Flexible Service Composition

Adam Barker

Doctor of Philosophy
Centre for Intelligent Systems and their Applications
School of Informatics
University of Edinburgh

2007

Abstract

Service-oriented architectures are a popular architatparadigm for building soft-
ware applications from a number of loosely coupled, distel services. Through a
set of procedural rules, workflow technologies define howgsoof services coordi-
nate with one another to achieve a shared task. A problemwatkflow specifications
is that often the patterns of interaction between the dhisted services are too com-
plicated to predict and analyse at design-time. In certases, the exact patterns of
message exchange and the concrete services to call carpreideted in advance, due
to factors such as fluctuating network load or the availgbdf services. It is a more
realistic assumption to endow software components witlathkty to make decisions
about the nature and scope of their interactions at runtime.

Multiagent systems offer a complementary paradigm: bogdoftware applications
from a number of self interested, autonomous agents. Tksidlpresents an inves-
tigation into fusing the agency and service-oriented aechire paradigms to facil-
itate flexible, workflow composition. This proposed ageasdd approach to work-
flow composition is founded on the concept of shared inteyagirotocols that allow
groups of agents to communicate in open systems. By adoptiregent-based ap-
proach to workflow composition, active autonomous agentsutdise the typically
passive service-oriented architectures, found in Inteamel Grid systems. In con-
trast with statically defined, centralised workflows, ddcalised agents can perform
service composition at runtime, allowing them to operatedanarios where it is not
possible to define the pattern of interaction in advance.

Application to real scenarios is a driving factor behindstnesearch. By working
closely with a number of active Grid projects, namely Astrio&nd the Large-Synoptic
Survey Telescope (LSST), a concrete set of requirementscfentific workflow have
been derived based on realistic science problems. Thisngdsdas resulted in the
MultiAgent Service Composition (MASC) language to exprssgentific workflow,
methodology for system building and a software frameworkcWwiperforms agent-
based web service composition, in order to enact distribet&cience experiments.
Evaluation of this thesis is conducted through case stymblyang the language, method-
ology and software framework to solve a motivating set ofkflow scenarios.

Acknowledgements

| would like to express my sincere gratitude for the expepesuision provided by Dr.
Dave Robertson, Dr. Chris Walton, Dr. Bob Mann and Professmtin Tate. Without
their guidance, patience and advice this thesis would nat baen possible.

During my time at the School of Informatics | have been indéégd into a thriving
research environment, | feel privileged to have been givendpportunity to work
alongside such enthusiastic, passionate academics. §haekeryone at the Institute
| have called home for the past three years; the Centre felligtnt Systems and their
Applications (CISA). Particular thanks to the men of officé3t Paolo Besana, Jarred
Mcginnis, Guo Li, Fadzil Hassan and Tommy French, surelyfitest office in all of
Informatics.

Declaration

| declare that this thesis was composed by myself, that th& wantained herein is
my own except where explicitly stated otherwise in the tar that this work has not
been submitted for any other degree or professional quadiific except as specified.

(Adam Barkey

Vi

Publications List

Throughout the course of this degree, | have taken advarghtfee immeasurably

helpful input provided by the peer review system. Most ofitteas developed in this

thesis have been presented or published for a number ofremaies and workshops:

Adam Barker and Robert G. Mann. Flexible Service Compasitim Lecture
Notes in Artificial Intelligence, Volume 4149, pages 44846pringer Verlag,
2006.

Adam Barker and Robert G. Mann. Agent-Based Scientific WovwkfComposi-
tion. In Astronomical Data Analysis Software and Systems pages 485-488,
2006.

Adam Barker. Agent-Based Service Coordination For The GndeEEE/WIC/ACM
International Conference on Intelligent Agent Technolqmges 611-614, 2005.

Adam Barker. Agents, Consumers of Service Oriented Archites. In Pro-
ceedings of The First European Young Researchers Workshd&eovice Ori-
ented Computing, April 2005.

C. Walton and Adam Barker. An Agent-Based e-Science ExparirBuilder. In
Proceedings of The 1st International Workshop on Semamitgdligent Middle-
ware for the Web and the Grid, European Conference on Adlfiaitelligence
(ECAI), Valencia, Spain, August 2004.

Vii

Table of Contents

1

Introduction 1
1.1 ContributionstoKnowledge
1.1.1 Requirements of Scientific Workflow
1.1.2 Service Composition through Interaction Protocols 4
1.1.3 Agent-Based Service Composition Language and Frankew 4
1.1.4 Agent-Oriented Software Engineering Methodology 5
1.1.5 Applicationto Live Grid Project 6
1.2 SummaryofThesis, 7
Literature Review 9
2.1 Service-Oriented Architectures 10
211 WebServices 11
2.1.2 Composing Service-Oriented Architectures 14
213 TheSemanticWeb 16
214 GridComputing 17
2.2 Scientific Workflow Systems 18
221 myGrid 19
222 ICENI. e 22
223 Kepler. e 25
224 RelatedProjects 28
2.3 Agent Oriented Software Engineering 29
231 SmartAgents 31
2.3.2 SmartCoordination 32
2.3.3 AgentCommunication 33
2.3.4 Interaction Protocols 34
2.3.5 Electronic Institutions oL 35

2.4 ChapterConclusions

Scientific Workflow Scenarios

3.1 Virtual Observatory Technology
3.1.1 AstroGrid

3.2 Scenario 1: BatchProcessing

3.3 Scenario 2: Knowledge Acquisition
3.31 DataRetrieval,
3.3.2 DataAnalysis.
3.3.3 DataVisualisation

3.4 Requirements AnalysisPart!
3.4.1 Requirement 1: Rapid Prototyping
3.4.2 Requirement 2: User Interaction
3.4.3 Requirement 3: WorkflowReuse
3.4.4 Requirement 4: Fault Tolerant Execution
3.4.5 Requirement5: Suitable Abstraction.
3.4.6 Requirement 6: Legacy System Integration
3.4.7 Requirement7: ProvenanceData
3.4.8 Requirement 8: Smart Component Choice
3.4.9 Requirement 9: Semantic Mark-Up
3.4.10 Requirement 10: Data Presentation

3.5 ChapterConclusions

A Counterexample

4.1 Large Synoptic Survey Telescope (LSST)
4.1.1 Scenario 3: Runtime Coordination - Automated Stage . . .
4.1.2 Scenario 3: Runtime Coordination - Unknown Stage
4.1.3 Scenario 3 Extension: Contract Negotiation and Sdiveyl .
4.1.4 Requirements Analysis Part [l and Problem Statement. .

4.2 ChapterConclusions,

MultiAgent Service Composition (MASC)
5.1 Service Composition through Interaction Protocols
5.1.1 Combined Requirements Analysis
5.2 MASC Language Syntaxo i
5.2.1 Terms, Types, Identifiers and Configuration Pairs

39

40

40
3 4
46
46

. 56
.97
.97

. 58

N

. (6
.79

5.2.2 Scenes 80

523 ActionSet 82
5.24 OperationSet 90
5.2.5 Protocol Execution o 91
526 Dataflow 92
5.3 ChapterConclusions 96
5.4 Complete MASC Language Syntax. 97
An Agent-Based Web Services Composition Framework 99
6.1 MASC Language Representation 0 10
6.2 Scenelmplementation 102
6.2.1 Building the Execution Model and Resolving Dependesnc. 102
6.2.2 Initialisationof Agents L 104
6.2.3 EnactingtheWorkflow 106
6.3 Composing Scenes into More Complex Workflows 110
6.4 ChapterConclusions 113
Evaluation By Use-Case 115
7.1 Coordination-Oriented Programming Methodology 116
7.1.1 Interaction Engineer 117
7.1.2 ExperimentEngineer 119
7.1.3 AgentEngineer 120
7.2 Solving the Motivating Workflow Scenarios 120
7.2.1 Solving Scenario 1: Batch Processing 21 1
7.2.2 Solving Scenario 2: Knowledge Acquisition. 123
7.2.3 Solving Scenario 3: Runtime Coordination 130
7.3 Discussion: A Better Approach to Workflow? 140
7.3.1 Possible Limitations of the Approach 451
7.4 ChapterConclusions 145
Conclusions and Further Work 147
8.1 Summary and Contributionsto Knowledge 147
8.2 FurtherWork 150
MultiAgent Service Composition (MASC) XML Schema Definition 153
XML Implementation of Scenario 1: Batch Processing 163

Xi

C XML Implementation of Scenario 2: Knowledge Acquisition 167
D XML Implementation of Scenario 3: Runtime Coordination 177

Bibliography 195

Xii

List of Figures

11

2.1
2.2
2.3
2.4
2.5
2.6
2.7
2.8
2.9
2.10
2.11
2.12
2.13

3.1
3.2
3.3
3.4
3.5
3.6

4.1
4.2
4.3
4.4

Research overview

Service-oriented architecture stack overview
Putting web service standards together
Workflow reference model - components & interfaces

The life-cycle of an in-silico experiment [52]

Levels of semantic informationin ICENI.
ICENI architecture overview
The Kepleractormodel
TheKeplerGUI[71]
Multiagentsystems
Intelligent coordination vs. intelligentagents
Interaction protocols oo
General practitionerscene
A convergence of interests L.

Overview of AstroGrid architecture
Batch processing scenario - obtaining photometricdata.

Batch processing scenario - spectroscopic data, ANMgett

Knowledge acquisition scenario - data retrieval
Knowledge acquisition scenario - data analysis

Knowledge acquisition scenario - data visualisation.....

An example of a subtractedimage
Runtime coordination scenario - automated processing.
Runtime coordination scenario - overview
Runtime coordination scenario - contract negotiasoméduling . . .

Xiii

64

5.1 MASC formal scene and role definitions 81

5.2 MASC formal action and operation set definitions 83
5.3 Overviewof MASCactionset 84
5.4 Overview of reasoning and external services 85
5.5 Overviewofoperationset. 90
5.6 MASC protocolexecution 91
5.7 MASC formal dataflow definitions 92
5.8 MASCuserinteraction, 94
5.9 Example dataflowmapping L. 95
6.1 JAXB architectureoverview 010
6.2 Scene architectureoverview 021
6.3 Scene Initialisation algorithm 103
6.4 Sample XML protocol - initialisingagents 105
6.5 Agentarchitecture. 107
6.6 Service invocation algorithm 107
6.7 Sample executionoutput L 109
6.8 Protocol executionalgorithm 110
6.9 Sample XML protocol - dataflow mapping 121
7.1 MASC layersofabstraction. 611
7.2 Interaction engineer methodology 117
7.3 Experiment engineer methodology 119
7.4 Batch processing scenario - rsm role definition. 121
7.5 Knowledge acquisition scenario - Interaction Model 125
7.6 Knowledge acquisition scenario - bcg role definition 126
7.7 Knowledge acquisition scenario - extraction role dgéni 127
7.8 Runtime coordination scenario - Interaction Model 133
7.9 Runtime coordination scenario - classification rolerdéfin 134
7.10 Runtime coordination scenario - ContractNet role d&fim. 135
7.11 Runtime coordination scenario - observatory role dedm 136
7.12 Runtime coordination scenario - extraction role dgéiniand dataflow
MapPINg . . . o o e e e e e e e e e e 137

Xiv

List of Tables

5.1
5.2

7.1
7.2

Requirementsanalysis
MASC valid dataflow mappings

Knowledge acquisition scenario Service Model
Runtime coordination scenario service model

XV

Chapter 1

Introduction

Building distributed systems is a difficult task; it has betaimed that such develop-
ment projects are amongst the most complex constructiss tazdertaken by humans
[34]. With the adoption of pervasive network access andeiased bandwidth there
has been a trend towards building distributed systems ubiegervice-oriented ar-
chitecture (SOA) [45] paradigm. A service-oriented arebitire is an information
technology approach or strategy in which applications made of (or rely on) ser-
vices available in a network, such as the World Wide Web. Aiserprovides a set
of functionalities. This can be a single discrete functismch as converting between
two currencies, or it can be composed from a set of inter-eoted functions, such as
the process of reserving a seat on a flight. Multiple serviaasbe glued together to
perform more complex operations, otherwise known as a WaskfB1].

A problem with workflow specifications is that often the patteof interaction be-
tween the distributed services are too complicated to ptedid analyse at design-time
[10]. In certain cases the exact patterns of message exelzatthe concrete services
to call cannot be predicted in advance, due to factors sucbhasging network load
or availability of software components etc. It is a more istad assumption to endow
software components with the ability to make decisions abwinature and scope of
their interactions at runtime.

Multiagent systems offer a complementary paradigm fording complex distributed
systems, and are currently the focus of much research. Alageltt system is com-
posed of multiple interacting software entities, known gerds. Although the term
agent has many competing definitions, it is generally aetkfitat an agent is a com-

1

2 Chapter 1. Introduction

puter system that is situated in an environment, and is dapdlautonomous action
in this environment in order to meet its design objectivey.[7

This thesis presents an investigation into fusing the agand service-oriented archi-
tecture paradigms to facilitate flexible, workflow compmsit More specifically the
problem of service composition in a scientific domain (comigd&nown as scientific
workflow) is addressed. This proposed agent-based apptoaabrkflow composition
is founded on the concept of shared interaction protoc@sdhow groups of agents
to communicate in open systems. By adopting an agent-bggadach to work-
flow composition, active autonomous agents can utiliseytpeally passive service-
oriented architectures, found in Internet and Grid systeimgontrast with statically
defined, centralised workflows, decentralised agents cdorpeservice composition
at runtime, allowing them to operate in scenarios wherenbispossible to define the
pattern of interaction in advance.

This thesis is a discussion of fusing the agency and seoniegted architecture paradigms.
More specifically we addresses the problem of service comiposn a scientific do-

main (commonly known as scientific workflow) and propose gsandecentralised,
agent-based approach to provide a flexible solution to thecgecomposition prob-

lem. Active, autonomous agents can consume the typicaligipa service-oriented
architectures, found in Internet and Grid systems, fatilig dynamic, runtime com-
position of services in scenarios where the patterns ofant®n are too complex to
define at design-time.

1.1 Contributions to Knowledge

An overview of the research presented by this thesis istitiisd by Figure 1.1, each
of the individual contributions to knowledge will now be dissed in turn.

1.1.1 Requirements of Scientific Workflow

Scientific workflow has an extra set of requirements, whictbggond the function-

ality that traditional workflow languages and executioniaeg provide. There is a
need to support the knowledge discovery and exploratioogases which lead from a
scientific hypothesis, to a concrete workflow specificatidg as result of the push for

1.1. Contributions to Knowledge

Existing
Scientific
Workflow
Systems

Static
Scientific Workflow

SOA
Reliable
Secure

Scaleable
Middleware
Working Systems

Combined
Requirements

Agents + SOA

%S
e
s
e
o]
2

2

OQ
2

et

»
%!

:1
t:
N

'.
A~

o
&

et e
N
Sele
"‘.”"

Modelling SWF with
Interaction Protocols

o
]
4
o
o
4
o

St
0’ s

T

<

.0

>

e

4

Different Set of
Requirements

Reactive Scientific
Workflow

Agent Technology
Flexible
Autonomous
Cooperation
MNegotiation
Run-Time

Scientific
Workflow
Interaction
Protocol
Language

Data Flow
Language

Agent-Based
Service
Composition

N

<z

EAASC Language and Experiment Framework

o

Framework

Use Cases
LSST

Y4

J
)
Varying Distributed
Levels of Peer-to-Peer I;r:::lﬁz?l
Abstraction Architecture
J
J
% N
(Protocal Methodology J
Experiment Interaction Agent
Engineer Engineer Engineer
Z
4 i
Application to Live Grid Projects:
AstroGrid and LSST
\. J

(ApplicatiorI Methodology I
~

Figure 1.1: Research overview

4 Chapter 1. Introduction

ubiquitous computing through e-Science and Grid techne&dhere is an increased
interest in this area of research. This is demonstrateddoguirently running projects:
myGrid [53], Imperial College e-Science Networked Infrasture (ICENI) [41], Ke-
pler [6] and Triana [54]. However, it is only recently thatiesttific workflow has
become a sub-field of workflow, this research area is stilitretly new and as a result
there are very few languages targeted specifically at steworkflow.

This thesis has worked closely with a number of active Grmjgquts, focused on Vir-

tual Observatory engineering; namely AstroGrid [4] and tlaege Synoptic Survey

Telescope [56] (LSST). As a result of working with these pot$é a set of concrete
workflow scenarios have evolved, based on: batch proces$ipge-defined services,
knowledge acquisition, knowledge discovery and runtimmgosition of services.

These workflow scenarios act as a motivating factor behinl rdsearch work and

are a valuable commaodity in their own right. By understagdime processes behind
these workflows and researching existing systems thissimes been able to identify
a concrete set of requirements for scientific workflow. Thostcibution is discussed

in Chapters 2, 3 and 4 and illustrated by the first stage ofreiduL.

1.1.2 Service Composition through Interaction Protocols

The analysis of existing service composition techniquebveorkflow scenarios taken
from the live Grid projects form the requirements analysisthis thesis. In order to
meet these requirements this research views the servicpastion problem in a fun-
damentally different way. The flexible coordination teafure ofinteraction protocols
from the field of multiagent communication, has been appliettie problem okcien-
tific workflow modellingfound in the Grid community. This has allowed the typical
features and requirements of a scientific workflow to be ustded in terms of pure
coordination and executed in an agent-based, decenttapiser-to-peer architecture.
Section 2 of Figure 1.1 illustrates this contribution.

1.1.3 Agent-Based Service Composition Language and Framew ork

The product of this research is a formal interaction prottenmaguage and state-of-the-
art web services composition framework to model and enaenstic workflows. The
detailed breakdown of the language and framework will beudised in Chapters 5

1.1. Contributions to Knowledge 5

and 6, however to provide an overview (illustrated by settoof Figure 1.1), this
framework offers:

e Formal language: The MultiAgent Service Composition (MASC) language
is an agent-based solution to the service composition proldnd is centred
around the concept of interaction protocols. The languagettly addresses the
requirements of scientific workflow, discussed throughbig thesis.

e Dataflow language:Depending on the user, the MASC language can be utilised

to model scientific workflow at varying levels of abstractio8cientists don't
want to concern themselves with the intricacies of protaeslign, this is a time
consuming and error prone task, due to the modelling of coantiprocesses.
To this end, a high level dataflow language has been desighith wits on top
of the protocol layer. By treating protocol code as blackdsoaf computation, a
scientist can compose an experiment from the top-down ubimgataflow lan-
guage to wire components together. An experienced engarettre other hand
can model experiments from the bottom-up, by writing prota@ode which co-
ordinates a group of agents and web services.

e Agent-based service composition framework:As well as providing a formal
language, theorro framework is a full, state-of-the-art, open-source imple-
mentation of the concepts addressed by this thesis. Givestagol and a group
of web services, the execution engine allows protocol codeetexecuted dy-
namically, in a distributed, peer-to-peer environment.

1.1.4 Agent-Oriented Software Engineering Methodology

In addition to providing a language and framework for sdfentvorkflow composi-
tion, this thesis also introduces tbeordination-oriented methodologyhich provides
users with guidance on how to build systems using these iggobs (section 4 of Fig-
ure 1.1). This methodology is discussed in detail in Chaptand categories system
building at various levels of abstraction, a user can thespadne of three distinct
roles:

e Experiment engineer: A user at this level is concerned with the cycle of events
for taking a scientific hypothesis and designing a workflowichhattempts to
prove or disprove that hypothesis. This is the most abstagetr, a user treats

6 Chapter 1. Introduction

protocol components and services as parameterisable btasks of computa-
tion.

¢ Interaction engineer: The primary concern of an interaction engineer is to take
a software specification and divide it into a number of distagent roles, spec-
ifying the details of how these roles coordinate with onethaop(within a mul-
tiagent system) to achieve the overall aim of the speciticati

e Agent engineer: This is the least abstract level and gives guidance on how en-
gineers should construct individual, intelligent ageftsis is achieved by inte-
grating agent stubs with customised reasoning modelse ttgasoning models
represent an agent’s internal knowledge and can be invdkedghout the exe-
cution of an interaction protocol.

1.1.5 Application to Live Grid Project

Workflow scenarios have been a driving factor behind thisithe Modelling these
scenarios has allowed the language and framework to evald@vided the project
with a realistic application domain, as illustrated by gatb of Figure 1.1. AstroGrid
has served as a test bed, in order to verify and execute oas mie a live framework,
with live services and data. In Chapter 7 our language, framne and methodology
are applied to each of the motivating workflow scenarios, @estrating our agent-
based approach to service composition.

1.2. Summary of Thesis 7

1.2 Summary of Thesis

Chapter 2, the literature review, discusses two compleamgmaradigms for building
distributed systems, the first of which is service-orierdathitectures. The broad topic
of service-oriented architectures are introduced foasimthe web services approach,
followed by a discussion of workflow technologies, the SeticaWveb, Grid comput-
ing and its application, e-Science. Scientific workflow isrifspecifically discussed in
detail, presenting an overview of the current state-ofahescientific workflow com-
position tools: myGrid, Imperial College e-Science Netkeaut Infrastructure (ICENI),
Kepler and Triana. The second paradigm is multiagent systear discussion here is
focused on how to build distributed systems from a numbeutd@omous, self inter-
ested agents, specifically addressing techniques to bystéms from the bottom-up
(smart agents) or from the top-down (smart coordinationyghtiighted in our discus-
sion are the Electronic Institutions framework and the emiof interaction protocols.

This thesis has worked closely with a number of active Grajquts, focused on Vir-

tual Observatory engineering, namely: AstroGrid and th&T®roject. Chapter 3 in-
troduces the broad application domain of Virtual Obsemyatechnology, specifically

the architecture of AstroGrid. The remainder of the Chaptgoduces two workflow

scenarios taken from AstroGrid, focused on batch procgssimd knowledge acqui-
sition. Based on the review of existing scientific workflons®ms and analysis of
motivating workflow scenarios the remainder of the Chapteivés the core require-
ments of scientific workflow.

Chapter 4 presents a further workflow scenario which has lp@atly derived with
the LSST project, centring around runtime coordination dath classification. This
scenario acts as a counterexample of coordination whicHfisudt or impossible to
achieve through existing service composition techniglibsough our analysis of this
scenario it is apparent that an extra set of requirementseessary, requiring flexible,
dynamic, runtime composition of services.

Chapter 5 presents the MultiAgent Service Composition (MA&nguage, which is
an agent-based solution to the service composition prab@um approach is founded
on the concept of interaction protocols. Here the formaltayis discussed in detalil,
highlighting why certain choices were made and providinge examples of use
where necessary.

8 Chapter 1. Introduction

A prototype implementation framework is discussed in Caapt The Zorro frame-
work serves as a full implementation of the MASC language serdes as an decen-
tralised, peer-to-peer, agent-based service compoddmnallowing scientific work-
flows to be represented and enacted by describing an e-8a@periment as an inter-
action protocol.

Chapter 7 ties together all of the separate sections of tte&sthdemonstrating how
an agent-based approach to service composition can s@vadhvating set of work-

flow scenarios and meet the requirements of scientific wask{berived throughout

this thesis). The coordination-oriented programming raéttogy is introduced which

serves as a guideline for constructing workflows throughovar levels of abstraction
using an agent-based approach. The methodology, langunageseanework are then

applied to the batch processing, knowledge acquisitionrantime coordination sce-
narios, providing a full implementation in the MASC formghdax and an executable
XML specification. The Chapter concludes by addressing ih@veéquirements of sci-
entific workflow have been met and discuses the advantagedisadivantages of an
agent-based approach compared to existing service cotigrogachniques. Finally,

Chapter 8, the conclusion reiterates the points made thimutghe thesis, discussing
further work and avenues for research.

Chapter 2

Literature Review

This Chapter presents an overview of two independent fieldtistributed systems
research, namely: service-oriented architectures andl¢lrelopment of multiagent
systems. Service-oriented architectures are emergingeade-facto standard method
of deploying application code over a network. Section 2ttonfuces the concept,
which Section 2.1.1 describes the simple, vanilla web serstandards which allow
application code to be cleanly exposed to a network. Se@ibr? discusses how to
compose these simple services, allowing more complex auatidn, known as work-
flow. While Section 2.1.3 discusses the Semantic Web, amsixte of the current
web which allows information to be given well-defined meapioetter enabling com-
puters and people to work in cooperation. Finally in SecBdh4 the application of
these concepts to the scientific community (also labellee-8sience) through Grid
infrastructures is discussed.

A common problem of the Grid community is composing multigistributed, het-
erogenous resources into computational e-Science expetanalso known asci-
entific workflow Scientific workflows have an overlapping set of requireraemith
workflows found in the Business Process Modelling domain,itois also true that
they have an additional set of requirements, and therefeesl ronsideration sepa-
rately. Section 2.2 discusses the state-of-the-art ims@ieworkflow systems: my-
Grid, ICENI and Kepler, along with some other related prtgec

Multiagent systems provide an alterative paradigm fordog complex distributed
systems and address a fundamentally different set of prabte those of pure sys-
tem building, such as a service-oriented architectureaggtr. The multiagent sys-

9

10 Chapter 2. Literature Review

tems community’s focus lies with creatirgitonomousflexiblesoftware components
which can operate iopen dynamicanduncertainenvironments. Section 2.3 intro-
duces the notion of multiagent systems, Section 2.3.1 dss=how to build intelligent
agents from the bottom-up and Section 2.3.3 discusses hbwilth communities of
interacting agents from the top-down. The concept of shartedaction protocols are
introduced in Section 2.3.4 with a discussion of the Eledtrénstitutions framework
in Section 2.3.5. To conclude the Chapter, Section 2.4 ptesediscussion of fusing
these disjoint camps of distributed systems research.

2.1 Service-Oriented Architectures

A service-oriented architecture is an information teclwgyl approach or strategy in
which applications make use of (or rely on) services avélaba network, such as the
World Wide Web [45]. Implementing a service-oriented atetiure involves devel-

oping applications that use existing services, makingiegibns available as services
or both. A service provides a set of functionality. This canébsingle discrete func-

tion, such as converting between two currencies, or it cacdoeposed from a set of
inter-connected functions, such as the process of regpavseat on a flight. Multiple

services can be glued together to perform more complex tpesa

Service-oriented architectures are ‘loosely coupled’isTheans that the client of a
service is essentially independent from the service it8&len a client (which can be
another service) makes an invocation on a remote servideegs not need to concern
itself with the inner workings (for example, what languages iwritten in) to take ad-
vantage of its functionality. The service can be treatedlaaek box, communication
takes place through a well defined interface, and the proagss left up to the ser-
vice implementation. This means that if the implementaisorhanged or updated the
client can call the service in the same way (providing therfiace stays the same).

There are many reasons for choosing a service-orientedagipto designing software
systems. They allow the software engineerdaiseexisting code. By simply wrap-
ping existing code in a standard interface language, legaoyonents can be easily
integrated into newer systems. Systems are nmieg-operable as standard interfaces
and methods of communication are defined. Loosely coupledcss are often more
flexiblethan traditional tightly coupled applications. In a tightloupled architecture,

2.1. Service-Oriented Architectures 11

the different components are bound to one another, shaenwstics, libraries and
often state; making it difficult to evolve the applications ervices are independent
from one another they offer a greater of flexility aschalabilityfor evolving applica-
tions.

The concept of service-oriented architectures is not a meav ®here have been many
different architectures which expose software compontntgigh standard interfaces,
allowing them to be composed into larger applications. iEBadrchitectures include
Java RMI, CORBA, and DCOM [18]. However non of these stansl&ial/e been so
widely adopted as the web services approach to servicetedearchitecture.

2.1.1 Web Services

The web as we know it today started out supporting humandotiems with textual
data and graphics. There are many common uses for the ihteamely reading the
news, looking up stock quotes etc. However this text-baseb @oes not support
software interactions very well. A more efficient method waeded, which allowed
applications to interact directly with one another, auttoaly executing instructions
that would otherwise have to be entered manually thoughwad®o Web services are
a distributed computing platform targeted at the Web. Thefyné a standard way of
performing program-to-program communication. Web sesican tie together any
application, operating system, data store, programminguage, and device to any
other. Web services employ a number of standards which erthisl inter-operability,
illustrated by the stack diagram presented by Figure 2.1.

The web services core standards are: XML, WSDL and SOAP,whitt now each
be discussed in turn:

e XML: The Extensible Markup Language [63] has become the de-&atward
for describing data to be exchanged over the web. XML is a opatiknguage,
and allows the contents of a document to be described withad seements. An
XML document is typically associated with &ML Schemavhich describes its
grammar rules. These grammar rules define which elementsllareed in the
document, the structure of the elements, data expectedkitise elements etc.

e WSDL: The Web Services Definition Language [25] defines the interfa the
web service so that a client application can communicateilavake the ser-

12 Chapter 2. Literature Review

f N
Applications
. »
' Y
DILrﬁ:)Cg::ry] [Cooéggitlon]{ Security] [I'ransactions

\, r
4 ™

Semantic Markup

RDF/OWL-S
L J
o 3
7 '
Service Descriptions
WSDL

L o
' N

XML Messaging

SOAP

L A
r I

Message Format

XML
L >
. J
f N
URIs J [Transport
HTTP/HTTPS/SMTP etc.

. >

Figure 2.1: Service-oriented architecture stack overview

vice. A WSDL document describes a web service as a colledfabstract
items calledports or endpoints A WSDL document also defines the actions
performed by a web service and the data transmitted to thetgmna in an ab-
stract way. Actions are represented dyyerations and data is represented by
messagesA collection of related operations is known apart-type A port
type constitutes the collection of actions offered by a wetvise. What turns
a WSDL description from abstract to concrete ibiading A binding speci-
fies the network protocol and message format specificatimme particular port
type. A port is defined by associating a network address witméding. If a
client locates a WSDL document and finds the binding and nétaddress for
each port, it can call the service’s operations accordirthecspecified protocol
and message format.

e SOAP: The Simple Object Access Protocol [40] is an XML based proitéar
exchanging information in a distributed environment. Ithe plumbing of the
web services toolkit. SOAP is an extension of the Hyper Teah$port Protocol
(HTTP) that supports XML messaging.

These core web service standards are widely adopted by hatistry and academia

2.1. Service-Oriented Architectures 13

and have become the de-facto standard way of performinghilistd remote proce-
dure calls. As illustrated by Figure 2.2 web services canpvaay back-end system
(such as: .NET, J2EE, CORBA and legacy code etc.) preseittiogthe network
through a standard interface written in WSDL. Web servicgsriaces receive a mes-
sage (formatted using XML) from the networked environmeransform the XML
message into a format understood by a particular back-ehiae system and option-
ally return a reply message. The underlying software imgletation of web services
can be created using any programming language, operatstgnsyor middleware.

Web Services
Interface

WSDL DBMS

olo

CORBA

XML Messages
; SOAP

Networked
Environment

Legacy
Code

6

F

Web Services
Interface
WSDL

Figure 2.2: Putting web service standards together

More complex behaviour can then be built on top of this reé&si simple set of core
standards, see the top of Figure 2.1. Standards which abowxXample: Semantic
markup of web service descriptions, choreography of webices into more complex
coordination (such as workflow), web service transactioved) services security for
encrypting XML messages and directory services which allewice advertising and
discovery etc. Many of these standards are competing f@ahee space and some are
currently at the specification stage, however implemematof these standards allow
application developers to take advantage of the complestimmality. To expand on
these ideas the following Sections discuss the Semantic Wdéeibto compose multi-
ple services into a workflow, and Grid computing in relationts application to the
scientific domain, e-Science.

14 Chapter 2. Literature Review

2.1.2 Composing Service-Oriented Architectures

Web services in their vanilla form provide a simple solutiora simple problem. The
problem of distributed remote procedure calls with a stathdat of interfaces. Things
become more complex when a group of services need to cotedngether to achieve
a shared task or goal. This coordination is often achievealtfh the use of workflow
technologies. As defined by the Workflow Management Coalifgi], a workflow
is the automation of a business process, in whole or partnglwvhich documents,
information or tasks are passed from one participant (auregp human or machine)
to another for action, according to a set of procedural rules

Business workflow technology dates back as early as the mi@’4@nd the first at-
tempts to automate business processes were part of the affiomation prototypes
developed at Xerox PARC. The initial idea was to reduce timepdexity of the user’s
interface to the office information system, control the floiMrdormation, and en-
hance the overall efficiency of the office [24]. This movemenlty gained ground in
the 1990's under different names, including business m®oeodelling and business
process engineering.

All workflow systems contain a number of generic componentgchy interact in a
defined set of ways; different products will exhibit diffatdevels of capability within
these generic components. The workflow reference modastifited in Figure 2.3 has
been developed as a generic framework to show the interscbetween the major

components and interfaces of workflow systems.

Process
Definition Tools

Interface 1

- | Workflow API and Interchange formats Interface 4
Interface 5
7 ; i Other Workflow
Administration Workdflow Enactment Service Enactment Service(s)
& Monitoring || o= <>
Tools Worlflow Workflow
Engine(s) Engine(s)

Interface 2 ¢ ¢ Interface 3
“glriekﬂnfw]n';oke_d
Applications Applications

Figure 2.3: Workflow reference model - components & interfaces

2.1. Service-Oriented Architectures 15

The workflow enactment servide a software service that consists of one or more
workflow engines in order to create, manage and execute aadtimstances. The
workflow engingrovides the run-time execution environment for a workfloatance.
These two components interact with a number of external corapts though a set of
well defined interfaces, marked on Figure 2.3:

e Interface 1: A variety of process definition toolsan be used to model the
business process; the output of which is a process definitluioh can be in-
terpreted at run-time by the workflow enactment service.sTiachieved by
passing a complete process definition or subset throughrteegs definition
import/export interface.

¢ Interface 2: Connects the running workflow instance to a client applarati
These applications will typically want to: create/terntmavorkflows, suspend
a running workflow, retrieve process data and provide useedrinput to the
workflow.

e Interface 3: Defines how the workflow enactment service can interact with e
ternal applications/services; such as databases, \gatialn software and web
services.

e Interface 4: Allows a particular workflow enactment service to commuteca
with another enactment service, which has a differing pgeceodel and execu-
tion semantics. Translation between the two models may bessary.

¢ Interface 5: Connects the workflow enactment service to external toglgie
administration and monitoring of the workflow. Typical furans of these tools
will include: checking the process state, adding/deletisgrs privileges, and
modifying running processes.

Most existing workflow systems adhere to the workflow refeeemodel, however
there are many competing process description languages sppace is crowded with
many organisations, each wanting their own standard to bptad by the community
as the way of coordinating distributed resources over thermet. The current front
runner is BPEL (Business Process Execution Language) [Wdb services. However
there are many other standards which share the space, sith-&oordination [3] and
the Web Services Composite Application Framework (WS-CAB]. A comparative

study illustrating the differences between these langsizggpresented in [65].

16 Chapter 2. Literature Review

2.1.3 The Semantic Web

The Semantic Web is an extension of the current web in whitdrnmation is given
well-defined meaning, better enabling computers and peopleork in cooperation
[11]. The web can reach its full potential if both humans arathines can understand
and process the available information. Currently this iispussible as the web is based
primarily on documents written in the HyperText Markup Laage (HTML) which
contains no facilities for expressing semantic informatid’he Semantic Web aims
to addresses this shortcoming using the descriptive tdogies Resource Descrip-
tion Framework (RDF), Web Ontology Language (OWL) and théeBsible Markup
Language (XML) [8]. When combined, these technologies ipl@wdescriptions that
supplement or replace the content of web documents. Thisustgcally marked up
web content then becomes machine-readable, therebytd#iodj automated informa-
tion retrieval by computers. The Semantic Web comprises miraber of standards
and tools:

e XML and XML Schema: As described by Section 2.1.1 XML provides a sur-
face syntax for structuring documents, however it imposese&mantic con-
straints on the meaning of these documents. XML Schema b tasexpress
a set of rules which define the legal building blocks of an XMicdment, typi-
cally expressed in terms of constraints on the structurecantent of documents.

e RDF and RDF Schema:The Resource Description Framework (RDF) is based
around the concept of making statements about resourcgsc{®pin the form
of subject-predicate-object expressions called RDFesiplRDF Schema is a
vocabulary for describing properties and classes of RDéue®s.

e OWL: The Web Ontology Language (OWL) adds another layer of voeapu
for describing properties of classes, for example relaibetween classes, car-
dinality etc.

These technologies are important for the future implententaf the Semantic Web,
however they have not yet been widely adopted by the acadammdustrial commu-
nities. In relation to our discussion of service-orienteché&ectures, OWL-S [39] is
a web service ontology for describing service descriptiomkis language supplies
web service providers with a core set of markup language toaets for describ-
ing the properties and capabilities of their web serviceanambiguous, computer-
interpretable form. The ultimate aim of such a language as teb services can be

2.1. Service-Oriented Architectures 17

composed automatically from the attached semantic infooméy a user agent.

2.1.4 Grid Computing

In a world where communication is nearly free, when solvimghtems we are not
restricted to the use of local resources. Computationatigrise jobs can be executed
on the collective resources of research and industriahpest simulations can be run
remotely rather than locally installing software, remotgadcan be accessed and pro-
cessed directly. The problem is that these resources ane ofined by different organ-
isations, have differing security policies, run differanftware etc. These are standard
problems in the distributed systems community, and so jaging network access to
these resources is simply not enough to tie everything beget

The term'Grid’ refers to a new infrastructure that builds on today’s Iné¢and Web
to enable and exploit large-scale sharing of resourcesmatistributed, often loosely
coordinated groups, commonly termeidtual organisationd2]. Grid computing has
attracted a great deal of interest and funding firstly from tbomputer science com-
munity, but also from the application of this computing i@®éf to problems in the
engineering and the physical sciences.

Much of the computer science research has focused on thiogavent of Grid middle-
ware, in order to provide a standard and uniform mechanisnerftical tasks in dis-
tributed systems. These tasks include managing servicesnoote computers, ‘sin-
gle sign on’ procedures, security polices managementjcgediscovery, transferring
large amounts of data and forming large scale distributedali communities from a
group of heterogenous components. This set of standardsiaadanisms allow users
to easily access this universal source of computing powethi® purpose of solving
problems in science (e-Science) and business (e-Business)

Up until recently the de-facto standard Grid toolkit was @lebal Grid Forum’s Open
Grid Services Infrastructure (OGSI) [64]. This specificatdefined mechanisms for
creating, managing, and exchanging information amondiestalledGrid services
Succinctly, a Grid service is a Web service that conforms $eteof conventions (in-
terfaces and behaviors) that define how a client interacts aviGrid service. Grid
services built on the current web service technology byreditegy WSDL and XML
Schema definitions to incorporate amongst others, the pboéstateful web services.

18 Chapter 2. Literature Review

This notion of state is something that web services spetiica did not address and
was considered necessary to provide for the controlled gemant of the distributed
and often long-lived state that is commonly required in ssitated distributed appli-
cations.

Although the OGSI addressed some important issues in liwed-distributed com-
putations, the world had adopted the service-orienteditactre offered by the web
services community. The main problem was that these twodsoslere not inter-
operable with one another. It was highly undesirable tohed#eadlock between the
ever growing deployment of web services and the notion désfar long-lived dis-
tributed computations found in OGSI. This led to a conveogssf interest between the
web services and Grid communities, resulting in the Web iSesvResource Frame-
work (WS-Resource) [19].

The WS-Resource specification was proposed to address lHteomship between
stateful resources and web services. It consists of a grégpexifications which
allow a programmer to declare and implement the associattween a web service
and one or more stateful resources. Importantly the framlewdroduces support
for stateful resources without compromising the abilityrtigplement web services as
stateless message processes, meaning the two are coynpltebperable. This lat-
est specification fills the void between the web services amtld@mmunities, and can
be viewed as a re-factoring of the concepts addressed by@&® @ a manner which
exploits the recent developments in web services architect

2.2 Scientific Workflow Systems

As the Sciences become increasingly data and informatioerdrscientists are shar-
ing their data and computational resources. As a directtretthis, new knowledge is
acquired from analysing existing data; which would not hlagen previously so read-
ily available. This information explosion has helped toghaew multi-disciplinary
fields [38] such as bioinformatics, geoinformatics and n&oformatics. The Grid is
the infrastructure and machinery which enables e-Scidmmegver current Grid soft-
ware is still too complex for most scientists to exploit. tked they require higher
level tools which enable them to plug together problem sg\domponents, in order
to falsify a scientific hypothesis. A scientific workflow atipts to capture a series of

2.2. Scientific Workflow Systems 19

analytical steps which describe the design process of tgseriments. There is an
increased level of interest [23, 21, 75, 20] within this damend the problem of ap-
plying the formal concepts of workflow to the scientific conmity is only just starting
to be addressed.

A scientific workflow systels an environment which combines scientific data man-
agement, analysis, simulation, and visualisation tasksder to aid the scientific dis-
covery process. This Section will review the state-of-#inein scientific workflow
systems from a range of application domains.

2.2.1 myGrid

Bioinformaticians conducting computation experimentsuldotraditionally have to
chain together database searches and analytical toolgy asmplex scripts as glue
to overcome the incompatibilities between applicationforimation would often need
to be formatted to application-specific file formats and thassed through a selection
of scientific applications and filters, which would yield andéul of results, or gener-
ate new data. These new data would in turn require reforngagthd passing through
further services. A scientist working using this methodlavould have to transfer
the results between services by hand, making note of thekeyiag the information
into a new interface. This is a highly inefficient way of cowting science over the
web.

myGrid [53] is a UK e-Science project which provides a setrahsparent, loosely-
coupled, semantically-enabled middle-ware to suppogrgists performing data in-
tensive in-silico [77] experiments on distributed res@s.cAn in-silico experiment is
a procedure involving the use of local and remote resourtesder for a scientist to
test a hypothesis, derive a summary, search for patternerapdstrate a known fact
[52]. myGrid is implemented as a service-oriented archites; based on web service
standards. It is not designed to replace projects such dau&[@8], but rather add an
extra layer of functionality above these frameworks. It is@king tool for scientists
to use now and provides facilities for a number of differeimds of users, illustrated
in Figure 2.4. myGrid can be presented with varying levelsl$traction from the
complex wiring of web services for a Grid engineer to a higrelebstract view for a
non IT specialist.

20 Chapter 2. Literature Review

Forming experiments

Personalisation

W Executing
experiments

Discovering and reusing
EXPErIMENtS and resources

Providing services &
experiments

Managing
experiments

Figure 2.4: The life-cycle of an in-silico experiment [52]

Current workflow languages were deemed unsuitable for ceimgacservices within
the scientific domain. Firstly because most of the standaste constantly in flux
and secondly web services standards did not provide theatdevel of abstraction
for bioinformaticians. This led to the creation of a new laage, the Simple Concep-
tual Unified Flow Language or SCUFL [44] for short. The SCURIduage is a high
level XML-based conceptual language, in which each pracgstep of the workflow
language represents one atomic task. It is a declaratigriéage where the user de-
scribes what is to be done rather than how the task is perfhriés@iser can construct
a workflow in the SCUFL language by using the three main estiti

e Processors:Act as black box of computation. A processor consumes a set of
input data and in return produces a set of output data. A gemréas assigned a
name and a set of input and output ports, which are named eigignd typed
within the scope of the processor. An execution status igjasd which is ei-
ther: initialising, running or complete. The main types obgessors [43] are:

A WSDL Type definition (external web service), a SOAPLAB tyfaowing
command line tools to be exposed as a web service), a TaliSype) a Nested
workflow, a String constant or a Local Processor Type (callotal class defi-
nitions).

e Data links: Indicate the flow of data through the workflow system, betwiben

2.2. Scientific Workflow Systems 21

data source and the data sink. A data source can be defined@seagor output
or a workflow input and a data sink can be a processor input opkflew
output. Each data sink will receive the same value if theeemaultiple links
from a data source.

e Coordination constraints: Can be placed on two processors in order to enforce
control flow over the system. This is used when certain stagése workflow
must be executed in a set order, yet there is no direct daendepcy between
them. A workflow can be constructed more often than not withliba use of
coordination constraints.

Using workflows as part of a scientific process often requaresenancg35] data to
be kept about the activities performed during the workflovaevi@nance data attempts
to capture which person conducted the experiment (who)nthterials and methods
used in the experiment (what and how); the purpose of runtiiagxperiment (why)
as well as the results and conclusions of the experimenttjwhais includes data
such as, when the workflow was begun, how long it took, whichise instances were
used, the input-output relationships between the workflomgonents, any interme-
diate data, which data were used, and the results from thkfiar In the myGrid
system provenance logs are generated in the form of XML fileerwthe enactment
of the workflow begins. The system also allows storage of tatioms regarding the
hypothesis of the experiment along with any thoughts andiops of the scientist.
Provenance data is an important aspect of bioinformatiegrscientific experiment
process; often if the same experiment is run at differenegindifferent results are
produced. Using provenance data it is possible for a seietttitrace the audit trail
of previous experiments in order to add to their own expentakedesign: Looking
at what worked, what didn’t work, how it worked etc. The my&B8ystem allows
provenance documents to be linked together enabling exsstieto browse and an-
notate them on the fly: this is the fundamental concept of web‘of Science’ [30],
proposed by Hendler. myGrid offers a number of other stath@darvices, including
the notification service [36] for asynchronous delivery adssages.

The Taverna workbench [43] is the resulting implementatibiinis research. This tool
which allows users to construct analysis workflows from comgnts on both remote
and local machines, run these workflows on a set of data an@lise the results.
Within this tool is an application called the SCUFL workbbnehich allows scientists
to write workflows in a visual format without directly usinge SCUFL language.

22 Chapter 2. Literature Review

The Taverna workbench uses FreeFluo [74] as the enactmgimegnvhich is a web
services orchestration tool: currently this tool supparssibset of WSFL and SCUFL.

2.2.2 |ICENI

Imperial College e-Science Networked Infrastructure (NDE[41] Architecture is a
service-oriented integrated Grid middleware that progidea augmented component
programming model in order to aid the application develop@&onstructing Grid ap-
plications. An execution infrastructure is provided, whiexposes compute, storage
and software resources as services with well defined camdiof when and by whom
these resources may be used. It is essentially a framewatlettables a user to con-
struct an application from a number of software componantsriepository, based on
a scientific goal. The framework then uses this componenadaga to build a run-
time representation, which is used to find an optimal mappfrige application to the
available Grid resources at run-time.

The ICENI component framework is based upon two key primdplseparation of
concerns, and the utilisation of information at all stages@mputation. By capturing
metadata regarding the component from its definition, isgably into an application,
through to its deployment onto distributed resources, weicHuence the placement
of a component network so as to maximise user and resourg&prariteria.

A component is described by a set of documents that capsireetning, behaviour
and implementation respectively. This separation iselateaning, based upon typed
dataflow between components, from the associating flow afebriJser construction
of an application relies exclusively upon the informatiorthe meaning level. Each
document is defined in terms of a different XML Schema. A congmi has a set
of ports through which all communication flows. Each XML dosent describes the
same port, with differing levels of abstraction.

e Meaning: Describes the composability of the component and the flonatd d
between multiple components. The component consists df af perts. Each
port represents the production or consumption of data frioensiystem. At the
meaning level a port has an associated datafloygut or exchange An inport,
represents the consumption of data, an outport represerdagtion of data and,
finally, an exchange represents a port which performs both.aldstract data

2.2. Scientific Workflow Systems 23

type (identifying the type produced or consumed) is assediaith an inport or
outport, while an exchange posses two types, indicatindlolein and out of
the port. A port at this level is defined using the Componeriitriiteon Language
(CDL).

e Behaviour: Captures how the data are passed from one component to gnothe
and what dependencies exist between the dataflow relatiesided in the
components meaning. It is described using the Behaviounkiefi Language
(BDL): each port described using BDL must map to a port defunsidg CDL.

e Implementation: Described by using the Implementation Definition Language
(IDL), defines concrete data types, including the precismét of the data for
all the components ports. This level also possesses matabdatit the compo-
nents performance characteristics along with platforntigaequirements and
settings.

Each instance of a component has a single Meaning, Behaar@uimplementation

document. The associations between the files are illugtratBgure 2.5. However a

single meaning may have multiple behaviours and a singlawbetr may have mul-

tiple implementations. A user isnly interestedn the component’s meaning, while
selection based on a component’s behaviour and implenamiate handled by the
Grid middleware.

types, semantic
constraints

may hawe mary

may each have many

performance,
[Implementation J [Implementation J ;argl;ﬁeclule, data
ypas

control flow, dataflow,
dependancies

Figure 2.5: Levels of semantic information in ICENI

A user of ICENI constructs an application using the infonmapresented at the mean-
ing level. An application is constructed by defining a setarhponent instances along
with a set of links (which is defined as an ordered pair of congmb ports). The links
represent channels of data flow from one component instanaedther and each link
must connect only two ports. The links must satisfy two citefirstly, the abstract
data types must be the same and the dataflow directions musiniyeatible (e.g. an

24 Chapter 2. Literature Review

outport must be connected to an inport etc.) The links regreshannels of data flow-

ing between concurrently exiting components, control fleguies are therefore hidden
from the end user. It is then left up to the middleware to gelee components based
on behaviour and implementation.

Figure 2.6 illustrates an overview of the ICENI system aetture. Application con-
struction is aided by a visual programming language usieg@ENI visual compo-
sition tool. Once an application is constructed and theslib&tween the components
have been defined, an Application Description Documentnegded. This XML doc-
ument is passed to the scheduler which has a number of taskssitperform. Firstly,
the middleware takes the user’s abstract choice based oniMpeand must choose
between the various implementations, each with their aatatbehaviour. The mid-
dleware must select the optimal implementation for the 'ssgrosen abstractions.
Once the resources have been selected the scheduler createemponent instances
and establishes links between these instances.

Application Description Access Resource
Document Information

Application
Design Tools

Application

End User Mapper

Run-Time
Repository Representation \

Implementation
Annotating
Tools

Component
Design Tools

Application Proxy

Scientist Developer Object

Figure 2.6: ICENI architecture overview

The XML that describes the component is used to constructimgs that allow the
component to interact with the middleware and hence the. @itther WSDL or Java
interfaces can be generated from a component’s definitibighwitself is defined using

2.2. Scientific Workflow Systems 25

CDL. Once the component is bound to an interface it can beogledlas a resource on
the Grid.

ICENI has two clearly defined domains. Firstly a private aaistration domain, which
is used to manage resources within an organisation. Secarglblic domain that ex-
poses the private resources as services, making themlaeditethe wider community.
In between the private and public domain sits a domain manéiggob is to add an
access control policy to a resource in the private domainexpadse it as a service in
the public domain. This means that the same resource cargbgedawith different
usage policies for different computational communitieshe¥ a request comes in to
access a resource the domain manager validates the requesmtract of Service
Level Agreement (SLC) is defined for each resource, thiestatho may access the
service, for how long etc.

2.2.3 Kepler

Kepler [38, 6], is an open source scientific workflow enginéhvagontributors from

a range of application-oriented research projects, fongpta SEEK [42]. The first
thing to note about Kepler is that it is built upon the Ptolelingystem [55] based at
the University of California at Berkeley. The Ptolemy Il $% is a mature dataflow
oriented workflow architecture and is the only availablesyswhich allows different
execution models to be plugged into the same workflow.

The Ptolemy Il System introduces a number of basic blockskvarm ‘actor-oriented’
workflow modelling, illustrated in figure 2.7. The most basamponent in the system
is anactor. An actor is simply an independent unit of computation (sasha web
service, database call etc.) which consumhats-tokengrom a set ofinportsand pro-
duces data-tokens to a smitports These ports provide the communication interface
to other actors in the workflow. A group of actors can then beed together by
introducing a mapping of outports to inports. An actor cangist of a sub-group of
interconnected actors, allowing hierarchical workflow$®&supported: this is known
as acomposite actarln addition to the connection of ports to form the dataflowdelo
control flow can be enforced through the use of branching aadihg.

The component communication (dataflow) concerns are sephfeom the overall
workflow coordination which is defined in a separate compomatied adirector.

26 Chapter 2. Literature Review

Director

10-ports

consumer
actor

producer
actor

receiver

Figure 2.7: The Kepler actor model

The execution model defined by the director is known asntieelel of computatian
This separation of concerns means that once a workflow medehstructed it can be
run with different execution semantics; defined within tirector.

Kepler has a number of built in actors, providing facilities. prototyping workflows,
executing web and grid services, distributed job executiatabase access etc. Inher-
ited from the Ptolemy Il System are a number of built in modaglsomputation that
the directors can enforce. These include the SynchronoteflDa, Process Network,
Continuous Time and Discrete Event models. Additional nieodécomputation can
also be introduced into the framework, allowing user-defiagecution semantics.

The modelling concepts introduced do not have to be boundp@rtecular group of
types at design time. The Kepler system builds upon the -actented modelling
approach and introduces type definitions to be representachumber of ways:

e Structural types: Define the allowed set of values that a port can consume or
produce. The language used to describe the structural fygpeart could be an
XML schema, DTD or programming language type system for g@amwhen
using XML schema, the structural data type of a port is a cetecXML schema
type, such agsd: string.

e Semantic types:Allow the user to define a concept expression over a language
used to model ontologies, such as a description logic. Asxample, a user
might define a semantic type which states that only data sowdnch describe
a species of mammal can be placed into the input port of tloe.act

e Hybrid types: Allow structural and semantic types to be explicitly linkbdough
the use ofhybridization constraints.These constraints can be exploited in a
number of ways, for example to infer (partial) structurathappings between

2.2. Scientific Workflow Systems 27

structurally incompatible (but semantically compatibAgrkflow components.

Constraining the port definitions of an actor by defining ypeetdefinition of its input
and output ports allows the underlying workflow system tocghéat design time)
that the connections between ports are consistent. In @ysfaulty links due to type
mismatches can be identified and corrected before the warkdlexecuted. Structural
and Semantic types are separate concerns and the user ame ¢bhdype a port with
either or both of these type definitions, depending on thermétion available at the
design stage: these definitions can always be altered THtes.separation of the data
modelling (structural type) and conceptual modelling (aatit type) allows them to
be independently validated and offers a number of benefitscientific workflow and
component reuse. A formal overview of the Kepler system @afobnd in [14].

[& Flle=IC: Aepler_c ekl spalPIWIPIW. <l 4

Fle Yew Edt Grenh Dehug Help

eI P NS R ESH e /

hcbors | Do 1 PrDiractar q
Promatar identifealion woeklow [P

Quick Sewrch I:I i odels of ranscriplion factor bindie

. o0 reguicted genea, storing ool mi

P o izt o g g ’
test [+ corem Right click and Conbgure 1o megiy &
Nurnbers in yucles sopasled fy |

* _IBoenal Ennoudion Eeairn
B] iz

& ot

b ATk

= Aomsters

]
[®=] image Cansester Fun GlustalW

b4l ADN T HTRL Canvs

e

[<] Secuerice To bray

[P ke To Strivg e[|
>

U ezt fourd. Mariza airl Diard

Y ,
——|I——1ﬂ3
F
[—
Loy |

Figure 2.8: The Kepler GUI [71]

In summary, Kepler offers a highly flexible scientific workfl@xecution environment
with well supported tools and visualisation software. Biéint ready made actors and
models of computation can simply be plugged into the worktioachieve the desired
behaviour. The GUI is intuitive, allowing workflows to be wied at differing layers
of abstraction; depending on whether the user is a sciantistid engineer.

28

Chapter 2. Literature Review

2.2.4 Related Projects

e Triana [54] is an open source problem solving environment, desigisea flex-
ible software development kit and is intended to be used inynaigferent sce-
narios and many different levels of abstraction. Triana isst application for
the GridLab project [5], a set of middleware for the creatodgeneric Grid ap-
plications. The toolkit allows users to compose workflowappically using a
dataflow model on their local machine and distribute thislloger a connected
Peer-to-Peer network.

e eStar [16] is a software project which aims to develop an inteltigeobotic
telescope network. It is a joint collaboration between tils¢rédphysics Research
Institute at Liverpool John Moores University, the Astrgplts Research Group
at the University of Exeter and the Joint Astronomy Cent@&C)Jin Hawaii.
This project addresses the application of ‘intelligenteats to a network of
robotic telescopes. An intelligent agent resides on a sidecal machine and
can both request observations and receive data from tglesaghich is poten-
tially of interest to the user. The user agent interacts digicovery nodes on the
network via Grid middleware. Discovery nodes are a coltattf sub-systems
(telescope, database, agent etc.) which can receive a@lhieervequests from an
agent and through a series of interactions produce sontnastical data.

It is being deployed on the United Kingdom Infrared TelessWide Field
Camera (WFCAM) and will cross correlate this output with gt of known
objects taken from pre-existing survey databases. Thacei@m of developing
this robotic telescope network is to aid the detection oftreant and moving
objects in the sky, enabling agents to rapidly compare dutgia from WFCAM
to existing objects in order to schedule follow up obsenvadion these newly
detected objects. It is necessary to schedule a follow upreagon as soon as
possible in order to avoid loss to potential time-sensiteglts.

2.3. Agent Oriented Software Engineering 29

2.3 Agent Oriented Software Engineering

Multiagent systems are a relatively new field of Artificiakélligence (Al) and cur-
rently a highly active area of research. This field bringsetbgr researchers from
hugely diverse areas of study, ranging from computer seiémsocial science.

Agent is a contested term, principally because differemhaios consider different
traits of agents to be more important than others; each pawieir own definition

of what they mean by the term agent. Some applications fomplearequire that
agents have the ability to learn, but for other applicatiins is an undesirable trait.
There is however, a common thread of consensuses for theaggnt throughout most
application domains.

T
oy
s

o
T
R)
Rosssssedeld
s
S

Figure 2.9: Multiagent systems

An agent is a computer system that is situated in an envirahnaed that is capable
of autonomous action in this environment in order to meetié@sign objectives. An
agent usually takes sensory input from the environmentdwis assumed to be non-
deterministic) and produces as output actions that aff¢¢8j. An agent can usually
influence its environment. This means that the same actidarpged twice in appar-
ently identical circumstances, might appear to have cotepli@lifferent effects. An
agent will usually have a collection of actions that it camfqen on its environment

30 Chapter 2. Literature Review

under certain circumstances. The key problem facing therewmous agent is deciding
which of its actions it should perform in order to meet itsigasobjectives.

A multiagent system consists of a number of autonomous agehich communicate
with one another through a computer network infrastructbigure 2.9 illustrates this
concept and shows the relationships between groups ofagadtthe influence they
have on their surrounding environment. Individual agentshave been designed by
different engineers and will therefore exhibit differer@haviour through their goals,
motivations and internal logic. If agents are to succegsfateract with one another
they will require the ability tacooperate coordinateand negotiate Multiagent sys-
tems are often viewed as a society, although the agents toeamous and can act
independently, the society lays down conventions thatiatite agents to cooperate
with one another to achieve a shared goal.

A good example of a multiagent system is an auction housentAgeeractions take

place between an auctioneer agent and a collection of balglemts. The aim of the
auction is to allocate the item to one of the bidders. Theianeéer wants to maximise
the profit of the item in hand, where as the bidders want to iaedghe item at the

lowest possible price. Here the laws of trade (English anctDutch auction etc.) are
pre-defined and agents must adhere to these rules in ordectessfully take part in
the auction. However within these rules there is scope fese¢hindependently engi-
neered agents to act autonomously at run-time, adoptirerelft bidding strategies
and tactics to acquire the item for the cheapest price, ierai@ maximise their own

gain.

Many researchers are skeptical about the claims made byutimgent systems com-
munity. Some arguments suggest that it is simply repackagsgdbuted and con-
current systems, artificial intelligence and game theorg. a#paradigm for software
engineering multiagent systems have a great deal to offgents can be inherently
decentralised peer-to-peer systems, compared with tbeitnaal client-server model.
They therefore exhibit improved scalability and do not suffom the single point of
failure problem. By offering a degree of autonomy to agettis,complexity of design
in a multi-threaded system is drastically reduced; prialljpbecause the concurrent
interactions can be left up to the agents at run-time, andpetified explicitly like the
traditional top down design of distributed systems.

There are essentially two ways to build multiagent systelsirated in Figure 2.10)

2.3. Agent Oriented Software Engineering 31

Intelligent
Coordination

'
LN

Intelligent
Agents

,
v,
| Bottom-Up Design >

< Top-Down Design |
-
\.

Figure 2.10: Intelligent coordination vs. intelligent agents

and agent researchers broadly fall into one of these twa@osats. Engineers can de-
sign systems from the bottom-up, focusing on produ@nmart agentknown as the
agent-desigmproblem, or from the top-down, focusing @mart coordinationother-
wise known as thagent-societylesign problem.

2.3.1 Smart Agents

Researchers interested in the agent-design problem acewced with producing in-
dividual, intelligent agents. Concerns lie with how useigimtell the agents what to
do, and how agents themselves decide which actions to pertbrough various types

of logical reasoning:

e Deductive reasoning agentslintelligent behaviour can be simulated by manip-
ulating a symbolic representation of an environment anditsred behaviour
within this environment. This is the traditional approaotbuilding artificially
intelligent systems, known as symbolic Al. Theorem provsg technique used
to create deductive reasoning agents.

e Practical reasoning agents:lt is clear that we as humans do not use a purely
logical approach to reasoning, as addressed by deductg®meng. Practical
Reasoning is concerned with decision making directed tdsvactions, this de-
cision making is a consequence of weighing up often conilictionsiderations
for competing options. Deciding whether to catch the traithe bus is an ex-
ample of practical reasoning, as it is reasoning directegtds action. Practical
reasoning consists of deliberation (deciding what to dal) means-end reason-
ing (how to do), best known gdanningin the Al community. Agent researchers

32 Chapter 2. Literature Review

are interested in how to use practical reasoning technitjugve agents a de-
gree of autonomy, so they can ultimately make decisiong#emiselves.

2.3.2 Smart Coordination

By allowing agents to coordinate together it is not necgstafocus on engineering
individual smart agents, there is a notion of shared irgetice and cooperation. There
is a popular slogan in the multiagent systems communityretigeno such thing as a
‘single agent system’ [73]. This illustrates the point tideracting systems are now
the norm, computers are pervasive and expected to intevaetén the most basic of
tasks. By taking a top-down approach to the design of mudtiagystems there are a
number of key issues that need to be addressed:

e Reaching agreementsAs agents are considered to be autonomous and self in-
terested entities, it is necessary to study how they carmreatually beneficial
agreements on matters of common interest (similar to theesowe live in),
without a third party to dictate the terms. Negotiation srérs will usually be
governed by a protocol which lays down the common rules obenter. Agents
must adhere to this protocol in order to take part in the axtBon. However an
agent remains self interested, it will adopt a particuleategy which attempts to
maximise its own gain. Researchers are interested in howsmd such nego-
tiation protocols, build strategies around these protosolagents can negotiate
on behalf of users and understand the process of reachiegragnts through
techniques, such as negotiation and argumentation.

e Cooperation: The focus here lies on how agents can collectively work togret
in order to solve a shared problem. The distinction betweeitiagent co-
operation and traditional parallel problem solving is irdrg within the term
agency. Theébenevolence assumptistates that agents in a system implicitly
share a common goal and that there is no potential for comfétiveen them.
The benevolence assumption however is generally not aad&gdien agents are
interacting in an open system. Agents are engineered bgrdift individuals
and will therefore be motivated by a different set of goalshaf¥ taking part
in coordination they will (as self interested entities)rigdawards the outcome
which maximises their own gain. As they act autonomouslgjsiens are not
hardwired in at design time, as they traditionally are wiitributed/concurrent

2.3. Agent Oriented Software Engineering 33

systems. Agents must be able to dynamically make decisigdhgwheir envi-
ronment at run-time. The task of cooperation is far more demawhen dealing
with these self interested agents, research into cooperétrough norms and
social laws is a popular technique to enforce control in agnogystem.

The remainder of this Section focuses on how to design ngdtiasystems from the
top-down, by providing these open system with intelligemtrdination mechanisms.
Firstly the broad topic of agent communication is discusseth reference to lan-
guages: FIPA-ACL and KQML. The Electronic Institutionsrfrawork is then which
is a popular technique allowing structure and organisaimope imposed on an open
system.

2.3.3 Agent Communication

Agents communicate with one another through message gass&an agent is con-
sidered to be autonomous and in control of both their owrestatl behaviour it cannot
be expected that just because you tell an agent to do sorgeithiill necessarily com-
plete this task. It might not be in the agents best intereshight not be possible.

Instead agents can perform communicative actions in amptteo influence another
agent. For example when | tell a friend to ‘meet me at the pubpat, and on this
occasion | will be on time’. Although | am trying to influenceyrfriend to turn up at
7pm, he is in control of his own beliefs, desires and intems&nd realises from previ-
ous experience, | often run late. Hence he decides to turnlitieaafter 7pm instead.
But by performing this communication | am attempting to ajpathe internal state of
my friend. This idea is captured within the theorysyfeech actsSpeech acts, are a
certain class of natural language utterances which havehémacteristic of actions, in
the sense that they change the state of the world in a waysemegive of physical
actions. Speech acts were originally explored through tbekwf philosopher John
Austin [9]. An example of such an utterance is the declanatibwar or a marriage
declaration. Various types of speech act are classifiedp@ttormative verbssuch as
request, inform and promise.

A number of Agent Communication Languages (ACL) have beeareldped which
use the theory of speech acts as a basis. The Knowledge QueeMamnipulation Lan-
guage (KQML) [33] was the earliest attempt. It was a DARPAdReh project which

34 Chapter 2. Literature Review

specified a common format for the interchange of message&batagents. Although
widely adopted this language was criticised for having neni@ semantics and an
under constrained set of performative types (41 in totalhisTesulted in different
implementations adopting different performative typesrean the same thing. The
Foundation for Intelligent Physical Agents (FIPA) Agentr@munication Language
(ACL) [1] was designed as a standard to address the shoringsnoif KQML. FIPA-
ACL has a more concrete, formal syntax and fewer, more meaumiperformative
types. This is currently the most widely adopted ACL in uséh®/multiagent systems
community.

2.3.4 Interaction Protocols

An interaction protocol is essentially a collection of centions which allow agents
in an open system to interact with one another. The tepan systenmeans that
any agent can take part in the interaction, regardless @f ititernal implementation
details; such as the language they are programmed in, oatpgsystem they are run
on.

(")
Rational Behaviour

_ J
(N
Interaction Protocol

\, y,

(N
Transport

SOAP, HTTP etc.

_ J

Figure 2.11: Interaction protocols

Firstly it is important to address what an interaction pomicdoes not define; it does
not attempt to define the transport mechanism used to getages$om one agent to
another, such as HTTP, SMTP or SOAP etc. These are regarded kevel program-
ming issues and are not the concern of agent communicationdodgs it attempt to
define what the agent does internally when it receives a rgessach as how the agent
rationalises. This is left up to the individual agent imp&tation and these issues can

2.3. Agent Oriented Software Engineering 35

be regarded as higher up the stack. An interaction protatoobstween the transport
layer and the rational layer, illustrated by Figure 2.11. iAteraction protocol defines
therules of engagemeitetween a group of interacting agents. Suclif asnd when
an agent can communicate, and thder andkind of message$at an agent expects.
A protocol is domain and situation specific, e.g. a Dutch iaagprotocol would be
radically different to an English auction protocol.

2.3.5 Electronic Institutions

Electronic Institutions (EI) [26] are a technique used fanvpding structure and organ-
isation in an open multiagent system. Els are modelled bgmby) the conventions
that make up human organisations. Human societies haveedrgsstitutions; inside
these institutions they set laws, monitor and respond tageneies, prevent and re-
cover from disasters etc. By modelling these conventionysiggsues in open mul-
tiagent systems, namely heterogeneity of agents, trustaaoduntability, exception
handling (detection, prevention and recovery from faid)rend societal change have
been addressed. This allows heterogeneous agents impeahigndifferent engineers
to communicate, negotiate and cooperate with one anotleetrirly open system.

El is the term given to the formal representation of theseepts and has resulted in a
framework for open multiagent systems which attempts to imarhuman institution.

It forces agents to interact with one another in a well-defimenner and to adhere

to roles commitments and obligations. The core conceptd afdnot that dissimilar

to a theatre production. An EI consists of a number of comptméahe most basic

of these being amagent Agents can be viewed as the actors, and interact with one
another througlilocutions Each agent is required to adopt one (or mooddswithin

the institution.

Roles define standard patterns of behaviour and Halegic actionsassociated with
them. Dialogic actions are a set of operations which an agamtperform, once an
agent adopts a role it can perform the dialogic actions aatsatwith that role. In-
teractions between agents take place only insines A scene can thought of as a
bounded space where agents directly interact and negotiadesingle task. A scene
contains ascript, which is a well-defined protocol (modelled as a finite stasehine).
This protocol contains all the possible dialogue betweest afsoles. Aperformative
structureis a network of scenes, it defines how and under what conditildiferent

36 Chapter 2. Literature Review

roles can legally move between scenes. Agents within a pedive structure can
participate concurrently in different scenes with differ@oles. Actions that agents
take in the context of an institution may have consequer@sither limit or enlarge
its subsequent acting possibilities. The set of possiblespimr an agent within the
performative structure is thus defined by a sehofmative rules

One further thing is required to allow agents to interacthomon knowledge. This
is represented in theialogic framework This structure contains an ontology; which
defines the common language for representing the world, aomoation and knowl-
edge representation. The shared dialogic framework allosterogonous agents to
exchange knowledge with other agents. With many key cosdapblved it is useful
to consider an example [68] of an electronic institutionethiies everything together,
this is graphically represented by Figure 2.12.

accept(D, P) . refar(D, P)

reject(D, P) norefer(D, P)

b 4 b 4

Figure 2.12: General practitioner scene

The scene represents a patient visiting a General Prawiti@GP) to obtain a diag-
nosis of some symptoms. There are two roles defined withsigtene; the roles of
doctor and patient. For convenience, we assume that altsigse the same dialogic
framework (i.e. they know how to communicate) and that tla@esno normative rules.
The scene begins with all the agents enteringl tiiell AL state. A patient agent then
sends a request message to a doctor agent indicateebbogst (P, D), whereP is a
patient andD is a doctor. This message is intended to represent the pateking an
appointment to see a doctor. The patient then enterdAhestate until araccept (D,

P) orreject(D, P) message is received from the doctor. If a reject message is re
ceived, then the agent returns to the the initial state. lh@eptance is received, the
agent enters th&CCEPT state and proceeds to send a messggpt ons(P, D) to the
doctor. The doctor then performs a diagnosis of the patietheDl AG state and the
result is that the agent is referredf er (D, P) for further diagnosis, or no-referral
norefer(D, P) is made and the patient leaves the scene.

2.4. Chapter Conclusions 37

2.4 Chapter Conclusions

This Chapter has discussed two different approaches toesigrdand deployment of
large-scale distributed systems. Although the conceptivice-oriented architectures
is not a new one, the technology has only recently reachedrityathrough simple,
vanilla web service standards. The web service and Grid lewdate is in place to
provide reliable, scalable and secure access to distdesources. The agents com-
munity, however has typically focused on creating autonasntiexible software com-
ponents. Allowing agents to operate in dynamic and ungegavironments, making
decisions about interaction and cooperation at run-tintee fi/pical defining features
from each community are illustrated by Figure 2.13.

Flexible Reliable

Autonomous Secure

Cooperation,
Negotiation
Run-Time
Decisions
Uncertain
Environments

<
Scaleable @)
)]

Agents

Middleware
Support

Working Systems

Figure 2.13: A convergence of interests

Although traditionally separate fields of research, it isatlthat these two communi-
ties are starting to see a convergence of interests. Thé&apph of techniques from
the multiagent systems community to service-orienteditgctures is a relatively un-
explored research area and in practise few steps have bleam ttavards the vision
of fusing these two worlds of distributed systems [29]. Tokofving Chapter builds
upon the themes addressed here, further exploring the doohaicientific workflow.
A set of live workflow scenarios, taken from the Virtual Obsgory domain are pre-
sented in detail, these workflow scenarios demonstratexample the requirements
of scientific workflow.

Chapter 3

Scientific Workflow Scenarios

This thesis has worked closely with a number of active Grmjgquts, focused on Vir-
tual Observatory engineering, namely: AstroGrid and thegk&ynoptic Survey Tele-
scope (LSST). As a result of working with these projects aoéebncrete workflow
scenarios have evolved. These workflow scenarios act as igatiag factor behind
this research work and are a valuable commaodity in their agintr By understanding
the processes behind these workflows and researchingrexststems (discussed in
Section 2.2) this thesis has been able to identify a set afiremgents for scientific
workflow, these requirements are detailed in Section 3.4.

This Chapter presents in detail two of the motivating workfkxenarios. Section 3.1
introduces the broad application domain of Virtual Obstagatechnology, specif-
ically the architecture of AstroGrid. Section 3.2 discussebatch workflow (from
the AstroGrid domain) for calculating the redshift of a givarea of sky. Section 3.3
details a knowledge discovery workflow (also sfrom the AGtid domain) which cen-
tres around retrieving and analysing data according to ensist’s hypothesis. With
reference to the scenarios discussed in this Chapter anextbeng system review
(discussed in Section 2.2), Section 3.4 defines a set of tenrequirements of scien-
tific workflow. Detailing how and why it differs from traditiwal workflow modelling.
Finally, conclusions are discussed in Section 3.5. Whepeagpiate, workflows are
described using the UML Sequence Diagram notation [61].

39

40 Chapter 3. Scientific Workflow Scenarios

3.1 Virtual Observatory Technology

Breakthroughs in telescope, detector, and computer téapyallow astronomical in-

struments to produce terabytes of images and catalog®nasty is facing a data
explosion. The data sets produced cover the sky in multighellwidths, from gamma
and X Ray, optical, infrared through to radio. With such vaisantities of data being
archived, it is becoming easier to ‘dial up’ a piece of the, skyher than waiting for

expensive, scarce telescope time. Astronomy is being meven further with tele-

scopes, such as the Large-aperture Synoptic Survey Telegt&ST) [56], capable
of scanning the entire night sky in a three day period. Curestimates indicate that
LSST will generate 36 gigabytes (GB) of data every 30 secamdisover a 10 hour
winter night will collect up to 30 terabytes.

The software which allows the integration of astronomiesdaurces has been slow
to catch up with the ever increasing astronomy data volurive@sual Observatories
(VO) are the technology frameworks which aim to fill this gap, @ity transparent
access to astronomical archives, databases, analysssaiotdlcomputational services.
As a direct result of collectively sharing resources thtoagVO, new knowledge is
formed from analysing existing data; which would not havevpsusly been so readily
available. Real science has already been demonstrateg USintechnologies, and
as the middleware develops it will give astronomers searndesess to image and
catalogue data on remote computer networks.

The International Virtual Observatory Alliance (IVOA) [pés the standards body
which ensures that all national Virtual Observatories canriegrated on a global
scale. The IVOA decides upon a common set of standards agdiainge formats to
allow VO’s to cooperate. The IVOA has grown to include 15 fadd/O projects, one
of which is the UK’s own project: AstroGrid.

3.1.1 AstroGrid

AstroGrid [4] forms the UK'’s contribution to the Virtual Obsratory and is a collabo-
ration between several of the UK'’s leading universitiesrérid is funded by the Par-
ticle Physics and Astronomy Research Council to producdsvaoé within which data
archives and data processing software can be accessedesshnily an astronomer.
It is the UK’s take on the Virtual Observatory concept and imaturing system of

3.1. Virtual Observatory Technology

41

middleware, which gives ‘workbench’ type interaction faientists to astronomical

instrumentation, services and archives.

Application List > 4 Registry
......... P Command Line
Portal i Resolve CEA
L. Submit Workflow : Application '
Vo e e S ;
Workflow " ;
Client ;
Library e
Save/lLoad ", Data centre CEA
Workflow s ISR it
MVS < T Load/Save
YSPACE | et Data

Figure 3.1: Overview of AstroGrid architecture

The AstroGrid architecture is based around the construaind execution of work-
flows. The architecture distinguishes data-processindgcwicluding archive queries,
from other operations such as browsing directories of resmuor administering the
system. Data processing is always achieved through worgfltive other operations
are done interactively, through the web portal. A scientshg the AstroGrid system
must construct a workflow into a scientifically meaningfuperiment. Workflows are
set up graphically through a web portal and executed asgndusly as batch jobs.
Where a desktop scripting language would have calls to Ipoajrammes, the As-
troGrid workflow engine makes calls to remote web servicesthdugh initially, a

scientist must learn a new set of skills in order to composkexecute workflows, the
steep learning curve means that workflows become a souroétiecctual capital. The
workflows can be reused, refined over time and shared witlr ethentists in the field.

AstroGrid can be defined aga@b-orientedsystem. A job being a running instance of a
workflow. AstroGrid is built under the assumption that thewal observatory will be
used for processing large, complex processing jobs, a jamed system makes this
more inherently more scalable. The current release is &stdb2, which consists of
a number of core interacting components, an overview of wtggpresented in Figure
3.1. Each component will now be discussed in relation to reiul:

e Portal: A user interacts with AstroGrid through a web based portakreHa

42

Chapter 3. Scientific Workflow Scenarios

user can perform a number of tasks: explore their MySpacecttiry, browse
exposed resources, create and run a workflow, constructeguand monitor
currently running jobs.

Registry: Collections of databases in astronomy are diverse in smegat, lo-
cation and data formats. Tools have been built up over maaysyevritten in
different programming languages and executing on diffeoperation systems.
The AstroGrid Registry is the first port of call when a userdse#o locate a
service capable of performing a particular function, e.gdata archive which
contains information on clusters of galaxies. It takes thmglications of man-
ually searching for these services and abstracts detaildwane unnecessary to
the user; such as where the service is located, what languesgerogrammed
in etc.

Job Execution Service (JES)When a workflow begins execution it is treated
as a job. A workflow becomes a job by submitting it to the Jobdtxien Service
(JES). A job is a specialised workflow document, containiddional run-time
information which allows it to execute. JES is AstroGrid'®nkflow engine
and can manage jobs consisting of multiple steps, whergithdil steps can be
run on different computers on a network. JES will then attetopgun all the
steps based on the workflow definition. Each step of the warkidoexecuted
asynchronously, as is the entire job. Once the job has fidiskecuting the user
is informed and the results are published in the user's Mg8p&count.

MySpace: This is the virtual file system used by AstroGrid. It gives ilhgsion
of a directory tree of one system, when in fact files may berifigied across
many servers. Storage services in MySpace are split intan@ski MySpace
managerssupport the distributed directory tree afil@storesprovide the phys-
ical data storage. MySpace provides each astronomer wittnsespace. As
a workflow progresses, and intermediate data is generdtisdiata is stored in
the users MySpace account. When a workflow has finished erggtlte overall
output is also stored in the user's MySpace.

Common Execution Architecture (CEA): Everything in AstroGrid is exposed
to the system through the Common Execution ArchitectureXICEEhe CEA is
essentially a standard interface which describes how tout®ea typical Astro-
nomical application within the Virtual Observatory. Thitosavs any data centre

3.2. Scenario 1: Batch Processing 43

or data processing tool to be accessed in exactly the same Mapglication
writers then have the simple requirement of implementinggadard interface
in order to expose their application to the VO infrastruetufhe CEA offers a
higher layer than that of WSDL, by providing specific semestor astronomi-
cal quantities and extra information which is not supponed@/SDL.

Virtual Observatory technologies offer the power of Gridmmuting in a way that
allows astronomers to achieve meaningful science. Astthi&in a maturing state of
development, with recent workshops [22] aimed at teachgigpaomers how to use
the Virtual Observatory.

3.2 Scenario 1: Batch Processing

Photometric redshifts use broad-band photometry to medhkerredshifts of galaxies.
While photometric redshifts have larger uncertaintiesithigectroscopic redshifts, they
are the only way of determining the properties of large sanmf galaxies. This
workflow makes use of INT (Isaac Newton Telescope) Wide Fseldrey [59] archive
in Cambridge, to retrieve images around a selected positidrdetermine photometric
redshifts from U, g, r, i and Z photometry.

Photometric redshifts are often calculated through twol Webwn tools. The first
is HyperZ [13], which calculates the photometric redshsing Spectral Energy Dis-
tributions (SED). The second is called ANNz [17] which is dtware package for
photometric redshift estimation using Artificial Neural tMerks. ANNz learns the
relation between photometry and redshift from an apprégtiaining set of galaxies
for which the redshift is already known. The batch procegsitenario uses both algo-
rithms to compute the photometric redshift, comparing tmueacy of each approach.
The only technical requirement of a user is to supply an RABEE (coordinates) of
interest. The two Sections of the workflow are illustrate@igures 3.2 and 3.3.

The workflow begins with the user inputting the RA and DEC duoates (defining
a patch of sky of interest) into the system. TWede Field Survey Archive (WF®)
gueried for images covering the patch of sky outlined in tlheaRd DEC coordinates.
Images from each of the bands [U, g, r, i, z] are retrieved ftbe WFS database.
The images are saved in the AstroGhtySpacestorage facility. Each image from
the 5 wavebands [U, g, 1, i, z] is then run through Bextractor[12] service. This

44 Chapter 3. Scientific Workflow Scenarios

T N
Coordinalor WES Dala Source SeXiraclor XMaicher
| | | | |
~— query([RADEC]), Ug.riz) | | |

—I | | |
I I I
| |
| |
I I
| |
List: images | |
I | |
| | |
| !) L | |
— extractObjects(Listimages) |
1 1
I . I
WO Table: objects
e e] [
Ly for each: image | | l
f f t i I
]
J— : crossmatch(VOTablesiobjects) :
1
|
I WiO Table: combined_data I
e ————— —— b
T | | I
|

Figure 3.2: Batch processing scenario - obtaining photometric data

application scans the image and uses an algorithm to exthobjects of interest
(positions of stars, galaxies etc.) and produces a VO Tabledch of the wavebands
containing all the data. Aross matching toak used to scan all the images and produce
one VO Table containing data about all the objects of intarethe sky, in the five
wavebands. This Section of the workflow is detailed in Fighi2

With reference to Figure 3.3 a call is made to a database wiuintains spectroscopic
data covering the same area of sky as the original RA and Dip@lisd by the user.
An algorithm then needs to compute which galaxies suppliedhle spectroscopic
database match up with those returned by the merged phatorcatialogue (the final
stage of Figure 3.2). As the ANNz algorithm use a neural nekwib must be trained
in order to operate correctly. An appropriate training sed ¢est set is constructed
and used to test each of the various configurations of ANNzeQ@ine neural network
is set up, all remaining photometric data can be suppliegyltieg in a calculation
of photometric redshifts (ANNz: photometrredshifts). An identical call is made
to the HyperZ algorithm, which again computes and returmsdalculation of the
photometric redshifts (HyperZ: photometriedshifts). The final output consists of

3.2. Scenario 1: Batch Processing

-

Coardinator Speciroscopic DB Data Source rithms ANNz erd
T T I T I T
1 guery([RA DEC]) 1 I | | [
| I [I
I I I I
retrieve|) | | |
I [I
I I I
I [I
I I I I
VOTable: spectroscopic I | [|
H _______
T T | | [|
L rrlalch[photometric_éombined. specilosc:::»pic} J— | |
t 1 [I
YOTable: rneréed_phutu_spectm | I |
—————— = |————- I———— | !
T T I I
. construct_setsimerged_photo_spectro) e | |
1 1
I I [I
WO Table: fraining_set, test_set |_ | |
e— — — — — — — — e —_ - —_ = —_———
L | | || [I
L configure{training_set, test_set) | L |
f | | I
| finished | | |
| === == | | | I
I]
J— caloulate_redshifi(photormetric_combined) | |
i 1]] |
L) T T
I I
ANNz: photometric_redshifts | |
e - = _ o
a I I I - I
L | calculate_redshift{photometric_ combined) |
I I | I
| HyperZ: pmllmnatrlc_redshllls | [
f———— ———— -——— ———————— |- ———=
T |
_I compare(ANMz, HyperZ) : | : |
l
I
finished I | |
e — — —— - —— = | |
T I I I I

Figure 3.3: Batch processing scenario - spectroscopic data, ANNz, HyperZ

46 Chapter 3. Scientific Workflow Scenarios

multiband files containing the requested position as wedl tble containing for each
source all the output parameters from SExtrator and HyperZANNz), including
positions, magnitudes, stella classification and photometdshifts and confidence
intervals. A comparison can then be made between the outplog dwo algorithms.

3.3 Scenario 2: Knowledge Acquisition

If one observes clusters of galaxies with a range of sizesflasities, it is often ap-
parent that there is one galaxy which is much brighter thbtnalothers. This galaxy,
called the Brightest Cluster GalaxCG) is frequently positioned in the centre of the
cluster. Statistically, it can be shown that the BCG is sdwmgt more than just the
brightest galaxy in the cluster. Galaxies in clusters f@lbfairly general distribution
of luminosities, and BCGs are too bright too often to be sinthe upper end of that
distribution.

There are real outliers, pointing to some different procgfstormation and/or evo-

lution. The scientific background to this scenario is tha&r¢his some evidence for
correlations between the properties of the BCG and of thetefwof galaxies in which

it resides. This indicates that the cluster is affectingvitag that the BCG is formed or
has evolved, but scientists do not yet know how this works.

3.3.1 Data Retrieval

An astronomer has a hypothesis about connections betweepraperties of BCGs
and those of their host clusters, and attempts to construexperiment which will
aid the understanding of this subject. The data retrievati@e of the workflow is
illustrated in the UML sequence diagram, Figure 3.4. Theeexpent begins with a
guery being constructed and sent to the Virtual Observgd@), in order to obtain a
sample of cluster/BCG pairs which have been well observacimmber of passbands.
This is achieved by performing the following operations:

e A query is made to the VO registry web service, in order to mbtalist of
VO data sources which are classified as being cataloguesinong clusters
of galaxies. This yields a list of, say, a dozen cluster cafaés - some based
on optical/near-IR observations, some on X-ray obseraatiand some on sub-

3.3. Scenario 2: Knowledge Acquisition 47

millimetre observations. Examples of real astronomy dataces include: The
XMM-Newton Science Archive (X-Ray) [62], the Sloan Digit8ky Survey
(SDSS) [60] and the UK Infrared Deep Sky Survey (UKIDSS) [32]

e Each catalogue is referenced individually and from eacalegte the positions
of all the clusters are extracted. This is illustrated byltdap between the coor-
dinator and the cluster catalogues in Figure 3.4.

e The VO registry service is referenced again, this time faad@urces which are
classified as catalogues of optical, near-infrared andradurces (and which,
therefore, might include relevant observations of BCGshisTyields a set of
perhaps a further 100 databases.

e At each database the query web service is invoked, in ordekti@act all the
attributes of all sources contained in a search radius oftainesize around the
position of each of the clusters (returned by the first sevidllustrated by the
loop between the coordinator and the data sources in Figdre 3

Once this process is complete these data are depositedAstitogsrid storage facility,
MySpace. Here the data can be accessed for further inveshgand analysis by the
later stages of the workflow.

3.3.2 Data Analysis

Once the data have been deposited, an analysis routine gam decution. This
analysis routine has to work out which galaxies in the galeatgalogue data are the
BCG’s in each of the host clusters and generate a combinetf a#itthe data known
about each Cluster/BCG pair. The BCG algorithm must retriall the stored data
from the MySpace facility, shown as the first part of Figurg. 3.

Let us assume that this procedure yields a set of up to 406wts for 10,000 BCG/cluster
pairs; not every BCG/cluster pair has a value for each aiieilfa measured property
which is recorded), but most have values for the great ntgjofithem. This is deemed

to be a good working data set. So, for each cluster in theagual there is likely to

be a number of properties recorded; obvious things liketmwsibrightness, size etc.
There will also be another set of attributes recording prisgeof the sources extracted
from some optical or near infrared catalogue.

Chapter 3. Scientific Workflow Scenarios

Coordinator Reqistry Clusar Cat Data Sourca my3pace

— get(dusters)

List: cluster_catalogues

e = = = —— — o
L
| I
— extract{alipositions)
1
I
WO Table: dustarjog.itims
—— —————— ———-
T for each: cluster catalogue

| gelloplical, nearlR, radio}

List: data_sources

T
|
!
!
!
!

T
T
l 1
extract{cluster_positions, search_radius)
f
VO Table! observed_data
———————— — — — — |_ —— —

1 for each: data source | |
~ |depo@it(obsewed_d§taj |

I I I
L I I [

. v

Figure 3.4: Knowledge acquisition scenario - data retrieval

r ™
Coordinator BCG Algorithm mySpace Statistics Visualisation
|- [| | I
— identify{bcg, mySpace) | | |
retriegve() | I
data l I
SR | |
update{udata) I l I
I |
finished | I
finishediworking_data_set) o — — | | |
I I | |
1 | | I I
[workin_data_set] determine(20, highest) r |
| retieve() |
| |
| |
| . |
| visualise{20}
I
| scauer_plolsl
=== === === == ===

Figure 3.5: Knowledge acquisition scenario - data analysis

3.3. Scenario 2: Knowledge Acquisition 49

The astronomer then runs a statistical algorithm, offered Wweb service, which seeks
the twenty attributes with the highest information contentthe deposited data. The
output (attributes returned by the web service) is then fed a graphics package
which generates a grid of scatter plots for pairs of themarayed in order by the
strength of correlation between them. If there are N attebuor M BCG/Cluster
pairs then the Grid of Scatter plots represents N*(N-1)&gleach with M points
plotted. In other words each attribute is plotted againshedher attribute for the set of
BCG/Cluster pairs. The visualisation tool allows furtharestigation into correlations
allowing identification of the significant ones.

3.3.3 Data Visualisation

The final Section of the workflow is shown in Figure 3.6. The@sbmer must step
back and look at the data, the visualisation tool displaystatscatter plots which
are judged as possibly worthy of further investigation. HBstronomer must give a
sanity check on the statistical correlation tests, sinceeskinds of correlation are not
readily detected by simple summary statistics. The astrmmpafter taking a look at
the grid of scatter plots reveals that there are very sigamficorrelations between a set
of six attributes. So the astronomer launches another Nssti@n tool, which allows
navigation through projections of a multidimensional dgtace.

The astronomer needs to select a subsample of 200 objectsu@lise. A request
to the statistical web service is made, quoting the sixkattés of interest. The web
service uses a statistical algorithm, which makes suredh®ke is representative of
the full data. These data are then further analysed by thiahssation tool. This reveals
three clusters of points, presumably corresponding tandispopulations, which the
astronomer defines as three classes.

This classification scheme is then applied to the full set@DQ@O records (i.e. an
additional attribute is added to the stored dataset in Mg8pwhich is the flag for
whichever of the classes each BCG/cluster pair belonggimstatistical tests are run
to assess its significance. This is found to be strong, sodinereomer saves the data
from this session in MySpace, and moves on to figuring outshephysical processes
that might lie behind this division into three classes.

Chapter 3. Scientific Workflow Scenarios

Coordinator Visualisation mySpace Statistics

— visualise(g)

retriavel)

scatter_plots

T

-1

[
subset{200, &)
1

retieve()

I

I

T I

1 updaletclassiﬁcalion_s:l:hmna] :
T

finished | [

=== . I

T save() | I |

] 4 I

| I I I

| | | .

Figure 3.6: Knowledge acquisition scenario - data visualisation

3.4. Requirements Analysis Part | 51

3.4 Requirements Analysis Part |

By analysing the state-of-the-art in scientific workflow tgyss, in Section 2.2 and
presenting a set of concrete workflow scenarios, we are ndkeiposition to address
the common requirements of scientific workflow. This Sectasents these core
requirements in detail.

Scientific and business workflows began from the same commmmd. Both com-
munities have overlapping requirements, however they éasle their own domain
specific requirements, and therefore need consideratiparately. Today there is a
broad spectrum of Business Process Modelling languagédj@brery few languages
which deal with the flexibl&nowledge acquisitioanddiscovery processdsund in
the sciences.

Business workflows place an emphasis on control-flow patand events, whereas
scientific workflow tends to have an execution model that igfttav-oriented. A
dataflow language models the program as a directed grapheadidta flowing be-
tween operations. The vast majority of programming langsagse the imperative
programming model. In imperative programming, the programodelled as a series
of operations (then, or etc.), the data effectively beinggsiible. Dataflow languages on
the other hand treat the data as the main concept behind agsapn. Programmes ex-
pressed in a dataflow language start with an input and ifitestiow that input is used
and modified. Operations consist of a black box with inputs amtputs. Operations
run as soon as all their inputs become valid, as opposed ta thiegprogram encoun-
ters them, as is the case with imperative programming. Afldatdanguage is more
like a series of workers on a production line, who will contpléheir assigned task as
soon as the materials arrive. Dataflow languages are inthgparallel, as there is no
hidden state to keep track of, unlike imperative programmegataflow program will
usually be constructed as a big hash table, with uniquelytifiled inputs as the keys,
and pointers to the code as data. When an operation compie&eprogram scans
down the list until it finds the first operation where all of tiputs are currently valid
and runs it. When that operation terminates it will typiggiut data into one or more
outports, thereby making another operation valid. Theeefbe task of maintaining
state is removed from the programmer and given to the largjsiagntime environ-
ment instead, as the only requirement of making a programlpéis to share the list
containing the port information.

52 Chapter 3. Scientific Workflow Scenarios

The dataflow paradigm is used by most of the active scientifikflow projects. As
discussed in Section 2.2 myGrid [53] uses a specificallygesi simple dataflow lan-
guage: SCUFL. Kepler [6] is based on the Ptolemy Il systemaara dataflow ori-
ented workflow language, ICENI [41] also has dataflow serngantll these projects
have a selection of components which have input and outpt$ pad it is then up
to the user to wire these components together to form an &dgleuprogram. This is
usually achieved through the use of Graphical User Interfatie ten requirements of
scientific workflow will now be discussed in detail, with redace to both the active
projects and the set of motivating workflow scenarios preseim this Chapter.

3.4.1 Requirement 1. Rapid Prototyping

Scientific work is centred around conducting experimentscigntific workflow sys-
tem should mirror a users conventional work patterns bynaiig them to apply their
methodology over distributed resources. A scientist sthdnd able to work on the
process of experiment construction, treating the disteuesources and services as
problem solving components, in order to falsify a hypotke3ihese problem solving
components and the parameters they require need to be galhitweaked by the
scientist, until the outcome of the experiment either pspwe disproves this original
hypothesis.

A scientific workflow begins as eesearch workflow The focus here lies on iterative
design, steered by a hypothesis. This refinement procedsmraimate when a suitable
combination of workflow components and parameters fal$ify original hypothesis.
As a result of this incremental design process, sciengspsire the ability to prototype
experiments rapidly. It is therefore essential that thekflow language and scientific
workflow system can support this kind ofcremental exploratoryand prototypical
approach to workflow composition; allowing scientists tdolly test a hypothesis.
The myGrid Taverna workbench [43], described in Section12i2 an example of
a scientific workflow system which allows a user to rapidlytptgpe and execute
experiments using a simple dataflow language: SCUFL.

3.4. Requirements Analysis Part | 53

3.4.2 Requirement 2: User Interaction

User interaction is an essential requirement of scientiiddow modelling. There are
many occasions where a user will require the ability to cledmstween different paths
of execution, input parameters to a service, modify paramethile the workflow is
executing and wire in new workflow components if somethintgfaA particular type
of user interaction known assanart re-run[38] is highlighted in the Kepler system.
A smart re-run allows a user to alter parameters while thekfliaw is still executing.
For example a user may (after inspecting the results of thedieps of the workflow)
want to alter the parameters and/or components which wWécathe following stage.
The workflow would not need to be executed from scratch, dmyparts which were
affected by the parameter changes.

To illustrate the importance of user interaction, we refgaia to the knowledge ac-
quisition scenario, presented in Section 3.3. Althoughfitlsé two stages (illustrated
by Figure 3.4 and 3.5) can be executed automatically, threrseveral steps during its
execution where user interaction is required. Once thalrgtid of scatter plots has
been loaded into the visualisation software, the user mustaysanity check to the
correlations. At this point the workflow system will pausesewtion, waiting for input

from the user. It is only through user intervention and thierstists expertise that a
significant correlation is found between 6 attributes. Asarbple of 200 objects are
selected along with the 6 attributes of interest, theseiargrn, used as input to a
statistical web service. The scientist’s knowledge is mgaguired, this time to derive
the classification schema which is applied to the full setG0Q0 records.

The knowledge acquisition scenario highlights the neeafaorkflow language and

scientific workflow system to allow flexible, user-drivenardction, specifically demon-
strated by the need for the scientist’s expertise in orddintbthe patterns in the at-

tributes, and to derive a classification schema. There arg pr@cesses which simply
cannot be automated, and often the best solution is to keepstr in the loop.

3.4.3 Requirement 3: Workflow Reuse

Once the processes behind a scientific workflow are properierstood, aesearch
workflowcan be executed automatically alsatch workflow As a result of the lengthy
iterative process of design, workflows becomegadued commodityand a source of

54 Chapter 3. Scientific Workflow Scenarios

intellectual capital. These workflows can be reused, refowed time, and shared with
other scientists in the field. It is not necessary for a usemerstand how a batch
workflow is constructed internally, it can effectively beated as a black box of com-
putation which the user can customise by parameterising/thkflow specification.

As an example, take the batch processing scenario discussgettion 3.2. In the
AstroGrid architecture, this workflow is presented to thensmply as a unit of com-
putation, that will, given an input, determine photometedshifts. The user needs
to know nothing of the internal computation, merely supptyRA and DEC (coor-
dinates) for the workflow to begin execution. Once the comjdierative process of
designing a scientific workflow has finished, other users ake advantage of this re-
search. It is therefore essential that workflows can be petremsed at runtime and are
fully reusable at every stage in the design process.

3.4.4 Requirement 4. Fault Tolerant Execution

The Large Synoptic Survey Telescope (LSST) (discussed irerdetail in Section
4.1) will generate 36 gigabytes of data every 30 secondsr &ten-hour winter night,
LSST will collect up to 30 terabytes of data, and eventuailshave more than 50
petabytes. Storing these data alone is a difficult problarmtiings become far more
complex when users attempt to analyse, retrieve and vgaitliese massive volumes
of data. Scientific workflows are therefore oftdata, compute and analysigtensive.
With the movement and analysis of such large quantities taf, dlaese complex work-
flows can take days, or as long as weeks of compute power th foms iteration of
the workflow execution cycle.

Workflows with execution times as long as this need the glitirun with adetached
executiormode. This means executing in the background of a parallehma or Grid
cluster, without the need to stay constantly connected tgeatts application. Call-
back mechanisms when the workflow requires user interventioparameter changes
need to built into the workflow engine. The myGrid notificatiservice [36] is an
implementation of such an idea. The scientist cannot affordhe workflow to fail
half way through the execution cycle and have to be rollekbadhe start. There-
fore reliability and fault tolerance factors are importavtien considering the design
of a language and system to support scientific workflows. Comtachniques such as
transacting, checkpointing [18] and multiple service ops (in case a particular ser-

3.4. Requirements Analysis Part | 55

vice instance is down) need to be built into the language aold in order to provide
the user with fault tolerant execution.

3.4.5 Requirement 5: Suitable Abstraction

A workflow system, particulary when used in the scientific conmity, should allow
the same information to be shown at various levels of abstracdepending on who
is using the system. A high level of abstraction should begméed to a scientist who
knows nothing (or simply doesn’t care), about the undenipigs of service composi-
tion. The scientific workflow system should present this tgpaser with an intuitive
Graphical User Interface (GUI) or a simple formal notatiém engineer on the other
hand, might be interested in the lower level details of dydobw the workflow is
composed. Such as where data archives are located and wuepti®ns a service
throws, if it were to fail. These levels of abstraction sttbhk fluid, many scientists
will be happy with the high-level definition most of the timayt will want to drill
down into the specific details occasionally, e.g. when usetga results are obtained.
A scientific workflow language and system should therefoeeable to present ana-
lytical knowledge discovery workflows for scientists, asiBaas presenting low level
plumbing workflows for software engineers.

myGrid solves this problem by allowing a workflow to be digp@d at varying levels of
abstraction. A scientist using Taverna can construct a flmwgraphically through the
user interface, or load and execute a pre-written workflawlisas the batch processing
scenario). Whereas an engineer can tweak the individugicesrand composition
control flow with the dataflow language, Scufl [44]. Varyingéés of abstraction are
essential for both scientists and engineers to make fulbtiaesystem.

3.4.6 Requirement 6: Legacy System Integration

Many scientific applications are consideredacy applications These applications
tend to be written in older programming languages, such &sdfo However, just be-
cause they are written in older languages, does not meaththashould be discarded.
The reason that they are still in use is that they have a prtvaehk record, are reliable
and known to work. From a software engineering perspedtiiefar more efficient to
integrate these applications into newer systems thantiegithe code from scratch.

56 Chapter 3. Scientific Workflow Scenarios

With the widespread adoption of service-oriented architexs and web service stan-
dards, legacy code can simply be wrapped in a standard actednd exposed as a
web service. This web service can then, like any other, bé ase building block for
more sophisticated applications; such as scientific warkfgstems. SExtractor and
HyperZ are two examples of legacy applications used by ttehigaocessing scenario.
These applications have evolved with time and have beenpgdhpp as web services
in order to be integrated into AstroGrid’s service-orightgchitecture.

myGrid [53] allows legacy code to be integrated as procesgues, such as WSDL
or SOAPLAB. Kepler and ICENI have similar mechanisms whidbve code to be
automatically wrapped and integrated into the scientifickfilow environment.

3.4.7 Requirement 7: Provenance Data

As we have illustrated in Requirement 1, scientific workfl@as be hypothesis driven,
as a result, more often than not the outcome of the workflohbgiunsuccessful [71].
It is therefore essential that the system documents thessefisteps a user performed
which resulted in the unsuccessful outcome. This inforamathay be crucial to aid
the evolution of the workflow, in order to produce a successiiicome.

Scientific workflows must be fully reproducible. In order faworkflow to be repro-
duced, information must be recorded which indicates: whkieeedata originated, how
it was altered, which components fitted together to form tlekflow, parameter set-
tings etc. This will allow other scientists to re-conduat ttxperiment, confirming the
results. Output of workflows may be used as a basis for fusearch, either by the
scientists who generated the data, or colleagues in addiatd. This methodology is
consistent with the usual practise of non-computatioris.l& useful feature of a sci-
entific workflow system is the ability to automatically geater provenance logs, which
can be inspected by others at a later date. myGrid integsatdsa feature and allows
provenance documents to be linked together, for on the flpt@tion [35]. Prove-
nance data also aids users of batch workflows, allowing userspect the results of
previous experiments, in order to steer their own.

3.4. Requirements Analysis Part | 57

3.4.8 Requirement 8: Smart Component Choice

With pervasive service access, there will inherently betiplel groups of services
which perform the same functionality. For example in thechgirocessing scenario
there are two implementations of web services which perfivredshift calculation:

ANNz and HyperZ. However some services are inherently meliable than others,

as they make use of better algorithms, have less down tinaerltatency etc. It is

also true, that certain combinations of services will waokdther more effectively
than others, as there will be less data transformationstimdsn or they are physically
located nearer one another.

A scientific workflow system should therefore, ideally as#ig user in selecting com-
ponents. Firstly at design time by suggesting componentshadre known to work
well together based in historical data but also at runtinasgll on the current loads of
services etc. For this to work, performance data needs tedmrded, services need to
be semantically marked up, and brokers [37], [51] need teraférvices which closest
fit the user’s needs.

3.4.9 Requirement 9: Semantic Mark-Up

The Semantic Web, as briefly discussed in Section 2.1.3 alttata to be wrapped in
an additional semantic layer. This semantic layer providetadata (data about data),
by giving information well defined meaning, so machines dantbegin to reason
about them.

Semantic web services allow the properties and capabildfea web service to be
described, using a markup language such as OWL-S [39]. Atsievho is new to the
system will not necessarily know which services to use foarigular experiment. By
semantically marking up web services, applications cagessiga selection of services
based on a user's needs, as discussed in Requirement 8. élpssth remove the
often complex and lengthy process of service discovery. éintechniques are a
useful addition to a scientific workflow system. By markingdgia, web services and
workflow components, everything is inherently more reusabid easier to discover.
The myGrid project makes extensive use of semantic marlaimtgques in its Taverna
workbench.

58 Chapter 3. Scientific Workflow Scenarios
3.4.10 Requirement 10: Data Presentation

Data presentation is often overlooked when designing stiemworkflow systems,
pushed aside as a trivial task that can be addressed later §ystems evolution. How-
ever as a scientist may know nothing of how a workflow systepratgs, it is essential
to present him/her with an intuitive user interface, alsscdssed in requirement 5.

Web services require data to be formatted correctly, usiffgrdnt data types and
structures. It may therefore, be necessary to pass thetaftpne service into a filter
service, which reformats the data so that they can be passedhie next service.
myGrid offers a number of shim services [53], which can awboally perform this
task for a user. Although this is essential for the correetceion of the workflow, it
may not be necessary to inform the user that this processis teking place. These
tasks can, depending on who the user is (scientist, engaegroe hidden away.

Multiple data types may be used throughout the duration efvbrkflow, and it is
therefore essential that different types of data are ptedecorrectly to the user. Ide-
ally, the underlying scientific workflow system should chetse most appropriate way
to display these data. Tools such as graph plotters andligatian software should be
built into the system, and the same data should be able tcsb&agied to the userin a
number of different ways. This requirement is illustratedhe knowledge acquisition
scenario. Here visualisation of the data needs to take plemeler for the scientist to
make an attribute selection, and proceed with the workfloapl&r and myGrid offer
workbench-like facilities specifically for this task.

3.5 Chapter Conclusions

This Chapter has introduced the domain of Virtual Obseryatechnology, specifi-
cally the UK e-Science project AstroGrid. By working clogelith this project we
have derived and helped to shape a set of workflow scenaribeselscenarios act
as a motivating factor behind this research and demongtrateomplex coordination
behaviour required of scientific workflow. By analysing thats-of-the-art scientific
workflow systems (discussed in 2.2) and motivating sceatinds Chapter has demon-
strated (by example) how scientific workflow has an overlaggset of requirements
with traditional workflow modelling, but also has an extra eérequirements and

3.5. Chapter Conclusions 59

therefore needs consideration separately. As a resuli®ptbcess we propose a set
of core requirements of scientific workflow.

The following Chapter presents a further workflow scenamaéen from another Vir-
tual Observatory project: LSST. This scenario acts as ateoexample of coordina-
tion which is difficult or impossible to achieve by the exigiservice composition
techniques. This scenario requires a fundamentally @iffeapproach to service com-
position, a theme which will be explored throughout the rarder of this thesis.

Chapter 4

A Counterexample

This Chapter presents a further workflow scenario which leesnointly derived with
the Large Synoptic Survey Telescope (LSST) project, cegtaround runtime orbit
and object classification. The scenario acts as a pivotak roihis thesis and serves
as a counterexample to coordination which is difficult or asgible to enact by ex-
isting service composition techniques. This counterexargpes beyond the set of
requirements which the knowledge acquisition and batchgesing scenarios, requir-
ing a fundamentally different approach to the service cositfum problem.

Section 4.1 introduces the LSST project (Virtual Obsematechnology) and dis-
cusses the new field of time-domain astronomy and the patemipacts this will have
on the astronomy community. Sections 4.1.1 and 4.1.2 auithinletail the counterex-
ample scenario, while Section 4.1.3 discusses an extetsithre scenario based on
contract negotiation. Section 4.1.4 highlights the exé&taaf requirements necessary
to solve the counterexample scenario presented by thist@haphese requirements
combined with those presented in Section 3.4 form the requents analysis and mo-
tivation for the remainder of this thesis. Conclusions a$ @@hapter are presented in
Section 4.2.

4.1 Large Synoptic Survey Telescope (LSST)

Observations of change in the universe are difficult to obtdilost change in the
universe is so slow that it can never be directly observddnt¢gplace over millions
of years; much like the evolutionary processes taking ptac&arth. However many

61

62 Chapter 4. A Counterexample

of the most remarkable astronomical events occur on humat egen daily, time-
scales; these changes have proven the most difficult towds€urrent observatories
are able to look very deeply at very small parts of the sky.sTmall field of view
means that any one observation is not likely to catch a temb®vent in the act, as
the observatories are always looking somewhere else. Algmlal of view means
that an impractically large number of separate observatame required to map the
entire night sky. Observational facilities are also in gr@amand, astronomers must
apply for scarce telescope time, with the assignment of arfgw nights per year to
each astronomer. This means that with the lack of continebgsrvatory access and
a global view, astronomers are almost certainly missingpouvhat is going on in the
universe.

The Large Synoptic Survey Telescope (LSST) [56] has begmgsed to address many
of these difficulties and open up ‘time-domain astronomyhisTground-based 8.4-
metre, 10 square-degree-field telescope will provide digihaging of faint astronom-
ical objects across the entire sky, night after night. Thejue property of LSST is
that it is able map the entire night sky very quickly. LSSTIile the sky repeatedly
with overlapping images of approximately 10 square degrie@all be able to tile the
entire visible night sky in a matter in 3 days. Current estesandicate that LSST will
generate 36 gigabytes (GB) of data every 30 seconds and d¥ehaur winter night,
will collect up to 30 terabytes.

LSST is broadly interested in two categories of objects,fitst of these are known
asvariable objects Variable objects, are as their name suggests objects wiigh
over time. Examples of variable stars greriodic variables(e.g. they oscillate in
size and hence brightness) amperiodic variableqi.e. something dramatic happens
every now and then which changes their brightness - such as trensfer between
stars). Occasionally, the brightness of a galaxy changgsfisiantly, but that only
really happens if a star in it goessipernova in which case it can shine (briefly) as
brightly as all the rest of the stars in the galaxy put togethe

The second category of objects that LSST is interestedranéng objects Moving
objects broadly fall into two classestarsandbodies in the solar systenThe stars
move across the sky relative to us because our Milky Way gakaxotating and the
Sun, and all the other stars, are in orbit around the Milky Wagntre of mass. To a
good approximation, the speed with which a star is seen teraoross the sky depends
on how close it is to us, so that the only stars which move kggice. an appreciable

4.1. Large Synoptic Survey Telescope (LSST) 63

movement on a timescale of a few years) are the ones whicteayehse to us. Most
stars can only be seen moving over timescales of many yeas;decades.

That leaves the solar system objects, which are the primeetorof LSST. There
are a number of classes of solar system object. Traditiptiadly have been divided
into planets, asteroids and comets, but in recent yearssitolean realised that the
boundaries between all three classes are somewhat vaguetypes of solar system
objects are of particular interest for LSST. The first of #hese thetrans-neptunian
objects(TNOSs), which are objects whose orbits around the Sun haeegei radius
than that of Neptune, so that they inhabit the outer regidtiseosolar system. Within
the general category of TNOs there is one class of objedeccEuiper Belt Objects
(KBOs) which are of particular interest. The Kuiper Belt isegion of the outer solar
system (in the sense of a range of orbital radii) in which afaibjects are found, so it
is dynamically stable. What's particularly interestingpabKBOs is that they’'ve been
sitting in the outer reaches of the solar system for seveltadiibyears (or, at least, the
material in them has - maybe individual objects aren’t sgltved) so they are good
probes of the early history of the solar system, which makemtof great interest to
people who study the formation of planets and the early e\iwf the solar system.
The second type of particularly interesting solar systeneaib are theNear-Earth
Objects(NEOS). This is, as its name suggests, a catch-all term fgharg that passes
close to the Earth, and, of course, these are of particutarest because they could
actually hit the Earth.

4.1.1 Scenario 3: Runtime Coordination - Automated Stage

The runtime coordination scenario is taken from the LSS€rsm use cases, a moti-
vating factor behind the development of the LSST programe data reduction and
analysis in LSST will be done in a way unlike that of most oksey programmes. The
data from each image will be analysed and new sources ddtbetere the exposure
for the next tile is ready. This means that if anything unlissidetected, normal ob-
servation can be interrupted, in order to follow up any newagidly varying events.
Other observing resources can also be notified instantyjging a different perspec-
tive on the event. As data are collected, they will be addealltthe data previously
detected from the same location of sky to create a very desegier imageLSST will
also build up a database of all known KNOs and NEOs and otheingobjects. Each

64 Chapter 4. A Counterexample

Figure 4.1: An example of a subtracted image

observation will help to improve the accuracy of the datalhel

Every time a new image of the sky is obtained, the master imathde subtracted
from it. The result is an image which only contains the défere between the sky at
that time and its average state; in other words a picture aft\Wwhs changed, this image
is known as thesubtracted image Figure 4.1 illustrates two images of a cluster of
galaxies, taken three weeks apart, the far right plate istiracted image, revealing
that a supernova has exploded in one of the galaxies. Thisastdd image is then
processed by a cluster of computers with the following steps

e Find known objects: This activity runs on the subtracted image. The first task
is to compute which objects are expected to appear in thessuet image, given
the area of sky, time of day, and the current state of knovdexfdgnown orbits.
This involves making a query to asrbit catalogue which contains data about
the orbits of all currently known objects. The results framstquery (expected
detections) are then cross matched with the sources in biested image. The
result is theunmatched-source cataloguihis catalogue only contains sources
which can’t be matched with a previously known object (ilee things which
may be new discoveries of moving objects). The remainden@itorkflow in-
volves attempting to construct an orbit for these newly det# moving objects.

e Find Tracklets: The newly creatednmatched-source catalogisthen used to
compute pairs of detections separated by short time inerealledtracklets
A tracklet is an observable, short section of orbit. In ortkecreate pairs of
detections, all objects in thenmatched-source catalogae queried against
the orbit catalogue, in an attempt to obtain data about tbefets from earlier
observations. If earlier observations and current obsienvs can be linked to
form tracklets, they are stored in thracklet catalogue

4.1. Large Synoptic Survey Telescope (LSST) 65

(1 N\ f2 ™\

Subtracted Image
(Master Image) (Current Image)
Autormated Crbit Catalogue
Processing . Update

.....
ey

Subtracted Image

Unclassified Objects

- -
......

Figure 4.2: Runtime coordination scenario - automated processing

e Link Tracklets: The newly createtracklet catalogues then used in an attempt
to link these tracklets over a larger time window. This isiaebd by again
guerying theorbit catalogue this time looking for observations of the same
objects even further back in time. If matches can be foundthedracklets
can be extrapolated out into longer sections of orbit, thexy tire added as new
orbits to theorbit catalogue

e Orbit maintenance: The orbit catalogue is then updated, in the light of re-
detections of known objects. Each rediscovery providesd information which
helps to constrain the set of known orbits further, resgltmmore accurate orbit
predictions.

e Generate alerts: The final stage of the workflow attempts to classify all erstrie
in the orbit catalogue(i.e all the objects which now have known orbits). If
any Near Earth Objects are detected to be passing close tattie alerts are
generated to astronomers so that follow up observationbeacheduled.

After the initial processing stage of the subtracted imaljes{rated by Figure 4.2),
there will be some data which is left over, thaclassified objectsThis data includes
objects and orbits which can’t be classified by the processwftware. As LSST
is a first attempt at time-domain astronomy, it is likely teaiver not only existing
types of objects, with many previous, well recorded obs@s, but also, many new
species of objects. If a new species of object were to be dised, then the automated
classification software is almost certain to miss it and thject would end up with the
unclassified objects set. This is because no previous detiz ebout this possible new
species of object, so no comparisons can be made to earenations.

66 Chapter 4. A Counterexample

This leaves us with the question about how to classify theaibjin the unclassified
objects set. As the content of the data cannot be determmadvance, if a possible
new species of object were to arise, it is difficult to asaert@hether it is in fact a
new species of object, or simply some kind of observatoryiggant failure. Typi-
cally, most of these objects will be junk, but this may onlyreeealed on the basis of
comparison with other detections made from the same night.

4.1.2 Scenario 3: Runtime Coordination - Unknown Stage

It is intended that groups of specialised software comptatake over where the sub-
tracted image processing left off, attempting to classihatever data is left over from
the automated processing stage. The software componenisitally set up with a
certain amount of knowledge about properties of the datd,aanumber of statistical
tests to perform. They require the ability to cooperate aatdinate with one another,
hence they are also set up with some rules about when and hsivate information.
However, they must be able to react to the constantly chagngynamic environment
which they are operating in. Engineers can focus on devetpipidividual, intelligent
software components which are specialised in their owntrigtor example certain
components will have expertise on pixel failures on the gamethers contain data
and a hypothesis about a certain kind of unclassified objéggure 4.3 shows an
overview of the example scenario. Observatories are definh the dotted circle,
inside each observatory is a certain amount of local ddtestibted by databases), and
a group of software components (illustrated by the squangb services are shown
as rounded rectangles. Communication is shown by arrowigdl Isees, web service
invocations are shown as single arrowed dotted lines.

An example interaction between a group of distributed olzgeries could be viewed
as the following. Software components at observatory A &iengting to classify
objects from the unclassified data set, one of these compohes located an item
which cannot be classified locally. This anomaly appearseveral plates of the sky
on the subtracted image, so it wasn’t present on the maséganThe object and orbit
classification algorithms cannot identify the anomaly,tsmuld potentially be a new
species of object, or some kind of equipment failure. Thesolzory has exhausted
the possibility of solving the problem locally and needs dongpare similar observa-
tions made on the same night with distributed observatadEsbases and repositories.

67

4.1. Large Synoptic Survey Telescope (LSST)

-

-
-
-
IEiI

-

-

.
- -
hET TR A4

* [:) 4
EE;;E -
. -

.
Seenae=”

R

b
.

proposals

A
.
-'-
.

eem=.
s -
.

.,

.,
0y

Seme=

2

mammee”

v

LI
W

overview

PPTT
e

-
. -
AT

by
.
éi? -
-
by
~
~,
zgé |
(E;;;a ’
’
e -
Treeam=”
.-'@""-

O

AN
N

.
. #

J\O

Figure 4.3: Runtime coordination scenario

68 Chapter 4. A Counterexample

It wants to ask a question equivalent thas anybody else found anything strange in
this particular area of sky, at time t, which could solve thassible anomaly?’

In order to discover which observatories can offer the remidata, the Contract Net
protocol [50] is executed over a group of observatories kmtovhave possible data
about the area of sky we are interested in, at time t. Thidustrated by steps 1 to 4
of Figure 4.3. A Contract Net service (on behalf of the obatawy) issues a call for
participation over the set of possible observatories. Tlkfar participation contains

a proposal, defining the terms of agreement. Each obseydwen reaches some form
of conclusion about participation (based on current woddk data availability etc.),
issuing either aracceptor reject message to the proposal. The set of observatories
who returned accept (in this case observatories B and Ceaurmed to observatory A,
who locally decides (based on some internal local knowledgeruntime conditions)
which observatory to obtain the data from in order to makevésd progress with the
classification and workflow. Step 5 of Figure 4.3 showsaaoept-proposamessage
being issued to the selected observatory (in this case Bjrenemaining observato-
ries are issued eeject-proposamessage. It is then up to the observatory B to locally
retrieve and process the data in accordance to the agreedaC@oNet proposal (step

6 of Figure 4.3), this will involve negotiation of resourcasd a set of external web
service calls.

If for some reason the terms of the proposal cannot be mefarm-failureis re-
turned to observatory A. Amform-failure will mean that the Contract Net protocol
will need to be executed again. Due to changing circumstrsteh as network load
or scheduling, there is no guarantee which nodes will belaai for participation,
with this iteration of the contract net protocol, possibly entirely different set to
the original iteration will be available. However, obsedorg A runs the same process
illustrated from steps 1-6 until suitable data is obtairerdlie workflow. When this oc-
curs aninform-resultmessage containing the required data is sent back to olbesrva
A. Once received local software components can use the resedgathered from the
distributed observatories and databases to reach a contiegarding the unknown
object, reporting anything to human scientists which mayune closer inspection.
The observatory software then continues to process theineeraof the unclassified
data, following the same process again if an object cannoldssified locally.

4.1. Large Synoptic Survey Telescope (LSST) 69

4.1.3 Scenario 3 Extension: Contract Negotiation and Sched uling

This Section details an extension to the runtime coordimasicenario, which deals
with contract negotiation and automated observation sadiveglin order to follow up
any potentially interesting objects. Figure 4.4 illustsathe extended scenario, it picks
up where the scenario described in Section 4.1.2 leaves off.

Based on the combined opinion (from the data retrieved froseovatory B) the soft-
ware at observatory A detects that the object in questioroismfact a fault but a
possible new species of object, previously undetecteditttreomously makes a deci-
sion to schedule an extra observation as quickly as possibdéeder to gather further
evidence of this new species of object. Observatory A geéesmmnew proposal (based
on the area of sky to be scanned) and retrieves a list of obtsgi®s from a registry
which could potentially schedule the observation (step Figtire 4.4). The Con-
tract Net protocol is executed once again across the grodgstfbuted observatories
deemed to be suitable from the registry lookup (step 2 ofleigu4). This time instead
of simply replying withacceptor rejectmessages like the previous scenario, there is a
further option to propose amendments to the contract. bxdase observatories B and
D cannot fulfill the terms of the contract and issue a rejecdsage. Observatory C on
the other hand can potentially offer the requested sertioeever due to its current
work load it sends back a propose message with a list of amendnattached (step 3
of Figure 4.4). This proposal along with the amendments ssiggl are sent back to
observatory A (step 4 of Figure 4.4)

Observatory A is unhappy with the restrictions placed orotiiginal contract and itself
amends the contract again. An iterative process of negmitdakes place between the
two distributed observatories (step 5 of Figure 4.4), eaaking amendments until a
draft of the contract is agreed by both parties. If the cantra agreed observatory
C places the observation request on the queuing systemdaeltbscope hardware.
The place in the queue has been negotiated between obsmy#@nd C, depending
on the urgency of the update needed (step 6 of Figure 4.4)e @mctelescope has
performed the observation the data is sent back to obseyatgstep 7 of Figure
4.4). This can then either by used for further processingotafion or deny a local
hypothesis or sent to a group of scientists who have reqiiestification updates of
any potential new species of objects (step 8 of Figure 4.4).

Chapter 4. A Counterexample

schedule extra
observation

generate
proposal

.......

propose +
amendments

efm-
- bty

E
',-‘ s‘.
Y . L’
o '
: : :
‘: l'. J proposal +
;. * K amendments
. ',‘ g3 .
. % .

.

‘
;

+" contract negotiation —

until agreement

......

Figure 4.4: Runtime coordination scenario - contract negotiation/scheduling

4.1. Large Synoptic Survey Telescope (LSST) 71
4.1.4 Requirements Analysis Part Il and Problem Statement

Current service composition techniques alktatically definedpre-designed/pre-planned
workflows to be enacted byeentralised workflow engin&Vorkflows like the knowl-
edge acquisition and batch processing scenarios discusSedtions 3.3 and 3.2. The
scenario discussed by this Chapter acts easumterexampléo coordination which is
difficult or impossible to achieve by current service comipos techniques.

The systems which attempt to classify this data will needtol®t complex coordina-
tion behaviour and go beyond the requirements defined in@egi. These properties
will now be discussed in turn:

e Distributed data: Data will inherently be distributed over a number of obser-
vatory nodes. Systems will need tollaboratewith these nodes, in order to
retrieve the necessary data to make forward progress wathvidrkflow.

e Scarce resourcesResources required as part of the workflow (such as sky data
and observation time) are scarcelegotiationwill need take place if several
observatories are either offering the same informatiomises or bidding on
the same resource. This point is illustrated by a possibigract negotiation
process, detailed in Section 4.1.3.

e Data volume: Due to the quantities of data involved with the LSST projelcs{
cussed in Section 4.1), the process of analysing the urifiéalssbjects will need
to be performedutonomoushyy intelligentsoftware entities. It is not feasible
to expect scientists to process this data by hand and hurrartists should only
be included in the loop if something particularly interagtihas been detected,
requiring the skills of a specialist scientist. For examplen observatory A has
gathered evidence (by scheduling observation time) forssipte new species
of object, part 8 of Figure 4.4.

e Runtime coordination: As there is no way to tell how much, or what type of
data will be found in the unclassified objects set, a trad#icstatic workflow,
which has been put together at design time, or pre-plannikdatioffer the flex-
ibility required of this constantly changing environmeifithe software entities
which enact the workflow will need to compose sections of thekilow (which
services to call, databases to invokignamicallyat runtimeto cope with this
uncertainty For example the components willing to take part in the ext&on

72 Chapter 4. A Counterexample

changes each time the Contract Net protocol is executed.

e Pro-activity: Software components require the ability tofreactivein nature,
searching and composing solutions to problems they eneount

e Partial knowledge: Observatories may not want to share their data directly, due
to privacy issues, funding bodies etc. For this reason it matybe possible to
move all the data into one place at the same time (like a tosdit centralised
workflow engine) in order to run the necessary processingralgns. Software
entities may therefore only have partial knowledge of tlegivironment, this
suggests adopting a puradgcentralised, peer-to-peer architecture

4.2 Chapter Conclusions

The runtime coordination scenario presented by this Cnagts as a counterexample
to coordination which is difficult or impossible to achievg éxisting service com-
position techniques. In order to achieve the added fleyhigquired of this coun-
terexample and the requirements discussed in Sectioni3.th#sis views the service
composition problem in a fundamentally different way. Areaggbased architecture is
proposed, allowing active, autonomous agents to consueneabsive service-oriented
architectures found in Internet and Grid systems.

Specifically we propose modelling the processes found ensific workflow with the
flexible coordination technique of interaction protocalés€ussed in Section 2.3.4)
from the field of multiagent communication. This has alloveel typical features and
requirements of a scientific workflow to be understood in ®ohpure coordination
and executed in an agent-based, decentralised, peeet@mhitecture.

For completeness it is important to mention that there aréngnmal number of work-
flow projects based on multiagent/peer-to-peer architestiLittle-Jil [72], PeCo [58],
SwinDeW [76], Pockets of Flexibility [48] and WASA2 [67]. #&lough this thesis
recognises the contribution of these projects many arkisttheir infancy and are
merely suggested approaches. None of the approaches adefban interaction pro-
tocols or deal specifically with agent-based service comtipodor scientific workflow
scenarios, like those discussed throughout this thesis.

In the following Chapter the MultiAgent Service ComposititMASC) language is

4.2. Chapter Conclusions 73

introduced, this agent-based service composition langisagpecifically designed for
modelling complex workflow scenarios like the runtime caoadion scenario detailed
by this Chapter. The core aims will be be discussed along avitheak down of the
language syntax and examples of use where appropriate.

Chapter 5

MultiAgent Service Composition
(MASC)

This Chapter introduces the formal languagéultiAgent Service Compositipoth-
erwise known asVIASC The language presents an agent-based solution to the ser-
vice composition problem and is centred around the condept@raction protocols.
Section 5.1 reiterates the conclusions drawn from previchespters and presents the
motivations and core aims of the MASC language. Section te2qnts in detail the
formal syntax of the language, discussing in turn, eachtooeciswith an example of

use where appropriate. Section 5.3 concludes the Chapdetharfull MASC syntax

is presented in Section 5.4.

5.1 Service Composition through Interaction Protocols

As demonstrated through our analysis of current scientifidkflow systems and moti-
vating workflow scenarios, scientific workflow has an extrageequirements which
go beyond traditional Business Process Modelling. Althotige field of scientific
workflow is maturing, there are still few languages and systevhich deal with the
flexible knowledge acquisitioanddiscovery processdsund in the sciences. Through
our analysis, this thesis has derived a set of core requimesrier scientific workflow.

Section 4.1 highlighted a counterexample which demorestritat statically defined,
pre-designed/pre-planned workflows were too brittle far flexible, dynamic com-
position required of the runtime coordination scenario. extra set of requirements

75

76 Chapter 5. MultiAgent Service Composition (MASC)

Traditional Requirements Extra Requirements

R1: Rapid Prototyping E1: Dynamic, Runtime Composition
R2: User Interaction E2: Peer-to-peer Architecture
R3: Workflow Reuse E3: Peers are Autonomous

R4: Fault Tolerant Execution E4: Peers capable of Reasoning
R5: Levels of Abstraction E5: Proactive, Reactive Peers
R6: Legacy Systems Suppoyt
R7: Provenance data

R8: Smart component choic

[¢)

R9: Semantic mark-up

R10: Data presentation

Table 5.1: Requirements analysis

(discussed in Section 4.1.4) is required to achieve thisptexncoordination. This
extra set of requirements goes beyond the existing funalityrprovided by current
service composition techniques. This has resulted in a cwdbset of requirements
which together form the requirements analysis for the rewhai of this research, to
reiterate, an overview of these combined requirementtustibted by Figure 5.1. The
MultiAgent Service Composition (or MASC) language aims teanthese require-
ments by adopting an agent-based approach to service camppsur approach is
founded on the concept of interaction protocols.

5.1.1 Combined Requirements Analysis

Interaction protocols (addressed in more detail in Sec2@¥) are essentially a col-
lection of conventions which allow agents in apen systeno interact with one an-
other. The ternmopen systenmeans that any agent can take part in the interaction,
regardless of their internal implementation details. fat&on protocols define the
rules of engagemeritetween a group of interacting agents. Suchf and whenan
agent can communicate, and tbeler andkind of messagethat an agent expects.
Interaction protocols sit between the transport layer (dledl network specifics, e.g.
HTTP/SOAP etc.) and the rational layer (how the agent reabtm it receives certain
messages).

Our approach builds on the Electronic Institutions (E.Bnfrework, which was dis-

5.1. Service Composition through Interaction Protocols 77

cussed in Section 2.3.5 and extends an earlier version datigeiage: Multi Agent
Protocols (MAP) [69], [10]. Although Electronic Institoins provide a standard frame-
work for coordinating the interactions of agents in an oparitigent system, there
are several problems which prevent it from becoming a trdigmable standard in the
agent community:

e Centralised control: All interactions that take place in the EI framework are
coordinated through a central agent, known asdministrative agentor gov-
ernor. The administrative agent’s job is to enforce the converstiof the insti-
tution, and to make sure that agents adhere to the institutigles and regula-
tions. This is regarded as a bottleneck in the system, beaagdination of the
agents hinge on the administrative agent functioning ctigraf the administra-
tive agent crashes or performs an incorrect function thiesgants taking part in
the institution will not behave as expected. One of the k@perties of agents
(discussed in Section 2.3) over other software entiti@sitenomythe presence
of an administrative agent undermines this key property.

e Non-determinism: Protocols controlling the flow of an agent can contain mul-
tiple transitions between states within a given scene. iewthe protocol does
not attempt to define when an agent should choose a partistalte over an-
other, this is left up to the engineer of an individual agehbwnust manually
assign behaviours to each of the choice points in a protd¢os means that the
protocol can not be automatically disseminated to an adgtunhan intervention
is always required to supply the behaviour at all choice {oin the protocol.
This can be considered a heavy weight engineering taskciedlyef the proto-
col is more complicated than the simple general practiti®seenario discussed
in Section 2.3.5.

e Design time: The path of an agent through an institution (i.e. the roleagant
will adopt and the scenes in which it will interact) must béedmined before the
agents are deployed. When a new agent wishes to participate institution
it must know the internal details of the institution. Thereumt approach is to
construct a plan for an agent based on knowledge of a patimdtitution. This
means that the path of an agent needs to be pre-determinéslagproach is
fine for simple cases, with relatively predictable intei@as, however it breaks
down in more complicated cases where it is not possible tdgtezgmine the path
of an agent through the institution.

78 Chapter 5. MultiAgent Service Composition (MASC)

e Static topology: It is assumed that the structure of the institution rematatcs
If the definition of the institution changes then the plangiie individual agents
will need to be re-synthesised and corrected. This mearisetrem a minor
change in the definition of an institution, may mean compédaeworking of
all the individual agents. This is highly undesirable anckesathe system com-
plicated to deploy and brittle to any changes in the topalogy

The MASC language borrows certain concepts from the E.l éaork, such as: coor-
dination being defined using interaction protocols, theding of these protocols into
scenes, roles and agents adopting roles from a protocol. G/A&&@vever is an inter-

action protocol specification language designed to addms=ral of the shortcomings
of the E.I. framework and is targeted specifically at serdomposition, a topic not

addressed by the E.I. framework. The MASC language has tlosviag core aims:

e Uniting agents and servicesThe MASC language aims to bridge the gap be-
tween the multiagent system and service-oriented ardbite@aradigms. By
applying the principles and well understood practices @aay to the service
composition problem. Active, autonomous agents can coasina generally
passive service-oriented architectures found in InteanetGrid systems.

e Peer-to-peer architecture: Workflows are required to be executed in a decen-
tralised, peer-to-peer architecture, therefore each peet be able to directly
execute the workflow specification. As we have demonstratest mvorkflow
engines are centralised, job-oriented systems, so thisteha peer-to-peer ar-
chitecture presents a new set of challenges.

e Component autonomy: The language should allow concepts specific to agency
to be explored, for example to allow peers a degree of autgnengineers
should be able to integrate specific reasoning models aldatjse specification
of interaction.

e Requirements of scientific workflow: The MASC language aims to meet the
combined set of requirements which have been discussedai teoughout
this thesis, supplying the coordination necessary to stileecounterexample
workflow scenario presented in Section 4.1. With referemc€igure 5.1 the
MASC language directly addresses requirements: R1 - R6N@&4-E5. Dis-
cussion of how to achieve requirements: R7, R9 and R10 asepted in Section
8.2, further work.

5.2. MASC Language Syntax 79

e Levels of abstraction: The language is required to be used at various levels of
abstraction, ranging from a scientist: who simply wants teevwogether prob-
lem solving components in an attempt to nullify a hypothésig. by taking
advantage of a simple dataflow paradigm), to an engineer:isvimderested in
specific details of service interaction.

e Framework: In order to test the ideas presented by this thesis, a framkenit
be implemented which takes advantage of the latest seovieated standards.
This framework will be made fully open-source.

e Fit in with existing infrastructure: As there are several fully developed graph-
ical service composition tools (e.g Taverna [43]), scEstshould be able to in-
tegrate components expressed in the MASC language inte theésting frame-
works. For example, adding our novel multiagent/serviderded approach as
a dataflow node in an experiment constructed using Taverna.

5.2 MASC Language Syntax

This Section presents the abstract syntax to the MASC framlevan agent-based
approach to the service composition problem. Where ap@t@pthe Backus Naur
Form (BNF) notation is used. The language will be discuss®tbim up, beginning
with the definition of a scene. The notation used is an exeholen of BNF, where
we have adopted the regular expression symbols * to représenmore, and + to
represent 1 or more. Superscripts are used to indicate,zlgt R¥ is a list with
elements R of size k. Different types of term are represebtegrefixing variable
names with: $, constants with: ! and identifiers with: %.

80 Chapter 5. MultiAgent Service Composition (MASC)
5.2.1 Terms, Types, Identifiers and Configuration Pairs

Several elements in the MASC language need to be uniquaiyiiiigel, this is achieved
through thei d set, consisting of seven elemedislp, ids, idy, ida, idm, idpin,
idpout}. These identifiers will be referenced throughout the rewairof the syntax,
they each represent:

e idp: Protocol identifier

e ids: Scene identifier, must be unigue within a protocol
e id;: Role identifier, must be unique within a scene

e idy Agent identifier, must be unique within a scene)
e idy Method identifier, must be unique within a role

e idpin: Input port identifier, must be unique within a scene

idpout: Output port identifier, must be unique within a scene

Terms are the objects of manipulation in our language. Tegrase defined as either a
variable: vi, a wildcard:_ or a constant: a¢: Associated with a variable or constant is
atype:t. Types, although not specified in the formal syntax canyirsthp to the stan-
dard set of JAX-RPC supported types: Boolean, Byte, Doufitmt, Integer, Long,
Short, String, (Arrays and multidimensional arrays areasapported). Secondly a
type may map to the id set, allowing for example agents testariables where a type
is mapped to a unique agent identifier.

A configuration pair: config is a genericname,value tuple used to parameterise a
protocol, role and web service definition along with the magp of ports to a user,
file or web service. Definitions of how configuration pairs ased within different
contexts will be explained throughout this Section.

5.2.2 Scenes

Two key concepts in MASC are the division of protocols isteenesand the assign-
ment ofrolesto agents. Figure 5.1 formally defines the concepts disdusséhis

Section. Scenes can be thought of as a bounded space in wgrich@of agents inter-
act on a single shared task. They allow a large, complex pobto be divided up into

5.2. MASC Language Syntax 81

smaller, more manageable chunks. Scenes add a measureiafysica protocol, in
that agents which are not relevant to the protocol are excdbm the scene. Scenes
place a barrier to execution on the agents, execution of mescannot begin until all
agents have reference to the protocol and have been irsthtiFormally a scene is
comprised of an identifierids, a set of role definitions{ R}, a set of agents{A}, a
set of inports:{inport} and a set of outportg:outport}.

S = scene(ids,{R}, {A}, {inport}, {outport}) (Scene)

A == agent (idg, id;, @) (Agent)

R == (idy, configh), {M1) (Role)

M == net hod idm|@:m(@®) = op (Method)

inport == i nport (ids-idpin, T, boolean) (Inport Definition)
outport ::= outport (ids-idpout, T) (Outport Definition)

Figure 5.1: MASC formal scene and role definitions

In order to allow a scene to be treated as a composeable elémmur language, the
scenes’s definition contains a set of inpoftsiport} and a set of outport.outport.
An inport is formally defined by linking a scene name to a inpoitt name:ids-id pin,
specifying which scene the port belongs. A typddiscussed in Section 5.2.1) indi-
cates the port type. This specifies the type of data that cavritten to the port. The
final element of the inport definition is a boolean, indicgtmhether the port must be
written in order to start the execution of the scene. A valiteus represents a core port
(must be written to) and false a non-core port (executiorotsport dependant). For
example:i nport (Scenel-inl, xsd:string, true) represents an inport (named
inl) belonging to a scene named: Scenel, the port accept®tigipe xsd:string and
it is a core port (indicated by the true value in the final pagten).

An outport consists of the same elements as inport withaaffitral boolean value.
Ports act as FIFO (First In First Out) queues. Any agent withe scene can consume
data from a port using the portread operation and write dedigoort using the portwrite
operation, this will be discussed in more detail in Sectich®4.

The concept of a role is central to our definition. Each agettié set:{A} must adopt

an initial role from:{R}. A role determines which parts of the protocol code an agent
can execute. Roles allow agents to be grouped together, agants can share the
same role, which means the agents have the same capabAitiele type allows us to

82 Chapter 5. MultiAgent Service Composition (MASC)

specify a pattern of behaviour which an agent can adoptnbens that we don’t have
to create a separate protocol for each individual agentegRalso allow us to specify
multicast communication in MASC. For example, we can breaticnessages to all
agents who have subscribed to a particular role.

Roles are defined by a unique identified;, a set of methodsfM } and a list of con-
figuration pairs:configk). In this instance, configuration pairs are used to represent
where the default implementation for an agent role residiEsg with the maximum
and minimum number of agents that can adopt the role. Thevimiraof a role is
defined by a set of method§M}. Methods are constructed from an operation set
op, and a set of actiores, more specific details will be discussed in Section 5.2.3 and
Section 5.2.4. The final element in the scene definition ist @fsagents:{A}. An
agent is defined by a unique agent nantg;, and a role identifierid,, indicating a
role definition residing in{R}. If required parameterisation of the agent is possible
through the list of input termsp¥).

5.2.3 Action Set

The behaviour of a role is defined by a set of methdd4}, which are each uniquely
named:idm. A method accepts a list of terms as argumemt¥:. The initial method
is named main by default. Methods are constructed from aratipa set: op, which
enforce control flow in the agent and a set of actiomswhich (amongst other func-
tions) allow an agent to interact with a reasoning layer.idxt can have side-effects
and fail. Failure of actions causes backtracking of thequolt The action set and
operation sets are formally defined through Figure 5.2.3.

Firstly we shall address the action set, which allows agentsmvoke agent reasoning
(decision procedure), invoke external web services, ereav instances of agents
(agent invocation), send and receive messages betweetsagariticast messages,
interact with a user (user send, user receive), read ane@ wadta from a port (port

read, port write). Each component in the action set will n@vaoldressed in more
detail by the following subsections, graphically the acts®t is represented by Figure
5.3.

5.2. MASC Language Syntax

83

op

a

op:1 t hen opp

opy OF Op;

Opy par opy

wai tfor opytimeout op

i nvoke idm| @:m(@®)

€

proc

agent (ida| @:a, idt| @, @)
p(¢) = agent (ida| @:a, id| @:r)
p(@™)) = mul ti cast (id| @:r)
p(¢®) = user (configh)

p(¢¥) < agent (ida| @:a, id| @:r)
p(¢K) < user (configh))

(p(k) = por t r ead(idpin| ¢:pin)

por twr i t e(idpou| @:pout,¢)

- proc| proc A proc| proc\V proc
% = p(e) faul t @M

¢® =service(ws", @) faul t g™

(Action)

(Sequence)

(Choice)

(Parallel Composition)
(Iteration)

(Recursion)

(No Action)

(Agent Invocation)
(Send)

(MultiCast)

(User Send)
(Receive)

(User Receive)
(Port Read)

(Port Write)

(Decision Procedure)
(Web Service Invocation)

Figure 5.2: MASC formal action and operation set definitions

5.2.3.1 Decision Procedures and Web Service Invocations

Procedures (proc) can either be constructed from a degsaoedure or a web service

invocation. Firstly, decision procedures serve as the eotion between the protocol

code, describing the coordination and an agents’ integsdaoning model. Each agent

interacting within the boundaries of a scene references afs#ecision procedures,

which is implemented as a set of methods and exposed to the agaeasoning web

service This is graphically illustrated by the inner two circlesifjure 5.4, agents

are represented as circles with (A) inside. When an agerdsnigemake an internal

decision, it invokes methods on this web service; for exantpé logic which decides

how much to bid on a particular item, during an auction.

Given a list of input termsipl!), a procedure will invoke the required method on the

reasoning web servicg, using the terms as input. If required, it will produce a 6t

Chapter 5. MultiAgent Service Composition (MASC)

84

2. SERVICE INVOCATION

s

.
.
e s

-
- el
e

4. AGENT INVOCATION

6. USER RECEIVE

-

amea
- -
-

8. PORT READ

~

1. DECISION PROCEDURE

-
e L

AN

3. AGENT SEND/RECEIVE

5. USER SEND

7. PORT WRITE

Figure 5.3: Overview of MASC action set

5.2. MASC Language Syntax 85

output termsp'¥) (results from the procedure) which can be referenced throutthe
duration of the agent’s execution cycle. A procedure caseran exception, in which
case the exception parameters are bound to the fault tgffisand backtracking of the
protocol occurs. For exampleivar 1 = Procedur eX($var2) invokes the decision
procedure: ProcedureX, using the variable $var2 as inpatotitput of the invocation
is written to the variable $varl.

....................

Vimssgloscssssnnnnnse

cemesesese-,
semeeeemke,

’

L4

EXTERNAL SERVICES

cesssnenee,

Figure 5.4: Overview of reasoning and external services

This model allows the rules of interaction to be explicitkpeessed, while allowing
individual agents to subscribe to their own reasoning ngydel example Argumen-
tation or the Belief Desires and Intensions (BDI) model [4AdASC protocols do not
sacrifice the self interest and autonomy of individual ageitthough agents follow
the protocol as a script, each agent can adopt their own palised strategy within
the protocol. Reasoning web services can be mapped on andudi agent basis
(providing personalised behaviour) or by role type (pravidgeneric role behaviour).
It is up to the engineer of the agent to provide the implemeorigor reference to
this implementation) of the decision procedure set whighdes in the reasoning web

service.

86 Chapter 5. MultiAgent Service Composition (MASC)

As well as subscribing to a reasoning model, it is essertial agents are able to
consume the service-oriented architecture found in letesnd Grid systems, in order
to compose multiple services into a scientific workflow. Tfere agents can make
direct web service invocations from within the protocol epdlustrated by the outer
Section of Figure 5.4. Direct invocations can be made bygiie service action. A
web service: ws is specified using a list of configuration paire f(config(")). An
engineer can either hard code the service definitions in sigdeime orthey can be
resolved at runtime by the agents themsel&gitiple ws definitions can be used as the
first parameter to a service. The first ws definition is alwasesdias the default service
to call, the remainder act as backup services, called in Wieatehat a fault arises
with the first. This definition(s) along with a list of input raneters:¢!) are used
to invoke the required external service, binding any outpuygrotocol variablesg®).

If exceptions are raised, the parameters are bound to tietéams: ¢'™. Decision
procedures and web services can be chained together ugnpth— and: A or: Vv
operators, allowing more complex behaviour to be defined.

The coordination mechanism defined using the MASC languagatirely external

to the web services which are being enacted. The web sertheesselves need no
alteration or knowledge that they are even taking part incib@dination. Therefore
no modification of web services needs to take place, and thtegl does not need
to be disseminated between the web services themselvetheRuore, agents add
an extra level of abstraction, acting as stubs or proxiek@onteb services which are
taking part in the coordination. This means that the agesmsuse their rational layer
(through decision procedure invocations) to make decssatmun-time, when the web
service coordination is actually taking place. Decisioaa be taken for example:
which services to call, what to do if a particular service @swvah, how to react if an

expected message is not received etc.

5.2.3.2 Sending and Receiving

Interaction between agents is performed by the exchangees$ages, defined as per-
formativesp, ie. message types. The most commonly used performatieesedined
by the FIPA Agent Communication Language (ACL) [1]. Agerdas send and receive
messages in a number of ways:

e Specific agent, specific roleif the first parameter contains an agent ids,idr

5.2. MASC Language Syntax 87

a term representing an agent igka and the second parameter contains a role
id: idy, or term representing a rolep.rr. For example:request ($varl) =
agent (%al, % ol el) would send the message of performative type: request
containing: $varl to the agent: %al who has adopted the%aielel. This fea-
ture is useful for sending messages to specific agents (veknamwn in advance

or looked up at runtime), e.g. to maintain a long-runningsistent dialogue.

e Specific agent, any role: If the first parameter contains an agent idg,idr
a term representing an agent igka and the second parameter contains a wild
card: _. For example:request ($varl) = agent (%1, _) would send the
message of performative type: request directly to the agéni.

e Any agent, specific role: As there is the possibility that many agents have
adopted the same role, a useful feature is the ability to aaddeceive messages
from any agent who has subscribed to a particular role. Thachieved if the
first parameter contains a wildcardand the second parameter contains either
a role id: id, or term representing a rolep:r. For exampler equest ($var 1)
= agent(_, %ol el) would send the message of performative type: request
to any agent who has adopted the role: %rolel.

e Any agent, any role: If an agent simply wants to send a message regardless of
agent id or role id this can be achieved if both parametersvddecards: _. For
examplerequest ($varl) = agent(_,).

The semantics of message passing correspond to non-bipcekirable and buffered
communication. Sending a message succeeds immediatelyagent matches the
definition, and the message will be stored in a buffer on tligrent. Receiving a
message involves an additional unification step. The messagplied in the protocol
definition is treated as a template to be matched against aagesn the buffer. A
unification of terms against the definition agenf(igta, id | @r) is performed. Where
ida| @:a is matched against an agent name, or variable repregemtingent name and
idr| @r to the agent role, or variable representing a role namehédfunification is
successful, variables are bound based on the content oféssagep) and stored
locally to the agent, for further use in the protocol. Segdaill fail if no agent matches
the supplied terms, and receiving will fail if no messagecshas the template defined
in the protocol. Send and receive actions complete immelgigte. non blocking)
and do not delay the agent.

88 Chapter 5. MultiAgent Service Composition (MASC)

A final sending option is provided through the multicast@ati This allows an agent
to broadcast the same message to all agents who have selstril particular role,
defined either by a role id: jdor term representing a rolgzr

5.2.3.3 User Send and User Receive

Agents may interact directly with users by sending and kecgimessages through
the user action. Any data® contained in the message of performatipés sent and
received to and from a user. Specific information about useish as physical network
location, preferences etc.) is defined using a list confiipmapairs:con fig®.

These additional two actions allow direct interaction watluser scientist, this func-
tionality is useful in order to keep the user in the workfloneeution cycle. For ex-
ample: A protocol has several execution paths but an agemiotanake a decision
autonomously about which path to choose. The agent forwtaetse choices to the
user (through user send) for an expert opinion, this setiegptions appears on the
user’s workstation. The user decides how to proceed baséueaturrent state of the
workflow and sends back the preferred execution path to teetggia user receive).

5.2.3.4 Port Read and Port Write

As briefly mentioned in Section 5.2.2, a port is implementsddirst In First Out
(FIFO) queue. Any agents within a scene can consume datadrport using the
portread action, which removes the first objects from thentfrof the queue. The
portread action is invoked with a inport namietyin or term representing an inport:
@.pin. Agents will read from the port k times, binding the ouitpo local variablegp)

for use in the remainder of the protocol execution. For exdenfyar 1 = portread(inl)
would read from the inport: inl to the variable: $varl. Thieaation is blocking, so
if the port is empty then the agent will continue to wait udgita becomes available.

The portwrite operation writes the terrcp@‘) to the outport namel ot OF term repre-
senting a portname.pout. As an exampleportwrite(outl, $varl) would write
the variable: $varl to the outport: outl. The portwrite @ben is non-blocking, the
action completes immediately. For either action to be ss&foé the types must be
compatible.

5.2. MASC Language Syntax 89

5.2.3.5 Agent Invocation

Agents assume an initial role within a scene. However, thinoagent invocation, an
agent can change role, introduce a new instance of a role agera recursive call.
Agent invocation is performed by using the agent actionpsupg three parameters,
the first is an agent identifieid, or term representing an agent identifigra. The
second is a role identified, or a term representing a role identifigp:r. The final
parameter is an optional list of argumentg¥). The agent invocation action can be
used in a number of ways, by varying the parameters used:

e Changing role: Agents can change role during the execution of a protocol by
invoking the agent action, using as parameters the same afjeid, and a
different role id: (d;) to their current definition. This feature avoids having to
implement the same protocol code inside multiple role diéding, an agent can
simply make a role switch using an agent invocation.

e New agent: A new instance of an agent can be instantiated by invoking the
agent action with a different agent idtl; and role id:id, to the current defini-
tion. This feature is particularly useful if the agent hasibgiven a task which
would computationally take too long for a single agent to ptete, for example
extracting information from a large set of databases. Irotd split up the task,
new agents can be created dynamically with the agent aatging a subset of
the databases as initial parameters. The number of agem¢saged could be
decided at runtime and would be dependant on the size of skertauestion.

e Recursion: In order to make a recursive invocation, the agent actiontrnes
called with the same agent idd; and role id: id; as the current definition.
Recursive calls are useful if the agent needs to repeatedfgmm the same task
defined by the role.

90 Chapter 5. MultiAgent Service Composition (MASC)

5.2.4 Operation Set

Control-flow in the protocol is enforced through the operatset, which contains a
reference to the action seti, a sequence operator: then, a choice operator: or, a
parallel operator: par, an iteration operator: waitfor anekcursive operator: invoke.
The operation set is illustrated by Figure 5.5 and formadlyresented by Figure 5.2.3.

THEN) OR PAR [RECURSION

Figure 5.5: Overview of operation set

The sequence operatop; thenop,, evaluatesop, only if op; did not contain an
action that failed, otherwise it is ignored. The choice aep&rop; or op,, handles
failure in the protocol and evaluateg, only if op; contained an action that failed.
The parallel operatoop; parop,, execute®p; andop; in parallel. A waitfor loop
allows repetition of sections of the protocol, nesting @& kbops is possible. The body
of the waitfor loop will be repeatedly executed upon failuitee loop will terminate
when the loop body succeeds. If the loops times out (timeoset with an integer
value) then the actions contained within the timeout bodl/lve executed. Timeouts
allow compensation actions to be defined as they are onlyuéa@d any action inside
the loop fails.

Methods can be invoked (including recursive invocationghm the protocol code,
using the invoke operator. The execution engine pausesuggrof the currently
running method and invokes the method specified in the meithentifier: idy, or

variable representing a method identifiegm, using the parametersp®) as input.
Once execution of the method has finished, control returtise@riginal method.

5.2. MASC Language Syntax 91

5.2.5 Protocol Execution

The MASC language is a specification designed to be direcidgwed by a group
of agents. The protocol execution process is is illustrdtgdrigure 5.6. Once an
engineer has designed a protocol describing the intergati@ch agent taking part in
the coordination must obtain a copy, shown as a rectangle ®iinside on Figure
5.6, this copy is stored locally to each agent. Agents muest #idopt a role from the
role set. By adopting a role the agent must reference a reagareb service, which
implements all the decision procedures required for thkd type (step 2 of Figure
5.6). This reasoning web service (marked as a rectangleRuitiside) can be different
for each agent and describes the agent’s internal logic.

4 AY4 N

R R R IR LX)
TR
LN

Figure 5.6: MASC protocol execution

The only requirement on an engineer designing an agent igea td software which
can translate and execute the steps in the protocol, andanieg web service which
implements the decision procedures of a particular role tygach agent maintains its
own internal state. This internal state records which stépise protocol it is currently
executing and any variables which may be needed for semdo®gving messages and
decision procedures.

92 Chapter 5. MultiAgent Service Composition (MASC)

Once agents have obtained a copy of the protocol and havemeteto a reasoning web
service, enactment of the interaction protocol can beggeras follow the protocol as
a script, invoking actions (from the action set) and web ises/if and when required.
Step 3 of figure 5.6 shows a pattern of interaction takinggladgth the agent in the
top left invoking its reasoning web service and an exterrelh wervice (illustrated by
a hashed out star in Figure 5.6). A exchange of messagesykiaes resulting in the
agent on the bottom right invoking a method on its reasoniel service, illustrated
by step 4 of figure 5.6. Execution terminates when all theqmuit steps have been
enacted, or the the protocol fails. Failures can be cladsafsexternal failuresdue to

faulty web services invocations; orternal failures due to a badly written protocol.

5.2.6 Dataflow

The root element of the language is a protocol. With refeszetocFigure 5.7 a pro-
tocol is uniquely namedid, and contains one or more scene definitions. Associated
with each scene is an optional set of agef#s}, this set can, if required be used to
override the default agent configuration which a scene dgfemediscussed in Section
5.2.2. For example, users may want to explicitly name agamdiisprovide alternative
implementations for the agent’s decision procedures.isfght is empty the scene will

be executed using the default configuration. The final aasoaiwith a scene is a list

of configuration pairscon figX) which define any necessary configuration and startup

information.

P = protocol (idp, (S,{A}, configh)*,1ink(L)*) (Protocol)
L = source— sink™ (Dataflow Mapping)
source = linktype | out port (ids-idpout) (Dataflow Source)
sink = linktype | i npor t (ids-idpin) (Dataflow Sink)
linktype ::= useri nput (config®) (User Input)

| userout put (configh), i npor t (ids-idpin)*) (User Output)

| file(configh) (File)

| ws (Web Service)
WS = def (config®)) (Web Service Def)

Figure 5.7: MASC formal dataflow definitions

As discussed in Section 5.2.2, a scene has a set of typedsrgrat outports. These

5.2. MASC Language Syntax 93

port definitions allow a user to treat a scene as a composaf@etpthrough the final
parameter of a protocol definition, a list of zero or more lgd#{initions. Link defini-
tions allow a user to compose a computational experimentdgypimg a source to one
or more sinks. A source can either be: an outport, user irfpeiinput, or a web ser-
vice invocation. A sink on the other hand can be one of the¥alg: an inport, user
output, file output or a web service invocation. Each of there® and sink mappings
is described in more detail below:

e Outport to Inport(s): The most obvious mapping is from a scene’s outport to
one or more scene’s inports. For examglenk(out port (Scenel-outl) —
i nport (Scene2:inl)) maps Scenel’s outport (outl) to Scene2’s inport (inl).
In order for the mapping to be valid the typeasof the outport must match the
accepted types of the inport. When an agent writes to a porguke portwrite
operation, the data is forwarded to source(s) which the ingpfers. When
data becomes available at a scene’s inport, agents canroertbis data using
the portread operation, discussed in Section 5.2.3.4.

e User Interaction: User interaction in relation to agents was discussed in Sec-
tion 5.2.3.3 through the sending and receiving of messagasdrs. Within the
dataflow layer user interaction is handled in two ways, by jpiag a user to a
scene’s inport(s), or mapping a scene’s outport(s) to a dapping user inter-
action to a scene’s inport is achieved through a link de@nitvhere a userinput
is the source and an inport is the sink. In this instance amsest supply typed
data which matches the inport definition: inpait(idin, T, boolean), illustrated
by Section 1 of Figure 5.8. Output from a scene can also be ethjgpa user, by
supplying a link where the source is an outport and the simkuseroutput defi-
nition. Here the output can be mapped directly to the usénéfinal parameter
is empty), or to a selection of inports which the user hasroboter. Mappings
of the latter kind give the user direct control over the dataflallowing them to
select which port(s) to write the scene’s output data totiGe@ of Figure 5.8
illustrates a scene which is attempting to write data to driwo ports, the data
however is forwarded to the user, who decides it should b#emrio the scene
on the far right.

e Web Services and FilesUsers can supply a mapping where a source is a web
service or file and the sink is a scene’s inport. In this instethe output from the
web service invocation or data read in from a file is writtetht® scene’s inport.

94 Chapter 5. MultiAgent Service Composition (MASC)

This process can also work the other way round, a user carfysappapping
where a source is an outport and the sink is a file or web seraileving agents
to output data to external sources.

e A
1

_ J

Figure 5.8: MASC user interaction

There are several restrictions placed on the mappings acasemake through the
MASC language, this is summarised by TaBf

Valid Source to Sink Mappings

Source Sink

outport(ids-idpout) inport(ids-id pin)
userinput(config) inport(ids-id pin)

file(config®)) inport(ids-id pin)

def(config®)) inport(ids-id pin)
outport(ick-id pout) useroutput(confi®f)inport(ids-idpin)*)
outport(ick-id pout) file(config®))
outport(ick-id pour) def(config®))

I

Table 5.2: MASC valid dataflow mappings

Figure 5.9 illustrates graphically the concept of treatiegnes as composable objects
to form higher level computational experiments, in thisrapée five scenes are wired
together, taking input from a user and producing output &sfil Scenes are effec-
tively treated as parameterisable patterns of interactiemthen up to the user to wire
together these black boxes by supplying the dataflow mapgingugh a set of links.

Scenes begin the process of execution described in Secfdnvehen all core inports
have been written. Core inports are identified by settinditied boolean parameter to

5.2. MASC Language Syntax 95

true. As discussed in Section 3.4 scientific workflows tenlaee an execution model
which emphasises dataflow. Port definitions allow a sceneettrdated as a com-
posable object, allowing our agent-based interaction rntodi in with the dataflow
paradigm used by most scientific workflow modelling toolsr E&xample a pattern of
interaction expressed as a scene could be treated as a nadgcientific workflow
graphical composition tool, such as Taverna. This allowhneues from the multia-
gent systems community to be seamlessly integrated intexiséing architecture.

Through the addition of a dataflow layer, scientists can seanes simply as parame-
terisable black boxes of computation, without getting ied with the messy details
of concurrent protocol design. This is a useful abstracti@thanism and allows an
experiment to be constructed at a higher level by specifgisgt of links which wire

the experiment execution together.

Figure 5.9: Example dataflow mapping

96 Chapter 5. MultiAgent Service Composition (MASC)

5.3 Chapter Conclusions

Our requirements analysis is based on the review of existimgntific workflow sys-
tems, AstroGrid workflow scenarios and a counterexampleaoe taken from the
LSST project. Through this detailed requirements analjgs thesis has identified
the need for flexible, ad-hoc service composition. In ordeneet these requirements,
this Chapter has presented an agent-based solution tortheessomposition problem,
providing flexible, runtime coordination of services. Oynpaoach is founded on the
concept of interaction protocols and facilitated througé MultiAgent Service Com-
position (MASC) language. This Chapter has presented mldee MASC language
syntax and explained the reasons for the choices made,dmmgwvhere necessary
simple examples. The following Chapter presents a full enpntation of the MASC
language, through an open-source Java-based web sermigsition tool:Zor r o.

5.4. Complete MASC Language Syntax

5.4 Complete MASC Language Syntax

= T > 0 T
I

(@)
o
1

proc =

source =
sink =
inport =
outport =
linktype ::=

ws =
config =

97

prot ocol (idp, (S,{A}, configh))*, 1ink(L)*) (Protocol)

scene(ids,{R}, {A}, {inport}, {outport})
agent (ida, idy, @)

(idy, config®, {M})

met hod idm|@:m(e™) = op

a

opy t hen op

op1 O 0Py

opy par opy

wai t for opy timeout opp

i nvoke idm| @:m(@®)

£

proc

agent (idq| @:a, idt| @r, @)
p(¢) = agent (ida| @ia, ict| @ir)
p(@®) = mul ti cast (id| @ir)
p(e)) = user (configk)

p(¢/) < agent (ida| @ia, ic| @ir)
p(e)) < user (configk)

@ = port r ead(idpin| @:pin)

por twr i t e(idpout| @:pout,@k))

— proc| proc A proc| procV proc
@ =p(e") faul t g™

o =service(ws, ¢")) faul t @™
ViT|_|cT

source— sink™

linktype | out por t (ids-id pout)
linktype | i npor t (ids-id pin)

i nport (ids-idpin, T, boolean)

out por t (ids-idpout, T)

user i nput (configk)

user out put (config®, i nport (ids-id pin)*)
file(configh)

ws

def (config k)

(name, valug

(Scene)

(Agent)

(Role)

(Method)

(Action)
(Sequence)
(Choice)

(Parallel Composition)
(Iteration)
(Recursion)

(No Action)
(Procedure)
(Agent Invocation)
(Send)

(MultiCast)

(User Send)
(Receive)

(User Receive)
(Port Read)

(Port Write)

(Decision Procedure)

(Web Service Invocation)

(Terms)

(Dataflow Mapping)

(Dataflow Source)

(Dataflow Sink)
(Inport Definition)

(Outport Definition)

(User Input)

(User Output)

(File)

(Web Service)

(Web Service Def)

(Configuration Pair)

Chapter 6

An Agent-Based Web Services

Composition Framework

The Zor r o framework is an agent-based web services composition taoided on
the Multi Agent Service Composition (MASC) language. Thafiework is an open-
source Java implementation and has served as a test bed idetts addressed by this
thesis, allowing real protocols to be executed with realises on real data.

This Chapter discusses the implementation and algoritHrtteediZorro framework in
detail. Section 6.1 presents an overview of the technotogsed as part of the im-
plementation, in particular how the formal MASC syntax ipnesented and manipu-
lated. Section 6.2.1 describes the architecture of a genedrdination service which
is capable of dynamically unmarshalling a scene definitioth building an internal
representation for execution. In Section 6.2.2 the prooésseating and initialising
agents to enact a workflow is described, with a simple XML epd@m Section 6.2.3
discusses the architecture of individual agents and how r&flew is enacted by a
group of distributed agents. Section 6.3 describes howescare composed into more
complex workflows through the dataflow layer. Finally, carsibns are presented in
Section 6.4.

99

100 Chapter 6. An Agent-Based Web Services Composition Framework

6.1 MASC Language Representation

A combination of technologies have been used to represansepand execute the
MASC language, discussed in Chapter 5. The first of thesentdabies is thelava
Web Services Development Pack (JWSJ2B), which is an integrated toolkit, allowing
developers to build and test XML applications, web servieasl web applications.
This framework is made up of many interconnected componbantgever this Chapter
will focus on the two which have been utilised by the impletaéon framework: The
Java Architecture for XML Binding (JAXB)hd theJava API for XML Based Remote
Procedure Call (JAX-RPCWwhich will be addressed by Section 6.2.3.

(Application Code)

N /7 N

e

XML Input
Document

XML
Schema

Interfaces and Package:
Object Factory javax.xml.bind

J o\l N
N N

Binding
Compiler

XML Output
Implementation Implementation: Document

Classes javax.xml.bind

J O\ v,

Application
\ S

Figure 6.1: JAXB architecture overview

The JAXB architecture allows an XML Schema definition to bemdto concrete Java
classes, allowing developers to incorporate XML data amatgssing functions into
their applications. As part of this process, JAXB providestimods for unmarshalling
XML instance documents to a Java Content Tree, and manspalldava Content Tree
back into XML instance documents. The JAXB architecturanseal as a replacement
for older XML processing technologies such as SAX and DOM.[#rgure 6.1 illus-
trates the core components in the JAXB model, which will bgl@&xed in more detail
below:

e XML Schema: The XML Schema Definition Language (XSD) [27] is a W3C
recommendation and one of many XML schema languages. XS[3ed to
express a set of rules which define the legal building blodkanoXML docu-
ment, typically expressed in terms of constraints on thecttire and content of

6.1. MASC Language Representation 101

documents: elements, attributes, data types etc.

e Binding compiler: The JAXB binding compiler is the core of the JAXB pro-
cessing model. Its function is to transform, or bind, a seX®§IL schema to a
set of JAXB content classes in the Java programming langu&@en executed
using an XML schema as input (optionally with custom binddeglarations)
the binding compiler generates Java classes that map ttrams in the source
XML schema.

e Java application: In the context of JAXB, a Java application is a client thasuse
the JAXB binding framework to unmarshal XML data, validatelanodify it,
marshalling the Java content back to XML data.

e XML input documents: XML content can be unmarshalled by converting an
XML instance document to an internal representation usid@va Content Tree.
Once an XML instance is unmarshalled it can then be manigdjaarshalling
an updated version if necessary. Validation of an XML instatlocument against
the source schema is supported, forcing strict adherenae XML schema.

e XML output documents: The process described above can also work in the
opposite direction, XML (internally represented as a Javatént Tree) can be
marshalled to an XML document. Marshalling involves paggime internal rep-
resentation and writing an XML document that is an accurpeasentation, and
valid with respect to the source XML schema.

The MASC language has been represented using an XML Scheova]ipg a straight

forward conversion from the formal syntax to a computer riptetable form. The

full XML Schema definition can be found in Appendix A. Skeletparser code has
been generated by providing the JAXB compiler with the MASBIIXSchema as

input, following the process described above. There aremaben of components in
the framework which utilise this parsing component, thegebe discussed in more
detail by the following Sections. The type system in the ddramework is mapped to
the standard set of JAX-RPC supported types: Boolean, Bydable, Float, Integer,
Long, Short, String, (Arrays and multidimensional arrayes also supported).

102 Chapter 6. An Agent-Based Web Services Composition Framework

6.2 Scene Implementation

A scene acts as a closely coupled system and is responsihilatfalising and con-
trolling the execution of a group of agent roles which execatscene specification.
Communication between scenes takes place through a WSBifaog, allowing it to
be deployed anywhere on the network and be treated as a ceaipe®bject to form
more complex workflows, this will be discussed in more databection 6.3. Figure
6.2 illustrates an overview of a scene’s component modekehs contains a number
of interacting components which will each be discussed iin by the following sub
sections.

[Protocol,
Scene Name,
Parameters]

Exceptions,

Flow Data HTML

WSDL Interface]

<> afs

Y

Execution Model

Flow Execution . .
Engine Scene Execution Engine]

SAr JAP

Agents J

Web Service

..

P

Figure 6.2: Scene architecture overview

6.2.1 Building the Execution Model and Resolving Dependenc ies

A scene of computation is executed by@ordination service A coordination ser-
vice is a simple, lightweight layer of software which traatsls and executes a scene
definition. It is a generic service and can execute any vadfthdion. Figure 6.3 il-

6.2. Scene Implementation 103

lustrates a scene’s initialisation algorithm, with refege to this Figure and Figure 6.2
the following process takes place:

'a

Protocol,
Scene Name

XML
Parser

Enact Workflow

Figure 6.3: Scene Initialisation algorithm

e Receive requestA coordination service is initialised when it receives a Réen
Procedure Call (RPC) invocation containing a protocol (XM&tance), and the
name of a scene within that protocol it is required to adopt.

e JAXB XML parser. Once a protocol is received, the parsing component will
unmarhsall and validate it against the MASC XML Schema. Argeptions
through a malformed protocol are thrown to the exceptiordiaminitialisation
is terminated and exceptions are reported to the user.

e Execution model: If the validation is successful, the XML parser (implemehte
through JAXB) converts the scene definition (representetMis) to an internal
execution model. This internal execution model is represgtas a Java Content
Tree and allows manipulation of the scene definition.

e Build ports: Before initialisation and execution of the agents can hegbmflow
execution engine must check if the scene is part of a more xxmporkflow,
defined through a dataflow mapping. If this is the case therflaleexecution
engine must dynamically build any ports which are part ofgsbene definition
and resolve any dependencies these ports may have.

104 Chapter 6. An Agent-Based Web Services Composition Framework

¢ Resolve dependencies:Dependencies are resolved by parsing the set of links

(defined in the protocol mapping) and retrieving those witieeesink is an inport
definition belonging to the current scene and the core vaset to true (must
be written before scene execution can begin). If dependsmoiist on any of the
scene’s inports the flow engine must call the appropriatelleanHandlers have
been implemented which allow web service invocation, filenipalation and
user interaction. The handler will retrieve the necessatya @by reading from
a file, interacting with a user etc.) forwarding it the reguirinport. Dataflow
information (shown as flow data in Figure 6.2) is sent andiveckthrough the
coordination service’s WSDL interface. However, if thersedas no dependen-
cies initialisation of the agents can take place.

6.2.2 |Initialisation of Agents

Once any port dependencies have been resolved, dynamaigaition of the agents
can begin, this is handled by teene Execution Engimemponent shown on Figure
6.2. Agents can be initialised through a default setting customised setting. To
illustrate this point, Figure 6.4 represents an examplesaf, fior simplicity only the
necessary protocol features are included.

The syntax contains a scersgenel and within that scene there are two role defi-
nitions, acoor di nat or and aparti ci pant. As discussed by the previous Chapter,
role definitions provide a generic pattern of interactiongefAts adopt roles from a
scene and decision procedures provide the hook from a rdieitien to a particular,
grounded model of agency. With reference to the exampleglfgudt acoor di nat or
role’s reasoning service is locatedhat p: / /| ocati on1?WSDL (line 1 of Figure 6.4)
and aparti ci pant role’s reasoning service is locatedHhtt p: / /| ocat i on2?WSDL
(line 2 of Figure 6.4).

Agents must then adopt roles from a scene definition. In camge a user has explic-
itly created an agent which will adopt tleeor di nat or role (lines 3-6 of Figure 6.4).
Here the default settings of the role have been overwrittenlocation of the reasoning
service has been changedhtd p: / /| ocat i on3?WEDL, the name of the agent is set to
myCoor di nat or and details of how long the agent will wait to receive a porssage
(Port Wi t) and from another agenRécv\Wi t) have been set. In order to interact
with acoor di nat or, two agents adopting thgar ti ci pant role (lines 7-8 of Figure

6.2. Scene Implementation

105

<scene name="scenel">
<l-- Coordinator Role Definition -->
1 <agent inplenmentation="http://locationl?WsDL"
max="1" min="1" rol e="coordi nator">
<met hod> ... </nmethod>
</ agent >

<l-- Participant Role Definition -->
2 <agent inplenentation="http://location2?WsDL"
max="undefined" mn="1" role="participant">
<method> ... </nethod>
</ agent >

</ scene>

<mappi ng nane="denomappi ng" >

nn

<node | ocation="" name="scenel">
<I'-- Custom sed Coordinator -->

<rol e nanme="coordi nator">

3 <agent inplementation="http://locati on3?WsDL"
4 name="nyCoor di nator" num="1"
5 portwait="10"
6 recvwai t ="10"/ >
</rol e>
<l-- Custom sed Participants -->
<rol e nane="partici pant">
7 <agent inplementation="http://locati on4?WsDL"
name="nyPartici pant1" num="1"
portwait="10"
recvwai t ="10"/ >
</rol e>
<rol e nane="partici pant">
8 <agent inplenmentation="http://location5?WsDL"
name="nyPartici pant2" num="1"
portwait="10"
recvwai t ="10"/ >
</role>
</ node>
<link>...</link>
</ mappi ng>

Figure 6.4: Sample XML protocol - initialising agents

106 Chapter 6. An Agent-Based Web Services Composition Framework

6.4) have been createtWParti ci pant 1 andMyparti ci pant 2, each referencing a
different reasoning service.

After parsing the scene definition, creating the executiod@hand resolving any port
dependencies the scene execution engine creates a sepegatefor each agent, our
example in Figure 6.4 would generate aoer di nat or agentand twearti ci pants.
Each agent has a local copy of the protocol and is indepelydsable of parsing and
executing the protocol. Agents maintain internal statis,ititernal state records which
steps of the protocol it is currently executing and any \@édsa which may be needed
for sending/receiving messages and decision procedures.

6.2.3 Enacting the Workflow

Agents act as peers, formingpoaer-to-peer systenf\s each agent has a local copy of
the protocol, no centralised control is required. Once gdirds have been created and
initialised, enactment of the workflow can begin. Each afafdws the role definition
like a script, calling the necessary actions when specifygti®d protocol. An overview
of the components making up the agent architecture isifitedd by Figure 6.5.

External and reasoning service invocations are handlecheyJAX-RPC interface.
JAX-RPC is a technology for building web services and cbahat use remote proce-
dure calls (RPC) and XML. Often used in a distributed clisetver model, an RPC
mechanism enables clients to execute procedures on othEnsy. In JAX-RPC, a
remote procedure call is represented by an XML-based pobtech as SOAP. The
SOAP specification defines the envelope structure, encadieg, and conventions
for representing remote procedure calls and responseseTdadls and responses are
transmitted as SOAP messages (XML files) over HTTP.

When an agent is required to execute an action, the apptepraéendler is invoked, the
process for each handler is described below:

e Decision procedure invocation:When an agent is required to execute a service
(either a decision procedure or an external service), thewmg process takes
place, this is illustrated by the algorithm displayed indig6.6. Firstly an agent
parses the decision procedure definition in the protocaisisting of the: proce-
dure name, input parameters and output parameters. THhiscotalefinition is
then compared to WSDL definition located in the agent’s reagpweb service.

6.2. Scene Implementation

Messages

[Protocol, Role,
Agent, Exceptions
Parameters]

Agent Interface

~> ar

XML Parser Exception Handler

Execution Model

~

Message Handler

Agent Execution Engine J

Decision Procedure Invoker| Web Service Invoker J

e e e e e e e e o i

~

Exception:
Protocol + WSDL
don’t match

Exception:
Input variable not
initialised

Success

\/
Protocol
+WSDL

\/

Success

Exception:
JAX-RPC Errors

Success

Figure 6.6:

Service invocation algorithm

107

108

Chapter 6. An Agent-Based Web Services Composition Framework

This comparison utilises the WSDL4J interface [70]. If thare any inconsis-
tencies, such as the: wrong number of input/output parasietgong type of
input/output parameters, wrong method name etc. then agpéra is thrown
and backtracking of the protocol begins. However, if thetgpeol matches the
WSDL definition then an agent can begin to format the inputtierinvocation.
This is achieved by retrieving any variables (local or froracgne) that are re-
quired to be used as input. Execution will terminate and tracking of the
protocol will begin if variables haven't been initialiseypes don’t match etc.
However, if successful a JAX-RPC Call object is construciad the decision
procedure is invoked on the agent’s reasoning service. [Hxoe caused as a
result of an invocation are labelled as JAX-RPC exceptiohisy output from
the invocation is stored locally to the agent, by updatingteng variables or
creating new ones.

External service invocation: This process is similar to the decision procedure
invocation. However, instead of invoking a method on thenéigaeasoning
web service an external service is called. This handlerimgge, it can call any
method once is has obtained the WSDL definition. Firstly aanagetrieves the
WSDL document, as specified by the service definition (thislea hard-coded
or represented as a variable at runtime). A check is then naeéeasure that
all the details in the protocol definition match those in th&DN definition,
comparisons are made against: the number and type of inpptiopparameters,
namespace, operation name, port name and service namesdfdetails are not
consistent then an exception is thrown and backtrackinigeoptotocol begins. If
this process is successful then an agent can follow the s&peas described for
the decision procedure invocation: formatting the inputijding a call object,
invoking a service and storing output variables.

Message passingEach agent runs as a separate thread within a scene execution
engine. When an agent is required to send a message to aagtmy the input
message queue on the recipient agent is locked and the reassagssed be-
tween threads. The recipient agent can then check its inpeuey utilising the
message content when required.

Port reading/writing: If the scene is part of a more complex workflow then
agents can read and write to ports. If an agent is readingfdataan input
port, it is removed in a First In First Out (FIFO) fashion asdstored locally to

6.2. Scene Implementation 109

the agent. Agents can also write data to output ports, wisi¢brivarded to the
port’s sink by the appropriate handler (scene, web servileg user interaction
etc.).

Execution of a scene terminates when all the protocol staps bheen enacted, or the
the protocol fails. Failures can be classifiedexsernal failures due to faulty web
services invocations; anternal failures due to a badly written protocol. Each agent
operating within a scene outputs a text log file, each log $ileancatenated to form
a scene description which is formatted in html. This allowssar of the system to
view exactly how the protocol has executed. An example obtitput is illustrated by

Figure 6.7.

EN English {Lnt

L) [l =)

= @ m [FlexjfE:fsrejexamplesithesisfredshitirecshift himl

4P Getting Started [Latest Headines

Scene - red Sh |f‘t Eie Edb Yiew Higtory Bookmarks Tools Help
@-»-& [t (Estercjexmplestthesished | = | b [

Port Name Information | g coiing started B3 Latest Headines
= Zprotecol~

Inports 0
i — <sceneset>

Cutports 0 = <Scene name="redchift">
<!-~ RSM Agent -->

— <agent implementation="hitpocalhost: Z0R0/MyRemServic:
max="1" min="1" role="rsm">

agent(myRSMO,rsm) <ime MATH Method ——>
— <method name="main">
— <hady>
Actionf/Operator Information _ <while>
Implementation http:ilocalhost:8080/MyRsmS{ ~<body> i
<!-- Receive RA apd DEC from USER agen
Recv-Wait

Port-Wait

Service: getlmages

{12 1362358242)
(dec;44564249)

Returned images:images:retrieved

Senice: sextractor

{imagesimages:retrieved)
Returned sextractor:sextractor:success
Service: xmatcher

{sextractor sextractor:success)

Returned xmatched:xmatcher:success

<

*J start 3 redshift - MolaFrefox) Moaila Firsfox

Figure 6.7: Sample execution output

110 Chapter 6. An Agent-Based Web Services Composition Framework

6.3 Composing Scenes into More Complex Workflows

Scenes of computation can be executed independently arfanhore complex work-
flow. A user interested in composing and executing multipdekftow components can
approach the Zorro framework from the dataflow layer. Frors lavel of abstraction,
an engineer does not need to concern themselves with theatetdetails of protocol
design, scenes can be simply be treated as composeablésolbjigire 6.8 illustrates
the initialisation algorithm for an entire protocol, costéng of multiple workflow com-

ponents.

XML
Parser

-

Parser Exception

Add component to
Protocol

Figure 6.8: Protocol execution algorithm

This process consists of the following steps:

e Validate dataflow mapping: In order to build a protocol, a user supplies a
dataflow mapping of workflow components. This mapping isdatkd against
the MASC XML Schema definition, if the instance is not valid@spect to the
source schema then an exception is thrown and the user mabogb redesign-
ing the mapping.

e Dynamically build protocol: The mapping supplied is simply a description of
the components required in the workflow, specifying how ¢hesmponents in-
teract with one another, through dataflow. Before executgmbegin, the frame-

6.3. Composing Scenes into More Complex Workflows 111

work must dynamically build a complete description of therkflow (based on

the dataflow description), splicing in all the necessary gonents to form an
executable protocol. It is important to note that these camepts could be dis-
tributed (for example scene descriptions kept in a rematesiory), therefore
the framework must retrieve each component before exetuatiadhe protocol

can begin.

e Execute protocol: Once all components have been spliced into the protocol, ex-
ecution of the workflow can begin. The protocol can be exeatldeally or dis-
seminated to multiple, distributed coordination servjd¢bis is the user’s choice
and several options exist for configuring the system. Oneeyavwode has a com-
plete copy of the protocol, enactment begins. Scenes exégutollowing the
same process as described by Section 6.2, beginning exeeutien all of the
inports have been satisfied. To illustrate this point, ceisa simple extension to
our earlier example, the XML syntax for the syntax is displdyn Figure 6.9. A
user has configured two scenes to be executed as part of aevarkflenel and
scene2. These scene definitions are remote and must be retrievedpdiced
into the protocol before execution can being. The user hppl&d a mapping
between these scenes, mapping the outport of scenefiel_out 1 to the inport
of scene2:scene2_i nl. When execution begins, scenel will start immediately
as there are no dependent ports, scene2, however enters stat@j beginning
execution when data is written from scenel’s outport to e2&nnport.

112 Chapter 6. An Agent-Based Web Services Composition Framework

<pr ot ocol >
<scene nanme="scenel">
<I-- Qutput port definition -->
<out put >
<port name="scenel out1" type="xsd:string"/>
</ out put >

</ scene>

<scene nanme="scene2">
<I-- Input port definition -->
<i nput >
<port nane="scene2_inl" type="xsd:string" core="true"/>
</input>

</ scene>

<I-- User’s mapping -->
<mappi ng nane="denmonappi ng" >

<l'-- Nodes to be included -->
<node location="http://locationl" name="scenel"/>
<node | ocation="http://location2" name="scene2"/>

<I-- Link definition -->
<l'i nk>
<source>
<outport port="scenel outl" scene="scenel"/>
</ sour ce>
<si nk>
<inport port="scene2 inl" scene="scene2"/>
</ si nk>
</link>
</ mappi ng>
</ protocol >

Figure 6.9: Sample XML protocol - dataflow mapping

6.4. Chapter Conclusions 113

6.4 Chapter Conclusions

This Chapter has presented the Zorro framework, an agesgtehbaieb services compo-
sition tool to enact distributed scientific workflows. Thrarhework has helped bring
to life the ideas addressed by this thesis, allowing prdsoimbe executed on live ser-
vices and data. The implementation is open-source andaa@aifor download from:
http://ww. mas. sour cef or ge. net. The following Chapter presents a methodol-
ogy for building systems using our approach, a term we labekdination-oriented
programmingand demonstrates, by example how the MASC language meatsighe
inal set of requirements and solves the set of motivatingfkmw; scenarios presented
in Sections 3.3, 3.2 and 4.1.

Chapter 7

Evaluation By Use-Case

This Chapter ties together all of the separate sectionseatibsis, demonstrating how
our agent-based approach to service composition (MASC)oare the original set
of workflow scenarios and meet the requirements of scientiickflow, addressed
by Chapters 3, 4 and 5. Section 7.1 proposes the coordiratiented programming
methodology, outlining how users can build complex distréal systems using the
techniques addressed by this thesis. This methodologyidescdow users can ap-
proach the system from different levels of abstraction pdichg the role of either an:
interaction engineefSection 7.1.1)experiment enginediSection 7.1.2) or aagent
engineer(Section 7.1.3).

This methodology is then applied to each of the motivatings¥ow scenarios, demon-
strating how the various stages of the coordination-oe@mrogramming methodol-
ogy builds up a working protocol to solve the original speefion. Each Section
will provide a full implementation using the abstract MAS&hguage and discus how
this implementation was realised, outlining why certaimicks regarding language
features were made. Alongside the abstract syntax is a e@n&ML specification
which has been deployed on the Zorro framework, each impi¢gtien is contained
in the relevant appendix. Section 7.2.1 discusses the Ipatdessing scenario, Sec-
tion 7.2.2, the knowledge acquisition scenario and finadlgtten 7.2.3 addresses the
runtime coordination scenario.

Section 7.3 addresses a number of important points, firstly dur hybrid multiagent
system/service-oriented architecture approach to seamposition fulfills the orig-
inal requirements. Secondly, how our approach can solveaachess of workflow,

115

116 Chapter 7. Evaluation By Use-Case

involving flexible, runtime service composition. Finallhis Section discusses the
advantages and disadvantages of our approach in relatexastiing workflow compo-
sition languages and tools. Conclusions are presentecciin8e’.4

7.1 Coordination-Oriented Programming Methodology

In addition to providing the MASC language and Zorro frameéwfor scientific work-
flow composition, we propose a methodology outlining howsisan build a workflow
which solves a specification using our agent-based apprwasérvice composition.
In order to allow users with different skills and motivat®to take advantage of the
MASC language it can be approached from various levels dfadigon, dividing users
into three distinct categoriegexperiment engineeriteraction engineersind agent
engineersthis concept is illustrated by Figure 7.1. Each of theselkwf abstraction
will now be addressed by the following Sections.

Scientist:
Has a Scientific Hypothesis

D

DataFlow

. Dataflow MASC
Engineer

v

—
Port Definitions

Existing

Interaction SOA

Engineer Scene Definition

t/
v

Figure 7.1: MASC layers of abstraction

7.1. Coordination-Oriented Programming Methodology 117

7.1.1 Interaction Engineer

Interaction engineers as the name suggests, are primarigecned with coordination.
Interaction engineers take a software specification andeliv into a number of dis-
tinct agent roles, specifying the details of how these rotesdinate with one another
(within a multiagent system) to achieve the overall aim of #pecification. Using
the features provided by the MASC language interactionresegs build Scenes, con-
sisting of roles which are themselves constructed usingtti®en and operation sets
discussed in Sections 5.2.3 and 5.2.4.

Specification

[|dentify Role Set)
'S

Interaction Model
For the Scene define:

Definitions
Send and
Receive
Actions

Performatives

Control Flow

Service Model
For each Role define:

STUB
Decision
Actions +

Control Flow

Method Set
Procedures

STUBBED Scene

)
({% C

[Test and Deploy

Test and Deploy
LIVE Typed Scene

Figure 7.2: Interaction engineer methodology

118 Chapter 7. Evaluation By Use-Case

The interaction engineer methodology describes the contpkk of writing the pro-

tocol code to coordinate multiple, concurrent agents. Théwdology is iterative and
an engineer can move between phases until a working systemlighat meets the
original specification. The methodology is illustrated bgufe 7.2 and detailed below:

¢ Identify Role Set: Role types (as discussed in Section 5.2.2) specify a pattern
of computational behaviour which an agent can adopt. Thetéisk an engineer
must perform is to break the initial specification into a nenbf agent role
types which represent a Scene. This could be a single agentalomultiple
roles which are expected to interact as part of a multiagestem.

e Interaction Model: The interaction model captures any dataflow information
associated with a Scene and the pattern of interaction leetwwiltiple, concur-
rent agent roles. The first property defines whether the Shaseany input or
output port definitions, allowing it to be treated as a conasbs object through
the dataflow layer. If the specification has been broken dawsmmmultiple role
types an engineer must begin to define the performative @gedype) set and
specify the pattern of interaction (sending and receiviigjveen the agent roles
within the Scene. The sending and receiving actions care@iessary) be sug-
ared with control flow (then, or, par etc.).

e Service Model: The service model fleshes out the role type definitions, atigw
engineers to make use of the remainder of the action setjibgibround the
interaction model defined by the previous stage. For eachtagke the service
model specifies how that role is broken down into a group ofho@s$, making
use of the remainder of the action set and control flow opesatinteraction
engineers must consider how agents connect to their irteeaaoning layer
through decision procedure calls, specifics such as decmiocedure names,
input and output parameters, any faults etc. form an APles&al which an
agent engineer can then implement to achieve personaleeytour. If the role
makes use of any external services these must also be sgecifie

e Test and deploy stubbed sceneAs a Scene defines an executable specification,
this pattern of interaction can be tested by simply allowaggnts to invoke
stubbed services (decision procedures/external sejviGtabbed services can
be used if the live service is not available, too costly toke etc. This stage
highlights any problems with the interaction and servicedeis, allowing an

7.1. Coordination-Oriented Programming Methodology 119

interaction engineer to iteratively alter and test the &cen

e Testand deploy live sceneOnce the iterative process has terminated and the in-
teraction engineer is confident that both the interactiodehand service models
are correct, live decision procedures and external ses\vte@ be plugged into
the Scene.

7.1.2 Experiment Engineer

As discussed by Section 3.4 scientific workflows tend to have»ecution model
which emphasises dataflow. Scientists are generally nibédkirogrammers and have
no interest in the low level specifics of service compositidrscientist can therefore
approach the MASC language from its most abstract leveptiapthe role of an ex-
periment engineer. An experiment engineer can use Scerasrgdutation (designed
by an interaction engineer) as abstract objects, treatiagtas parameterisable black
boxes of computation. As discussed in Section 5.2.6 the MA&@&flow layer allows
an engineer to construct a computational experiment byigiray a mapping from
sources to sinks.

()

H .
Terminate H
L)
L]

Revise
:| Component Selection

Dataflow Mapping

Judge
experiment
results

Execute Workflow

Parameterise

. J

Figure 7.3: Experiment engineer methodology

Figure 7.3 illustrates the experiment engineer methodol&gientists approach the
system with a hypothesis and aim to construct a high levetiéxgnt in order to fal-
sify that hypothesis. Components (such as Scenes (defindtelASC language),
files, services etc.) are treated as abstract problem gpbomponents, scientists can

120 Chapter 7. Evaluation By Use-Case

then parameterise these components and provide a dataflppimgavhich wires these
components together, forming an executable experimemwifs@ion. This is an iter-
ative, exploratory design process, steered by a hypoth&3ie refinement process
terminates when a suitable combination of workflow comptsmand parameters fal-
sify the original hypothesis.

7.1.3 Agent Engineer

As discussed in Section 2.3 a key property of agents ovetiegisoftware entities is
that they are able to perform autonomous action in an enwigart in order to meet
their design objectives. In order to achieve this withinM&SC framework one must
adopt the role of angent engineerAgent engineers are concerned with designing cus-
tomised, intelligent agents that adopt a role from a preddfiBicene definition (defined
by an interaction engineer). To achieve this specialis¢thieur an agent engineer
must implement the decision procedure set for a given rgde.tyl' his behaviour can
be as simple or complex as the agent engineer specifies awesalgents to have a
personalised strategy (which is hidden to other agents)imvihe interaction model
which the Scene defines.

7.2 Solving the Motivating Workflow Scenarios

This section brings together all of the concepts discussethisby the thesis and
demonstrates through example how the MASC language andlication-oriented
programming methodology (where applicable) can solve tigiral set of motivat-
ing workflow scenarios presented by Sections 3.2, 3.3 andHath subsection will
present in turn a workflow scenario and demonstrate how thieus stages of the
coordination-oriented programming methodology buildsuwprking protocol to solve
the original specification. Workflow scenarios are ordergddmplexity, starting with
the most basic (utilising simple language features) to dempoordination (utilis-
ing the full language). This process includes a full impletagon using the abstract
MASC language and notation described by Section 5.2, lifésterest are marked
by a number (not necessarily in order) and discussed by thesmonding text. Each
workflow has been fully implemented and executed with liveises and data on our

7.2. Solving the Motivating Workflow Scenarios 121

agent-based web services composition framework. The XNdkesentation (used as
input) make up the relevant appendix.

It is important to note that with any language the definitipngvided are only one
possible way of solving the original specification, othedstand are equally as valid.
For simplicity type information is left out of the MASC defiians, apart from special
cases wher8var _nane: a is a variable of type agent nanf,ar name: al i st is a list
of agent names arftvar _name: r is variable of type role name.

7.2.1 Solving Scenario 1: Batch Processing

This Section demonstrates how the AstroGrid batch prosgssienario discussed in
detail in Section 3.2 can be implemented using the MASC laggu This scenario is

the simplest of the workflow scenarios addressed by this tehapd takes advantage
of the basic features of the MASC language, such as methadittefs, sending and

receiving, the sequence operator (then) and externalcgeimvocations. The corre-
sponding XML definition (used as input) is contained in ApgierB.

% sm{
met hod main() =
wai t f or
1 (request($ra, $dec) <= agent($user_config:a, %Yuser))
tinmeout (e)
2 then invoke retrieve($ra, $dec, $user_config:a)
6 then invoke main()

method retrieve($ra, $dec, $user_config:a) =
3 $i mages = service(def(!wfs), $ra, $dec)
then $s_extrator = service(def(!s_extractor), $inmages)
then $xmat ched = service(def (! xmatcher), $sextrator)
4 then invoke redshift($xmatched, $user_config:a)

met hod redshift($xmatched, $user_config) =
$hyperz = service(def (! xmatcher), $xmatched)
5 then response($hyperz) => agent ($user _config:a, %iser)}

Figure 7.4: Batch processing scenario - rsm role definition

122 Chapter 7. Evaluation By Use-Case

Figure 7.4 is a protocol definition demonstrating one pdsssblution to the batch
processing scenario. The interaction is broken up into oles: r smanduser. The
rsmrole defines the pattern of interaction necessary to pertherseries of service
invocations needed to calculate the redshift for a givea afesky. This area of sky is
supplied by theiser agent which simply waits for a human user’s input and fonsard
it to an agent who has assumed the role ®in Throughout the remainder of this
section we will refer to Figure 7.4 by line number.

By default agents begin execution from tig n method. Once instantiated them
agent begins its execution cycle by enterivgat f or loop, here it waits for a message
of performative type equest (line 1 of Figure 7.4) to be received from any agent who
has adopted the role oker. Wi t f or loops continue to execute until successful, or
until the timeout value (an integer) is reached. In this céise timeout value is not
set, so the agent will continue to loop until the required sage is received. Once a
message is received (conforming to the template defineshénlliof Figure 7.4), the
area of sky requested by the user is bound to the agent’'suadables:$r a and$dec.

For correspondence later in the protocol the name ofuee agent which sent the
message is bound to the local variabiser confi g. At this point thewai t f or loop
will terminate as all actions contained within the body af tbop have been successful.
As the left hand side of the sequence operator (then) hasdueeerssful the right hand
side is executed, invoking thiet r i eve method (line 2 of Figure 7.4) using the newly
bound variables$ra, $dec and$user _confi g as input parameters.

Control then passes to thet r i eve method which initially makes a web service invo-
cation (line 3 of Figure 7.4) in order to obtain images froraleaf the five wavebands
necessary to compute the redshift. The web service cortaeté/ide Field Survey
archive (WFS) using the hard-coded service descriptiortatoed in the constant:
I'wfs and the variables$ra, $dec as input parameters. The result of the invoca-
tion is stored in the newly created variab$:mges. The raw data is filtered through
two analysis tools, accessed through service invocatidime first iss_ext ract or,
this tool extracts from each of the images the positions géaib of interest, storing
them in a Virtual Observatory table for each of the bandwsdfis extractor. The
s_extractor service definition is stored in the constarst:ext ract or. The output of
this service invocation (group of tables) is then passealthin a cross matching tool
which extracts all of the objects which overlap in each offthe bandwidths, storing
them in just one Virtual Observatory tabléxmat ched. If successful the edshi ft

7.2. Solving the Motivating Workflow Scenarios 123

maker method is invoked (line 4 of Figure 7.4) using the \a@da: $xmat ched and
$user _confi g as input parameters. The redshift is calculated by invoktegservice
specified in the constanthyper z, using the cross matched results as input. Finally the
results of this computation are sent back to the specifictagka initially requested
the calculation (line 5 of Figure 7.4), as the first parametertains the agent name:
user _confi g and the second a role typ#iser . Once control has passed back to the
mai n method, the agent restarts itself by making a recursivetcati n (line 6), here

it waits for anotheuser agent’s request.

7.2.2 Solving Scenario 2: Knowledge Acquisition

In order to implement the knowledge acquisition scenariscfgssed in detail in Sec-
tion 3.3) an engineer must take advantage of more compldéxrésaof the MASC
language. These features include: iterative and recuegjeat definitions, the choice
operator (or), agent decision procedures, web servicecatians and message pass-
ing between multiple concurrent agents. The correspondid definition (used as
input) is contained in Appendix C.

To solve the knowledge acquisition scenario a Scene cantafour roles has been
defined: auser role, bcg role, extraction role andendpoi nt role. To briefly
summarise the solution, an agent representing a useriesttereceives a request to
conduct an experiment exploring properties of brightesstdr galaxies, this request
(along with possible coordinates) are forwarded bz g agent which understands how
to perform coordination to solve this type of problem. Titg agent performs a reg-
istry search of databases containing information abougtefs of galaxies, sending
these to an agent which has adopteddker acti on role. Theextraction agent
recursively traverses this list, sending each request tendpoi nt agent who is re-
sponsible for performing the service invocations and samdine results back to the
extraction agent. Once all the results are received they are storeciAstroGrid
myspace facility and the resulting URL is sent back to thgingtingbcg agent. This
process is repeated for databases containing informatioptaal, near infrared and
radio sources. The combined data sets are run through & séneeb service invo-
cations which together compute properties of brightesttelugalaxies, the results are
returned to theiser agent and forwarded to the scientist the agent represents.

Figure 7.5 illustrates the interaction model between thenagoles in the Scene and

124 Chapter 7. Evaluation By Use-Case

Figure 7.1 summaries the service model. Based on the ini@naand service models
we have defined protocol definitions for the most complexsdieg (Figure 7.7) and
extraction (Figure 7.6) which implement the motivating workflow scenaiThese
definitions and the features they make use of will now be dised in detail.

Scene: Brightest Cluster Galaxies

Role bcg

External Services | $galaxies = service(def(Iregistry), !galaxies)

$working set = service(def(!stats1), $galarata, $extradata)
$top.attributes = service(def(!stats2), $workisgt)

$result = service(def(!stats), $paramelist)

Role extraction

Decision Procedures($head, $tail) = ExtractNext($qlist) fault emptylist
Store($name, $res)

$data = Retrieve()

External Services | $resulturl = service(def(!myspace), $data)

Table 7.1: Knowledge acquisition scenario Service Model

Once agents have received a copy of the protocol adoptingieébessary roles the
execution cycle can begin. In this instance the protocotetten begins with the
bcg agent, it enters a waitfor loop, expecting to receive a ngessd performative
type: begi n from an agent which has adopted tieer role. Once received, a service
invocation is made to the AstroGrid registry (line 1 of Figuf.6) in order to look
up catalogues containing data about clusters of galaxies. li$t returned from this
service invocation is stored in the variablggal axi es and sent to any agent which
has subscribed to thext r act i on role (line 2 of Figure 7.6). Once sent an invocation is
made to thevai t method using the name of the originatunger agent:user config

as input.

The corresponding receive on thet racti on agent is specified on line 1 of Figure
7.7. Once a message which matches the performatite:act and message specifi-
cation is received the contents of the message are boune t@tfable:$ql i st , this
variable is the output from the AstroGrid registry lookupazontains a list of service
calls which need to be made in order to obtain the required fitat the bcg calcu-
lation. An invocation is then made to tkeoop method, using the query lis$gl i st
and name of the originating agedbcg: a as parameters.

7.2. Solving the Motivating Workflow Scenarios 125
e
user beg extraction endpaini
| I | I
1 begin() 1 | |
L |
[| [extract(bextraction_typa]— | ¥
query(5q) m
[alt] resull Sres)
F _______
[else] noresuit)
e— _______
for each: endpoint |
finalresult{$resulturl) I
e — — — — — — —| |
T for each: type of data B I
| required | |
display{3top_attributes, Sgalaxy data, Sexlra_dal:i[j : :
i | |
visualisation(Sparameter_list) l : :
display(Sresult) | |
——————————— | |
finished(} | |
D | I
| | |
| user interaction I | |
. | [| I

Figure 7.5: Knowledge acquisition scenario - Interaction Model

126 Chapter 7. Evaluation By Use-Case

Y%cgf
met hod main() =
wai t f or
(begin() <= agent($user_config:a, %ser)
1 then $gal axi es = service(def (!registry), !galaxies)
2 then extract($gal axi es) => agent(_, %xtraction)
then invoke wait($user_config:a))
tinmeout (e)

met hod wait ($user _config:a) =

wai t f or

3 (finalresult($gal axy_data) <= agent(_, %extraction))
tinmeout (e)

4 then $extra = service(def(!registry), !radio)

5 then extract ($extra) => agent(_, %extraction)
wai t f or

6 (finalresult($extra_data) <= agent(_, %xtraction)

then invoke bcg($gal axy_data, $extra_data, $user_config:a))
timeout (e)

met hod bcg($gal axy_data, $extra data) =

7 $working_set = service(def(!statsl), $gal axy_data, $extra_data)
8 then $top_attributes = service(def(!stats2), $working_set)
9 then display($top_attributes, $galaxy_data, $extra_data)

=> agent ($user_config:a, %Ywser)
then invoke userinteraction($user_config: a)

met hod userinteraction($user_config:a) =
wai t f or
10 ((visualisation($parameter_|ist) <= agent(_, %ser)
then $result = service(def(!stats), $paranmeter_list)
then display ($result) => agent($user _config:a, %iser))
11 or (finished() <= agent(_, Y%ser)
then invoke main()))
timeout(e)}

Figure 7.6: Knowledge acquisition scenario - bcg role definition

7.2. Solving the Motivating Workflow Scenarios

127

Y%extraction{
met hod main() =
wai t f or
1 (extract($qlist) <= agent($bcg:a, %cg)
then invoke el oop($qlist, $bcg:a)
then invoke main())
timeout (e)

met hod el oop($qlist, $bcg:a) =

N

then query($head) => agent(_, %endpoint)
3 then invoke el oop($tail, $bcg:a))
or (invoke ewait($bcg:a))

N

met hod ewait($bcg: a) =

wai t f or

5 (((result($res) <= agent($name, %endpoint)
then Store($name, $res)
then invoke ewait($hcg:a)))

6 or (noresult() <= agent($name, %endpoint)

then invoke ewait($hcg:a)))
7 timeout (invoke end($hcg: a)

met hod end($bcg:a) =
$data = Retrieve()

then $resulturl = service(def(!nyspace), $data)
8 finalresult($resulturl) => agent($bcg:a, %cg)}}

(($head, $tail) = ExtractNext($qglist) fault enptylist

Figure 7.7: Knowledge acquisition scenario - extraction role definition

128 Chapter 7. Evaluation By Use-Case

Theel oop method makes use of three language features not demodss@far by
this Chapter: recursive function calls, basic agent irdereasoning and the choice
operator. This method recursively traverses the list ofiggeconstructing and sending
each unique query to the appropriate service. The methoohddy invoking the
HeadTai | decision procedure (line 2 of Figure 7.7), which removesitam at the
front of the list: $head, and stores the remainder of the list Bt:ai | . TheHeadTai |
decision procedure is a call to the agent’s internal degikigic that an agent engineer
has written, deployed as a reasoning web service and assth¢tabcg agent before
execution began. It was associated by supplying the WSDteadaf the web service
which implements all of the decision procedures containdtie service model for the
extraction role type.

If the HeadTai | decision procedure is successfully executed then the riugreery:
$head is sent to any agent which has subscribed toetiépoi nt role. If sending is
successful a recursive invocation is made togheop method (line 3 of Figure 7.7)
using the tail of the list as the first input parameter. Theirsion will terminate if any
one of the sequential statements (constructed usingltbe operator) fail. A valid
termination would be the result of thiadTai | decision procedure raising the fault
enptyl i st, indicating there are no more items to process. Once a statefails or
an exception is raised tlee branch of the protocol is executed (line 4 of Figure 7.7),
which in this case makes an invocation to éwei t method.

Once all the queries have been sent out,dhepoi nt agents will process them by
invoking the services and sending the results back. It igahef theewai t method

to collect and send back these responses to the originat,dgmimd to thebbcg: a
variable. Inside this method the agent is waiting for twoetyf message indicated
by the performative type and message structure, eittesul t or noresul t, this is
achieved by separating the receives withoaroperator. If a query has been successful
aresult message is received (line 5 of Figure 7.7) containing thegssed query:
$res. This query is then stored locally to the agent by making andation to the

St or e decision procedure, providing the name of the agénane and the processed
guery: $res. A recursive invocation is then made to tbwai t method. The choice
operator here allows the agent to listen for several kindme$sage, in this case the
other option is to receive @or esul t message (line 6 of Figure 7.7) indicating that an
agent has not been able to process the query. Within our gobtfinition, failure

is simply ignored and the agent makes a recursive invocatidheewai t method.

7.2. Solving the Motivating Workflow Scenarios 129

The loop will terminate when the agent has been waiting fossages over the stated
timeout period (line 7 of Figure 7.7), when the loop times out an iratam to the
end method is made.

The terminating method invokes tiket ri eve decision procedure, storing the accu-
mulated processed data into et a variable. The result of the extractions are then
sent to the AstroGrid storage facility (line 8 of Figure 7tiough an external service
invocation, the details of which are stored in the constamgspace. The result of this
invocation is a URL, pointing to where the published restdsde:$r esul t url . This
URL is sent back to the agent which made the original requesbdtraction:$bcg: a

for further analysis. The agent restarts itself by makinglato thenai n method.

Thebcg agent is expecting to receive (line 3 of Figure 7.6) a mességerformative
typeresul t. Once received the entire process is repeated this timeafiar sburces
which are classified as catalogues of optical, near-infrarel radio sources and which,
therefore, might include relevant observations of BCG{di4,5,6 of Figure 7.6). The
results from both of these extraction processkeml axy _dat a and$extra_dat a are
passed in as parameters to tiegy method through an invocation. Tleg method
passes the results from both extraction processes throsghes of web service invo-
cations. The first works out which galaxies in the galaxy logae data are the BCGs
in each of the host clusters (line 7 of Figure 7.6) generagimgpmbined set of all the
data known about each Cluster/BCG pair. The second is amcatiam to a statistics
algorithm (line 8 of Figure 7.6), which seeks the twentyibtites with the highest
information content on the deposited data. The output cfdlservice invocations are
forwarded to an agent which represents a human scientistglof Figure 7.6), stored
in the variablebuser _confi g: a. The scientist can use their expertise and give judge-
ment about how the workflow should progress. It is importarkdep the scientist in
the loop, in this case the astronomer must step back and tdbk data, the visualisa-
tion tool displays a set of scatter plots which are judgedassibly worthy of further
investigation.

Once the data has been sent an invocation tai$leei nt er act i on method is made
where the agent is waiting for input from the user scientisput from the scientist
can take the form of two performativesi sual i sati on (line 10 of Figure 7.6) or
fini shed (line 11 of Figure 7.6), separated using tbre operator. Thebcg agent
responds to the user's commands by invoking further stadigtn the results in ac-
cordance to the supplied parameters stored in the vari&pbe:anet er | i st. User

130 Chapter 7. Evaluation By Use-Case

interaction terminates when theni shed performative is received.

7.2.3 Solving Scenario 3: Runtime Coordination

This Section discusses the most complex of our motivatindsfhaw scenarios, taken
from the Large Synoptic Survey Telescope (LSST) [56]. Thakilow scenario is
discussed in detail in Chapter 4 acting as a pivotal poinhis thesis. This Section
will practically demonstrate how the MASC language can s@\scenario requiring
flexible, runtime composition of services and data in an iehgy distributed, peer-
to-peer environment. The implementation makes use of saivenaed features of
the language, allowing components to be composed at rurirdenot (as previously
demonstrated) be hard-coded into the protocol. The featdesnonstrated include:
port reading and writing, creating or locating agents onflyyenessage passing based
on agent type or role type at runtime, and service invocasibruntime. We also
demonstrate how the dataflow layer can be used to composeragpés at a higher
level of abstraction, for use in the scientific community. eTéorresponding XML
definition (used as input) is contained in Appendix D.

To solve the time-domain astronomy workflow scenario we hdivaeled the Scene
into four distinct roles:cl assi fi cation (Figure 7.9),contract net (Figure 7.10),
observat ory (Figure 7.11) an@éxt racti on (Figure 7.12). The interaction model is
illustrated by Figure 7.8 and the service model by Figure 7.2

To briefly summarise the implementationg¢laassi fi cat i on agent is attempting to
locally classify a list containing pointers to objects whicannot be classified by the
automated algorithms discussed in Section 4.1.1. If atiamgy the agent cannot clas-
sify an object locally help needs to be obtained from agemtsiing at distributed
observatories. The first port of call is a request to an agdnthvhas adopted the
contract net role, supplying as parameters to the message: a list oftdaiggents:
$potential _agents (obtained from a registry lookup) and a proposal defining the
terms of agreement$proposal . The contract net agent is responsible for exe-
cuting the contractnet protocol [50], requesting parétipn from each agent in the
list $pot ent i al _agent s. This list of agents is the result of a registry lookup at run-
time, therefore the agents available are very much depé¢rmtethe facilities of the
observatory, current work schedule etc. Once the call fotiggpation has finished
thecont ract net agent returns a list of agents working at observatories weharmed

7.2. Solving the Motivating Workflow Scenarios 131

propose to the protocol. The list of open proposals is then evaluébedlly (ac-
cording to some internal constraint defined by a decisiorgutare invocation) by the
cl assification agent, generating a list of rejected agerfisej ect and a single
suitable agent$accept . Anaccept - proposal message is sent to the selected agent.
The agent working on behalf of the observatory breaks dowmtbposal, farming out
the computational job to a numbere@ft r act i on agents, the number and location of
which are decided at runtime. Eaekt r acti on agent receives a section of the orig-
inal proposal containing a list of services, with parametgdtings etc. to invoke. The
extracti on agent then calls each service in turn, setting the input aityub parame-
ters on the fly, returning the results to the agent workingemelf of the observatory. If
the terms of the proposal have been fulfilled successfuliyrdéuor m resul t message
is sent to the originatingl assi fi cati on agent. The data received from the dis-
tributed observatory$opi ni on is used to generatef@onbi ned_opi ni on, informing

a human scientist if anything unusual has occurred, ragyiiollowup observations
etc. The agent then continues to classify the remainingctdjén parallel to this task
taking place, the agents who were unsuccessful in the aingBproposal bid are re-
jected by therej ect - proposal message. However, if the contractnet proposal has
been unsuccessful another attempt must be made (by exgtiiprocess described
above again) to find suitable data from distributed obseneg. The contractnet pro-
posal can fail in three ways, firstly if the lisgopen_proposal s is empty (throwing
thenopr oposal s fault), secondly if thecl assi fi cati on agent has been waiting too
long andt i neout is reached and finally if the observatory selected cannfitl file
terms of the contract sending anf or m f ai | ur e message.

As most of the basic features have already been discussdtehyévious workflow
scenarios this explanation of the implementation will diolgus on the more advanced
features of the language. The implementation makes singgefithe dataflow layer,
theobj ect cl assi fication Scene has two ports, an inpottsst : | sst _i n1 (line 1
of Figure 7.12) and an outport:sst: out 1 (line 2 of Figure 7.12). As the mapping
demonstrates, an outport from the automated processimgagef (discussed in Sec-
tion 4.1.1) is connected to the inport of thig ect cl assi fi cati on Scene (line 3 of
Figure 7.12) and the outport from tleéj ect cl assi fi cati on Scene is connected to
an inport of a Scene handling user interaction (line 4 of Feglu12. The first use of
this mapping is made throughpart r ead operation (line 1 of Figure 7.9). As the
automated classification software runs it outputs any detedannot be classified to

132 Chapter 7. Evaluation By Use-Case
Scene: Runtime coordination
Inports Isstinl
Outports Isstoutl
Role classification

Decision Procedure

External Services

s$result = StatTest(Sunknown)
UpdateKnowledge($result)
QueryKnowledge($unknown) fault cannotclassify
$proposal = GenerateProposal($unknown)
($accept, $reject) = Evaluate($opproposals) fault noproposa
($head, $tail) = HeadTail($reject) fault emptylist
AgentCheck($accept, $observatory) fault wrongagent
$combinedopinion = GenerateOpinion($opinion)
$potentialagents = service(def(!registry), $unknown)

Role
Decision Procedure

External Services

contractnet

s$c.id = GeneratelD()
($head, $tail) = HeadTail($potentiabents) fault emptylist
($name, $role) = NameRole($head)
StoreProposal($agent, $id, &t) wrongcid
StoreRefusal($agent, $id, $d) wrongcid
$openproposals = RetrieveProposals()
N/A

Role
Decision Procedure

observatory

sConsiderProposal($proposal) fault proposalrefused
AgentCheck($initiator, $init) fault wrongagent
$proposalsections = DivideProposal($proposal)
($head, $tail) = HeadTail($proposséctions) fault emptylist
Finished(), Remove()

Store($data)

$opinion = ExtractData()
External Services | N/A
Role extraction

Decision Procedure

External Services

s($head, $tail) = HeadTail($propossection) fault emptylist
$servicedef = ExtractService($head)
$serviceinput = Extractinput($head)
$serviceoutput = ExtractOutput($head)
Store($serviceutput)
$data = Retrieve()
$serviceoutput = service(def($servioaef), $servicanput)

Table 7.

2: Runtime coordination scenario service model

S

7.2. Solving the Motivating Workflow Scenarios 133
7T I
classification confractnet abservatory exiraction
| | |
e request{Spotential_agents, Sproposal) i | |
b .
: I cip(Sproposal, Sinit, c_id)™ :
; [alt] poposerse id) I
| =T = |
E S —— |
i [else] refuse(§c_id) |
o i
: For each: potential I
! observatory |
i response{Sopen_proposals, $c_id) |
: ——————————— |
|
i - T |
; | | |
] | | |
i reject—pmp-osalf&_ldlj |
; i |
. for each: rejected agent | |
| | |
] | | |
g | | |
: accept-proposali$c_id)
i : request-axtraction{Shaad)
; |
: [response-exiraction|Sdata)
i : I for each: proposal I
i | ! section :
; 1 I
| | | |
i infarm-result{Sopinion, $||::_id] l I
P —m—————— e ———— _—————— = |
; [else] inlorm—l’ailure{Sc_id)l I
bl — ——_ —_ — — - —_ — ———— - — — - |
| |
Ao] | | | J/

Figure 7.8: Runtime coordination scenario - Interaction Model

134 Chapter 7. Evaluation By Use-Case

protocol (objectclassification, {
scene{lsst, {
%l assification{
met hod main() =
1 $unknown = portread(lsst:|sst_inl)
then $result = Stat Test ($unknown)
then Updat eKnow edge($resul t)
then (QueryKnow edge($unknown) fault cannotclassify
then invoke main()
or invoke contractnetsend($unknown)) or e)

met hod contract net send($unknown) =
2 $potential _agents = service(def(!registry), $unknown)
then $proposal = Generat eProposal ($unknown)
then request ($potential _agents, $proposal) => agent(_, %ontractnet)
then waitfor
(response($open_proposal s:alist, $c_id) <= agent(_, %ontractnet)
3 then ($accept:a, $reject:alist) = Eval uate($open_proposal s:alist) fault noproposals
then invoke contractreject(($reject:alist, $c_id, $accept:a, $unknown))
ti meout (i nvoke contract net send($unknown))

met hod contractreject($reject:alist, $c_id, $accept:a, $unknown) =
(($head: a, $tail:alist) = HeadTail($reject:alist) fault enptylist
then reject-proposal ($c_i d) => agent($head:a, _)
then invoke contractreject($tail:alist, $c_id, $accept:a, $unknown))
or (invoke contractaccept($accept:a, $unknown, $c_id))

met hod contractaccept ($accept:a, $unknown, $c_id) =
accept - proposal ($c_id) => agent($accept:a,)
then waitfor
(informresult($opinion, $c_id) <= agent($observatory:a, _)
then Agent Check($accept:a, observatory:a) fault w ongagent
then $conbi ned_opi ni on = Gener at eQpi ni on($opi ni on)
4 then portwite(lsst:lsst_outl, $conbined_opinion)
then invoke nmain())
or (informfailure($c_id) <= agent($observatory:a, _)
5 then invoke contractnetsend($unknown))
tinmeout(e)},

Figure 7.9: Runtime coordination scenario - classification role definition

7.2. Solving the Motivating Workflow Scenarios 135

Y%ontract net{
met hod main() =
wai t f or
(request ($potential _agents, $proposal) <= agent(S$initiator:a, _)
then $c_id = Ceneratel D()
then invoke cfp($potential agents, $proposal, $initiator:a, $c_id)
then invoke main())
timeout (e)
met hod cf p($potential _agents, $proposal, $initiator:a, $c_id) =
(($head, $tail) = HeadTail ($potential _agents) fault enptylist
1 ($nane:a, $role:r) = NaneRol e($head)
then cfp($proposal, $initiator:a, c_id) => agent($nane:a, $role:r)
then invoke cfp($tail, $proposal, $initiator:a, $c_id))
or (invoke receiveproposal s($initiator:a, $c_id))
met hod receiveproposal s($initiator:a, $c_id) =
wai t f or
((propose($id) <= agent($agent:a,)
then StoreProposal ($agent:a, $id, $c_id) fault wongcid
then invoke receiveproposal s($initiator:a))
or (refuse($id) <= agent($agent:a, _)
then StoreRefusal ($agent:a, $id, $c_id) fault wongcid
then invoke receiveproposal s($initiator:a)))
ti meout ($open_proposal s:alist = RetrieveProposal s()
2 then response($open_proposal s:alist, $c_id) => agent($initiator:a, _))},

Figure 7.10: Runtime coordination scenario - ContractNet role definition

136 Chapter 7. Evaluation By Use-Case

Y%observat or y{
met hod main() =
wai t f or
(cfp($proposal, $initiator:a, $c_id) <= agent($contractnet:a, %ontractnet))
timeout (e)
1 (then Consi der Proposal ($proposal) fault proposalrefused
then propose($c_id) => agent($contractnet:a, %ontractnet)
then invoke waitfordecision($initiator:a, $proposal))
or (refuse($c_id) => agent($contractnet:a, %ontractnet)

then invoke main())

met hod wai tfordecision($initiator:a, $proposal) =
wai t f or
((accept-proposal ($c_id) <= agent(S$init:a, _)
then AgentCheck($initiator:a, init:a) fault wongagent
2 $proposal _sections = Divi deProposal ($proposal)
then invoke extract($proposal _sections, $initiator:a, $c_id))
or (reject-proposal ($c_id) <= agent($init:a, _)
then Agent Check($initiator:a, init:a) fault wongagent
then invoke main()))
timeout (e)

net hod extract ($proposal _sections, S$initiator:a, $c_id) =
(($head, $tail) = HeadTail ($proposal _sections) fault enptylist
then request-extraction($head) => agent(_, %extraction)
then invoke extract($tail, $initiator:a, $c_id))
or (invoke wait($initiator:a, $c_id))

method wait($initiator:a, $c_id) =
(Fi ni shed()
then waitfor
(response-extraction($data) <= agent(_, %extraction)
then Store($data)
t hen Renove()
then invoke wait(S$initiator:a, $c_id))
timeout (informfailure($c_id) => agent(S$initiator:a, _))
or (invoke finish($initiator:a, $c_id))

method finish($initiator:a, $c_id) =
$opi nion = ExtractData()
3 then informresult($opinion, $c_id) => agent($initiator:a, _)
then invoke main()},

Figure 7.11: Runtime coordination scenario - observatory role definition

7.2. Solving the Motivating Workflow Scenarios 137

Y%extraction{
met hod main() =
wai t f or
(request-extraction($proposal _section) <= agent($coordinator:a, _)
then invoke retrieve($proposal _section, $coordinator:a)
then invoke main())
timeout (e)

met hod retrieve($proposal _section, $coordinator:a) =
(($head, $tail) = HeadTail ($proposal _section) fault enptylist
then $service_def = Extract Service($head)
then $service_input = Extract! nput ($head)
then $service_output = Extract Qut put ($head)
then $service_output = service(def($service_def), $service_input)
then Store($service_out put)

© 00 N o o

then invoke retrieve($tail, $coordinator:a))
or ($data = Retrieve()
10 then response-extraction($data) => agent($coordinator:a, _))}},

1 {inport(lsst:lsst_inl, true)},

2 {outport(lsst:lsst_outl)},

3 {link outport(automted:auto _outl) -> inport(lsst:lsst_inl),
4 link outport(lsst:lsst outl) -> inport(user:user_inl)}).

Figure 7.12: Runtime coordination scenario - extraction role definition and dataflow

mapping

138 Chapter 7. Evaluation By Use-Case

the outport:aut omat ed: aut o_out 1, which we have just discussed has been mapped
to the inport:| sst: | sst i n1. Therefore when theort r ead operation is invoked it
removes the first item that cannot be classified, storing thenvariable:$unknown.

If the | sst agent cannot classify the iteriunknown locally observatories need to be
located at runtime gathering evidence on whether this uwknabject is potentially a
new species of object, or simply some kind of equipment faiktc. The location of
suitable agents is made by contacting a registry (line 2 gfife 7.9) through a service
invocation, using the unknown objedunknown as input to the invocation. Based on
the object type, coordinates etc. the registry lookup retarlist of agents formatted as
name, role pairs, storing this list in the newly createdalale: $pot ent i al _agent s.

A proposal of work based onfunknown is generated through a decision procedure
invocation, this along witt$pot ent i al _agent s is sent to any agent which has sub-
scribed to theont r act net role. Once received by theont r act net agent the list is
recursively traversed, extracting the narfieane: a and role$r ol e: r of the agent to
issue the proposal to (line 1 of Figure 7.10). The name arelabthe agents to issue
the proposal to cannot be hard-coded into the protocol adigtiis decided purely at
runtime through a registry lookup. The registry lookup eelf dependent firstly on
the unknown object (which thiesst agent cannot predict) and secondly on external
influences such as: network conditions, current load of egeorking at distributed
observatories. Once the call for participation has beehtseevery agent in the list:
$pot enti al _agent s itis then up to the agent working on behalf of the observatory
autonomously decide whether it is willing to fulfill the tesnof the proposal or not.
As an example we have implemented such a risdser vat ory. Once the proposal

is received theConsi der Proposal decision procedure (line 1 of Figure 7.11) is in-
voked. Based on some internal constraint (programmed byantangineer) that is
not visible to the rest of the multiagent system the ageriteitiher issuepr opose or

ref use (if the pr oposal r ef used fault is thrown). Once all agents working on behalf
of an observatory have made an autonomous decision the kgfemts that returned
propose is sent back to thesst agent (line 2 of Figure 7.10).

Once thel sst agent has received this list of open proposals it must thesif iu-
tonomously decide which agents to reject and which singenatp accept. This is
decided through a decision procedure invocatkwal uat e (line 3 of Figure 7.9) pro-
grammed by an agent engineer, the output is based on théyqpfgbarticipants, costs
involved, how quickly the observatory could fulfill the tesrof the proposal etc. Once

7.2. Solving the Motivating Workflow Scenarios 139

decided, all agents in the liskr ej ect : al i st are issued theej ect - pr oposal mes-
sage and the chosen agefiticcept is issued theccept - proposal message. The
agent working on behalf of the observatory which has beenessful in the contract-
net bid then divides the proposal into a number of sectioing @ of Figure 7.11)
through a decision procedure invocatidn:vi deProposal . The number of sections
that the proposal is divided into is again purely based omtme decision, depending
how much work is involved with the proposal, current workedtle etc. Once divided
each proposal section is issued to an agent which has sldddo theextracti on
role.

Once anextraction agent (line 5 of Figure 7.12) receives the proposal section i
recursively traverses it breaking it down infbead and$t ai | . Through a series of
decision procedure invocations (lines 6-9 7.12) the aggmirdcally builds an invoca-
tion model which results in an external service call. Thisteat cannot be hard-coded
into the protocol as the interaction engineer building ¢ikér acti on agent cannot
predict the series of service invocations that need to beeraadesign-time, it there-
fore must be done on-the-fly at runtime. Once the terms of thpgsal section are
met the results are sent back to the originating agent wgrembehalf of the obser-
vatory (line 10 of Figure 7.12). If the terms of the proposaVvé been fulfilled and the
computation for all the proposal sections has been conplétee 3 of Figure 7.12)
the results are sent back to the originatisgt agent through anf ormresul t mes-
sage. Based on the updated knowledgd #s¢ agent generates a combined opinion
through a decision procedure invocati@aner at eQpi ni on. The output from this in-
vocation:$conbi ned_opi ni on is then written to the outpottsst : | sst _out 1 through
aportwite operation (line 4 of Figure 7.9). As discussed earlier i3 $ection the

| sst:1sst_outl portis mapped to the inporuser: user _i n1, which handles user
interaction with a human scientist. For simplicity this @t wliscussed by this example
but it should be clear how to implement this functionalityngsthe MASC language.
Once theport wri t e is complete therai n method is invoked, which continues to pro-
cess the remaining data from the inpdrgst : | sst _i nl.

However if the agent working on behalf of the observatory hatsbeen able to meet
the terms of the proposal amf or m f ai | ur e message is sent to thast agent in-

stead. If received an invocation to thent r act net send method is made (line 5 of
Figure 7.9) which restarts the process of locating a swetabkervatory to help clas-
sify the unknown object. This process will continue to beceted until successful and

140 Chapter 7. Evaluation By Use-Case

each iteration will result in a different set of agents beoogtacted due to changing
conditions from iteration to iteration.

7.3 Discussion: A Better Approach to Workflow?

Throughout this thesis we have derived a list of requiremémnt scientific workflow
composition. It is important to note that the workflow sceoshave not been in-
vented for the purpose of this thesis, rather this thesistaadequirements that we
have derived are a consequence of analysing these workflemasgos. It is also true
that solutions to the workflow scenarios (in particular tmewkledge acquisition and
runtime coordination) don't readily exist. Scientistsrfrdhe domain have considered
similar classes of problem but the scenarios addressedibyhibsis are considered
future development workThis Section discusses how our agent-based approach to
service composition fulfills the requirements of scientificrkflow:

e R1 - Rapid prototyping: Scientists require the ability to incrementally and
rapidly prototype an experiment based on a hypothesis. TAS®llanguage
allows rapid prototyping in two very different ways, the fitsf which is pro-
totyping a sequence of interaction between a group of agdes and external
services. As MASC is a specification which is directly exablg by a group of
agents, this provides an effective mechanism for prototy@ workflow. Pro-
tocols can be used to engineer a prototype system from arscdhige those
discussed throughout this thesis) even if the exact semacenteraction model
(or both) are undefined at the design stage. This allowsaoten engineers
to focus on defining the exact pattern of interaction usingdlséd services be-
fore deploying the interaction model on live services anthd&his is further
addressed by the coordination-oriented programming naetlogy discussed in
Section 7.1. Secondly, experiments can be prototyped frdriglaer level of
abstraction by adopting the role of an experiment engirigg@s allows problem
solving components to be treated as parameterisable bteastof computation,
wired through the dataflow layer.

e R2 - User interaction: The ability to interact with a user is an essential require-
ment of scientific workflow modelling. There are two mechamsésn the MASC
language which aid this requirement. Firstly, individugkeats can send mes-

7.3. Discussion: A Better Approach to Workflow? 141

sages to and receive messages from a user, these sendirgcaivihg actions
can then be wrapped around control flow operators (sudhes, or etc.) to
steer the execution path of an agent depending how the usgete Secondly
user interaction can be mapped at the scene level, by birdirsgr to a scene’s
inport or binding a scene’s outport to a user.

e R3 - Workflow Reuse: Protocols are executable specifications which can be

directly enacted by a group of agents. Therefore the sceserigdon (written

by an interaction engineer) is a generic description thatlsaenacted by any
group of agents which adopt the roles defined by the scens.m&ans that once

a scene has been written it is fully reusable. Workflow congod® can also be
reused from a higher level of abstraction when adopting xipeement engineer
role. From this level of abstraction scenes can be wiredttmgehrough the
dataflow layer like any other workflow component.

e R4 -Faulttolerant execution: In order to keep the MASC language as lightweight
as possible, no explicit fault tolerant features have beleled. However, an in-
teraction engineer can build fault tolerant protocols lking advantage of the
features included. For example, the operation set inclades clausewai t f or
loops continue to execute until successful, angeout clauses specify compen-
sation actions.

e R5 - Levels of abstraction:Ideally scientific workflows should be viewable and
configurable from different layers of abstraction. As dissed by this Chapter
the MASC language can be approached from various levelsstfaadtion to ac-
commodate the differing requirements and skill sets ofsis&n experiment en-
gineer can treat protocols as parameterisable black bdxesmputation, wiring
them together through dataflow. An interaction engineeorgerned with defin-
ing roles and specifying how those roles coordinate with amather to achieve
a shared goal. Finally, an agent engineer is concerned withidg an agent’s
internal reasoning model by implementing a set of decisimtgdures. The
coordination-oriented programming methodology aids daeél of abstraction.

e R6 - Legacy system integration:Many scientific applications are considered
legacy applications as they are written in older prograngiémguages such as
Fortran. Legacy applications are still widely in use anddeebe integrated into
existing workflow tools. Legacy applications are easilyegrated into a work-

142 Chapter 7. Evaluation By Use-Case

flow specified using the MASC language. With little enginegrivork these
legacy applications can be wrapped up and exposed as aesetivis service
can then be invoked like any other piece of service-orieatetitecture by the
agents which act as proxies or stubs to their enactment.

e R7 - Provenance data and R9 - Semantic markupThe MASC language does
not specify how provenance information is supplied or howises and data
can be semantically marked up. This should be handled byetivecs providers
themselves and it is up to an agent engineer to specify howidhl agents
utilise this extra information if available.

e R8 - Smart component choice:The MASC language allows agents to make
decisions about which components to interact with at ruetibased on the cur-
rent state of the network etc. This could be made throughtreggm with other
agents, variable substitution or according to the agentallknowledge through
calls to decision procedures. This concept was illustrbtethe LSST runtime
scenario discussed in detail in Section 7.2.3 and is discussmore detail later
in this Section.

e R10 - Data presentation: The Zorro framework is a prototype implementa-
tion of the concepts addressed by the MASC language. It gesvihe essential
workflow execution engine, however with little engineerimgrk improvements
could be made to the tool, this will be discussed in more Hetahe Further
Work Section 8.2.

As discussed in Section 4.1.4, current service composigiohnniques allovstatically
defined pre-designed/pre-planneaorkflows to be enacted byaentralised workflow
engine However, through our exploration of workflow scenarios wesented a coun-
terexample of coordination which is difficult or impossiliéeachieve by existing ser-
vice composition techniques. This process helped derivextanded list of desirable
properties of a workflow language. There are a number of feataf the MASC lan-
guage which specifically address these requirements, ialipfiexible, runtime com-
position of services, each of these features will now bellgbted in turn:

e Decentralised, peer-to-peer architectureThe MASC language is designed to
be executed by a number of distributed agents, which act es pfrming a
peer-to-peer system. Before enactment of the workflow cgimleach agent re-
ceives a local copy of the interaction protocol, assumeseawith that protocol

7.3. Discussion: A Better Approach to Workflow? 143

and references a reasoning web service which implementddtision proce-
dure set for the role it has assumed. Agents can thereforasacidependent,
self contained peers with no centralised server goverriagrtteraction.

e Agent reasoning through decision procedures:MASC protocols allow the
rules of interaction to be explicitly expressed, while ®aling individual agents
to subscribe to their own reasoning models. Protocols dsamifice the self in-
terest and autonomy of individual agents, although agetitsAf the protocol as
a script each agent can adopt their own personalised sgrafiigin the protocol.
Reasoning web services can be mapped on an individual agsist (providing
personalised behaviour) or on role type (providing genexie behaviour). It is
up to the agent engineer to provide the set of methods whiaoh fiois reasoning
web service.

e Agents are proxies to service invocation:Agents add an extra level of ab-
straction, acting as stubs or proxies to the web servicesiwdnie taking part in
the workflow. This means that agents can make use of theimiglteeasoning
(through decision procedure invocations) to make decgsamuntime when the
coordination is actually taking place. This concept wassiitated by both the
knowledge acquisition (Section 7.2.2) and runtime co@tian scenarios (Sec-
tion 7.2.3). This approach offers more than ‘just coordoaf provided by most
web service composition frameworks and languages.

e Variable substitution: Most workflow languages are hardcoded specifications
of execution, MASC on the other hand allows sections of theraction to be
compiled at runtime. Actions (such as sending/receiviagyise invocation etc.)
in the MASC language allow variable substitution. An agémrefore can treat
a protocol as a template of coordination, although the serpief actions are
defined, specific details (such as which service to invoka)lmmspliced in at
runtime. This allows agents to use knowledge such as themustate of the
network to provide flexible service composition while theriftow is executing,
instead of enacting a pre-defined, static workflow. This wamahstrated in
particular by the runtime coordination scenario.

e Recursion: Agents can iterate over method definitions, data structei@sre-
cursively. This allows a more complex, expressive class aikilow to be de-
fined.

144 Chapter 7. Evaluation By Use-Case

e Layered structure: The MASC language fills the gap between the low level
transport issues of an agent (such as network protocolatd)ts high level ra-
tional processes. This layering removes some of the coatpits of designing
large multiagent systems, aiding in the design process.

e Inter-operability: By adopting the MASC language, agents built by different
organisations, using different software systems, writtedifferent languages
are able to communicate with one another in a common langwébeagreed
semantics. The only requirement on an engineer wantingitd ao agent that
can coordinate is a layer of software which can translat@tocol and a map-
ping to a reasoning web service which implements the decjziocedure set for
a givenrole.

e Infrastructure independent: The interaction model always remains a layer
above any implementation specific middleware or operatysgesns. The only
time an agent needs to talk to this lower level is when it idlggnand receiv-
ing messages, making calls to decision procedures or etteab services. This
means that as inherently unstable standards keep chattggrigteraction model
remains unaffected.

e Compatibility: The coordination mechanism defined using the MASC language
is entirely external to the web services which are being dimated. The web
services themselves need no alteration or knowledge tegtdle even taking
part in coordination. Therefore no modification of web seeg needs to take
place and the protocol does not need to be disseminated értive web ser-
vices themselves.

e Fit in with existing architectures: As there are several fully developed graph-
ical service composition tools (e.g Taverna [43]), witliditeffort scientists can
simply integrate components expressed in the MASC langu#gehese ex-
isting frameworks. For example, adding our novel multig¢gvice-oriented
approach as a dataflow node in an experiment constructed Tiaugrna.

7.4. Chapter Conclusions 145

7.3.1 Possible Limitations of the Approach

Although we have argued that an agent-based approach tmes@wmposition has
several advantages in the right domain, it is important $owss the limitations of this
approach and where this technique is not appropriate:

e The peer-to-peer design processThe design process for a peer-to-peer work-
flow is inherently more complex than a traditional centedisapproach. An
engineer not only has to consider ordering a set of serviaeslso the tricky
problem of message passing between multiple concurrenepses.

e The appropriate level of complexity: The added complexity of workflow de-
sign in a peer-to-peer system is useful with large scaleiliged systems where
task delegation is encouraged, but can be an added overbeadry simple
workflows with just a few services. There is a trade off betwtsk delegation
and workflow complexity, an engineer needs to make a choite aéen this
technique is applicable to a workflow scenario. It only magesse to use this
technique when the patterns of interaction are too complexalyse at design-
time, requiring runtime service composition.

e Autonomy isn’t always appropriate: The agent-based approach discussed by
this thesis encourages linking the protocol execution td@of agent reason-
ing. This agent reasoning can facilitate autonomous, matiecision making.
This technique may not always be a desirable trait as an eagioses complete
control which is taken for granted in a statically definedtcalised workflow.

7.4 Chapter Conclusions

This Chapter serves as the focal point for the thesis, bmmgpgether all of the con-
cepts addressed so far by this research. Firstly the caatidmoriented programming
methodology was proposed which serves as a guideline on danvglement work-
flows using our approach. Users can approach the system faoioug levels of ab-
straction, adopting the role of: an experiment enginederaction engineer or agent
engineer depending on their aims and motivations.

Throughout this thesis scenarios have always been a driaatgr, therefore it is logi-
cal to perform the evaluation by case-study. Our agentébagproach to service com-

146 Chapter 7. Evaluation By Use-Case

position (using the coordination-oriented programminghodology) was applied to
each of the motivating workflow scenarios, taken from the I&rid projects: Astro-
Grid and LSST. Providing a solution to each of the workflowmsreos involved utilis-
ing different features of the MASC language, the simplegtdpéhe batch processing
through to the most complex, the LSST runtime coordinatiérconcrete XML rep-
resentation, used as input to the Zorro framework can bedaueach of the relevant
appendices. An original aim of the thesis was to provide guage that met the re-
qguirements of scientific workflow, addressed by Chapters@)adl5. Features of the
MASC language were highlighted which solved each of the vatitig requirements.
This was following by a discussion of the features which éedthe MASC approach
to solve a new class of workflow requiring flexible, runtimevsee composition. The
following Chapter discusses concrete conclusions andutledr avenues of research
which could be pursed as a result of this thesis.

Chapter 8

Conclusions and Further Work

This Chapter concludes the thesis by presenting a summahgeagsearch and high-
lighting the contributions to knowledge it has made, Sec8dl. Avenues for further
research are discussed in Section 8.2.

8.1 Summary and Contributions to Knowledge

A problem with workflow specifications is that often the patteof interaction be-

tween the distributed services are too complicated to ptexid analyse at design-
time. In certain cases, the exact patterns of message eyelzand the concrete ser-
vices to call cannot be predicted in advance, due to factars as fluctuating network
load or the availability of services. It is a more realistssamption to endow software
components with the ability to make decisions about thereatind scope of their
interactions at runtime.

In order to facilitate flexible, runtime service compositithis thesis has presented an
investigation into fusing the agency and service-oriem@@thitecture paradigms. This
investigation was composed from multiple steps and mad#ottosving contributions
to knowledge:

e Deriving the requirements of scientific workflow: By working closely with
the AstroGrid project a number of concrete, realistic wankflscenarios have
evolved. Scenario 1: Batch processing and scenario 2: Kedwye acquisition
were presented in detail by Sections 3.2 and Section 3.3etfiegwith the de-

147

148

Chapter 8. Conclusions and Further Work

tailed analysis of existing systems (discussed in Secti@h 2hese scenarios
helped derive a core set of requirements for scientific wovkflthese require-
ments were detailed in Section 3.4. This analysis processrowed that scien-
tific workflow has an extra set of requirements which go beythedunctionality
that traditional workflow languages and execution enginesigde.

Counterexample scenario:This thesis also worked closely with a second Grid
project, the Large Synoptic Survey Telescope (LSST). Bykimy with this
project a detailed workflow scenario evolved which acted asunterexample
of coordination which is difficult or impossible to achievg bxisting service
composition techniques. This counterexample scenarialgasssed in Section
4.1 and highlighted that statically defined, pre-desigmexdplanned workflows
were too brittle for a scenario which required dynamic, mna coordination,
by decentralised autonomous, reactive software compenertiis counterex-
ample scenario backed up the hypothesis that workflow spatdns are often
too complex to analyse at design-time.

Combined requirements: Through a combined process of analysing existing
systems and working closely with domain scenarios, Se&itbndentified a set
of desirable properties for a workflow language. This precge=ved as the re-
guirements analysis for the remainder of the research ptedey this thesis.
These combined requirements captured the essence ofiscierarkflow but
also demanded flexible, runtime composition of servicesninnderently de-
centralised, peer-to-peer architecture; traits whichremecommon of existing
service composition techniques.

Uniting agents and services: As discussed in detail by Chapter 2, service-
oriented architectures and multiagent systems offer cemphtary paradigms
for building distributed systems. In order to achieve thebmed set of require-
ments for workflow this thesis viewed the service composipmblem in a fun-
damentally different way. An agent-based architecture praposed, allowing
active, autonomous agents to consume the passive semérdea architectures
found in Internet and Grid systems.

Service composition through interaction protocols:Our agent-based approach
to workflow composition was founded on the concept of shaméstaction pro-
tocols that allow groups of decentralised agents to comoati@in open systems.

8.1. Summary and Contributions to Knowledge 149

e MultiAgent Service Composition (MASC): Based on this concept of shared
interaction protocols Chapter 5 presented an agent-basekflow language:
MultiAgent Service Composition, or MASC for short. This tarage extended
the Electronic Institutions framework and focused solalyservice composition
to meet the requirements analysis presented by Chapteis 8. skgents acts as
proxies or stubs to service invocation and can connect fioerptrotocol code,
describing the coordination model to internal reasoninglet®. In contrast with
statically defined, centralised workflows, MASC allows decalised agents to
perform service composition at runtime, allowing them t@i@te in scenarios
where itis not possible to define the pattern of interactiomdvance. A dataflow
layer allowed our agent-based coordination mechanism terapped up into
more complex workflows.

e Agent-Based web services composition frameworkChapter 6 presented the
Zorro framework, an open-source Java implementation oMA&C language.
This framework served as a test bed for the ideas addressbdsliliesis, allow-
ing real protocols to be executed with real services on ratd.d

¢ Coordination-oriented programming methodology: In addition to the MASC
language and Zorro framework, Chapter 7 proposed a metbggautlining
how users can build workflows using an agent-based appraasérvice com-
position. The methodology allows users with different lskilnd motivations to
approach the system from various levels of abstractionrdtssn adopt the role
of experiment engineersteraction engineerandagent engineers

e Evaluation by use-Case:ln order to demonstrate and evaluate the agent-based
technique proposed by this thesis each of the motivatinkfleay scenarios
was designed using the coordination-oriented methodologylemented using
the MASC language and executed on the Zorro framework. Tiuegss was
described in detail by Chapter 7 appendices B-D contain tié& ¥put used to
execute the Zorro framework.

e Application to live Grid project: Workflow scenarios have been a driving fac-
tor behind this thesis. Modelling these scenarios has alibihe language and
framework to evolve and provided the project with a reaistpplication do-
main. AstroGrid has served as a test bed, in order to verifiyexecute our ideas
on a live framework, with live services and data.

150 Chapter 8. Conclusions and Further Work

8.2 Further Work

There are several avenues for further research based onaitkeoivthis thesis. Most
further work involves development of the Zorro frameworkjieh served as a proto-
type to facilitate the research presented by this thesissamerely a proof-of-concept.
Detailed below are the possible avenues for further rekearc

e Framework development - distributed agents: In the prototype framework,
agents execute a protocol as a closely coupled system, gashiaimplemented
as a separate thread within a multi-threaded system. A siexiension would
allow a number of distributed agents to execute a scene tiefininstead of run-
ning each agent as a separate thread on the same server. @ukktthen chose
whether to execute agents locally, as distributed prosessea combination of
both. This would result in two fundamental differences, fing is that agents
are not dynamically created within a scene, they are locatedinitialised and
executed across a network. Secondly, message passingplakes through a
distributed protocol (such as SOAP), instead of exchangiagsages between a
multi-threaded system.

e Framework development - visual protocol builder tool: Designing protocols
which define how agent roles interact with one another (tk td an interac-
tion engineer) is a complex, error prone task. A front-endyalisation tool to
aid an interaction engineer could prove a more efficient mektf protocol de-
sign. This front-end would allow a user to create a protogoVisualising the
design process, dragging, dropping and editing compont#nsscould then be
translated to the formal specification for execution.

e Framework development - user interaction: Through close analysis of sce-
narios and existing systems, user interaction has emesgadare requirement
for scientific workflow. The MASC language has several feaguwhich facil-
itate this requirement, discussed in more detail by Sestm2.3.3 and 5.2.6.
The prototype framework has implemented several of thesteifes, however to
make the framework useable for real domain scientists tiatdi tool support
is required.

e Framework development - tool integration: This thesis has not intended to
reinvent the wheel, although scientific workflow is a relalyvnew field, matur-

8.2. Further Work 151

ing scientific workflow systems exist. By wrapping our agbased approach
to service composition in a dataflow layer, it is possiblentiegrate models of
agency to existing, mature scientific workflow systems, sagfTaverna [43].
Although this thesis has discussed the possibility of tot#gration, the frame-
work needs several simple additions to facilitate this fiomality.

e Scenario development:The process of working with the Virtual Observatory
community has been a two way process. Scenario modellingnflasnced the
requirements for this research and in return agent-basguhiigues have pro-
posed a solution to open coordination problems within toisidin. The Virtual
Observatory domain was chosen because of the interestorglination chal-
lenges faced by scientists, however other equally inteig@gbmains exist where
agent-based workflow techniques would be applicable.

¢ Integration of complex agent reasoning:This thesis was primarily focused on
developing techniques for flexible service compositione Elaluation demon-
strated how these techniques could be deployed to buildfi@ark. Simple rea-
soning was integrated into the knowledge acquisition améime coordination
scenarios, however it would be an interesting exercisedid®e more complex
models of agent reasoning into the decision procedures, asithe Belief De-
sires and Intentions (BDI) model.

e Startup issues: There are a number of unsolved issues regarding how to locate
and disseminate a protocol to a group of distributed ag&usently all agents
are executed locally within a scene process, so the probbéagent location,
protocol dissemination and agent initialisation are agdidStartup algorithms
need to be developed to solve these issues, some of whicteg dddressed
by the currently running OpenKnowledge project [57].

Appendix A

MultiAgent Service Composition
(MASC) XML Schema Definition

<?xm version="1.0" encodi ng="UTF-8" ?>

<xsd: schema
tar get Nanespace="ur n: zorro"
el ement For nDef aul t ="qual i fi ed"
xm ns="urn: zorro"
xn ns: xsd="ht t p: / / wwv. w3. or g/ 2001/ XM_.Schema" >

<xsd: annot at i on>
<xsd: docunentation xni:lang="en">
Ly
1
Il Zorro Framework //
Il File: basic.xsd //
/1 Adam Barker - Copyright (C) 2006 //
LTy
</ xsd: docunent at i on>
</ xsd: annot ati on>

<!-- Root Element -->
<xsd: el ement name="protocol " type="protocol definition"/>

<l-- Protocol Type, Base Type -->
<xsd: conpl exType nane="pr ot ocol defi ni tion">

<l-- Overall Input and Qutput to the Experinent -->
<xsd: sequence>

<l-- Scene Type -->
<xsd: el ement nane="sceneset" type="Scene" ninCccurs="0" maxCccurs="1"/>

<xsd: el enent name="mappi ng" m nQccurs="0" maxCccurs="1">
<xsd: conpl exType>
<xsd: sequence>
<xsd: el enent nane="node" type="node" ninCccurs="1" maxCccurs="unbounded"/>
<xsd: el enent nane="link" type="link" mnCccurs="0" maxCccurs="unbounded"/>
</ xsd: sequence>
<xsd:attribute name="name" type="xsd: Name"/>
</ xsd: conpl exType>
</ xsd: el enent >
</ xsd: sequence>
<xsd:attribute name="name" type="xsd: Name"/>
</ xsd: conpl exType>

153

154 Appendix A. MultiAgent Service Composition (MASC) XML Schema Definition

<l-- AlLink -->
<xsd: conpl exType name="1ink">
<xsd: sequence>
<xsd: el enent nane="source" mnCccurs="1" naxCccurs="1">
<xsd: conpl exType>
<xsd: sequence>
<xsd: group ref="mappi nglinksource" mnCccurs="0" maxCccurs="1"/>
</ xsd: sequence>
</ xsd: conpl exType>
</ xsd: el ement >

<xsd: el ement nanme="sink" ninCccurs="1" maxQccurs="1">
<xsd: conpl exType>
<xsd: sequence>
<xsd: group ref="mappi nglinksink" mnCccurs="0" maxCccurs="1"/>
</ xsd: sequence>
</ xsd: conpl exType>
</ xsd: el ement >
</ xsd: sequence>
</ xsd: conpl exType>

<l-- Scene Type -->
<xsd: conpl exType nane="SceneType">
<xsd: sequence>

<l-- Scene In-Ports -->
<xsd: el ement nane="input" mnCccurs="0" maxCccurs="1">
<xsd: conpl exType>
<xsd: sequence>
<xsd: el ement nane="port" type="portdefinition" mnCccurs="1" maxCccurs="unbounded"/>
</ xsd: sequence>
</ xsd: conpl exType>
</ xsd: el ement >

<l-- Scene Qut-Ports -->
<xsd: el ement nanme="output"” m nCccurs="0" maxCccurs="1">
<xsd: conpl exType>
<xsd: sequence>
<xsd: el ement nane="port" type="portdefinition" mnCccurs="1" maxCccurs="unbounded"/>
</ xsd: sequence>
</ xsd: conpl exType>
</ xsd: el ement >

<l-- Process Definition -->
<xsd: el ement name="agent" type="process" maxQccurs="unbounded"/>

</ xsd: sequence>
<xsd:attribute name="nane" type="xsd: Name"/>
</ xsd: conpl exType>

<xsd: conpl exType nane="process">
<xsd: sequence>
<l-- Process Input A Process can be paraneterised by the user -->
<xsd: el ement name="processinput” type="10" mnQccurs="0" maxQccurs="1"/>

<l-- Method Definition -->
<xsd: el ement nanme="net hod" maxCccur s="unbounded">
<xsd: conpl exType>
<xsd: sequence>
<l-- Can be renoved -->
<xsd: el enent name="in" mnCccurs="0" maxQccurs="1">
<xsd: conpl exType>
<xsd: sequence>
<xsd: group ref="type" mnCccurs="0" maxCccurs="unbounded"/>
</ xsd: sequence>
</ xsd: conpl exType>
</ xsd: el ement >
<l-- Can be renoved -->
<xsd: el enent name="out" minQccurs="0" maxCccurs="1">
<xsd: conpl exType>
<xsd: sequence>

<xsd: group ref="type" m nCccurs="0" maxCccurs="unbounded"/>
</ xsd: sequence>
</ xsd: conpl exType>

</ xsd: el enent >
<xsd: el enent nane="body" type="SequenceType"/>

</ xsd: sequence>

<xsd:attribute name="name" type="xsd: Name"/>

</ xsd: conpl exType>
</ xsd: el enent >
</ xsd: sequence>

<l-- Paranmeters for the Agent Type -->
<xsd:attribute name="role" type="xsd:string"/>
<xsd:attribute name="inplenentation" type="xsd:string" use="optional"/>
<xsd:attribute name="min" type="xsd:nonNegativel nteger"
use="optional "/>
<xsd:attribute name="max" type="al|NNI" use="optional"/>
</ xsd: conpl exType>

<l-- Sinple Type which is either an non-negative integer or unbounded -->
<xsd: si npl eType name="al | NNI ">
<xsd: uni on menber Types="xsd: nonNegat i vel nt eger ">
<xsd: si npl eType>
<xsd:restriction base="xsd: NVTCKEN' >
<xsd: enuneration val ue="unbounded"/>
</xsd:restriction>
</ xsd: si npl eType>
</ xsd: uni on>
</ xsd: si npl eType>

<l-- Sequences -->
<xsd: conpl exType nane="SequenceType">
<xsd: sequence>
<xsd: group ref="Cperation" mnCccurs="1" nmaxCccurs="unbounded"/>
</ xsd: sequence>
</ xsd: conpl exType>

<l-- Cperations -->
<xsd: group name="Qperation">
<xsd: choi ce>

<l-- Action -->
<xsd: group ref="Action"/>

<l-- Choice -->
<xsd: el ement nane="choi ce">
<xsd: conpl exType>
<xsd: sequence>
<xsd: el ement name="op" type="SequenceType"
m nCccurs="2" maxQocurs="2"/>
</ xsd: sequence>
</ xsd: conpl exType>
</ xsd: el ement >

<!-- Parallel Execution -->
<xsd: el ement nanme="par">
<xsd: conpl exType>
<xsd: sequence>
<xsd: el enent nane="par" type="SequenceType"
m nCccurs="2" maxCccurs="2"/>
</ xsd: sequence>
</ xsd: conpl exType>
</ xsd: el enent >

<l-- Loop -->
<xsd: el ement name="while">
<xsd: conpl exType>
<xsd: sequence>
<!-- Constraint placed on the Loop -->
<xsd: el enent nane="constraint" type="single_constraint" minCccurs="0" naxCccurs="1"/>
<xsd: el enent nane="body" type="SequenceType"/>
<xsd: el enent nane="tineout" type="SequenceType"/>

155

156 Appendix A. MultiAgent Service Composition (MASC) XML Schema Definition

</ xsd: sequence>
<xsd:attribute name="tmax" type="xsd:nonNegativelnteger" use="optional"/>
</ xsd: conpl exType>
</ xsd: el ement >

<l-- Recursive Call -->
<xsd: el ement nanme="cal | ">
<xsd: conpl exType>
<xsd: sequence>
<xsd: el enent nanme="in" mnCccurs="0" maxQccurs="1">
<xsd: conpl exType>
<xsd: sequence>
<xsd: group ref="type" m nCccurs="0" maxCccurs="unbounded"/>
</ xsd: sequence>
</ xsd: conpl exType>
</ xsd: el ement >
<xsd: el enent name="out" minQccurs="0" maxCccurs="1">
<xsd: conpl exType>
<xsd: sequence>
<xsd: group ref="type" mnCccurs="0" maxCccurs="unbounded"/>
</ xsd: sequence>
</ xsd: conpl exType>
</ xsd: el ement >
</ xsd: sequence>
<xsd:attribute name="name" type="xsd: Name"/>
</ xsd: conpl exType>
</ xsd: el enent >
</ xsd: choi ce>
</ xsd: group>

<l-- Actions -->
<xsd: group name="Action">
<xsd: choi ce>
<!-- Decision Procedure -->
<xsd: el ement name="proc" type="proc"/>

<l-- Wb Service Invocation -->
<xsd: el ement nane="service" type="wproc"/>

<!-- Constraint -->
<xsd: el ement name="cproc" type="single_constraint"/>

<l-- Send Message -->
<xsd: el ement nane="send">
<xsd: conpl exType>
<xsd: sequence>
<xsd: el enent nane="nesg" type="NesgType"/>
<xsd: el enent name="cl ausel">
<xsd: conpl exType>
<xsd: sequence>
<xsd: group ref="clausel" ninCccurs="1" maxCccurs="1"/>
</ xsd: sequence>
</ xsd: conpl exType>
</ xsd: el ement >

<xsd: el enent name="cl ause2">
<xsd: conpl exType>
<xsd: sequence>
<xsd: group ref="clause2" ninCccurs="1" maxCccurs="1"/>
</ xsd: sequence>
</ xsd: conpl exType>
</ xsd: el ement >
<l-. *** GSending Constraint -->
<xsd: el ement name="constraint" type="single_constraint" minCccurs="0" nmaxCccurs="1"/>
</ xsd: sequence>
</ xsd: conpl exType>
</ xsd: el ement >

<l-- Port Wite -->
<xsd: el ement nane="portwite">
<xsd: conpl exType>
<xsd: sequence>

157

<xsd: group ref="type" m nCccurs="0" maxCccurs="unbounded"/>
</ xsd: sequence>
<xsd:attribute name="name" type="xsd:string"/>
</ xsd: conpl exType>
</ xsd: el ement >

<l-- Receive Message -->
<xsd: el enent name="recv">
<xsd: conpl exType>
<xsd: sequence>
<l.- *** Receiving Constraint -->
<xsd: el ement name="constraint" type="single_constraint" minCccurs="0" naxCccurs="1"/>
<xsd: el enent nane="nesg" type="NesgType"/>

<xsd: el enent nane="cl ausel">
<xsd: conpl exType>
<xsd: sequence>
<xsd: group ref="clausel" minCQccurs="1" maxCccurs="1"/>
</ xsd: sequence>
</ xsd: conpl exType>
</ xsd: el enent >

<xsd: el enent nane="cl ause2">
<xsd: conpl exType>
<xsd: sequence>
<xsd: group ref="clause2" nminCQccurs="1" maxCccurs="1"/>
</ xsd: sequence>
</ xsd: conpl exType>
</ xsd: el enent >
</ xsd: sequence>
</ xsd: conpl exType>
</ xsd: el enent >

<l-- UnPack Cperation -->
<xsd: el ement nane="unpack" >
<xsd: conpl exType>
<xsd: group ref="type" mnCccurs="1" maxQccurs="1"/>
</ xsd: conpl exType>
</ xsd: el ement >

<l-- Pack Operation -->
<xsd: el ement nane="pack">
<xsd: conpl exType>
<xsd: sequence>
<xsd: el enent nane="Scene" type="SceneType" minCccurs="1" maxCccurs="unbounded"/>
</ xsd: sequence>
<xsd:attribute name="packref" type="xsd:string"/>
</ xsd: conpl exType>
</ xsd: el enent >

<l-- Null Action -->
<xsd: el ement name="nul | "/>
</ xsd: choi ce>
</ xsd: group>

<I-- Procedure -->
<xsd: conpl exType name="proc">
<xsd: sequence>
<xsd: el enent name="in" mnCccurs="0" maxQccurs="1">
<xsd: conpl exType>
<xsd: sequence>
<xsd: group ref="type" mnCccurs="0" naxCccurs="unbounded"/>
</ xsd: sequence>
</ xsd: conpl exType>
</ xsd: el ement >

<xsd: el enent name="out" m nCccurs="0" maxCccurs="1">
<xsd: conpl exType>
<xsd: sequence>
<xsd: group ref="type" mnCccurs="0" nmaxCccurs="1"/>
</ xsd: sequence>

</ xsd: conpl exType>

158 Appendix A. MultiAgent Service Composition (MASC) XML Schema Definition

</ xsd: el enent >
</ xsd: sequence>
<xsd:attribute name="name" type="xsd: Name"/ >
</ xsd: conpl exType>

<l-- Service Invocation -->
<xsd: conpl exType nane="wproc">
<xsd: sequence>
<xsd: el ement name="def" type="webservice" minCccurs="1" maxQccurs="1"/>

<xsd: el enent name="in" mnCccurs="0" maxQccurs="1">
<xsd: conpl exType>
<xsd: sequence>
<xsd: group ref="type" mnCccurs="0" naxCccurs="unbounded"/>
</ xsd: sequence>
</ xsd: conpl exType>
</ xsd: el ement >

<xsd: el enent name="out" m nCccurs="0" maxCccurs="1">
<xsd: conpl exType>
<xsd: sequence>
<xsd: group ref="type" mnCccurs="0" nmaxCccurs="1"/>
</ xsd: sequence>
</ xsd: conpl exType>
</ xsd: el ement >

</ xsd: sequence>
</ xsd: conpl exType>

<l-- Constraints -->
<xsd: conpl exType nane="si ngl e_constraint">
<xsd: choi ce>
<xsd: el ement nane="proc" type="proc"/>
<xsd: el ement nanme="wproc" type="wproc"/>
</ xsd: choi ce>
<xsd:attribute name="name" type="xsd: Name"/ >
</ xsd: conpl exType>

<l-- Messages -->
<xsd: conpl exType nane="MesgType" >
<xsd: sequence>
<xsd: group ref="type" mnQccurs="0" maxCccurs="unbounded"/>
</ xsd: sequence>
<xsd:attribute name="performative" type="xsd:string"/>
</ xsd: conpl exType>

<l-- Cause one -->
<xsd: group name="cl ausel">
<xsd: choi ce>
<l-- Agent ID-->
<xsd: el ement nane="agent ">
<xsd: conpl exType>
<xsd:attribute name="name" type="xsd:string"/>
</ xsd: conpl exType>
</ xsd: el enent >

<l-- Variable Representing an Agent -->
<xsd: group ref="type" minCccurs="0" maxCccurs="1"/>

<l-- WIld Card -->
<xsd: el ement name="wi | d"/>
<[xsd: choi ce>
</ xsd: group>

<l-- Cause two -->
<xsd: group name="cl ause2">
<xsd: choi ce>
<xsd: el enent name="rol e">
<xsd: conpl exType>
<xsd:attribute name="name" type="xsd:string"/>
</ xsd: conpl exType>
</ xsd: el enent >

159

<xsd: el enent name="wi [d"/>
</ xsd: choi ce>
</ xsd: group>

<l-- Type System-->
<xsd: group name="type">
<xsd: choi ce>

<l-- Reading froma Port -->
<xsd: el ement nane="portread">
<xsd: conpl exType>
<xsd:attribute name="name" type="xsd:string"/>
</ xsd: conpl exType>
</ xsd: el enent >

<l-- Variable Type -->
<xsd: el ement name="var">
<xsd: conpl exType>
<xsd:attribute nane=

nane" type="xsd:string"/>
<xsd:attribute name="type" type="xsd:string"/>
</ xsd: conpl exType>

</ xsd: el ement >

<l-- Constant Type -->
<xsd: el ement name="const">
<xsd: conpl exType>
<xsd:attribute name="value" type="xsd:string"/>
<xsd:attribute name="type" type="xsd:string"/>
</ xsd: conpl exType>
</ xsd: el ement >
</ xsd: choi ce>
</ xsd: group>

<l-- Agent Type -->
<xsd: conpl exType nane="Agent">
<xsd:attribute name="name" type="xsd: Name"/ >
<xsd:attribute name="inplenentation" type="xsd:string"/>
</ xsd: conpl exType>

<l-- Port Definition -->
<xsd: conpl exType name="portdefinition">
<xsd: sequence>
<xsd: el ement name="constraint" type="single_constraint" mnQcurs="0" maxQccurs="1"/>
</ xsd: sequence>
<xsd:attribute name="nane" type="xsd:string" use="required"/>
<xsd:attribute name="type" type="xsd:string" use="required"/>
<xsd:attribute name="core" type="xsd:string" use="required"/>
</ xsd: conpl exType>

<l-- Input/CQutput Type -->
<xsd: conpl exType nane="10'>
<xsd: sequence>
<xsd: group ref="type" mnQccurs="1" maxCccurs="unbounded"/>
</ xsd: sequence>
</ xsd: conpl exType>

<!-- Source of the Mapping Link -->
<xsd: group name="mappi ngl i nksour ce">
<xsd: choi ce>
<xsd: el ement name="out port">
<xsd: conpl exType>
<xsd:attribute name="scene" type="xsd:string"/>
<xsd:attribute name="port" type="xsd:string"/>
</ xsd: conpl exType>
</ xsd: el enent >

<xsd: el enent name="user"/>
<xsd: el enent name="file">

<xsd: conpl exType>
<xsd:attribute name="|ocation" type="xsd:string"/>

160 Appendix A. MultiAgent Service Composition (MASC) XML Schema Definition

</ xsd: conpl exType>
</ xsd: el ement >

<xsd: el ement name="appl i cation"/>

<xsd: el ement nane="webservice" type="webservice" minCccurs="1" maxQccurs="1"/>
</ xsd: choi ce>
</ xsd: group>

<l-- Sink of the Mapping Link -->
<xsd: group name="nappi ngl i nksi nk">
<xsd: choi ce>
<xsd: el ement nane="inport">
<xsd: conpl exType>
<xsd:attribute name="scene" type="xsd:string"/>
<xsd:attribute name="port" type="xsd:string"/>
</ xsd: conpl exType>
</ xsd: el enent >

<xsd: el enent name="user">
<xsd: conpl exType>
<xsd: sequence>
<xsd: group ref="mappinglinksink" ninCccurs="0" maxQccurs="unbounded"/ >
</ xsd: sequence>
</ xsd: conpl exType>
</ xsd: el enent >

<xsd: el enent name="file">
<xsd: conpl exType>
<xsd:attribute name="|ocation" type="xsd:string"/>
</ xsd: conpl exType>
</ xsd: el enent >

<xsd: el ement nanme="appl i cation"/>

<xsd: el ement nane="webservice" type="webservice" minCccurs="1" maxQccurs="1"/>
<[xsd: choi ce>
</ xsd: group>

<l-- Wb Service Definition -->

<xsd: conpl exType nane="webservi ce">
<xsd:attribute name="wsdl" type="xsd:anyUR "/>
<xsd:attribute name="service" type="xsd:Nane"/>
<xsd:attribute name="port" type="xsd: Name"/>
<xsd:attribute name="namespace" type="xsd:anyUR"/>
<xsd:attribute name="opnane" type="xsd: Nane"/>

</ xsd: conpl exType>

<xsd: conpl exType nane="node" >
<xsd: sequence>
<xsd: el ement nane="role" type="rol el nformation" mnCccurs="0" nmaxCccurs="unbounded"/>
</ xsd: sequence>
<xsd:attribute name="name" type="xsd:string"/>
<xsd:attribute name="|ocation" type="xsd:string"/>
</ xsd: conpl exType>

<xsd: conpl exType nane="rol el nf or nation">
<xsd: sequence>
<xsd: el ement nane="agent" type="agent|nformation" ninCccurs="0" maxQccurs="unbounded"/ >
</ xsd: sequence>
<xsd:attribute name="name" type="xsd:string"/>
</ xsd: conpl exType>

<l-- Paranterisable Agent Type -->

<xsd: conpl exType name="agent | nf or mati on">
<xsd:attribute name="nane" type="xsd:string" use="required"/>
<xsd:attribute name="inplenentation" type="xsd:anyUR" use="required"/>
<xsd:attribute name="nunt type="xsd:int" use="required"/>
<xsd:attribute name="recvwait" type="xsd:int" use="required"/>
<xsd:attribute name="portwait" type="xsd:int" use="required"/>

</ xsd: conpl exType>

161

<xsd: conpl exType nane="Scene">
<xsd: sequence>
<xsd: el ement nane="Scene" type="SceneType" m nCccurs="0" maxCccurs="unbounded"/>
</ xsd: sequence>
</ xsd: conpl exType>
</ xsd: schema>

Appendix B

XML Implementation of Scenario 1.

Batch Processing

<?xm version="1.0" encodi ng="UTF-8" standal one="yes" ?>
<protocol xnmins="urn:zorro">
<sceneset >
<Scene name="redshi ft">
<l-- RSM Agent -->
<agent inplenentation="http://local host:8080/ MyRsnBervice/rsnPWsDL" nmax="1" min="1" rol e="rsni'>
<l-- MAIN Method -->

<method name="nai n">

<body>
<whi | e>
<body>
<!-- Receive RA and DEC from USER agent -->
<recv>
<nmesg perfornative="request">
<var name="ra"/>
<var nane="dec"/>
</ mesg>
<cl ausel>
<var nane="user_config"/>
</cl ausel>
<cl ause2>
<rol e name="user"/>
</cl ause2>
</recv>
</ body>
<ti meout >
<nul I />
</timeout >
</ whi | e>

<I-- Invoke Retrieve Method -->
<cal|l name="retrieve">
<in>
<var name="ra"/>
<var name="dec"/>
<var nane="user_config"/>
</in>
</call>

<l-- Restart Agent -->
<cal | nanme="rmmain"/>
</ body>
</ met hod>

163

164 Appendix B. XML Implementation of Scenario 1: Batch Processing

<!-- RETRIEVE Method -->
<nethod name="retrieve">
<in>
<var name="ra"/>
<var name="dec"/>
<var nane="user_config"/>

<lin>
<out/>
<body>
<l-- Retrieve |nages -->
<service>
<def
nanmespace="ur n: Foo"
opnane="get | mages"
port="Rsm FPort"
servi ce="MRsnBervi ce"
wsdl ="http:// 1 ocal host: 8080/ MyRsnfer vi ce/ r sn?WsDL" / >
<in>
<var nane="ra"/>
<var nane="dec"/>
<lin>
<out >
<var nane="imges" type="xsd:string"/>
</ out >
</ service>

<l-- Sextractor -->

<service>
<def
nanmespace="ur n: Foo"
opnane="sextractor"
port="Rsm FPort"
servi ce="MRsnBervi ce"
wsdl ="http:// 1 ocal host: 8080/ MyRsnfer vi ce/ r sn?WsDL" / >
<in>

<var nane="images"/>
<[in>
<out >
<var nane="sextractor" type="xsd:string"/>
</ out>
</ service>

<l-- X-Matching -->

<service>
<def
namespace="ur n: Foo"
opname="xnat cher "
port="Rsm FPort"
servi ce="MRsnBervi ce"
wsdl ="http://| ocal host: 8080/ MyRsnBer vi ce/ r smPWSDL" / >
<in>

<var nane="sextractor"/>
<lin>
<out>
<var nane="xmatched" type="xsd:string"/>
</ out >
</ service>

<l-- Invoke RedShift Method -->
<cal | name="redshift">
<in>
<var nane="xmat ched"/>
<var nane="user_config"/>
</in>
</call>
</ body>
</ met hod>

<l-- REDSH FT Method -->
<nethod name="redshift">

<in>

<var nane="xmat ched"/>
<var nane="user_config"/>

<lin>
<body>
<l-- Sextractor -->
<service>
<def
nanmespace="urn: Foo"
opnane="hyper z"
port="Rsm FPort"
servi ce="MRsnBervi ce"
wsdl ="http:// 1 ocal host: 8080/ MyRsnSer vi ce/ r sn?PWsDL" / >
<in>

<var nane="xmat ched"/>
<[in>
<out >
<var nane="hyperz" type="xsd:string"/>
</ out>
</ service>

<l-- Send results back to the USER Agent -->
<send>
<mesg performative="response">
<var nane="hyperz"/>
</ mesg>
<cl ausel>
<var nanme="user_config"/>
</clausel>
<cl ause2>
<rol e nane="user"/>
</cl ause2>
</ send>
</ body>
</ met hod>
</ agent >

<l-- USER Agent -->

<agent inplenentation="http://local host: 8080/ M/RsnBervi ce/ user ?WSDL" max="1" m n="1" rol e="user">

<l-- MAIN Method -->
<nethod name="main">
<body>
<l-- Get RA-->
<proc name="sayRaDec">
<out>
<var nane="ra"/>
</ out >

</ proc>

<l-- Cet DEC -->
<proc nane="sayRaDec">
<out >
<var nane="dec"/>
</ out >
</ proc>

<l-- Send RA and DEC to RSM Agent -->
<send>
<nesg performative="request">
<var nane="ra"/>
<var nane="dec"/>
</ mesg>
<cl ausel>
<wild/>
</ cl ausel>
<cl ause2>
<rol e name="rsnt/>
</ cl ause2>
</ send>

<l-- Call WAIT Method -->
<call name="wait"/>
</ body>

165

166 Appendix B. XML Implementation of Scenario 1: Batch Processing

</ met hod>

<!-- WAIT Method -->
<method name="wait">

<body>
<whi | e>
<body>
<l-- Receive results from RSM Agent -->
<recv>
<nesg performative="response">
<var nane="hyperz"/>
</ mesg>
<cl ausel>
<wi | df>
</ cl ausel>
<cl ause2>
<role name="rsnt/>
</ cl ause2>
</recv>
</ body>
<ti meout >
<nul I />
</ti neout >
</ whi | e>
</ body>
</ met hod>
</ agent >

</ Scene>
</ sceneset >

</ prot ocol >

Appendix C

XML Implementation of Scenario 2:

Knowledge Acquisition

<?xm version="1.0" encodi ng="UTF-8" standal one="yes" ?>
<protocol xnmins="urn:zorro">
<sceneset >
<Scene name="hcg">
<l-- SC ENTI ST agent -->
<agent inplenmentation="http://local host:8080/ M/Sci enti st Service/ sci entist?WsDL" max="1" min="1"
rol e="scientist">
<l--MAIN nethod -->
<nethod name="main">

<body>
<whi | e>
<body>
<l-- Receive initial request from USER -->
<recv>

<mesg performative="begin"/>
<cl ausel>
<var nane="user_config"/>
</cl ausel>
<cl ause2>
<rol e name="user"/>
</ cl ause2>
</recv>

<!-- I nvoke DECI SI ON PROCEDURE to deternine object class -->
<proc name="Next LookUp" >
<out >
<var nane="query"/>
</ out>
</ proc>

<!-- Registry Lookup on Galaxies -->

<service>
<def
namespace="ur n: Foo"
opname="Regi stry"
port="ScientistlFPort"
servi ce="MSci ent i st Servi ce"
wsdl ="http://l ocal host: 8080/ MySci enti st Servi ce/ sci enti st 2WSDL"/ >
<in>

<var nane="query"/>
</in>
<out >

<var nane="gal axi es" type="xsd:string"/>

167

168 Appendix C. XML Implementation of Scenario 2: Knowledge Acquisition

</ out>
</ servi ce>

<l-- Send extraction request to EXTRACTION agent -->
<send>
<mesg performative="extract">
<var nane="gal axi es"/>
</ mesg>
<cl ausel>
<wild/>
</ cl ausel>
<cl ause2>
<rol e name="extraction"/>
</ cl ause2>
</ send>

<l-- Invoke WAIT Method -->
<cal | name="wait">
<in>
<var nane="user_config"/>
<[in>
</call>
</ body>
<ti meout >
<nul I />
</ timeout >
</ whi | e>
</ body>
</ met hod>

<l-- WAIT nethod -->
<method name="wait">
<in>
<var nane="user_config"/>
</in>
<body>
<while tmax="75">
<body>
<l-- Receive query results from EXTRACTI ON agent -->
<recv>
<nesg performative="finalresult">
<var nane="gal axy_data"/>
</ mesg>
<cl ausel>
<wi | df>
</ cl ausel>
<cl ause2>
<rol e name="extraction"/>
</ cl ause2>
</recv>
</ body>
<ti meout >
<nul I />
</tineout >
</ whi | e>

<!-- Invoke DECI SION PROCEDURE to deternine object class -->
<proc nane="Next LookUp">
<out >
<var name="query"/>
</ out >
</ proc>

<!-- Registry Lookup on Radio etc. -->
<service>
<def

namespace="ur n: Foo"
opname="Regi stry"
port="ScientistlFPort"
servi ce="MSci enti st Servi ce"
wsdl ="http:// | ocal host: 8080/ MySci ent i st Servi ce/ sci enti st 2WSDL"/ >

<in>

<var name="query"/>
</in>
<out >
<var nanme="extra" type="xsd:string"/>
</ out >
</ service>

<l-- Send extraction request to EXTRACTION agent -->

<send>
<nesg performative="extract">
<var nane="extra"/>
</ mesg>
<cl ausel>
<wild>
</ cl ausel>
<cl ause2>
<rol e name="extraction"/>
</ cl ause2>
</ send>

<l-- Receive Results -->
<while tmax="30">
<body>
<l-- Receive Final Result -->
<recv>
<nesg performative="finalresult">
<var nane="extra_data"/>
</ mesg>
<cl ausel>
<wild/>
</clausel>
<cl ause2>

<role name="extraction"/>

</ cl ause2>
</recv>
<l-- Invoke Decision Procedure -->

<cal | name="bcg">
<in>
<var nane="gal axy_data"/>
<var nanme="extra_data"/>
<var nane="user_config"/>
<lin>
</call>
</ body>
<timeout >
<nul I />
</ timeout >
</ whi | e>
</ body>
</ met hod>

<!-- BCG Method -->
<method name="bcg">
<in>
<var nane="gal axy_data"/>
<var nane="extra_data"/>
<var nane="user_config"/>

wsdl ="http:// | ocal host: 8080/ MySci ent i st Servi ce/ sci enti st 2WSDL"/ >

</in>
<body>
<l-- Calculate Wrking Data Set -->
<service>
<def
namespace="ur n: Foo"
opnane="St at s1"
port="ScientistlFPort"
servi ce="MSci enti st Servi ce"
<in>

<var nane="gal axy_data"/>
<var nane="extra_data"/>
<lin>

<out>

169

170 Appendix C. XML Implementation of Scenario 2: Knowledge Acquisition

<var nane="working_set" type="xsd:string"/>
</ out >
</ service>

<l-- Top Attributes -->

<service>
<def
nanmespace="urn: Foo"
opnane=" St at s2"
port="ScientistlFPort"
servi ce="MSci enti st Servi ce"
wsdl ="http:// 1 ocal host: 8080/ MySci enti st Servi ce/ sci enti st ?WsDL"/ >
<in>

<var nane="working_set"/>
<[in>
<out >
<var nane="top_attributes" type="xsd:string"/>
</ out>
</ service>

<l-- Send To USER -->
<send>
<mesg performative="display">
<var nanme="top_attributes"/>
<var nane="gal axy_data"/>
<var nanme="extra_data"/>
</ mesg>
<cl ausel>
<var nanme="user_config"/>
</ cl ausel>
<cl ause2>
<rol e nane="user"/>
</ cl ause2>
</ send>

<I-- Invoke USER | NTERACTICN -->

<cal | name="userinteraction">
<in>

<var nane="user_config"/>

<lin>

</call>

</ body>
</ met hod>

<!I'-- USERI NTERACTI ON Met hod -->
<method name="userinteraction">
<in>
<var name="user_config"/>

</in>
<body>
<whi | e>
<body>
<choi ce>
<op>

<l-- Receive further interaction request -->
<recv>
<mesg performative="visual i sation">
<var nanme="paraneter_list"/>
</ mesg>
<cl ausel>
<wild/>
</ cl ausel>
<cl ause2>
<rol e nane="user"/>
</ cl ause2>

</recv>

<I-- Invoke STATISTICS Wb Service -->
<service>
<def
nanmespace="ur n: Foo"

opnane="St at s1"

171

port="ScientistlFPort"
servi ce="MSci ent i st Service"
wsdl ="http:// 1 ocal host : 8080/ MySci ent i st Servi ce/ sci enti st 2WSDL"/ >
<in>
<var nane="parameter_|ist"/>
<lin>
<out >
<var nane="result" type="xsd:string"/>
</ out>

</ service>

<l-- Send display results to USER Agent -->
<send>
<mesg performative="di spl ay">
<var nane="result"/>
</ mesg>
<cl ausel>
<var nanme="user _config"/>
</ cl ausel>
<cl ause2>
<rol e nane="user"/>

</ cl ause2>
</ send>
</ op>
<l-- CR Choice -->
<op>

<l-- Receive the Termnation nessage from USER agent -->
<recv>
<mesg performative="fini shed">
</ mesg>
<cl ausel>
<wi | d/>
</clausel>
<cl ause2>
<rol e nane="user"/>
</cl ause2>
</recv>
<l-- Start the scientist again -->
<cal | name="mmin"/>
</ op>
</ choi ce>
</ body>
<ti meout >
<nul I />
</timeout >
</ whi | e>
</ body>
</ met hod>
</ agent >

<l-- EXTRACTION agent -->
<agent inplenentation="http://local host: 8080/ M/ExtractionService/extracti on?WsDL" nax="1" m n="10"
rol e="extraction">
<!-- MAIN nethod-->
<method name="nain">

<body>
<whi | e>
<body>
<l-- Receive extraction request from SCIENTIST agent -->
<recv>

<nesg performative="extract">
<var nane="glist"/>
</ mesg>
<cl ausel>
<var name="scientist"/>
</ cl ausel>
<cl ause2>
<rol e name="scientist"/>
</ cl ause2>
</recv>

<proc nane="Initialise">

172 Appendix C. XML Implementation of Scenario 2: Knowledge Acquisition

<out>
<var name="result"/>
</ out >
</ proc>
</ body>
<timeout >
<nul />
</ti neout >
</ whi | e>

<!-- Invoke ELOOP Method -->
<cal | name="el oop">
<in>
<var nane="qlist"/>
<var nane="scientist"/>
<lin>

</cal | >

<I-- Invoke MAN Method -->
<cal | name="main"/>
</ body>
</ met hod>

<l-- ELOCP Method -->
<met hod name="el oop">
<in>
<var nane="glist"/>
<var name="scientist"/>
</in>
<body>
<choi ce>
<op>
<l-- Extract head of List -->
<proc name="Head">
<in>
<var nane="glist"/>
<lin>
<out>
<var name="head"/>
</ out >
</ proc>

<l-- Extract tail of List -->
<proc name="Tail">
<out>
<var nane="tail"/>
</ out >
</ proc>

<l-- Construct Query type -->
<proc nane="Const ruct Query">
<in>
<var name="head"/>
<lin>
<out>
<var name="q"/>
</ out >
</ proc>

<l-- Send Query -->
<send>
<mesg performative="query">
<var nane="q"/>
</ mesg>
<cl ausel>
<wildl >
</ cl ausel>
<cl ause2>
<rol e nane="endpoint"/>
</ cl ause2>
</ send>

<l-- Invoke ELOOP Method -->
<cal | name="el oop">
<in>
<var nane="tail"/>
<var name="scientist"/>
<lin>
</call>

</ op>

<l-- OR Choice -->
<op>
<l-- Invoke EWAIT Method -->
<call nane="ewait">
<in>
<var nane="scientist"/>
</in>
</call>
</ op>
</ choi ce>
</ body>
</ met hod>

<l-- BEWAIT Method -->
<method name="ewait">
<in>

<var nane="scientist"/>

</in>
<body>
<whi | e>
<body>
<choi ce>
<op>
<l-- Receive results from ENDPO NT agent -->
<recv>
<mesg performtive="result">
<var nane="res"/>
</ mesg>
<cl ausel>
<var nane="nane"/>
</ cl ausel>
<cl ause2>
<rol e nane="endpoint"/>
</ cl ause2>
</recv>

<l-- Store the Result -->
<proc name="Store">
<in>
<var nane="nane"/>
<var nane="res"/>
<lin>
</ proc>

<!-- Recursive CALL on EWAIT Method -->
<cal | name="ewait">
<in>

<var nane="scientist"/>

<lin>
</call>
</ op>
<l-- OR Choice -->
<op>
<!-- Receive NORESULT nessage from ENDPO NT agent
<recv>

<mesg performative="noresul t">
</ mesg>
<cl ausel>
<var nane="nane"/>
</ cl ausel>
<cl ause2>
<rol e nane="endpoint"/>
</ cl ause2>

173

174 Appendix C. XML Implementation of Scenario 2: Knowledge Acquisition

</recv>

<!-- Recursive CALL on EWAIT Method -->
<cal | nanme="ewait">
<in>
<var nane="scientist"/>
</in>
</cal | >
</ op>
</ choi ce>
</ body>
<ti meout >
<l-- Invoke the END Method -->
<cal | name="end">
<in>
<var name="scientist"/>

<lin>
</call>
</tineout >
</ whi | e>
</ body>
</ met hod>

<!-- END Method -->
<nethod name="end">
<in>
<var nane="scientist"/>
<lin>
<body>
<l-- Retrieve the Result -->
<proc name="Retrieve">
<out>
<var nane="data"/>
</ out >
</ proc>

<l-- Store the results in MYSPACE -->

<service>
<def
nanmespace="ur n: Foo"
opnane="MSpace"
port="Extractionl FPort"
service="M/ExtractionService"
wsdl ="http://1 ocal host: 8080/ MyExt racti onServi ce/ extraction?WsDL"/ >
<in>

<var nane="data"/>
<[in>
<out>
<var nane="resulturl" type="xsd:string"/>
</ out >
</ service>

<l-- Send the Results back to the original SCIENTIST -->
<send>
<mesg performative="finalresult">
<var nane="resul turl"/>
</ mesg>
<cl ausel>
<var nane="scientist"/>
</ cl ausel>
<cl ause2>
<rol e name="scientist"/>
</ cl ause2>
</ send>
</ body>
</ met hod>
</ agent >

<l-- ENDPONT agent -->

<agent inplenentation="http://local host: 8080/ M/EndServi ce/ end?WsDL" max="1" nin="10" rol e="endpoint">
<l-- MAIN Method -->
<met hod nane="rmmain">

<body>
<whi | e>
<body>
<!-- Receive nessage from EXTRACTION agent -->
<recv>
<mesg performative="query">
<var nane="queryToTry"/>
</ mesg>
<cl ausel>
<var nane="requester"/>
</clausel>
<cl ause2>
<rol e name="extraction"/>
</cl ause2>
</recv>
<l-- Invoke QUERY Method -->
<cal | name="query">
<in>
<var nane="requester"/>
<var nane="queryToTry"/>
</in>
</call>
</ body>
<ti meout>
<nul I />
</ timeout >
</ whil e>
</ body>
</ met hod>

<l-- QUERY Method -->
<method name="query">
<in>
<var nane="requester"/>
<var name="queryToTry"/>
<lin>
<body>
<l-- Query Success -->
<proc nane="Success">
<in>
<var name="queryToTry"/>
<[in>
<out>
<var nane="success"/>
</ out>

</ proc>

<l-- Send RESULT -->
<send>
<mesg performative="result">
<var nane="success"/>
</ mesg>
<cl ausel>
<var nanme="requester"/>
</ cl ausel>
<cl ause2>
<rol e name="extraction"/>
</ cl ause2>
</ send>

<!-- Invoke MAIN Method -->
<cal | nanme="rmmain"/>
</ body>
</ met hod>
</ agent >

<l-- USER Agent -->
<agent inplenmentation="http://local host: 8080/ M/ExtractionService/extracti on?WsDL" nax="1"
rol e="user">
<nethod name="main">
<body>

mn="1"

175

176 Appendix C. XML Implementation of Scenario 2: Knowledge Acquisition

<send>
<mesg per f ormat i ve="begi n">
</ mesg>
<cl ausel>
<wildf >
</cl ausel>
<cl ause2>
<rol e nane="scientist"/>
</ cl ause2>
</ send>
</ body>
</ met hod>
</ agent >
</ Scene>
</ sceneset >
</ prot ocol >

Appendix D

XML Implementation of Scenario 3:

Runtime Coordination

<?xm version="1.0" encodi ng="UTF-8" standal one="yes"?>
<protocol xnins="urn:zorro">
<sceneset >
<Scene name="|sst">
<l-- Port Definitions -->
<i nput >
<port name="|sst_inl" type="xsd:string" core="true"/>
</input >

<I-- CLASSI FI CATICN Agent -->
<agent inplenentation="http://local host:8080/ M/ReactiveService/reacti ve?WsDL" max="1" min="1"
rol e="cl assification">
<l-- MAIN Method -->
<method name="nai n">
<body>
<whi | e>
<body>
<!-- Receive RA and DEC from USER agent -->
<recv>
<mesg perfornative="request">
<var name="unknown"/>
</ mesg>
<cl ausel>
<wi | df>
</cl ausel>
<cl ause2>
<role name="user"/>
</ cl ause2>
</recv>
</ body>
<ti meout >
<null/>
</timeout >
</ whi | e>

<l-- Call LOCALANALYSIS Method -->

<call nane="| ocal anal ysis">
<in>

<var nane="unknown"/>

</in>

</call>

</ body>
</ met hod>

177

178 Appendix D. XML Implementation of Scenario 3: Runtime Coordination

<!-- RETRIEVE Method -->
<method name="| ocal anal ysi s">
<in>

<var nane="unknown"/>

<lin>
<body>
<choi ce>
<op>
<!-- STATTEST Decision Procedure -->
<proc name="Stat Test">
<in>
<portread name="l|sst_inl"/>
<[in>
<out >
<var nane="result"/>
</ out >
</ proc>
<!-- UPDATE KNOALEDGE Decision Procedure -->
<proc name="Updat eKnow edge" >
<in>
<var name="result"/>
<lin>
</ proc>
<!-- QUERYKNOWLEDGE Decision Procedure -->
<proc nane="Quer yKnow edge" >
<in>
<var nane="unknown"/>
<[in>
<out >
<var nane="success"/>
</ out >
</ proc>
<l-- Recursive Call -->
<cal | name="|ocal anal ysi s"/>
</ op>
<l-- R Choice -->
<op>
<cal | name="contractnetsend">
<in>
<var nane="unknown"/>
<lin>
</call>
</ op>
</ choi ce>
</ body>
</ met hod>

<!-- CONTRACTNETSEND Method -->
<nethod name="contract net send">
<in>

<var nane="unknown"/>

<lin>
<body>
<l-- Registry Call -->
<service>
<def
namespace="ur n: Foo"
opname="Regi stry"
port="Reacti vel FPort"
servi ce="MReactiveService"
wsdl ="http://| ocal host: 8080/ MyReact i veServi ce/ reacti ve?WsDL"/ >
<in>

<var nane="unknown"/>
<lin>
<out>

<var nane="potential _agents"/>
</ out >

</ service>

<l-- Generate Proposal -->
<proc name="Gener at ePr oposal ">
<in>
<var nane="unknown"/>
<lin>
<out>
<var nane="proposal "/>
</ out>

</ proc>

<l-- Send Contractnet request to CONTRACTNET Agent -->

<send>
<mesg performative="request">
<var nane="potential _agents"/>
<var nane="proposal "/>
</ mesg>
<cl ausel>
<wild/>
</ cl ausel>
<cl ause2>
<rol e name="contractnet"/>
</ cl ause2>
</ send>

<while tmax="30">

<body>
<l-- Response from CONTRACTNET Agent -->
<recv>

<nesg performative="response">
<var nane="open_proposal s"/>
<var nane="c_id"/>

</ mesg>

<cl ausel>
<var nane="cn"/>

</ cl ausel>

<cl ause2>
<rol e name="contractnet"/>

</ cl ause2>

</recv>

<l-- Agents to Reject -->
<proc nane="Eval uat eRej ect">
<in>
<var nane="open_proposal s"/>
<[in>
<out>
<var nane="reject"/>
</ out>
</ proc>

<I-- Agent to Accept -->
<proc name="Eval uat eAccept" >
<in>
<var nane="open_proposal s"/>
</in>
<out >
<var nane="accept"/>

</ out >
</ proc>
<l-- Initialise variables -->

<proc nane="Initialise">
<out>
<var name="success"/>
</ out >
</ proc>

<cal | nane="contractreject">
<in>
<var nane="reject"/>
<var nane="c_id"/>

179

180 Appendix D. XML Implementation of Scenario 3: Runtime Coordination

<var nane="accept"/>
<var name="unknown"/>
<lin>
</call>
</ body>
<timeout >
<nul I />
</ti neout >
</ whi | e>
</ body>
</ met hod>

<!-- CONTRACTACCEPT Method -->
<method name="contractaccept">
<in>
<var nane="accept"/>
<var name="unknown"/>
<var nane="c_id"/>

<lin>
<body>
<l-- |ssue Accept message to Chservatory Agent -->
<send>
<nesg performative="accept - proposal ">
<var nane="c_id"/>
</ mesg>
<cl ausel>
<var nane="accept"/>
</ cl ausel>
<cl ause2>
<wild/>
</ cl ause2>
</ send>

<while tmax="50">
<body>
<choi ce>
<op>
<l-- Receive reslts of extraction from OBSERVATCRY Agent -->
<recv>
<mesg performative="informresult">
<var nane="opi ni on"/>
<var nanme="c_id"/>
</ mesg>
<cl ausel>
<wild >
</ cl ausel>
<cl ause2>
<rol e name="observatory"/>
</ cl ause2>
</recv>

<l-- Generate Conbined Opinion -->
<proc name="Gener at eQpi ni on" >
<in>
<var nane="opi ni on"/>
<lin>
<out >
<var nane="conbi ned_opi ni on"/>
</ out>
</ proc>
</ op>
<l-- OR Choice -->
<op>
<!-- Receive Failure Message -->
<recv>
<mesg performative="informfailure">
<var nane="c_id"/>
</ mesg>
<cl ausel>
<wild >
</ cl ausel>

<cl ause2>

<rol e nane="observatory"/>

</ cl ause2>
</recv>
<l-- |f Failed Execute the protocol again, this tine

could be a different set of agents who take part
<cal | name="contractnetsend">
<in>
<var nane="unknown"/>
<lin>
</call>
</ op>
</ choi ce>
</ body>
<ti meout>
<null/>
</ timeout >
</ while>
</ body>
</ met hod>

<!-- OONTRACTREJECT Method -->
<met hod nane="contractreject">
<in>
<var nane="reject"/>
<var nane="c_id"/>
<var nane="accept"/>
<var nane="unknown"/>
</in>
<body>
<choi ce>
<op>
<l-- Extract head of List -->
<proc nane="Head">
<in>
<var nane="reject"/>
<[in>
<out >
<var name="head"/>
</ out >
</ proc>

<l-- Extract tail of List -->
<proc name="Tail">
<in>
<var nane="reject"/>
<lin>
<out>
<var name="tail"/>
</ out >
</ proc>

<l-- Send Reject-proposal to HEAD -->
<send>
<mesg performative="reject-proposal ">
<var nane="c_id"/>
</ mesg>
<cl ausel>
<var nane="head"/>
</ cl ausel>
<cl ause2>
<wildl >
</ cl ause2>
</ send>

<I-- Invoke CONTRACTREJECT Method -->
<cal | name="contractreject">
<in>
<var name="tail"/>
<var nane="c_id"/>
<var nane="accept"/>

181

182

<var nane="unknown"/>

<lin>
</call>
</ op>
<l-- R Choice -->
<op>
<cal | name="contractaccept">
<in>
<var nane="accept"/>
<var name="unknown"/>
<var nane="c_id"/>
<[in>
</call>
</ op>
</ choi ce>
</ body>
</ met hod>
</ agent >

<lI'-- CONTRACTNET Agent -->
<agent inplenentation="http://local host: 8080/ M/Contract Service/ contract ?WsDL" max="1"
rol e="contractnet">

<method name="nai n">

<body>
<whi | e>
<body>
<l-- Receive request from CFP from ANY Agent -->
<recv>

<nesg performative="request">
<var nane="potential _agents"/>
<var nane="proposal "/ >
</ mesg>
<cl ausel>
<var nane="init"/>
</ cl ausel>
<cl ause2>
<wildl >
</ cl ause2>
</recv>
<l-- Generate Unique ID -->
<proc name="GCeneratel D'>
<out>
<var nane="c_id"/>
</ out >
</proc>
<l-- Initialise variables -->
<proc name="Initialise">
<out >
<var nane="success"/>

</ out >
</ proc>
<l-- Call CFP Method -->

<cal | name="cfp">

<in>
<var nane="potential _agents"/>
<var nane="proposal "/ >
<var nane="init"/>
<var nane="c_id"/>
<[in>
</call>

<l-- Restart Agent -->
<cal | name="mmin"/>

</ body>

<timeout >
<nul I />

</ti neout >

</ whi | e>

Appendix D. XML Implementation of Scenario 3: Runtime Coordination

nin="1"

183

</ body>
</ met hod>

<l-- CALL FOR PARTICIPATION (CFP) Method -->
<met hod name="cfp">
<in>
<var nane="potential _agents"/>
<var name="proposal "/ >
<var nane="init"/>

<var nane="c_id"/>

<lin>
<body>
<choi ce>
<op>
<!-- Extract head of List -->
<proc name="Head">
<in>
<var nane="potential _agents"/>
<lin>
<out >
<var nane="head"/>
</ out >
</ proc>
<l-- Extract tail of List -->
<proc name="Tail">
<in>
<var nane="potential _agents"/>
<[in>
<out>
<var name="tail"/>
</ out >
</ proc>
<l-- Send CFP to agent represented by $head -->
<send>
<mesg performative="cfp">
<var nane="proposal "/ >
<var name="init"/>
<var nane="c_id"/>
</ mesg>
<cl ausel>
<var nane="head"/>
</ cl ausel>
<cl ause2>
<wildl >
</ cl ause2>
</ send>
<l-- Recursive call on tail -->
<cal | name="cfp">
<in>
<var name="tail"/>
<var name="proposal "/ >
<var nane="init"/>
<var nane="c_id"/>
<lin>
</call>
</ op>
<l-- OR Choice -->
<op>
<cal | name="recei veproposal s">
<in>
<var nane="init"/>
<lin>
</call>
</ op>
</ choi ce>
</ body>
</ met hod>

<!-- RECEI VE PROPCSAL Method -->

184 Appendix D. XML Implementation of Scenario 3: Runtime Coordination

<met hod nane="recei veproposal s">
<in>

<var name="init"/>

</in>
<body>
<whi | e>
<body>
<choi ce>
<op>
<!-- Receive Propose nessage from OBSERVATCRY Agent -->
<recv>
<mesg performative="propose">
<var nane="c_id"/>
</ mesg>
<cl ausel>
<var name="agent"/>
</clausel>
<cl ause2>
<wildl >
</cl ause2>
</recv>
<l-- Store the agents who issued ACCEPT -->
<proc nane="Stor eProposal ">
<in>
<var nane="agent"/>
<var nane="c_id"/>
<lin>
</ proc>
<I-- Recursive call on RECEI VEPROPCSAL Method -->
<cal | nane="recei veproposal s">
<in>
<var nane="init"/>
</in>
</call>
</ op>
<!-- CR Choice -->
<op>
<!-- Receive Propose nessage from OBSERVATCRY Agent -->
<recv>
<mesg performtive="refuse">
<var nanme="c_id"/>
</ mesg>
<cl ausel>
<var nane="agent"/>
</clausel>
<cl ause2>
<wildl>
</cl ause2>
</recv>
<l-- Store the agents who issued REJECT -->
<proc nane="Stor eRef usal ">
<in>
<var name="agent"/>
<var nane="c_id"/>
<lin>
</ proc>
<I-- Recursive call on RECEI VEPROPCSAL Method -->
<cal | nane="recei veproposal s">
<in>
<var nane="init"/>
</in>
</call>
</op>
</ choi ce>
</ body>
<ti meout>

<l-- Retrieve open proposals -->

<proc nane="RetrieveProposal s">
<out >
<var nane="open_proposal s"/>
</ out >
</ proc>

<l-- Send all the agents who accepted the proposal back to the initiator -->

<send>
<nesg performative="response">
<var nane="open_proposal s"/>
<var nane="c_id"/>
</ mesg>
<cl ausel>
<var name="init"/>

</ cl ausel>
<cl ause2>
<wi | df>
</ cl ause2>
</ send>
</ti neout >
</ whi | e>
</ body>
</ met hod>

</ agent >

<l-- OBSERVATCRY Agent -->

<agent inplenmentation="http://local host: 8080/ MyChser vat oryServi ce/ obser vat or y?WsDL" max="1"

rol e="observatory">

<l-- MAIN Method -->
<nethod name="main">

<body>
<whi | e>
<body>
<!-- Receive CFP Request -->
<recv>
<mesg performative="cfp">
<var nane="proposal "/ >
<var name="init"/>
<var nane="c_id"/>
</ mesg>
<cl ausel>
<var nane="contractnet"/>
</ cl ausel>
<cl ause2>
<rol e name="contractnet"/>
</ cl ause2>
</recv>
<l-- Initialise -->
<proc name="Initialise">
<out>
<var name="success"/>
</ out >
</proc>
</ body>
<ti meout >
<nul I />
</tineout >
</ whi | e>
<choi ce>

<op>
<!-- Consider Proposal (ACCEPT or REJECT) -->
<proc nane="Consi der Proposal ">
<in>
<var nane="proposal "/ >
</in>

</ proc>

<l-- Send Propose message back to the CONTRACTNET Agent
<send>
<nmesg performative="propose">

i n="1"

185

186 Appendix D. XML Implementation of Scenario 3: Runtime Coordination

<var nane="c_id"/>
</ mesg>
<cl ausel>
<var nane="contractnet"/>
</ cl ausel>
<cl ause2>
<rol e name="contractnet"/>
</ cl ause2>
</ send>

<l-- Call WAITFORDECI SICN Method -->
<cal | name="wai t f or deci si on">
<in>
<var name="init"/>
<var nane="proposal "/ >
</in>
</call>
</ op>
<!-- CR Choice -->
<op>
<l-- Send refuse nessage back to the CONTRACTNET Agent -->
<send>
<mesg performative="refuse">
<var nane="c_id"/>
</ mesg>
<cl ausel>
<var nane="contractnet"/>
</clausel>
<cl ause2>
<rol e name="contractnet"/>
</cl ause2>
</ send>

<l-- Restart Agent -->
<cal | name="min"/>
</op>
</ choi ce>
</ body>
</ met hod>

<!-- \WAI TFORDECI SION Met hod -->
<nethod name="wai t f or deci si on">
<in>
<var nane="init"/>
<var name="proposal "/ >

<lin>
<body>
<while tmax="30">
<body>
<choi ce>
<op>

<l-- Receive an accept-proposal frmthe INITIATCR -->
<recv>
<mesg perf ormati ve="accept - proposal ">
<var nanme="c_id"/>
</ mesg>
<cl ausel>
<var nane="init"/>

</ cl ausel>
<cl ause2>
<wild >

</ cl ause2>
</recv>
<l-- If necessary divide the proposal -->
<proc nane="Di vi deProposal ">

<in>

<var nane="proposal "/>
</in>
<out >

<var nane="proposal _sections"/>
</ out>

187

</ proc>

<l-- Call EXTRACT Method -->
<call nanme="extract">
<in>
<var nane="proposal _sections"/>
<var nane="init"/>
<var nane="c_id"/>
</in>
</call>
</op>
<l-- OR Choice -->
<op>
<l-- Receive an reject-proposal frmthe INITIATOR -->
<recv>
<mesg performative="reject-proposal ">
<var nane="c_id"/>

</ mesg>
<cl ausel>
<var nane="init"/>
</ cl ausel>
<cl ause2>
<wild >
</ cl ause2>
</recv>
</ op>
</ choi ce>
</ body>
<ti meout >
<nul I />
</ti neout >
</ whi | e>
</ body>
</ met hod>

<I-- EXTRACT Method -->
<nethod name="extract">
<in>
<var nane="proposal _sections"/>
<var name="init"/>
<var nane="c_id"/>
<lin>
<body>
<choi ce>
<op>
<!-- Extract head of List -->
<proc name="Head">
<in>
<var nane="proposal _sections"/>
<lin>
<out >
<var nane="head"/>
</ out >
</ proc>

<l-- Extract tail of List -->
<proc name="Tail">
<in>
<var nane="proposal _sections"/>
<[in>
<out>
<var name="tail"/>
</ out>

</proc>

<l-- Send Request to any EXTRACTION Agent -->
<send>
<mesg performative="request-extraction">
<var nane="head"/>
</ mesg>
<cl ausel>
<wildl >

188 Appendix D. XML Implementation of Scenario 3: Runtime Coordination

</ cl ausel>
<cl ause2>
<rol e name="extraction"/>
</ cl ause2>
</ send>

<l-- Call EXTRACT Method -->
<cal | name="extract">
<in>
<var nane="tail"/>
<var name="init"/>
<var nane="c_id"/>
<[in>
</call>
</ op>
<!-- CR Choice -->
<op>
<cal | name="wait">
<in>
<var name="init"/>
<var nane="c_id"/>
</in>
</call>
</ op>
</ choi ce>
</ body>
</ met hod>

<l-- WAIT Method -->
<method name="wait">
<in>
<var nane="init"/>
<var nane="c_id"/>
<lin>
<body>
<choi ce>
<op>
<!-- Finished Check -->
<proc name="Fi ni shed" >
<in>
<var nane="c_id"/>
</in>
<out>
<var nane="success"/>
</ out >
</ proc>

<whi l e tmax="30">
<body>

<l-- Receive response from EXTRACTI ON Agent -->
<recv>
<mesg performative="response-extraction">
<var nane="data"/>
</ mesg>
<cl ausel>
<wild >
</ cl ausel>
<cl ause2>
<rol e name="extraction"/>
</ cl ause2>
</recv>

<l-- Store the Result -->
<proc name="Store">
<in>
<var nane="data"/>
<lin>
</ proc>

<l-- One less agent to receive -->
<proc name="Renove">

189

<out >
<var nane="success"/>

</ out>
</ proc>
<l-- Recursvie Call -->

<cal | name="wait">
<in>
<var nane="init"/>
<var nanme="c_id"/>
<lin>
</call>
</ body>
<ti meout>
<l-- Send informfailure if the agent has been waiting too long -->
<send>
<mesg performative="informfailure">
<var nane="c_id"/>
</ mesg>
<cl ausel>
<var nane="init"/>

</ cl ausel>
<cl ause2>
<wild >
</ cl ause2>
</ send>
<nul />
</ti neout >
</ whil e>
</ op>
<l-- R Choice -->
<op>

<cal | name="finish">
<in>
<var nane="init"/>
<var nane="c_id"/>
<lin>
</call>
</ op>
</ choi ce>
</ body>
</ met hod>

<l-- FINI'SH Method -->
<nethod name="fi ni sh">
<in>
<var nane="init"/>
<var nane="c_id"/>
</in>
<body>
<l-- Derive opinion -->
<proc name="ExtractData">
<out >
<var nane="opi ni on"/>
</ out>
</ proc>

<l-- Send final results back to the INITIATCR -->
<send>
<nesg performative="informresult">
<var name="opi nion"/>
<var nane="c_id"/>
</ mesg>
<cl ausel>
<var nane="init"/>
</ cl ausel>
<cl ause2>
<wldl>
</ cl ause2>
</ send>
</ body>
</ met hod>

190 Appendix D. XML Implementation of Scenario 3: Runtime Coordination

</ agent >

<l-- EXTRACTION Agent -->
<agent inplenmentation="http://local host: 8080/ M/Extract Servi ce/ extract ?WsDL"
max="1" mn="1"
rol e="extraction">
<l-- MAIN Method -->
<nethod name="main">

<body>
<while tmax="50">
<body>
<!-- Receive Coordination Request from OBSERVATCRY Agent -->
<recv>
<mesg performative="request-extraction">
<var nane="proposal _section"/>
</ mesg>
<cl ausel>
<var nane="coordi nator"/>
</cl ausel>
<cl ause2>
<wildl >
</ cl ause2>
</recv>
<l-- Initialise variables -->
<proc nane="Initialise">
<out>
<var name="success"/>
</ out >
</ proc>
<l-- Call RETRIEVE Method -->
<cal | name="retrieve">
<in>
<var nane="proposal _section"/>
<var name="coordi nator"/>
<lin>
</call>
<l-- Restart Agent -->
<call name="main"/>
</ body>
<ti meout >
<nul I />
</tineout >
</ whi | e>
</ body>
</ met hod>

<!-- RETRIEVE Method -->
<nethod name="retrieve">
<in>
<var nane="proposal _section"/>
<var name="coordi nator"/>
</in>
<body>
<choi ce>
<op>
<l-- Extract head of List -->
<proc name="Head">
<in>
<var nane="proposal _section"/>
<[in>
<out>
<var name="head"/>
</ out>

</ proc>

<l-- Extract tail of List -->
<proc name="Tail">
<in>

<var nane="proposal _section"/>

191

</in>
<out >
<var name="tail"/>
</ out>
</ proc>

<!-- Extract Service Definition -->
<proc name="Extract Servi ce">
<in>
<var nane="head"/>
</in>
<out>
<var nane="service_def"/>
</ out >
</ proc>

<l-- Extract Input Params -->
<proc name="Extract!nput">
<in>
<var name="head"/>
<[in>
<out >
<var nane="input_parans"/>
</ out>
</ proc>

<l-- Extract Qutput Paranms -->
<proc nane="Extract Qut put">
<in>
<var nane="head"/>
<lin>
<out>
<var nane="out put_parans"/>
</ out >
</ proc>

<l-- Store the results of the Service Invocation -->
<proc name="Store">
<in>

<var nane="out put_parans"/>

<[in>
</ proc>
<!-- Recursive Call -->

<cal | name="retrieve">
<in>
<var nane="tail"/>
<var name="coordi nator"/>
<[in>
</call>
</ op>
<l-- OR Choice -->
<op>
<l-- Retrieve data -->
<proc nane="Retrieve">
<out >
<var name="data"/>
</ out>
</ proc>

<l-- Send results back to the COORDI NATCR Agent -->
<send>
<nesg performative="response-extraction">
<var nane="data"/>
</ mesg>
<cl ausel>
<var name="coordi nator"/>
</ cl ausel>
<cl ause2>
<wi | df>
</ cl ause2>

</ send>

192

</ op>
</ choi ce>
</ body>
</ met hod>
</ agent >
<l-- USER Agent -->

<agent inplenentation="http://local host: 8080/ M/RsnBer vi ce/ r sm?WSDL"
MAIN Method -->
<met hod nane="rmmain">

<body>

<l--

<l--

Get unknown -->
<proc name="sayRaDec">
<out>

<var nane="unknown"/>
</ out >

</ proc>

<l-- Send RA and DEC to RSM Agent -->
<send>
<nesg performative="request">
<var nane="unknown"/>
</ mesg>
<cl ausel>
<wild>
</ cl ausel>
<cl ause2>
<rol e name="cl assification"/>

</ cl ause2>
</ send>
</ body>
</ met hod>
</ agent >
</ Scene>
<l-- Automated Scene -->

<Scene nanme="aut omat ed" >

<l-- Port Definitions -->
<out put >
<port name="automated_out1" type="xsd:string" core="true"/>
</ out put >
<l-- Sinple Agent -->

<agent inplenentation="http://local host: 8080/ MyRsnBervi ce/ aut 0?WSDL"

<nethod name="main">
<body>
<l-- Get unknown -->
<proc nane="sayRaDec">
<out>
<var nane="unknown"/>
</ out >

</ proc>

<l-- Port Wite
<portwrite name="autonated_out1">

-

<var nane="unknown"/>
<var nane="unknown"/>
</portwite>
</ body>
</ met hod>
</ agent >
</ Scene>
</ sceneset >
<l-- Paraneterisation -->

<mappi ng nanme="denomappi ng" >
<l-- LSST Scene
<node |ocation=""

-
name="|sst">
<rol e name="cl assi fication">

Appendix D. XML Implementation of Scenario 3: Runtime Coordination

mex="1" mn="1" rol e="user">

max="1" mn="1" rol e="aut omat ed" >

<agent inplementation="http://|ocal host: 8080/ M/React i veServi ce/reactive?WsDL" nane="nyCLASSI FY" nunm¥"1"

por t wai t ="10"

recvwai t="10"/>
</role>

<rol e name="user">
<agent inplementation="http://|ocal host: 8080/ M/RsnBer vi ce/ r smPWBDL" nane="nyUSER' nun¥"1" portwait="10"
recvwai t="10"/>
</role>

<rol e name="contractnet">
<agent inplementation="http://local host: 8080/ M/Contract Servi ce/ contract ?WeDL" nane="nyCN' nun¥"1"
por t wai t =" 10"
recvwai t="10"/>

</rol e>

<rol e nane="observatory">
<agent inplementation="http://local host: 8080/ M/Cbservat oryServi ce/ observat ory?\WsDL" nane="1 ondon"
nune"1"
port wai t ="10"
recvwai t="10"/>
</role>

<rol e name="observatory">
<agent inplementation="http://local host: 8080/ MyCbser vat ory2Ser vi ce/ obser vat or y2?WSDL" nane="newyor k"
nunE" 1"
por t wai t =" 10"
recvwai t ="10"/ >

</rol e>

<rol e nane="observatory">
<agent inplementation="http://local host: 8080/ MyObservat ory3Ser vi ce/ obser vat or y3?WsDL" name="paris"
nune"1"
port wai t ="10"
recvwai t="10"/>
</role>

<rol e name="observatory">
<agent inplementation="http://|ocal host: 8080/ M/Cbservat or y4Ser vi ce/ obser vat or y4?WSDL" name="edi nbur gh"
nunE" 1"
por t wai t =" 10"
recvwai t="10"/>
</role>

<rol e nane="extraction">
<agent inplementation="http://local host: 8080/ M/Extract Servi ce/ extract ?WsDL"
nane="nyExtraction"
nune" 1"
por t wai t ="10"
recvwai t="10"/>
</rol e>

<rol e name="extraction">
<agent inplementation="http://local host: 8080/ M/Extract 2Ser vi ce/ extract 2?WsDL"
nane="nyExtraction2"

nune"1"
por t wai t ="10"
recvwai t="10"/>
</role>
</ node>

<l-- Automated Scene -->
<node |ocation="" nane="automated">

<rol e nanme="aut omat ed" >
<agent inplementation="http://local host: 8080/ MyRsnBer vi ce/ r snPWSDL"
nane="nyAut omat ed"

nunE" 1"
por t wai t =" 10"
recvwai t="10"/>
</role>
</ node>

<l-- Link Definition -->

193

194 Appendix D. XML Implementation of Scenario 3: Runtime Coordination

<l'ink>
<sour ce>
<outport port="automated_out1" scene="autonated"/>
</ source>
<si nk>
<inport port="Isst_inl" scene="lsst"/>
</ si nk>
</link>
</ mappi ng>
</ prot ocol >

Bibliography

[1]

[2]

[3]

[4]

[5]

[6]

Fipa ACL Message Structure Specification. TechnicalrgpFoundation for
Intelligent Physical Agents, December 2002.

Grid Computing: Making the Global Infrastructure a Reajifyages 65—-100.
Wiley Series in Communication Networking and Distributggt&ms, 2003.

Web Services Coordination (WS-coordination). Teclahieport, BEA Systems
and IBM and Microsoft Corporation, September 2003.

P. Allan, B. Bentley, C. Davenhall, S. Garrington, D. ta, L. Harra, M. Irwin,
A. Lawrence, M. Lockwood, B. Mann, R. McMahon, F. MurtaghQ&borne,
C. Page, C. Perry, D. Pike, A. Richards, G. Rixon, J. SherRaistamper, and
M. Watson. Astrogrid. Technical report, Available atw. astrogri d. org,
2001.

Gabrielle Allen, Kelly Davis, Konstantinos N. Dolkas,jkdlaos D. Doulamis,
Tom Goodale, Thilo Kielmann, André Merzky, Jarek Nabray3duliusz Pukacki,
Thomas Radke, Michael Russell, Ed Seidel, John Shalf, an@idglor. Enabling
Applications on the Grid: A GridLab Overviewinternational Journal of High
Performance Computing Applications: Special Issue on Godputing: Infras-
tructure and Applicationsl7(4):449-466, November 2003.

l. Altintas, C. Berkley, E. Jaeger, M. Jones, B. Ludaescland S. Mock. Ke-
pler: An Extensible System for Design and Execution of SifienWorkflows.
In 16th International Conference on Scientific and Statisixatabase Manage-
ment (SSDBM’04), Santorini Island, Gregedeine 2004.

[7] Tony Andrews, Francisco Curbera, Hitesh Dholakia, YafBoland, Johannes

Klein, Frank Leymann, Kevin Liu, Dieter Roller, Doug Smit8atish Thatte,
Ivana Trickovic, and Sanjiva Weerawarana. Business PgoEgecution Lan-

195

196 Bibliography

guage for Web Services Specification, Version 1.1. Teclhnggeort, BEA Sys-
tems and IBM Corporation and Microsoft Corporation and SAB @nd Siebel
Systems, May 2003.

[8] Grigoris Antoniou and Frank van HarmeleA. Semantic Web Primehe MIT
Press, 2004.

[9] J.L. Austin. How to Do Things with Word€Oxford University Pressl962.

[10] Adam Barker and Robert G. Mann. Cooperative Informatigents X, 10th
International Workshop, CIA 2006, Edinburgh, UK, Septemb#-13, 2006,
proceedings. In Matthias Klusch, Michael Rovatsos, andyTer Payne, edi-
tors, CIA, volume 4149 ol ecture Notes in Computer Scienpages 446—460.
Springer, 2006.

[11] Tim Berners-Lee, James Hendler, and Ora Lassila. Thea&&c Web.Scientific
American 284(5):34-43, 2001.

[12] E. Bertin and S. Arnouts. Sextractor: Software for s@uextraction, Astronomy
and Astrophysics, Suppl. Ser., 117:393-404, June 1996.

[13] Micol Bolzonella, Roser Pell, and Joan-Marc MiralleBlyperZ, v:1.1, User’s
Manual

[14] S. Bowers and B. Ludaescher. Actor-Oriented Designaé@ific Workflows.
In Lecture Notes in Computer Science Volume 3fEdes 369-384. Springer
Berlin / Heidelberg, June 2005.

[15] Doug Bunting, Martin Chapman, Oisin Hurley, Mark LétlJeff Mischkinsky,
Eric Newcomer, Jim Webber, and Keith Swenson. Web Servicaspgosite
Application Framework. Technical report, Arjuna Techrgiks Ltd and Fujitsu
Limited and IONA Technologies Ltd and Oracle Cooperatiod 8an Microsys-
tems, July 2003.

[16] B. Cavanagh, A. Allan, T. Jenness, F. Economou, P. H&kstAdamson, and
T. Naylor. Architecture of the WFCAM/eSTAR Transient Oljdaetection
Agent. InAstronomical Society of the Pacific Conference Sepages 504—+,
December 2005.

Bibliography 197

[17] Adrian A. Collister and Ofer Lahav. Annz: estimatinggibmetric redshifts
using artificial neural networksPublications of the Astronomical Society of the
Pacifig 16:345, 2004.

[18] George Coulouris, Jean Dollimore, and Tim Kindber@istributed Systems:
Concepts and Design, Fourth Editigpages 565-599. Addison Wesley, 2005.

[19] Karl Czajkowski, Donald F Ferguson, lan Foster, Jgfffeey, Steve Graham,
Igor Sedukhin, David Snelling, Steve Tuecke, and Willianm\&enepe. The Ws-
Resource Framework, Version 1.0. Technical report, Glpblasy 2004.

[20] Scientific Data Management Framework Workshop. ArgoiNational Labs.
http://sdmlbl.gov/sdncenter, August 2003.

[21] e-Science Grid Environments Workshop. e-Sciencetlrist Edinburgh, Scot-
land. htt p: // www. nesc. ac. uk/ esi / event s, May 2004.

[22] Scotland e-Science Institute, Edinburgh. Astrogridplyment and Develop-
ment Workshopht t p: / / ww. nesc. ac. uk/ esi / event s/ 646/ , January 2006.

[23] e-Science Workflow Services Workshop. e-Science timstj Edinburgh, Scot-
land. htt p: // www. nesc. ac. uk/ esi / event s/ 303, December 2003.

[24] C.A. Ellis and J. G. Nutt. Office Information Systems and Computer Science
pages 27-60. ACM Computing Surveys, 1980.

[25] Greg Meredith Erik Christensen, Francisco Curbera 8adjiva Weerawarana.
Web Services Desription Language (WSDL) SpecificationVdkld Wide Web
Consortium (W3C), March 2001.

[26] M. Esteva, J. Rodriguez, J. Arcos, C. Sierra, and P. @ar€ormalising Agent
Mediated Electronic Institutions. I@atalan Congres on Al (CCIA’0OQ)pages
29-38, 2000.

[27] David C. Fallside and Priscilla Walmsley. Xml Schemat®a Primer Second
Edition. Technical report, World Wide Web Consoritum (W32004.

[28] I. Foster. Globus Toolkit Version 4: Software for Se@iOriented Systems.
In IFIP International Conference on Network and Parallel Cautipg, volume
LNCS 3779, pages 2—-13. Springer-Verlag, 2005.

198 Bibliography

[29] I. Foster, N. R. Jennings, and C. Kesselman. Brain ni&etan: Why Grid and
Agents Need Each Other. Iaroc. 3rd Int. Conf. on Autonomous Agents and
Multi-Agent System®New York, USA, 2004.

[30] James Hendler. Science and the Semantic WebScience pages 520-521.
January 2003.

[31] David Hollingsworth. The Workflow Reference ModaNorkflow Management
Coalition, Document Number tc00-1003 edition, January5199

[32] The UKIRT Infrared Deep Sky Survey:
http://ww. uki dss. org.

[33] Y. Labrou J. Mayiield and T. Finin. Evaluating kgml asAagent Communication
Language. Irintelligent Agents I[(L Al Volume 1037)pages 347-360, Berlin,
Germany, 1996. Springer-Verlag.

[34] Nicholas R. Jennings. Agent-Oriented Software Engiimg. In Francisco J.
Garijo and Magnus Boman, editoBtoceedings of the 9th European Workshop
on Modelling Autonomous Agents in a Multi-Agent World : MAlgent System
Engineering (MAAMAW-99Y¥olume 1647, pages 1-7. Springer-Verlag: Heidel-
berg, Germany, 30— 2 1999.

[35] J.Zhao, C.A. Goble, M. Greenwood, C. Wroe, and R. Stevé&mnotating, link-
ing and browsing provenance logs for e-science l1$hWorkshop on Semantic
Web Technologies for Searching and Retrieving Scientifia D&anibel Island,
Florida, USA October 2003.

[36] Ananth Krishna, Victor Tan, Richard Lawley, Simon Mileand Luc Moreau. The
mygrid notification service. liProceedings of The UK OST e-Science second All
Hands Meetingpages 475-482, 2003.

[37] D. Lambert and D. Robertson. Matchmaking and brokenmngti-party interac-
tions using historical performance data.Hourth International Joint Conference
on Autonomous Agents and Multi Agent SysteSpsinger, 2005.

[38] B. Ludascher, I. Altintas, C. Berkley, D. Higgins, E.edgr-Frank, M. Jones,
E. Lee, J. Tao, and Y. Zhao. Scientific Workflow Management thiedKepler
System. Concurrency and Computation: Practice & Experien&pecial Issue
on Scientific Workflows, 2005.

Bibliography 199

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

David Martin, Massimo Paolucci, Sheila Mcllraith, MaBurnstein, Drew Mc-
Dermott, Deborah McGuinness, Bijan Parsia, Terry R. Payarta Sabou,
Monika Solanki, Naveen Srinivasan, and Katia Sycara. Bmigigsemantics to
Web Services: The OWL-S Approach. 2004.

Noah Mendelsohn Jean-Jacques Moreau Martin Gudging Madley and Hen-
rik Frystyk Nielsen. Simple Object Access Protocol (SOAP) 1.2 Specification
World Wide Web Consortium (W3C), June 2003.

A. Mayer, S. McGough, M. Gulamali, L. Young, J. Stant@&,Newhouse, and
J. Darlington. Meaning and Behaviour in Grid Oriented Comgras. InLecture
Notes in Computer Scienosmlume 2536, pages 100-111. Springer-Verlag Berlin
Heidelberg, 2002.

William K. Michener. Building SEEK: The Science Envimment for Ecologi-
cal Knowledge.DataBits: An electronic newsletter for Information Manage
Spring Edition, 2003.

Tom Oinn, Matthew Addis, Justin Ferris, Darren MarvMartin Senger, Mark
Greenwood, Tim Carver, Kevin Glover, Matthew R. Pocock, |IANipat, and
Peter Li. Taverna: A tool for the Composition and EnactmédrBioinformatics
Workflows. InBioinformatics Journal 20(17)pages 3045-3054, 2004.

Tom Oinn, Mark Greenwood, Carole Goble, Matthew Addisstin Ferris, Dar-
ren Marvin, Anil Wipat, Peter Li, and Tim Carver. Deliveringeb service coor-
dination capability to users. hhirteenth International World Wide Web Confer-
ence (WWW2004), New Yogages 438—-439, 2004.

Ed Ort. Service-Oriented Architecture and Web SersicEoncepts, Technolo-
gies, and Tools. Technical report, Sun Microsystems, Af04.

A. S. Rao and M. P. Georgeff. BDI-agents: from theory tagbice. InProceed-
ings of the First Intl. Conference on Multiagent SysteSen Francisco, 1995.

Elliotte Rusty Harold.Processing XML with JavaAddison Wesley, 2002.

Shazia W. Sadiq, Wasim Sadiq, and Maria E. Orlowska kPiscof flexibility in
workflow specification. I'ER '01: Proceedings of the 20th International Con-
ference on Conceptual Modelingages 513-526, London, UK, 2001. Springer-
Verlag.

200 Bibliography

[49] Inderjeet Singh, Beth Stearns, Beth Stearns, SeandBrydnd Greg Murray.
Designing Web Services with the J2EE(TM) 1.4 Platform : BRC, SOAP,
and XML TechnologiesPearson Education, 2004.

[50] R. Smith. The Contract Net Protocol: High-level Comnuation and Control in
a Distributed Problem SolvelEEE Transactions on Computeris-29(12):1104—
1113, 1980.

[51] Sebastian Stein, Nicholas R. Jennings, and Terry Rn@adylexible provisioning
of service workflows. IrECAI, pages 295-299, 2006.

[52] Robert Stevens, Kevin Glover, Chris Greenhalgh, @ldannings, Simon Pearce,
Melena Radenkovic, and Anil Wipat. Performing in-silicogeximents on the
Grid: A Users Perspective. Proceedings of the UK e-Science all hands meeting
September 2003.

[53] Robert Stevens, Robin McEntire, Carole Goble, Mark gargood, Jun Zhao,
Anil Wipat, and Peter Li™Grid and the Drug Discovery Proced3tug Discov-
ery Today: BIOSILICQ4(2):140-148, 2004.

[54] lan J. Taylor, Matthew S. Shields, lan Wang, and RogelpPIDistributed P2P
Computing within Triana: A Galaxy Visualization Test Cade. 17th Interna-
tional Parallel and Distributed Processing Symposium (FF$2003)pages 16—
27. IEEE Computer Society, 2003.

[55] Ptolemy Il Project:
http://ptol eny. eecs. berkel ey. edu/ ptol enyl | .

[56] Large Synoptic Survey Telescope (LSST):
http://ww.|sst.org.

[57] OpenKnowledge Project:
http://ww. openk. org.

[58] Proteus Technologues:
http://ww. proteus-technol ogi es. com

[59] The Wide Field Astronomy Unit (WFAU):
http://ww.roe.ac. uk/ifalwau.

[60] Sloan Digital Sky Survey:
http://ww. sdss. org.

Bibliography 201

[61] The Unified Modelling Language:
http://ww. um . org.

[62] The XMM-Newton Science Archive:
http://xmmvil spa. esa. es/ xsa.

[63] C. M. Sperberg-McQueen Eve Maler Tim Bray, Jean Padli laranois Yergeau.
Extensible Markup Language (XML) 1.0 Specification (Fodthtion). World
Wide Web Consortium (W3C), August 2006.

[64] S. Tuecke, K. Czajkowski, |. Foster, J. Frey, S. Grahdah, Kesselman,
T. Maquire, T. Sandholm, D. Snelling, and P. Vanderbilt. @@&&id Services
Infrastructure (ogsi), Version 1.0. Technical report, GdbGrid Forum (GGF),
June 2003.

[65] W.M.P. van der Aalst, A.H.M. ter Hofstede, B. Kiepusztily and A.P. Barros.
Workflow Patterns. ImDistributed and Parallel Databasepages 5-51, July
2003.

[66] International Virtual Observatory Alliance:
http://ww.ivoa. net.

[67] Gottfried Vossen and Mathias Weske. The wasa2 objeetited workflow man-
agement systenBIGMOD Rec.28(2):587-589, 1999.

[68] Chris Walton. Dialogue Protocols for Multi-Agent Sgsts. Technical report,
University of Edinburgh, September 2003.

[69] Christopher D. Walton and Adam D. Barker. An Agent-BageScience Exper-
iment Builder. InSemantic Intelligent Middleware for the Web and the Grid
ECAI, 2004.

[70] Web Services Description Language for Java (WSDL4J):
http://sourceforge. net/projects/wsdl 4j.

[71] Mathias Weske, Gottfried Vossen, and Claudia Bauzedéites. Scientific
Workflow Management: WASA Architecture and Applicationgchnical report,
University of Muenster and University of Campinas, Janug96.

[72] Alexander E. Wise, Aaron G. Cass, Barbara Staudt Lerkeic K. McCall,
Leon J. Osterweil, and Stanley M. Sutton. Using little-JbL.cbordinate agents

202 Bibliography

in software engineering. lIAutomated Software Engineeringages 155-164,
2000.

[73] Michael Wooldrige.An Introduction to Multiagent Systemsages 27—60. John
Wiley and Sons Ltd, 2002.

[74] FreeFluo Workflow Enactment Engine:
http://freefluo.sorceforge. net.

[75] GRIST Workshop on Service Composition for Data Explama
in the Virtual Observatory. California Institute of TecHagy.
http://grist.caltech. edu/ sc4devo, July 2004.

[76] Jun Yan. A Framework and Coordination Technologies for Peer-torssed
Decentralised Workflow Systen®hD thesis, School of Information Technology,
Swinburne University of Technology, August 2004.

[77] Jun Zhao, Robert Stevens, Chris Wroe, Mark Greenwood Garole Goble. The
origin and history of in-silico experiments. Rroceedings of the UK e-Science
All Hands Meeting, Nottingham UkKSeptember 2004.

