.This is achieved by inte-

grating agent stubs with customised reasoning models, these reasoning models

represent an agent’s internal knowledge and can be invoked throughout the exe-

cution of an interaction protocol.

1.1.5 Application to Live Grid Project

Workflow scenarios have been a driving factor behind this thesis. Modelling these

scenarios has allowed the language and framework to evolve and provided the project

with a realistic application domain, as illustrated by section 5 of Figure 1.1. AstroGrid

has served as a test bed, in order to verify and execute our ideas on a live framework,

with live services and data. In Chapter 7 our language, framework and methodology

are applied to each of the motivating workflow scenarios, demonstrating our agent-

based approach to service composition.

1.2. Summary of Thesis 7

1.2 Summary of Thesis

Chapter 2, the literature review, discusses two complementary paradigms for building

distributed systems, the first of which is service-orientedarchitectures. The broad topic

of service-oriented architectures are introduced focusing on the web services approach,

followed by a discussion of workflow technologies, the Semantic Web, Grid comput-

ing and its application, e-Science. Scientific workflow is then specifically discussed in

detail, presenting an overview of the current state-of-the-art scientific workflow com-

position tools: myGrid, Imperial College e-Science Networked Infrastructure (ICENI),

Kepler and Triana. The second paradigm is multiagent systems, our discussion here is

focused on how to build distributed systems from a number of autonomous, self inter-

ested agents, specifically addressing techniques to build systems from the bottom-up

(smart agents) or from the top-down (smart coordination). Highlighted in our discus-

sion are the Electronic Institutions framework and the concept of interaction protocols.

This thesis has worked closely with a number of active Grid projects, focused on Vir-

tual Observatory engineering, namely: AstroGrid and the LSST project. Chapter 3 in-

troduces the broad application domain of Virtual Observatory technology, specifically

the architecture of AstroGrid. The remainder of the Chapterintroduces two workflow

scenarios taken from AstroGrid, focused on batch processing and knowledge acqui-

sition. Based on the review of existing scientific workflow systems and analysis of

motivating workflow scenarios the remainder of the Chapter derives the core require-

ments of scientific workflow.

Chapter 4 presents a further workflow scenario which has beenjointly derived with

the LSST project, centring around runtime coordination anddata classification. This

scenario acts as a counterexample of coordination which is difficult or impossible to

achieve through existing service composition techniques.Through our analysis of this

scenario it is apparent that an extra set of requirements arenecessary, requiring flexible,

dynamic, runtime composition of services.

Chapter 5 presents the MultiAgent Service Composition (MASC) language, which is

an agent-based solution to the service composition problem. Our approach is founded

on the concept of interaction protocols. Here the formal syntax is discussed in detail,

highlighting why certain choices were made and providing simple examples of use

where necessary.

8 Chapter 1. Introduction

A prototype implementation framework is discussed in Chapter 6. The Zorro frame-

work serves as a full implementation of the MASC language andserves as an decen-

tralised, peer-to-peer, agent-based service compositiontool, allowing scientific work-

flows to be represented and enacted by describing an e-Science experiment as an inter-

action protocol.

Chapter 7 ties together all of the separate sections of the thesis, demonstrating how

an agent-based approach to service composition can solve the motivating set of work-

flow scenarios and meet the requirements of scientific workflow (derived throughout

this thesis). The coordination-oriented programming methodology is introduced which

serves as a guideline for constructing workflows through various levels of abstraction

using an agent-based approach. The methodology, language and framework are then

applied to the batch processing, knowledge acquisition andruntime coordination sce-

narios, providing a full implementation in the MASC formal syntax and an executable

XML specification. The Chapter concludes by addressing how the requirements of sci-

entific workflow have been met and discuses the advantages anddisadvantages of an

agent-based approach compared to existing service composition techniques. Finally,

Chapter 8, the conclusion reiterates the points made throughout the thesis, discussing

further work and avenues for research.

Chapter 2

Literature Review

This Chapter presents an overview of two independent fields of distributed systems

research, namely: service-oriented architectures and thedevelopment of multiagent

systems. Service-oriented architectures are emerging as the de-facto standard method

of deploying application code over a network. Section 2.1 introduces the concept,

which Section 2.1.1 describes the simple, vanilla web service standards which allow

application code to be cleanly exposed to a network. Section2.1.2 discusses how to

compose these simple services, allowing more complex coordination, known as work-

flow. While Section 2.1.3 discusses the Semantic Web, an extension of the current

web which allows information to be given well-defined meaning, better enabling com-

puters and people to work in cooperation. Finally in Section2.1.4 the application of

these concepts to the scientific community (also labelled ase-Science) through Grid

infrastructures is discussed.

A common problem of the Grid community is composing multipledistributed, het-

erogenous resources into computational e-Science experiments, also known assci-

entific workflow. Scientific workflows have an overlapping set of requirements with

workflows found in the Business Process Modelling domain, but it is also true that

they have an additional set of requirements, and therefore need consideration sepa-

rately. Section 2.2 discusses the state-of-the-art in scientific workflow systems: my-

Grid, ICENI and Kepler, along with some other related projects.

Multiagent systems provide an alterative paradigm for building complex distributed

systems and address a fundamentally different set of problems to those of pure sys-

tem building, such as a service-oriented architecture approach. The multiagent sys-

9

10 Chapter 2. Literature Review

tems community’s focus lies with creatingautonomous, flexiblesoftware components

which can operate inopen, dynamicanduncertainenvironments. Section 2.3 intro-

duces the notion of multiagent systems, Section 2.3.1 discusses how to build intelligent

agents from the bottom-up and Section 2.3.3 discusses how tobuild communities of

interacting agents from the top-down. The concept of sharedinteraction protocols are

introduced in Section 2.3.4 with a discussion of the Electronic Institutions framework

in Section 2.3.5. To conclude the Chapter, Section 2.4 presents a discussion of fusing

these disjoint camps of distributed systems research.

2.1 Service-Oriented Architectures

A service-oriented architecture is an information technology approach or strategy in

which applications make use of (or rely on) services available in a network, such as the

World Wide Web [45]. Implementing a service-oriented architecture involves devel-

oping applications that use existing services, making applications available as services

or both. A service provides a set of functionality. This can be a single discrete func-

tion, such as converting between two currencies, or it can becomposed from a set of

inter-connected functions, such as the process of reserving a seat on a flight. Multiple

services can be glued together to perform more complex operations.

Service-oriented architectures are ‘loosely coupled’. This means that the client of a

service is essentially independent from the service itself. When a client (which can be

another service) makes an invocation on a remote service, itdoes not need to concern

itself with the inner workings (for example, what language it is written in) to take ad-

vantage of its functionality. The service can be treated as ablack box, communication

takes place through a well defined interface, and the processing is left up to the ser-

vice implementation. This means that if the implementationis changed or updated the

client can call the service in the same way (providing the interface stays the same).

There are many reasons for choosing a service-oriented approach to designing software

systems. They allow the software engineer tore-useexisting code. By simply wrap-

ping existing code in a standard interface language, legacycomponents can be easily

integrated into newer systems. Systems are moreinter-operable, as standard interfaces

and methods of communication are defined. Loosely coupled services are often more

flexiblethan traditional tightly coupled applications. In a tightly coupled architecture,

2.1. Service-Oriented Architectures 11

the different components are bound to one another, sharing semantics, libraries and

often state; making it difficult to evolve the application. As services are independent

from one another they offer a greater of flexility andscalability for evolving applica-

tions.

The concept of service-oriented architectures is not a new one. There have been many

different architectures which expose software componentsthrough standard interfaces,

allowing them to be composed into larger applications. Earlier architectures include

Java RMI, CORBA, and DCOM [18]. However non of these standards have been so

widely adopted as the web services approach to service-oriented architecture.

2.1.1 Web Services

The web as we know it today started out supporting human interactions with textual

data and graphics. There are many common uses for the internet, namely reading the

news, looking up stock quotes etc. However this text-based web does not support

software interactions very well. A more efficient method wasneeded, which allowed

applications to interact directly with one another, automatically executing instructions

that would otherwise have to be entered manually though a browser. Web services are

a distributed computing platform targeted at the Web. They define a standard way of

performing program-to-program communication. Web services can tie together any

application, operating system, data store, programming language, and device to any

other. Web services employ a number of standards which enable this inter-operability,

illustrated by the stack diagram presented by Figure 2.1.

The web services core standards are: XML, WSDL and SOAP, which will now each

be discussed in turn:

• XML: The Extensible Markup Language [63] has become the de-factostandard

for describing data to be exchanged over the web. XML is a markup language,

and allows the contents of a document to be described with a set of elements. An

XML document is typically associated with anXML Schemawhich describes its

grammar rules. These grammar rules define which elements areallowed in the

document, the structure of the elements, data expected inside the elements etc.

• WSDL: The Web Services Definition Language [25] defines the interface to the

web service so that a client application can communicate andinvoke the ser-

12 Chapter 2. Literature Review

Figure 2.1: Service-oriented architecture stack overview

vice. A WSDL document describes a web service as a collectionof abstract

items calledports or endpoints. A WSDL document also defines the actions

performed by a web service and the data transmitted to these actions in an ab-

stract way. Actions are represented byoperations, and data is represented by

messages. A collection of related operations is known as aport-type. A port

type constitutes the collection of actions offered by a web service. What turns

a WSDL description from abstract to concrete is abinding. A binding speci-

fies the network protocol and message format specifications for a particular port

type. A port is defined by associating a network address with abinding. If a

client locates a WSDL document and finds the binding and network address for

each port, it can call the service’s operations according tothe specified protocol

and message format.

• SOAP: The Simple Object Access Protocol [40] is an XML based protocol for

exchanging information in a distributed environment. It isthe plumbing of the

web services toolkit. SOAP is an extension of the Hyper Text Transport Protocol

(HTTP) that supports XML messaging.

These core web service standards are widely adopted by both industry and academia

2.1. Service-Oriented Architectures 13

and have become the de-facto standard way of performing distributed remote proce-

dure calls. As illustrated by Figure 2.2 web services can wrap any back-end system

(such as: .NET, J2EE, CORBA and legacy code etc.) presentingit to the network

through a standard interface written in WSDL. Web services interfaces receive a mes-

sage (formatted using XML) from the networked environment,transform the XML

message into a format understood by a particular back-end software system and option-

ally return a reply message. The underlying software implementation of web services

can be created using any programming language, operating system or middleware.

Figure 2.2: Putting web service standards together

More complex behaviour can then be built on top of this relatively simple set of core

standards, see the top of Figure 2.1. Standards which allow for example: Semantic

markup of web service descriptions, choreography of web services into more complex

coordination (such as workflow), web service transactions,web services security for

encrypting XML messages and directory services which allowservice advertising and

discovery etc. Many of these standards are competing for thesame space and some are

currently at the specification stage, however implementations of these standards allow

application developers to take advantage of the complex functionality. To expand on

these ideas the following Sections discuss the Semantic Web, how to compose multi-

ple services into a workflow, and Grid computing in relation to its application to the

scientific domain, e-Science.

14 Chapter 2. Literature Review

2.1.2 Composing Service-Oriented Architectures

Web services in their vanilla form provide a simple solutionto a simple problem. The

problem of distributed remote procedure calls with a standard set of interfaces. Things

become more complex when a group of services need to coordinate together to achieve

a shared task or goal. This coordination is often achieved through the use of workflow

technologies. As defined by the Workflow Management Coalition [31], a workflow

is the automation of a business process, in whole or part, during which documents,

information or tasks are passed from one participant (a resource; human or machine)

to another for action, according to a set of procedural rules.

Business workflow technology dates back as early as the mid 1970’s and the first at-

tempts to automate business processes were part of the officeautomation prototypes

developed at Xerox PARC. The initial idea was to reduce the complexity of the user’s

interface to the office information system, control the flow of information, and en-

hance the overall efficiency of the office [24]. This movementtruly gained ground in

the 1990’s under different names, including business process modelling and business

process engineering.

All workflow systems contain a number of generic components which interact in a

defined set of ways; different products will exhibit different levels of capability within

these generic components. The workflow reference model, illustrated in Figure 2.3 has

been developed as a generic framework to show the interactions between the major

components and interfaces of workflow systems.

Figure 2.3: Workflow reference model - components & interfaces

2.1. Service-Oriented Architectures 15

The workflow enactment serviceis a software service that consists of one or more

workflow engines in order to create, manage and execute software instances. The

workflow engineprovides the run-time execution environment for a workflow instance.

These two components interact with a number of external components though a set of

well defined interfaces, marked on Figure 2.3:

• Interface 1: A variety of process definition toolscan be used to model the

business process; the output of which is a process definitionwhich can be in-

terpreted at run-time by the workflow enactment service. This is achieved by

passing a complete process definition or subset through the process definition

import/export interface.

• Interface 2: Connects the running workflow instance to a client application.

These applications will typically want to: create/terminate workflows, suspend

a running workflow, retrieve process data and provide user driven input to the

workflow.

• Interface 3: Defines how the workflow enactment service can interact with ex-

ternal applications/services; such as databases, visualisation software and web

services.

• Interface 4: Allows a particular workflow enactment service to communicate

with another enactment service, which has a differing process model and execu-

tion semantics. Translation between the two models may be necessary.

• Interface 5: Connects the workflow enactment service to external tools for the

administration and monitoring of the workflow. Typical functions of these tools

will include: checking the process state, adding/deletingusers privileges, and

modifying running processes.

Most existing workflow systems adhere to the workflow reference model, however

there are many competing process description languages. This space is crowded with

many organisations, each wanting their own standard to be adopted by the community

as the way of coordinating distributed resources over the internet. The current front

runner is BPEL (Business Process Execution Language) [7] for web services. However

there are many other standards which share the space, such asWS-Coordination [3] and

the Web Services Composite Application Framework (WS-CAF)[15]. A comparative

study illustrating the differences between these languages is presented in [65].

16 Chapter 2. Literature Review

2.1.3 The Semantic Web

The Semantic Web is an extension of the current web in which information is given

well-defined meaning, better enabling computers and peopleto work in cooperation

[11]. The web can reach its full potential if both humans and machines can understand

and process the available information. Currently this is not possible as the web is based

primarily on documents written in the HyperText Markup Language (HTML) which

contains no facilities for expressing semantic information. The Semantic Web aims

to addresses this shortcoming using the descriptive technologies Resource Descrip-

tion Framework (RDF), Web Ontology Language (OWL) and the Extensible Markup

Language (XML) [8]. When combined, these technologies provide descriptions that

supplement or replace the content of web documents. This semantically marked up

web content then becomes machine-readable, thereby facilitating automated informa-

tion retrieval by computers. The Semantic Web comprises of anumber of standards

and tools:

• XML and XML Schema: As described by Section 2.1.1 XML provides a sur-

face syntax for structuring documents, however it imposes no semantic con-

straints on the meaning of these documents. XML Schema is used to express

a set of rules which define the legal building blocks of an XML document, typi-

cally expressed in terms of constraints on the structure andcontent of documents.

• RDF and RDF Schema:The Resource Description Framework (RDF) is based

around the concept of making statements about resources (objects) in the form

of subject-predicate-object expressions called RDF triples. RDF Schema is a

vocabulary for describing properties and classes of RDF resources.

• OWL: The Web Ontology Language (OWL) adds another layer of vocabulary

for describing properties of classes, for example relations between classes, car-

dinality etc.

These technologies are important for the future implementation of the Semantic Web,

however they have not yet been widely adopted by the academicor industrial commu-

nities. In relation to our discussion of service-oriented architectures, OWL-S [39] is

a web service ontology for describing service descriptions. This language supplies

web service providers with a core set of markup language constructs for describ-

ing the properties and capabilities of their web services inunambiguous, computer-

interpretable form. The ultimate aim of such a language is that web services can be

2.1. Service-Oriented Architectures 17

composed automatically from the attached semantic information by a user agent.

2.1.4 Grid Computing

In a world where communication is nearly free, when solving problems we are not

restricted to the use of local resources. Computationally intense jobs can be executed

on the collective resources of research and industrial partners, simulations can be run

remotely rather than locally installing software, remote data can be accessed and pro-

cessed directly. The problem is that these resources are often owned by different organ-

isations, have differing security policies, run differentsoftware etc. These are standard

problems in the distributed systems community, and so just having network access to

these resources is simply not enough to tie everything together.

The term‘Grid’ refers to a new infrastructure that builds on today’s Internet and Web

to enable and exploit large-scale sharing of resources within distributed, often loosely

coordinated groups, commonly termedvirtual organisations[2]. Grid computing has

attracted a great deal of interest and funding firstly from the computer science com-

munity, but also from the application of this computing research to problems in the

engineering and the physical sciences.

Much of the computer science research has focused on the development of Grid middle-

ware, in order to provide a standard and uniform mechanism for critical tasks in dis-

tributed systems. These tasks include managing services onremote computers, ‘sin-

gle sign on’ procedures, security polices management, service discovery, transferring

large amounts of data and forming large scale distributed virtual communities from a

group of heterogenous components. This set of standards andmechanisms allow users

to easily access this universal source of computing power for the purpose of solving

problems in science (e-Science) and business (e-Business).

Up until recently the de-facto standard Grid toolkit was theGlobal Grid Forum’s Open

Grid Services Infrastructure (OGSI) [64]. This specification defined mechanisms for

creating, managing, and exchanging information among entities calledGrid services.

Succinctly, a Grid service is a Web service that conforms to aset of conventions (in-

terfaces and behaviors) that define how a client interacts with a Grid service. Grid

services built on the current web service technology by extending WSDL and XML

Schema definitions to incorporate amongst others, the concept of stateful web services.

18 Chapter 2. Literature Review

This notion of state is something that web services specifications did not address and

was considered necessary to provide for the controlled management of the distributed

and often long-lived state that is commonly required in sophisticated distributed appli-

cations.

Although the OGSI addressed some important issues in long-lived distributed com-

putations, the world had adopted the service-oriented architecture offered by the web

services community. The main problem was that these two worlds were not inter-

operable with one another. It was highly undesirable to reach deadlock between the

ever growing deployment of web services and the notion of state, for long-lived dis-

tributed computations found in OGSI. This led to a convergence of interest between the

web services and Grid communities, resulting in the Web Services Resource Frame-

work (WS-Resource) [19].

The WS-Resource specification was proposed to address the relationship between

stateful resources and web services. It consists of a group of specifications which

allow a programmer to declare and implement the associationbetween a web service

and one or more stateful resources. Importantly the framework introduces support

for stateful resources without compromising the ability toimplement web services as

stateless message processes, meaning the two are completely inter-operable. This lat-

est specification fills the void between the web services and Grid communities, and can

be viewed as a re-factoring of the concepts addressed by the OGSI in a manner which

exploits the recent developments in web services architecture.

2.2 Scientific Workflow Systems

As the Sciences become increasingly data and information driven, scientists are shar-

ing their data and computational resources. As a direct result of this, new knowledge is

acquired from analysing existing data; which would not havebeen previously so read-

ily available. This information explosion has helped to shape new multi-disciplinary

fields [38] such as bioinformatics, geoinformatics and neurofinformatics. The Grid is

the infrastructure and machinery which enables e-Science;however current Grid soft-

ware is still too complex for most scientists to exploit. Instead they require higher

level tools which enable them to plug together problem solving components, in order

to falsify a scientific hypothesis. A scientific workflow attempts to capture a series of

2.2. Scientific Workflow Systems 19

analytical steps which describe the design process of theseexperiments. There is an

increased level of interest [23, 21, 75, 20] within this domain and the problem of ap-

plying the formal concepts of workflow to the scientific community is only just starting

to be addressed.

A scientific workflow systemis an environment which combines scientific data man-

agement, analysis, simulation, and visualisation tasks inorder to aid the scientific dis-

covery process. This Section will review the state-of-the-art in scientific workflow

systems from a range of application domains.

2.2.1 myGrid

Bioinformaticians conducting computation experiments would traditionally have to

chain together database searches and analytical tools, using complex scripts as glue

to overcome the incompatibilities between applications. Information would often need

to be formatted to application-specific file formats and thenpassed through a selection

of scientific applications and filters, which would yield a handful of results, or gener-

ate new data. These new data would in turn require reformatting and passing through

further services. A scientist working using this methodology would have to transfer

the results between services by hand, making note of them, re-keying the information

into a new interface. This is a highly inefficient way of conducting science over the

web.

myGrid [53] is a UK e-Science project which provides a set of transparent, loosely-

coupled, semantically-enabled middle-ware to support scientists performing data in-

tensive in-silico [77] experiments on distributed resources. An in-silico experiment is

a procedure involving the use of local and remote resources in order for a scientist to

test a hypothesis, derive a summary, search for patterns or demonstrate a known fact

[52]. myGrid is implemented as a service-oriented architecture, based on web service

standards. It is not designed to replace projects such as Globus [28], but rather add an

extra layer of functionality above these frameworks. It is aworking tool for scientists

to use now and provides facilities for a number of different kinds of users, illustrated

in Figure 2.4. myGrid can be presented with varying levels ofabstraction from the

complex wiring of web services for a Grid engineer to a high level abstract view for a

non IT specialist.

20 Chapter 2. Literature Review

Figure 2.4: The life-cycle of an in-silico experiment [52]

Current workflow languages were deemed unsuitable for composing services within

the scientific domain. Firstly because most of the standardswere constantly in flux

and secondly web services standards did not provide the correct level of abstraction

for bioinformaticians. This led to the creation of a new language, the Simple Concep-

tual Unified Flow Language or SCUFL [44] for short. The SCUFL language is a high

level XML-based conceptual language, in which each processing step of the workflow

language represents one atomic task. It is a declarative language where the user de-

scribes what is to be done rather than how the task is performed. A user can construct

a workflow in the SCUFL language by using the three main entities:

• Processors:Act as black box of computation. A processor consumes a set of

input data and in return produces a set of output data. A processor is assigned a

name and a set of input and output ports, which are named uniquely and typed

within the scope of the processor. An execution status is assigned which is ei-

ther: initialising, running or complete. The main types of processors [43] are:

A WSDL Type definition (external web service), a SOAPLAB type(allowing

command line tools to be exposed as a web service), a TalismanType, a Nested

workflow, a String constant or a Local Processor Type (calls to local class defi-

nitions).

• Data links: Indicate the flow of data through the workflow system, betweenthe

2.2. Scientific Workflow Systems 21

data source and the data sink. A data source can be defined as a processor output

or a workflow input and a data sink can be a processor input or a workflow

output. Each data sink will receive the same value if there are multiple links

from a data source.

• Coordination constraints: Can be placed on two processors in order to enforce

control flow over the system. This is used when certain stagesof the workflow

must be executed in a set order, yet there is no direct data dependency between

them. A workflow can be constructed more often than not without the use of

coordination constraints.

Using workflows as part of a scientific process often requiresprovenance[35] data to

be kept about the activities performed during the workflow. Provenance data attempts

to capture which person conducted the experiment (who); thematerials and methods

used in the experiment (what and how); the purpose of runningthe experiment (why)

as well as the results and conclusions of the experiment (what). This includes data

such as, when the workflow was begun, how long it took, which service instances were

used, the input-output relationships between the workflow components, any interme-

diate data, which data were used, and the results from the workflow. In the myGrid

system provenance logs are generated in the form of XML files when the enactment

of the workflow begins. The system also allows storage of annotations regarding the

hypothesis of the experiment along with any thoughts and opinions of the scientist.

Provenance data is an important aspect of bioinformatics orany scientific experiment

process; often if the same experiment is run at different times, different results are

produced. Using provenance data it is possible for a scientist to trace the audit trail

of previous experiments in order to add to their own experimental design: Looking

at what worked, what didn’t work, how it worked etc. The myGrid System allows

provenance documents to be linked together enabling e-Scientists to browse and an-

notate them on the fly: this is the fundamental concept of the ‘web of Science’ [30],

proposed by Hendler. myGrid offers a number of other standard services, including

the notification service [36] for asynchronous delivery of messages.

The Taverna workbench [43] is the resulting implementationof this research. This tool

which allows users to construct analysis workflows from components on both remote

and local machines, run these workflows on a set of data and visualise the results.

Within this tool is an application called the SCUFL workbench which allows scientists

to write workflows in a visual format without directly using the SCUFL language.

22 Chapter 2. Literature Review

The Taverna workbench uses FreeFluo [74] as the enactment engine, which is a web

services orchestration tool: currently this tool supportsa subset of WSFL and SCUFL.

2.2.2 ICENI

Imperial College e-Science Networked Infrastructure (ICENI) [41] Architecture is a

service-oriented integrated Grid middleware that provides an augmented component

programming model in order to aid the application developerin constructing Grid ap-

plications. An execution infrastructure is provided, which exposes compute, storage

and software resources as services with well defined conditions of when and by whom

these resources may be used. It is essentially a framework that enables a user to con-

struct an application from a number of software components in a repository, based on

a scientific goal. The framework then uses this component metadata to build a run-

time representation, which is used to find an optimal mappingof the application to the

available Grid resources at run-time.

The ICENI component framework is based upon two key principles: separation of

concerns, and the utilisation of information at all stages of a computation. By capturing

metadata regarding the component from its definition, its assembly into an application,

through to its deployment onto distributed resources, we can influence the placement

of a component network so as to maximise user and resource provider criteria.

A component is described by a set of documents that capture its meaning, behaviour

and implementation respectively. This separation isolates meaning, based upon typed

dataflow between components, from the associating flow of control. User construction

of an application relies exclusively upon the information in the meaning level. Each

document is defined in terms of a different XML Schema. A component has a set

of ports through which all communication flows. Each XML document describes the

same port, with differing levels of abstraction.

• Meaning: Describes the composability of the component and the flow of data

between multiple components. The component consists of a set of ports. Each

port represents the production or consumption of data from the system. At the

meaning level a port has an associated dataflow,in, out or exchange. An inport,

represents the consumption of data, an outport represents production of data and,

finally, an exchange represents a port which performs both. An abstract data

2.2. Scientific Workflow Systems 23

type (identifying the type produced or consumed) is associated with an inport or

outport, while an exchange posses two types, indicating theflow in and out of

the port. A port at this level is defined using the Component Definition Language

(CDL).

• Behaviour: Captures how the data are passed from one component to another,

and what dependencies exist between the dataflow relations described in the

components meaning. It is described using the Behaviour Definition Language

(BDL): each port described using BDL must map to a port definedusing CDL.

• Implementation: Described by using the Implementation Definition Language

(IDL), defines concrete data types, including the precise format of the data for

all the components ports. This level also possesses metadata about the compo-

nents performance characteristics along with platform specific requirements and

settings.

Each instance of a component has a single Meaning, Behaviourand Implementation

document. The associations between the files are illustrated in figure 2.5. However a

single meaning may have multiple behaviours and a single behaviour may have mul-

tiple implementations. A user isonly interestedin the component’s meaning, while

selection based on a component’s behaviour and implementation are handled by the

Grid middleware.

Figure 2.5: Levels of semantic information in ICENI

A user of ICENI constructs an application using the information presented at the mean-

ing level. An application is constructed by defining a set of component instances along

with a set of links (which is defined as an ordered pair of component ports). The links

represent channels of data flow from one component instance to another and each link

must connect only two ports. The links must satisfy two criteria: firstly, the abstract

data types must be the same and the dataflow directions must becompatible (e.g. an

24 Chapter 2. Literature Review

outport must be connected to an inport etc.) The links represent channels of data flow-

ing between concurrently exiting components, control flow issues are therefore hidden

from the end user. It is then left up to the middleware to select the components based

on behaviour and implementation.

Figure 2.6 illustrates an overview of the ICENI system architecture. Application con-

struction is aided by a visual programming language using the ICENI visual compo-

sition tool. Once an application is constructed and the links between the components

have been defined, an Application Description Document is generated. This XML doc-

ument is passed to the scheduler which has a number of tasks itmust perform. Firstly,

the middleware takes the user’s abstract choice based on Meaning and must choose

between the various implementations, each with their associated behaviour. The mid-

dleware must select the optimal implementation for the user’s chosen abstractions.

Once the resources have been selected the scheduler createsnew component instances

and establishes links between these instances.

Figure 2.6: ICENI architecture overview

The XML that describes the component is used to construct bindings that allow the

component to interact with the middleware and hence the Grid. Either WSDL or Java

interfaces can be generated from a component’s definition, which itself is defined using

2.2. Scientific Workflow Systems 25

CDL. Once the component is bound to an interface it can be deployed as a resource on

the Grid.

ICENI has two clearly defined domains. Firstly a private administration domain, which

is used to manage resources within an organisation. Secondly a public domain that ex-

poses the private resources as services, making them available to the wider community.

In between the private and public domain sits a domain manager. Its job is to add an

access control policy to a resource in the private domain andexpose it as a service in

the public domain. This means that the same resource can be tagged with different

usage policies for different computational communities. When a request comes in to

access a resource the domain manager validates the request.A contract of Service

Level Agreement (SLC) is defined for each resource, this states who may access the

service, for how long etc.

2.2.3 Kepler

Kepler [38, 6], is an open source scientific workflow engine with contributors from

a range of application-oriented research projects, for example SEEK [42]. The first

thing to note about Kepler is that it is built upon the PtolemyII system [55] based at

the University of California at Berkeley. The Ptolemy II System is a mature dataflow

oriented workflow architecture and is the only available system which allows different

execution models to be plugged into the same workflow.

The Ptolemy II System introduces a number of basic blocks which form ‘actor-oriented’

workflow modelling, illustrated in figure 2.7. The most basiccomponent in the system

is anactor. An actor is simply an independent unit of computation (suchas a web

service, database call etc.) which consumesdata-tokensfrom a set ofinportsand pro-

duces data-tokens to a setoutports. These ports provide the communication interface

to other actors in the workflow. A group of actors can then be ‘wired’ together by

introducing a mapping of outports to inports. An actor can consist of a sub-group of

interconnected actors, allowing hierarchical workflows tobe supported: this is known

as acomposite actor. In addition to the connection of ports to form the dataflow model,

control flow can be enforced through the use of branching and looping.

The component communication (dataflow) concerns are separated from the overall

workflow coordination which is defined in a separate component called adirector.

26 Chapter 2. Literature Review

Figure 2.7: The Kepler actor model

The execution model defined by the director is known as themodel of computation.

This separation of concerns means that once a workflow model is constructed it can be

run with different execution semantics; defined within the director.

Kepler has a number of built in actors, providing facilitiesfor: prototyping workflows,

executing web and grid services, distributed job execution, database access etc. Inher-

ited from the Ptolemy II System are a number of built in modelsof computation that

the directors can enforce. These include the Synchronous Dataflow, Process Network,

Continuous Time and Discrete Event models. Additional models of computation can

also be introduced into the framework, allowing user-defined execution semantics.

The modelling concepts introduced do not have to be bound to aparticular group of

types at design time. The Kepler system builds upon the actor-oriented modelling

approach and introduces type definitions to be represented in a number of ways:

• Structural types: Define the allowed set of values that a port can consume or

produce. The language used to describe the structural type of a port could be an

XML schema, DTD or programming language type system for example. When

using XML schema, the structural data type of a port is a concrete XML schema

type, such asxsd:string.

• Semantic types:Allow the user to define a concept expression over a language

used to model ontologies, such as a description logic. As an example, a user

might define a semantic type which states that only data tokens which describe

a species of mammal can be placed into the input port of the actor.

• Hybrid types: Allow structural and semantic types to be explicitly linkedthrough

the use ofhybridization constraints.These constraints can be exploited in a

number of ways, for example to infer (partial) structurallymappings between

2.2. Scientific Workflow Systems 27

structurally incompatible (but semantically compatible)workflow components.

Constraining the port definitions of an actor by defining the type definition of its input

and output ports allows the underlying workflow system to check (at design time)

that the connections between ports are consistent. In this way faulty links due to type

mismatches can be identified and corrected before the workflow is executed. Structural

and Semantic types are separate concerns and the user can choose to type a port with

either or both of these type definitions, depending on the information available at the

design stage: these definitions can always be altered later.This separation of the data

modelling (structural type) and conceptual modelling (semantic type) allows them to

be independently validated and offers a number of benefits for scientific workflow and

component reuse. A formal overview of the Kepler system can be found in [14].

Figure 2.8: The Kepler GUI [71]

In summary, Kepler offers a highly flexible scientific workflow execution environment

with well supported tools and visualisation software. Different ready made actors and

models of computation can simply be plugged into the workflowto achieve the desired

behaviour. The GUI is intuitive, allowing workflows to be viewed at differing layers

of abstraction; depending on whether the user is a scientistor Grid engineer.

28 Chapter 2. Literature Review

2.2.4 Related Projects

• Triana [54] is an open source problem solving environment, designed as a flex-

ible software development kit and is intended to be used in many different sce-

narios and many different levels of abstraction. Triana is atest application for

the GridLab project [5], a set of middleware for the creationof generic Grid ap-

plications. The toolkit allows users to compose workflows graphically using a

dataflow model on their local machine and distribute this load over a connected

Peer-to-Peer network.

• eStar [16] is a software project which aims to develop an intelligent robotic

telescope network. It is a joint collaboration between the Astrophysics Research

Institute at Liverpool John Moores University, the Astrophysics Research Group

at the University of Exeter and the Joint Astronomy Centre (JAC) in Hawaii.

This project addresses the application of ‘intelligent’ agents to a network of

robotic telescopes. An intelligent agent resides on a user’s local machine and

can both request observations and receive data from telescopes which is poten-

tially of interest to the user. The user agent interacts withdiscovery nodes on the

network via Grid middleware. Discovery nodes are a collection of sub-systems

(telescope, database, agent etc.) which can receive observation requests from an

agent and through a series of interactions produce some astronomical data.

It is being deployed on the United Kingdom Infrared Telescope’s Wide Field

Camera (WFCAM) and will cross correlate this output with theset of known

objects taken from pre-existing survey databases. The science aim of developing

this robotic telescope network is to aid the detection of transient and moving

objects in the sky, enabling agents to rapidly compare output data from WFCAM

to existing objects in order to schedule follow up observations on these newly

detected objects. It is necessary to schedule a follow up observation as soon as

possible in order to avoid loss to potential time-sensitiveresults.

2.3. Agent Oriented Software Engineering 29

2.3 Agent Oriented Software Engineering

Multiagent systems are a relatively new field of Artificial Intelligence (AI) and cur-

rently a highly active area of research. This field brings together researchers from

hugely diverse areas of study, ranging from computer science to social science.

Agent is a contested term, principally because different domains consider different

traits of agents to be more important than others; each having their own definition

of what they mean by the term agent. Some applications for example require that

agents have the ability to learn, but for other applicationsthis is an undesirable trait.

There is however, a common thread of consensuses for the termagent throughout most

application domains.

Figure 2.9: Multiagent systems

An agent is a computer system that is situated in an environment, and that is capable

of autonomous action in this environment in order to meet itsdesign objectives. An

agent usually takes sensory input from the environment (which is assumed to be non-

deterministic) and produces as output actions that affect it [73]. An agent can usually

influence its environment. This means that the same action performed twice in appar-

ently identical circumstances, might appear to have completely different effects. An

agent will usually have a collection of actions that it can perform on its environment

30 Chapter 2. Literature Review

under certain circumstances. The key problem facing the autonomous agent is deciding

which of its actions it should perform in order to meet its design objectives.

A multiagent system consists of a number of autonomous agents, which communicate

with one another through a computer network infrastructure. Figure 2.9 illustrates this

concept and shows the relationships between groups of agents and the influence they

have on their surrounding environment. Individual agents will have been designed by

different engineers and will therefore exhibit different behaviour through their goals,

motivations and internal logic. If agents are to successfully interact with one another

they will require the ability tocooperate, coordinateandnegotiate. Multiagent sys-

tems are often viewed as a society, although the agents are autonomous and can act

independently, the society lays down conventions that allow the agents to cooperate

with one another to achieve a shared goal.

A good example of a multiagent system is an auction house. Agent interactions take

place between an auctioneer agent and a collection of bidderagents. The aim of the

auction is to allocate the item to one of the bidders. The auctioneer wants to maximise

the profit of the item in hand, where as the bidders want to acquire the item at the

lowest possible price. Here the laws of trade (English auction, Dutch auction etc.) are

pre-defined and agents must adhere to these rules in order to successfully take part in

the auction. However within these rules there is scope for these independently engi-

neered agents to act autonomously at run-time, adopting different bidding strategies

and tactics to acquire the item for the cheapest price, in order to maximise their own

gain.

Many researchers are skeptical about the claims made by the multiagent systems com-

munity. Some arguments suggest that it is simply repackageddistributed and con-

current systems, artificial intelligence and game theory. As a paradigm for software

engineering multiagent systems have a great deal to offer. Agents can be inherently

decentralised peer-to-peer systems, compared with the traditional client-server model.

They therefore exhibit improved scalability and do not suffer from the single point of

failure problem. By offering a degree of autonomy to agents,the complexity of design

in a multi-threaded system is drastically reduced; principally because the concurrent

interactions can be left up to the agents at run-time, and notspecified explicitly like the

traditional top down design of distributed systems.

There are essentially two ways to build multiagent systems (illustrated in Figure 2.10)

2.3. Agent Oriented Software Engineering 31

Figure 2.10: Intelligent coordination vs. intelligent agents

and agent researchers broadly fall into one of these two categories. Engineers can de-

sign systems from the bottom-up, focusing on producingsmart agentsknown as the

agent-designproblem, or from the top-down, focusing onsmart coordination, other-

wise known as theagent-societydesign problem.

2.3.1 Smart Agents

Researchers interested in the agent-design problem are concerned with producing in-

dividual, intelligent agents. Concerns lie with how users might tell the agents what to

do, and how agents themselves decide which actions to perform, through various types

of logical reasoning:

• Deductive reasoning agents:Intelligent behaviour can be simulated by manip-

ulating a symbolic representation of an environment and thedesired behaviour

within this environment. This is the traditional approach to building artificially

intelligent systems, known as symbolic AI. Theorem provingis a technique used

to create deductive reasoning agents.

• Practical reasoning agents:It is clear that we as humans do not use a purely

logical approach to reasoning, as addressed by deductive reasoning. Practical

Reasoning is concerned with decision making directed towards actions, this de-

cision making is a consequence of weighing up often conflicting considerations

for competing options. Deciding whether to catch the train or the bus is an ex-

ample of practical reasoning, as it is reasoning directed towards action. Practical

reasoning consists of deliberation (deciding what to do) and means-end reason-

ing (how to do), best known asplanningin the AI community. Agent researchers

32 Chapter 2. Literature Review

are interested in how to use practical reasoning techniquesto give agents a de-

gree of autonomy, so they can ultimately make decisions for themselves.

2.3.2 Smart Coordination

By allowing agents to coordinate together it is not necessary to focus on engineering

individual smart agents, there is a notion of shared intelligence and cooperation. There

is a popular slogan in the multiagent systems community: there is no such thing as a

‘single agent system’ [73]. This illustrates the point thatinteracting systems are now

the norm, computers are pervasive and expected to interact for even the most basic of

tasks. By taking a top-down approach to the design of multiagent systems there are a

number of key issues that need to be addressed:

• Reaching agreements:As agents are considered to be autonomous and self in-

terested entities, it is necessary to study how they can reach mutually beneficial

agreements on matters of common interest (similar to the society we live in),

without a third party to dictate the terms. Negotiation scenarios will usually be

governed by a protocol which lays down the common rules of encounter. Agents

must adhere to this protocol in order to take part in the interaction. However an

agent remains self interested, it will adopt a particular strategy which attempts to

maximise its own gain. Researchers are interested in how to design such nego-

tiation protocols, build strategies around these protocols so agents can negotiate

on behalf of users and understand the process of reaching agreements through

techniques, such as negotiation and argumentation.

• Cooperation: The focus here lies on how agents can collectively work together

in order to solve a shared problem. The distinction between multiagent co-

operation and traditional parallel problem solving is inherent within the term

agency. Thebenevolence assumptionstates that agents in a system implicitly

share a common goal and that there is no potential for conflictbetween them.

The benevolence assumption however is generally not accepted when agents are

interacting in an open system. Agents are engineered by different individuals

and will therefore be motivated by a different set of goals. When taking part

in coordination they will (as self interested entities) lean towards the outcome

which maximises their own gain. As they act autonomously, decisions are not

hardwired in at design time, as they traditionally are with distributed/concurrent

2.3. Agent Oriented Software Engineering 33

systems. Agents must be able to dynamically make decisions within their envi-

ronment at run-time. The task of cooperation is far more complex when dealing

with these self interested agents, research into cooperation through norms and

social laws is a popular technique to enforce control in an open system.

The remainder of this Section focuses on how to design multiagent systems from the

top-down, by providing these open system with intelligent coordination mechanisms.

Firstly the broad topic of agent communication is discussed, with reference to lan-

guages: FIPA-ACL and KQML. The Electronic Institutions framework is then which

is a popular technique allowing structure and organisationto be imposed on an open

system.

2.3.3 Agent Communication

Agents communicate with one another through message passing. As an agent is con-

sidered to be autonomous and in control of both their own state and behaviour it cannot

be expected that just because you tell an agent to do something, it will necessarily com-

plete this task. It might not be in the agents best interest, or might not be possible.

Instead agents can perform communicative actions in an attempt to influence another

agent. For example when I tell a friend to ‘meet me at the pub at7pm, and on this

occasion I will be on time’. Although I am trying to influence my friend to turn up at

7pm, he is in control of his own beliefs, desires and intensions and realises from previ-

ous experience, I often run late. Hence he decides to turn up alittle after 7pm instead.

But by performing this communication I am attempting to change the internal state of

my friend. This idea is captured within the theory ofspeech acts. Speech acts, are a

certain class of natural language utterances which have thecharacteristic of actions, in

the sense that they change the state of the world in a way representative of physical

actions. Speech acts were originally explored through the work of philosopher John

Austin [9]. An example of such an utterance is the declaration of war or a marriage

declaration. Various types of speech act are classified intoperformative verbs, such as

request, inform and promise.

A number of Agent Communication Languages (ACL) have been developed which

use the theory of speech acts as a basis. The Knowledge Query and Manipulation Lan-

guage (KQML) [33] was the earliest attempt. It was a DARPA funded project which

34 Chapter 2. Literature Review

specified a common format for the interchange of messages between agents. Although

widely adopted this language was criticised for having no formal semantics and an

under constrained set of performative types (41 in total). This resulted in different

implementations adopting different performative types tomean the same thing. The

Foundation for Intelligent Physical Agents (FIPA) Agent Communication Language

(ACL) [1] was designed as a standard to address the short comings of KQML. FIPA-

ACL has a more concrete, formal syntax and fewer, more meaningful performative

types. This is currently the most widely adopted ACL in use bythe multiagent systems

community.

2.3.4 Interaction Protocols

An interaction protocol is essentially a collection of conventions which allow agents

in an open system to interact with one another. The termopen systemmeans that

any agent can take part in the interaction, regardless of their internal implementation

details; such as the language they are programmed in, or operating system they are run

on.

Figure 2.11: Interaction protocols

Firstly it is important to address what an interaction protocol does not define; it does

not attempt to define the transport mechanism used to get messages from one agent to

another, such as HTTP, SMTP or SOAP etc. These are regarded aslow level program-

ming issues and are not the concern of agent communication. Nor does it attempt to

define what the agent does internally when it receives a message, such as how the agent

rationalises. This is left up to the individual agent implementation and these issues can

2.3. Agent Oriented Software Engineering 35

be regarded as higher up the stack. An interaction protocol sits between the transport

layer and the rational layer, illustrated by Figure 2.11. Aninteraction protocol defines

the rules of engagementbetween a group of interacting agents. Such asif and when

an agent can communicate, and theorder andkind of messagesthat an agent expects.

A protocol is domain and situation specific, e.g. a Dutch auction protocol would be

radically different to an English auction protocol.

2.3.5 Electronic Institutions

Electronic Institutions (EI) [26] are a technique used for providing structure and organ-

isation in an open multiagent system. EIs are modelled by observing the conventions

that make up human organisations. Human societies have created institutions; inside

these institutions they set laws, monitor and respond to emergencies, prevent and re-

cover from disasters etc. By modelling these conventions key issues in open mul-

tiagent systems, namely heterogeneity of agents, trust andaccountability, exception

handling (detection, prevention and recovery from failures) and societal change have

been addressed. This allows heterogeneous agents implemented by different engineers

to communicate, negotiate and cooperate with one another ina truly open system.

EI is the term given to the formal representation of these concepts and has resulted in a

framework for open multiagent systems which attempts to mimic a human institution.

It forces agents to interact with one another in a well-defined manner and to adhere

to roles commitments and obligations. The core concepts of EI are not that dissimilar

to a theatre production. An EI consists of a number of components, the most basic

of these being anagent. Agents can be viewed as the actors, and interact with one

another throughillocutions. Each agent is required to adopt one (or more)roleswithin

the institution.

Roles define standard patterns of behaviour and havedialogic actionsassociated with

them. Dialogic actions are a set of operations which an agentcan perform, once an

agent adopts a role it can perform the dialogic actions associated with that role. In-

teractions between agents take place only insidescenes. A scene can thought of as a

bounded space where agents directly interact and negotiateon a single task. A scene

contains ascript, which is a well-defined protocol (modelled as a finite state machine).

This protocol contains all the possible dialogue between a set of roles. Aperformative

structureis a network of scenes, it defines how and under what conditions different

36 Chapter 2. Literature Review

roles can legally move between scenes. Agents within a performative structure can

participate concurrently in different scenes with different roles. Actions that agents

take in the context of an institution may have consequences that either limit or enlarge

its subsequent acting possibilities. The set of possible paths for an agent within the

performative structure is thus defined by a set ofnormative rules.

One further thing is required to allow agents to interact, common knowledge. This

is represented in thedialogic framework. This structure contains an ontology; which

defines the common language for representing the world, communication and knowl-

edge representation. The shared dialogic framework allowsheterogonous agents to

exchange knowledge with other agents. With many key concepts involved it is useful

to consider an example [68] of an electronic institution which ties everything together,

this is graphically represented by Figure 2.12.

Figure 2.12: General practitioner scene

The scene represents a patient visiting a General Practitioner (GP) to obtain a diag-

nosis of some symptoms. There are two roles defined within this scene; the roles of

doctor and patient. For convenience, we assume that all agents use the same dialogic

framework (i.e. they know how to communicate) and that thereare no normative rules.

The scene begins with all the agents entering theINITIAL state. A patient agent then

sends a request message to a doctor agent indicated byrequest(P, D), whereP is a

patient andD is a doctor. This message is intended to represent the patient making an

appointment to see a doctor. The patient then enters theWAIT state until anaccept(D,

P) or reject(D, P) message is received from the doctor. If a reject message is re-

ceived, then the agent returns to the the initial state. If anacceptance is received, the

agent enters theACCEPT state and proceeds to send a messagesymptoms(P, D) to the

doctor. The doctor then performs a diagnosis of the patient in theDIAG state and the

result is that the agent is referredrefer(D, P) for further diagnosis, or no-referral

norefer(D, P) is made and the patient leaves the scene.

2.4. Chapter Conclusions 37

2.4 Chapter Conclusions

This Chapter has discussed two different approaches to the design and deployment of

large-scale distributed systems. Although the concept of service-oriented architectures

is not a new one, the technology has only recently reached maturity through simple,

vanilla web service standards. The web service and Grid middleware is in place to

provide reliable, scalable and secure access to distributed resources. The agents com-

munity, however has typically focused on creating autonomous, flexible software com-

ponents. Allowing agents to operate in dynamic and uncertain environments, making

decisions about interaction and cooperation at run-time. The typical defining features

from each community are illustrated by Figure 2.13.

Figure 2.13: A convergence of interests

Although traditionally separate fields of research, it is clear that these two communi-

ties are starting to see a convergence of interests. The application of techniques from

the multiagent systems community to service-oriented architectures is a relatively un-

explored research area and in practise few steps have been taken towards the vision

of fusing these two worlds of distributed systems [29]. The following Chapter builds

upon the themes addressed here, further exploring the domain of scientific workflow.

A set of live workflow scenarios, taken from the Virtual Observatory domain are pre-

sented in detail, these workflow scenarios demonstrate, by example the requirements

of scientific workflow.

Chapter 3

Scientific Workflow Scenarios

This thesis has worked closely with a number of active Grid projects, focused on Vir-

tual Observatory engineering, namely: AstroGrid and the Large Synoptic Survey Tele-

scope (LSST). As a result of working with these projects a setof concrete workflow

scenarios have evolved. These workflow scenarios act as a motivating factor behind

this research work and are a valuable commodity in their own right. By understanding

the processes behind these workflows and researching existing systems (discussed in

Section 2.2) this thesis has been able to identify a set of requirements for scientific

workflow, these requirements are detailed in Section 3.4.

This Chapter presents in detail two of the motivating workflow scenarios. Section 3.1

introduces the broad application domain of Virtual Observatory technology, specif-

ically the architecture of AstroGrid. Section 3.2 discusses a batch workflow (from

the AstroGrid domain) for calculating the redshift of a given area of sky. Section 3.3

details a knowledge discovery workflow (also sfrom the AstroGrid domain) which cen-

tres around retrieving and analysing data according to a scientist’s hypothesis. With

reference to the scenarios discussed in this Chapter and theexisting system review

(discussed in Section 2.2), Section 3.4 defines a set of ten core requirements of scien-

tific workflow. Detailing how and why it differs from traditional workflow modelling.

Finally, conclusions are discussed in Section 3.5. Where appropriate, workflows are

described using the UML Sequence Diagram notation [61].

39

40 Chapter 3. Scientific Workflow Scenarios

3.1 Virtual Observatory Technology

Breakthroughs in telescope, detector, and computer technology allow astronomical in-

struments to produce terabytes of images and catalogs, astronomy is facing a data

explosion. The data sets produced cover the sky in multiple band widths, from gamma

and X Ray, optical, infrared through to radio. With such vastquantities of data being

archived, it is becoming easier to ‘dial up’ a piece of the sky, rather than waiting for

expensive, scarce telescope time. Astronomy is being driven even further with tele-

scopes, such as the Large-aperture Synoptic Survey Telescope (LSST) [56], capable

of scanning the entire night sky in a three day period. Current estimates indicate that

LSST will generate 36 gigabytes (GB) of data every 30 secondsand over a 10 hour

winter night will collect up to 30 terabytes.

The software which allows the integration of astronomical resources has been slow

to catch up with the ever increasing astronomy data volumes.Virtual Observatories

(VO) are the technology frameworks which aim to fill this gap, allowing transparent

access to astronomical archives, databases, analysis tools and computational services.

As a direct result of collectively sharing resources through a VO, new knowledge is

formed from analysing existing data; which would not have previously been so readily

available. Real science has already been demonstrated using VO technologies, and

as the middleware develops it will give astronomers seamless access to image and

catalogue data on remote computer networks.

The International Virtual Observatory Alliance (IVOA) [66] is the standards body

which ensures that all national Virtual Observatories can be integrated on a global

scale. The IVOA decides upon a common set of standards and interchange formats to

allow VO’s to cooperate. The IVOA has grown to include 15 funded VO projects, one

of which is the UK’s own project: AstroGrid.

3.1.1 AstroGrid

AstroGrid [4] forms the UK’s contribution to the Virtual Observatory and is a collabo-

ration between several of the UK’s leading universities. AstroGrid is funded by the Par-

ticle Physics and Astronomy Research Council to produce software within which data

archives and data processing software can be accessed seamlessly by an astronomer.

It is the UK’s take on the Virtual Observatory concept and is amaturing system of

3.1. Virtual Observatory Technology 41

middleware, which gives ‘workbench’ type interaction for scientists to astronomical

instrumentation, services and archives.

Figure 3.1: Overview of AstroGrid architecture

The AstroGrid architecture is based around the construction and execution of work-

flows. The architecture distinguishes data-processing work, including archive queries,

from other operations such as browsing directories of resources or administering the

system. Data processing is always achieved through workflows; the other operations

are done interactively, through the web portal. A scientistusing the AstroGrid system

must construct a workflow into a scientifically meaningful experiment. Workflows are

set up graphically through a web portal and executed asynchronously as batch jobs.

Where a desktop scripting language would have calls to localprogrammes, the As-

troGrid workflow engine makes calls to remote web services. Although initially, a

scientist must learn a new set of skills in order to compose and execute workflows, the

steep learning curve means that workflows become a source of intellectual capital. The

workflows can be reused, refined over time and shared with other scientists in the field.

AstroGrid can be defined as ajob-orientedsystem. A job being a running instance of a

workflow. AstroGrid is built under the assumption that the virtual observatory will be

used for processing large, complex processing jobs, a job-oriented system makes this

more inherently more scalable. The current release is AstroGrid 2, which consists of

a number of core interacting components, an overview of which is presented in Figure

3.1. Each component will now be discussed in relation to Figure 3.1:

• Portal: A user interacts with AstroGrid through a web based portal. Here a

42 Chapter 3. Scientific Workflow Scenarios

user can perform a number of tasks: explore their MySpace directory, browse

exposed resources, create and run a workflow, construct queries and monitor

currently running jobs.

• Registry: Collections of databases in astronomy are diverse in size, content, lo-

cation and data formats. Tools have been built up over many years, written in

different programming languages and executing on different operation systems.

The AstroGrid Registry is the first port of call when a user needs to locate a

service capable of performing a particular function, e.g. adata archive which

contains information on clusters of galaxies. It takes the complications of man-

ually searching for these services and abstracts details which are unnecessary to

the user; such as where the service is located, what languageit is programmed

in etc.

• Job Execution Service (JES):When a workflow begins execution it is treated

as a job. A workflow becomes a job by submitting it to the Job Execution Service

(JES). A job is a specialised workflow document, containing additional run-time

information which allows it to execute. JES is AstroGrid’s workflow engine

and can manage jobs consisting of multiple steps, where individual steps can be

run on different computers on a network. JES will then attempt to run all the

steps based on the workflow definition. Each step of the workflow is executed

asynchronously, as is the entire job. Once the job has finished executing the user

is informed and the results are published in the user’s MySpace account.

• MySpace: This is the virtual file system used by AstroGrid. It gives theillusion

of a directory tree of one system, when in fact files may be distributed across

many servers. Storage services in MySpace are split into 2 kinds: MySpace

managerssupport the distributed directory tree andfilestoresprovide the phys-

ical data storage. MySpace provides each astronomer with a homespace. As

a workflow progresses, and intermediate data is generated, this data is stored in

the users MySpace account. When a workflow has finished executing, the overall

output is also stored in the user’s MySpace.

• Common Execution Architecture (CEA): Everything in AstroGrid is exposed

to the system through the Common Execution Architecture (CEA). The CEA is

essentially a standard interface which describes how to execute a typical Astro-

nomical application within the Virtual Observatory. This allows any data centre

3.2. Scenario 1: Batch Processing 43

or data processing tool to be accessed in exactly the same way. Application

writers then have the simple requirement of implementing a standard interface

in order to expose their application to the VO infrastructure. The CEA offers a

higher layer than that of WSDL, by providing specific semantics for astronomi-

cal quantities and extra information which is not supportedin WSDL.

Virtual Observatory technologies offer the power of Grid computing in a way that

allows astronomers to achieve meaningful science. AstroGrid is in a maturing state of

development, with recent workshops [22] aimed at teaching astronomers how to use

the Virtual Observatory.

3.2 Scenario 1: Batch Processing

Photometric redshifts use broad-band photometry to measure the redshifts of galaxies.

While photometric redshifts have larger uncertainties than spectroscopic redshifts, they

are the only way of determining the properties of large samples of galaxies. This

workflow makes use of INT (Isaac Newton Telescope) Wide FieldSurvey [59] archive

in Cambridge, to retrieve images around a selected positionand determine photometric

redshifts from U, g, r, i and Z photometry.

Photometric redshifts are often calculated through two well known tools. The first

is HyperZ [13], which calculates the photometric redshift using Spectral Energy Dis-

tributions (SED). The second is called ANNz [17] which is a software package for

photometric redshift estimation using Artificial Neural Networks. ANNz learns the

relation between photometry and redshift from an appropriate training set of galaxies

for which the redshift is already known. The batch processing scenario uses both algo-

rithms to compute the photometric redshift, comparing the accuracy of each approach.

The only technical requirement of a user is to supply an RA andDEC (coordinates) of

interest. The two Sections of the workflow are illustrated inFigures 3.2 and 3.3.

The workflow begins with the user inputting the RA and DEC coordinates (defining

a patch of sky of interest) into the system. TheWide Field Survey Archive (WFS)is

queried for images covering the patch of sky outlined in the RA and DEC coordinates.

Images from each of the bands [U, g, r, i, z] are retrieved fromthe WFS database.

The images are saved in the AstroGridMySpacestorage facility. Each image from

the 5 wavebands [U, g, r, i, z] is then run through theSExtractor[12] service. This

44 Chapter 3. Scientific Workflow Scenarios

Figure 3.2: Batch processing scenario - obtaining photometric data

application scans the image and uses an algorithm to extractall objects of interest

(positions of stars, galaxies etc.) and produces a VO Table for each of the wavebands

containing all the data. Across matching toolis used to scan all the images and produce

one VO Table containing data about all the objects of interest in the sky, in the five

wavebands. This Section of the workflow is detailed in Figure3.2.

With reference to Figure 3.3 a call is made to a database whichcontains spectroscopic

data covering the same area of sky as the original RA and DEC supplied by the user.

An algorithm then needs to compute which galaxies supplied by the spectroscopic

database match up with those returned by the merged photometric catalogue (the final

stage of Figure 3.2). As the ANNz algorithm use a neural network, it must be trained

in order to operate correctly. An appropriate training set and test set is constructed

and used to test each of the various configurations of ANNz. Once the neural network

is set up, all remaining photometric data can be supplied, resulting in a calculation

of photometric redshifts (ANNz: photometricredshifts). An identical call is made

to the HyperZ algorithm, which again computes and returns the calculation of the

photometric redshifts (HyperZ: photometricredshifts). The final output consists of

3.2. Scenario 1: Batch Processing 45

Figure 3.3: Batch processing scenario - spectroscopic data, ANNz, HyperZ

46 Chapter 3. Scientific Workflow Scenarios

multiband files containing the requested position as well asa table containing for each

source all the output parameters from SExtrator and HyperZ (or ANNz), including

positions, magnitudes, stella classification and photometric redshifts and confidence

intervals. A comparison can then be made between the output of the two algorithms.

3.3 Scenario 2: Knowledge Acquisition

If one observes clusters of galaxies with a range of sizes/luminosities, it is often ap-

parent that there is one galaxy which is much brighter than all the others. This galaxy,

called the Brightest Cluster Galaxy(BCG) is frequently positioned in the centre of the

cluster. Statistically, it can be shown that the BCG is something more than just the

brightest galaxy in the cluster. Galaxies in clusters follow a fairly general distribution

of luminosities, and BCGs are too bright too often to be simply the upper end of that

distribution.

There are real outliers, pointing to some different processof formation and/or evo-

lution. The scientific background to this scenario is that there is some evidence for

correlations between the properties of the BCG and of the cluster of galaxies in which

it resides. This indicates that the cluster is affecting theway that the BCG is formed or

has evolved, but scientists do not yet know how this works.

3.3.1 Data Retrieval

An astronomer has a hypothesis about connections between the properties of BCGs

and those of their host clusters, and attempts to construct an experiment which will

aid the understanding of this subject. The data retrieval Section of the workflow is

illustrated in the UML sequence diagram, Figure 3.4. The experiment begins with a

query being constructed and sent to the Virtual Observatory(VO), in order to obtain a

sample of cluster/BCG pairs which have been well observed ina number of passbands.

This is achieved by performing the following operations:

• A query is made to the VO registry web service, in order to obtain a list of

VO data sources which are classified as being catalogues containing clusters

of galaxies. This yields a list of, say, a dozen cluster catalogues - some based

on optical/near-IR observations, some on X-ray observations, and some on sub-

3.3. Scenario 2: Knowledge Acquisition 47

millimetre observations. Examples of real astronomy data sources include: The

XMM-Newton Science Archive (X-Ray) [62], the Sloan DigitalSky Survey

(SDSS) [60] and the UK Infrared Deep Sky Survey (UKIDSS) [32].

• Each catalogue is referenced individually and from each catalogue the positions

of all the clusters are extracted. This is illustrated by theloop between the coor-

dinator and the cluster catalogues in Figure 3.4.

• The VO registry service is referenced again, this time for data sources which are

classified as catalogues of optical, near-infrared and radio sources (and which,

therefore, might include relevant observations of BCGs). This yields a set of

perhaps a further 100 databases.

• At each database the query web service is invoked, in order toextract all the

attributes of all sources contained in a search radius of a certain size around the

position of each of the clusters (returned by the first service). Illustrated by the

loop between the coordinator and the data sources in Figure 3.4.

Once this process is complete these data are deposited in theAstroGrid storage facility,

MySpace. Here the data can be accessed for further investigation and analysis by the

later stages of the workflow.

3.3.2 Data Analysis

Once the data have been deposited, an analysis routine can begin execution. This

analysis routine has to work out which galaxies in the galaxycatalogue data are the

BCG’s in each of the host clusters and generate a combined setof all the data known

about each Cluster/BCG pair. The BCG algorithm must retrieve all the stored data

from the MySpace facility, shown as the first part of Figure 3.5.

Let us assume that this procedure yields a set of up to 400 attributes for 10,000 BCG/cluster

pairs; not every BCG/cluster pair has a value for each attribute (a measured property

which is recorded), but most have values for the great majority of them. This is deemed

to be a good working data set. So, for each cluster in the catalogue there is likely to

be a number of properties recorded; obvious things like position, brightness, size etc.

There will also be another set of attributes recording properties of the sources extracted

from some optical or near infrared catalogue.

48 Chapter 3. Scientific Workflow Scenarios

Figure 3.4: Knowledge acquisition scenario - data retrieval

Figure 3.5: Knowledge acquisition scenario - data analysis

3.3. Scenario 2: Knowledge Acquisition 49

The astronomer then runs a statistical algorithm, offered by a web service, which seeks

the twenty attributes with the highest information contenton the deposited data. The

output (attributes returned by the web service) is then fed into a graphics package

which generates a grid of scatter plots for pairs of them, arranged in order by the

strength of correlation between them. If there are N attributes for M BCG/Cluster

pairs then the Grid of Scatter plots represents N*(N-1)/2 plots, each with M points

plotted. In other words each attribute is plotted against each other attribute for the set of

BCG/Cluster pairs. The visualisation tool allows further investigation into correlations

allowing identification of the significant ones.

3.3.3 Data Visualisation

The final Section of the workflow is shown in Figure 3.6. The astronomer must step

back and look at the data, the visualisation tool displays a set of scatter plots which

are judged as possibly worthy of further investigation. Theastronomer must give a

sanity check on the statistical correlation tests, since some kinds of correlation are not

readily detected by simple summary statistics. The astronomer, after taking a look at

the grid of scatter plots reveals that there are very significant correlations between a set

of six attributes. So the astronomer launches another visualisation tool, which allows

navigation through projections of a multidimensional dataspace.

The astronomer needs to select a subsample of 200 objects to visualise. A request

to the statistical web service is made, quoting the six attributes of interest. The web

service uses a statistical algorithm, which makes sure the sample is representative of

the full data. These data are then further analysed by the visualisation tool. This reveals

three clusters of points, presumably corresponding to distinct populations, which the

astronomer defines as three classes.

This classification scheme is then applied to the full set of 10,000 records (i.e. an

additional attribute is added to the stored dataset in MySpace, which is the flag for

whichever of the classes each BCG/cluster pair belongs to) and statistical tests are run

to assess its significance. This is found to be strong, so the astronomer saves the data

from this session in MySpace, and moves on to figuring out the astrophysical processes

that might lie behind this division into three classes.

50 Chapter 3. Scientific Workflow Scenarios

Figure 3.6: Knowledge acquisition scenario - data visualisation

3.4. Requirements Analysis Part I 51

3.4 Requirements Analysis Part I

By analysing the state-of-the-art in scientific workflow systems, in Section 2.2 and

presenting a set of concrete workflow scenarios, we are now inthe position to address

the common requirements of scientific workflow. This Sectionpresents these core

requirements in detail.

Scientific and business workflows began from the same common ground. Both com-

munities have overlapping requirements, however they eachhave their own domain

specific requirements, and therefore need consideration separately. Today there is a

broad spectrum of Business Process Modelling languages [65], but very few languages

which deal with the flexibleknowledge acquisitionanddiscovery processesfound in

the sciences.

Business workflows place an emphasis on control-flow patterns and events, whereas

scientific workflow tends to have an execution model that is dataflow-oriented. A

dataflow language models the program as a directed graph of the data flowing be-

tween operations. The vast majority of programming languages use the imperative

programming model. In imperative programming, the programis modelled as a series

of operations (then, or etc.), the data effectively being invisible. Dataflow languages on

the other hand treat the data as the main concept behind any program. Programmes ex-

pressed in a dataflow language start with an input and illustrate how that input is used

and modified. Operations consist of a black box with inputs and outputs. Operations

run as soon as all their inputs become valid, as opposed to when the program encoun-

ters them, as is the case with imperative programming. A dataflow language is more

like a series of workers on a production line, who will complete their assigned task as

soon as the materials arrive. Dataflow languages are inherently parallel, as there is no

hidden state to keep track of, unlike imperative programmes. A dataflow program will

usually be constructed as a big hash table, with uniquely identified inputs as the keys,

and pointers to the code as data. When an operation completes, the program scans

down the list until it finds the first operation where all of theinputs are currently valid

and runs it. When that operation terminates it will typically put data into one or more

outports, thereby making another operation valid. Therefore the task of maintaining

state is removed from the programmer and given to the language’s runtime environ-

ment instead, as the only requirement of making a program parallel is to share the list

containing the port information.

52 Chapter 3. Scientific Workflow Scenarios

The dataflow paradigm is used by most of the active scientific workflow projects. As

discussed in Section 2.2 myGrid [53] uses a specifically designed simple dataflow lan-

guage: SCUFL. Kepler [6] is based on the Ptolemy II system, a mature dataflow ori-

ented workflow language, ICENI [41] also has dataflow semantics. All these projects

have a selection of components which have input and output ports and it is then up

to the user to wire these components together to form an executable program. This is

usually achieved through the use of Graphical User Interface. The ten requirements of

scientific workflow will now be discussed in detail, with reference to both the active

projects and the set of motivating workflow scenarios presented in this Chapter.

3.4.1 Requirement 1: Rapid Prototyping

Scientific work is centred around conducting experiments. Ascientific workflow sys-

tem should mirror a users conventional work patterns by allowing them to apply their

methodology over distributed resources. A scientist should be able to work on the

process of experiment construction, treating the distributed resources and services as

problem solving components, in order to falsify a hypothesis. These problem solving

components and the parameters they require need to be continually tweaked by the

scientist, until the outcome of the experiment either proves, or disproves this original

hypothesis.

A scientific workflow begins as aresearch workflow. The focus here lies on iterative

design, steered by a hypothesis. This refinement process canterminate when a suitable

combination of workflow components and parameters falsify this original hypothesis.

As a result of this incremental design process, scientists require the ability to prototype

experiments rapidly. It is therefore essential that the workflow language and scientific

workflow system can support this kind ofincremental, exploratoryandprototypical

approach to workflow composition; allowing scientists to quickly test a hypothesis.

The myGrid Taverna workbench [43], described in Section 2.2.1 is an example of

a scientific workflow system which allows a user to rapidly prototype and execute

experiments using a simple dataflow language: SCUFL.

3.4. Requirements Analysis Part I 53

3.4.2 Requirement 2: User Interaction

User interaction is an essential requirement of scientific workflow modelling. There are

many occasions where a user will require the ability to choose between different paths

of execution, input parameters to a service, modify parameters while the workflow is

executing and wire in new workflow components if something fails. A particular type

of user interaction known as asmart re-run[38] is highlighted in the Kepler system.

A smart re-run allows a user to alter parameters while the workflow is still executing.

For example a user may (after inspecting the results of the first steps of the workflow)

want to alter the parameters and/or components which will affect the following stage.

The workflow would not need to be executed from scratch, only the parts which were

affected by the parameter changes.

To illustrate the importance of user interaction, we refer again to the knowledge ac-

quisition scenario, presented in Section 3.3. Although thefirst two stages (illustrated

by Figure 3.4 and 3.5) can be executed automatically, there are several steps during its

execution where user interaction is required. Once the initial grid of scatter plots has

been loaded into the visualisation software, the user must give a sanity check to the

correlations. At this point the workflow system will pause execution, waiting for input

from the user. It is only through user intervention and the scientists expertise that a

significant correlation is found between 6 attributes. A subsample of 200 objects are

selected along with the 6 attributes of interest, these are,in turn, used as input to a

statistical web service. The scientist’s knowledge is again required, this time to derive

the classification schema which is applied to the full set of 10,000 records.

The knowledge acquisition scenario highlights the need fora workflow language and

scientific workflow system to allow flexible, user-driven interaction, specifically demon-

strated by the need for the scientist’s expertise in order tofind the patterns in the at-

tributes, and to derive a classification schema. There are many processes which simply

cannot be automated, and often the best solution is to keep the user in the loop.

3.4.3 Requirement 3: Workflow Reuse

Once the processes behind a scientific workflow are properly understood, aresearch

workflowcan be executed automatically as abatch workflow. As a result of the lengthy

iterative process of design, workflows become avalued commodityand a source of

54 Chapter 3. Scientific Workflow Scenarios

intellectual capital. These workflows can be reused, refinedover time, and shared with

other scientists in the field. It is not necessary for a user tounderstand how a batch

workflow is constructed internally, it can effectively be treated as a black box of com-

putation which the user can customise by parameterising theworkflow specification.

As an example, take the batch processing scenario discussedin Section 3.2. In the

AstroGrid architecture, this workflow is presented to the user simply as a unit of com-

putation, that will, given an input, determine photometricredshifts. The user needs

to know nothing of the internal computation, merely supply an RA and DEC (coor-

dinates) for the workflow to begin execution. Once the complex iterative process of

designing a scientific workflow has finished, other users can take advantage of this re-

search. It is therefore essential that workflows can be parameterised at runtime and are

fully reusable at every stage in the design process.

3.4.4 Requirement 4: Fault Tolerant Execution

The Large Synoptic Survey Telescope (LSST) (discussed in more detail in Section

4.1) will generate 36 gigabytes of data every 30 seconds. Over a ten-hour winter night,

LSST will collect up to 30 terabytes of data, and eventually archive more than 50

petabytes. Storing these data alone is a difficult problem, but things become far more

complex when users attempt to analyse, retrieve and visualise these massive volumes

of data. Scientific workflows are therefore oftendata, compute and analysisintensive.

With the movement and analysis of such large quantities of data, these complex work-

flows can take days, or as long as weeks of compute power to finish one iteration of

the workflow execution cycle.

Workflows with execution times as long as this need the ability to run with adetached

executionmode. This means executing in the background of a parallel machine or Grid

cluster, without the need to stay constantly connected to a client’s application. Call-

back mechanisms when the workflow requires user intervention, or parameter changes

need to built into the workflow engine. The myGrid notification service [36] is an

implementation of such an idea. The scientist cannot affordfor the workflow to fail

half way through the execution cycle and have to be rolled back to the start. There-

fore reliability and fault tolerance factors are importantwhen considering the design

of a language and system to support scientific workflows. Common techniques such as

transacting, checkpointing [18] and multiple service options (in case a particular ser-

3.4. Requirements Analysis Part I 55

vice instance is down) need to be built into the language and tools in order to provide

the user with fault tolerant execution.

3.4.5 Requirement 5: Suitable Abstraction

A workflow system, particulary when used in the scientific community, should allow

the same information to be shown at various levels of abstraction, depending on who

is using the system. A high level of abstraction should be presented to a scientist who

knows nothing (or simply doesn’t care), about the under-pinnings of service composi-

tion. The scientific workflow system should present this typeof user with an intuitive

Graphical User Interface (GUI) or a simple formal notation.An engineer on the other

hand, might be interested in the lower level details of exactly how the workflow is

composed. Such as where data archives are located and which exceptions a service

throws, if it were to fail. These levels of abstraction should be fluid, many scientists

will be happy with the high-level definition most of the time,but will want to drill

down into the specific details occasionally, e.g. when unexpected results are obtained.

A scientific workflow language and system should therefore, be able to present ana-

lytical knowledge discovery workflows for scientists, as easily as presenting low level

plumbing workflows for software engineers.

myGrid solves this problem by allowing a workflow to be displayed at varying levels of

abstraction. A scientist using Taverna can construct a workflow graphically through the

user interface, or load and execute a pre-written workflow (such as the batch processing

scenario). Whereas an engineer can tweak the individual services and composition

control flow with the dataflow language, Scufl [44]. Varying levels of abstraction are

essential for both scientists and engineers to make full useof a system.

3.4.6 Requirement 6: Legacy System Integration

Many scientific applications are consideredlegacy applications. These applications

tend to be written in older programming languages, such as Fortran. However, just be-

cause they are written in older languages, does not mean thatthey should be discarded.

The reason that they are still in use is that they have a proventrack record, are reliable

and known to work. From a software engineering perspective,it is far more efficient to

integrate these applications into newer systems than rewriting the code from scratch.

56 Chapter 3. Scientific Workflow Scenarios

With the widespread adoption of service-oriented architectures and web service stan-

dards, legacy code can simply be wrapped in a standard interface and exposed as a

web service. This web service can then, like any other, be used as a building block for

more sophisticated applications; such as scientific workflow systems. SExtractor and

HyperZ are two examples of legacy applications used by the batch processing scenario.

These applications have evolved with time and have been wrapped up as web services

in order to be integrated into AstroGrid’s service-oriented architecture.

myGrid [53] allows legacy code to be integrated as processortypes, such as WSDL

or SOAPLAB. Kepler and ICENI have similar mechanisms which allow code to be

automatically wrapped and integrated into the scientific workflow environment.

3.4.7 Requirement 7: Provenance Data

As we have illustrated in Requirement 1, scientific workflowscan be hypothesis driven,

as a result, more often than not the outcome of the workflow will be unsuccessful [71].

It is therefore essential that the system documents the series of steps a user performed

which resulted in the unsuccessful outcome. This information may be crucial to aid

the evolution of the workflow, in order to produce a successful outcome.

Scientific workflows must be fully reproducible. In order fora workflow to be repro-

duced, information must be recorded which indicates: wherethe data originated, how

it was altered, which components fitted together to form the workflow, parameter set-

tings etc. This will allow other scientists to re-conduct the experiment, confirming the

results. Output of workflows may be used as a basis for future research, either by the

scientists who generated the data, or colleagues in a related field. This methodology is

consistent with the usual practise of non-computational labs. A useful feature of a sci-

entific workflow system is the ability to automatically generate provenance logs, which

can be inspected by others at a later date. myGrid integratessuch a feature and allows

provenance documents to be linked together, for on the fly annotation [35]. Prove-

nance data also aids users of batch workflows, allowing usersto inspect the results of

previous experiments, in order to steer their own.

3.4. Requirements Analysis Part I 57

3.4.8 Requirement 8: Smart Component Choice

With pervasive service access, there will inherently be multiple groups of services

which perform the same functionality. For example in the batch processing scenario

there are two implementations of web services which performthe redshift calculation:

ANNz and HyperZ. However some services are inherently more reliable than others,

as they make use of better algorithms, have less down time, lower latency etc. It is

also true, that certain combinations of services will work together more effectively

than others, as there will be less data transformations in between or they are physically

located nearer one another.

A scientific workflow system should therefore, ideally assist the user in selecting com-

ponents. Firstly at design time by suggesting components which are known to work

well together based in historical data but also at runtime, based on the current loads of

services etc. For this to work, performance data needs to be recorded, services need to

be semantically marked up, and brokers [37], [51] need to offer services which closest

fit the user’s needs.

3.4.9 Requirement 9: Semantic Mark-Up

The Semantic Web, as briefly discussed in Section 2.1.3 allows data to be wrapped in

an additional semantic layer. This semantic layer providesmetadata (data about data),

by giving information well defined meaning, so machines can then begin to reason

about them.

Semantic web services allow the properties and capabilities of a web service to be

described, using a markup language such as OWL-S [39]. A scientist who is new to the

system will not necessarily know which services to use for a particular experiment. By

semantically marking up web services, applications can suggest a selection of services

based on a user’s needs, as discussed in Requirement 8. This helps to remove the

often complex and lengthy process of service discovery. Semantic techniques are a

useful addition to a scientific workflow system. By marking updata, web services and

workflow components, everything is inherently more reusable and easier to discover.

The myGrid project makes extensive use of semantic markup techniques in its Taverna

workbench.

58 Chapter 3. Scientific Workflow Scenarios

3.4.10 Requirement 10: Data Presentation

Data presentation is often overlooked when designing scientific workflow systems,

pushed aside as a trivial task that can be addressed later in the systems evolution. How-

ever as a scientist may know nothing of how a workflow system operates, it is essential

to present him/her with an intuitive user interface, also discussed in requirement 5.

Web services require data to be formatted correctly, using different data types and

structures. It may therefore, be necessary to pass the output of one service into a filter

service, which reformats the data so that they can be passed into the next service.

myGrid offers a number of shim services [53], which can automatically perform this

task for a user. Although this is essential for the correct execution of the workflow, it

may not be necessary to inform the user that this process is even taking place. These

tasks can, depending on who the user is (scientist, engineeretc.) be hidden away.

Multiple data types may be used throughout the duration of the workflow, and it is

therefore essential that different types of data are presented correctly to the user. Ide-

ally, the underlying scientific workflow system should choose the most appropriate way

to display these data. Tools such as graph plotters and visualisation software should be

built into the system, and the same data should be able to be displayed to the user in a

number of different ways. This requirement is illustrated in the knowledge acquisition

scenario. Here visualisation of the data needs to take placein order for the scientist to

make an attribute selection, and proceed with the workflow. Kepler and myGrid offer

workbench-like facilities specifically for this task.

3.5 Chapter Conclusions

This Chapter has introduced the domain of Virtual Observatory technology, specifi-

cally the UK e-Science project AstroGrid. By working closely with this project we

have derived and helped to shape a set of workflow scenarios. These scenarios act

as a motivating factor behind this research and demonstratethe complex coordination

behaviour required of scientific workflow. By analysing the state-of-the-art scientific

workflow systems (discussed in 2.2) and motivating scenarios, this Chapter has demon-

strated (by example) how scientific workflow has an overlapping set of requirements

with traditional workflow modelling, but also has an extra set of requirements and

3.5. Chapter Conclusions 59

therefore needs consideration separately. As a result of this process we propose a set

of core requirements of scientific workflow.

The following Chapter presents a further workflow scenario,taken from another Vir-

tual Observatory project: LSST. This scenario acts as a counterexample of coordina-

tion which is difficult or impossible to achieve by the existing service composition

techniques. This scenario requires a fundamentally different approach to service com-

position, a theme which will be explored throughout the remainder of this thesis.

Chapter 4

A Counterexample

This Chapter presents a further workflow scenario which has been jointly derived with

the Large Synoptic Survey Telescope (LSST) project, centring around runtime orbit

and object classification. The scenario acts as a pivotal point in this thesis and serves

as a counterexample to coordination which is difficult or impossible to enact by ex-

isting service composition techniques. This counterexample goes beyond the set of

requirements which the knowledge acquisition and batch processing scenarios, requir-

ing a fundamentally different approach to the service composition problem.

Section 4.1 introduces the LSST project (Virtual Observatory technology) and dis-

cusses the new field of time-domain astronomy and the potential impacts this will have

on the astronomy community. Sections 4.1.1 and 4.1.2 outline in detail the counterex-

ample scenario, while Section 4.1.3 discusses an extensionto the scenario based on

contract negotiation. Section 4.1.4 highlights the extra set of requirements necessary

to solve the counterexample scenario presented by this Chapter. These requirements

combined with those presented in Section 3.4 form the requirements analysis and mo-

tivation for the remainder of this thesis. Conclusions of this Chapter are presented in

Section 4.2.

4.1 Large Synoptic Survey Telescope (LSST)

Observations of change in the universe are difficult to obtain. Most change in the

universe is so slow that it can never be directly observed, taking place over millions

of years; much like the evolutionary processes taking placeon Earth. However many

61

62 Chapter 4. A Counterexample

of the most remarkable astronomical events occur on human, and even daily, time-

scales; these changes have proven the most difficult to observe. Current observatories

are able to look very deeply at very small parts of the sky. This small field of view

means that any one observation is not likely to catch a transient event in the act, as

the observatories are always looking somewhere else. A small field of view means

that an impractically large number of separate observations are required to map the

entire night sky. Observational facilities are also in great demand, astronomers must

apply for scarce telescope time, with the assignment of onlya few nights per year to

each astronomer. This means that with the lack of continuousobservatory access and

a global view, astronomers are almost certainly missing outon what is going on in the

universe.

The Large Synoptic Survey Telescope (LSST) [56] has been proposed to address many

of these difficulties and open up ‘time-domain astronomy’. This ground-based 8.4-

metre, 10 square-degree-field telescope will provide digital imaging of faint astronom-

ical objects across the entire sky, night after night. The unique property of LSST is

that it is able map the entire night sky very quickly. LSST will tile the sky repeatedly

with overlapping images of approximately 10 square degrees. It will be able to tile the

entire visible night sky in a matter in 3 days. Current estimates indicate that LSST will

generate 36 gigabytes (GB) of data every 30 seconds and over a10 hour winter night,

will collect up to 30 terabytes.

LSST is broadly interested in two categories of objects, thefirst of these are known

asvariable objects. Variable objects, are as their name suggests objects whichvary

over time. Examples of variable stars areperiodic variables(e.g. they oscillate in

size and hence brightness) andaperiodic variables(i.e. something dramatic happens

every now and then which changes their brightness - such as mass transfer between

stars). Occasionally, the brightness of a galaxy changes significantly, but that only

really happens if a star in it goessupernova- in which case it can shine (briefly) as

brightly as all the rest of the stars in the galaxy put together.

The second category of objects that LSST is interested aremoving objects. Moving

objects broadly fall into two classes:starsandbodies in the solar system. The stars

move across the sky relative to us because our Milky Way galaxy is rotating and the

Sun, and all the other stars, are in orbit around the Milky Way’s centre of mass. To a

good approximation, the speed with which a star is seen to move across the sky depends

on how close it is to us, so that the only stars which move rapidly (i.e. an appreciable

4.1. Large Synoptic Survey Telescope (LSST) 63

movement on a timescale of a few years) are the ones which are very close to us. Most

stars can only be seen moving over timescales of many years; even decades.

That leaves the solar system objects, which are the prime concern of LSST. There

are a number of classes of solar system object. Traditionally they have been divided

into planets, asteroids and comets, but in recent years it has been realised that the

boundaries between all three classes are somewhat vague. Two types of solar system

objects are of particular interest for LSST. The first of these are thetrans-neptunian

objects(TNOs), which are objects whose orbits around the Sun have a larger radius

than that of Neptune, so that they inhabit the outer regions of the solar system. Within

the general category of TNOs there is one class of object, called Kuiper Belt Objects

(KBOs) which are of particular interest. The Kuiper Belt is aregion of the outer solar

system (in the sense of a range of orbital radii) in which a lotof objects are found, so it

is dynamically stable. What’s particularly interesting about KBOs is that they’ve been

sitting in the outer reaches of the solar system for several billion years (or, at least, the

material in them has - maybe individual objects aren’t so long lived) so they are good

probes of the early history of the solar system, which makes them of great interest to

people who study the formation of planets and the early evolution of the solar system.

The second type of particularly interesting solar system objects are theNear-Earth

Objects(NEOs). This is, as its name suggests, a catch-all term for anything that passes

close to the Earth, and, of course, these are of particular interest because they could

actually hit the Earth.

4.1.1 Scenario 3: Runtime Coordination - Automated Stage

The runtime coordination scenario is taken from the LSST science use cases, a moti-

vating factor behind the development of the LSST program. The data reduction and

analysis in LSST will be done in a way unlike that of most observing programmes. The

data from each image will be analysed and new sources detected before the exposure

for the next tile is ready. This means that if anything unusual is detected, normal ob-

servation can be interrupted, in order to follow up any new orrapidly varying events.

Other observing resources can also be notified instantly, providing a different perspec-

tive on the event. As data are collected, they will be added toall the data previously

detected from the same location of sky to create a very deepmaster image. LSST will

also build up a database of all known KNOs and NEOs and other moving objects. Each

64 Chapter 4. A Counterexample

Figure 4.1: An example of a subtracted image

observation will help to improve the accuracy of the data held.

Every time a new image of the sky is obtained, the master imagewill be subtracted

from it. The result is an image which only contains the difference between the sky at

that time and its average state; in other words a picture of what has changed, this image

is known as thesubtracted image. Figure 4.1 illustrates two images of a cluster of

galaxies, taken three weeks apart, the far right plate is thesubtracted image, revealing

that a supernova has exploded in one of the galaxies. This subtracted image is then

processed by a cluster of computers with the following steps:

• Find known objects: This activity runs on the subtracted image. The first task

is to compute which objects are expected to appear in the subtracted image, given

the area of sky, time of day, and the current state of knowledge of known orbits.

This involves making a query to anorbit catalogue, which contains data about

the orbits of all currently known objects. The results from this query (expected

detections) are then cross matched with the sources in the subtracted image. The

result is theunmatched-source catalogue, this catalogue only contains sources

which can’t be matched with a previously known object (i.e. the things which

may be new discoveries of moving objects). The remainder of the workflow in-

volves attempting to construct an orbit for these newly detected moving objects.

• Find Tracklets: The newly createdunmatched-source catalogueis then used to

compute pairs of detections separated by short time intervals, calledtracklets.

A tracklet is an observable, short section of orbit. In orderto create pairs of

detections, all objects in theunmatched-source catalogueare queried against

the orbit catalogue, in an attempt to obtain data about theseobjects from earlier

observations. If earlier observations and current observations can be linked to

form tracklets, they are stored in thetracklet catalogue.

4.1. Large Synoptic Survey Telescope (LSST) 65

Figure 4.2: Runtime coordination scenario - automated processing

• Link Tracklets: The newly createdtracklet catalogueis then used in an attempt

to link these tracklets over a larger time window. This is achieved by again

querying theorbit catalogue, this time looking for observations of the same

objects even further back in time. If matches can be found andthe tracklets

can be extrapolated out into longer sections of orbit, then they are added as new

orbits to theorbit catalogue.

• Orbit maintenance: The orbit catalogue is then updated, in the light of re-

detections of known objects. Each rediscovery provides vital information which

helps to constrain the set of known orbits further, resulting in more accurate orbit

predictions.

• Generate alerts: The final stage of the workflow attempts to classify all entries

in the orbit catalogue(i.e all the objects which now have known orbits). If

any Near Earth Objects are detected to be passing close to theearth, alerts are

generated to astronomers so that follow up observations canbe scheduled.

After the initial processing stage of the subtracted image (illustrated by Figure 4.2),

there will be some data which is left over, theunclassified objects. This data includes

objects and orbits which can’t be classified by the processing software. As LSST

is a first attempt at time-domain astronomy, it is likely to discover not only existing

types of objects, with many previous, well recorded observations, but also, many new

species of objects. If a new species of object were to be discovered, then the automated

classification software is almost certain to miss it and the object would end up with the

unclassified objects set. This is because no previous data exists about this possible new

species of object, so no comparisons can be made to earlier observations.

66 Chapter 4. A Counterexample

This leaves us with the question about how to classify the objects in the unclassified

objects set. As the content of the data cannot be determined in advance, if a possible

new species of object were to arise, it is difficult to ascertain whether it is in fact a

new species of object, or simply some kind of observatory equipment failure. Typi-

cally, most of these objects will be junk, but this may only berevealed on the basis of

comparison with other detections made from the same night.

4.1.2 Scenario 3: Runtime Coordination - Unknown Stage

It is intended that groups of specialised software components take over where the sub-

tracted image processing left off, attempting to classify whatever data is left over from

the automated processing stage. The software components are initially set up with a

certain amount of knowledge about properties of the data, and a number of statistical

tests to perform. They require the ability to cooperate and coordinate with one another,

hence they are also set up with some rules about when and how toshare information.

However, they must be able to react to the constantly changing, dynamic environment

which they are operating in. Engineers can focus on developing individual, intelligent

software components which are specialised in their own right. For example certain

components will have expertise on pixel failures on the camera, others contain data

and a hypothesis about a certain kind of unclassified object.Figure 4.3 shows an

overview of the example scenario. Observatories are definedwithin the dotted circle,

inside each observatory is a certain amount of local data (illustrated by databases), and

a group of software components (illustrated by the square).Web services are shown

as rounded rectangles. Communication is shown by arrowed solid lines, web service

invocations are shown as single arrowed dotted lines.

An example interaction between a group of distributed observatories could be viewed

as the following. Software components at observatory A are attempting to classify

objects from the unclassified data set, one of these components has located an item

which cannot be classified locally. This anomaly appears on several plates of the sky

on the subtracted image, so it wasn’t present on the master image. The object and orbit

classification algorithms cannot identify the anomaly, so it could potentially be a new

species of object, or some kind of equipment failure. The observatory has exhausted

the possibility of solving the problem locally and needs to compare similar observa-

tions made on the same night with distributed observatories, databases and repositories.

4.1. Large Synoptic Survey Telescope (LSST) 67

Figure 4.3: Runtime coordination scenario - overview

68 Chapter 4. A Counterexample

It wants to ask a question equivalent to:‘has anybody else found anything strange in

this particular area of sky, at time t, which could solve thispossible anomaly?’.

In order to discover which observatories can offer the required data, the Contract Net

protocol [50] is executed over a group of observatories known to have possible data

about the area of sky we are interested in, at time t. This is illustrated by steps 1 to 4

of Figure 4.3. A Contract Net service (on behalf of the observatory) issues a call for

participation over the set of possible observatories. The call for participation contains

a proposal, defining the terms of agreement. Each observatory then reaches some form

of conclusion about participation (based on current work loads, data availability etc.),

issuing either anacceptor reject message to the proposal. The set of observatories

who returned accept (in this case observatories B and C) are returned to observatory A,

who locally decides (based on some internal local knowledgeand runtime conditions)

which observatory to obtain the data from in order to make forward progress with the

classification and workflow. Step 5 of Figure 4.3 shows anaccept-proposalmessage

being issued to the selected observatory (in this case B) andthe remaining observato-

ries are issued areject-proposalmessage. It is then up to the observatory B to locally

retrieve and process the data in accordance to the agreed Contract Net proposal (step

6 of Figure 4.3), this will involve negotiation of resourcesand a set of external web

service calls.

If for some reason the terms of the proposal cannot be met, aninform-failure is re-

turned to observatory A. Aninform-failurewill mean that the Contract Net protocol

will need to be executed again. Due to changing circumstances, such as network load

or scheduling, there is no guarantee which nodes will be available for participation,

with this iteration of the contract net protocol, possibly an entirely different set to

the original iteration will be available. However, observatory A runs the same process

illustrated from steps 1-6 until suitable data is obtained for the workflow. When this oc-

curs aninform-resultmessage containing the required data is sent back to observatory

A. Once received local software components can use the evidence gathered from the

distributed observatories and databases to reach a conclusion regarding the unknown

object, reporting anything to human scientists which may require closer inspection.

The observatory software then continues to process the remainder of the unclassified

data, following the same process again if an object cannot beclassified locally.

4.1. Large Synoptic Survey Telescope (LSST) 69

4.1.3 Scenario 3 Extension: Contract Negotiation and Sched uling

This Section details an extension to the runtime coordination scenario, which deals

with contract negotiation and automated observation scheduling in order to follow up

any potentially interesting objects. Figure 4.4 illustrates the extended scenario, it picks

up where the scenario described in Section 4.1.2 leaves off.

Based on the combined opinion (from the data retrieved from observatory B) the soft-

ware at observatory A detects that the object in question is not in fact a fault but a

possible new species of object, previously undetected. It autonomously makes a deci-

sion to schedule an extra observation as quickly as possible, in order to gather further

evidence of this new species of object. Observatory A generates a new proposal (based

on the area of sky to be scanned) and retrieves a list of observatories from a registry

which could potentially schedule the observation (step 1 ofFigure 4.4). The Con-

tract Net protocol is executed once again across the group ofdistributed observatories

deemed to be suitable from the registry lookup (step 2 of Figure 4.4). This time instead

of simply replying withacceptor rejectmessages like the previous scenario, there is a

further option to propose amendments to the contract. In this case observatories B and

D cannot fulfill the terms of the contract and issue a reject message. Observatory C on

the other hand can potentially offer the requested service,however due to its current

work load it sends back a propose message with a list of amendments attached (step 3

of Figure 4.4). This proposal along with the amendments suggested are sent back to

observatory A (step 4 of Figure 4.4)

Observatory A is unhappy with the restrictions placed on theoriginal contract and itself

amends the contract again. An iterative process of negotiation takes place between the

two distributed observatories (step 5 of Figure 4.4), each making amendments until a

draft of the contract is agreed by both parties. If the contract is agreed observatory

C places the observation request on the queuing system for the telescope hardware.

The place in the queue has been negotiated between observatories A and C, depending

on the urgency of the update needed (step 6 of Figure 4.4). Once the telescope has

performed the observation the data is sent back to observatory A (step 7 of Figure

4.4). This can then either by used for further processing to confirm or deny a local

hypothesis or sent to a group of scientists who have requested notification updates of

any potential new species of objects (step 8 of Figure 4.4).

70 Chapter 4. A Counterexample

Figure 4.4: Runtime coordination scenario - contract negotiation/scheduling

4.1. Large Synoptic Survey Telescope (LSST) 71

4.1.4 Requirements Analysis Part II and Problem Statement

Current service composition techniques allowstatically defined, pre-designed/pre-planned

workflows to be enacted by acentralised workflow engine. Workflows like the knowl-

edge acquisition and batch processing scenarios discussedin Sections 3.3 and 3.2. The

scenario discussed by this Chapter acts as acounterexampleto coordination which is

difficult or impossible to achieve by current service composition techniques.

The systems which attempt to classify this data will need to exhibit complex coordina-

tion behaviour and go beyond the requirements defined in Section 3.4. These properties

will now be discussed in turn:

• Distributed data: Data will inherently be distributed over a number of obser-

vatory nodes. Systems will need tocollaboratewith these nodes, in order to

retrieve the necessary data to make forward progress with the workflow.

• Scarce resources:Resources required as part of the workflow (such as sky data

and observation time) are scarce.Negotiationwill need take place if several

observatories are either offering the same information/services or bidding on

the same resource. This point is illustrated by a possible contract negotiation

process, detailed in Section 4.1.3.

• Data volume: Due to the quantities of data involved with the LSST project (dis-

cussed in Section 4.1), the process of analysing the unclassified objects will need

to be performedautonomouslyby intelligentsoftware entities. It is not feasible

to expect scientists to process this data by hand and human scientists should only

be included in the loop if something particularly interesting has been detected,

requiring the skills of a specialist scientist. For examplewhen observatory A has

gathered evidence (by scheduling observation time) for a possible new species

of object, part 8 of Figure 4.4.

• Runtime coordination: As there is no way to tell how much, or what type of

data will be found in the unclassified objects set, a traditional static workflow,

which has been put together at design time, or pre-planned will not offer the flex-

ibility required of this constantly changing environment.The software entities

which enact the workflow will need to compose sections of the workflow (which

services to call, databases to invoke)dynamicallyat runtime to cope with this

uncertainty. For example the components willing to take part in the interaction

72 Chapter 4. A Counterexample

changes each time the Contract Net protocol is executed.

• Pro-activity: Software components require the ability to beproactivein nature,

searching and composing solutions to problems they encounter.

• Partial knowledge: Observatories may not want to share their data directly, due

to privacy issues, funding bodies etc. For this reason it maynot be possible to

move all the data into one place at the same time (like a traditional centralised

workflow engine) in order to run the necessary processing algorithms. Software

entities may therefore only have partial knowledge of theirenvironment, this

suggests adopting a purelydecentralised, peer-to-peer architecture.

4.2 Chapter Conclusions

The runtime coordination scenario presented by this Chapter acts as a counterexample

to coordination which is difficult or impossible to achieve by existing service com-

position techniques. In order to achieve the added flexibility required of this coun-

terexample and the requirements discussed in Section 3.4 this thesis views the service

composition problem in a fundamentally different way. An agent-based architecture is

proposed, allowing active, autonomous agents to consume the passive service-oriented

architectures found in Internet and Grid systems.

Specifically we propose modelling the processes found in scientific workflow with the

flexible coordination technique of interaction protocols (discussed in Section 2.3.4)

from the field of multiagent communication. This has allowedthe typical features and

requirements of a scientific workflow to be understood in terms of pure coordination

and executed in an agent-based, decentralised, peer-to-peer architecture.

For completeness it is important to mention that there are a minimal number of work-

flow projects based on multiagent/peer-to-peer architectures: Little-Jil [72], PeCo [58],

SwinDeW [76], Pockets of Flexibility [48] and WASA2 [67]. Although this thesis

recognises the contribution of these projects many are still in their infancy and are

merely suggested approaches. None of the approaches are founded on interaction pro-

tocols or deal specifically with agent-based service composition for scientific workflow

scenarios, like those discussed throughout this thesis.

In the following Chapter the MultiAgent Service Composition (MASC) language is

4.2. Chapter Conclusions 73

introduced, this agent-based service composition language is specifically designed for

modelling complex workflow scenarios like the runtime coordination scenario detailed

by this Chapter. The core aims will be be discussed along witha break down of the

language syntax and examples of use where appropriate.

Chapter 5

MultiAgent Service Composition

(MASC)

This Chapter introduces the formal language:MultiAgent Service Composition, oth-

erwise known asMASC. The language presents an agent-based solution to the ser-

vice composition problem and is centred around the concept of interaction protocols.

Section 5.1 reiterates the conclusions drawn from previousChapters and presents the

motivations and core aims of the MASC language. Section 5.2 presents in detail the

formal syntax of the language, discussing in turn, each construct with an example of

use where appropriate. Section 5.3 concludes the Chapter and the full MASC syntax

is presented in Section 5.4.

5.1 Service Composition through Interaction Protocols

As demonstrated through our analysis of current scientific workflow systems and moti-

vating workflow scenarios, scientific workflow has an extra set of requirements which

go beyond traditional Business Process Modelling. Although the field of scientific

workflow is maturing, there are still few languages and systems which deal with the

flexibleknowledge acquisitionanddiscovery processesfound in the sciences. Through

our analysis, this thesis has derived a set of core requirements for scientific workflow.

Section 4.1 highlighted a counterexample which demonstrated that statically defined,

pre-designed/pre-planned workflows were too brittle for the flexible, dynamic com-

position required of the runtime coordination scenario. Anextra set of requirements

75

76 Chapter 5. MultiAgent Service Composition (MASC)

Traditional Requirements Extra Requirements

R1: Rapid Prototyping E1: Dynamic, Runtime Composition

R2: User Interaction E2: Peer-to-peer Architecture

R3: Workflow Reuse E3: Peers are Autonomous

R4: Fault Tolerant Execution E4: Peers capable of Reasoning

R5: Levels of Abstraction E5: Proactive, Reactive Peers

R6: Legacy Systems Support

R7: Provenance data

R8: Smart component choice

R9: Semantic mark-up

R10: Data presentation

Table 5.1: Requirements analysis

(discussed in Section 4.1.4) is required to achieve this complex coordination. This

extra set of requirements goes beyond the existing functionality provided by current

service composition techniques. This has resulted in a combined set of requirements

which together form the requirements analysis for the remainder of this research, to

reiterate, an overview of these combined requirements is illustrated by Figure 5.1. The

MultiAgent Service Composition (or MASC) language aims to meet these require-

ments by adopting an agent-based approach to service composition, our approach is

founded on the concept of interaction protocols.

5.1.1 Combined Requirements Analysis

Interaction protocols (addressed in more detail in Section2.3.4) are essentially a col-

lection of conventions which allow agents in anopen systemto interact with one an-

other. The termopen systemmeans that any agent can take part in the interaction,

regardless of their internal implementation details. Interaction protocols define the

rules of engagementbetween a group of interacting agents. Such asif and whenan

agent can communicate, and theorder andkind of messagesthat an agent expects.

Interaction protocols sit between the transport layer (defining network specifics, e.g.

HTTP/SOAP etc.) and the rational layer (how the agent reactswhen it receives certain

messages).

Our approach builds on the Electronic Institutions (E.I) framework, which was dis-

5.1. Service Composition through Interaction Protocols 77

cussed in Section 2.3.5 and extends an earlier version of thelanguage: Multi Agent

Protocols (MAP) [69], [10]. Although Electronic Institutions provide a standard frame-

work for coordinating the interactions of agents in an open multiagent system, there

are several problems which prevent it from becoming a truly adaptable standard in the

agent community:

• Centralised control: All interactions that take place in the EI framework are

coordinated through a central agent, known as anadministrative agent, or gov-

ernor. The administrative agent’s job is to enforce the conventions of the insti-

tution, and to make sure that agents adhere to the institutions rules and regula-

tions. This is regarded as a bottleneck in the system, because coordination of the

agents hinge on the administrative agent functioning correctly, if the administra-

tive agent crashes or performs an incorrect function then all agents taking part in

the institution will not behave as expected. One of the key properties of agents

(discussed in Section 2.3) over other software entities isautonomy, the presence

of an administrative agent undermines this key property.

• Non-determinism: Protocols controlling the flow of an agent can contain mul-

tiple transitions between states within a given scene. However the protocol does

not attempt to define when an agent should choose a particularstate over an-

other, this is left up to the engineer of an individual agent who must manually

assign behaviours to each of the choice points in a protocol.This means that the

protocol can not be automatically disseminated to an agent.Human intervention

is always required to supply the behaviour at all choice points in the protocol.

This can be considered a heavy weight engineering task, especially if the proto-

col is more complicated than the simple general practitioners scenario discussed

in Section 2.3.5.

• Design time: The path of an agent through an institution (i.e. the roles anagent

will adopt and the scenes in which it will interact) must be determined before the

agents are deployed. When a new agent wishes to participate in an institution

it must know the internal details of the institution. The current approach is to

construct a plan for an agent based on knowledge of a particular institution. This

means that the path of an agent needs to be pre-determined. This approach is

fine for simple cases, with relatively predictable interactions, however it breaks

down in more complicated cases where it is not possible to predetermine the path

of an agent through the institution.

78 Chapter 5. MultiAgent Service Composition (MASC)

• Static topology: It is assumed that the structure of the institution remains static.

If the definition of the institution changes then the plans for the individual agents

will need to be re-synthesised and corrected. This means that even a minor

change in the definition of an institution, may mean complicated reworking of

all the individual agents. This is highly undesirable and makes the system com-

plicated to deploy and brittle to any changes in the topology.

The MASC language borrows certain concepts from the E.I framework, such as: coor-

dination being defined using interaction protocols, the dividing of these protocols into

scenes, roles and agents adopting roles from a protocol. MASC however is an inter-

action protocol specification language designed to addressseveral of the shortcomings

of the E.I. framework and is targeted specifically at servicecomposition, a topic not

addressed by the E.I. framework. The MASC language has the following core aims:

• Uniting agents and services:The MASC language aims to bridge the gap be-

tween the multiagent system and service-oriented architecture paradigms. By

applying the principles and well understood practices of agency to the service

composition problem. Active, autonomous agents can consume the generally

passive service-oriented architectures found in Internetand Grid systems.

• Peer-to-peer architecture: Workflows are required to be executed in a decen-

tralised, peer-to-peer architecture, therefore each peermust be able to directly

execute the workflow specification. As we have demonstrated most workflow

engines are centralised, job-oriented systems, so this shift to a peer-to-peer ar-

chitecture presents a new set of challenges.

• Component autonomy:The language should allow concepts specific to agency

to be explored, for example to allow peers a degree of autonomy engineers

should be able to integrate specific reasoning models alongside the specification

of interaction.

• Requirements of scientific workflow: The MASC language aims to meet the

combined set of requirements which have been discussed in detail throughout

this thesis, supplying the coordination necessary to solvethe counterexample

workflow scenario presented in Section 4.1. With reference to Figure 5.1 the

MASC language directly addresses requirements: R1 - R6, R8 and E1-E5. Dis-

cussion of how to achieve requirements: R7, R9 and R10 are presented in Section

8.2, further work.

5.2. MASC Language Syntax 79

• Levels of abstraction: The language is required to be used at various levels of

abstraction, ranging from a scientist: who simply wants to wire together prob-

lem solving components in an attempt to nullify a hypothesis(e.g. by taking

advantage of a simple dataflow paradigm), to an engineer: whois interested in

specific details of service interaction.

• Framework: In order to test the ideas presented by this thesis, a framework will

be implemented which takes advantage of the latest service-oriented standards.

This framework will be made fully open-source.

• Fit in with existing infrastructure: As there are several fully developed graph-

ical service composition tools (e.g Taverna [43]), scientists should be able to in-

tegrate components expressed in the MASC language into these existing frame-

works. For example, adding our novel multiagent/service-oriented approach as

a dataflow node in an experiment constructed using Taverna.

5.2 MASC Language Syntax

This Section presents the abstract syntax to the MASC framework, an agent-based

approach to the service composition problem. Where appropriate the Backus Naur

Form (BNF) notation is used. The language will be discussed bottom up, beginning

with the definition of a scene. The notation used is an extended form of BNF, where

we have adopted the regular expression symbols * to represent 0 or more, and + to

represent 1 or more. Superscripts are used to indicate a list, e.g. R(k) is a list with

elements R of size k. Different types of term are representedby prefixing variable

names with: $, constants with: ! and identifiers with: %.

80 Chapter 5. MultiAgent Service Composition (MASC)

5.2.1 Terms, Types, Identifiers and Configuration Pairs

Several elements in the MASC language need to be uniquely identified, this is achieved

through theid set, consisting of seven elements{idp, ids, idr, ida, idm, idpin,

idpout}. These identifiers will be referenced throughout the remainder of the syntax,

they each represent:

• idp: Protocol identifier

• ids: Scene identifier, must be unique within a protocol

• idr: Role identifier, must be unique within a scene

• ida: Agent identifier, must be unique within a scene)

• idm: Method identifier, must be unique within a role

• idpin: Input port identifier, must be unique within a scene

• idpout: Output port identifier, must be unique within a scene

Terms are the objects of manipulation in our language. Terms: φ are defined as either a

variable: v:τ, a wildcard: or a constant: c:τ. Associated with a variable or constant is

a type:τ. Types, although not specified in the formal syntax can firstly map to the stan-

dard set of JAX-RPC supported types: Boolean, Byte, Double,Float, Integer, Long,

Short, String, (Arrays and multidimensional arrays are also supported). Secondly a

type may map to the id set, allowing for example agents to store variables where a type

is mapped to a unique agent identifier.

A configuration pair: config is a generic〈 name,value〉 tuple used to parameterise a

protocol, role and web service definition along with the mappings of ports to a user,

file or web service. Definitions of how configuration pairs areused within different

contexts will be explained throughout this Section.

5.2.2 Scenes

Two key concepts in MASC are the division of protocols intoscenesand the assign-

ment of roles to agents. Figure 5.1 formally defines the concepts discussed in this

Section. Scenes can be thought of as a bounded space in which agroup of agents inter-

act on a single shared task. They allow a large, complex protocol to be divided up into

5.2. MASC Language Syntax 81

smaller, more manageable chunks. Scenes add a measure of security to a protocol, in

that agents which are not relevant to the protocol are excluded from the scene. Scenes

place a barrier to execution on the agents, execution of a scene cannot begin until all

agents have reference to the protocol and have been instantiated. Formally a scene is

comprised of an identifier:ids, a set of role definitions:{R}, a set of agents:{A}, a

set of inports:{inport} and a set of outports:{outport}.

S ::= scene(ids,{R}, {A}, {inport}, {outport}) (Scene)

A ::= agent(ida, idr , φ(k)) (Agent)

R ::= 〈idr , config(k), {M}〉 (Role)

M ::= method idm|φ:m(φ(k)) = op (Method)

inport ::= inport(ids-idpin, τ, boolean) (Inport Definition)

outport ::= outport(ids-idpout, τ) (Outport Definition)

Figure 5.1: MASC formal scene and role definitions

In order to allow a scene to be treated as a composeable element in our language, the

scenes’s definition contains a set of inports:{inport} and a set of outports:{outport}.

An inport is formally defined by linking a scene name to a inputport name:ids-idpin,

specifying which scene the port belongs. A type:τ (discussed in Section 5.2.1) indi-

cates the port type. This specifies the type of data that can bewritten to the port. The

final element of the inport definition is a boolean, indicating whether the port must be

written in order to start the execution of the scene. A value of true represents a core port

(must be written to) and false a non-core port (execution is not port dependant). For

example:inport(Scene1-in1, xsd:string, true) represents an inport (named

in1) belonging to a scene named: Scene1, the port accepts data of type xsd:string and

it is a core port (indicated by the true value in the final parameter).

An outport consists of the same elements as inport without the final boolean value.

Ports act as FIFO (First In First Out) queues. Any agent within the scene can consume

data from a port using the portread operation and write data to a port using the portwrite

operation, this will be discussed in more detail in Section 5.2.3.4.

The concept of a role is central to our definition. Each agent in the set:{A} must adopt

an initial role from:{R}. A role determines which parts of the protocol code an agent

can execute. Roles allow agents to be grouped together, manyagents can share the

same role, which means the agents have the same capabilities. A role type allows us to

82 Chapter 5. MultiAgent Service Composition (MASC)

specify a pattern of behaviour which an agent can adopt, thismeans that we don’t have

to create a separate protocol for each individual agent. Roles also allow us to specify

multicast communication in MASC. For example, we can broadcast messages to all

agents who have subscribed to a particular role.

Roles are defined by a unique identifier:idr , a set of methods:{M} and a list of con-

figuration pairs:con f ig(k). In this instance, configuration pairs are used to represent

where the default implementation for an agent role resides,along with the maximum

and minimum number of agents that can adopt the role. The behaviour of a role is

defined by a set of methods:{M}. Methods are constructed from an operation set

op, and a set of actionsα, more specific details will be discussed in Section 5.2.3 and

Section 5.2.4. The final element in the scene definition is a set of agents:{A}. An

agent is defined by a unique agent name:ida, and a role identifier:idr , indicating a

role definition residing in{R}. If required parameterisation of the agent is possible

through the list of input terms:φ(k).

5.2.3 Action Set

The behaviour of a role is defined by a set of methods:{M}, which are each uniquely

named:idm. A method accepts a list of terms as arguments:φ(k). The initial method

is named main by default. Methods are constructed from an operation set: op, which

enforce control flow in the agent and a set of actions:α, which (amongst other func-

tions) allow an agent to interact with a reasoning layer. Actions can have side-effects

and fail. Failure of actions causes backtracking of the protocol. The action set and

operation sets are formally defined through Figure 5.2.3.

Firstly we shall address the action set, which allows agentsto: invoke agent reasoning

(decision procedure), invoke external web services, create new instances of agents

(agent invocation), send and receive messages between agents, multicast messages,

interact with a user (user send, user receive), read and write data from a port (port

read, port write). Each component in the action set will now be addressed in more

detail by the following subsections, graphically the action set is represented by Figure

5.3.

5.2. MASC Language Syntax 83

op ::= α (Action)

| op1 then op2 (Sequence)

| op1 or op2 (Choice)

| op1 par op2 (Parallel Composition)

| waitfor op1 timeout op2 (Iteration)

| invoke idm| φ:m(φ(k)) (Recursion)

α ::= ε (No Action)

| proc

| agent(ida| φ:a, idr | φ:r, φ(k)) (Agent Invocation)

| ρ(φ(k)) ⇒ agent(ida| φ:a, idr | φ:r) (Send)

| ρ(φ(k)) ⇒ multicast(idr| φ:r) (MultiCast)

| ρ(φ(k)) ⇒ user(config(k)) (User Send)

| ρ(φ(k)) ⇐ agent(ida| φ:a, idr | φ:r) (Receive)

| ρ(φ(k)) ⇐ user(config(k)) (User Receive)

| φ(k) = portread(idpin| φ:pin) (Port Read)

| portwrite(idpout| φ:pout,φ(k)) (Port Write)

proc ::= ¬ proc| proc∧ proc | proc∨ proc

| φ(k) = ρ(φ(l)) fault φ(m) (Decision Procedure)

| φ(k) = service(ws+, φ(l)) fault φ(m) (Web Service Invocation)

Figure 5.2: MASC formal action and operation set definitions

5.2.3.1 Decision Procedures and Web Service Invocations

Procedures (proc) can either be constructed from a decisionprocedure or a web service

invocation. Firstly, decision procedures serve as the connection between the protocol

code, describing the coordination and an agents’ internal reasoning model. Each agent

interacting within the boundaries of a scene references a set of decision procedures,

which is implemented as a set of methods and exposed to the agent as areasoning web

service. This is graphically illustrated by the inner two circles ofFigure 5.4, agents

are represented as circles with (A) inside. When an agent needs to make an internal

decision, it invokes methods on this web service; for example the logic which decides

how much to bid on a particular item, during an auction.

Given a list of input terms:φ(l), a procedure will invoke the required method on the

reasoning web service:ρ, using the terms as input. If required, it will produce a listof

84 Chapter 5. MultiAgent Service Composition (MASC)

Figure 5.3: Overview of MASC action set

5.2. MASC Language Syntax 85

output terms:φ(k) (results from the procedure) which can be referenced throughout the

duration of the agent’s execution cycle. A procedure can raise an exception, in which

case the exception parameters are bound to the fault terms:φ(m) and backtracking of the

protocol occurs. For example:$var1 = ProcedureX($var2) invokes the decision

procedure: ProcedureX, using the variable $var2 as input, the output of the invocation

is written to the variable $var1.

Figure 5.4: Overview of reasoning and external services

This model allows the rules of interaction to be explicitly expressed, while allowing

individual agents to subscribe to their own reasoning models, for example Argumen-

tation or the Belief Desires and Intensions (BDI) model [46]. MASC protocols do not

sacrifice the self interest and autonomy of individual agents. Although agents follow

the protocol as a script, each agent can adopt their own personalised strategy within

the protocol. Reasoning web services can be mapped on an individual agent basis

(providing personalised behaviour) or by role type (providing generic role behaviour).

It is up to the engineer of the agent to provide the implementation (or reference to

this implementation) of the decision procedure set which resides in the reasoning web

service.

86 Chapter 5. MultiAgent Service Composition (MASC)

As well as subscribing to a reasoning model, it is essential that agents are able to

consume the service-oriented architecture found in Internet and Grid systems, in order

to compose multiple services into a scientific workflow. Therefore agents can make

direct web service invocations from within the protocol code, illustrated by the outer

Section of Figure 5.4. Direct invocations can be made by using the service action. A

web service: ws is specified using a list of configuration pairs: de f(con f ig(k)). An

engineer can either hard code the service definitions in at design-time orthey can be

resolved at runtime by the agents themselves. Multiple ws definitions can be used as the

first parameter to a service. The first ws definition is always used as the default service

to call, the remainder act as backup services, called in the event that a fault arises

with the first. This definition(s) along with a list of input parameters:φ(l) are used

to invoke the required external service, binding any outputto protocol variables:φ(k).

If exceptions are raised, the parameters are bound to the fault terms: φ(m). Decision

procedures and web services can be chained together using the not: ¬ and: ∧ or: ∨

operators, allowing more complex behaviour to be defined.

The coordination mechanism defined using the MASC language is entirely external

to the web services which are being enacted. The web servicesthemselves need no

alteration or knowledge that they are even taking part in thecoordination. Therefore

no modification of web services needs to take place, and the protocol does not need

to be disseminated between the web services themselves. Furthermore, agents add

an extra level of abstraction, acting as stubs or proxies to the web services which are

taking part in the coordination. This means that the agents can use their rational layer

(through decision procedure invocations) to make decisions at run-time, when the web

service coordination is actually taking place. Decisions can be taken for example:

which services to call, what to do if a particular service is down, how to react if an

expected message is not received etc.

5.2.3.2 Sending and Receiving

Interaction between agents is performed by the exchange of messages, defined as per-

formativesρ, ie. message types. The most commonly used performatives are defined

by the FIPA Agent Communication Language (ACL) [1]. Agents can send and receive

messages in a number of ways:

• Specific agent, specific role:If the first parameter contains an agent id: ida, or

5.2. MASC Language Syntax 87

a term representing an agent id:φ:a and the second parameter contains a role

id: idr , or term representing a role:φ:r. For example:request($var1) ⇒

agent(%a1, %role1) would send the message of performative type: request

containing: $var1 to the agent: %a1 who has adopted the role:%role1. This fea-

ture is useful for sending messages to specific agents (who are known in advance

or looked up at runtime), e.g. to maintain a long-running, consistent dialogue.

• Specific agent, any role: If the first parameter contains an agent id: ida, or

a term representing an agent id:φ:a and the second parameter contains a wild

card: . For example:request($var1) ⇒ agent(%a1,) would send the

message of performative type: request directly to the agent: %a1.

• Any agent, specific role: As there is the possibility that many agents have

adopted the same role, a useful feature is the ability to sendand receive messages

from any agent who has subscribed to a particular role. This is achieved if the

first parameter contains a wildcard:and the second parameter contains either

a role id: idr , or term representing a role:φ:r. For example:request($var1)

⇒ agent(, %role1) would send the message of performative type: request

to any agent who has adopted the role: %role1.

• Any agent, any role: If an agent simply wants to send a message regardless of

agent id or role id this can be achieved if both parameters arewild cards: . For

example:request($var1) ⇒ agent(,).

The semantics of message passing correspond to non-blocking, reliable and buffered

communication. Sending a message succeeds immediately if an agent matches the

definition, and the message will be stored in a buffer on the recipient. Receiving a

message involves an additional unification step. The message supplied in the protocol

definition is treated as a template to be matched against a message in the buffer. A

unification of terms against the definition agent(ida| φ:a, idr | φ:r) is performed. Where

ida| φ:a is matched against an agent name, or variable representing an agent name and

idr | φ:r to the agent role, or variable representing a role name. Ifthe unification is

successful, variables are bound based on the content of the message:φ(k) and stored

locally to the agent, for further use in the protocol. Sending will fail if no agent matches

the supplied terms, and receiving will fail if no message matches the template defined

in the protocol. Send and receive actions complete immediately (i.e. non blocking)

and do not delay the agent.

88 Chapter 5. MultiAgent Service Composition (MASC)

A final sending option is provided through the multicast action. This allows an agent

to broadcast the same message to all agents who have subscribed to a particular role,

defined either by a role id: idr , or term representing a role:φ:r

5.2.3.3 User Send and User Receive

Agents may interact directly with users by sending and receiving messages through

the user action. Any data:φ(k) contained in the message of performative:ρ is sent and

received to and from a user. Specific information about users(such as physical network

location, preferences etc.) is defined using a list configuration pairs:con f ig(k).

These additional two actions allow direct interaction witha user scientist, this func-

tionality is useful in order to keep the user in the workflow execution cycle. For ex-

ample: A protocol has several execution paths but an agent cannot make a decision

autonomously about which path to choose. The agent forwardsthese choices to the

user (through user send) for an expert opinion, this series of options appears on the

user’s workstation. The user decides how to proceed based onthe current state of the

workflow and sends back the preferred execution path to the agent (via user receive).

5.2.3.4 Port Read and Port Write

As briefly mentioned in Section 5.2.2, a port is implemented as a First In First Out

(FIFO) queue. Any agents within a scene can consume data froma port using the

portread action, which removes the first objects from the front of the queue. The

portread action is invoked with a inport name:idpin or term representing an inport:

φ:pin. Agents will read from the port k times, binding the output to local variablesφ(k)

for use in the remainder of the protocol execution. For example: $var1 = portread(in1)

would read from the inport: in1 to the variable: $var1. This operation is blocking, so

if the port is empty then the agent will continue to wait untildata becomes available.

The portwrite operation writes the termsφ(k) to the outport nameidpout or term repre-

senting a portnameφ:pout. As an example:portwrite(out1, $var1) would write

the variable: $var1 to the outport: out1. The portwrite operation is non-blocking, the

action completes immediately. For either action to be successful the types must be

compatible.

5.2. MASC Language Syntax 89

5.2.3.5 Agent Invocation

Agents assume an initial role within a scene. However, through agent invocation, an

agent can change role, introduce a new instance of a role, or make a recursive call.

Agent invocation is performed by using the agent action, supplying three parameters,

the first is an agent identifier:ida or term representing an agent identifier:φ:a. The

second is a role identifier:ida or a term representing a role identifier:φ:r. The final

parameter is an optional list of arguments:φ(k). The agent invocation action can be

used in a number of ways, by varying the parameters used:

• Changing role: Agents can change role during the execution of a protocol by

invoking the agent action, using as parameters the same agent id: ida and a

different role id: (idr) to their current definition. This feature avoids having to

implement the same protocol code inside multiple role definitions, an agent can

simply make a role switch using an agent invocation.

• New agent: A new instance of an agent can be instantiated by invoking the

agent action with a different agent id:ida and role id: idr to the current defini-

tion. This feature is particularly useful if the agent has been given a task which

would computationally take too long for a single agent to complete, for example

extracting information from a large set of databases. In order to split up the task,

new agents can be created dynamically with the agent action,using a subset of

the databases as initial parameters. The number of agents generated could be

decided at runtime and would be dependant on the size of the task in question.

• Recursion: In order to make a recursive invocation, the agent action must be

called with the same agent id:ida and role id: idr as the current definition.

Recursive calls are useful if the agent needs to repeatedly perform the same task

defined by the role.

90 Chapter 5. MultiAgent Service Composition (MASC)

5.2.4 Operation Set

Control-flow in the protocol is enforced through the operation set, which contains a

reference to the action set:α, a sequence operator: then, a choice operator: or, a

parallel operator: par, an iteration operator: waitfor anda recursive operator: invoke.

The operation set is illustrated by Figure 5.5 and formally represented by Figure 5.2.3.

Figure 5.5: Overview of operation set

The sequence operatorop1 then op2, evaluatesop2 only if op1 did not contain an

action that failed, otherwise it is ignored. The choice operator op1 or op2, handles

failure in the protocol and evaluatesop2 only if op1 contained an action that failed.

The parallel operatorop1 par op2, executesop1 andop2 in parallel. A waitfor loop

allows repetition of sections of the protocol, nesting of the loops is possible. The body

of the waitfor loop will be repeatedly executed upon failure, the loop will terminate

when the loop body succeeds. If the loops times out (timeout is set with an integer

value) then the actions contained within the timeout body will be executed. Timeouts

allow compensation actions to be defined as they are only executed if any action inside

the loop fails.

Methods can be invoked (including recursive invocations) within the protocol code,

using the invoke operator. The execution engine pauses execution of the currently

running method and invokes the method specified in the methodidentifier: idm, or

variable representing a method identifier:φ:m, using the parameters:φ(k) as input.

Once execution of the method has finished, control returns tothe original method.

5.2. MASC Language Syntax 91

5.2.5 Protocol Execution

The MASC language is a specification designed to be directly executed by a group

of agents. The protocol execution process is is illustratedby Figure 5.6. Once an

engineer has designed a protocol describing the interaction, each agent taking part in

the coordination must obtain a copy, shown as a rectangle with P inside on Figure

5.6, this copy is stored locally to each agent. Agents must then adopt a role from the

role set. By adopting a role the agent must reference a reasoning web service, which

implements all the decision procedures required for that role type (step 2 of Figure

5.6). This reasoning web service (marked as a rectangle withR inside) can be different

for each agent and describes the agent’s internal logic.

Figure 5.6: MASC protocol execution

The only requirement on an engineer designing an agent is a layer of software which

can translate and execute the steps in the protocol, and a reasoning web service which

implements the decision procedures of a particular role type. Each agent maintains its

own internal state. This internal state records which stepsof the protocol it is currently

executing and any variables which may be needed for sending/receiving messages and

decision procedures.

92 Chapter 5. MultiAgent Service Composition (MASC)

Once agents have obtained a copy of the protocol and have reference to a reasoning web

service, enactment of the interaction protocol can begin. Agents follow the protocol as

a script, invoking actions (from the action set) and web services if and when required.

Step 3 of figure 5.6 shows a pattern of interaction taking place, with the agent in the

top left invoking its reasoning web service and an external web service (illustrated by

a hashed out star in Figure 5.6). A exchange of messages takesplace, resulting in the

agent on the bottom right invoking a method on its reasoning web service, illustrated

by step 4 of figure 5.6. Execution terminates when all the protocol steps have been

enacted, or the the protocol fails. Failures can be classified asexternal failures, due to

faulty web services invocations; orinternal failures, due to a badly written protocol.

5.2.6 Dataflow

The root element of the language is a protocol. With reference to Figure 5.7 a pro-

tocol is uniquely named:idp and contains one or more scene definitions. Associated

with each scene is an optional set of agents:{A}, this set can, if required be used to

override the default agent configuration which a scene defines, as discussed in Section

5.2.2. For example, users may want to explicitly name agentsand provide alternative

implementations for the agent’s decision procedures. If this set is empty the scene will

be executed using the default configuration. The final association with a scene is a list

of configuration pairs:con f ig(k) which define any necessary configuration and startup

information.

P ::= protocol(idp, 〈S,{A}, config(k) 〉+, link(L)∗) (Protocol)

L ::= source→ sink+ (Dataflow Mapping)

source ::= linktype | outport(ids-idpout) (Dataflow Source)

sink ::= linktype | inport(ids-idpin) (Dataflow Sink)

linktype ::= userinput(config(k)) (User Input)

| useroutput(config(k), inport(ids-idpin)∗) (User Output)

| file(config(k)) (File)

| ws (Web Service)

ws ::= def(config(k)) (Web Service Def)

Figure 5.7: MASC formal dataflow definitions

As discussed in Section 5.2.2, a scene has a set of typed inports and outports. These

5.2. MASC Language Syntax 93

port definitions allow a user to treat a scene as a composable object, through the final

parameter of a protocol definition, a list of zero or more linkdefinitions. Link defini-

tions allow a user to compose a computational experiment by mapping a source to one

or more sinks. A source can either be: an outport, user input,file input, or a web ser-

vice invocation. A sink on the other hand can be one of the following: an inport, user

output, file output or a web service invocation. Each of the source and sink mappings

is described in more detail below:

• Outport to Inport(s): The most obvious mapping is from a scene’s outport to

one or more scene’s inports. For example:link(outport(Scene1-out1) →

inport(Scene2:in1)) maps Scene1’s outport (out1) to Scene2’s inport (in1).

In order for the mapping to be valid the types:τ of the outport must match the

accepted types of the inport. When an agent writes to a port using the portwrite

operation, the data is forwarded to source(s) which the mapping refers. When

data becomes available at a scene’s inport, agents can consume this data using

the portread operation, discussed in Section 5.2.3.4.

• User Interaction: User interaction in relation to agents was discussed in Sec-

tion 5.2.3.3 through the sending and receiving of messages to users. Within the

dataflow layer user interaction is handled in two ways, by mapping a user to a

scene’s inport(s), or mapping a scene’s outport(s) to a user. Mapping user inter-

action to a scene’s inport is achieved through a link definition where a userinput

is the source and an inport is the sink. In this instance a usermust supply typed

data which matches the inport definition: inport(ids:idpin, τ, boolean), illustrated

by Section 1 of Figure 5.8. Output from a scene can also be mapped to a user, by

supplying a link where the source is an outport and the sink isa useroutput defi-

nition. Here the output can be mapped directly to the user (ifthe final parameter

is empty), or to a selection of inports which the user has control over. Mappings

of the latter kind give the user direct control over the dataflow, allowing them to

select which port(s) to write the scene’s output data to. Section 2 of Figure 5.8

illustrates a scene which is attempting to write data to one of two ports, the data

however is forwarded to the user, who decides it should be written to the scene

on the far right.

• Web Services and Files:Users can supply a mapping where a source is a web

service or file and the sink is a scene’s inport. In this instance the output from the

web service invocation or data read in from a file is written tothe scene’s inport.

94 Chapter 5. MultiAgent Service Composition (MASC)

This process can also work the other way round, a user can supply a mapping

where a source is an outport and the sink is a file or web service, allowing agents

to output data to external sources.

Figure 5.8: MASC user interaction

There are several restrictions placed on the mappings a usercan make through the

MASC language, this is summarised by Table??.

Valid Source to Sink Mappings

Source Sink

outport(ids-idpout) → inport(ids-idpin)

userinput(config(k)) → inport(ids-idpin)

file(config(k)) → inport(ids-idpin)

def(config(k)) → inport(ids-idpin)

outport(ids-idpout) → useroutput(config(k),inport(ids-idpin)∗)

outport(ids-idpout) → file(config(k))

outport(ids-idpout) → def(config(k))

Table 5.2: MASC valid dataflow mappings

Figure 5.9 illustrates graphically the concept of treatingscenes as composable objects

to form higher level computational experiments, in this example five scenes are wired

together, taking input from a user and producing output to files. Scenes are effec-

tively treated as parameterisable patterns of interaction, it is then up to the user to wire

together these black boxes by supplying the dataflow mapping, through a set of links.

Scenes begin the process of execution described in Section 5.2.5 when all core inports

have been written. Core inports are identified by setting thefinal boolean parameter to

5.2. MASC Language Syntax 95

true. As discussed in Section 3.4 scientific workflows tend tohave an execution model

which emphasises dataflow. Port definitions allow a scene to be treated as a com-

posable object, allowing our agent-based interaction model to fit in with the dataflow

paradigm used by most scientific workflow modelling tools. For example a pattern of

interaction expressed as a scene could be treated as a node ina scientific workflow

graphical composition tool, such as Taverna. This allows techniques from the multia-

gent systems community to be seamlessly integrated into theexisting architecture.

Through the addition of a dataflow layer, scientists can treat scenes simply as parame-

terisable black boxes of computation, without getting involved with the messy details

of concurrent protocol design. This is a useful abstractionmechanism and allows an

experiment to be constructed at a higher level by specifyinga set of links which wire

the experiment execution together.

Figure 5.9: Example dataflow mapping

96 Chapter 5. MultiAgent Service Composition (MASC)

5.3 Chapter Conclusions

Our requirements analysis is based on the review of existingscientific workflow sys-

tems, AstroGrid workflow scenarios and a counterexample scenario taken from the

LSST project. Through this detailed requirements analysisthis thesis has identified

the need for flexible, ad-hoc service composition. In order to meet these requirements,

this Chapter has presented an agent-based solution to the service composition problem,

providing flexible, runtime coordination of services. Our approach is founded on the

concept of interaction protocols and facilitated through the MultiAgent Service Com-

position (MASC) language. This Chapter has presented in detail the MASC language

syntax and explained the reasons for the choices made, providing where necessary

simple examples. The following Chapter presents a full implementation of the MASC

language, through an open-source Java-based web service composition tool:Zorro.

5.4. Complete MASC Language Syntax 97

5.4 Complete MASC Language Syntax

P ::= protocol(idp, 〈S,{A}, config(k) 〉+, link(L)∗) (Protocol)

S ::= scene(ids,{R}, {A}, {inport}, {outport}) (Scene)

A ::= agent(ida, idr , φ(k)) (Agent)

R ::= 〈idr , config(k), {M}〉 (Role)

M ::= method idm|φ:m(φ(k)) = op (Method)

op ::= α (Action)

| op1 then op2 (Sequence)

| op1 or op2 (Choice)

| op1 par op2 (Parallel Composition)

| waitfor op1 timeout op2 (Iteration)

| invoke idm| φ:m(φ(k)) (Recursion)

α ::= ε (No Action)

| proc (Procedure)

| agent(ida| φ:a, idr | φ:r, φ(k)) (Agent Invocation)

| ρ(φ(k)) ⇒ agent(ida| φ:a, idr | φ:r) (Send)

| ρ(φ(k)) ⇒ multicast(idr| φ:r) (MultiCast)

| ρ(φ(k)) ⇒ user(config(k)) (User Send)

| ρ(φ(k)) ⇐ agent(ida| φ:a, idr | φ:r) (Receive)

| ρ(φ(k)) ⇐ user(config(k)) (User Receive)

| φ(k) = portread(idpin| φ:pin) (Port Read)

| portwrite(idpout| φ:pout,φ(k)) (Port Write)

proc ::= ¬ proc | proc∧ proc | proc∨ proc

| φ(k) = ρ(φ(l)) fault φ(m) (Decision Procedure)

| φ(k) = service(ws+, φ(l)) fault φ(m) (Web Service Invocation)

φ ::= v:τ | | c:τ (Terms)

L ::= source→ sink+ (Dataflow Mapping)

source ::= linktype | outport(ids-idpout) (Dataflow Source)

sink ::= linktype | inport(ids-idpin) (Dataflow Sink)

inport ::= inport(ids-idpin, τ, boolean) (Inport Definition)

outport ::= outport(ids-idpout, τ) (Outport Definition)

linktype ::= userinput(config(k)) (User Input)

| useroutput(config(k), inport(ids-idpin)∗) (User Output)

| file(config(k)) (File)

| ws (Web Service)

ws ::= def(config(k)) (Web Service Def)

config ::= 〈name, value〉 (Configuration Pair)

Chapter 6

An Agent-Based Web Services

Composition Framework

The Zorro framework is an agent-based web services composition tool founded on

the Multi Agent Service Composition (MASC) language. This framework is an open-

source Java implementation and has served as a test bed for the ideas addressed by this

thesis, allowing real protocols to be executed with real services on real data.

This Chapter discusses the implementation and algorithms of the Zorro framework in

detail. Section 6.1 presents an overview of the technologies used as part of the im-

plementation, in particular how the formal MASC syntax is represented and manipu-

lated. Section 6.2.1 describes the architecture of a generic coordination service which

is capable of dynamically unmarshalling a scene definition and building an internal

representation for execution. In Section 6.2.2 the processof creating and initialising

agents to enact a workflow is described, with a simple XML example. Section 6.2.3

discusses the architecture of individual agents and how a workflow is enacted by a

group of distributed agents. Section 6.3 describes how scenes are composed into more

complex workflows through the dataflow layer. Finally, conclusions are presented in

Section 6.4.

99

100 Chapter 6. An Agent-Based Web Services Composition Framework

6.1 MASC Language Representation

A combination of technologies have been used to represent, parse and execute the

MASC language, discussed in Chapter 5. The first of these technologies is theJava

Web Services Development Pack (JWSDP)[49], which is an integrated toolkit, allowing

developers to build and test XML applications, web services, and web applications.

This framework is made up of many interconnected components, however this Chapter

will focus on the two which have been utilised by the implementation framework: The

Java Architecture for XML Binding (JAXB)and theJava API for XML Based Remote

Procedure Call (JAX-RPC), which will be addressed by Section 6.2.3.

Figure 6.1: JAXB architecture overview

The JAXB architecture allows an XML Schema definition to be bound to concrete Java

classes, allowing developers to incorporate XML data and processing functions into

their applications. As part of this process, JAXB provides methods for unmarshalling

XML instance documents to a Java Content Tree, and marshalling a Java Content Tree

back into XML instance documents. The JAXB architecture is aimed as a replacement

for older XML processing technologies such as SAX and DOM [47]. Figure 6.1 illus-

trates the core components in the JAXB model, which will be explained in more detail

below:

• XML Schema: The XML Schema Definition Language (XSD) [27] is a W3C

recommendation and one of many XML schema languages. XSD is used to

express a set of rules which define the legal building blocks of an XML docu-

ment, typically expressed in terms of constraints on the structure and content of

6.1. MASC Language Representation 101

documents: elements, attributes, data types etc.

• Binding compiler: The JAXB binding compiler is the core of the JAXB pro-

cessing model. Its function is to transform, or bind, a source XML schema to a

set of JAXB content classes in the Java programming language. When executed

using an XML schema as input (optionally with custom bindingdeclarations)

the binding compiler generates Java classes that map to constraints in the source

XML schema.

• Java application: In the context of JAXB, a Java application is a client that uses

the JAXB binding framework to unmarshal XML data, validate and modify it,

marshalling the Java content back to XML data.

• XML input documents: XML content can be unmarshalled by converting an

XML instance document to an internal representation using aJava Content Tree.

Once an XML instance is unmarshalled it can then be manipulated, marshalling

an updated version if necessary. Validation of an XML instance document against

the source schema is supported, forcing strict adherence toan XML schema.

• XML output documents: The process described above can also work in the

opposite direction, XML (internally represented as a Java Content Tree) can be

marshalled to an XML document. Marshalling involves parsing the internal rep-

resentation and writing an XML document that is an accurate representation, and

valid with respect to the source XML schema.

The MASC language has been represented using an XML Schema, providing a straight

forward conversion from the formal syntax to a computer interpretable form. The

full XML Schema definition can be found in Appendix A. Skeleton parser code has

been generated by providing the JAXB compiler with the MASC XML Schema as

input, following the process described above. There are a number of components in

the framework which utilise this parsing component, these will be discussed in more

detail by the following Sections. The type system in the Zorro framework is mapped to

the standard set of JAX-RPC supported types: Boolean, Byte,Double, Float, Integer,

Long, Short, String, (Arrays and multidimensional arrays are also supported).

102 Chapter 6. An Agent-Based Web Services Composition Framework

6.2 Scene Implementation

A scene acts as a closely coupled system and is responsible for initialising and con-

trolling the execution of a group of agent roles which execute a scene specification.

Communication between scenes takes place through a WSDL interface, allowing it to

be deployed anywhere on the network and be treated as a composeable object to form

more complex workflows, this will be discussed in more detailin Section 6.3. Figure

6.2 illustrates an overview of a scene’s component model. A scene contains a number

of interacting components which will each be discussed in turn by the following sub

sections.

Figure 6.2: Scene architecture overview

6.2.1 Building the Execution Model and Resolving Dependenc ies

A scene of computation is executed by acoordination service. A coordination ser-

vice is a simple, lightweight layer of software which translates and executes a scene

definition. It is a generic service and can execute any valid definition. Figure 6.3 il-

6.2. Scene Implementation 103

lustrates a scene’s initialisation algorithm, with reference to this Figure and Figure 6.2

the following process takes place:

Figure 6.3: Scene Initialisation algorithm

• Receive request:A coordination service is initialised when it receives a Remote

Procedure Call (RPC) invocation containing a protocol (XMLinstance), and the

name of a scene within that protocol it is required to adopt.

• JAXB XML parser: Once a protocol is received, the parsing component will

unmarhsall and validate it against the MASC XML Schema. Any exceptions

through a malformed protocol are thrown to the exception handler, initialisation

is terminated and exceptions are reported to the user.

• Execution model: If the validation is successful, the XML parser (implemented

through JAXB) converts the scene definition (represented asXML) to an internal

execution model. This internal execution model is represented as a Java Content

Tree and allows manipulation of the scene definition.

• Build ports: Before initialisation and execution of the agents can begin, the flow

execution engine must check if the scene is part of a more complex workflow,

defined through a dataflow mapping. If this is the case then theflow execution

engine must dynamically build any ports which are part of thescene definition

and resolve any dependencies these ports may have.

104 Chapter 6. An Agent-Based Web Services Composition Framework

• Resolve dependencies:Dependencies are resolved by parsing the set of links

(defined in the protocol mapping) and retrieving those wherethe sink is an inport

definition belonging to the current scene and the core value is set to true (must

be written before scene execution can begin). If dependencies exist on any of the

scene’s inports the flow engine must call the appropriate handler. Handlers have

been implemented which allow web service invocation, file manipulation and

user interaction. The handler will retrieve the necessary data (by reading from

a file, interacting with a user etc.) forwarding it the required inport. Dataflow

information (shown as flow data in Figure 6.2) is sent and received through the

coordination service’s WSDL interface. However, if the scene has no dependen-

cies initialisation of the agents can take place.

6.2.2 Initialisation of Agents

Once any port dependencies have been resolved, dynamic initialisation of the agents

can begin, this is handled by theScene Execution Enginecomponent shown on Figure

6.2. Agents can be initialised through a default setting or acustomised setting. To

illustrate this point, Figure 6.4 represents an example of use, for simplicity only the

necessary protocol features are included.

The syntax contains a scene,scene1 and within that scene there are two role defi-

nitions, acoordinator and aparticipant. As discussed by the previous Chapter,

role definitions provide a generic pattern of interaction. Agents adopt roles from a

scene and decision procedures provide the hook from a role definition to a particular,

grounded model of agency. With reference to the example, by default acoordinator

role’s reasoning service is located athttp://location1?WSDL (line 1 of Figure 6.4)

and aparticipant role’s reasoning service is located athttp://location2?WSDL

(line 2 of Figure 6.4).

Agents must then adopt roles from a scene definition. In our example a user has explic-

itly created an agent which will adopt thecoordinator role (lines 3-6 of Figure 6.4).

Here the default settings of the role have been overwritten,the location of the reasoning

service has been changed tohttp://location3?WSDL, the name of the agent is set to

myCoordinator and details of how long the agent will wait to receive a port message

(PortWait) and from another agent (RecvWait) have been set. In order to interact

with a coordinator, two agents adopting theparticipant role (lines 7-8 of Figure

6.2. Scene Implementation 105

<scene name="scene1">

<!-- Coordinator Role Definition -->

1 <agent implementation="http://location1?WSDL"

max="1" min="1" role="coordinator">

<method> ... </method>

</agent>

<!-- Participant Role Definition -->

2 <agent implementation="http://location2?WSDL"

max="undefined" min="1" role="participant">

<method> ... </method>

</agent>

...

</scene>

<mapping name="demomapping">

<node location="" name="scene1">

<!-- Customised Coordinator -->

<role name="coordinator">

3 <agent implementation="http://location3?WSDL"

4 name="myCoordinator" num="1"

5 portwait="10"

6 recvwait="10"/>

</role>

<!-- Customised Participants -->

<role name="participant">

7 <agent implementation="http://location4?WSDL"

name="myParticipant1" num="1"

portwait="10"

recvwait="10"/>

</role>

<role name="participant">

8 <agent implementation="http://location5?WSDL"

name="myParticipant2" num="1"

portwait="10"

recvwait="10"/>

</role>

</node>

<link>...</link>

</mapping>

Figure 6.4: Sample XML protocol - initialising agents

106 Chapter 6. An Agent-Based Web Services Composition Framework

6.4) have been created:MyParticipant1 andMyparticipant2, each referencing a

different reasoning service.

After parsing the scene definition, creating the execution model and resolving any port

dependencies the scene execution engine creates a separatethread for each agent, our

example in Figure 6.4 would generate onecoordinator agent and twoparticipants.

Each agent has a local copy of the protocol and is independently capable of parsing and

executing the protocol. Agents maintain internal state, this internal state records which

steps of the protocol it is currently executing and any variables which may be needed

for sending/receiving messages and decision procedures.

6.2.3 Enacting the Workflow

Agents act as peers, forming apeer-to-peer system. As each agent has a local copy of

the protocol, no centralised control is required. Once all agents have been created and

initialised, enactment of the workflow can begin. Each agentfollows the role definition

like a script, calling the necessary actions when specified by the protocol. An overview

of the components making up the agent architecture is illustrated by Figure 6.5.

External and reasoning service invocations are handled by the JAX-RPC interface.

JAX-RPC is a technology for building web services and clients that use remote proce-

dure calls (RPC) and XML. Often used in a distributed client-server model, an RPC

mechanism enables clients to execute procedures on other systems. In JAX-RPC, a

remote procedure call is represented by an XML-based protocol such as SOAP. The

SOAP specification defines the envelope structure, encodingrules, and conventions

for representing remote procedure calls and responses. These calls and responses are

transmitted as SOAP messages (XML files) over HTTP.

When an agent is required to execute an action, the appropriate handler is invoked, the

process for each handler is described below:

• Decision procedure invocation:When an agent is required to execute a service

(either a decision procedure or an external service), the following process takes

place, this is illustrated by the algorithm displayed in Figure 6.6. Firstly an agent

parses the decision procedure definition in the protocol, consisting of the: proce-

dure name, input parameters and output parameters. This protocol definition is

then compared to WSDL definition located in the agent’s reasoning web service.

6.2. Scene Implementation 107

Figure 6.5: Agent architecture

Figure 6.6: Service invocation algorithm

108 Chapter 6. An Agent-Based Web Services Composition Framework

This comparison utilises the WSDL4J interface [70]. If there are any inconsis-

tencies, such as the: wrong number of input/output parameters, wrong type of

input/output parameters, wrong method name etc. then an exception is thrown

and backtracking of the protocol begins. However, if the protocol matches the

WSDL definition then an agent can begin to format the input forthe invocation.

This is achieved by retrieving any variables (local or from ascene) that are re-

quired to be used as input. Execution will terminate and backtracking of the

protocol will begin if variables haven’t been initialised,types don’t match etc.

However, if successful a JAX-RPC Call object is constructedand the decision

procedure is invoked on the agent’s reasoning service. Exceptions caused as a

result of an invocation are labelled as JAX-RPC exceptions.Any output from

the invocation is stored locally to the agent, by updating existing variables or

creating new ones.

• External service invocation: This process is similar to the decision procedure

invocation. However, instead of invoking a method on the agent’s reasoning

web service an external service is called. This handler is generic, it can call any

method once is has obtained the WSDL definition. Firstly an agent retrieves the

WSDL document, as specified by the service definition (this can be hard-coded

or represented as a variable at runtime). A check is then madeto ensure that

all the details in the protocol definition match those in the WSDL definition,

comparisons are made against: the number and type of input/output parameters,

namespace, operation name, port name and service name. If these details are not

consistent then an exception is thrown and backtracking of the protocol begins. If

this process is successful then an agent can follow the same steps as described for

the decision procedure invocation: formatting the input, building a call object,

invoking a service and storing output variables.

• Message passing:Each agent runs as a separate thread within a scene execution

engine. When an agent is required to send a message to anotheragent, the input

message queue on the recipient agent is locked and the message is passed be-

tween threads. The recipient agent can then check its input queue, utilising the

message content when required.

• Port reading/writing: If the scene is part of a more complex workflow then

agents can read and write to ports. If an agent is reading datafrom an input

port, it is removed in a First In First Out (FIFO) fashion and is stored locally to

6.2. Scene Implementation 109

the agent. Agents can also write data to output ports, which is forwarded to the

port’s sink by the appropriate handler (scene, web service,file, user interaction

etc.).

Execution of a scene terminates when all the protocol steps have been enacted, or the

the protocol fails. Failures can be classified asexternal failures, due to faulty web

services invocations; orinternal failures, due to a badly written protocol. Each agent

operating within a scene outputs a text log file, each log file is concatenated to form

a scene description which is formatted in html. This allows auser of the system to

view exactly how the protocol has executed. An example of theoutput is illustrated by

Figure 6.7.

Figure 6.7: Sample execution output

110 Chapter 6. An Agent-Based Web Services Composition Framework

6.3 Composing Scenes into More Complex Workflows

Scenes of computation can be executed independently or partof a more complex work-

flow. A user interested in composing and executing multiple workflow components can

approach the Zorro framework from the dataflow layer. From this level of abstraction,

an engineer does not need to concern themselves with the intricate details of protocol

design, scenes can be simply be treated as composeable objects. Figure 6.8 illustrates

the initialisation algorithm for an entire protocol, consisting of multiple workflow com-

ponents.

Figure 6.8: Protocol execution algorithm

This process consists of the following steps:

• Validate dataflow mapping: In order to build a protocol, a user supplies a

dataflow mapping of workflow components. This mapping is validated against

the MASC XML Schema definition, if the instance is not valid inrespect to the

source schema then an exception is thrown and the user must goabout redesign-

ing the mapping.

• Dynamically build protocol: The mapping supplied is simply a description of

the components required in the workflow, specifying how these components in-

teract with one another, through dataflow. Before executioncan begin, the frame-

6.3. Composing Scenes into More Complex Workflows 111

work must dynamically build a complete description of the workflow (based on

the dataflow description), splicing in all the necessary components to form an

executable protocol. It is important to note that these components could be dis-

tributed (for example scene descriptions kept in a remote repository), therefore

the framework must retrieve each component before execution of the protocol

can begin.

• Execute protocol:Once all components have been spliced into the protocol, ex-

ecution of the workflow can begin. The protocol can be executed locally or dis-

seminated to multiple, distributed coordination services, this is the user’s choice

and several options exist for configuring the system. Once every node has a com-

plete copy of the protocol, enactment begins. Scenes execute by following the

same process as described by Section 6.2, beginning execution when all of the

inports have been satisfied. To illustrate this point, consider a simple extension to

our earlier example, the XML syntax for the syntax is displayed in Figure 6.9. A

user has configured two scenes to be executed as part of a workflow: scene1 and

scene2. These scene definitions are remote and must be retrieved andspliced

into the protocol before execution can being. The user has supplied a mapping

between these scenes, mapping the outport of scene1:scene1 out1 to the inport

of scene2:scene2 in1. When execution begins, scene1 will start immediately

as there are no dependent ports, scene2, however enters a wait state, beginning

execution when data is written from scene1’s outport to scene2’s inport.

112 Chapter 6. An Agent-Based Web Services Composition Framework

<protocol>

<scene name="scene1">

<!-- Output port definition -->

<output>

<port name="scene1_out1" type="xsd:string"/>

</output>

...

</scene>

<scene name="scene2">

<!-- Input port definition -->

<input>

<port name="scene2_in1" type="xsd:string" core="true"/>

</input>

...

</scene>

<!-- User’s mapping -->

<mapping name="demomapping">

<!-- Nodes to be included -->

<node location="http://location1" name="scene1"/>

<node location="http://location2" name="scene2"/>

<!-- Link definition -->

<link>

<source>

<outport port="scene1_out1" scene="scene1"/>

</source>

<sink>

<inport port="scene2_in1" scene="scene2"/>

</sink>

</link>

</mapping>

</protocol>

Figure 6.9: Sample XML protocol - dataflow mapping

6.4. Chapter Conclusions 113

6.4 Chapter Conclusions

This Chapter has presented the Zorro framework, an agent-based web services compo-

sition tool to enact distributed scientific workflows. This framework has helped bring

to life the ideas addressed by this thesis, allowing protocols to be executed on live ser-

vices and data. The implementation is open-source and available for download from:

http://www.mas.sourceforge.net. The following Chapter presents a methodol-

ogy for building systems using our approach, a term we labelcoordination-oriented

programmingand demonstrates, by example how the MASC language meets theorig-

inal set of requirements and solves the set of motivating workflow scenarios presented

in Sections 3.3, 3.2 and 4.1.

Chapter 7

Evaluation By Use-Case

This Chapter ties together all of the separate sections of the thesis, demonstrating how

our agent-based approach to service composition (MASC) cansolve the original set

of workflow scenarios and meet the requirements of scientificworkflow, addressed

by Chapters 3, 4 and 5. Section 7.1 proposes the coordination-oriented programming

methodology, outlining how users can build complex distributed systems using the

techniques addressed by this thesis. This methodology describes how users can ap-

proach the system from different levels of abstraction, adopting the role of either an:

interaction engineer(Section 7.1.1),experiment engineer(Section 7.1.2) or anagent

engineer(Section 7.1.3).

This methodology is then applied to each of the motivating workflow scenarios, demon-

strating how the various stages of the coordination-oriented programming methodol-

ogy builds up a working protocol to solve the original specification. Each Section

will provide a full implementation using the abstract MASC language and discus how

this implementation was realised, outlining why certain choices regarding language

features were made. Alongside the abstract syntax is a concrete XML specification

which has been deployed on the Zorro framework, each implementation is contained

in the relevant appendix. Section 7.2.1 discusses the batchprocessing scenario, Sec-

tion 7.2.2, the knowledge acquisition scenario and finally Section 7.2.3 addresses the

runtime coordination scenario.

Section 7.3 addresses a number of important points, firstly how our hybrid multiagent

system/service-oriented architecture approach to service composition fulfills the orig-

inal requirements. Secondly, how our approach can solve a new class of workflow,

115

116 Chapter 7. Evaluation By Use-Case

involving flexible, runtime service composition. Finally,this Section discusses the

advantages and disadvantages of our approach in relation toexisting workflow compo-

sition languages and tools. Conclusions are presented in Section 7.4

7.1 Coordination-Oriented Programming Methodology

In addition to providing the MASC language and Zorro framework for scientific work-

flow composition, we propose a methodology outlining how users can build a workflow

which solves a specification using our agent-based approachto service composition.

In order to allow users with different skills and motivations to take advantage of the

MASC language it can be approached from various levels of abstraction, dividing users

into three distinct categories:experiment engineers, interaction engineersandagent

engineers, this concept is illustrated by Figure 7.1. Each of these levels of abstraction

will now be addressed by the following Sections.

Figure 7.1: MASC layers of abstraction

7.1. Coordination-Oriented Programming Methodology 117

7.1.1 Interaction Engineer

Interaction engineers as the name suggests, are primarily concerned with coordination.

Interaction engineers take a software specification and divide it into a number of dis-

tinct agent roles, specifying the details of how these rolescoordinate with one another

(within a multiagent system) to achieve the overall aim of the specification. Using

the features provided by the MASC language interaction engineers build Scenes, con-

sisting of roles which are themselves constructed using theaction and operation sets

discussed in Sections 5.2.3 and 5.2.4.

Figure 7.2: Interaction engineer methodology

118 Chapter 7. Evaluation By Use-Case

The interaction engineer methodology describes the complex task of writing the pro-

tocol code to coordinate multiple, concurrent agents. The methodology is iterative and

an engineer can move between phases until a working system isbuilt that meets the

original specification. The methodology is illustrated by Figure 7.2 and detailed below:

• Identify Role Set: Role types (as discussed in Section 5.2.2) specify a pattern

of computational behaviour which an agent can adopt. The first task an engineer

must perform is to break the initial specification into a number of agent role

types which represent a Scene. This could be a single agent role, or multiple

roles which are expected to interact as part of a multiagent system.

• Interaction Model: The interaction model captures any dataflow information

associated with a Scene and the pattern of interaction between multiple, concur-

rent agent roles. The first property defines whether the Scenehas any input or

output port definitions, allowing it to be treated as a composable object through

the dataflow layer. If the specification has been broken down into multiple role

types an engineer must begin to define the performative (message type) set and

specify the pattern of interaction (sending and receiving)between the agent roles

within the Scene. The sending and receiving actions can (if necessary) be sug-

ared with control flow (then, or, par etc.).

• Service Model:The service model fleshes out the role type definitions, allowing

engineers to make use of the remainder of the action set, building around the

interaction model defined by the previous stage. For each agent role the service

model specifies how that role is broken down into a group of methods, making

use of the remainder of the action set and control flow operators. Interaction

engineers must consider how agents connect to their internal reasoning layer

through decision procedure calls, specifics such as decision procedure names,

input and output parameters, any faults etc. form an API skeleton which an

agent engineer can then implement to achieve personalised behaviour. If the role

makes use of any external services these must also be specified.

• Test and deploy stubbed scene:As a Scene defines an executable specification,

this pattern of interaction can be tested by simply allowingagents to invoke

stubbed services (decision procedures/external services). Stubbed services can

be used if the live service is not available, too costly to invoke etc. This stage

highlights any problems with the interaction and service models, allowing an

7.1. Coordination-Oriented Programming Methodology 119

interaction engineer to iteratively alter and test the Scene.

• Test and deploy live scene:Once the iterative process has terminated and the in-

teraction engineer is confident that both the interaction model and service models

are correct, live decision procedures and external services can be plugged into

the Scene.

7.1.2 Experiment Engineer

As discussed by Section 3.4 scientific workflows tend to have an execution model

which emphasises dataflow. Scientists are generally not skilled programmers and have

no interest in the low level specifics of service composition. A scientist can therefore

approach the MASC language from its most abstract level, adopting the role of an ex-

periment engineer. An experiment engineer can use Scenes ofcomputation (designed

by an interaction engineer) as abstract objects, treating them as parameterisable black

boxes of computation. As discussed in Section 5.2.6 the MASCdataflow layer allows

an engineer to construct a computational experiment by providing a mapping from

sources to sinks.

Figure 7.3: Experiment engineer methodology

Figure 7.3 illustrates the experiment engineer methodology. Scientists approach the

system with a hypothesis and aim to construct a high level experiment in order to fal-

sify that hypothesis. Components (such as Scenes (defined bythe MASC language),

files, services etc.) are treated as abstract problem solving components, scientists can

120 Chapter 7. Evaluation By Use-Case

then parameterise these components and provide a dataflow mapping which wires these

components together, forming an executable experiment specification. This is an iter-

ative, exploratory design process, steered by a hypothesis. The refinement process

terminates when a suitable combination of workflow components and parameters fal-

sify the original hypothesis.

7.1.3 Agent Engineer

As discussed in Section 2.3 a key property of agents over existing software entities is

that they are able to perform autonomous action in an environment in order to meet

their design objectives. In order to achieve this within theMASC framework one must

adopt the role of anagent engineer. Agent engineers are concerned with designing cus-

tomised, intelligent agents that adopt a role from a predefined Scene definition (defined

by an interaction engineer). To achieve this specialised behaviour an agent engineer

must implement the decision procedure set for a given role type. This behaviour can

be as simple or complex as the agent engineer specifies and allows agents to have a

personalised strategy (which is hidden to other agents) within the interaction model

which the Scene defines.

7.2 Solving the Motivating Workflow Scenarios

This section brings together all of the concepts discussed so far by the thesis and

demonstrates through example how the MASC language and coordination-oriented

programming methodology (where applicable) can solve the original set of motivat-

ing workflow scenarios presented by Sections 3.2, 3.3 and 4.1. Each subsection will

present in turn a workflow scenario and demonstrate how the various stages of the

coordination-oriented programming methodology builds upa working protocol to solve

the original specification. Workflow scenarios are ordered by complexity, starting with

the most basic (utilising simple language features) to complex coordination (utilis-

ing the full language). This process includes a full implementation using the abstract

MASC language and notation described by Section 5.2, lines of interest are marked

by a number (not necessarily in order) and discussed by the corresponding text. Each

workflow has been fully implemented and executed with live services and data on our

7.2. Solving the Motivating Workflow Scenarios 121

agent-based web services composition framework. The XML representation (used as

input) make up the relevant appendix.

It is important to note that with any language the definitionsprovided are only one

possible way of solving the original specification, others exist and are equally as valid.

For simplicity type information is left out of the MASC definitions, apart from special

cases where$var name:a is a variable of type agent name,$var name:alist is a list

of agent names and$var name:r is variable of type role name.

7.2.1 Solving Scenario 1: Batch Processing

This Section demonstrates how the AstroGrid batch processing scenario discussed in

detail in Section 3.2 can be implemented using the MASC language. This scenario is

the simplest of the workflow scenarios addressed by this Chapter and takes advantage

of the basic features of the MASC language, such as method definitions, sending and

receiving, the sequence operator (then) and external service invocations. The corre-

sponding XML definition (used as input) is contained in Appendix B.

%rsm{

method main() =

waitfor

1 (request($ra, $dec) <= agent($user_config:a, %user))

timeout(e)

2 then invoke retrieve($ra, $dec, $user_config:a)

6 then invoke main()

method retrieve($ra, $dec, $user_config:a) =

3 $images = service(def(!wfs), $ra, $dec)

then $s_extrator = service(def(!s_extractor), $images)

then $xmatched = service(def(!xmatcher), $sextrator)

4 then invoke redshift($xmatched, $user_config:a)

method redshift($xmatched, $user_config) =

$hyperz = service(def(!xmatcher), $xmatched)

5 then response($hyperz) => agent($user_config:a, %user)}.

Figure 7.4: Batch processing scenario - rsm role definition

122 Chapter 7. Evaluation By Use-Case

Figure 7.4 is a protocol definition demonstrating one possible solution to the batch

processing scenario. The interaction is broken up into two roles: rsm anduser. The

rsm role defines the pattern of interaction necessary to performthe series of service

invocations needed to calculate the redshift for a given area of sky. This area of sky is

supplied by theuser agent which simply waits for a human user’s input and forwards

it to an agent who has assumed the role ofrsm. Throughout the remainder of this

section we will refer to Figure 7.4 by line number.

By default agents begin execution from themain method. Once instantiated thersm

agent begins its execution cycle by entering awaitfor loop, here it waits for a message

of performative typerequest (line 1 of Figure 7.4) to be received from any agent who

has adopted the role ofuser. Waitfor loops continue to execute until successful, or

until the timeout value (an integer) is reached. In this case, the timeout value is not

set, so the agent will continue to loop until the required message is received. Once a

message is received (conforming to the template defined in line 1 of Figure 7.4), the

area of sky requested by the user is bound to the agent’s localvariables:$ra and$dec.

For correspondence later in the protocol the name of theuser agent which sent the

message is bound to the local variable$user config. At this point thewaitfor loop

will terminate as all actions contained within the body of the loop have been successful.

As the left hand side of the sequence operator (then) has beensuccessful the right hand

side is executed, invoking theretrieve method (line 2 of Figure 7.4) using the newly

bound variables:$ra, $dec and$user config as input parameters.

Control then passes to theretrieve method which initially makes a web service invo-

cation (line 3 of Figure 7.4) in order to obtain images from each of the five wavebands

necessary to compute the redshift. The web service contactsthe Wide Field Survey

archive (WFS) using the hard-coded service description contained in the constant:

!wfs and the variables:$ra, $dec as input parameters. The result of the invoca-

tion is stored in the newly created variable:$images. The raw data is filtered through

two analysis tools, accessed through service invocations.The first iss extractor,

this tool extracts from each of the images the positions of objects of interest, storing

them in a Virtual Observatory table for each of the bandwidths: $s extractor. The

s extractor service definition is stored in the constant:!s extractor. The output of

this service invocation (group of tables) is then passed through a cross matching tool

which extracts all of the objects which overlap in each of thefive bandwidths, storing

them in just one Virtual Observatory table:$xmatched. If successful theredshift

7.2. Solving the Motivating Workflow Scenarios 123

maker method is invoked (line 4 of Figure 7.4) using the variables: $xmatched and

$user config as input parameters. The redshift is calculated by invokingthe service

specified in the constant:!hyperz, using the cross matched results as input. Finally the

results of this computation are sent back to the specific agent who initially requested

the calculation (line 5 of Figure 7.4), as the first parametercontains the agent name:

user config and the second a role type:%user. Once control has passed back to the

main method, the agent restarts itself by making a recursive callto main (line 6), here

it waits for anotheruser agent’s request.

7.2.2 Solving Scenario 2: Knowledge Acquisition

In order to implement the knowledge acquisition scenario (discussed in detail in Sec-

tion 3.3) an engineer must take advantage of more complex features of the MASC

language. These features include: iterative and recursiveagent definitions, the choice

operator (or), agent decision procedures, web service invocations and message pass-

ing between multiple concurrent agents. The correspondingXML definition (used as

input) is contained in Appendix C.

To solve the knowledge acquisition scenario a Scene containing four roles has been

defined: auser role, bcg role, extraction role andendpoint role. To briefly

summarise the solution, an agent representing a user’s interests receives a request to

conduct an experiment exploring properties of brightest cluster galaxies, this request

(along with possible coordinates) are forwarded to abcg agent which understands how

to perform coordination to solve this type of problem. Thebcg agent performs a reg-

istry search of databases containing information about clusters of galaxies, sending

these to an agent which has adopted theextraction role. Theextraction agent

recursively traverses this list, sending each request to anendpoint agent who is re-

sponsible for performing the service invocations and sending the results back to the

extraction agent. Once all the results are received they are stored in the AstroGrid

myspace facility and the resulting URL is sent back to the originatingbcg agent. This

process is repeated for databases containing information of optical, near infrared and

radio sources. The combined data sets are run through a series of web service invo-

cations which together compute properties of brightest cluster galaxies, the results are

returned to theuser agent and forwarded to the scientist the agent represents.

Figure 7.5 illustrates the interaction model between the agent roles in the Scene and

124 Chapter 7. Evaluation By Use-Case

Figure 7.1 summaries the service model. Based on the interaction and service models

we have defined protocol definitions for the most complex roles: bcg (Figure 7.7) and

extraction (Figure 7.6) which implement the motivating workflow scenario. These

definitions and the features they make use of will now be discussed in detail.

Scene: Brightest Cluster Galaxies

Role bcg

External Services $galaxies = service(def(!registry), !galaxies)

$working set = service(def(!stats1), $galaxydata, $extradata)

$top attributes = service(def(!stats2), $workingset)

$result = service(def(!stats), $parameterlist)

Role extraction

Decision Procedures($head, $tail) = ExtractNext($qlist) fault emptylist

Store($name, $res)

$data = Retrieve()

External Services $resulturl = service(def(!myspace), $data)

Table 7.1: Knowledge acquisition scenario Service Model

Once agents have received a copy of the protocol adopting thenecessary roles the

execution cycle can begin. In this instance the protocol execution begins with the

bcg agent, it enters a waitfor loop, expecting to receive a message of performative

type: begin from an agent which has adopted theuser role. Once received, a service

invocation is made to the AstroGrid registry (line 1 of Figure 7.6) in order to look

up catalogues containing data about clusters of galaxies. The list returned from this

service invocation is stored in the variable:$galaxies and sent to any agent which

has subscribed to theextraction role (line 2 of Figure 7.6). Once sent an invocation is

made to thewait method using the name of the originatinguser agent:user config

as input.

The corresponding receive on theextraction agent is specified on line 1 of Figure

7.7. Once a message which matches the performative:extract and message specifi-

cation is received the contents of the message are bound to the variable:$qlist, this

variable is the output from the AstroGrid registry lookup and contains a list of service

calls which need to be made in order to obtain the required data from the bcg calcu-

lation. An invocation is then made to theeloop method, using the query list:$qlist

and name of the originating agent:$bcg:a as parameters.

7.2. Solving the Motivating Workflow Scenarios 125

Figure 7.5: Knowledge acquisition scenario - Interaction Model

126 Chapter 7. Evaluation By Use-Case

%bcg{

method main() =

waitfor

(begin() <= agent($user_config:a, %user)

1 then $galaxies = service(def(!registry), !galaxies)

2 then extract($galaxies) => agent(_, %extraction)

then invoke wait($user_config:a))

timeout(e)

method wait($user_config:a) =

waitfor

3 (finalresult($galaxy_data) <= agent(_, %extraction))

timeout(e)

4 then $extra = service(def(!registry), !radio)

5 then extract($extra) => agent(_, %extraction)

waitfor

6 (finalresult($extra_data) <= agent(_, %extraction)

then invoke bcg($galaxy_data, $extra_data, $user_config:a))

timeout(e)

method bcg($galaxy_data, $extra_data) =

7 $working_set = service(def(!stats1), $galaxy_data, $extra_data)

8 then $top_attributes = service(def(!stats2), $working_set)

9 then display($top_attributes, $galaxy_data, $extra_data)

=> agent($user_config:a, %user)

then invoke userinteraction($user_config:a)

method userinteraction($user_config:a) =

waitfor

10 ((visualisation($parameter_list) <= agent(_, %user)

then $result = service(def(!stats), $parameter_list)

then display ($result) => agent($user_config:a, %user))

11 or (finished() <= agent(_, %user)

then invoke main()))

timeout(e)}

Figure 7.6: Knowledge acquisition scenario - bcg role definition

7.2. Solving the Motivating Workflow Scenarios 127

%extraction{

method main() =

waitfor

1 (extract($qlist) <= agent($bcg:a, %bcg)

then invoke eloop($qlist, $bcg:a)

then invoke main())

timeout (e)

method eloop($qlist, $bcg:a) =

2 (($head, $tail) = ExtractNext($qlist) fault emptylist

then query($head) => agent(_, %endpoint)

3 then invoke eloop($tail, $bcg:a))

4 or (invoke ewait($bcg:a))

method ewait($bcg:a) =

waitfor

5 (((result($res) <= agent($name, %endpoint)

then Store($name, $res)

then invoke ewait($bcg:a)))

6 or (noresult() <= agent($name, %endpoint)

then invoke ewait($bcg:a)))

7 timeout (invoke end($bcg:a)

method end($bcg:a) =

$data = Retrieve()

then $resulturl = service(def(!myspace), $data)

8 finalresult($resulturl) => agent($bcg:a, %bcg)}}.

Figure 7.7: Knowledge acquisition scenario - extraction role definition

128 Chapter 7. Evaluation By Use-Case

Theeloop method makes use of three language features not demonstrated so far by

this Chapter: recursive function calls, basic agent internal reasoning and the choice

operator. This method recursively traverses the list of queries, constructing and sending

each unique query to the appropriate service. The method begins by invoking the

HeadTail decision procedure (line 2 of Figure 7.7), which removes theitem at the

front of the list:$head, and stores the remainder of the list in:$tail. TheHeadTail

decision procedure is a call to the agent’s internal decision logic that an agent engineer

has written, deployed as a reasoning web service and associated to bcg agent before

execution began. It was associated by supplying the WSDL address of the web service

which implements all of the decision procedures contained in the service model for the

extraction role type.

If the HeadTail decision procedure is successfully executed then the current query:

$head is sent to any agent which has subscribed to theendpoint role. If sending is

successful a recursive invocation is made to theeloop method (line 3 of Figure 7.7)

using the tail of the list as the first input parameter. The recursion will terminate if any

one of the sequential statements (constructed using thethen operator) fail. A valid

termination would be the result of theHeadTail decision procedure raising the fault

emptylist, indicating there are no more items to process. Once a statement fails or

an exception is raised theor branch of the protocol is executed (line 4 of Figure 7.7),

which in this case makes an invocation to theewait method.

Once all the queries have been sent out, theendpoint agents will process them by

invoking the services and sending the results back. It is thejob of theewait method

to collect and send back these responses to the original agent, bound to the$bcg:a

variable. Inside this method the agent is waiting for two types of message indicated

by the performative type and message structure, either:result or noresult, this is

achieved by separating the receives with anor operator. If a query has been successful

a result message is received (line 5 of Figure 7.7) containing the processed query:

$res. This query is then stored locally to the agent by making an invocation to the

Store decision procedure, providing the name of the agent:$name and the processed

query: $res. A recursive invocation is then made to theewait method. The choice

operator here allows the agent to listen for several kinds ofmessage, in this case the

other option is to receive anoresult message (line 6 of Figure 7.7) indicating that an

agent has not been able to process the query. Within our protocol definition, failure

is simply ignored and the agent makes a recursive invocationto theewait method.

7.2. Solving the Motivating Workflow Scenarios 129

The loop will terminate when the agent has been waiting for messages over the stated

timeout period (line 7 of Figure 7.7), when the loop times out an invocation to the

end method is made.

The terminating method invokes theRetrieve decision procedure, storing the accu-

mulated processed data into the$data variable. The result of the extractions are then

sent to the AstroGrid storage facility (line 8 of Figure 7.7)through an external service

invocation, the details of which are stored in the constant:!myspace. The result of this

invocation is a URL, pointing to where the published resultsreside:$resulturl. This

URL is sent back to the agent which made the original request for extraction:$bcg:a

for further analysis. The agent restarts itself by making a call to themain method.

Thebcg agent is expecting to receive (line 3 of Figure 7.6) a messageof performative

typeresult. Once received the entire process is repeated this time for data sources

which are classified as catalogues of optical, near-infrared and radio sources and which,

therefore, might include relevant observations of BCGs (lines 4,5,6 of Figure 7.6). The

results from both of these extraction processes:$galaxy data and$extra data are

passed in as parameters to thebcg method through an invocation. Thebcg method

passes the results from both extraction processes through aseries of web service invo-

cations. The first works out which galaxies in the galaxy catalogue data are the BCGs

in each of the host clusters (line 7 of Figure 7.6) generatinga combined set of all the

data known about each Cluster/BCG pair. The second is an invocation to a statistics

algorithm (line 8 of Figure 7.6), which seeks the twenty attributes with the highest

information content on the deposited data. The output of these service invocations are

forwarded to an agent which represents a human scientist (line 9 of Figure 7.6), stored

in the variable$user config:a. The scientist can use their expertise and give judge-

ment about how the workflow should progress. It is important to keep the scientist in

the loop, in this case the astronomer must step back and look at the data, the visualisa-

tion tool displays a set of scatter plots which are judged as possibly worthy of further

investigation.

Once the data has been sent an invocation to theuserinteraction method is made

where the agent is waiting for input from the user scientist.Input from the scientist

can take the form of two performatives:visualisation (line 10 of Figure 7.6) or

finished (line 11 of Figure 7.6), separated using theor operator. Thebcg agent

responds to the user’s commands by invoking further statistics on the results in ac-

cordance to the supplied parameters stored in the variable:$parameter list. User

130 Chapter 7. Evaluation By Use-Case

interaction terminates when thefinished performative is received.

7.2.3 Solving Scenario 3: Runtime Coordination

This Section discusses the most complex of our motivating workflow scenarios, taken

from the Large Synoptic Survey Telescope (LSST) [56]. This workflow scenario is

discussed in detail in Chapter 4 acting as a pivotal point in this thesis. This Section

will practically demonstrate how the MASC language can solve a scenario requiring

flexible, runtime composition of services and data in an inherently distributed, peer-

to-peer environment. The implementation makes use of some advanced features of

the language, allowing components to be composed at runtimeand not (as previously

demonstrated) be hard-coded into the protocol. The features demonstrated include:

port reading and writing, creating or locating agents on thefly, message passing based

on agent type or role type at runtime, and service invocationat runtime. We also

demonstrate how the dataflow layer can be used to compose experiments at a higher

level of abstraction, for use in the scientific community. The corresponding XML

definition (used as input) is contained in Appendix D.

To solve the time-domain astronomy workflow scenario we havedivided the Scene

into four distinct roles:classification (Figure 7.9),contractnet (Figure 7.10),

observatory (Figure 7.11) andextraction (Figure 7.12). The interaction model is

illustrated by Figure 7.8 and the service model by Figure 7.2.

To briefly summarise the implementation, aclassification agent is attempting to

locally classify a list containing pointers to objects which cannot be classified by the

automated algorithms discussed in Section 4.1.1. If at any time the agent cannot clas-

sify an object locally help needs to be obtained from agents running at distributed

observatories. The first port of call is a request to an agent which has adopted the

contractnet role, supplying as parameters to the message: a list of suitable agents:

$potential agents (obtained from a registry lookup) and a proposal defining the

terms of agreement:$proposal. The contractnet agent is responsible for exe-

cuting the contractnet protocol [50], requesting participation from each agent in the

list $potential agents. This list of agents is the result of a registry lookup at run-

time, therefore the agents available are very much dependent on the facilities of the

observatory, current work schedule etc. Once the call for participation has finished

thecontractnet agent returns a list of agents working at observatories who returned

7.2. Solving the Motivating Workflow Scenarios 131

propose to the protocol. The list of open proposals is then evaluatedlocally (ac-

cording to some internal constraint defined by a decision procedure invocation) by the

classification agent, generating a list of rejected agents:$reject and a single

suitable agent:$accept. An accept-proposal message is sent to the selected agent.

The agent working on behalf of the observatory breaks down the proposal, farming out

the computational job to a number ofextraction agents, the number and location of

which are decided at runtime. Eachextraction agent receives a section of the orig-

inal proposal containing a list of services, with parametersettings etc. to invoke. The

extraction agent then calls each service in turn, setting the input and output parame-

ters on the fly, returning the results to the agent working on behalf of the observatory. If

the terms of the proposal have been fulfilled successfully aninform-result message

is sent to the originatingclassification agent. The data received from the dis-

tributed observatory:$opinion is used to generate a$combined opinion, informing

a human scientist if anything unusual has occurred, requiring followup observations

etc. The agent then continues to classify the remaining objects. In parallel to this task

taking place, the agents who were unsuccessful in the contractnet proposal bid are re-

jected by thereject-proposal message. However, if the contractnet proposal has

been unsuccessful another attempt must be made (by executing the process described

above again) to find suitable data from distributed observatories. The contractnet pro-

posal can fail in three ways, firstly if the list:$open proposals is empty (throwing

thenoproposals fault), secondly if theclassification agent has been waiting too

long andtimeout is reached and finally if the observatory selected cannot fulfill the

terms of the contract sending aninform-failure message.

As most of the basic features have already been discussed by the previous workflow

scenarios this explanation of the implementation will onlyfocus on the more advanced

features of the language. The implementation makes simple use of the dataflow layer,

theobjectclassification Scene has two ports, an inport:lsst:lsst in1 (line 1

of Figure 7.12) and an outport:lsst:out1 (line 2 of Figure 7.12). As the mapping

demonstrates, an outport from the automated processing software (discussed in Sec-

tion 4.1.1) is connected to the inport of theobjectclassification Scene (line 3 of

Figure 7.12) and the outport from theobjectclassification Scene is connected to

an inport of a Scene handling user interaction (line 4 of Figure 7.12. The first use of

this mapping is made through aportread operation (line 1 of Figure 7.9). As the

automated classification software runs it outputs any data that cannot be classified to

132 Chapter 7. Evaluation By Use-Case

Scene: Runtime coordination

Inports lsst in1

Outports lsst out1

Role classification

Decision Procedures$result = StatTest($unknown)

UpdateKnowledge($result)

QueryKnowledge($unknown) fault cannotclassify

$proposal = GenerateProposal($unknown)

($accept, $reject) = Evaluate($openproposals) fault noproposals

($head, $tail) = HeadTail($reject) fault emptylist

AgentCheck($accept, $observatory) fault wrongagent

$combinedopinion = GenerateOpinion($opinion)

External Services $potentialagents = service(def(!registry), $unknown)

Role contractnet

Decision Procedures$c id = GenerateID()

($head, $tail) = HeadTail($potentialagents) fault emptylist

($name, $role) = NameRole($head)

StoreProposal($agent, $id, $cid) wrongcid

StoreRefusal($agent, $id, $cid) wrongcid

$openproposals = RetrieveProposals()

External Services N/A

Role observatory

Decision ProceduresConsiderProposal($proposal) fault proposalrefused

AgentCheck($initiator, $init) fault wrongagent

$proposalsections = DivideProposal($proposal)

($head, $tail) = HeadTail($proposalsections) fault emptylist

Finished(), Remove()

Store($data)

$opinion = ExtractData()

External Services N/A

Role extraction

Decision Procedures($head, $tail) = HeadTail($proposalsection) fault emptylist

$servicedef = ExtractService($head)

$serviceinput = ExtractInput($head)

$serviceoutput = ExtractOutput($head)

Store($serviceoutput)

$data = Retrieve()

External Services $serviceoutput = service(def($servicedef), $serviceinput)

Table 7.2: Runtime coordination scenario service model

7.2. Solving the Motivating Workflow Scenarios 133

Figure 7.8: Runtime coordination scenario - Interaction Model

134 Chapter 7. Evaluation By Use-Case

protocol(objectclassification, {

scene{lsst, {

%classification{

method main() =

1 $unknown = portread(lsst:lsst_in1)

then $result = StatTest($unknown)

then UpdateKnowledge($result)

then (QueryKnowledge($unknown) fault cannotclassify

then invoke main()

or invoke contractnetsend($unknown)) or e)

method contractnetsend($unknown) =

2 $potential_agents = service(def(!registry), $unknown)

then $proposal = GenerateProposal($unknown)

then request($potential_agents, $proposal) => agent(_, %contractnet)

then waitfor

(response($open_proposals:alist, $c_id) <= agent(_, %contractnet)

3 then ($accept:a, $reject:alist) = Evaluate($open_proposals:alist) fault noproposals

then invoke contractreject(($reject:alist, $c_id, $accept:a, $unknown))

timeout(invoke contractnetsend($unknown))

method contractreject($reject:alist, $c_id, $accept:a, $unknown) =

(($head:a, $tail:alist) = HeadTail($reject:alist) fault emptylist

then reject-proposal($c_id) => agent($head:a, _)

then invoke contractreject($tail:alist, $c_id, $accept:a, $unknown))

or (invoke contractaccept($accept:a, $unknown, $c_id))

method contractaccept($accept:a, $unknown, $c_id) =

accept-proposal($c_id) => agent($accept:a, _)

then waitfor

(inform-result($opinion, $c_id) <= agent($observatory:a, _)

then AgentCheck($accept:a, observatory:a) fault wrongagent

then $combined_opinion = GenerateOpinion($opinion)

4 then portwrite(lsst:lsst_out1, $combined_opinion)

then invoke main())

or (inform-failure($c_id) <= agent($observatory:a, _)

5 then invoke contractnetsend($unknown))

timeout(e)},

Figure 7.9: Runtime coordination scenario - classification role definition

7.2. Solving the Motivating Workflow Scenarios 135

%contractnet{

method main() =

waitfor

(request($potential_agents, $proposal) <= agent($initiator:a, _)

then $c_id = GenerateID()

then invoke cfp($potential_agents, $proposal, $initiator:a, $c_id)

then invoke main())

timeout(e)

method cfp($potential_agents, $proposal, $initiator:a, $c_id) =

(($head, $tail) = HeadTail($potential_agents) fault emptylist

1 ($name:a, $role:r) = NameRole($head)

then cfp($proposal, $initiator:a, c_id) => agent($name:a, $role:r)

then invoke cfp($tail, $proposal, $initiator:a, $c_id))

or (invoke receiveproposals($initiator:a, $c_id))

method receiveproposals($initiator:a, $c_id) =

waitfor

((propose($id) <= agent($agent:a, _)

then StoreProposal($agent:a, $id, $c_id) fault wrongcid

then invoke receiveproposals($initiator:a))

or (refuse($id) <= agent($agent:a, _)

then StoreRefusal($agent:a, $id, $c_id) fault wrongcid

then invoke receiveproposals($initiator:a)))

timeout($open_proposals:alist = RetrieveProposals()

2 then response($open_proposals:alist, $c_id) => agent($initiator:a, _))},

Figure 7.10: Runtime coordination scenario - ContractNet role definition

136 Chapter 7. Evaluation By Use-Case

%observatory{

method main() =

waitfor

(cfp($proposal, $initiator:a, $c_id) <= agent($contractnet:a, %contractnet))

timeout(e)

1 (then ConsiderProposal($proposal) fault proposalrefused

then propose($c_id) => agent($contractnet:a, %contractnet)

then invoke waitfordecision($initiator:a, $proposal))

or (refuse($c_id) => agent($contractnet:a, %contractnet)

then invoke main())

method waitfordecision($initiator:a, $proposal) =

waitfor

((accept-proposal($c_id) <= agent($init:a, _)

then AgentCheck($initiator:a, init:a) fault wrongagent

2 $proposal_sections = DivideProposal($proposal)

then invoke extract($proposal_sections, $initiator:a, $c_id))

or (reject-proposal($c_id) <= agent($init:a, _)

then AgentCheck($initiator:a, init:a) fault wrongagent

then invoke main()))

timeout(e)

method extract($proposal_sections, $initiator:a, $c_id) =

(($head, $tail) = HeadTail($proposal_sections) fault emptylist

then request-extraction($head) => agent(_, %extraction)

then invoke extract($tail, $initiator:a, $c_id))

or (invoke wait($initiator:a, $c_id))

method wait($initiator:a, $c_id) =

(Finished()

then waitfor

(response-extraction($data) <= agent(_, %extraction)

then Store($data)

then Remove()

then invoke wait($initiator:a, $c_id))

timeout(inform-failure($c_id) => agent($initiator:a, _))

or (invoke finish($initiator:a, $c_id))

method finish($initiator:a, $c_id) =

$opinion = ExtractData()

3 then inform-result($opinion, $c_id) => agent($initiator:a, _)

then invoke main()},

Figure 7.11: Runtime coordination scenario - observatory role definition

7.2. Solving the Motivating Workflow Scenarios 137

%extraction{

method main() =

waitfor

(request-extraction($proposal_section) <= agent($coordinator:a, _)

then invoke retrieve($proposal_section, $coordinator:a)

then invoke main())

timeout(e)

method retrieve($proposal_section, $coordinator:a) =

5 (($head, $tail) = HeadTail($proposal_section) fault emptylist

6 then $service_def = ExtractService($head)

7 then $service_input = ExtractInput($head)

8 then $service_output = ExtractOutput($head)

9 then $service_output = service(def($service_def), $service_input)

then Store($service_output)

then invoke retrieve($tail, $coordinator:a))

or ($data = Retrieve()

10 then response-extraction($data) => agent($coordinator:a, _))}},

1 {inport(lsst:lsst_in1, true)},

2 {outport(lsst:lsst_out1)},

3 {link outport(automated:auto_out1) -> inport(lsst:lsst_in1),

4 link outport(lsst:lsst_out1) -> inport(user:user_in1)}).

Figure 7.12: Runtime coordination scenario - extraction role definition and dataflow

mapping

138 Chapter 7. Evaluation By Use-Case

the outport:automated:auto out1, which we have just discussed has been mapped

to the inport:lsst:lsst in1. Therefore when theportread operation is invoked it

removes the first item that cannot be classified, storing it inthe variable:$unknown.

If the lsst agent cannot classify the item:$unknown locally observatories need to be

located at runtime gathering evidence on whether this unknown object is potentially a

new species of object, or simply some kind of equipment failure etc. The location of

suitable agents is made by contacting a registry (line 2 of Figure 7.9) through a service

invocation, using the unknown object:$unknown as input to the invocation. Based on

the object type, coordinates etc. the registry lookup returns a list of agents formatted as

name, role pairs, storing this list in the newly created variable:$potential agents.

A proposal of work based on:$unknown is generated through a decision procedure

invocation, this along with$potential agents is sent to any agent which has sub-

scribed to thecontractnet role. Once received by thecontractnet agent the list is

recursively traversed, extracting the name:$name:a and role$role:r of the agent to

issue the proposal to (line 1 of Figure 7.10). The name and role of the agents to issue

the proposal to cannot be hard-coded into the protocol as this list is decided purely at

runtime through a registry lookup. The registry lookup is itself dependent firstly on

the unknown object (which thelsst agent cannot predict) and secondly on external

influences such as: network conditions, current load of agents working at distributed

observatories. Once the call for participation has been sent to every agent in the list:

$potential agents it is then up to the agent working on behalf of the observatoryto

autonomously decide whether it is willing to fulfill the terms of the proposal or not.

As an example we have implemented such a role:%observatory. Once the proposal

is received theConsiderProposal decision procedure (line 1 of Figure 7.11) is in-

voked. Based on some internal constraint (programmed by an agent engineer) that is

not visible to the rest of the multiagent system the agent will either issue:propose or

refuse (if the proposalrefused fault is thrown). Once all agents working on behalf

of an observatory have made an autonomous decision the list of agents that returned

propose is sent back to thelsst agent (line 2 of Figure 7.10).

Once thelsst agent has received this list of open proposals it must then itself au-

tonomously decide which agents to reject and which single agent to accept. This is

decided through a decision procedure invocation:Evaluate (line 3 of Figure 7.9) pro-

grammed by an agent engineer, the output is based on the quality of participants, costs

involved, how quickly the observatory could fulfill the terms of the proposal etc. Once

7.2. Solving the Motivating Workflow Scenarios 139

decided, all agents in the list:$reject:alist are issued thereject-proposal mes-

sage and the chosen agent:$accept is issued theaccept-proposal message. The

agent working on behalf of the observatory which has been successful in the contract-

net bid then divides the proposal into a number of sections (line 2 of Figure 7.11)

through a decision procedure invocation:DivideProposal. The number of sections

that the proposal is divided into is again purely based on a runtime decision, depending

how much work is involved with the proposal, current work schedule etc. Once divided

each proposal section is issued to an agent which has subscribed to theextraction

role.

Once anextraction agent (line 5 of Figure 7.12) receives the proposal section it

recursively traverses it breaking it down into$head and$tail. Through a series of

decision procedure invocations (lines 6-9 7.12) the agent dynmically builds an invoca-

tion model which results in an external service call. This content cannot be hard-coded

into the protocol as the interaction engineer building theextraction agent cannot

predict the series of service invocations that need to be made at design-time, it there-

fore must be done on-the-fly at runtime. Once the terms of the proposal section are

met the results are sent back to the originating agent working on behalf of the obser-

vatory (line 10 of Figure 7.12). If the terms of the proposal have been fulfilled and the

computation for all the proposal sections has been completed (line 3 of Figure 7.12)

the results are sent back to the originatinglsst agent through ainform-result mes-

sage. Based on the updated knowledge thelsst agent generates a combined opinion

through a decision procedure invocation:GenerateOpinion. The output from this in-

vocation:$combined opinion is then written to the outportlsst:lsst out1 through

a portwrite operation (line 4 of Figure 7.9). As discussed earlier in this section the

lsst:lsst out1 port is mapped to the inport:user:user in1, which handles user

interaction with a human scientist. For simplicity this is not discussed by this example

but it should be clear how to implement this functionality using the MASC language.

Once theportwrite is complete themain method is invoked, which continues to pro-

cess the remaining data from the inport:lsst:lsst in1.

However if the agent working on behalf of the observatory hasnot been able to meet

the terms of the proposal aninform-failure message is sent to thelsst agent in-

stead. If received an invocation to thecontractnetsend method is made (line 5 of

Figure 7.9) which restarts the process of locating a suitable observatory to help clas-

sify the unknown object. This process will continue to be executed until successful and

140 Chapter 7. Evaluation By Use-Case

each iteration will result in a different set of agents beingcontacted due to changing

conditions from iteration to iteration.

7.3 Discussion: A Better Approach to Workflow?

Throughout this thesis we have derived a list of requirements for scientific workflow

composition. It is important to note that the workflow scenarios have not been in-

vented for the purpose of this thesis, rather this thesis andthe requirements that we

have derived are a consequence of analysing these workflow scenarios. It is also true

that solutions to the workflow scenarios (in particular the knowledge acquisition and

runtime coordination) don’t readily exist. Scientists from the domain have considered

similar classes of problem but the scenarios addressed by this thesis are considered

future development work. This Section discusses how our agent-based approach to

service composition fulfills the requirements of scientificworkflow:

• R1 - Rapid prototyping: Scientists require the ability to incrementally and

rapidly prototype an experiment based on a hypothesis. The MASC language

allows rapid prototyping in two very different ways, the first of which is pro-

totyping a sequence of interaction between a group of agent roles and external

services. As MASC is a specification which is directly executable by a group of

agents, this provides an effective mechanism for prototyping a workflow. Pro-

tocols can be used to engineer a prototype system from a scenario (like those

discussed throughout this thesis) even if the exact services or interaction model

(or both) are undefined at the design stage. This allows interaction engineers

to focus on defining the exact pattern of interaction using stubbed services be-

fore deploying the interaction model on live services and data. This is further

addressed by the coordination-oriented programming methodology discussed in

Section 7.1. Secondly, experiments can be prototyped from ahigher level of

abstraction by adopting the role of an experiment engineer.This allows problem

solving components to be treated as parameterisable black boxes of computation,

wired through the dataflow layer.

• R2 - User interaction: The ability to interact with a user is an essential require-

ment of scientific workflow modelling. There are two mechanisms in the MASC

language which aid this requirement. Firstly, individual agents can send mes-

7.3. Discussion: A Better Approach to Workflow? 141

sages to and receive messages from a user, these sending and receiving actions

can then be wrapped around control flow operators (such asthen, or etc.) to

steer the execution path of an agent depending how the user reacted. Secondly

user interaction can be mapped at the scene level, by bindinga user to a scene’s

inport or binding a scene’s outport to a user.

• R3 - Workflow Reuse: Protocols are executable specifications which can be

directly enacted by a group of agents. Therefore the scene description (written

by an interaction engineer) is a generic description that can be enacted by any

group of agents which adopt the roles defined by the scene. This means that once

a scene has been written it is fully reusable. Workflow components can also be

reused from a higher level of abstraction when adopting the experiment engineer

role. From this level of abstraction scenes can be wired together through the

dataflow layer like any other workflow component.

• R4 - Fault tolerant execution: In order to keep the MASC language as lightweight

as possible, no explicit fault tolerant features have been added. However, an in-

teraction engineer can build fault tolerant protocols by taking advantage of the

features included. For example, the operation set includesanor clause,waitfor

loops continue to execute until successful, andtimeout clauses specify compen-

sation actions.

• R5 - Levels of abstraction:Ideally scientific workflows should be viewable and

configurable from different layers of abstraction. As discussed by this Chapter

the MASC language can be approached from various levels of abstraction to ac-

commodate the differing requirements and skill sets of users. An experiment en-

gineer can treat protocols as parameterisable black boxes of computation, wiring

them together through dataflow. An interaction engineer is concerned with defin-

ing roles and specifying how those roles coordinate with oneanother to achieve

a shared goal. Finally, an agent engineer is concerned with defining an agent’s

internal reasoning model by implementing a set of decision procedures. The

coordination-oriented programming methodology aids eachlevel of abstraction.

• R6 - Legacy system integration:Many scientific applications are considered

legacy applications as they are written in older programming languages such as

Fortran. Legacy applications are still widely in use and need to be integrated into

existing workflow tools. Legacy applications are easily integrated into a work-

142 Chapter 7. Evaluation By Use-Case

flow specified using the MASC language. With little engineering work these

legacy applications can be wrapped up and exposed as a service, this service

can then be invoked like any other piece of service-orientedarchitecture by the

agents which act as proxies or stubs to their enactment.

• R7 - Provenance data and R9 - Semantic markup:The MASC language does

not specify how provenance information is supplied or how services and data

can be semantically marked up. This should be handled by the service providers

themselves and it is up to an agent engineer to specify how individual agents

utilise this extra information if available.

• R8 - Smart component choice:The MASC language allows agents to make

decisions about which components to interact with at runtime, based on the cur-

rent state of the network etc. This could be made through negotiation with other

agents, variable substitution or according to the agent’s local knowledge through

calls to decision procedures. This concept was illustratedby the LSST runtime

scenario discussed in detail in Section 7.2.3 and is discussed in more detail later

in this Section.

• R10 - Data presentation: The Zorro framework is a prototype implementa-

tion of the concepts addressed by the MASC language. It provides the essential

workflow execution engine, however with little engineeringwork improvements

could be made to the tool, this will be discussed in more detail in the Further

Work Section 8.2.

As discussed in Section 4.1.4, current service compositiontechniques allowstatically

defined, pre-designed/pre-plannedworkflows to be enacted by acentralised workflow

engine. However, through our exploration of workflow scenarios we presented a coun-

terexample of coordination which is difficult or impossibleto achieve by existing ser-

vice composition techniques. This process helped derive anextended list of desirable

properties of a workflow language. There are a number of features of the MASC lan-

guage which specifically address these requirements, allowing flexible, runtime com-

position of services, each of these features will now be highlighted in turn:

• Decentralised, peer-to-peer architecture:The MASC language is designed to

be executed by a number of distributed agents, which act as peers, forming a

peer-to-peer system. Before enactment of the workflow can begin each agent re-

ceives a local copy of the interaction protocol, assumes a role with that protocol

7.3. Discussion: A Better Approach to Workflow? 143

and references a reasoning web service which implements thedecision proce-

dure set for the role it has assumed. Agents can therefore actas independent,

self contained peers with no centralised server governing the interaction.

• Agent reasoning through decision procedures:MASC protocols allow the

rules of interaction to be explicitly expressed, while allowing individual agents

to subscribe to their own reasoning models. Protocols do notsacrifice the self in-

terest and autonomy of individual agents, although agents follow the protocol as

a script each agent can adopt their own personalised strategy within the protocol.

Reasoning web services can be mapped on an individual agent basis (providing

personalised behaviour) or on role type (providing genericrole behaviour). It is

up to the agent engineer to provide the set of methods which form this reasoning

web service.

• Agents are proxies to service invocation:Agents add an extra level of ab-

straction, acting as stubs or proxies to the web services which are taking part in

the workflow. This means that agents can make use of their internal reasoning

(through decision procedure invocations) to make decisions at runtime when the

coordination is actually taking place. This concept was illustrated by both the

knowledge acquisition (Section 7.2.2) and runtime coordination scenarios (Sec-

tion 7.2.3). This approach offers more than ‘just coordination’, provided by most

web service composition frameworks and languages.

• Variable substitution: Most workflow languages are hardcoded specifications

of execution, MASC on the other hand allows sections of the interaction to be

compiled at runtime. Actions (such as sending/receiving, service invocation etc.)

in the MASC language allow variable substitution. An agent,therefore can treat

a protocol as a template of coordination, although the sequence of actions are

defined, specific details (such as which service to invoke) can be spliced in at

runtime. This allows agents to use knowledge such as the current state of the

network to provide flexible service composition while the workflow is executing,

instead of enacting a pre-defined, static workflow. This was demonstrated in

particular by the runtime coordination scenario.

• Recursion: Agents can iterate over method definitions, data structuresetc. re-

cursively. This allows a more complex, expressive class of workflow to be de-

fined.

144 Chapter 7. Evaluation By Use-Case

• Layered structure: The MASC language fills the gap between the low level

transport issues of an agent (such as network protocol etc.)and its high level ra-

tional processes. This layering removes some of the complications of designing

large multiagent systems, aiding in the design process.

• Inter-operability: By adopting the MASC language, agents built by different

organisations, using different software systems, writtenin different languages

are able to communicate with one another in a common languagewith agreed

semantics. The only requirement on an engineer wanting to build an agent that

can coordinate is a layer of software which can translate theprotocol and a map-

ping to a reasoning web service which implements the decision procedure set for

a given role.

• Infrastructure independent: The interaction model always remains a layer

above any implementation specific middleware or operating systems. The only

time an agent needs to talk to this lower level is when it is sending and receiv-

ing messages, making calls to decision procedures or external web services. This

means that as inherently unstable standards keep changing,the interaction model

remains unaffected.

• Compatibility: The coordination mechanism defined using the MASC language

is entirely external to the web services which are being coordinated. The web

services themselves need no alteration or knowledge that they are even taking

part in coordination. Therefore no modification of web services needs to take

place and the protocol does not need to be disseminated between the web ser-

vices themselves.

• Fit in with existing architectures: As there are several fully developed graph-

ical service composition tools (e.g Taverna [43]), with little effort scientists can

simply integrate components expressed in the MASC languageinto these ex-

isting frameworks. For example, adding our novel multiagent/service-oriented

approach as a dataflow node in an experiment constructed using Taverna.

7.4. Chapter Conclusions 145

7.3.1 Possible Limitations of the Approach

Although we have argued that an agent-based approach to service composition has

several advantages in the right domain, it is important to discuss the limitations of this

approach and where this technique is not appropriate:

• The peer-to-peer design process:The design process for a peer-to-peer work-

flow is inherently more complex than a traditional centralised approach. An

engineer not only has to consider ordering a set of services but also the tricky

problem of message passing between multiple concurrent processes.

• The appropriate level of complexity: The added complexity of workflow de-

sign in a peer-to-peer system is useful with large scale distributed systems where

task delegation is encouraged, but can be an added overhead for very simple

workflows with just a few services. There is a trade off between task delegation

and workflow complexity, an engineer needs to make a choice asto when this

technique is applicable to a workflow scenario. It only makessense to use this

technique when the patterns of interaction are too complex to analyse at design-

time, requiring runtime service composition.

• Autonomy isn’t always appropriate: The agent-based approach discussed by

this thesis encourages linking the protocol execution to models of agent reason-

ing. This agent reasoning can facilitate autonomous, runtime decision making.

This technique may not always be a desirable trait as an engineer loses complete

control which is taken for granted in a statically defined centralised workflow.

7.4 Chapter Conclusions

This Chapter serves as the focal point for the thesis, bringing together all of the con-

cepts addressed so far by this research. Firstly the coordination-oriented programming

methodology was proposed which serves as a guideline on how to implement work-

flows using our approach. Users can approach the system from various levels of ab-

straction, adopting the role of: an experiment engineer, interaction engineer or agent

engineer depending on their aims and motivations.

Throughout this thesis scenarios have always been a drivingfactor, therefore it is logi-

cal to perform the evaluation by case-study. Our agent-based approach to service com-

146 Chapter 7. Evaluation By Use-Case

position (using the coordination-oriented programming methodology) was applied to

each of the motivating workflow scenarios, taken from the live Grid projects: Astro-

Grid and LSST. Providing a solution to each of the workflow scenarios involved utilis-

ing different features of the MASC language, the simplest being the batch processing

through to the most complex, the LSST runtime coordination.A concrete XML rep-

resentation, used as input to the Zorro framework can be found in each of the relevant

appendices. An original aim of the thesis was to provide a language that met the re-

quirements of scientific workflow, addressed by Chapters 3, 4and 5. Features of the

MASC language were highlighted which solved each of the motivating requirements.

This was following by a discussion of the features which enabled the MASC approach

to solve a new class of workflow requiring flexible, runtime service composition. The

following Chapter discusses concrete conclusions and the further avenues of research

which could be pursed as a result of this thesis.

Chapter 8

Conclusions and Further Work

This Chapter concludes the thesis by presenting a summary ofthe research and high-

lighting the contributions to knowledge it has made, Section 8.1. Avenues for further

research are discussed in Section 8.2.

8.1 Summary and Contributions to Knowledge

A problem with workflow specifications is that often the patterns of interaction be-

tween the distributed services are too complicated to predict and analyse at design-

time. In certain cases, the exact patterns of message exchange and the concrete ser-

vices to call cannot be predicted in advance, due to factors such as fluctuating network

load or the availability of services. It is a more realistic assumption to endow software

components with the ability to make decisions about the nature and scope of their

interactions at runtime.

In order to facilitate flexible, runtime service composition this thesis has presented an

investigation into fusing the agency and service-orientedarchitecture paradigms. This

investigation was composed from multiple steps and made thefollowing contributions

to knowledge:

• Deriving the requirements of scientific workflow: By working closely with

the AstroGrid project a number of concrete, realistic workflow scenarios have

evolved. Scenario 1: Batch processing and scenario 2: Knowledge acquisition

were presented in detail by Sections 3.2 and Section 3.3. Together with the de-

147

148 Chapter 8. Conclusions and Further Work

tailed analysis of existing systems (discussed in Section 2.2), these scenarios

helped derive a core set of requirements for scientific workflow; these require-

ments were detailed in Section 3.4. This analysis process confirmed that scien-

tific workflow has an extra set of requirements which go beyondthe functionality

that traditional workflow languages and execution engines provide.

• Counterexample scenario:This thesis also worked closely with a second Grid

project, the Large Synoptic Survey Telescope (LSST). By working with this

project a detailed workflow scenario evolved which acted as acounterexample

of coordination which is difficult or impossible to achieve by existing service

composition techniques. This counterexample scenario wasdiscussed in Section

4.1 and highlighted that statically defined, pre-designed/pre-planned workflows

were too brittle for a scenario which required dynamic, runtime coordination,

by decentralised autonomous, reactive software components. This counterex-

ample scenario backed up the hypothesis that workflow specifications are often

too complex to analyse at design-time.

• Combined requirements: Through a combined process of analysing existing

systems and working closely with domain scenarios, Section5.1 identified a set

of desirable properties for a workflow language. This process served as the re-

quirements analysis for the remainder of the research presented by this thesis.

These combined requirements captured the essence of scientific workflow but

also demanded flexible, runtime composition of services in an inherently de-

centralised, peer-to-peer architecture; traits which arenot common of existing

service composition techniques.

• Uniting agents and services:As discussed in detail by Chapter 2, service-

oriented architectures and multiagent systems offer complementary paradigms

for building distributed systems. In order to achieve the combined set of require-

ments for workflow this thesis viewed the service composition problem in a fun-

damentally different way. An agent-based architecture wasproposed, allowing

active, autonomous agents to consume the passive service-oriented architectures

found in Internet and Grid systems.

• Service composition through interaction protocols:Our agent-based approach

to workflow composition was founded on the concept of shared interaction pro-

tocols that allow groups of decentralised agents to communicate in open systems.

8.1. Summary and Contributions to Knowledge 149

• MultiAgent Service Composition (MASC): Based on this concept of shared

interaction protocols Chapter 5 presented an agent-based workflow language:

MultiAgent Service Composition, or MASC for short. This language extended

the Electronic Institutions framework and focused solely on service composition

to meet the requirements analysis presented by Chapters 3 and 4. Agents acts as

proxies or stubs to service invocation and can connect from the protocol code,

describing the coordination model to internal reasoning models. In contrast with

statically defined, centralised workflows, MASC allows decentralised agents to

perform service composition at runtime, allowing them to operate in scenarios

where it is not possible to define the pattern of interaction in advance. A dataflow

layer allowed our agent-based coordination mechanism to bewrapped up into

more complex workflows.

• Agent-Based web services composition framework:Chapter 6 presented the

Zorro framework, an open-source Java implementation of theMASC language.

This framework served as a test bed for the ideas addressed bythis thesis, allow-

ing real protocols to be executed with real services on real data.

• Coordination-oriented programming methodology: In addition to the MASC

language and Zorro framework, Chapter 7 proposed a methodology outlining

how users can build workflows using an agent-based approach to service com-

position. The methodology allows users with different skills and motivations to

approach the system from various levels of abstraction. Users can adopt the role

of experiment engineers, interaction engineersandagent engineers.

• Evaluation by use-Case:In order to demonstrate and evaluate the agent-based

technique proposed by this thesis each of the motivating workflow scenarios

was designed using the coordination-oriented methodology, implemented using

the MASC language and executed on the Zorro framework. This process was

described in detail by Chapter 7 appendices B-D contain the XML input used to

execute the Zorro framework.

• Application to live Grid project: Workflow scenarios have been a driving fac-

tor behind this thesis. Modelling these scenarios has allowed the language and

framework to evolve and provided the project with a realistic application do-

main. AstroGrid has served as a test bed, in order to verify and execute our ideas

on a live framework, with live services and data.

150 Chapter 8. Conclusions and Further Work

8.2 Further Work

There are several avenues for further research based on the work of this thesis. Most

further work involves development of the Zorro framework, which served as a proto-

type to facilitate the research presented by this thesis andis merely a proof-of-concept.

Detailed below are the possible avenues for further research:

• Framework development - distributed agents: In the prototype framework,

agents execute a protocol as a closely coupled system, each agent is implemented

as a separate thread within a multi-threaded system. A simple extension would

allow a number of distributed agents to execute a scene definition, instead of run-

ning each agent as a separate thread on the same server. A usercould then chose

whether to execute agents locally, as distributed processes, or a combination of

both. This would result in two fundamental differences, thefirst is that agents

are not dynamically created within a scene, they are locatedand initialised and

executed across a network. Secondly, message passing takesplaces through a

distributed protocol (such as SOAP), instead of exchangingmessages between a

multi-threaded system.

• Framework development - visual protocol builder tool: Designing protocols

which define how agent roles interact with one another (the task of an interac-

tion engineer) is a complex, error prone task. A front-end, visualisation tool to

aid an interaction engineer could prove a more efficient method of protocol de-

sign. This front-end would allow a user to create a protocol by visualising the

design process, dragging, dropping and editing components, this could then be

translated to the formal specification for execution.

• Framework development - user interaction: Through close analysis of sce-

narios and existing systems, user interaction has emerged as a core requirement

for scientific workflow. The MASC language has several features which facil-

itate this requirement, discussed in more detail by Sections 5.2.3.3 and 5.2.6.

The prototype framework has implemented several of these features, however to

make the framework useable for real domain scientists, additional tool support

is required.

• Framework development - tool integration: This thesis has not intended to

reinvent the wheel, although scientific workflow is a relatively new field, matur-

8.2. Further Work 151

ing scientific workflow systems exist. By wrapping our agent-based approach

to service composition in a dataflow layer, it is possible to integrate models of

agency to existing, mature scientific workflow systems, suchas Taverna [43].

Although this thesis has discussed the possibility of tool integration, the frame-

work needs several simple additions to facilitate this functionality.

• Scenario development:The process of working with the Virtual Observatory

community has been a two way process. Scenario modelling hasinfluenced the

requirements for this research and in return agent-based techniques have pro-

posed a solution to open coordination problems within this domain. The Virtual

Observatory domain was chosen because of the interesting coordination chal-

lenges faced by scientists, however other equally interesting domains exist where

agent-based workflow techniques would be applicable.

• Integration of complex agent reasoning:This thesis was primarily focused on

developing techniques for flexible service composition. The evaluation demon-

strated how these techniques could be deployed to build workflows. Simple rea-

soning was integrated into the knowledge acquisition and runtime coordination

scenarios, however it would be an interesting exercise to include more complex

models of agent reasoning into the decision procedures, such as the Belief De-

sires and Intentions (BDI) model.

• Startup issues:There are a number of unsolved issues regarding how to locate

and disseminate a protocol to a group of distributed agents.Currently all agents

are executed locally within a scene process, so the problemsof agent location,

protocol dissemination and agent initialisation are avoided. Startup algorithms

need to be developed to solve these issues, some of which are being addressed

by the currently running OpenKnowledge project [57].

Appendix A

MultiAgent Service Composition

(MASC) XML Schema Definition

<?xml version="1.0" encoding="UTF-8" ?>

<xsd:schema

targetNamespace="urn:zorro"

elementFormDefault="qualified"

xmlns="urn:zorro"

xmlns:xsd="http://www.w3.org/2001/XMLSchema">

<xsd:annotation>

<xsd:documentation xml:lang="en">

///////////////////////////////////////

// //

// Zorro Framework //

// File: basic.xsd //

// Adam Barker - Copyright (C) 2006 //

///////////////////////////////////////

</xsd:documentation>

</xsd:annotation>

<!-- Root Element -->

<xsd:element name="protocol" type="protocoldefinition"/>

<!-- Protocol Type, Base Type -->

<xsd:complexType name="protocoldefinition">

<!-- Overall Input and Output to the Experiment -->

<xsd:sequence>

<!-- Scene Type -->

<xsd:element name="sceneset" type="Scene" minOccurs="0" maxOccurs="1"/>

<xsd:element name="mapping" minOccurs="0" maxOccurs="1">

<xsd:complexType>

<xsd:sequence>

<xsd:element name="node" type="node" minOccurs="1" maxOccurs="unbounded"/>

<xsd:element name="link" type="link" minOccurs="0" maxOccurs="unbounded"/>

</xsd:sequence>

<xsd:attribute name="name" type="xsd:Name"/>

</xsd:complexType>

</xsd:element>

</xsd:sequence>

<xsd:attribute name="name" type="xsd:Name"/>

</xsd:complexType>

153

154 Appendix A. MultiAgent Service Composition (MASC) XML Schema Definition

<!-- A Link -->

<xsd:complexType name="link">

<xsd:sequence>

<xsd:element name="source" minOccurs="1" maxOccurs="1">

<xsd:complexType>

<xsd:sequence>

<xsd:group ref="mappinglinksource" minOccurs="0" maxOccurs="1"/>

</xsd:sequence>

</xsd:complexType>

</xsd:element>

<xsd:element name="sink" minOccurs="1" maxOccurs="1">

<xsd:complexType>

<xsd:sequence>

<xsd:group ref="mappinglinksink" minOccurs="0" maxOccurs="1"/>

</xsd:sequence>

</xsd:complexType>

</xsd:element>

</xsd:sequence>

</xsd:complexType>

<!-- Scene Type -->

<xsd:complexType name="SceneType">

<xsd:sequence>

<!-- Scene In-Ports -->

<xsd:element name="input" minOccurs="0" maxOccurs="1">

<xsd:complexType>

<xsd:sequence>

<xsd:element name="port" type="portdefinition" minOccurs="1" maxOccurs="unbounded"/>

</xsd:sequence>

</xsd:complexType>

</xsd:element>

<!-- Scene Out-Ports -->

<xsd:element name="output" minOccurs="0" maxOccurs="1">

<xsd:complexType>

<xsd:sequence>

<xsd:element name="port" type="portdefinition" minOccurs="1" maxOccurs="unbounded"/>

</xsd:sequence>

</xsd:complexType>

</xsd:element>

<!-- Process Definition -->

<xsd:element name="agent" type="process" maxOccurs="unbounded"/>

</xsd:sequence>

<xsd:attribute name="name" type="xsd:Name"/>

</xsd:complexType>

<xsd:complexType name="process">

<xsd:sequence>

<!-- Process Input A Process can be parameterised by the user -->

<xsd:element name="processinput" type="IO" minOccurs="0" maxOccurs="1"/>

<!-- Method Definition -->

<xsd:element name="method" maxOccurs="unbounded">

<xsd:complexType>

<xsd:sequence>

<!-- Can be removed -->

<xsd:element name="in" minOccurs="0" maxOccurs="1">

<xsd:complexType>

<xsd:sequence>

<xsd:group ref="type" minOccurs="0" maxOccurs="unbounded"/>

</xsd:sequence>

</xsd:complexType>

</xsd:element>

<!-- Can be removed -->

<xsd:element name="out" minOccurs="0" maxOccurs="1">

<xsd:complexType>

<xsd:sequence>

155

<xsd:group ref="type" minOccurs="0" maxOccurs="unbounded"/>

</xsd:sequence>

</xsd:complexType>

</xsd:element>

<xsd:element name="body" type="SequenceType"/>

</xsd:sequence>

<xsd:attribute name="name" type="xsd:Name"/>

</xsd:complexType>

</xsd:element>

</xsd:sequence>

<!-- Parameters for the Agent Type -->

<xsd:attribute name="role" type="xsd:string"/>

<xsd:attribute name="implementation" type="xsd:string" use="optional"/>

<xsd:attribute name="min" type="xsd:nonNegativeInteger"

use="optional"/>

<xsd:attribute name="max" type="allNNI" use="optional"/>

</xsd:complexType>

<!-- Simple Type which is either an non-negative integer or unbounded -->

<xsd:simpleType name="allNNI">

<xsd:union memberTypes="xsd:nonNegativeInteger">

<xsd:simpleType>

<xsd:restriction base="xsd:NMTOKEN">

<xsd:enumeration value="unbounded"/>

</xsd:restriction>

</xsd:simpleType>

</xsd:union>

</xsd:simpleType>

<!-- Sequences -->

<xsd:complexType name="SequenceType">

<xsd:sequence>

<xsd:group ref="Operation" minOccurs="1" maxOccurs="unbounded"/>

</xsd:sequence>

</xsd:complexType>

<!-- Operations -->

<xsd:group name="Operation">

<xsd:choice>

<!-- Action -->

<xsd:group ref="Action"/>

<!-- Choice -->

<xsd:element name="choice">

<xsd:complexType>

<xsd:sequence>

<xsd:element name="op" type="SequenceType"

minOccurs="2" maxOccurs="2"/>

</xsd:sequence>

</xsd:complexType>

</xsd:element>

<!-- Parallel Execution -->

<xsd:element name="par">

<xsd:complexType>

<xsd:sequence>

<xsd:element name="par" type="SequenceType"

minOccurs="2" maxOccurs="2"/>

</xsd:sequence>

</xsd:complexType>

</xsd:element>

<!-- Loop -->

<xsd:element name="while">

<xsd:complexType>

<xsd:sequence>

<!-- Constraint placed on the Loop -->

<xsd:element name="constraint" type="single_constraint" minOccurs="0" maxOccurs="1"/>

<xsd:element name="body" type="SequenceType"/>

<xsd:element name="timeout" type="SequenceType"/>

156 Appendix A. MultiAgent Service Composition (MASC) XML Schema Definition

</xsd:sequence>

<xsd:attribute name="tmax" type="xsd:nonNegativeInteger" use="optional"/>

</xsd:complexType>

</xsd:element>

<!-- Recursive Call -->

<xsd:element name="call">

<xsd:complexType>

<xsd:sequence>

<xsd:element name="in" minOccurs="0" maxOccurs="1">

<xsd:complexType>

<xsd:sequence>

<xsd:group ref="type" minOccurs="0" maxOccurs="unbounded"/>

</xsd:sequence>

</xsd:complexType>

</xsd:element>

<xsd:element name="out" minOccurs="0" maxOccurs="1">

<xsd:complexType>

<xsd:sequence>

<xsd:group ref="type" minOccurs="0" maxOccurs="unbounded"/>

</xsd:sequence>

</xsd:complexType>

</xsd:element>

</xsd:sequence>

<xsd:attribute name="name" type="xsd:Name"/>

</xsd:complexType>

</xsd:element>

</xsd:choice>

</xsd:group>

<!-- Actions -->

<xsd:group name="Action">

<xsd:choice>

<!-- Decision Procedure -->

<xsd:element name="proc" type="proc"/>

<!-- Web Service Invocation -->

<xsd:element name="service" type="wproc"/>

<!-- Constraint -->

<xsd:element name="cproc" type="single_constraint"/>

<!-- Send Message -->

<xsd:element name="send">

<xsd:complexType>

<xsd:sequence>

<xsd:element name="mesg" type="MesgType"/>

<xsd:element name="clause1">

<xsd:complexType>

<xsd:sequence>

<xsd:group ref="clause1" minOccurs="1" maxOccurs="1"/>

</xsd:sequence>

</xsd:complexType>

</xsd:element>

<xsd:element name="clause2">

<xsd:complexType>

<xsd:sequence>

<xsd:group ref="clause2" minOccurs="1" maxOccurs="1"/>

</xsd:sequence>

</xsd:complexType>

</xsd:element>

<!-- *** Sending Constraint -->

<xsd:element name="constraint" type="single_constraint" minOccurs="0" maxOccurs="1"/>

</xsd:sequence>

</xsd:complexType>

</xsd:element>

<!-- Port Write -->

<xsd:element name="portwrite">

<xsd:complexType>

<xsd:sequence>

157

<xsd:group ref="type" minOccurs="0" maxOccurs="unbounded"/>

</xsd:sequence>

<xsd:attribute name="name" type="xsd:string"/>

</xsd:complexType>

</xsd:element>

<!-- Receive Message -->

<xsd:element name="recv">

<xsd:complexType>

<xsd:sequence>

<!-- *** Receiving Constraint -->

<xsd:element name="constraint" type="single_constraint" minOccurs="0" maxOccurs="1"/>

<xsd:element name="mesg" type="MesgType"/>

<xsd:element name="clause1">

<xsd:complexType>

<xsd:sequence>

<xsd:group ref="clause1" minOccurs="1" maxOccurs="1"/>

</xsd:sequence>

</xsd:complexType>

</xsd:element>

<xsd:element name="clause2">

<xsd:complexType>

<xsd:sequence>

<xsd:group ref="clause2" minOccurs="1" maxOccurs="1"/>

</xsd:sequence>

</xsd:complexType>

</xsd:element>

</xsd:sequence>

</xsd:complexType>

</xsd:element>

<!-- UnPack Operation -->

<xsd:element name="unpack">

<xsd:complexType>

<xsd:group ref="type" minOccurs="1" maxOccurs="1"/>

</xsd:complexType>

</xsd:element>

<!-- Pack Operation -->

<xsd:element name="pack">

<xsd:complexType>

<xsd:sequence>

<xsd:element name="Scene" type="SceneType" minOccurs="1" maxOccurs="unbounded"/>

</xsd:sequence>

<xsd:attribute name="packref" type="xsd:string"/>

</xsd:complexType>

</xsd:element>

<!-- Null Action -->

<xsd:element name="null"/>

</xsd:choice>

</xsd:group>

<!-- Procedure -->

<xsd:complexType name="proc">

<xsd:sequence>

<xsd:element name="in" minOccurs="0" maxOccurs="1">

<xsd:complexType>

<xsd:sequence>

<xsd:group ref="type" minOccurs="0" maxOccurs="unbounded"/>

</xsd:sequence>

</xsd:complexType>

</xsd:element>

<xsd:element name="out" minOccurs="0" maxOccurs="1">

<xsd:complexType>

<xsd:sequence>

<xsd:group ref="type" minOccurs="0" maxOccurs="1"/>

</xsd:sequence>

</xsd:complexType>

158 Appendix A. MultiAgent Service Composition (MASC) XML Schema Definition

</xsd:element>

</xsd:sequence>

<xsd:attribute name="name" type="xsd:Name"/>

</xsd:complexType>

<!-- Service Invocation -->

<xsd:complexType name="wproc">

<xsd:sequence>

<xsd:element name="def" type="webservice" minOccurs="1" maxOccurs="1"/>

<xsd:element name="in" minOccurs="0" maxOccurs="1">

<xsd:complexType>

<xsd:sequence>

<xsd:group ref="type" minOccurs="0" maxOccurs="unbounded"/>

</xsd:sequence>

</xsd:complexType>

</xsd:element>

<xsd:element name="out" minOccurs="0" maxOccurs="1">

<xsd:complexType>

<xsd:sequence>

<xsd:group ref="type" minOccurs="0" maxOccurs="1"/>

</xsd:sequence>

</xsd:complexType>

</xsd:element>

</xsd:sequence>

</xsd:complexType>

<!-- Constraints -->

<xsd:complexType name="single_constraint">

<xsd:choice>

<xsd:element name="proc" type="proc"/>

<xsd:element name="wproc" type="wproc"/>

</xsd:choice>

<xsd:attribute name="name" type="xsd:Name"/>

</xsd:complexType>

<!-- Messages -->

<xsd:complexType name="MesgType">

<xsd:sequence>

<xsd:group ref="type" minOccurs="0" maxOccurs="unbounded"/>

</xsd:sequence>

<xsd:attribute name="performative" type="xsd:string"/>

</xsd:complexType>

<!-- Clause one -->

<xsd:group name="clause1">

<xsd:choice>

<!-- Agent ID -->

<xsd:element name="agent">

<xsd:complexType>

<xsd:attribute name="name" type="xsd:string"/>

</xsd:complexType>

</xsd:element>

<!-- Variable Representing an Agent -->

<xsd:group ref="type" minOccurs="0" maxOccurs="1"/>

<!-- Wild Card -->

<xsd:element name="wild"/>

</xsd:choice>

</xsd:group>

<!-- Clause two -->

<xsd:group name="clause2">

<xsd:choice>

<xsd:element name="role">

<xsd:complexType>

<xsd:attribute name="name" type="xsd:string"/>

</xsd:complexType>

</xsd:element>

159

<xsd:element name="wild"/>

</xsd:choice>

</xsd:group>

<!-- Type System -->

<xsd:group name="type">

<xsd:choice>

<!-- Reading from a Port -->

<xsd:element name="portread">

<xsd:complexType>

<xsd:attribute name="name" type="xsd:string"/>

</xsd:complexType>

</xsd:element>

<!-- Variable Type -->

<xsd:element name="var">

<xsd:complexType>

<xsd:attribute name="name" type="xsd:string"/>

<xsd:attribute name="type" type="xsd:string"/>

</xsd:complexType>

</xsd:element>

<!-- Constant Type -->

<xsd:element name="const">

<xsd:complexType>

<xsd:attribute name="value" type="xsd:string"/>

<xsd:attribute name="type" type="xsd:string"/>

</xsd:complexType>

</xsd:element>

</xsd:choice>

</xsd:group>

<!-- Agent Type -->

<xsd:complexType name="Agent">

<xsd:attribute name="name" type="xsd:Name"/>

<xsd:attribute name="implementation" type="xsd:string"/>

</xsd:complexType>

<!-- Port Definition -->

<xsd:complexType name="portdefinition">

<xsd:sequence>

<xsd:element name="constraint" type="single_constraint" minOccurs="0" maxOccurs="1"/>

</xsd:sequence>

<xsd:attribute name="name" type="xsd:string" use="required"/>

<xsd:attribute name="type" type="xsd:string" use="required"/>

<xsd:attribute name="core" type="xsd:string" use="required"/>

</xsd:complexType>

<!-- Input/Output Type -->

<xsd:complexType name="IO">

<xsd:sequence>

<xsd:group ref="type" minOccurs="1" maxOccurs="unbounded"/>

</xsd:sequence>

</xsd:complexType>

<!-- Source of the Mapping Link -->

<xsd:group name="mappinglinksource">

<xsd:choice>

<xsd:element name="outport">

<xsd:complexType>

<xsd:attribute name="scene" type="xsd:string"/>

<xsd:attribute name="port" type="xsd:string"/>

</xsd:complexType>

</xsd:element>

<xsd:element name="user"/>

<xsd:element name="file">

<xsd:complexType>

<xsd:attribute name="location" type="xsd:string"/>

160 Appendix A. MultiAgent Service Composition (MASC) XML Schema Definition

</xsd:complexType>

</xsd:element>

<xsd:element name="application"/>

<xsd:element name="webservice" type="webservice" minOccurs="1" maxOccurs="1"/>

</xsd:choice>

</xsd:group>

<!-- Sink of the Mapping Link -->

<xsd:group name="mappinglinksink">

<xsd:choice>

<xsd:element name="inport">

<xsd:complexType>

<xsd:attribute name="scene" type="xsd:string"/>

<xsd:attribute name="port" type="xsd:string"/>

</xsd:complexType>

</xsd:element>

<xsd:element name="user">

<xsd:complexType>

<xsd:sequence>

<xsd:group ref="mappinglinksink" minOccurs="0" maxOccurs="unbounded"/>

</xsd:sequence>

</xsd:complexType>

</xsd:element>

<xsd:element name="file">

<xsd:complexType>

<xsd:attribute name="location" type="xsd:string"/>

</xsd:complexType>

</xsd:element>

<xsd:element name="application"/>

<xsd:element name="webservice" type="webservice" minOccurs="1" maxOccurs="1"/>

</xsd:choice>

</xsd:group>

<!-- Web Service Definition -->

<xsd:complexType name="webservice">

<xsd:attribute name="wsdl" type="xsd:anyURI"/>

<xsd:attribute name="service" type="xsd:Name"/>

<xsd:attribute name="port" type="xsd:Name"/>

<xsd:attribute name="namespace" type="xsd:anyURI"/>

<xsd:attribute name="opname" type="xsd:Name"/>

</xsd:complexType>

<xsd:complexType name="node">

<xsd:sequence>

<xsd:element name="role" type="roleInformation" minOccurs="0" maxOccurs="unbounded"/>

</xsd:sequence>

<xsd:attribute name="name" type="xsd:string"/>

<xsd:attribute name="location" type="xsd:string"/>

</xsd:complexType>

<xsd:complexType name="roleInformation">

<xsd:sequence>

<xsd:element name="agent" type="agentInformation" minOccurs="0" maxOccurs="unbounded"/>

</xsd:sequence>

<xsd:attribute name="name" type="xsd:string"/>

</xsd:complexType>

<!-- Paramterisable Agent Type -->

<xsd:complexType name="agentInformation">

<xsd:attribute name="name" type="xsd:string" use="required"/>

<xsd:attribute name="implementation" type="xsd:anyURI" use="required"/>

<xsd:attribute name="num" type="xsd:int" use="required"/>

<xsd:attribute name="recvwait" type="xsd:int" use="required"/>

<xsd:attribute name="portwait" type="xsd:int" use="required"/>

</xsd:complexType>

161

<xsd:complexType name="Scene">

<xsd:sequence>

<xsd:element name="Scene" type="SceneType" minOccurs="0" maxOccurs="unbounded"/>

</xsd:sequence>

</xsd:complexType>

</xsd:schema>

Appendix B

XML Implementation of Scenario 1:

Batch Processing

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>

<protocol xmlns="urn:zorro">

<sceneset>

<Scene name="redshift">

<!-- RSM Agent -->

<agent implementation="http://localhost:8080/MyRsmService/rsm?WSDL" max="1" min="1" role="rsm">

<!-- MAIN Method -->

<method name="main">

<body>

<while>

<body>

<!-- Receive RA and DEC from USER agent -->

<recv>

<mesg performative="request">

<var name="ra"/>

<var name="dec"/>

</mesg>

<clause1>

<var name="user_config"/>

</clause1>

<clause2>

<role name="user"/>

</clause2>

</recv>

</body>

<timeout>

<null/>

</timeout>

</while>

<!-- Invoke Retrieve Method -->

<call name="retrieve">

<in>

<var name="ra"/>

<var name="dec"/>

<var name="user_config"/>

</in>

</call>

<!-- Restart Agent -->

<call name="main"/>

</body>

</method>

163

164 Appendix B. XML Implementation of Scenario 1: Batch Processing

<!-- RETRIEVE Method -->

<method name="retrieve">

<in>

<var name="ra"/>

<var name="dec"/>

<var name="user_config"/>

</in>

<out/>

<body>

<!-- Retrieve Images -->

<service>

<def

namespace="urn:Foo"

opname="getImages"

port="RsmIFPort"

service="MyRsmService"

wsdl="http://localhost:8080/MyRsmService/rsm?WSDL"/>

<in>

<var name="ra"/>

<var name="dec"/>

</in>

<out>

<var name="images" type="xsd:string"/>

</out>

</service>

<!-- Sextractor -->

<service>

<def

namespace="urn:Foo"

opname="sextractor"

port="RsmIFPort"

service="MyRsmService"

wsdl="http://localhost:8080/MyRsmService/rsm?WSDL"/>

<in>

<var name="images"/>

</in>

<out>

<var name="sextractor" type="xsd:string"/>

</out>

</service>

<!-- X-Matching -->

<service>

<def

namespace="urn:Foo"

opname="xmatcher"

port="RsmIFPort"

service="MyRsmService"

wsdl="http://localhost:8080/MyRsmService/rsm?WSDL"/>

<in>

<var name="sextractor"/>

</in>

<out>

<var name="xmatched" type="xsd:string"/>

</out>

</service>

<!-- Invoke RedShift Method -->

<call name="redshift">

<in>

<var name="xmatched"/>

<var name="user_config"/>

</in>

</call>

</body>

</method>

<!-- REDSHIFT Method -->

<method name="redshift">

<in>

165

<var name="xmatched"/>

<var name="user_config"/>

</in>

<body>

<!-- Sextractor -->

<service>

<def

namespace="urn:Foo"

opname="hyperz"

port="RsmIFPort"

service="MyRsmService"

wsdl="http://localhost:8080/MyRsmService/rsm?WSDL"/>

<in>

<var name="xmatched"/>

</in>

<out>

<var name="hyperz" type="xsd:string"/>

</out>

</service>

<!-- Send results back to the USER Agent -->

<send>

<mesg performative="response">

<var name="hyperz"/>

</mesg>

<clause1>

<var name="user_config"/>

</clause1>

<clause2>

<role name="user"/>

</clause2>

</send>

</body>

</method>

</agent>

<!-- USER Agent -->

<agent implementation="http://localhost:8080/MyRsmService/user?WSDL" max="1" min="1" role="user">

<!-- MAIN Method -->

<method name="main">

<body>

<!-- Get RA -->

<proc name="sayRaDec">

<out>

<var name="ra"/>

</out>

</proc>

<!-- Get DEC -->

<proc name="sayRaDec">

<out>

<var name="dec"/>

</out>

</proc>

<!-- Send RA and DEC to RSM Agent -->

<send>

<mesg performative="request">

<var name="ra"/>

<var name="dec"/>

</mesg>

<clause1>

<wild/>

</clause1>

<clause2>

<role name="rsm"/>

</clause2>

</send>

<!-- Call WAIT Method -->

<call name="wait"/>

</body>

166 Appendix B. XML Implementation of Scenario 1: Batch Processing

</method>

<!-- WAIT Method -->

<method name="wait">

<body>

<while>

<body>

<!-- Receive results from RSM Agent -->

<recv>

<mesg performative="response">

<var name="hyperz"/>

</mesg>

<clause1>

<wild/>

</clause1>

<clause2>

<role name="rsm"/>

</clause2>

</recv>

</body>

<timeout>

<null/>

</timeout>

</while>

</body>

</method>

</agent>

</Scene>

</sceneset>

</protocol>

Appendix C

XML Implementation of Scenario 2:

Knowledge Acquisition

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>

<protocol xmlns="urn:zorro">

<sceneset>

<Scene name="bcg">

<!-- SCIENTIST agent -->

<agent implementation="http://localhost:8080/MyScientistService/scientist?WSDL" max="1" min="1"

role="scientist">

<!--MAIN method -->

<method name="main">

<body>

<while>

<body>

<!-- Receive initial request from USER -->

<recv>

<mesg performative="begin"/>

<clause1>

<var name="user_config"/>

</clause1>

<clause2>

<role name="user"/>

</clause2>

</recv>

<!-- Invoke DECISION PROCEDURE to determine object class -->

<proc name="NextLookUp">

<out>

<var name="query"/>

</out>

</proc>

<!-- Registry Lookup on Galaxies -->

<service>

<def

namespace="urn:Foo"

opname="Registry"

port="ScientistIFPort"

service="MyScientistService"

wsdl="http://localhost:8080/MyScientistService/scientist?WSDL"/>

<in>

<var name="query"/>

</in>

<out>

<var name="galaxies" type="xsd:string"/>

167

168 Appendix C. XML Implementation of Scenario 2: Knowledge Acquisition

</out>

</service>

<!-- Send extraction request to EXTRACTION agent -->

<send>

<mesg performative="extract">

<var name="galaxies"/>

</mesg>

<clause1>

<wild/>

</clause1>

<clause2>

<role name="extraction"/>

</clause2>

</send>

<!-- Invoke WAIT Method -->

<call name="wait">

<in>

<var name="user_config"/>

</in>

</call>

</body>

<timeout>

<null/>

</timeout>

</while>

</body>

</method>

<!-- WAIT method -->

<method name="wait">

<in>

<var name="user_config"/>

</in>

<body>

<while tmax="75">

<body>

<!-- Receive query results from EXTRACTION agent -->

<recv>

<mesg performative="finalresult">

<var name="galaxy_data"/>

</mesg>

<clause1>

<wild/>

</clause1>

<clause2>

<role name="extraction"/>

</clause2>

</recv>

</body>

<timeout>

<null/>

</timeout>

</while>

<!-- Invoke DECISION PROCEDURE to determine object class -->

<proc name="NextLookUp">

<out>

<var name="query"/>

</out>

</proc>

<!-- Registry Lookup on Radio etc. -->

<service>

<def

namespace="urn:Foo"

opname="Registry"

port="ScientistIFPort"

service="MyScientistService"

wsdl="http://localhost:8080/MyScientistService/scientist?WSDL"/>

<in>

169

<var name="query"/>

</in>

<out>

<var name="extra" type="xsd:string"/>

</out>

</service>

<!-- Send extraction request to EXTRACTION agent -->

<send>

<mesg performative="extract">

<var name="extra"/>

</mesg>

<clause1>

<wild/>

</clause1>

<clause2>

<role name="extraction"/>

</clause2>

</send>

<!-- Receive Results -->

<while tmax="30">

<body>

<!-- Receive Final Result -->

<recv>

<mesg performative="finalresult">

<var name="extra_data"/>

</mesg>

<clause1>

<wild/>

</clause1>

<clause2>

<role name="extraction"/>

</clause2>

</recv>

<!-- Invoke Decision Procedure -->

<call name="bcg">

<in>

<var name="galaxy_data"/>

<var name="extra_data"/>

<var name="user_config"/>

</in>

</call>

</body>

<timeout>

<null/>

</timeout>

</while>

</body>

</method>

<!-- BCG Method -->

<method name="bcg">

<in>

<var name="galaxy_data"/>

<var name="extra_data"/>

<var name="user_config"/>

</in>

<body>

<!-- Calculate Working Data Set -->

<service>

<def

namespace="urn:Foo"

opname="Stats1"

port="ScientistIFPort"

service="MyScientistService"

wsdl="http://localhost:8080/MyScientistService/scientist?WSDL"/>

<in>

<var name="galaxy_data"/>

<var name="extra_data"/>

</in>

<out>

170 Appendix C. XML Implementation of Scenario 2: Knowledge Acquisition

<var name="working_set" type="xsd:string"/>

</out>

</service>

<!-- Top Attributes -->

<service>

<def

namespace="urn:Foo"

opname="Stats2"

port="ScientistIFPort"

service="MyScientistService"

wsdl="http://localhost:8080/MyScientistService/scientist?WSDL"/>

<in>

<var name="working_set"/>

</in>

<out>

<var name="top_attributes" type="xsd:string"/>

</out>

</service>

<!-- Send To USER -->

<send>

<mesg performative="display">

<var name="top_attributes"/>

<var name="galaxy_data"/>

<var name="extra_data"/>

</mesg>

<clause1>

<var name="user_config"/>

</clause1>

<clause2>

<role name="user"/>

</clause2>

</send>

<!-- Invoke USER INTERACTION -->

<call name="userinteraction">

<in>

<var name="user_config"/>

</in>

</call>

</body>

</method>

<!-- USERINTERACTION Method -->

<method name="userinteraction">

<in>

<var name="user_config"/>

</in>

<body>

<while>

<body>

<choice>

<op>

<!-- Receive further interaction request -->

<recv>

<mesg performative="visualisation">

<var name="parameter_list"/>

</mesg>

<clause1>

<wild/>

</clause1>

<clause2>

<role name="user"/>

</clause2>

</recv>

<!-- Invoke STATISTICS Web Service -->

<service>

<def

namespace="urn:Foo"

opname="Stats1"

171

port="ScientistIFPort"

service="MyScientistService"

wsdl="http://localhost:8080/MyScientistService/scientist?WSDL"/>

<in>

<var name="parameter_list"/>

</in>

<out>

<var name="result" type="xsd:string"/>

</out>

</service>

<!-- Send display results to USER Agent -->

<send>

<mesg performative="display">

<var name="result"/>

</mesg>

<clause1>

<var name="user_config"/>

</clause1>

<clause2>

<role name="user"/>

</clause2>

</send>

</op>

<!-- OR Choice -->

<op>

<!-- Receive the Termination message from USER agent -->

<recv>

<mesg performative="finished">

</mesg>

<clause1>

<wild/>

</clause1>

<clause2>

<role name="user"/>

</clause2>

</recv>

<!-- Start the scientist again -->

<call name="main"/>

</op>

</choice>

</body>

<timeout>

<null/>

</timeout>

</while>

</body>

</method>

</agent>

<!-- EXTRACTION agent -->

<agent implementation="http://localhost:8080/MyExtractionService/extraction?WSDL" max="1" min="10"

role="extraction">

<!-- MAIN method-->

<method name="main">

<body>

<while>

<body>

<!-- Receive extraction request from SCIENTIST agent -->

<recv>

<mesg performative="extract">

<var name="qlist"/>

</mesg>

<clause1>

<var name="scientist"/>

</clause1>

<clause2>

<role name="scientist"/>

</clause2>

</recv>

<proc name="Initialise">

172 Appendix C. XML Implementation of Scenario 2: Knowledge Acquisition

<out>

<var name="result"/>

</out>

</proc>

</body>

<timeout>

<null/>

</timeout>

</while>

<!-- Invoke ELOOP Method -->

<call name="eloop">

<in>

<var name="qlist"/>

<var name="scientist"/>

</in>

</call>

<!-- Invoke MAIN Method -->

<call name="main"/>

</body>

</method>

<!-- ELOOP Method -->

<method name="eloop">

<in>

<var name="qlist"/>

<var name="scientist"/>

</in>

<body>

<choice>

<op>

<!-- Extract head of List -->

<proc name="Head">

<in>

<var name="qlist"/>

</in>

<out>

<var name="head"/>

</out>

</proc>

<!-- Extract tail of List -->

<proc name="Tail">

<out>

<var name="tail"/>

</out>

</proc>

<!-- Construct Query type -->

<proc name="ConstructQuery">

<in>

<var name="head"/>

</in>

<out>

<var name="q"/>

</out>

</proc>

<!-- Send Query -->

<send>

<mesg performative="query">

<var name="q"/>

</mesg>

<clause1>

<wild/>

</clause1>

<clause2>

<role name="endpoint"/>

</clause2>

</send>

173

<!-- Invoke ELOOP Method -->

<call name="eloop">

<in>

<var name="tail"/>

<var name="scientist"/>

</in>

</call>

</op>

<!-- OR Choice -->

<op>

<!-- Invoke EWAIT Method -->

<call name="ewait">

<in>

<var name="scientist"/>

</in>

</call>

</op>

</choice>

</body>

</method>

<!-- EWAIT Method -->

<method name="ewait">

<in>

<var name="scientist"/>

</in>

<body>

<while>

<body>

<choice>

<op>

<!-- Receive results from ENDPOINT agent -->

<recv>

<mesg performative="result">

<var name="res"/>

</mesg>

<clause1>

<var name="name"/>

</clause1>

<clause2>

<role name="endpoint"/>

</clause2>

</recv>

<!-- Store the Result -->

<proc name="Store">

<in>

<var name="name"/>

<var name="res"/>

</in>

</proc>

<!-- Recursive CALL on EWAIT Method -->

<call name="ewait">

<in>

<var name="scientist"/>

</in>

</call>

</op>

<!-- OR Choice -->

<op>

<!-- Receive NORESULT message from ENDPOINT agent -->

<recv>

<mesg performative="noresult">

</mesg>

<clause1>

<var name="name"/>

</clause1>

<clause2>

<role name="endpoint"/>

</clause2>

174 Appendix C. XML Implementation of Scenario 2: Knowledge Acquisition

</recv>

<!-- Recursive CALL on EWAIT Method -->

<call name="ewait">

<in>

<var name="scientist"/>

</in>

</call>

</op>

</choice>

</body>

<timeout>

<!-- Invoke the END Method -->

<call name="end">

<in>

<var name="scientist"/>

</in>

</call>

</timeout>

</while>

</body>

</method>

<!-- END Method -->

<method name="end">

<in>

<var name="scientist"/>

</in>

<body>

<!-- Retrieve the Result -->

<proc name="Retrieve">

<out>

<var name="data"/>

</out>

</proc>

<!-- Store the results in MYSPACE -->

<service>

<def

namespace="urn:Foo"

opname="MySpace"

port="ExtractionIFPort"

service="MyExtractionService"

wsdl="http://localhost:8080/MyExtractionService/extraction?WSDL"/>

<in>

<var name="data"/>

</in>

<out>

<var name="resulturl" type="xsd:string"/>

</out>

</service>

<!-- Send the Results back to the original SCIENTIST -->

<send>

<mesg performative="finalresult">

<var name="resulturl"/>

</mesg>

<clause1>

<var name="scientist"/>

</clause1>

<clause2>

<role name="scientist"/>

</clause2>

</send>

</body>

</method>

</agent>

<!-- ENDPOINT agent -->

<agent implementation="http://localhost:8080/MyEndService/end?WSDL" max="1" min="10" role="endpoint">

<!-- MAIN Method -->

<method name="main">

175

<body>

<while>

<body>

<!-- Receive message from EXTRACTION agent -->

<recv>

<mesg performative="query">

<var name="queryToTry"/>

</mesg>

<clause1>

<var name="requester"/>

</clause1>

<clause2>

<role name="extraction"/>

</clause2>

</recv>

<!-- Invoke QUERY Method -->

<call name="query">

<in>

<var name="requester"/>

<var name="queryToTry"/>

</in>

</call>

</body>

<timeout>

<null/>

</timeout>

</while>

</body>

</method>

<!-- QUERY Method -->

<method name="query">

<in>

<var name="requester"/>

<var name="queryToTry"/>

</in>

<body>

<!-- Query Success -->

<proc name="Success">

<in>

<var name="queryToTry"/>

</in>

<out>

<var name="success"/>

</out>

</proc>

<!-- Send RESULT -->

<send>

<mesg performative="result">

<var name="success"/>

</mesg>

<clause1>

<var name="requester"/>

</clause1>

<clause2>

<role name="extraction"/>

</clause2>

</send>

<!-- Invoke MAIN Method -->

<call name="main"/>

</body>

</method>

</agent>

<!-- USER Agent -->

<agent implementation="http://localhost:8080/MyExtractionService/extraction?WSDL" max="1" min="1"

role="user">

<method name="main">

<body>

176 Appendix C. XML Implementation of Scenario 2: Knowledge Acquisition

<send>

<mesg performative="begin">

</mesg>

<clause1>

<wild/>

</clause1>

<clause2>

<role name="scientist"/>

</clause2>

</send>

</body>

</method>

</agent>

</Scene>

</sceneset>

</protocol>

Appendix D

XML Implementation of Scenario 3:

Runtime Coordination

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>

<protocol xmlns="urn:zorro">

<sceneset>

<Scene name="lsst">

<!-- Port Definitions -->

<input>

<port name="lsst_in1" type="xsd:string" core="true"/>

</input>

<!-- CLASSIFICATION Agent -->

<agent implementation="http://localhost:8080/MyReactiveService/reactive?WSDL" max="1" min="1"

role="classification">

<!-- MAIN Method -->

<method name="main">

<body>

<while>

<body>

<!-- Receive RA and DEC from USER agent -->

<recv>

<mesg performative="request">

<var name="unknown"/>

</mesg>

<clause1>

<wild/>

</clause1>

<clause2>

<role name="user"/>

</clause2>

</recv>

</body>

<timeout>

<null/>

</timeout>

</while>

<!-- Call LOCALANALYSIS Method -->

<call name="localanalysis">

<in>

<var name="unknown"/>

</in>

</call>

</body>

</method>

177

178 Appendix D. XML Implementation of Scenario 3: Runtime Coordination

<!-- RETRIEVE Method -->

<method name="localanalysis">

<in>

<var name="unknown"/>

</in>

<body>

<choice>

<op>

<!-- STATTEST Decision Procedure -->

<proc name="StatTest">

<in>

<portread name="lsst_in1"/>

</in>

<out>

<var name="result"/>

</out>

</proc>

<!-- UPDATE KNOWLEDGE Decision Procedure -->

<proc name="UpdateKnowledge">

<in>

<var name="result"/>

</in>

</proc>

<!-- QUERYKNOWLEDGE Decision Procedure -->

<proc name="QueryKnowledge">

<in>

<var name="unknown"/>

</in>

<out>

<var name="success"/>

</out>

</proc>

<!-- Recursive Call -->

<call name="localanalysis"/>

</op>

<!-- OR Choice -->

<op>

<call name="contractnetsend">

<in>

<var name="unknown"/>

</in>

</call>

</op>

</choice>

</body>

</method>

<!-- CONTRACTNETSEND Method -->

<method name="contractnetsend">

<in>

<var name="unknown"/>

</in>

<body>

<!-- Registry Call -->

<service>

<def

namespace="urn:Foo"

opname="Registry"

port="ReactiveIFPort"

service="MyReactiveService"

wsdl="http://localhost:8080/MyReactiveService/reactive?WSDL"/>

<in>

<var name="unknown"/>

</in>

<out>

<var name="potential_agents"/>

</out>

</service>

179

<!-- Generate Proposal -->

<proc name="GenerateProposal">

<in>

<var name="unknown"/>

</in>

<out>

<var name="proposal"/>

</out>

</proc>

<!-- Send Contractnet request to CONTRACTNET Agent -->

<send>

<mesg performative="request">

<var name="potential_agents"/>

<var name="proposal"/>

</mesg>

<clause1>

<wild/>

</clause1>

<clause2>

<role name="contractnet"/>

</clause2>

</send>

<while tmax="30">

<body>

<!-- Response from CONTRACTNET Agent -->

<recv>

<mesg performative="response">

<var name="open_proposals"/>

<var name="c_id"/>

</mesg>

<clause1>

<var name="cn"/>

</clause1>

<clause2>

<role name="contractnet"/>

</clause2>

</recv>

<!-- Agents to Reject -->

<proc name="EvaluateReject">

<in>

<var name="open_proposals"/>

</in>

<out>

<var name="reject"/>

</out>

</proc>

<!-- Agent to Accept -->

<proc name="EvaluateAccept">

<in>

<var name="open_proposals"/>

</in>

<out>

<var name="accept"/>

</out>

</proc>

<!-- Initialise variables -->

<proc name="Initialise">

<out>

<var name="success"/>

</out>

</proc>

<call name="contractreject">

<in>

<var name="reject"/>

<var name="c_id"/>

180 Appendix D. XML Implementation of Scenario 3: Runtime Coordination

<var name="accept"/>

<var name="unknown"/>

</in>

</call>

</body>

<timeout>

<null/>

</timeout>

</while>

</body>

</method>

<!-- CONTRACTACCEPT Method -->

<method name="contractaccept">

<in>

<var name="accept"/>

<var name="unknown"/>

<var name="c_id"/>

</in>

<body>

<!-- Issue Accept message to Observatory Agent -->

<send>

<mesg performative="accept-proposal">

<var name="c_id"/>

</mesg>

<clause1>

<var name="accept"/>

</clause1>

<clause2>

<wild/>

</clause2>

</send>

<while tmax="50">

<body>

<choice>

<op>

<!-- Receive reslts of extraction from OBSERVATORY Agent -->

<recv>

<mesg performative="inform-result">

<var name="opinion"/>

<var name="c_id"/>

</mesg>

<clause1>

<wild/>

</clause1>

<clause2>

<role name="observatory"/>

</clause2>

</recv>

<!-- Generate Combined Opinion -->

<proc name="GenerateOpinion">

<in>

<var name="opinion"/>

</in>

<out>

<var name="combined_opinion"/>

</out>

</proc>

</op>

<!-- OR Choice -->

<op>

<!-- Receive Failure Message -->

<recv>

<mesg performative="inform-failure">

<var name="c_id"/>

</mesg>

<clause1>

<wild/>

</clause1>

181

<clause2>

<role name="observatory"/>

</clause2>

</recv>

<!-- If Failed Execute the protocol again, this time

could be a different set of agents who take part -->

<call name="contractnetsend">

<in>

<var name="unknown"/>

</in>

</call>

</op>

</choice>

</body>

<timeout>

<null/>

</timeout>

</while>

</body>

</method>

<!-- CONTRACTREJECT Method -->

<method name="contractreject">

<in>

<var name="reject"/>

<var name="c_id"/>

<var name="accept"/>

<var name="unknown"/>

</in>

<body>

<choice>

<op>

<!-- Extract head of List -->

<proc name="Head">

<in>

<var name="reject"/>

</in>

<out>

<var name="head"/>

</out>

</proc>

<!-- Extract tail of List -->

<proc name="Tail">

<in>

<var name="reject"/>

</in>

<out>

<var name="tail"/>

</out>

</proc>

<!-- Send Reject-proposal to HEAD -->

<send>

<mesg performative="reject-proposal">

<var name="c_id"/>

</mesg>

<clause1>

<var name="head"/>

</clause1>

<clause2>

<wild/>

</clause2>

</send>

<!-- Invoke CONTRACTREJECT Method -->

<call name="contractreject">

<in>

<var name="tail"/>

<var name="c_id"/>

<var name="accept"/>

182 Appendix D. XML Implementation of Scenario 3: Runtime Coordination

<var name="unknown"/>

</in>

</call>

</op>

<!-- OR Choice -->

<op>

<call name="contractaccept">

<in>

<var name="accept"/>

<var name="unknown"/>

<var name="c_id"/>

</in>

</call>

</op>

</choice>

</body>

</method>

</agent>

<!-- CONTRACTNET Agent -->

<agent implementation="http://localhost:8080/MyContractService/contract?WSDL" max="1" min="1"

role="contractnet">

<method name="main">

<body>

<while>

<body>

<!-- Receive request from CFP from ANY Agent -->

<recv>

<mesg performative="request">

<var name="potential_agents"/>

<var name="proposal"/>

</mesg>

<clause1>

<var name="init"/>

</clause1>

<clause2>

<wild/>

</clause2>

</recv>

<!-- Generate Unique ID -->

<proc name="GenerateID">

<out>

<var name="c_id"/>

</out>

</proc>

<!-- Initialise variables -->

<proc name="Initialise">

<out>

<var name="success"/>

</out>

</proc>

<!-- Call CFP Method -->

<call name="cfp">

<in>

<var name="potential_agents"/>

<var name="proposal"/>

<var name="init"/>

<var name="c_id"/>

</in>

</call>

<!-- Restart Agent -->

<call name="main"/>

</body>

<timeout>

<null/>

</timeout>

</while>

183

</body>

</method>

<!-- CALL FOR PARTICIPATION (CFP) Method -->

<method name="cfp">

<in>

<var name="potential_agents"/>

<var name="proposal"/>

<var name="init"/>

<var name="c_id"/>

</in>

<body>

<choice>

<op>

<!-- Extract head of List -->

<proc name="Head">

<in>

<var name="potential_agents"/>

</in>

<out>

<var name="head"/>

</out>

</proc>

<!-- Extract tail of List -->

<proc name="Tail">

<in>

<var name="potential_agents"/>

</in>

<out>

<var name="tail"/>

</out>

</proc>

<!-- Send CFP to agent represented by $head -->

<send>

<mesg performative="cfp">

<var name="proposal"/>

<var name="init"/>

<var name="c_id"/>

</mesg>

<clause1>

<var name="head"/>

</clause1>

<clause2>

<wild/>

</clause2>

</send>

<!-- Recursive call on tail -->

<call name="cfp">

<in>

<var name="tail"/>

<var name="proposal"/>

<var name="init"/>

<var name="c_id"/>

</in>

</call>

</op>

<!-- OR Choice -->

<op>

<call name="receiveproposals">

<in>

<var name="init"/>

</in>

</call>

</op>

</choice>

</body>

</method>

<!-- RECEIVE PROPOSAL Method -->

184 Appendix D. XML Implementation of Scenario 3: Runtime Coordination

<method name="receiveproposals">

<in>

<var name="init"/>

</in>

<body>

<while>

<body>

<choice>

<op>

<!-- Receive Propose message from OBSERVATORY Agent -->

<recv>

<mesg performative="propose">

<var name="c_id"/>

</mesg>

<clause1>

<var name="agent"/>

</clause1>

<clause2>

<wild/>

</clause2>

</recv>

<!-- Store the agents who issued ACCEPT -->

<proc name="StoreProposal">

<in>

<var name="agent"/>

<var name="c_id"/>

</in>

</proc>

<!-- Recursive call on RECEIVEPROPOSAL Method -->

<call name="receiveproposals">

<in>

<var name="init"/>

</in>

</call>

</op>

<!-- OR Choice -->

<op>

<!-- Receive Propose message from OBSERVATORY Agent -->

<recv>

<mesg performative="refuse">

<var name="c_id"/>

</mesg>

<clause1>

<var name="agent"/>

</clause1>

<clause2>

<wild/>

</clause2>

</recv>

<!-- Store the agents who issued REJECT -->

<proc name="StoreRefusal">

<in>

<var name="agent"/>

<var name="c_id"/>

</in>

</proc>

<!-- Recursive call on RECEIVEPROPOSAL Method -->

<call name="receiveproposals">

<in>

<var name="init"/>

</in>

</call>

</op>

</choice>

</body>

<timeout>

<!-- Retrieve open proposals -->

185

<proc name="RetrieveProposals">

<out>

<var name="open_proposals"/>

</out>

</proc>

<!-- Send all the agents who accepted the proposal back to the initiator -->

<send>

<mesg performative="response">

<var name="open_proposals"/>

<var name="c_id"/>

</mesg>

<clause1>

<var name="init"/>

</clause1>

<clause2>

<wild/>

</clause2>

</send>

</timeout>

</while>

</body>

</method>

</agent>

<!-- OBSERVATORY Agent -->

<agent implementation="http://localhost:8080/MyObservatoryService/observatory?WSDL" max="1" min="1"

role="observatory">

<!-- MAIN Method -->

<method name="main">

<body>

<while>

<body>

<!-- Receive CFP Request -->

<recv>

<mesg performative="cfp">

<var name="proposal"/>

<var name="init"/>

<var name="c_id"/>

</mesg>

<clause1>

<var name="contractnet"/>

</clause1>

<clause2>

<role name="contractnet"/>

</clause2>

</recv>

<!-- Initialise -->

<proc name="Initialise">

<out>

<var name="success"/>

</out>

</proc>

</body>

<timeout>

<null/>

</timeout>

</while>

<choice>

<op>

<!-- Consider Proposal (ACCEPT or REJECT) -->

<proc name="ConsiderProposal">

<in>

<var name="proposal"/>

</in>

</proc>

<!-- Send Propose message back to the CONTRACTNET Agent -->

<send>

<mesg performative="propose">

186 Appendix D. XML Implementation of Scenario 3: Runtime Coordination

<var name="c_id"/>

</mesg>

<clause1>

<var name="contractnet"/>

</clause1>

<clause2>

<role name="contractnet"/>

</clause2>

</send>

<!-- Call WAITFORDECISION Method -->

<call name="waitfordecision">

<in>

<var name="init"/>

<var name="proposal"/>

</in>

</call>

</op>

<!-- OR Choice -->

<op>

<!-- Send refuse message back to the CONTRACTNET Agent -->

<send>

<mesg performative="refuse">

<var name="c_id"/>

</mesg>

<clause1>

<var name="contractnet"/>

</clause1>

<clause2>

<role name="contractnet"/>

</clause2>

</send>

<!-- Restart Agent -->

<call name="main"/>

</op>

</choice>

</body>

</method>

<!-- WAITFORDECISION Method -->

<method name="waitfordecision">

<in>

<var name="init"/>

<var name="proposal"/>

</in>

<body>

<while tmax="30">

<body>

<choice>

<op>

<!-- Receive an accept-proposal frm the INITIATOR -->

<recv>

<mesg performative="accept-proposal">

<var name="c_id"/>

</mesg>

<clause1>

<var name="init"/>

</clause1>

<clause2>

<wild/>

</clause2>

</recv>

<!-- If necessary divide the proposal -->

<proc name="DivideProposal">

<in>

<var name="proposal"/>

</in>

<out>

<var name="proposal_sections"/>

</out>

187

</proc>

<!-- Call EXTRACT Method -->

<call name="extract">

<in>

<var name="proposal_sections"/>

<var name="init"/>

<var name="c_id"/>

</in>

</call>

</op>

<!-- OR Choice -->

<op>

<!-- Receive an reject-proposal frm the INITIATOR -->

<recv>

<mesg performative="reject-proposal">

<var name="c_id"/>

</mesg>

<clause1>

<var name="init"/>

</clause1>

<clause2>

<wild/>

</clause2>

</recv>

</op>

</choice>

</body>

<timeout>

<null/>

</timeout>

</while>

</body>

</method>

<!-- EXTRACT Method -->

<method name="extract">

<in>

<var name="proposal_sections"/>

<var name="init"/>

<var name="c_id"/>

</in>

<body>

<choice>

<op>

<!-- Extract head of List -->

<proc name="Head">

<in>

<var name="proposal_sections"/>

</in>

<out>

<var name="head"/>

</out>

</proc>

<!-- Extract tail of List -->

<proc name="Tail">

<in>

<var name="proposal_sections"/>

</in>

<out>

<var name="tail"/>

</out>

</proc>

<!-- Send Request to any EXTRACTION Agent -->

<send>

<mesg performative="request-extraction">

<var name="head"/>

</mesg>

<clause1>

<wild/>

188 Appendix D. XML Implementation of Scenario 3: Runtime Coordination

</clause1>

<clause2>

<role name="extraction"/>

</clause2>

</send>

<!-- Call EXTRACT Method -->

<call name="extract">

<in>

<var name="tail"/>

<var name="init"/>

<var name="c_id"/>

</in>

</call>

</op>

<!-- OR Choice -->

<op>

<call name="wait">

<in>

<var name="init"/>

<var name="c_id"/>

</in>

</call>

</op>

</choice>

</body>

</method>

<!-- WAIT Method -->

<method name="wait">

<in>

<var name="init"/>

<var name="c_id"/>

</in>

<body>

<choice>

<op>

<!-- Finished Check -->

<proc name="Finished">

<in>

<var name="c_id"/>

</in>

<out>

<var name="success"/>

</out>

</proc>

<while tmax="30">

<body>

<!-- Receive response from EXTRACTION Agent -->

<recv>

<mesg performative="response-extraction">

<var name="data"/>

</mesg>

<clause1>

<wild/>

</clause1>

<clause2>

<role name="extraction"/>

</clause2>

</recv>

<!-- Store the Result -->

<proc name="Store">

<in>

<var name="data"/>

</in>

</proc>

<!-- One less agent to receive -->

<proc name="Remove">

189

<out>

<var name="success"/>

</out>

</proc>

<!-- Recursvie Call -->

<call name="wait">

<in>

<var name="init"/>

<var name="c_id"/>

</in>

</call>

</body>

<timeout>

<!-- Send inform-failure if the agent has been waiting too long -->

<send>

<mesg performative="inform-failure">

<var name="c_id"/>

</mesg>

<clause1>

<var name="init"/>

</clause1>

<clause2>

<wild/>

</clause2>

</send>

<null/>

</timeout>

</while>

</op>

<!-- OR Choice -->

<op>

<call name="finish">

<in>

<var name="init"/>

<var name="c_id"/>

</in>

</call>

</op>

</choice>

</body>

</method>

<!-- FINISH Method -->

<method name="finish">

<in>

<var name="init"/>

<var name="c_id"/>

</in>

<body>

<!-- Derive opinion -->

<proc name="ExtractData">

<out>

<var name="opinion"/>

</out>

</proc>

<!-- Send final results back to the INITIATOR -->

<send>

<mesg performative="inform-result">

<var name="opinion"/>

<var name="c_id"/>

</mesg>

<clause1>

<var name="init"/>

</clause1>

<clause2>

<wild/>

</clause2>

</send>

</body>

</method>

190 Appendix D. XML Implementation of Scenario 3: Runtime Coordination

</agent>

<!-- EXTRACTION Agent -->

<agent implementation="http://localhost:8080/MyExtractService/extract?WSDL"

max="1" min="1"

role="extraction">

<!-- MAIN Method -->

<method name="main">

<body>

<while tmax="50">

<body>

<!-- Receive Coordination Request from OBSERVATORY Agent -->

<recv>

<mesg performative="request-extraction">

<var name="proposal_section"/>

</mesg>

<clause1>

<var name="coordinator"/>

</clause1>

<clause2>

<wild/>

</clause2>

</recv>

<!-- Initialise variables -->

<proc name="Initialise">

<out>

<var name="success"/>

</out>

</proc>

<!-- Call RETRIEVE Method -->

<call name="retrieve">

<in>

<var name="proposal_section"/>

<var name="coordinator"/>

</in>

</call>

<!-- Restart Agent -->

<call name="main"/>

</body>

<timeout>

<null/>

</timeout>

</while>

</body>

</method>

<!-- RETRIEVE Method -->

<method name="retrieve">

<in>

<var name="proposal_section"/>

<var name="coordinator"/>

</in>

<body>

<choice>

<op>

<!-- Extract head of List -->

<proc name="Head">

<in>

<var name="proposal_section"/>

</in>

<out>

<var name="head"/>

</out>

</proc>

<!-- Extract tail of List -->

<proc name="Tail">

<in>

<var name="proposal_section"/>

191

</in>

<out>

<var name="tail"/>

</out>

</proc>

<!-- Extract Service Definition -->

<proc name="ExtractService">

<in>

<var name="head"/>

</in>

<out>

<var name="service_def"/>

</out>

</proc>

<!-- Extract Input Params -->

<proc name="ExtractInput">

<in>

<var name="head"/>

</in>

<out>

<var name="input_params"/>

</out>

</proc>

<!-- Extract Output Params -->

<proc name="ExtractOutput">

<in>

<var name="head"/>

</in>

<out>

<var name="output_params"/>

</out>

</proc>

<!-- Store the results of the Service Invocation -->

<proc name="Store">

<in>

<var name="output_params"/>

</in>

</proc>

<!-- Recursive Call -->

<call name="retrieve">

<in>

<var name="tail"/>

<var name="coordinator"/>

</in>

</call>

</op>

<!-- OR Choice -->

<op>

<!-- Retrieve data -->

<proc name="Retrieve">

<out>

<var name="data"/>

</out>

</proc>

<!-- Send results back to the COORDINATOR Agent -->

<send>

<mesg performative="response-extraction">

<var name="data"/>

</mesg>

<clause1>

<var name="coordinator"/>

</clause1>

<clause2>

<wild/>

</clause2>

</send>

192 Appendix D. XML Implementation of Scenario 3: Runtime Coordination

</op>

</choice>

</body>

</method>

</agent>

<!-- USER Agent -->

<agent implementation="http://localhost:8080/MyRsmService/rsm?WSDL" max="1" min="1" role="user">

<!-- MAIN Method -->

<method name="main">

<body>

<!-- Get unknown -->

<proc name="sayRaDec">

<out>

<var name="unknown"/>

</out>

</proc>

<!-- Send RA and DEC to RSM Agent -->

<send>

<mesg performative="request">

<var name="unknown"/>

</mesg>

<clause1>

<wild/>

</clause1>

<clause2>

<role name="classification"/>

</clause2>

</send>

</body>

</method>

</agent>

</Scene>

<!-- Automated Scene -->

<Scene name="automated">

<!-- Port Definitions -->

<output>

<port name="automated_out1" type="xsd:string" core="true"/>

</output>

<!-- Simple Agent -->

<agent implementation="http://localhost:8080/MyRsmService/auto?WSDL" max="1" min="1" role="automated">

<method name="main">

<body>

<!-- Get unknown -->

<proc name="sayRaDec">

<out>

<var name="unknown"/>

</out>

</proc>

<!-- Port Write -->

<portwrite name="automated_out1">

<var name="unknown"/>

<var name="unknown"/>

</portwrite>

</body>

</method>

</agent>

</Scene>

</sceneset>

<!-- Parameterisation -->

<mapping name="demomapping">

<!-- LSST Scene -->

<node location="" name="lsst">

<role name="classification">

<agent implementation="http://localhost:8080/MyReactiveService/reactive?WSDL" name="myCLASSIFY" num="1"

portwait="10"

193

recvwait="10"/>

</role>

<role name="user">

<agent implementation="http://localhost:8080/MyRsmService/rsm?WSDL" name="myUSER" num="1" portwait="10"

recvwait="10"/>

</role>

<role name="contractnet">

<agent implementation="http://localhost:8080/MyContractService/contract?WSDL" name="myCN" num="1"

portwait="10"

recvwait="10"/>

</role>

<role name="observatory">

<agent implementation="http://localhost:8080/MyObservatoryService/observatory?WSDL" name="london"

num="1"

portwait="10"

recvwait="10"/>

</role>

<role name="observatory">

<agent implementation="http://localhost:8080/MyObservatory2Service/observatory2?WSDL" name="newyork"

num="1"

portwait="10"

recvwait="10"/>

</role>

<role name="observatory">

<agent implementation="http://localhost:8080/MyObservatory3Service/observatory3?WSDL" name="paris"

num="1"

portwait="10"

recvwait="10"/>

</role>

<role name="observatory">

<agent implementation="http://localhost:8080/MyObservatory4Service/observatory4?WSDL" name="edinburgh"

num="1"

portwait="10"

recvwait="10"/>

</role>

<role name="extraction">

<agent implementation="http://localhost:8080/MyExtractService/extract?WSDL"

name="myExtraction"

num="1"

portwait="10"

recvwait="10"/>

</role>

<role name="extraction">

<agent implementation="http://localhost:8080/MyExtract2Service/extract2?WSDL"

name="myExtraction2"

num="1"

portwait="10"

recvwait="10"/>

</role>

</node>

<!-- Automated Scene -->

<node location="" name="automated">

<role name="automated">

<agent implementation="http://localhost:8080/MyRsmService/rsm?WSDL"

name="myAutomated"

num="1"

portwait="10"

recvwait="10"/>

</role>

</node>

<!-- Link Definition -->

194 Appendix D. XML Implementation of Scenario 3: Runtime Coordination

<link>

<source>

<outport port="automated_out1" scene="automated"/>

</source>

<sink>

<inport port="lsst_in1" scene="lsst"/>

</sink>

</link>

</mapping>

</protocol>

Bibliography

[1] Fipa ACL Message Structure Specification. Technical report, Foundation for

Intelligent Physical Agents, December 2002.

[2] Grid Computing: Making the Global Infrastructure a Reality, pages 65–100.

Wiley Series in Communication Networking and Distributed Systems, 2003.

[3] Web Services Coordination (WS-coordination). Technical report, BEA Systems

and IBM and Microsoft Corporation, September 2003.

[4] P. Allan, B. Bentley, C. Davenhall, S. Garrington, D. Giaretta, L. Harra, M. Irwin,

A. Lawrence, M. Lockwood, B. Mann, R. McMahon, F. Murtagh, J.Osborne,

C. Page, C. Perry, D. Pike, A. Richards, G. Rixon, J. Sherman,R. Stamper, and

M. Watson. Astrogrid. Technical report, Available at:www.astrogrid.org,

2001.

[5] Gabrielle Allen, Kelly Davis, Konstantinos N. Dolkas, Nikolaos D. Doulamis,

Tom Goodale, Thilo Kielmann, André Merzky, Jarek Nabrzyski, Juliusz Pukacki,

Thomas Radke, Michael Russell, Ed Seidel, John Shalf, and Ian Taylor. Enabling

Applications on the Grid: A GridLab Overview.International Journal of High

Performance Computing Applications: Special Issue on GridComputing: Infras-

tructure and Applications, 17(4):449–466, November 2003.

[6] I. Altintas, C. Berkley, E. Jaeger, M. Jones, B. Ludaescher, and S. Mock. Ke-

pler: An Extensible System for Design and Execution of Scientific Workflows.

In 16th International Conference on Scientific and Statistical Database Manage-

ment (SSDBM’04), Santorini Island, Greece, June 2004.

[7] Tony Andrews, Francisco Curbera, Hitesh Dholakia, Yaron Goland, Johannes

Klein, Frank Leymann, Kevin Liu, Dieter Roller, Doug Smith,Satish Thatte,

Ivana Trickovic, and Sanjiva Weerawarana. Business Process Execution Lan-

195

196 Bibliography

guage for Web Services Specification, Version 1.1. Technical report, BEA Sys-

tems and IBM Corporation and Microsoft Corporation and SAP AG and Siebel

Systems, May 2003.

[8] Grigoris Antoniou and Frank van Harmelen.A Semantic Web Primer. The MIT

Press, 2004.

[9] J.L. Austin. How to Do Things with Words.Oxford University Press, 1962.

[10] Adam Barker and Robert G. Mann. Cooperative Information Agents X, 10th

International Workshop, CIA 2006, Edinburgh, UK, September 11-13, 2006,

proceedings. In Matthias Klusch, Michael Rovatsos, and Terry R. Payne, edi-

tors,CIA, volume 4149 ofLecture Notes in Computer Science, pages 446–460.

Springer, 2006.

[11] Tim Berners-Lee, James Hendler, and Ora Lassila. The Semantic Web.Scientific

American, 284(5):34–43, 2001.

[12] E. Bertin and S. Arnouts. Sextractor: Software for source extraction, Astronomy

and Astrophysics, Suppl. Ser., 117:393–404, June 1996.

[13] Micol Bolzonella, Roser Pell, and Joan-Marc Miralles.HyperZ, v:1.1, User’s

Manual.

[14] S. Bowers and B. Ludaescher. Actor-Oriented Design of Scientific Workflows.

In Lecture Notes in Computer Science Volume 3716, pages 369–384. Springer

Berlin / Heidelberg, June 2005.

[15] Doug Bunting, Martin Chapman, Oisin Hurley, Mark Little, Jeff Mischkinsky,

Eric Newcomer, Jim Webber, and Keith Swenson. Web Services Composite

Application Framework. Technical report, Arjuna Technologies Ltd and Fujitsu

Limited and IONA Technologies Ltd and Oracle Cooperation and Sun Microsys-

tems, July 2003.

[16] B. Cavanagh, A. Allan, T. Jenness, F. Economou, P. Hirst, A. Adamson, and

T. Naylor. Architecture of the WFCAM/eSTAR Transient Object Detection

Agent. InAstronomical Society of the Pacific Conference Series, pages 504–+,

December 2005.

Bibliography 197

[17] Adrian A. Collister and Ofer Lahav. Annz: estimating photometric redshifts

using artificial neural networks.Publications of the Astronomical Society of the

Pacific, 16:345, 2004.

[18] George Coulouris, Jean Dollimore, and Tim Kindberg.Distributed Systems:

Concepts and Design, Fourth Edition, pages 565–599. Addison Wesley, 2005.

[19] Karl Czajkowski, Donald F Ferguson, Ian Foster, Jeffrey Frey, Steve Graham,

Igor Sedukhin, David Snelling, Steve Tuecke, and William Vambenepe. The Ws-

Resource Framework, Version 1.0. Technical report, Globus, May 2004.

[20] Scientific Data Management Framework Workshop. Argonne National Labs.

http://sdm.lbl.gov/sdmcenter, August 2003.

[21] e-Science Grid Environments Workshop. e-Science Institute, Edinburgh, Scot-

land. http://www.nesc.ac.uk/esi/events, May 2004.

[22] Scotland e-Science Institute, Edinburgh. Astrogrid Deployment and Develop-

ment Workshop.http://www.nesc.ac.uk/esi/events/646/, January 2006.

[23] e-Science Workflow Services Workshop. e-Science Institute, Edinburgh, Scot-

land. http://www.nesc.ac.uk/esi/events/303, December 2003.

[24] C.A. Ellis and J. G. Nutt.Office Information Systems and Computer Science,

pages 27–60. ACM Computing Surveys, 1980.

[25] Greg Meredith Erik Christensen, Francisco Curbera andSanjiva Weerawarana.

Web Services Desription Language (WSDL) Specification 1.1. World Wide Web

Consortium (W3C), March 2001.

[26] M. Esteva, J. Rodriguez, J. Arcos, C. Sierra, and P. Garcia. Formalising Agent

Mediated Electronic Institutions. InCatalan Congres on AI (CCIA’00), pages

29–38, 2000.

[27] David C. Fallside and Priscilla Walmsley. Xml Schema Part 0: Primer Second

Edition. Technical report, World Wide Web Consoritum (W3C), 2004.

[28] I. Foster. Globus Toolkit Version 4: Software for Service-Oriented Systems.

In IFIP International Conference on Network and Parallel Computing, volume

LNCS 3779, pages 2–13. Springer-Verlag, 2005.

198 Bibliography

[29] I. Foster, N. R. Jennings, and C. Kesselman. Brain meetsBrawn: Why Grid and

Agents Need Each Other. InProc. 3rd Int. Conf. on Autonomous Agents and

Multi-Agent Systems, New York, USA, 2004.

[30] James Hendler. Science and the Semantic Web. InScience, pages 520–521.

January 2003.

[31] David Hollingsworth.The Workflow Reference Model. Workflow Management

Coalition, Document Number tc00-1003 edition, January 1995.

[32] The UKIRT Infrared Deep Sky Survey:

http://www.ukidss.org.

[33] Y. Labrou J. Mayiield and T. Finin. Evaluating kqml as anAgent Communication

Language. InIntelligent Agents I[(L AI Volume I037), pages 347–360, Berlin,

Germany, 1996. Springer-Verlag.

[34] Nicholas R. Jennings. Agent-Oriented Software Engineering. In Francisco J.

Garijo and Magnus Boman, editors,Proceedings of the 9th European Workshop

on Modelling Autonomous Agents in a Multi-Agent World : Multi-Agent System

Engineering (MAAMAW-99), volume 1647, pages 1–7. Springer-Verlag: Heidel-

berg, Germany, 30– 2 1999.

[35] J.Zhao, C.A. Goble, M. Greenwood, C. Wroe, and R. Stevens. Annotating, link-

ing and browsing provenance logs for e-science. In1st Workshop on Semantic

Web Technologies for Searching and Retrieving Scientific Data, Sanibel Island,

Florida, USA, October 2003.

[36] Ananth Krishna, Victor Tan, Richard Lawley, Simon Miles, and Luc Moreau. The

mygrid notification service. InProceedings of The UK OST e-Science second All

Hands Meeting, pages 475–482, 2003.

[37] D. Lambert and D. Robertson. Matchmaking and brokeringmulti-party interac-

tions using historical performance data. InFourth International Joint Conference

on Autonomous Agents and Multi Agent Systems. Springer, 2005.

[38] B. Ludascher, I. Altintas, C. Berkley, D. Higgins, E. Jaeger-Frank, M. Jones,

E. Lee, J. Tao, and Y. Zhao. Scientific Workflow Management andthe Kepler

System. Concurrency and Computation: Practice & Experience, Special Issue

on Scientific Workflows, 2005.

Bibliography 199

[39] David Martin, Massimo Paolucci, Sheila McIlraith, Mark Burnstein, Drew Mc-

Dermott, Deborah McGuinness, Bijan Parsia, Terry R. Payne,Marta Sabou,

Monika Solanki, Naveen Srinivasan, and Katia Sycara. Bringing Semantics to

Web Services: The OWL-S Approach. 2004.

[40] Noah Mendelsohn Jean-Jacques Moreau Martin Gudgin, Marc Hadley and Hen-

rik Frystyk Nielsen. Simple Object Access Protocol (SOAP) 1.2 Specification.

World Wide Web Consortium (W3C), June 2003.

[41] A. Mayer, S. McGough, M. Gulamali, L. Young, J. Stanton,S. Newhouse, and

J. Darlington. Meaning and Behaviour in Grid Oriented Components. InLecture

Notes in Computer Science, volume 2536, pages 100–111. Springer-Verlag Berlin

Heidelberg, 2002.

[42] William K. Michener. Building SEEK: The Science Environment for Ecologi-

cal Knowledge.DataBits: An electronic newsletter for Information Managers,

Spring Edition, 2003.

[43] Tom Oinn, Matthew Addis, Justin Ferris, Darren Marvin,Martin Senger, Mark

Greenwood, Tim Carver, Kevin Glover, Matthew R. Pocock, Anil Wipat, and

Peter Li. Taverna: A tool for the Composition and Enactment of Bioinformatics

Workflows. InBioinformatics Journal 20(17), pages 3045–3054, 2004.

[44] Tom Oinn, Mark Greenwood, Carole Goble, Matthew Addis,Justin Ferris, Dar-

ren Marvin, Anil Wipat, Peter Li, and Tim Carver. Deliveringweb service coor-

dination capability to users. InThirteenth International World Wide Web Confer-

ence (WWW2004), New York, pages 438–439, 2004.

[45] Ed Ort. Service-Oriented Architecture and Web Services: Concepts, Technolo-

gies, and Tools. Technical report, Sun Microsystems, April2004.

[46] A. S. Rao and M. P. Georgeff. BDI-agents: from theory to practice. InProceed-

ings of the First Intl. Conference on Multiagent Systems, San Francisco, 1995.

[47] Elliotte Rusty Harold.Processing XML with Java. Addison Wesley, 2002.

[48] Shazia W. Sadiq, Wasim Sadiq, and Maria E. Orlowska. Pockets of flexibility in

workflow specification. InER ’01: Proceedings of the 20th International Con-

ference on Conceptual Modeling, pages 513–526, London, UK, 2001. Springer-

Verlag.

200 Bibliography

[49] Inderjeet Singh, Beth Stearns, Beth Stearns, Sean Brydon, and Greg Murray.

Designing Web Services with the J2EE(TM) 1.4 Platform : JAX-RPC, SOAP,

and XML Technologies. Pearson Education, 2004.

[50] R. Smith. The Contract Net Protocol: High-level Communication and Control in

a Distributed Problem Solver.IEEE Transactions on Computers, C-29(12):1104–

1113, 1980.

[51] Sebastian Stein, Nicholas R. Jennings, and Terry R. Payne. Flexible provisioning

of service workflows. InECAI, pages 295–299, 2006.

[52] Robert Stevens, Kevin Glover, Chris Greenhalgh, Claire Jennings, Simon Pearce,

Melena Radenkovic, and Anil Wipat. Performing in-silico Experiments on the

Grid: A Users Perspective. InProceedings of the UK e-Science all hands meeting,

September 2003.

[53] Robert Stevens, Robin McEntire, Carole Goble, Mark Greenwood, Jun Zhao,

Anil Wipat, and Peter Li.myGrid and the Drug Discovery Process.Drug Discov-

ery Today: BIOSILICO, 4(2):140–148, 2004.

[54] Ian J. Taylor, Matthew S. Shields, Ian Wang, and Roger Philp. Distributed P2P

Computing within Triana: A Galaxy Visualization Test Case.In 17th Interna-

tional Parallel and Distributed Processing Symposium (IPDPS 2003), pages 16–

27. IEEE Computer Society, 2003.

[55] Ptolemy II Project:

http://ptolemy.eecs.berkeley.edu/ptolemyII.

[56] Large Synoptic Survey Telescope (LSST):

http://www.lsst.org.

[57] OpenKnowledge Project:

http://www.openk.org.

[58] Proteus Technologues:

http://www.proteus-technologies.com.

[59] The Wide Field Astronomy Unit (WFAU):

http://www.roe.ac.uk/ifa/wfau.

[60] Sloan Digital Sky Survey:

http://www.sdss.org.

Bibliography 201

[61] The Unified Modelling Language:

http://www.uml.org.

[62] The XMM-Newton Science Archive:

http://xmm.vilspa.esa.es/xsa.

[63] C. M. Sperberg-McQueen Eve Maler Tim Bray, Jean Paoli and Franois Yergeau.

Extensible Markup Language (XML) 1.0 Specification (FourthEdition). World

Wide Web Consortium (W3C), August 2006.

[64] S. Tuecke, K. Czajkowski, I. Foster, J. Frey, S. Graham,C. Kesselman,

T. Maquire, T. Sandholm, D. Snelling, and P. Vanderbilt. Open Grid Services

Infrastructure (ogsi), Version 1.0. Technical report, Global Grid Forum (GGF),

June 2003.

[65] W.M.P. van der Aalst, A.H.M. ter Hofstede, B. Kiepuszewski, and A.P. Barros.

Workflow Patterns. InDistributed and Parallel Databases, pages 5–51, July

2003.

[66] International Virtual Observatory Alliance:

http://www.ivoa.net.

[67] Gottfried Vossen and Mathias Weske. The wasa2 object-oriented workflow man-

agement system.SIGMOD Rec., 28(2):587–589, 1999.

[68] Chris Walton. Dialogue Protocols for Multi-Agent Systems. Technical report,

University of Edinburgh, September 2003.

[69] Christopher D. Walton and Adam D. Barker. An Agent-Based e-Science Exper-

iment Builder. InSemantic Intelligent Middleware for the Web and the Grid.

ECAI, 2004.

[70] Web Services Description Language for Java (WSDL4J):

http://sourceforge.net/projects/wsdl4j.

[71] Mathias Weske, Gottfried Vossen, and Claudia Bauzer Medeiros. Scientific

Workflow Management: WASA Architecture and Applications. Technical report,

University of Muenster and University of Campinas, January1996.

[72] Alexander E. Wise, Aaron G. Cass, Barbara Staudt Lerner, Eric K. McCall,

Leon J. Osterweil, and Stanley M. Sutton. Using little-JIL to coordinate agents

202 Bibliography

in software engineering. InAutomated Software Engineering, pages 155–164,

2000.

[73] Michael Wooldrige.An Introduction to Multiagent Systems, pages 27–60. John

Wiley and Sons Ltd, 2002.

[74] FreeFluo Workflow Enactment Engine:

http://freefluo.sorceforge.net.

[75] GRIST Workshop on Service Composition for Data Exploration

in the Virtual Observatory. California Institute of Technology.

http://grist.caltech.edu/sc4devo, July 2004.

[76] Jun Yan. A Framework and Coordination Technologies for Peer-to-peer Based

Decentralised Workflow Systems. PhD thesis, School of Information Technology,

Swinburne University of Technology, August 2004.

[77] Jun Zhao, Robert Stevens, Chris Wroe, Mark Greenwood, and Carole Goble. The

origin and history of in-silico experiments. InProceedings of the UK e-Science

All Hands Meeting, Nottingham UK, September 2004.

