
Peer-to-Peer, Multi-Agent Interaction Adapted

to a Web Architecture

Xi Bai

T
H

E

U N I V E R
S

I
T

Y

O
F

E
D I N B U

R
G

H

Doctor of Philosophy

Centre for Intelligent Systems and their Applications

School of Informatics

University of Edinburgh

2013

Abstract
The Internet and Web have brought in a new era of information sharing and opened

up countless opportunities for people to rethink and redefine communication. With

the development of network-related technologies, a Client/Server architecture has be-

come dominant in the application layer of the Internet. Nowadays network nodes

are behind firewalls and Network Address Translations, and the centralised design of

the Client/Server architecture limits communication between users on the client side.

Achieving the conflicting goals of data privacy and data openness is difficult and in

many cases the difficulty is compounded by the differing solutions adopted by differ-

ent organisations and companies. Building a more decentralised or distributed envi-

ronment for people to freely share their knowledge has become a pressing challenge

and we need to understand how to adapt the pervasive Client/Server architecture to this

more fluid environment.

This thesis describes a novel framework by which network nodes or humans can inter-

act and share knowledge with each other through formal service-choreography spec-

ifications in a decentralised manner. The platform allows peers to publish, discover

and (un)subscribe to those specifications in the form of Interaction Models (IMs). Peer

groups can be dynamically formed and disbanded based on the interaction logs of

peers. IMs are published in HTML documents as normal Web pages indexable by

search engines and associated with lightweight annotations which semantically en-

hance the embedded IM elements and at the same time make IM publications comply

with the Linked Data principles. The execution of IMs is decentralised on each peer via

conventional Web browsers, potentially giving the system access to a very large user

community. In this thesis, after developing a proof-of-concept implementation, we

carry out case studies of the resulting functionality and evaluate the implementation

across several metrics.

An increasing number of service providers have began to look for customers proac-

tively, and we believe that in the near future we will not search for services but rather

services will find us through our peer communities. Our approaches show how a

peer-to-peer architecture for this purpose can be obtained on top of a conventional

Client/Server Web infrastructure.

iii

Acknowledgements
I have become really excited and joyful when I began to look over my whole PhD

journey past and have been feeling so fortunate to have mentors, friends and family

being extremely supportive of my work all along this rocky but wonderful road.

Words cannot say how sincere thankfulness I owe to my supervisor, Prof. Dave Robert-

son, who have guided me through the entire research of my PhD and the whole process

of my thesis writing. Without his continual help, encouragement and inspiration, it

would not have been possible for me to accomplish this work. I would like to thank

Prof. Ewan Klein, who is more than a mentor to me but a real role model. Since I

started my PhD, he has provided invaluable feedback and their insightfulness would

not be found elsewhere. I would also like to thank my examiners, Dr. Paul Anderson

and Dr. Leslie Carr, for providing insightful and inspiring feedback.

This thesis was co-funded by University of Edinburgh and Scottish Informatics and

Computer Science Alliance (SICSA), and I would like to thank both organisations for

their massive supports and generosities. I am so grateful to have the chance to visit

Dr. Wamberto Vasconcelos from University of Aberdeen and also have him as my

SICSA supervisor, who helped me to develop the original idea about OKBook. My

sincere thanks also go to Romi Capdevila and people from MicroArt, Parc Cientı́fic de

Barcelona, who welcomed me as a friend and helped me to finish project deliverables,

and I would also like to thank FP7 Marie Curie Industry-Academia Partnerships and

Pathways (IAPP) for their generosities during my visit. Special thanks go to Paul

Adderley and Prof. Bob Fisher for their trusts and offers of project positions, which

made me turn my hobby into the part-time work.

My PhD would not be this joyful without my colleagues and friends from School of

Informatics, University of Edinburgh, and thank Jacques Fleuriot and all others for

their help in my research and also encouraging me to outreach my university office life

and banding together for fencing, bowling, pingpong, films, pizza, poker, warcraft and

karaoke.

Lastly and most importantly, I would like to thank my parents, Baowu and Xiuyue, and

my girlfriend, Jie for their heartfelt understanding, endless patience and continuous

support whenever and wherever I need it.

iv

Declaration
I declare that this thesis was composed by myself, that the work contained herein is

my own except where explicitly stated otherwise in the text, and that this work has not

been submitted for any other degree or professional qualification except as specified.

(Xi Bai)

v

Table of Contents

1 Introduction 1

1.1 Overview of OpenKnowledge . 4

1.2 Web-Oriented Infrastructure for Knowledge Sharing 6

1.3 Bringing the (Semantic) Web into OpenKnowledge 10

2 Relevant Literature 15

2.1 Underlying Architecture of OpenKnowledge 15

2.2 Semantic Web Services and Their Descriptions 17

2.3 Peer-to-Peer Communities . 20

2.4 Agent-based Peer-to-Peer Architecture 21

2.5 Social Networks: State of the Art . 24

3 Decentralised Interaction-Driven Knowledge Sharing on OKBook 29

3.1 How OKBook Architecture Meets the Requirements 31

3.1.1 Knowledge Representation for OKBook 32

3.1.2 Peer Profile Management . 35

3.1.3 Discovery of IMs and Collaborative Peers 40

3.2 Ranking on OKBook . 45

3.2.1 IM Ranking Criteria . 45

3.2.2 Other Rankings . 47

3.2.3 Extended Open Graph Protocol 48

3.3 Inference Driven Evolution of the Peer Community 51

3.4 Analysis and Comparison Against the OpenKnowledge Architecture . 56

3.4.1 Acquiring IMs From Discovered Group Members 57

3.4.2 Peer Subscriptions and IM Consumptions 59

3.5 OKBook Federation . 60

vii

4 Interaction Model Execution on a P2P Communication Layer 65
4.1 OpenKnowledge Communication Layer Redesign 65

4.1.1 Motivations . 66

4.1.2 Communication Layer Framework 66

4.1.3 Peer Interaction Messaging Flows 68

4.2 Peer-based IM Execution Design . 71

4.2.1 Bridge HTTP and XMPP . 71

4.2.2 Overview of XLCC Grammar 72

4.2.3 Security . 80

4.3 Event-Driven Concurrent Interpretation of IMs 80

4.3.1 IM Events . 81

4.3.2 Non-Blocking Messaging 82

4.3.3 Design of the niob Operator 82

4.3.4 Handling Multiple niob Operators 83

4.3.5 XLCC Semantics . 85

4.4 Overall Platform Architecture . 86

5 Interaction Models as Semantic Web Documents 93
5.1 Motivations . 94

5.2 Marking Up IMs Using WSCAIM 99

5.2.1 Process-Dedicated Annotations 99

5.2.2 Constraint-Dedicated Annotations 99

5.2.3 Annotation Serialisation . 101

5.3 IM Annotation Injection and Consumption 102

5.3.1 Annotation Injection . 105

5.3.2 Annotation Consumption . 107

5.4 Semi-Automatic IM Publication Using RDFa2 109

5.4.1 Topic Nodes and Topic Trees 110

5.4.2 Embedded-Annotation Generation 111

6 Social Group Formation and Maintenance 121
6.1 Interaction-Driven Peer-to-Peer Community Specification 122

6.1.1 Messaging Among Interaction Participants 122

6.1.2 Service Registry inside the Peer Profile 124

6.1.3 Peer CRUD Features . 126

6.2 Service Composition and IMs . 127

viii

6.3 Social Effects . 127

6.3.1 Peer Relationship Layers . 128

6.3.2 Peer Group . 128

6.3.3 Trust . 130

6.3.4 Peer Reciprocity and Community Tolerance 134

7 Evaluation of the OKBook Architecture 137
7.1 Effectiveness of IM Discovery Based on Peer Groups 137

7.2 Stress Tests on Distributed Peers Curating Communities 140

7.3 IM Execution in Browsers: Non-Blocking I/O vs Blocking I/O 141

7.4 Experiments and Case Study on IM Semantic Enhancement 144

7.5 Usage Scenario . 149

8 Conclusions and Future Work 155

Bibliography 159

A XLCC State Overview and Parse Tables 171

B Case Studies on OKBook 185

Glossary 189

Acronyms 191

ix

List of Figures

1.1 OpenKnowledge client-side UI . 6

1.2 Semantic Web layer cake as of 2001 8

1.3 Semantic Web layer cake as of 2009 8

1.4 LOD datasets as of 2011 . 9

1.5 Age distribution of SNS users in 2008 and 2010 11

2.1 Architecture of the OpenKnowledge system 17

3.1 Overlook of OKBook modules . 30

3.2 Peer profile updating protocol . 37

3.3 Services for selecting URIs for annotations 40

3.4 Screenshot on a search result . 40

3.5 IFAI-based peer group discovery . 43

3.6 OKBook-equipped OpenKnowledge system 45

3.7 Extended Open Graph Protocol (EOGP) 49

3.8 Simple trade IM in LCC . 57

3.9 Sequence diagram for a bunch of interactions driven by peer groups . 58

3.10 Republished trade IM in XHTML 60

3.11 Consumption of a republished IM 61

3.12 Example of the OKBook federation 63

4.1 Communication Layer Framework 67

4.2 Simple trade IM in XLCC with the header 75

4.3 Interaction accomplishment indicators are wrapped in messages . . . 78

4.4 Indicator relay for the two-last-recipient case 79

4.5 Interaction accomplishment signals are sent to the trigger 79

4.6 Choreographing WS from a single peer’s perspective 88

4.7 Layered architecture of a peer . 88

xi

4.8 Layered architecture of OKBook . 89

4.9 Screenshot on pending interactions 89

4.10 Screenshot on editing an IM in OKeilidh 90

4.11 Screenshot on creating OKCs with a template snippet 91

5.1 Basic Travel Planning IM in XLCC 95

5.2 WSCAIM ontology visualised in RDFGravity 98

5.3 RDF triples related to message passing 100

5.4 RDF triples related to constraint solving 101

5.5 Constraint solving with mathematical comparisons 102

5.6 Yet another trade IM in LCC . 102

5.7 Excerpt of the annotated trade IM document 103

5.8 Peer-to-peer network topology . 104

5.9 Sequence diagram for IM republication 108

5.10 Subject (topic) C -tree of a FOAF document 111

5.11 Context-based federated integration 115

5.12 Personalise the automatically generated Web page 116

6.1 OKC described with the SOAP model 125

6.2 OKC described with the RESTful model 126

6.3 Community relation layer . 129

6.4 PeerA’s trusts in other community members 133

6.5 Overall trusts of community members 135

7.1 Experimental results of the group-based IM discovery 139

7.2 Simultaneous online members . 141

7.3 Five transactions for each peer . 142

7.4 Comparison between interactions with non-blocking and blocking I/Os 143

7.5 Time cost of retrieving pages . 146

7.6 Time cost of harvesting RDFa data 146

7.7 Screenshot on the user interface for annotating IMs 148

7.8 Snapshot of the user interface of a peer side consumer 149

7.9 IM for retrieving the set of closest peers 151

7.10 Peer A’s Facebook-like closest peer discovery (depth = 1) 152

7.11 IM for posting pictures to subscribers’ walls 153

B.1 Sequence diagram for on-line shopping using eBay and OKBook . . . 187

xii

List of Tables

3.1 OKBook Federation APIs . 62

4.1 XLCC syntax . 73

4.2 XLCC grammar overview . 74

4.3 Interpretation for sequence operators in XLCC 83

xiii

List of Algorithms

1 IFAI Algorithm (single step) . 44

2 Marking Up Algorithm . 106

3 RDFa Snippet Generation Algorithm (subject (topic) C -tree) 113

4 Trust-Degree Calculation Algorithm 131

xv

Chapter 1

Introduction

In this chapter we introduce the concept of knowledge sharing in open, peer-to-peer

systems and give an outline of the OpenKnowledge system1 which is an EU-funded

project, previously implemented and discussed in (Robertson et al., 2009), and also

the reference architecture for this thesis. A key contribution of this thesis is to show

how the approach taken in the reference architecture can be reconstructed in a Web

architecture, so we also introduce this view along with its extension into the “Semantic

Web” which is important in underpinning the approach of subsequent chapters.

Much of the research on knowledge sharing in the Semantic Web and Linked Data

community has focused on the traditional view that the knowledge should be repre-

sented independently of the tasks in which it is used. The openness of the World Wide

Web (WWW) succeeds in scaling to a global environment due to the network effect

and low level of its participating cost while in an open knowledge sharing environment

(anybody may join at any time at low individual cost), the traditional knowledge en-

gineering does not scale due to the the cost of providing absolute service semantics,

which makes knowledge of services grow rapidly as more of them participate. How-

ever, our choice of task can strongly influence the way in which we represent knowl-

edge, so recent research has studied the relationship between the way knowledge is ex-

pressed and the context of that knowledge in the tasks we wish to perform (Robertson

et al., 2009). One reaction to this is to focus on the tasks themselves — we model these

tasks in a formal specification language and share these tasks while at the same time

sharing the knowledge associated with them (so that knowledge is always understood

1http://www.openk.org/

1

http://www.openk.org/

2 Chapter 1. Introduction

in the context of the tasks in which it has been used). Systems such as OpenKnowl-

edge have demonstrate how this can be done on peer-to-peer infrastructures, where

peers2 share executable specifications of tasks and a kernel system on each peer en-

ables discovery, selection, enactment, ontology alignment and interactions with other

peers. Although the OpenKnowledge system demonstrated how contextualisation by

task could make this sort of task-based knowledge sharing possible, it relied on be-

spoke systems for peer-to-peer knowledge sharing (including the peer-to-peer infras-

tructure, the kernel system and associated discovery and ontology alignment systems).

We demonstrate that a different (and arguably less limiting) architecture is possible in

which task specifications are documents on the Web, marked up with metadata that

allows their discovery using established Semantic Web techniques. Peer community

formation can benefit from harnessing process-oriented programming with lightweight

semantic enrichment. OpenKnowledge depends on a so-called Interaction Model (IM)

expressed in the Lightweight Coordination Calculus (LCC), which is an executable

specification based on π-calculus (Milner, 1999) and expressed in a Prolog-like syn-

tax. In order to achieve more flexible peer interactions, we have developed eXtended

Lightweight Coordination Calculus (XLCC) as an extended version of LCC in this

thesis.

The resulting lightweight declarative language can be used for describing task specifi-

cations and has been adopted in this thesis to describe and serialise peers’ interactive

processes. A browser-focused application allows documents in XLCC also to be en-

acted as interaction processes between network nodes via the Extensible Messaging

and Presence Protocol (XMPP) (Saint-Andre, 2004). This application removes the

need for a peer-to-peer infrastructure since, only Transmission Control Protocol (TCP)

and Hypertext Transfer Protocol (HTTP) are needed to support communication be-

tween peers. As a result, this architecture allows knowledge sharing to be viewed as

an extension of the traditional Semantic Web infrastructure rather than as a radical de-

parture from it. To enable this, however, requires a fundamental change in perspective

for process-based knowledge sharing and a change in the basic mechanisms used to

automate the system.

IMs describing interactive processes are de facto protocol specifications. In order to

make these specifications adopted by all process participants, who have various re-

2We follow the example of the OpenKnowledge system in using the term peer (rather than agent) to
focus on reactive behaviours of participants within interaction.

3

quirements and offers, as widely as possible, a generic shared serialisation strategy is

needed and this is the place where declarative languages such as LCC come to play.

On the other hand, sometimes the heterogeneity of process participants will be unfor-

tunately ignored or treated blindly equivalently when a single declarative language is

applied. In order to bridge the gap between the declarativity of the task description lan-

guage and the knowledge heterogeneity of participating performers, and at the same

time, balance the generality and the specificity of descriptions, methods and techniques

derived from the Semantic Web and Linked Data community have been employed in

this thesis to fertilise the semantic enhancement to the specifications which guide peers

to interact with one another. The interpreter deployed on each peer is able to know the

language semantics of LCC. The operational semantics (Scott, 1970) of LCC has been

elaborated in (Robertson, 2004) and makes LCC a compact and lightweight language

for both IM creators and IM stakeholders (Figure 3.8 in Chapter 3 gives an exemplary

IM in LCC). However, when peers are subscribed to a specific IM which will be in-

terpreted in a decentralised environment, not only operational semantics is needed to

guarantee the participants’ rational behaviours, but also context-specific annotations

are necessary and can be applied within the process of discovering which IM can ac-

tually meet requirements of peers. Semantics (also known as metadata and ontologies)

behind Web resources derived from the Semantic Web community can be harnessed

as supplementary metadata and made use of along with operational semantics, in or-

der to improve the knowledge representation of task-dedicated interactive processes.

Therefore, inside an IM are LCC elements attached with annotations (in the form of

Uniform Resource Identifiers (URIs)), which may be changed by IM publishers as

time goes by. Based on situation calculus (a representation for first-order logic plan-

ning) (Reiter, 1991), each annotation (attached to a particular LCC element) here can

be recognised as a fluent (a.k.a, properties of the world) since it describes part of the

context in which the LCC element applies. The remainder of this chapter introduces

the OpenKnowledge system as a peer-to-peer knowledge sharing platform, especially

in the vision of the Semantic Web which raises the potential to evolve OpenKnowledge

into a Web-oriented architecture in order to achieve peer communities.

4 Chapter 1. Introduction

1.1 Overview of OpenKnowledge

Interactions between different network nodes of service-oriented computational sys-

tems are usually dedicated to sharing services or more broadly speaking, functional-

ities. Many terms have been coined for these nodes, such as agents, peers and more

recently, Web Services (WSs). Online agents play different roles during the interac-

tion: for example, sometime they are customers, looking for particular resources from

others and sometime they are providers, offering their resources to others insofar as

some particular conditions are satisfied. Moreover, the role(s) played by a given net-

work node during the process of fulfilling a task can be either static (sticked to a single

role) or dynamic (switching between different roles), subject to the requirements of the

node.

Generally speaking, interactions between nodes can be achieved in a centralised or de-

centralised (or even distributed manner). In the former case, which has been referred

as Orchestration (Papazoglou, 2003), the interaction will be controlled centrally and

different participants are gathered at design time and focus on their own needs and

offers. In the latter case, which has been referred as Choreography (Peltz, 2003), the

interaction will be constrained in terms of a piece of protocol, in which each partic-

ipant is aware of the role(s) it will play during the interaction and since there is no

central controller, the whole interaction process will proceed in a cooperative way. A

notion of conformance between orchestration and choreography was proposed based

on a so-called bisimulation and has been used to state when an orchestrated system

conforms to a given choreography system but not all orchestrations have conformable

choreographies (Busi et al., 2005). All in all, orchestration and choreography can be

regarded as two different and sometimes alternative perspectives from which systems

or services can be modelled and managed.

Targeting service choreography, the OpenKnowledge project has delivered an open

platform which enables us to create a distributed peer-to-peer ecosystem based on

shared interaction protocols encapsulated in lightweight IMs. Compared to an ser-

vice implementation driven by orchestration, the OpenKnowledge platform can scale

better with the growing complexity of systems (Robertson et al., 2009). Conventional

service composition is carried out by connecting the output of a service to the input

of another, which is built on an assumption that if the semantics of services could be

precisely defined (e.g., in OWL-S (Martin et al., 2004) or WSDL-S (Akkiraju, 2005),

1.1. Overview of OpenKnowledge 5

etc.), the service composition can be done freely when the local semantics of each ser-

vice is preserved. However, in a decentralised environment, even if this assumption

were perfectly met, the traditional composition of services still cannot scale due to

the heterogeneity of jointly employed semantics descriptions preserved by the partic-

ipants involved in the composition. The OpenKnowledge system addresses the above

ill founded assumption and instead of requiring universally accepted semantics across

all service interfaces, this system only requires a shared IM in which semantics is in-

ternally consistent, which is similar with the use in human affairs of protocols or con-

tracts. Under this regime, only the semantics related to a specific IM will be concerned

and standardised by service providers involved in the composition.

The OpenKnowledge system was designed and focused on problems including ontol-

ogy alignment, coalition formation, outcome prediction, maintaining shared knowl-

edge, respecting local constraints and relating interaction to process requirements. It

turns the control of interaction into a declarative programming problem with LCC and

those problems are hard to solve with traditional declarative or agent-oriented pro-

gramming. Each user needs to download a piece of software and install it on his/her

own machine. This software provides a platform User Interface (UI) for users to pub-

lish and test IMs and also has a file system to manage all the searchable data, as shown

in OpenKnowledge Manual3 and repeated in Figure 1.1. By typing keywords, users

can look for IMs which may meet their requirements and perhaps more than one IM

will be returned and ranked. Users choose the IM to subscribe to based on the recom-

mendation and as soon as each role defined in the IM is filled by a particular peer, the

OpenKnowledge kernel will randomly select a peer as the coordinator and forward all

the subscription information to it. The coordinator is equipped with a LCC interpreter

and behaves like a trusted middle-man. Therefore, the coordinator knows all the states

of each peer during the interaction and can send or receive messages on behalf of each

involved peer. If some peers can not behave based on their obligation (e.g., they can

not satisfy the predefined constraints), the coordinator will terminate the interaction

and recommend other substitute peers if then exist. After finishing the execution of

the IM, the LCC interpreter informs the coordinator, which will forward the results,

including statistics on participating peers, to the OpenKnowledge kernel. Finally, the

kernel will update the local database with statistical information about executed IMs

and participating peers.

3http://groups.inf.ed.ac.uk/OK/download/manual.pdf

http://groups.inf.ed.ac.uk/OK/download/manual.pdf

6 Chapter 1. Introduction

Figure 1.1: OpenKnowledge client-side UI

1.2 Web-Oriented Infrastructure for Knowledge Shar-

ing

The WWW has become a significant infrastructure for knowledge sharing and inter-

active communication. Research in this area remains active and has spawned sev-

eral sub-disciplines: communication protocols, data exchange formats, information

retrieval and Web development. These categories are not independent of one another

and so many research topics cross more than one of them. An increasing number of

professional content publishers or amateur users have began to publish their content

on the Web with various systems. Due to the exploration of Web information, search

engines and recommendation systems have been designed and implemented to assist

in people’s daily life. With the development of Web searching technologies, crawling,

indexing and searching have become the typical functionalities a modern search en-

gine needs to have. The crawler is in charge of constantly gathering Web documents

which are later indexed for filtering out and structuring useful information. Search en-

gines provide users with their searching functionality via various UIs and, by matching

1.2. Web-Oriented Infrastructure for Knowledge Sharing 7

user’s query against with their indices, they present the search results in a ranked list

with the most relevant result at the top. The target resources that search engines aim

to deal with are mainly Web documents with diverse formats and WS description can

definitely be one kind of indexable documents. Motivated by this, this thesis will

showcase potentials of generic search engines to function as hubs of service discovery.

In order to improve information acquisition and make them more precise and effi-

cient, data exchange formats (bottom-up) and information extraction (top-down) have

emerged as hot research topics in the last two decades. Meanwhile, an increasing num-

ber of recommended content publishing formats and information search techniques

have been proposed for tackling the “information overload” problem. Following that,

the concept of the Semantic Web was proposed by Tim Berners-Lee, James Hendler

and Ora Lassila in Scientific American magazine in 2001 (Berners-Lee et al., 2001)

and a use case scenario was also given in which a bundle of agents collaborate with

each other in order to fulfil a complex task by exchanging understanding the informa-

tion containing machine-readable semantics on the Web. The Semantic Web has been

defined as an extension of the current Web (Document Web), rather than a competing

invention. The original “layer cake” (Berners-Lee, 2000) to the Semantic Web tech-

nologies is illustrated in Figure 1.2, while its more recent version (Hendler, 2009) is

illustrated in Figure 1.3. Several changes have been made, especially in those layers

located between the URI layer and the Logic layer (e.g., SPARQL Protocol and RDF

Query Language (SPARQL), Resource Description Framework in Attributes (RDFa)

and Semantic Web Service (SWS)). This update also suggests that within the first

decade since the Semantic Web was born, the progress on either the theoretical foun-

dation has not been elaborated so intensively as other areas (e.g, Information Retrieval

and Machine Learning). Another term used as a twin sister of “Semantic Web” is “Web

of Data” (it defines “Semantic Web” also by Tim Berners-Lee as “a web of data that

can be processed directly and indirectly by machine” (Berners-Lee et al., 1999)) has

been used for emphasising the data-interweaving feature of the Semantic Web. “Linked

Data” (Berners-Lee, 2006) is another term which is used most recently for describing

the vision of the Web of data and many folks believe this is an attempt to rebrand

the Semantic Web. A literal comparison given by Tim Berners-Lee himself is “Linked

Data is the Semantic Web done right”. A screenshot of the growing Linking Open Data

(LOD) cloud diagram4 which shows the datasets published (“openly accessible from a

4The Linking Open Data cloud diagram, available at http://richard.cyganiak.de/2007/10/
lod/

http://richard.cyganiak.de/2007/10/lod/
http://richard.cyganiak.de/2007/10/lod/

8 Chapter 1. Introduction

network point of view”) in Linked Data format, is illustrated in Figure 1.4. The Linked

Data effort emphasises the technical aspects of linking data across the Web, including

identifying resources using URI and employing the Resource Description Framework

(RDF) data model, etc. in an attempt to focus on a practical subset of Semantic Web

technology. All in all, the stack of semantic technology and related research plays an

increasingly important role in the modern territory of knowledge representation and

information sharing, and this thesis also further explores the power of the Semantic

Web and harness it to utilise our approaches.

Figure 1.2: Semantic Web layer cake as of 2001

Figure 1.3: Semantic Web layer cake as of 2009

1.2. Web-Oriented Infrastructure for Knowledge Sharing 9

Fi
gu

re
1.

4:
LO

D
da

ta
se

ts
as

of
20

11

10 Chapter 1. Introduction

The read-write Web and Social Networking Sites (SNSs) have opened up more oppor-

tunities for people to share their data, compared with the Web which is read-only. The

WWW has adapted since it began in around 1993 and online content publishing has

began to move from the control held by a number of pioneer companies (which stim-

ulated Web 1.0) to the decentralised interaction and collaboration between ordinary

users (the heart of Web 2.0 (O’Reilly, 2007)). Before that, apart from Web content

publishers, most users played the role of the consumer during the flow of Web content.

The Web has changed the communication in our human society, and the research on

social networks has also evolved as time goes by. Regarded ss one of central ground-

breaking products of Web 2.0, SNSs have emerged and changed our daily life bit by

bit via adopting useful features from Usenet, Bulletin Board Service (BBS) and so on,

and the analysis on them have benefited knowledge sharing in the (in)visible online

community. A typical SNS normally has profiles of registered users, links between

these users and the WSs provided according to profiles. Links are either bidirectional

(e.g., on Facebook) or unidirectional (e.g., on Twitter). Compared to the online com-

munity services, SNSs are individual-centred rather than group-centred. As of 2011,

79% of American adults use the Internet and 59% of them use at least one SNS, which

is close to double the percentage in 2008, as shown in a report (Hampton et al., 2011).

Interestingly, this report also analysed the age distribution of SNS users and the result

is illustrated in Figure 1.5 which shows the average population of SNSs are shifting

to older users. Based on the above analysis, an increasing number of users join some

SNS every day to share their statuses, events, audios, videos, and other interests and

social activities. Undoubtedly, the SNS has become one of the most important medias

for people to share knowledge on daily basis.

1.3 Bringing the (Semantic) Web into OpenKnowledge

The Internet has been one of the most effective networks for interconnecting digital

devices. On top of it, the WWW has been built as a system for people or machines

to publish interlinked hypertext documents. The client/server architecture makes the

WWW a place where service requesters can interact with service providers via client-

side WWW-aware applications such as Web browsers. Nowadays, users and network

nodes on the WWW play increasingly diverse and dynamic roles within different kinds

of interactions associated with different kinds of tasks. At the time of writing this the-

1.3. Bringing the (Semantic) Web into OpenKnowledge 11

28

16

40

32

22

26

9

20

2 6

0

5

10

15

20

25

30

35

40

45

2008 2010

%
 o
f
S
N
S
 u
s
e
rs 18-22

23-35

36-49

50-65

65+

Figure 1.5: Age distribution of SNS users in 2008 and 2010

sis, RDF (McBride, 2004) is one of widely accepted knowledge representation models

and focused on the knowledge sharing on the WWW. Along with RDF, a stack of

methods and techniques have been proposed in order to transform the current Web into

a so-called Semantic Web proposed to be the Web of data, an extension of the cur-

rent Web of documents. Semantic Web-related researches and technologies have been

blooming since 2001. As emphasised by Chris Welty in one of the keynote speeches,

in the 21st international World Wide Web Conference in 2012, six components belong-

ing to Watson (a super machine created by IBM which beat the best human players in

the American quiz show Jeopardy! in 2011) have adopted semantic techniques.

On the other hand, service discovery plays an increasingly significant role as the infor-

mation on the Web continues to explode. Based on the links between Web documents,

search engine technologies have boosted in last two decades. With the development

of the Semantic Web and Linked Data techniques, search engine vendors have realised

that traditional searching is limited by the links between online documents. For ex-

ample, in a situation where Bob is a retailer who buys a specific type of product from

Carol and then sells it to Alice, it is difficult for Alice to make contact with Carol, re-

lying on traditional search techniques. In another example, services (especially online

services) may have availability issues such as how to find temporary off-line services

or forthcoming new services and how to notify the service request as soon as they

come online. This is still a challenge for existing service discovery techniques. The

Web of data provides more fine-grained typed links, which can provide users with bet-

ter searching experience by improving precisions/recalls (Joachims, 1998), compared

with the document Web. For example, when a customer is browsing the Web page

12 Chapter 1. Introduction

of a restaurant from a Web site of reviews, by making use of his/her shared location

and the restaurant location embedded as metadata, a browser plugin/addon can auto-

matically plan the journey for this customer to get to the restaurant through his/her

favourite means of transportation at a convenient time (since the search engines aware

of the Web of data will target any data associated with particular types, semantically

enhanced services have better chance to be discovered and used by them, compared

with services with no annotations attached. Service discovery is an important func-

tionality that the above Web-oriented infrastructure needs to provide and therefore, a

meta-search engine has been built in this thesis to support users in discovering shared

knowledge at the metadata-level. Services are encoded in a lightweight language de-

rived from the process calculus and published as Web documents that are attached

with tailored semantic annotations which can benefit the service discovery or even the

interactions themselves during the runtime.

All in all, there are many prominent advantages of having the OpenKnowledge system

fully integrated with the Web, including the network effect and demonstrably improved

accessibility, etc. In this thesis, we have designed and built a Web-oriented infrastruc-

ture for nodes to share knowledge on top of the conventional WWW architecture. A

system has been implemented as an online portal, which can be deployed by any net-

work node owners in a decentralised environment, for peers to publish, discover, and

(un)subscribe to IMs in order to collaborate with others and achieve common goals.

On the other hand, a lightweight solution was also proposed and materialised for en-

abling each peer to run an IM interpreter inside a normal Web browser and interact

with others in a peer-to-peer manner based on predefined specifications after subscrip-

tions via the above online portal. More architectural details will be discussed in later

chapters and initially illustrated in, for example, Figure 3.1 and Figure 4.1.

Many systems exist for community formation in extensions of traditional Web envi-

ronments (e.g., SNSs, the Stack Exchange Network and BBSs, which normally run on

centralised servers and for which users need to register and get an account to inter-

act with others) but little work has been done in forming and maintaining community

in the more dynamic environments emerging from ad hoc and peer-to-peer networks.

On top of the above knowledge sharing infrastructure, this thesis also proposes an

approach for forming and evolving peer communities based on the sharing of choreog-

raphy specifications (in the form of IMs). Besides the meta-search engine, a dynamic

peer grouping algorithm has been invented to asset peers in discovering service chore-

1.3. Bringing the (Semantic) Web into OpenKnowledge 13

ographies and collaborators. An online platform has been implemented in accordance

with this approach to help peers publish profiles and IMs (via a semantic enhancement

strategy and an interactive annotator), discovering IMs and collaborative peers (via a

meta-search-based method and a peer-group-based method plus ranking strategy in the

case of multiple results returned) and (un)subscribing to IMs (via a user-friendly UI

built on top of a well-modularised Content Management System (CMS)).

Chapter 2

Relevant Literature

This chapter discusses a selection of work related to this thesis, including the Open-

Knowledge system, (Semantic) Web Service (WS) descriptions, peer-to-peer commu-

nities and agent-based peer-to-peer architectures, as well as the state of the art of so-

cial networks. Section 2.1 elaborates the underlying architecture of OpenKnowledge,

which provides the theoretical basis of this thesis and has also inspired our work from

the technical perspective. Section 2.2 revisits the languages designed for describing

(Semantic) WS and compares them with the language employed by the OpenKnowl-

edge system. Ad hoc and peer-to-peer networks are ideal environments for individuals

or organisations to share knowledge in an open decentralised manner, and Section 2.3

and 2.4 present work on these topics. Section 2.5 describes several influential Social

Networking Sites (SNSs) that are thriving at the time of writing this thesis.

2.1 Underlying Architecture of OpenKnowledge

With the Internet playing an increasingly important role in people’s daily life, Web-

based1 knowledge sharing has become a challenge to almost every individual or organ-

isation. Orchestration-based systems, where typically only the central network node

has access to the workflow, do not scale well in an open decentralised or distributed

environment (Barker et al., 2009; Besana et al., 2009). As overviewed in Chapter 1,

the OpenKnowledge system offers an open platform for sharing choreographies among

1Our work has relied on the World Wide Web (WWW) in the application layer of the Internet. The
knowledge sharing in diverse formats of data exchanging originated in other Internet layers is out of the
scope of this thesis.

15

16 Chapter 2. Relevant Literature

peers and based on those choreography descriptions, services can be discovered and

executed in a peer-to-peer manner. Following that overview, this section further dis-

cusses the underlying architecture of OpenKnowledge.

The OpenKnowledge project explored an approach which allows peers to share knowl-

edge via semantics of interactions instead of a pre-agreed universal standardised se-

mantics. The protocols of interactions are encoded in so-called Interaction Models

(IMs), each of which is a Lightweight Coordination Calculus (LCC) (Robertson, 2004)

specification on the roles of peers and the communicative actions allowed within a

particular interaction. Each instance of the OpenKnowledge system needs to run a

so-called OpenKnowledge Kernel, a software providing a discovery service for peers

to find services that may meet their requirements, curating subscription information

(e.,g., peer-role pairs, etc.) and also executing choreographies encapsulated in IMs.

Each peer provides services (a standardised way of describing functionalities) and at-

tempts to satisfy the constraints referenced by subscribed IMs and these services are

named as OpenKnowledge Components (OKCs). OKCs can be stored in the local

OKC repository or published on distributed Discovery and Team Formation Service

stores (de Pinninck Bas et al., 2007). Meanwhile, the OpenKnowledge system also en-

ables peer to publish and validate new IMs. Moreover, a peer ranking module is under

development in the OpenKnowledge kernel with the aim of recommending IMs, OKCs

and collaborative peers. This module will be wrapped into the Trust and Reputation

Service which is in charge of tracking peers and gathering information about them.

Besides the above two types of services, another service called the Mapping Service

is used for peers to reconcile their heterogeneity when sharing knowledge (de Pin-

ninck Bas et al., 2007).

The architecture of the OpenKnowledge system is illustrated in Figure 2.1. As shown

in this figure, peers are responsible for storing IMs and OKCs. An IM defines roles

played by peers and can be interpreted by the LCC interpreter deployed on a so-called

coordinator which itself is also a peer and coordinates interactions between peers by

retrieving and executing OKCs managed by each of them in order to help peers to

check if constraints predefined in the IM are satisfied or not.

The OpenKnowledge system can provide the functionalities described above as long

as the kernel is downloaded and installed appropriately. A user can create his/her

own OKCs by wrapping a piece of code via the provided Graphical User Interface

(GUI) and can then publish these OKCs to the distributed discovery service which is

2.2. Semantic Web Services and Their Descriptions 17

Figure 2.1: Architecture of the OpenKnowledge system

built on top of a directory storage. In order to find a useful IM, a user need to type

into the GUI keywords, with which IMs (pre-annotated with keywords) stored in the

storage will be queried over. Then, the user decides which of the discovered IMs to

subscribe to and the kernel will randomly select a peer as a coordinator thereafter.

Finally, subscription information is automatically forwarded to the coordinator and

triggers the running of the IM. Our approach proposed in this thesis does not require

any coordinator to play the middle-man role and delegate peers to run IMs. All the

IMs will be run on the involved peers only and messages will be passed directly from

senders to receivers in a peer-to-peer way, which effectively protects them from man-

in-the-middle attacks (Kelsey et al., 1998). On the other hand, sometimes peers are

lack of incentives for taking the coordinator responsibility originally required by the

OpenKnowledge system.

2.2 Semantic Web Services and Their Descriptions

OpenKnowledge provides a platform for peers to share WS choreography descrip-

tions. How to describe WSs and make them easy to share is a hot topic in both WS

and Semantic Web (SW) communities. From the perspective of orchestration and also

inspired by Web Services Description Language (WSDL) (Christensen et al., 2001),

several approaches have been proposed for semantically enhancing WS descriptions

18 Chapter 2. Relevant Literature

(in order to improve WS-oriented tasks including discovery and composition, etc.),

such as OWL-S (Martin et al., 2004), WSDL-S (Akkiraju, 2005) and Semantic Anno-

tations for WSDL and XML Schema (SAWSDL) (Farrell and Lausen, 2007). Accom-

panying these, several matchmakers (Paolucci et al., 2002) have been built, such as the

OWL-S Matchmaker (OWLS-MX) (Klusch et al., 2006) and SAWSDL Matchmaker

(SAWSDL-MX) (Klusch and Kapahnke, 2008). However, insufficient attention has

been paid to semantically enhancing descriptions of WS choreography. Web Services

Choreography Description Language (WS-CDL) (Kavantzas et al., 2005) has been pro-

posed for describing WS choreography but it lacks appropriate support in a Uniform

Resource Identifier (URI)-dedicated vocabulary which can be used for semantic an-

notations. On the other hand, existing Semantic Web Service (SWS) choreography

description languages such as Web Service Modeling Ontology (WSMO) (Lara et al.,

2004) are expressive and powerful but too heavyweight to run locally on autonomous

peers such as mobile phones and personal digital assistants. For the purpose of improv-

ing WSMO, WSMO-Lite (Vitvar et al., 2008) defines a lightweight set of semantic ser-

vice descriptions based on SAWSDL and has extended SAWSDL with conditions and

effects. It enables the integration of REpresentational State Transfer (REST)-driven

WSs and has been used for annotating WS descriptions.

WS annotating tools have been also developed and are continually evolving. AS-

SAM (He et al., 2004) was developed for helping publishers to semi-automatically an-

notate WS descriptions with existing ontology terms recommended by machine learn-

ing algorithms. METEOR-S Web Service Annotation Framework (MWSAF) (Patil

et al., 2004) was designed (similarly with ASSAM) for semi-automatically annotating

WS descriptions based on ontologies. Several REST-focused vocabularies were also

devised due to the prosperity of RESTful Application Programming Interfaces (APIs)

and services. HTML for RESTful Service (hRESTS) (Kopecky et al., 2009) is a Micro-

format (Suda, 2006) designed for describing Web APIs (wrapped in a simple service

model) in a machine-readable manner. Its two extensions, Semantic Annotations for

REST (SA-REST) 2 and MicroWSMO 3, were also proposed and have been focused

on faceting public APIs and supporting semantic automation, respectively. Also tar-

geting RESTful WSs, RESTdesc (Verborgh et al., 2011) was proposed as an approach

to describing services in Notation3 (Berners-Lee, 1998) and service discovery will be

achieved in terms of these descriptions by sending requests to service providers via

2http://www.w3.org/Submission/SA-REST/
3http://www.wsmo.org/TR/d38/v0.1/

http://www.w3.org/Submission/SA-REST/
http://www.wsmo.org/TR/d38/v0.1/

2.2. Semantic Web Services and Their Descriptions 19

the Hypertext Transfer Protocol (HTTP) OPTION method, which requires users to

know the locations of the services they need up front. SmartLink (Dietze et al., 2011)

provides a Web-based editor and search environment for Linked Services (conforms

to the Linked Data principles). It encourages service publishers to employ a sim-

plified schema with non-functional properties based on the Minimal Service Model

(MSM) (Pedrinaci and Domingue, 2010) as well as use the aforementioned WSMO-

Lite to annotate WSs.

Web-page-embedded metadata provides content publishers with a chance to attach se-

mantics to Web content for the purpose of making their content both human-readable

and machine-readable so client-side user agents can automatically glean the embed-

ded data and improve the user experience in one way or another. Several solutions for

embedding metadata into Web pages have been proposed. Microformat (Suda, 2006)

makes use of existing HyperText Markup Language (HTML) and Extensible Hyper-

Text Markup Language (XHTML) tags to convey metadata and other attributes but

new formats require new data models. Davis from Talis proposed Embedded RDF

(eRDF)4, which can be used with any version of HTML but it restricts itself to the

existing HTML attributes and does not support full Resource Description Framework

(RDF) (there is no data type and no blank node). Resource Description Framework

in Attributes (RDFa) was proposed by Adida et al. (2008), which not only takes ad-

vantage of existing HTML attributes but also invents several new XHTML attributes

for achieving flexibility and disambiguation within the process of Web pages are being

marked-up. It reuses the existing RDF model and supports full RDF semantics. Micro-

data (Hickson, 2012) has been proposed and is still evolving as part of W3C editor’s

draft on HTML5. It has learnt lessons from both Microformats and RDFa and created

new HTML5-only attributes to hook annotations but it is not backward compatible to

HTML4. As of writing this thesis, Microdata does not support multi-vocabularies or

co-typing. Schema.org 5 has been designed as a centralised vocabulary hosting site and

the Microdata, which makes use of HTML5 attributes to carry annotations, is the only

metadata-embedding syntax supported and recommended by the hosted vocabulary.

In this thesis, our approach to semantically enhancing WS choreography descriptions

also employs an embedded-metadata-based strategy within the process of IM publi-

cation and publisers are encouraged to use URIs maintained by DBpedia (Auer et al.,

4http://en.wikipedia.org/wiki/Embedded_RDF
5http://schema.org/

http://en.wikipedia.org/wiki/Embedded_RDF
http://schema.org/

20 Chapter 2. Relevant Literature

2007) to annotate IMs. This strategy also works for any other that happen to be vo-

cabularies in RDF due to its support in the full RDF data model. When peers face IMs

annotated with diverse URIs indicating the identical individuals, they can use URIs

comparators such as the sameAs service 6 or any appropriate ontology matchmakers

to fulfil the alignment task. The metadata-embedding strategy is employed in the IM

publishing process and RDFa was chosen as the serialisation format in this thesis due

to its support on full RDF semantics. Note that, although users can create their own

vocabularies to annotate and publish IMs, existing pervasive vocabularies are recom-

mended due to their wide acceptance in the SW community. Nowadays, more and

more search engines have began to crawl and index metadata-embedded Web pages

and they actually provide us with a natural platform for building discovery services for

the OpenKnowledge system.

2.3 Peer-to-Peer Communities

This thesis proposes an approach to forming the community of peers by automatically

grouping them in terms of their common interests and aiming at this formation task,

several related work have been done. Yao and Julita (2004) demonstrated a way of

applying their peer-to-peer community formation mechanism to academic paper shar-

ing based on the trust of each peer. Their mechanism and trust computation are based

on a limited paper-sharing scenario and peers’ actions are however more various and

more complex in the real world. Kaykova et al. (2004) introduced an ontology-based

community formation process depending heavily on domain ontologies and their hi-

erarchical structures. Actually, peers described with different domain ontologies may

have common interests and further form groups even though they do not have ex-

plicit structural connections in between. Khambatti et al. (2004) gave an approach to

structuring a peer-to-peer network and a community-based search protocol was also

presented to provide better search operations. Existing developments and research on

social networks motivated their work but only query-based peer search was considered

and possible peer interactions and service compositions were not taken into account

within the peer community formation process. Palma et al. (2005) presented Oyster,

which is a project for sharing and reusing ontologies in a peer-to-peer community. It

gives a standard form of metadata for describing ontologies and their work is more con-

6http://sameas.org/

http://sameas.org/

2.4. Agent-based Peer-to-Peer Architecture 21

cerned with ontology sharing and less concerned with how peers can engage in com-

munity formation. Liu et al. (2006) proposed a statistics-based approach to building

communities with hierarchical structure and quantifying the peers’ similarities with-

out disclosing their personal profiles. In our approach, peers do not achieve privacy

by hiding their profiles and they can publish any content which they want others to

know but still have a chance to hide sensitive information. Only the peer itself has

the authority over its profile. Davoust and Esfandiari (2009) demonstrated a tool for

publishing and navigating linked data over a peer-to-peer file-sharing network and this

tool was implemented based on peer communities triggered by a so-called root com-

munity (Davoust and Esfandiari, 2008). However, it requires peers to use a common

schema and does not support join queries. In this thesis, peer communities are built

with the open environment based on our approach and they assist peers in discovering

services and collaborative peers in distributed. We also maximised the extensibility of

the community notion by employing vocabularies which have been widely used in the

Semantic Web and Linked Data community.

The publish/subscribe model was originally investigated in (Birman and Joseph, 1987).

A peer-to-peer publish/subscribe system supporting metadata and query language based

on RDF was implemented in (Chirita et al., 2004). In this thesis, the discovery peer

has implemented the publish/subscribe model in a different way: firstly, super peers

are discovery peers rather than servers on the publisher side, which are more expen-

sive to maintain for individual users and usually untrustworthy; secondly, subscription

information is curated on the third party hub so neither discovery peers nor publisher

peers have to store the data themselves.

Peer communities have been categorised based on different criteria from different per-

spectives (Porter, 2004; Akram and Allan, 2005). These criteria also apply to the peer

community formed in this thesis and can assist discovery peers (introduced in Chap-

ter 6) in discovering interesting community members.

2.4 Agent-based Peer-to-Peer Architecture

A number of peer-to-peer systems have been designed and implemented to address the

issue of decentralised information sharing. However, among these systems, most are

dedicated to sharing files, computing resources or bandwidth between peers. The agent

22 Chapter 2. Relevant Literature

paradigm and the peer-to-peer paradigm are complementary to each other in spite of

several overlapping concepts (e.g. autonomy and social abilities, etc.) and agents can

be regarded as the “brain” of a peer, handling the logics of interaction with other peers.

An agent model may provide peer-to-peer systems with high level abstract layers in

which the features of real world situations can be better reflected (Moro et al., 2003).

Little work on community-based peer collaborations (i.e., service sharing) has been

done due to the lack of fundamental agreement on the interaction protocol(s). An

agent-based peer-to-peer architecture is proposed in this thesis and on top of that, a

peer community can be formed to help its members in sharing resources including not

only files and computing power but also services which pave the way to social comput-

ing (Wang et al., 2007). In decentralised environments such as ad hoc and peer-to-peer

networks, the collaborations require coordination to guarantee service quality since

peers are autonomous and egocentric. The coordination itself has to be decentralised,

which is difficult to achieve. Thanks to LCC, we now have a lightweight language

for describing the peer coordination. In this thesis, the coordination in LCC will be

published in the Web documents with embedded metadata. Therefore, the peer coordi-

nation in the community can be finally decentralised in the form of the Web document

which will be shared by peer members together with their resources.

The above describes the multi-agent aspect of our solution and here, we also compare

this solution with the Foundation for Intelligent Physical Agents (FIPA)-compliant

multi-agent systems. FIPA is “an IEEE Computer Society standards organisation that

promotes agent-based technology and the interoperability of its standards with other

technologies”.7 A FIPA-compliant multi-agent system is an agent platform imple-

mented based on the subset (25 specifications were selected in 2002) of FIPA specifi-

cations which represent a collection of standards widely accepted in the FIPA commu-

nity. This type of system usually has following three components:

a. Agent Management System (AMS): It curates a white page of agents deployed

on a specific platform and is used for agent registration and authentication.

b. Directory Facilitator (DF): It curates a yellow page of agents services and is used

for discovering agents and their offered services.

c. Message Transport Service (MTS): It is in charge of supporting the intra-platform

or inter-platform message passing between agents.

7http://www.fipa.org/

http://www.fipa.org/

2.4. Agent-based Peer-to-Peer Architecture 23

Moreover, FIPA-compliant agent systems use FIPA Agent Communication Language

(ACL) as the format of messages. FIPA ACL is derived from Knowledge Query and

Manipulation Language (KQML) (Finin et al., 1994) and has a more extensively ex-

plored formal semantics (Bellifemine et al., 1999). Compared with this type of agent

systems, in our solution, Web browsers become the Agent Platform (AP) and there is

no need to set up a separate AMS for agent management since agent registration and

authentication will be done on Extensible Messaging and Presence Protocol (XMPP)

servers. There is no need to set up DF either in our solution since agent and ser-

vice discovery will be achieved via online peer communities which locally trace any

participation and interaction activities. MTS is used for channeling messages in FIPA-

compliant agent systems while in the Web browser, messages are channeled based

on an interaction ID (a global session/conversation ID). FIPA ACL could be incorpo-

rated by our solution to substitute the currently employed JavaScript Object Notation

(JSON) format to enable our system to interact with other FIPA-compliant agent sys-

tems so our system can behave like a fully functional multi-agent system to serve

the similar communication/collaboration purpose. Nevertheless, it is difficult if not

impossible to make our solution adapt and transform it into a FIPA-compliant agent

platform due to the fundamental differentiation of their architecture designs as well as

other requirements for FIPA agent applications and systems. For example, it is hard

to do the browser-to-browser message passing in terms of the traditional client/server

Web architecture and browsers are restricted to client-side applications which does not

accept incoming connections. For security reason, Web documents from different do-

mains are prevented from communicating with one another so it is not possible for

browsers to share existing DFs. A variety of multi-agent modelling architectures have

been proposed but little progress has been made on running intelligent agents in Web

browsers prevalent on various operating systems because of the above constraints. An-

other challenge for this is preserving the states of agents during a complex interaction,

which cannot be easily obtained without involving server-side codes and databases.

Comparatively, our solution in this thesis provides a novel and browser-friendly de-

sign by which agents can interact with each other in a peer-to-peer manner via modern

browsers (see in Section 7.3).

24 Chapter 2. Relevant Literature

2.5 Social Networks: State of the Art

SNSs (e.g., MySpace, Facebook, Twitter and Google+ etc.) have flourished in the last

decade and have made considerable social impact on people’s daily life. An increasing

number of users join this or that SNS with their real identity and some of them even

share highly personal information with their online buddies. Also based on the report

referred in Chapter 1, on average, only 7% of Facebook friends are people a regis-

tered user has never met in person and only 3% of them a registered user has met only

one time (Hampton et al., 2011). According to this report, we can see that the SNSs

tend to reflect social relationships of people in the real world and at the same time

make maintaining existing relationships or building new ones extremely easy thanks

to the power of Internet communication so it is not surprising that the average age of

adult-SNSs users has shifted from 33 in 2008 to 38 in 2010. With the development

of mobile devices, the social networks have began to migrate to small devices and be-

come mobilised. Many apps invoke the APIs of Short Message Services (SMSs) and

enrich existing social information with contextual data such as locations and temper-

atures. However, almost every SNS curates the data of registered users on its own

server and there is an awkward fact that these users cannot 100% manipulate the data

about themselves due to SNS companies’ own interests. This architecture design for

SNSs currently not only threatens people’s privacy but also hampers the formation of

decentralised or distributed social networks. Although several SNS companies provide

the service of helping individuals or organisations to build self-organised sites instead

of using the centralised services, many restrictive policies that may make profits for

the SNS companies themselves are still out there so users, especially those who have

conflict interests with those SNS companies, still hesitate to adopt that kind of ser-

vices. By giving up extending the existing SNS architecture, several startups such as

Diaspora8 and OneSocialWeb9 have been developing their own prototypes, and expect

ordinary users to run their own personal social web servers so a decentralised social

environment can be achieved to some extent when the servers representing/delegating

different users begin to communicate with each other.

With the increasing amount of attention paid to the decentralised or distributed social

networks, there has been a fierce war between a variety of communication protocols.

It is not surprising that the protocols for email, the most widely adopted decentralised

8https://joindiaspora.com/
9http://onesocialweb.org/

https://joindiaspora.com/
http://onesocialweb.org/

2.5. Social Networks: State of the Art 25

tool, have been applied in the communication layer of several SNSs such as Mr. Pri-

vacy (based on Simple Mail Transfer Protocol (SMTP) and Internet Message Access

Protocol (IMAP)) (Fischer et al., 2011) and psyced (based on SMTP).10 These email

protocols are simple and efficient and are already rooted in most people’s daily life.

However, since they are not designed as real-time solutions, it is difficult if not im-

possible to use them for fulfilling a real-time job such as status updating and instant

message passing, etc. Therefore, lots of effort has been paid on creating diverse ad

hoc protocols for tackling each aspect of the social network. Some of them are ded-

icated to authentication and authorisation, including OAuth (Hammer-Lahav, 2010),

OAuth 2.0 (Recordon and Hardt, 2012), Activity Streams 11, OpenID (Recordon and

Reed, 2006) and WebID (Sporny et al., 2011); some of them are focused on users’

profiles, including Portable Contacts (Smarr, 2008) and Webfinger;12 others are ded-

icated to updating user status in the real-time manner, including OpenMicroBlogging

employed by OpenMicroBlogger13 and later Ostatus (Prodromou et al., 2010). Last

but not least, pubsubhubub (Fitzpatrick et al., 2012) was designed as an open protocol

for distributed communication based on the publish/subscribe model and has a demon-

strative hub server on the Google App Engine.14

With respect to messaging protocols, XMPP (Saint-Andre, 2004) allows users to pass

messages to others from different domains (servers). Several other protocols coexist

and are comparable to XMPP. Simple (or Streaming) Text Orientated Messaging Pro-

tocol (STOMP)15 is coming from the HTTP school of design and similar to HTTP.

It is a lightweight message queuing protocol and has a limited number of commands

to work over Transmission Control Protocol (TCP). Due to its simplicity, STOMP has

been implemented in many contemporary programming languages but meanwhile, its

functionalities are relatively limited compared with XMPP. Advanced Message Queu-

ing Protocol (AMQP) is a middleware and wire-level protocol for building interop-

erable message-oriented systems (Kramer, 2009). This protocol has more function-

alities/features than STOMP and has been implemented in several main-stream lan-

guages. Evaluation notes of AMQP and XMPP and other messaging protocols have

done by the Linden Labs on the Second Life Wiki.16 Compared with AMQP, XMPP

10http://www.psyced.org/
11http://activitystrea.ms/
12http://webfinger.org/
13http://openmicroblogger.org/
14https://appengine.google.com/
15stomp.github.com
16http://wiki.secondlife.com/wiki/Message_Queue_Evaluation_Notes

http://www.psyced.org/
http://activitystrea.ms/
http://webfinger.org/
http://openmicroblogger.org/
https://appengine.google.com/
stomp.github.com
http://wiki.secondlife.com/wiki/Message_Queue_Evaluation_Notes

26 Chapter 2. Relevant Literature

has several strengths and weaknesses including: supporting presence, quick-and-easy-

to-fire, hard to manage roster and overhead of presence updates and so forth. Both

AMQP and XMPP require intermediation (brokers in AMQP and servers in XMPP)

and total peer-to-peer communication is difficult if not impossible to achieve account-

ing for the complexity of the current network architecture. At the time of writing this

thesis, AMQP has not got broker federations standardised even though some of its

implementations such as RabbitMQ (Videla and Williams, 2012) support this type of

federation via ad hoc plug-ins. On that basis, XMPP is comparably easier and more

straightforward to apply in distributed environments like peer-to-peer networks which

contain decentralised brokers. That is also a reason why XMPP was chosen in this the-

sis to power the peer-to-peer messaging infrastructure. Note that even though the above

protocols have claimed their goals to solve diverse aspects of social communication,

they still share one or more features with others as described in their specifications.

As mentioned earlier, Diaspora is a free social network software by which each user

can set up a SNS on his/her own server and all Diaspora servers are able to communi-

cate with each other so a distributed social network can be achieved. It has employed

the Salmon protocol 17 and also implemented the OStatus protocol. OneSocialWeb is a

XMPP-based decentralised client-side software which can be installed and turn users’

servers into an open social network platform. It was initiated by the Vodafone Group

Research and Development, and aims to offer an open platform to which all other

SNSs can be connected. OpenLink Data Spaces (ODSs) (Idehen and Erling, 2008)

is a data space (distributed named structured data cluster) platform on which a wide

spectrum of distributed collaborative applications are curated, including blogs, wikis,

bookmarks and files, etc and each item of data on the ODS has a dereferenceable URI.

The design of ODS is compliant with the Linked Data principles (Berners-Lee, 2006)

so this platform can be regarded as a distributed social network built on top of the Web

of data. Likewise, StatusNet 18 and Semantic MicroBlogging (SMOB) (Passant et al.,

2010) offer a distributed microblogging system and its Linked Data version respec-

tively. Last but not least, aiming at providing applications interoperating in the context

of different SNSs, the OpenSocial Foundation was founded as a non-profit corporation

dedicated to delivering open and free OpenSocial specifications, and several protocols

and related APIs were born thanks to this community (Häsel, 2011).

17http://www.salmon-protocol.org/
18http://status.net/

http://www.salmon-protocol.org/
http://status.net/

2.5. Social Networks: State of the Art 27

To recap, the current SNSs or mobile social apps normally deal with community for-

mation in the extensions of traditional Web environments but little is known about

how communities might be formed and maintained in the more dynamic environments

emerging from ad hoc and peer-to-peer networks. Compared with other social net-

work solutions, our approach and implementations can dynamically form peer groups

which assist peers in discovering more interaction protocols of interest as well as col-

laborative peers. In the distributed environment, there is no centralised node and each

participant is more autonomous. Compared with the traditional SNS users, based on

our approach, peers only have to search and subscribe to desired IMs and then leave

the remaining work to our system.

Summary

In this chapter, we revisited existing methods and technologies behind the OpenKnowl-

edge system, (Semantic) WSs, peer-to-peer communities, the agent-based peer-to-peer

architecture and SNSs. With social networks thriving, many tools have been developed

for forming online communities in extensions of traditional Web environments but lit-

tle work has been done in forming and maintaining communities in the more dynamic

environments emerging from ad hoc and peer-to-peer networks. OpenKnowledge actu-

ally has the potential to embrace the methodology of WWW and form an open knowl-

edge sharing community which is easy for everyone to access. This potential will be

explored and showcased through the remainder of this thesis.

Chapter 3

Decentralised Interaction-Driven

Knowledge Sharing on OKBook

With the flourishing of Web 2.0, service providers may care more about how online

communities (e.g., eBay, Yelp, etc.) review their products than the rankings provided

by traditional search engine giants. On the other hand, service requesters trust recom-

mendations by other users who have (in)direct connection with each other in social

communities more than usually advertisements from service providers biased by their

own interests. Therefore, the online community formed normally by grassroots users

plays an increasingly important role in addressing issues related to service discovery.

How to form online communities for users to share knowledge as story telling is still

a hot research topic. Several systems exist for community formation in extensions

of traditional Web environments but little is known about how communities might

be formed and maintained in the more dynamic environments emerging from ad hoc

and peer-to-peer networks. A difficulty with establishing communities in traditional

peer-to-peer systems is that there is no structure that can be used as a basis for commu-

nity formation; there is nothing analogous to their relations used behind the scenes in

Web-based social networking systems in order to infer community information (such

as friend-of-a-friend relationships). Some recent peer-to-peer knowledge sharing sys-

tems have, however, used languages for specifying choreography between peers that

can be used to provide the relations to build social networks. The OpenKnowledge

project has developed a peer-to-peer knowledge sharing system in which peer inter-

actions are described as Interaction Models (IMs) coded in Lightweight Coordination

Calculus (LCC). On that basis, in Section 3.3, an approach is proposed for forming

29

30 Chapter 3. Decentralised Interaction-Driven Knowledge Sharing on OKBook

and evolving peer-to-peer communities in terms of their shared protocols with the as-

sistance from the IM publishing system also designed and implemented in this thesis.

Based on this approach we have developed OKBook — an open online platform for

realising this new form of peer-to-peer communities.

Figure 3.1: Overlook of OKBook modules

Figure 3.1 shows the main components which constitute the OKBook system. The

IM Republication Module assists IM publishers in publishing IMs via Web pages us-

ing annotation embedding strategies such as Resource Description Framework in At-

tributes (RDFa) and URI lookup services (the detail on annotating IMs will be further

discussed in Section 5.2). Then the Indexing Module gets these IM pages indexed

by search engine giants such as Google and Semantic Web Search Engines such as

Sindice (Tummarello et al., 2007) using tailored page submission calls. The Discovery

Module offers a meta-search engine built on top of several Semantic Web Search En-

gines (SWSEs) and ranks search results by synthesising rankings given by these search

engines. Indices from Google and Yahoo!Search are used for assisting users in refin-

ing and adjusting their keyword-based queries when few Uniform Resource Identifiers

(URIs) related to these queries are returned. Moreover, the Discovery Module also al-

lows users to discover IMs that meet their requirements in terms of peer groups which

will be formed dynamically based on peers’ interaction logs. Group members usu-

ally have particular interests in common and the above discovery mechanism is able

to significantly cut down the IM search space compared with the meta-search-based

mechanism (the performance on this mechanism will be shown in Section 7.1). The

3.1. How OKBook Architecture Meets the Requirements 31

URI Recommendation Service provides appropriate URIs of things for both the IM

publisher within the annotation process and the IM requester within the querying pro-

cess, respectively. The Quality Verification Module is in charge of discovering which

role a peer is qualified to play in terms of IM triples harvested by adopting the em-

bedded metadata parser as well as the triples from the profile shared by this peer up

front. The Harvesting Module gleans triples serialised in RDFa from the published IM

Web pages and later dumps them into a back-end triple store. The Group Discovery

Module analyses peers’ interaction logs and discovers peer groups based on the criteria

which will be detailed in Section 3.1. If a peer is qualified to play a specific role in

an IM, it can subscribe to this IM through the Subscription Module which will display

all potential roles this peer is capable of playing and then the subscription information

will be forwarded to each participants of the interaction. After the execution of the

IM, the Subscription Module forwards the final results to the Rating Module through

which peers can give some feedback about the IM to its original publisher based on

their degrees of satisfaction with the interaction. The ratings further inform IM selec-

tion beyond the ranking provided by the Discovery Module. Meanwhile, the execution

result will be stored as one interaction entry of every involved peer into the database

of interaction logs. A SPARQL Protocol and RDF Query Language (SPARQL) end-

point is also exposed to peers so they can query over and reuse triples (e.g., creating

mashups, etc.) stored in the back-end triple store so as to create and publish more

linked data and (Semantic) Web Services (WSs).

Following Section 3.1, Section 3.2 describes the strategies used on OKBook for rank-

ing IMs, peer communities and peer group members. Section 3.4 compares OKBook

against with the OpenKnowledge system and analyses our system by giving its advan-

tages. Section 3.5 takes peer-to-peer message passing one step further and proposes a

solution to resource sharing via federating multiple OKBook servers.

3.1 How OKBook Architecture Meets the Requirements

So far, we have talked about how our goal is to realise a decentralised knowledge

sharing environment, based on specifications of interactive activities, and the inside

modularised functionalities. This section discusses how the above functionalities are

achieved. On OKBook, peer profiles play an important role within IM discovery, and

we explain how they are represented (Section 3.1.1), managed (Section 3.1.2) and used

32 Chapter 3. Decentralised Interaction-Driven Knowledge Sharing on OKBook

for peer and IM discovery (Section 3.1.3).

3.1.1 Knowledge Representation for OKBook

OKBook is an online platform inspired by OpenKnowledge and has been built on top

of a Content Management System (CMS). Through this platform, peers can import,

publish, discover and subscribe/unsubscribe to IMs or join social groups with the as-

sistance of which peers can find out desired interactive specification as well as related

collaborators. The main modules of this platform are described in this subsection.

3.1.1.1 Peer Capability Description and Its Storage

In our peer-to-peer community with the spirit originating in the OpenKnowledge sys-

tem, each peer has a profile (described in Resource Description Framework (RDF)),

which will be uploaded and fed into the discovery service as soon as the owner of this

profile signs up to OKBook. A peer profile accommodates its owner’s public informa-

tion such as which roles it can play and also proprietary information such as how it can

solve particular constraints and the corresponding methods wrapped in OpenKnowl-

edge Components (OKCs).

Since peers can be linked to others based on interaction logs, a profile can be also used

for describing the relationships between its owner and his/her “friends”, and these re-

lationships can be represented using a specific vocabulary (e.g., Friend of a Friend

(FOAF) (Brickley and Miller, 2007) or XHTML Friends Network (XFN) (Çelik and

Meyer, 2004), etc.). With respect to the content inside each peer’s profile, these re-

lationships may vary over time. For instance, after rounds of running of IMs, a peer

may want to make friends with its collaborative peers during those interactions or in

the case that if a peer is willing to provide more OKCs, it is predictably capable of

playing more new roles no matter in existing IMs or newly created ones. The events

given above will trigger the update of the peer’s profile. Profiles may be stored in

RDF repositories or plain databases at peers’ own will. However, since graph-based

RDF repositories are competitively easier to merge because of the schema-less struc-

ture (triples) of data sources, compared with plain databases, in order to make those

repositories comply with our semantic enhancement of existing IMs (Bai and Robert-

son, 2010), we store the profiles in the RDF data model instead of a plain table in the

3.1. How OKBook Architecture Meets the Requirements 33

relational database.

With the Discovery Module as described in Figure 3.1, OKBook itself can be regarded

as a discovery server. In the peer-to-peer network, a discovery server behaves like a

super peer and more than one peer of this kind may co-exist. When a peer registers

on one of these super peers, others of them will also get copies of this peer’s profile

and the peer can log on to any of discovery servers using the same username. More

details of this server federation will be discussed in Section 3.5. Currently, OKBook

supports the OpenID (Recordon and Reed, 2006) standard which allows users to log

on to different services having support on OpenID with the same digital identity.

Centralised storage of triples is inefficient and in-compliant with the peer-to-peer net-

work for two reasons: firstly, it normally takes several hours to load in a billion RDF

triples 1 so centralised storage will be slow and impractical; secondly, some data are

proprietary and sensitive, which should be stored separately when copyright and secu-

rity issues are taken into considerations. OKBook stores peers’ profiles in a distributed

manner. Peer profiles are more concerned with providing information that can ben-

efit interactions between peers and comply with choreographies in the whole Open-

Knowledge ecosystem. As aforementioned, each OKBook peer has copies of regis-

tered peers’ profiles and each of them can be referred via a unique Named Graph (Car-

roll et al., 2005) when being queried either by OKBook itself or by other peers via a

SPARQL endpoint. At present, there are two ways for OKBook to acquire registered

peers’ profiles and both of them are described as follows (expressed via the First Order

Predicate Logic):

a. Loading As Change. In this case, the whole profile of each registered peer will be

uploaded to the discovery service when this peer successfully registers on OK-

Book (at this stage, OKBook is unaware of which triples will be actually used

for the queries in future). Therefore, every time a peer’s local profile is revised,

copies of this profile on other OKBook peers will be synchronised with this local

changed one. In the case that an interaction involving this peer is performed, its

local profile and corresponding copies may be updated and appended with new

information about the peer (e.g., new friends). Thus, the update of this peer’s

local profile will also influence its copies on other OKBook peers it has logged

on to (details of the updating mechanism will be discussed in Section 3.1.2).

Since each peer is a server and client on the Web, this updating task can be ful-

1http://esw.w3.org/topic/LargeTripleStores

http://esw.w3.org/topic/LargeTripleStores

34 Chapter 3. Decentralised Interaction-Driven Knowledge Sharing on OKBook

filled via Hypertext Transfer Protocol (HTTP) requests with the POST method.

Among those OKBook peers on which a peer has registrations, there needs to

be at least one in charge of bootstrapping the interconnection in the whole peer-

to-peer network, and this super peer is reliable, trustworthy and deployed with

the OKBook platform and named as the Bootstrapping peer (Bpeer). Any other

peers which want to install the OKBook platform must know at least one Bpeer

and inform it of the new installation. Bpeers can then rank themselves based on

popularity criteria such as the capacity of the bandwidth. Thus a peer can se-

lect reliable OKBook servers to register on by referring to their Bpeer rankings.

Peers are required to log into at least one OKBook server with their usernames

and passwords before any knowledge sharing interactions. The burden on the

management of public and private keys, employed in other authentication algo-

rithms in the peer-to-peer network (Chirita et al., 2004), can be mitigated via this

form of peer registration, the detail of which is however out of the scope of this

thesis.

b. Lazy Loading. With the growth of the number of registered peers, much larger

profile copies would need to be uploaded to the OKBook peers. Taking advan-

tage of the profile as its “business card”, a peer may enrich it with extra infor-

mation such as the homepage and workplaces, which have not been detected

and harnessed by any OKBook peers but could actually draw lots of attention

from others for the profile owner. Storing and updating peer profiles may how-

ever cause a big burden on each OKBook platform. Therefore, we make use of

lazy loading RDF in order to mitigate this burden. Note that peers publish their

profiles through annotation-embedded Web pages (e.g., RDFa employed by OK-

Book). In this lazy loading style, there is no profile copy of each registered peer

and OKBook will harvest triples embedded in peers’ profiles by making use of

RDFa-parsing services provided by third party softwares or an internal RDFa

parser carried on by the OKBook peer itself. This lazy way of acquiring pro-

files allows peers to revise their profiles without notifying OKBook since triples

inside profiles will be harvested in real time. Using the CONSTRUCT query,

OKBook can create a simplified version for the registered peer’s profile and this

version only contains the information which is useful to OKBook. After an

interaction finishes, OKBook, which triggered this interaction, will inform par-

ticipants of their potential friend peers. Peers can enrich the descriptions on their

3.1. How OKBook Architecture Meets the Requirements 35

profile updates using vocabularies such as Triplify update (Auer et al., 2009) or

Talis Changesets2 afterwards.

The above two ways of acquiring peers’ profiles both have pros and cons, re-

spectively. In the former way, by caching or indexing parsed triples, OKBook

does not have to retrieve a peer profile every time it tries to fulfil a task such as

discovering IMs. However, once the profile owner changes its content, OKBook

has to update the local cache or index of this profile. In the latter way, each

task that needs to acquire the information inside a peer profile will inevitably

cause some traffic on updating. However, OKBook does not have to be notified

of a peer changing its profile since the return of real time queries can provide

the latest information about this peer itself. On the other hand, in the former

way of loading, only the latest revision will influence the discovery while pre-

vious revisions on the peer’s profile are all blanketed by the latest one. In other

words, according to the latter way, the acquisition of a peer profile is necessary

only at the moment when a query starts being solved. Thus the former way will

work better especially when queries occur more than profile updates do and the

latter way will work better especially when profile updates occur more often

than queries do. OKBook chose the former way to go since, with the latter way

being chosen, peer profiles would be updated within the querying process and

this could harm the user experience when his/her profile contains a considerable

number of triples need to be updated, which would slow down the response to

those queries.

3.1.2 Peer Profile Management

Peers publish profiles via profile feeds and only the peer itself has authorisation on its

own published content. Each peer is allowed to publish its profile via more than one

online document while the authoritative peer also has the responsibility for synchronis-

ing its profiles stored on distributed servers. It is possible that a peer has more than one

account on multiple OKBook servers and as mentioned above, each OKBook server

will hold a copy of the registered peer’s profile but will however not be granted write

access to that profile. On the other hand, a single peer will be allowed to apply for more

than one account on an OKBook server, but each OKBook server will treat different

2http://n2.talis.com/wiki/Changesets

http://n2.talis.com/wiki/Changesets

36 Chapter 3. Decentralised Interaction-Driven Knowledge Sharing on OKBook

accounts as belonging to different peers by default unless an alignment is applied. A

peer may publish more IMs and gain more capabilities as time goes by and develop

more new OKCs. Under this circumstance, it may update its profile and inform all

OKBook servers, on each of which there exists an account of this peer, of the profile

change.

From the perspective of profile updating, peers are publishers and OKBooks are sub-

scribers and hence we can use the Publish/Subscribe model here to fulfil this updating

task. Here, PubSubHubbub (PuSH) (Fitzpatrick et al., 2012), which is an open pro-

tocol for distributed communication based on this Publish/Subscribe model, has been

employed with the assistant of the hub server 3 provided on the Google App Engine.

Note that this server from Google is only for demonstrating how the protocol works

and not a requirement by OKBook in essence. This way of managing profiles conforms

to the spirit of decentralisation and distribution, and many other hubs have been built

based on the same protocol by a variety of third parties such as Superfeedr 4, Word-

Press 5 and WebGlue 6, etc., at the time of writing this thesis. These third-party hubs

behave like super peers deployed in the peer-to-peer environment and every peer has

the chance to be a super peer if it is capable of providing a reliable Publish/Subcribe

service. Inspired by PuSH, the protocol used by the OKBook platform for updating

peer profiles is depicted in Figure 3.2.

This figure shows peers can have multiple accounts (three accounts in this case) on

more than one OKBook server. Each server actually forms a peer community and has

one or more groups which will be discovered dynamically based on the algorithm dis-

cussed in Section 3.1.3.2. Peer communities with diverse degrees of maturity form a

dynamic and decentralised environment per se. All the profiles will be managed by

peers who published them and stored in distribute. No peer has any centralised con-

trol over anyone of others’ profiles except the publishers themselves. The Uniform

Resource Locator (URLs) of peers’ profiles are published via feeds and every time

a peer applies for a new account with its feed, the OKBook server (as a subscriber

to the peer’s profile) will automatically subscribe to this feed via a hub whose role,

as discussed above, can be played by any peer capable of understanding and parsing

documents in various formats (e.g., RDF Site Summary or Really Simple Syndication

3http://pubsubhubbub.appspot.com
4http://blog.superfeedr.com/api/http/pubsubhubbub/pubsubhubbub/
5http://wordpress.org/extend/plugins/pushpress/
6http://github.com/zh/webglue/tree/master

http://pubsubhubbub.appspot.com
http://blog.superfeedr.com/api/http/pubsubhubbub/pubsubhubbub/
http://wordpress.org/extend/plugins/pushpress/
http://github.com/zh/webglue/tree/master

3.1. How OKBook Architecture Meets the Requirements 37

O
KBook

O
KBook

O
KBook

subscribe

subscrib
e

s
u

b
s

c
ri

b
e

update

u
p

d
a

t e

update

update

u
p

d
a

t e

p
u

b
lis

h
/u

p
d

a
te

Hub Hub

IM

IM

IM

Figure 3.2: Peer profile updating protocol

38 Chapter 3. Decentralised Interaction-Driven Knowledge Sharing on OKBook

(RSS) , or Atom, etc.). The profile updating will be automatically pushed to all the

OKBook servers (by hubs) which have been holding its copies. After receiving an

updating notification (a new feed entry) from a hub, an OKBook server will query its

back-end database for the updater’s ID and replace the profile content with the new

one retrieved by dereferencing the URL parsed out from the OKBook seed. The Pub-

lish/Subscribe model was originally investigated in (Birman and Joseph, 1987) and its

peer-to-peer version of a subscribe system supporting metadata and query language

based on RDF was implemented in (Chirita et al., 2004). Compared with this sys-

tem, OKBook has implemented the model in a different way: Firstly, super peers

are OKBook servers themselves rather than servers on the publisher side, which are

more expensive to maintain (because features such as always-online and changing less-

frequently are usually required) for ordinary users so as to be untrustworthy in most

cases; Secondly, subscription information is curated on a third party hub so neither

OKBook servers nor servers behind publishers need to store the data, which would be

otherwise too expensive to afford and too complicated to configure.

3.1.2.1 Linking Elements of IMs to the Web of Data

An embedded-metadata-based approach for republishing IMs in normal Web pages

has been proposed and designed for our distributed knowledge sharing platform and

its prototype has been implemented and will be further detailed in Chapter 5. OKBook

employs and integrates this prototype, as shown in the IM Republication Module in

Figure 3.1, aimed at linking the published IMs to the Web of Data. Thanks to this

module, originally text-based IMs are republished using RDFa in HTML or XHTML

((X)HTML) Web pages.

Wikipedia7 is a worldwide encyclopaedia which has 262 language editions and pro-

vides a knowledge base represented by natural languages per se. DBpedia (Auer et al.,

2007) extracts structured information from Wikipedia and has been taken as a knowl-

edge base represented by structured data in various formats such as Comma-Separated

Values (CSVs) and RDF which links structured knowledge to the World Wide Web

(WWW). DBpedia assigns http://dbpedia.org/resource/Name-like URIs to all

entities that have been crawled from Wikipedia. A URI is used for identifying a spe-

cific entity and we here make use of URIs generated by DBpedia to annotate elements

7http://www.wikipedia.org/

http://dbpedia.org/resource/Name
http://www.wikipedia.org/

3.1. How OKBook Architecture Meets the Requirements 39

inside IMs. Sometimes more than one URI indicates the same individual and they

will appear differently within the annotation process in picking up a suitable URI and

within the discovery process in matching annotations against the peer’ profile. In order

to allow IM publishers to efficiently find appropriate URIs to annotate IM elements,

we take advantage of the DBpedia Lookup service which employs Lucene’s string-

similarity-based ranking and relevance metric having been discussed in (Kobilarov

et al., 2009) to do the URI recommendation. As shown in Figure 3.1, the URI Recom-

mendation Service wraps the above described functionality into an invokable service.

This IM publication adheres to the four principles (Berners-Lee, 2006) of Linked Data

because of the followings: URIs are used as annotations and they are dereferenceable

HTTP URIs; employed URIs are curated by DBpedia and each of them comes with a

RDF document and a human-readable Web page from Wikipedia; each IM becomes a

RDF resource on the Web of data in the end and it will be also assigned with a URI

linking to the URIs of other things on the Web. Note that the Discovery Module of

OKBook also uses the above lookup service to help peers to refine their queries.

IM publishers are encouraged to use the property rdfs:comment to add details, which

are more human-readable, about published IMs. Sometimes, users may want to use

desired vocabularies or even their own. On that basis, three types of search services

are offered to them for selecting diverse URIs to annotate IMs. The first service

wraps in SWSEs such as Swoogle (Ding et al., 2004), Falcons (Cheng et al., 2008)

and Sindice (Tummarello et al., 2007), which can crawl and index resources attached

with URIs from the Web continuously. The second service wraps in search engines

with generic purposes including Google and Yahoo!Search, which can assist users in

refining and adjusting their keyword-based queries when too few relevant URIs are re-

turned. The third service wraps in a co-references tool named as sameAs 5, which can

help users find equivalent URIs of a specific one given by themselves. Figure 3.3 and

Figure 3.4 illustrate screenshots on the above three services provided in the side block

of OKBook plus an example search result for a query with the keyword “purchase” .

When users publish new IMs, the embedded triples are automatically and periodically

harvested by the Harvesting Module as shown in Figure 3.1 and stored in the back-end

database by OKBook with the help of the ARC2 library 6 afterwards. Obtained triples

will be also exposed to users via a SPARQL endpoint based on HTTP bindings, which

5http://www.sameas.org/
6http://arc.semsol.org

http://www.sameas.org/
http://arc.semsol.org

40 Chapter 3. Decentralised Interaction-Driven Knowledge Sharing on OKBook

Figure 3.3: Services for se-

lecting URIs for annotations

Figure 3.4: Screenshot on a search result

opens up an opportunity for other peers to reuse the RDF repository containing triples

derived from republished IMs and establish their own applications of interest (e.g., IM

mashups).

3.1.3 Discovery of IMs and Collaborative Peers

IMs describe choreographies between peers as protocols which guide peers to interact

with one another and achieve cooperations among different service providers. Peers

collaborate by subscribing to and running a specific IM but finding an appropriate IM

for guiding themselves during interactions is a challenge. Keyword-based IM pub-

lication (Kotoulas and Siebes, 2007) limit IM discovery in the OpenKnowledge sys-

tem due to the ambiguity aspect of human languages. Therefore, we connect to the

broader Semantic Web discovery effort by using URIs to annotate IMs and based on

this strategy, two mechanisms for discovering desired IMs and related collaborative

peers are proposed in this section: meta-search-based discovery and peer-group-based

discovery. The former mechanism is a generic solution for IM discovery and the latter

one can discover other collaborative peers which have common interests shared with

the service requester. The meta search works effectively especially when requesters’

desired IMs are beyond the scope of common interests in their peer groups. The Dis-

covery Module as shown in Figure 3.1 is in charge of fulfilling this IM discovery task

on OKBook.

3.1. How OKBook Architecture Meets the Requirements 41

3.1.3.1 Meta-Search-Based Discovery

RDFa is one of serialisation types for RDF and RDF triples parsed out from the RDFa-

embedded Web page can be indexed by SWSEs mostly targeting at RDF. OKBook

provides a meta-search engine that allows the user to input queries and access sev-

eral SWSEs with them. When a user submits a newly published IM to OKBook, the

submission will also trigger a request message to be sent to SWSEs via submission

mechanisms supported by them. For example, Sindice supports the Remote Proce-

dure Call (RPC) ping Application Programming Interface (API) that was developed

according to the specification of the Pingback (Langridge and Hickson, 2002) mecha-

nism. So an IM submission or a submission of its revised version will ping Sindice for

indexing or re-indexing this IM. On the OKBook query interface, users submit their

queries to our meta-search engine by typing in related keywords. Unlike the original

OpenKnowledge discovery service, instead of directly forwarding keywords to under-

lying SWSEs, the meta-search engine needs to preprocess them first since otherwise,

documents related to these keywords that have nothing to do with interactions will be

returned as well. OKBook expands users’ queries about IMs by semantically attaching

the type annotation such as openk:InteractionModel. Since one IM may be indexed

by several SWSEs, the returned search results could contain overlapping IMs. By

comparing URLs of the search results, we can group the overlapped IMs and just dis-

play one of them, with the indexing information from different provenances, to users.

Moreover, their provenances will be also retained in case users want to further explore

variant surrounding information (e.g., snippets of URIs) also indexed and provided by

diverse SWSEs. The ratings given by other community members to displayed URIs

are also displayed as references during URI selection. The reason for providing ratings

is because as we mentioned before, we believe that users will trust recommendations

from other peers (interest-driven) in the community more than advertisements from

service providers (profit-driven).

On the search panel of OKBook, the URI recommendation service having been used

in the IM Republication Module is applied as well within the query suggestion pro-

cess, which helps users to refine their query phrases. When users type in keywords,

the recommendation service will forward them to the DBpedia Lookup service which

will calculate the similarities between these keywords and stored URIs and select out

the most relevant URIs for users to refine their queries (a screenshot of this can be

found later in Figure 3.11). OKBook will provide popup windows containing a human-

42 Chapter 3. Decentralised Interaction-Driven Knowledge Sharing on OKBook

readable snippet for interpreting a focused URI without dereferencing this URI on the

fly, which would otherwise cost more time and also damage the user experience. Since

we use the same recommendation service in both the IM Republication Module and

the Discovery Module, it is likely that both the IM publisher and the IM requester will

choose the same URI for identifying the same item. Needless to say, this will ben-

efit IM discovery because in this situation (a single URI is used for both annotating

and querying), OKBook can just do a precise match between annotations and refined

queries without employing any ontology matching or reasoning algorithms.

On the other hand, under the circumstance that the IM publisher and the IM requester

refer to a single IM element using heterogenous URIs, we align them by employing the

sameAs service which collects predicates of co-reference such as owl:sameAs from di-

verse vocabularies. Many other more sophisticated techniques have been proposed for

ontology matching and these also could be used on the OKBook platform for assisting

users in discovering more meaningful services. Discussion of this is however outside

the scope of this thesis. Note that normally, different SWSEs use different ranking

mechanisms so ranking results will be synthesised by the meta-search engine before

being displayed finally to service requestors and the corresponding ranking algorithm

will be discussed in Section 3.2.

3.1.3.2 Peer-Group-Based Discovery

Our peer-to-peer community will be established based on peers’ interaction logs. As

mentioned earlier, when enough peers fill the roles defined by an IM, the Submitting

Module will forward the IM and relevant subscription information to each peer that

will be involved in this interaction. After being executed, the IM along with the origi-

nal subscription information will be sent back to OKBook which maintains a table to

record the subscription log for each registered peer in the database. Peer groups will

be discovered by analysing the interaction logs on the fly. For instance, an authorised

peer will know peers with which it has been involved in an IM-driven interaction and

what other IMs these peers have subscribed to. This will facilitate IM discovery so

peers can find more IMs via which they may potentially interact with others. After let-

ting OKBook analyse IMs in which its group members and itself have been involved,

a peer can subscribe to any of theseIMs by claiming to play a specific role inside. This

method was actually inspired by the idea behind FOAF. If PeerA has interacted with

3.1. How OKBook Architecture Meets the Requirements 43

PeerB, it is possible that PeerA will be also interested in other interactions not having

involved itself but have involved PeerB and for PeerB, the similar thing will happen in

the reverse way. Therefore, we use this method to group peers and name it the Interac-

tions From An Interaction (IFAI) method. Figure 3.5 depicts the discovery process as

well as the discovered peer group.

IM

IM

IM

IM

IM

IM

IM

IM

IM

IM

IM

IM

IM

IM

IM

IM

IM

IM

IM

IM

IM

AP
R1 R2 R3

Figure 3.5: IFAI-based peer group discovery

In this figure, peers are linked to one another through historical interactions (stored

as interaction logs) in which they were involved. The IMs in RegionR1 describe in-

teractions in which authorised PeerAP previously took part. Then in terms of these

IMs, PeerAP’s previous collaborative peers are discovered and form a group covered

by RegionR2. The IMs in RegionR2 but not in RegionR1 describe previous interactions

between PeerAP’s group members. On the other hand, the IMs in RegionR3 but not

in RegionR2 describe previous interactions between PeerAP’s group members and ex-

ternal peers. Since IMs in RegionR3 but not in RegionR1 reflect interests of PeerAP’s

group members as well, they are taken as a portion of results after IM discovery is

finished. Actually, IFAI provides a peer with a screenshot of its dynamically gener-

ated group in terms of its historical interactions with other peers. Group members

are updated when OKBook is fed in with new interaction records by each involved

44 Chapter 3. Decentralised Interaction-Driven Knowledge Sharing on OKBook

peer. Displayed IMs are also followed by aforementioned rates given by the com-

munity members. The algorithm for the peer-group-based discovery is described in

Algorithm 1. Note that Algorithm 1 describes a situation in which just peers directly

known by PeerAP’s friends are taken into account. Actually, peers are allowed to do a

deeper search depending on their preferences by invoking our IFAI method, which is

helpful especially for who newly registered and have not had many friends connected

to themselves. This can be also achieved by making use of newly discovered friend

peers and running Algorithm 1 recursively.

Algorithm 1: IFAI Algorithm (single step)
Input: the URI of current authorised peer, apeer uri and the interaction log, record.
Output: URIs of group members, f peer uris and URIs of IMs these members were

involved in, im uris.
begin

IM URIs = getInvolvingIMs (apeer uri, record);
for each im uri ∈ IM URIs do

partner peer uris = getInvolvedPeerURIs(im exec);
for each peer uri ∈ partner peer uris do

if apeer uri equals peer uri then
continue;

else
f peers = f peers∪{peer uri};
IM URIs′ = getInvolvingIMs(peer uri, record);
for each im uri′ ∈ IM URIs′ do

if im uri′ ∈ im uris then
continue;

else
im uris = im uris∪{im uri′};

3.1.3.3 Subscription Information Submissions and Feedback

After an appropriate IM is discovered, peers can subscribe to it via the Subscription

Module as shown in Figure 3.1. In OKBook, the Subscription Module then send

subscription-related data (such as which peer fills which role) along with the sub-

scribed IM itself to all the involved peers, including the one that has been equipped

with LCC interpreter in charge of bootstrapping the interaction and executing the IMs

coded in LCC. In order to comply with this submission of subscription information and

the LCC interpreter, when a peer decides to subscribe or unsubscribe to an IM, OK-

Book will record relevant information such as the peer’s user account, the URI of the

3.2. Ranking on OKBook 45

target IM, the time when this subscription occurs as well as some auxiliary information

such as the peer’s contact details. Before the submission, OKBook also checks if each

role in the being submitted IM is filled by at least one peer. Figure 3.6 shows how

OKBook helps registered peers interact with one another based on IMsalong with the

OpenKnowledge architecture. From this figure, we can see that OKBook has replaced

the Distributed Discovery Service (DDS) and provides peers with strong discovery

power gained via resources shared on the Web of data.

subscriptions

is a

replaces

Figure 3.6: OKBook-equipped OpenKnowledge system

3.2 Ranking on OKBook

More than one IM may have annotations in common or describe similar tasks, so IM

discovery is followed by ranking in order to assist users in filtering out search results

of less interest. This section is focused on the ranking strategies so far applied on

OKBook, including ranking IMs, ranking peer communities and ranking peer group

members.

3.2.1 IM Ranking Criteria

For each input query phrase inside each discovered peer group, there may be more than

one IM selected out and recommended to users by OKBook. Under this circumstance,

46 Chapter 3. Decentralised Interaction-Driven Knowledge Sharing on OKBook

a ranking strategy is crucial for peers to select and subscribe to the appropriate IMs. In

this subsection, different ranking criteria are discussed.

3.2.1.1 Ranking Discovered IM Over the Web of Linked Data

For the IMs discovered by our meta-search engine, assuming that different search en-

gines may use different ranking mechanisms, the returned ranking results should be

reconciled before being finally displayed to users because they usually expect only to

see a single rank. Suppose Q denotes a querying phrase that a user types into our

meta-search engine and U denotes the URL minted for a specific IM indexed by one

or more SWSEs; Si denotes the ith SWSE involved in the meta-search and the rank of

this URL returned by Si is denoted by rankSi(U,Q). If Sk has not previously indexed

U , then rankSk(U,Q) = 0. We take the weighted average of ranks of U returned by

different search engines as the overall rank of U on our meta-search engine, which will

be calculated by the following equation:

rank(U,Q) =
∑

N
i=0 χi× rankSi(U,Q)

N
(

N

∑
i=0

χi = N)

Here, N denotes the overall number of search engines on which our meta-search engine

is built. χi denotes the weight on the rank returned by Si and it can actually reflect the

user’s preference. And χi is equal to one by default. However, if a user prefers some

search engines over others, he/she can inform our meta-search engine of this preference

by modifying values of weights from the OKBook search panel. Using the above

equation, ranks of all URLs can be synthesised and shown to users, in descending

order of relevance. If more than one URL has the identical ranking value, they will

be displayed together as a group of the same priority on the result page. Nonetheless,

their provenances will be retained in case users want to further explore search-engine-

specified information (e.g., snippets of search results) provided by diverse SWSEs.

3.2.1.2 Ranking Discovered IMs Via the Interaction Graph

For the IMs discovered via our group-based algorithm, they will be displayed along

with their interaction participants on the result page. Apparently, the deeper the search

depth, the more IMs may be discovered with Algorithm 1 described in Section 3.1.3.2.

Thus an appropriate ranking strategy is also required by requesters for filtering out

3.2. Ranking on OKBook 47

appropriate IMs. In OKBook, IMs and their interaction participants are ranked in terms

of search depth. The IMs discovered through the requester’s intimate peers (include

the requester peer itself) get higher ranks (with shallower search depths) and the IMs

discovered through the requester’s distant peers get lower ranks (with deeper search

depths). For instance, in Figure 3.5, IMs in RegionR1 have a higher rank than IMs

in either RegionR2 or RegionR3. This ranking strategy is based on the intuition that

closer friend peers normally have more common interests in particular interactions and

if a peer was involved in a running of a specific IM before, there will be more chance

for this peer to be involved in the same IM again sometime in the future. There may be

more than one IM discovered in the same depth and we need further rank them based

on their occurrences which have been pre-stored in the requesters’ profiles according

to the architecture design.

3.2.2 Other Rankings

Currently, OKBook provides the above two IM ranking mechanisms. In addition to

there, ranking other OKBook related objects or possibly ranking IMs interactively

might be also interesting to users and will be further investigated in here.

3.2.2.1 Ranking IMs Based on the Interaction Feedback

Some feedback could be sent back to the OKBook server which trigged the interaction

after all the involved peers have also sent back finishing signals which will be discussed

in Section 4.2.2. Then IMs can be possibly ranked based on whether or not interactions

were finished successfully. However, failure is not necessarily because the IM has been

designed badly and it may be due to a peer which subscribed to this IM but did not

satisfy all the constraints which it was supposed to satisfy. Under this circumstance,

this peer might be blamed rather than the IM itself or perhaps even other peers might

be blamed for putting the “failed” peer in an impossible position. Thus attribution of

blame for IM failure is complex and imprecise although it may serve a purpose.

3.2.2.2 Ranking Peer Communities

Peer communities (hosted on OKBook servers) can be ranked based on the number

of community members (i.e., how many peers have registered) or the number of peer

48 Chapter 3. Decentralised Interaction-Driven Knowledge Sharing on OKBook

activities (i.e., how many interactions have occurred) or both. Due to the various user

preferences, it is difficult if not impossible to aggregate these two methods and provide

users with a unified ranking result. So OKBook could allow users to see both above

ranking results separately and choose the preferred one to harness.

3.2.2.3 Ranking Peer Group Members

After an IM is executed, some feedback will be sent back to the OKBook server which

previously triggered the running of the interaction. The feedback indicates whether

the interaction was finished successfully or not. If not, it also informs which peer

should be responsible for the failure. This information is harnessed by OKBook servers

statistically and will be used for peer ranking. Each OKBook server maintains a peer

ranking list in which peers are ranked based on values indicating how many times they

have been involved in successfully-finished interactions and how many times they have

not. In the end, peers with higher ranks are displayed at the top of the final ranking list.

The details of peer groups will be discussed later in Chapter 6.

3.2.3 Extended Open Graph Protocol

As also mentioned above, after being discovered, more than one IM may become can-

didates to which the logged-on user considers to subscribe. Beside referring to the

ranking criteria supported by OKBook, users can also access the IM page and make

further investigations there. But what extra information should be provided to users at-

tempting at making right decisions? Here, an Extended Open Graph Protocol (EOGP)

is proposed as an answer to this question.

In terms of successfulness of social network sites such as Facebook, Flickr and Twit-

ter, users are usually not only simply connect to other users by hyperlinks but also

establish connections via things per se. In other words, the social relationships are

built on top of things which users are interested in and also want to share or talk about

with their friends. OKBook has been built as a platform for sharing knowledge via

interactions among peers and on that basis, we put IMs into the social graph of peers.

Open Graph Protocol (OGP) has been designed for Web pages representing profiles of

real-world things such as movies, sports teams, celebrities and restaurants (Zuckerberg

and Taylor, 2010). This protocol was originally created in the Facebook company and

3.2. Ranking on OKBook 49

focused on the bidirectional relationships of users. In this thesis, EOGP is inspired

by OGP and adopted in the peer-to-peer knowledge sharing environment on OKBook.

Here, we refine the peer relationships by employing the subscribing (a.k.a., following)

model. Figure 3.7 gives a general depiction on EOGP, based on which peers have been

connected via IMs and notably, it is possible that a peer outreaches its community (an

OKBook server) and links to an IM originating from another community.

IM IM

IM

IM

IM

IM

O
KBook

IM IM

IM

IM

IM

IM

O
KBook

IM IM

IM

IM

IM

IM

O
KBook

O
KBook

O
KBook O

KBook

O
KBook

O
KBook

O
KBook

O
KBook

IM

IM

IM

IM

IM

IM

IM
IM

IM

Figure 3.7: Extended Open Graph Protocol (EOGP)

When peer profile updating happens, as described in the Section 3.1.2, based on the

PubSubHubbub protocol, the new profile will be propagated to all the OKBook servers

on each of which the profile owner holds an account. Since IMs are published on nor-

mal Web pages (Bai and Robertson, 2010), we implement EOGP by forwarding the

IM pages with RDFa annotations to the OKBook servers. Suppose a peer has been

logged on to at least one OKBook server and is browsing a specific IM. The browser

can identify this peer via cookies and forward the IM to known OKBook servers which

query the backend subscription database with the URI of being browsed IM for infor-

mation about which peers were subscribed to the IM and among these peers, which of

them are following that peer looking at the IM page and which of them are followed by

this peer. Since different OKBook servers (as different peer communities) may have

different peers register on themselves, even if each community has an identical copy of

50 Chapter 3. Decentralised Interaction-Driven Knowledge Sharing on OKBook

a peer’s profile, the result of the above query may or may not be the same. Therefore,

the query result will be sent back asynchronously and split in separate community sec-

tions on the IM page which the peer is currently browsing depending on the response

time and policies of different OKBook servers. Each community section represents

the peer’s social groups given by a particular OKBook server. The first group contains

peers which the browsing peer is following and the second group contains peers which

are following the browsing peer and were once subscribed to the target IM. The third

group contains peers which have no connection with the browsing peer but were also

once subscribed subscribing to this IM. Note that the above groups play different roles

when the browsing peer is considering whether or not to subscribe to the target IM.

Peers in the first group are normally trusted by the browsing peer while peers in the

second group are less trustworthy but they will contribute to the group’s awareness of

the browsing peer. The third group provides peers with which it is potentially worth

interacting and, hence, the peer currently browsing the IM page has a chance to follow

the members in this group by shifting them to the first group (note this will trigger the

updating of its profile). In each group, the further details on group members in terms

of the target IM are rendered as well, such as which role(s) they were playing during

the previous running of this IM as well as individual comments on those interactions.

The above discussion shows that EOGP can assist peers in investigating IMs and sub-

scribing to decent ones in a social and interactive way. It offers a page-to-page solution

that addresses the problem of IM sharing in a decentralised environment. Because IM

pages have employed metadata-embedding approaches recommended by W3C, more

and more service providers (also peers) are highly likely to join this party by linking

their data (including services) to these pages. The user experience is also of concern

and when an IM page is rendered in the browser, the embedded annotations will be au-

tomatically detected. By dereferencing those annotation associated with URIs, users

can see more detailed information about elements inside the IM so as to make a better

decision on whether or not to subscribe to it. This, however, raises users interface is-

sues also encountered by the multi-agent Systems and the discussion on this is beyond

the scope of this thesis.

3.3. Inference Driven Evolution of the Peer Community 51

3.3 Inference Driven Evolution of the Peer Community

A single peer may play different roles defined in different IMs so as to have different

obligations and therefore, which role a peer is able to play does not really influence the

current IM discovery process. However, as long as IMs that meet a peer’s requirements

have been discovered, it would be better that the peer can be immediately informed of

which roles defined in the discovered IMs it is capable of playing in the near future. As

mentioned earlier, this discovery will be fulfilled by the Discovery Module of OKBook

according to the queries issued on the fly over the peers’s profiles along with annotated

IMs using EOGP. Every time a new peer signs up on a specific OKBook server, it

will not only get its user account but also be required to upload its own profile. Af-

ter potentially useful IMs are found, a peer can choose to further see the analysis of

each of them (this type of analysis is done by OKBook automatically) before actually

subscribing to any of them. OKBook will query the peer’s profile as well as originally

embedded RDF triples harvested from a particular IM page being browsed by this peer

in order to figure out which role can be filled. If the peer is currently not subscribing

to this IM, it can simply carry out the subscription by filling a displayed role it expects

to play based on the discovery done by OKBook. Otherwise, it will be informed of

the current subscription to the same IM and has a chance to unsubscribe by giving up

filling a role. Matching the peer’s profile with the annotated IM is a basic inference

rule and other inference rules can be created by engineers using SPARQL via a reli-

able discovery server (such as an OKBook server itself). Several basic inference rules

are listed as follows (expressed via the First Order Predicate Logic and `cst means if

the right-hand side predicate(s) does (do) not hold, new triples will be constructed and

added to the Knowledge Base (KB) to make the predicate(s) hold):

I. has role(IM,R),can play(P,R) `cst can subscribe to(P, IM)

Rule I is related to the subscription suggestion (role checking) which will be done by

OKBook automatically. Here, P denotes a peer; IM denotes an interaction model; R

denotes a role. This rule means if P can play R defined in IM, P is able to subscribe to

IM. For instance, this rule can be applied inside the Subscription Module, as shown in

Figure 3.1, to help a peer to select its desired role recommended on a specific IM page

when subscribing to this IM. Rule I can be applied and interpreted using the following

SPARQL-like queries (SPARQL queries mingled with pseudo code):

result set = SELECT ?peer ?interaction model

52 Chapter 3. Decentralised Interaction-Driven Knowledge Sharing on OKBook

WHERE {
?interaction model a openk:InteractionModel.
?peer a openk:Peer.
?peer openk: IM ?interaction model
?peer openk:can play ?role.
?interaction model openk:has role ?role
}

}
for each result in result set

if result.getURI(“role”) == null
CONSTRUCT {

〈result.getURI(“peer”)〉 openk:can sbuscribe to 〈result.getURI(“interaction model”)〉.
}WHERE{}

end-if
end-for

II. publish IM(P, IM) `cst can play(P,R),has role(IM,R)

Rule II is related to the question “what will drive peers to publish new IMs and what

kind of peers are willing to fulfil this publication”. It means that if P is the publisher

of IM, IM contains R which P can play. A potential motive behind creating this rule is

that a peer has a requirement but he/she cannot find an appropriate IM to subscribe to

in the current network. Under this circumstance, the peer can create a new IM that can

meet the requirement and meanwhile, this peer can apparently play a role as a requester

in this IM. For instance, this rule can be applied inside the IM Republication Module,

as shown in Figure 3.1, and each publisher will therefore have a chance to subscribe

to an IM authored by him/her soon after it is published. Rule II can be applied and

interpreted using the following SPARQL-like queries:

result set = SELECT ?peer ?interaction model ?role
WHERE {

?interaction model a openk:InteractionModel.
?peer a openk:Peer.
?peer openk:publish IM ?interaction model
OPTIONAL {

?peer openk:can play ?role.
?interaction model openk:has role ?role

}
}
for each result in result set

3.3. Inference Driven Evolution of the Peer Community 53

if result.getURI(“role”) == null
CONSTRUCT {
〈result.getURI(“peer”)〉 openk:can play :user.
〈result.getURI(“interaction model”)〉 openk:has role :user

}WHERE{}
end-if

end-for

III. publish IM(P, IM),belong to(IM,C)`cst holdsAccount(P,U)∧has member(C,U)

IV. can play(P,R),has role(IM,R),belong to(IM,C) `cst holdsAccount(P,U)∧has

member(C,U)

Rule III and Rule IV are related to peer community membership. The former means

if P is the publisher of IM which belongs to a peer community, C, P should hold an

account, U , which also belongs to C; the latter means if P can play R defined in IM

which belongs to C, P should hold an account U which also belongs to C. The above

two rules can be applied in a situation where an OKBook server wants to expand the

peer community hosted by itself and as long as a peer’s profile satisfies either of the

above heads, the server will send an invitation to this peer and create an account if ap-

proved (an active way of community expansion). Note that each role can be subscribed

by several peers and each peer may hold multiple user accounts in different communi-

ties. Rule III can be applied and interpreted using the following SPARQL-like queries:

result set = SELECT ?peer ?community ?user
WHERE {

?peer a openk:Peer.
?interaction model a openk:InteractionModel.
?community a openk:P2PCommunity.
?peer openk:publish IM ?interaction model.
?interaction model openk:belong to ?community.
OPTIONAL {

?peer foaf:holdsAccount ?user.
?community sioc:has member ?user.

}
}
for each result in result set

if result.getURI(“user”) == null
CONSTRUCT {
〈result.getURI(“peer”)〉 ?peer foaf:holdsAccount :user.

54 Chapter 3. Decentralised Interaction-Driven Knowledge Sharing on OKBook

〈result.getURI(“community”)〉 sioc:has member :user
WHERE{}

end-if
end-for

, while Rule IV can be applied and interpreted using the following SPARQL-like

queries:

result set = SELECT ?peer ?community ?user
WHERE {

?peer a openk:Peer.
?interaction model a openk:InteractionModel.
?community a openk:P2PCommunity.
?peer openk:can play ?role.
?interaction model openk:has role ?rorle.
?interaction model openk:belong to ?community.
OPTIONAL {

?peer foaf:holdsAccount ?user.
?community sioc:has member ?user.

}
}
for each result in result set

if result.getURI(“user”) == null
CONSTRUCT {
〈result.getURI(“peer”)〉 ?peer foaf:holdsAccount :user.
〈result.getURI(“community”)〉 sioc:has member :user

WHERE{}
end-if

end-for

V. has constraint(R,T),can satis f y(P,T) `cst can play(P,R)

VI. has annot(IM,A),has annot(C,A) `cst belong to(IM,C)

Rule V and Rule VI are two auxiliary rules dedicated to community formation. The

former means if P can satisfy every constraint, T , associated with R, P can play R;

the latter means if every annotation, A, which belongs to IM, also belongs to C, IM

belongs to C. Rule V is used for deciding if a peer can play a specific role and for

instance, it can be applied inside the Subscription Module, as shown in Figure 3.1, to

check if a peer is capable of subscribing to an IM or not. Rule VI is used to determine

if an IM originates from a specific community and for instance, it can be applied in-

3.3. Inference Driven Evolution of the Peer Community 55

side the Discovery Module, as shown in Figure 3.1, to recommend IMs based on the

community to which they belong. Both of them involve multiple join queries so the

corresponding SPARQL-like queries are not listed here for the sake of brevity.

VII. has role(IM,R),has annot(R,A) `cst has topic(IM,A)

VIII. has topic(IM,A),belong to(IM,C) `cst has topic(C,A)

Rule VII and Rule VIII are about finding topics of a community or topics of an IM by

investigating annotations attached to a specific IM. The former means if IM defines

R which has A, IM takes A as its topic and a situation where this rule can be applied

is that after IMs are published, search engines can index them by their topics (in this

case, annotations of their roles); the latter means if IM has A and belongs to C, C also

takes A as its topic and a situation where this rule can be applied is that a peer can

join new communities based on their topics also related to those IMs to which it was

subscribed (a passive way of community expansion). The set of annotations belonging

to a community is here called the community signature. Rule VII can be applied and

interpreted using the following SPARQL-like queries:

result set = SELECT ?interaction model ?annotation
WHERE {

?interaction model a openk:InteractionModel
?role a openk:Role.
?annotation a openk:Annotation
?interaction model openk:has role ?role
?role openk:has annotation ?annotation.

}
for each result in result set

flag = ASK WHERE {
〈result.getURI(“interaction model”)〉 openk:has topic 〈result.getURI(“annotation”)〉}

if flag == false
CONSTRUCT {

〈result.getURI(“interaction model”)〉 openk:has topic 〈result.getURI(“annotation”)〉}
WHERE {}

end-if
end-for

Rule VIII can be applied and interpreted using the following SPARQL-like queries:

result set = SELECT ?community ?annotation
WHERE {

56 Chapter 3. Decentralised Interaction-Driven Knowledge Sharing on OKBook

?interaction model a openk:InteractionModel.
?annotation a openk:Annotation
?community a openk:P2PCommunity.
?interaction model openk:belong to ?community.
{?interaction model openk:topic ?annotation}
UNION {?community openk:has topic ?annotation}

}
for each result in result set

flag = ASK WHERE {
〈result.getURI(“community”)〉 openk:has topic 〈result.getURI(“annotation”)〉}

if flag == false
CONSTRUCT {

〈result.getURI(“community”)〉 openk:has topic 〈result.getURI(“annotation”)〉}
WHERE {}

end-if
end-for

Inferences rules like the above will be fulfilled on the fly and more RDF triples may be

generated thereafter due to the inference. In order to optimise the future discovering

process, these new triples can be merged with the involved peers’ original profiles or

indexed on the discovery server for reuses. Since triples are used for representing

peers’ knowledge as well as annotating IMs, we make the inferencer take advantage of

SPARQL for composing rules. For satisfying each rule here, the inference system will

first check if the current peer’s profile can satisfy the rule’s head or not. If the head is

satisfied (corresponding triples exists), the inferencer will further check if triples inside

the profile can satisfy the body or not. If the body is not satisfied (corresponding triples

are not found), new triples will be created in order and added to the peer’s profile to

make the body satisfied.

3.4 Analysis and Comparison Against the OpenKnowl-

edge Architecture

After the running of a specific IM, each involved peer has a chance to extend its social

graph by establishing new relationships with other involved peers. This interaction-

3.4. Analysis and Comparison Against the OpenKnowledge Architecture 57

based community expansion is intended to encourage peers to interact with others they

have not been in touch with before and also make them benefit from other potential

interactions in the future. In this section, we give an analysis of how peers can benefit

from the community formation fulfilled based on our approach.

3.4.1 Acquiring IMs From Discovered Group Members

Based on EOGP, OKBook provides peers with not only interactions in which they

were involved but also interactions in which their participants were involved. These

interactions can be taken as expansion seeds via which peers are likely to interact with

others whom they may have found it difficult if not impossible to know only based

on the searching mechanism offered by traditional Web sites through key-word search.

Suppose Alice bought a product from Bob, via the trade IM described in Figure 3.8,

using OKBook. This figure depicts an interaction in which a client purchases a product

referenced by a product code from a shop using his/her credit card.

/∗ A client, C, sends out a message to a potential shop, S, in order to buy a product with

a code, PC, using his/her credit card, CC. Then S sends the receipt of the product back

to C. When S receives the message from C, it checks if CC has enough credit to afford

the product. If the credit is enough, S completes C’s order by generating a receipt and

send it back to C. Note there is one peer playing the client role and may be more than

one peer playing the shop role. ∗/

a(client(PC, CC), C)::

buy(PC, CC)⇒ a(shop, S)← payby(CC)∧ lookup(S) then

receipt(R)⇐ a(shop, S)

a(shop, S)::

buy(PC, CC)⇐ a(client(),C) then

receipt(R)⇒ a(client(), C)← enough credit(CC, PC)∧
complete order(PC, CC, R)

Figure 3.8: Simple trade IM in LCC

Focused on this IM, the sequence diagram in Figure 3.9 shows how the group-base

IM discovery can drive peers’ interactions. Suppose Bob is a retailer who bought the

same product from another peer Carol (the original manufacturer of this product) by

58 Chapter 3. Decentralised Interaction-Driven Knowledge Sharing on OKBook

paying her cash via another IM similar to the above one in the past. By logging on to

OKBook, Alice can reach and subscribe to the latter IM in terms of the automatically

discovered peer groups. When Alice intends to buy the same product in the future, she

has a chance to interact with other peers such as Carol via the latter IM instead of with

Bob via the former one. It is likely to happen that Alice will get a lower price from

Carol this time. On the other hand, from the perspective of Carol, OKBook assists her

in discovering a new customer. Once their interaction is finished, Alice’s group will be

enlarged by absorbing a new group member (Carol) and a new IM (the latter one).

Figure 3.9: Sequence diagram for a bunch of interactions driven by peer groups

3.4. Analysis and Comparison Against the OpenKnowledge Architecture 59

3.4.2 Peer Subscriptions and IM Consumptions

Conventionally, when a user accesses to a shopping Web site such as eBay.com, he/she

searches for a required product by typing in relevant keywords via the search User

Interface (UI). But this only happens under the precondition that providers have al-

ready logged on to this Web site and published adverts for this kind of products on the

server. On the other hand, keyword-based search has its natural limitations due to the

synonymity and the ambiguity of phrases. Employed as annotations, URIs provide un-

ambiguous identifiers to concepts that convey meanings users want search services to

be truly knowledgable about. Moreover, compared with the OpenKnowledge system

which requires a coordinator to look after subscription information about the partici-

pating peers and make them a team, on the OKBook platform, all a peer needs to do is

search for an appropriate IM (recommended by the OKBook discovery service), sub-

scribe to it and run the IM on itself without any help from intermediate coordinators.

Then OKBook will try to find other peers automatically who can collaborate with this

peer and start the interaction. For example, even if there is no provider providing the

desired product for the time being, the subscription of this peer will be still valid for

a period of time (each subscription has an expiry time, a.k.a., timeout). As soon as

enough collaborative peers have subscribed to an IM, this user will be informed and

meanwhile, the IM goes into the execution procedure. However, for conventional Web

sites, this temporal “no provider” is likely to end up with a page indicating a HTTP

“not found” (404) error.

Figure 3.10 gives the excerpt of proportional source codes of a Web page on which the

trade IM described in Figure 3.8 has been published. The annotation strategy employed

here will be detailed in Chapter 5. In Figure 3.11, OKBook helped a peer consume a

Web page on which an IM has been republished by informing this peer of which roles

it can play when the Analyse button was pushed. As shown at the bottom right of

this figure, peers can choose to make OKBook conduct the analysis as soon as they

get the search result through the search panel. As mentioned previously, this analysis

was done according to the peer’s local profile as well as the harvested metadata. With

the advance of Linked Data, more and more client-side applications will come up and

be able to parse and harness embedded metadata in a variety of ways, and further

discussion of this is outside the scope of this thesis.

60 Chapter 3. Decentralised Interaction-Driven Knowledge Sharing on OKBook

<html

xmlns=‘‘http://www.w3.org/1999/xhtml’’

xmlns:openk=‘‘http://homepages.inf.ed.ac.uk/s0896253/openk.owl#’’

xmlns:dbpedia=‘‘http://dbpedia.org/resource/’’

>

...

<div typeof=‘‘openk:InteractionModel’’>

r(client, initial, 1, 1)

r(shop, necessary, 1)

<div rel=‘‘openk:has role’’>

<div typeof=‘‘openk:Role’’ property=‘‘openk:has roletype’’

content=‘‘initial’’>a(client

(<span rel=‘‘openk:has arg’’ typeof=‘‘openk:Argument

dbpedia:Universal Product Code’’>

PC), C)::

buy(

PC,

CC)

...

Figure 3.10: Republished trade IM in XHTML

3.5 OKBook Federation

As already discussed, in a cluster of OKBook servers, each of them will curate and

update the profile belonging to a particular registered peer. For other servers to whom

this peer is agnostic, when other peers search on these servers, there will be no result

related to this being searched peer even though it may be a potential collaborator in

some interactions. Therefore, in order to improve the recall of collaborator searching,

OKBook servers need to share their knowledge (of course at their own discretion) and

clustering and federation are two ways to achieve this sharing. The former may require

only low-level communications between OKBook servers which will end up with run-

ning the same native code, and is easier to implement due to the tightly coupled design.

However, there could coexist OKBook servers which are implemented in diverse lan-

3.5. OKBook Federation 61

Figure 3.11: Consumption of a republished IM

guages processed by different processors with their own sets of instructions. More

than one cluster could therefore exist and it is impossible to merge them into a new

cluster (in which all the OKBook servers share the same native code). The latter way

is comparatively more decentralised (the native code will not be called and transpar-

ent to other OKBook servers) and makes OKBook servers loosely coupled only if the

federation protocols or APIs are carefully designed. Since clustering is a centralised

option and goes against the spirit of sharing knowledge in a decentralised or distributed

environment as OKBook targets, we chose the latter way in this thesis to improve ac-

cessibility and interoperability of peers registered on various OKBook servers. As

shown in Table 3.1, a REpresentational State Transfer (REST)ful API design is em-

ployed here to allow multiple OKBook servers to call each others’ services and update

the data they want to federate. For instance, an OKBook server can retrieve all the in-

teractions, which are instantiated by the same IM with the encoded URI, encodedURI

and triggered by another OKBook server with the domain, example.com, by derefer-

encing the following URL:

http://example.com/apis/1/federation?resource=pi&resource=encodedURI

Within federation processes, PubSubHubbub is also employed, by which an OKBook

server can push its updates on shared data to others and at the same time, receive

notifications of updates from others. This combination between RESTful APIs and

PubSubHubbub (i.e., the subscriber subscribes to a RESTful service provided by the

62 Chapter 3. Decentralised Interaction-Driven Knowledge Sharing on OKBook

publisher via a hub) can cut down the traffic related to federated synchronisation be-

tween different OKBook servers.

Table 3.1: OKBook Federation APIs

Query Path

http://OKBOOK HOST/apis/VERSION ID/federation

Query Parameters

Requirement ParaName ParaValue

Mandatory resource im (IMs) or peer (peers) or pi (interactions)

Optional

uri The HTTP URI of the queried IM (when resource=im)

jid The Jabber ID (JID) of the queried peer (when resource=peer)

iid The interaction ID of the queried interaction (when resource=pi)

q The string-based query phrase

format xml or json or jsonld

An example of OKBook federation is illustrated in Figure 3.12. The OKBook portal is

a public portal from which peers willing to play the OKBook server role can download

the software and also curates a list on which domains of all the OKBook servers are

recorded. The federation component is included in the downloadable software and

after installation, the hosting peer can choose to switch on the federation functionality

or not. With this functionality being switched on, the software will send a request to

the OKBook portal automatically and retrieve all the shared information about other

OKBook servers, to achieve the federation. So it is up to OKBook servers themselves

to decide if they want to share their knowledge about registered peers, their interactions

and other valuable information. This configuration of federation is fine-grained at the

registered peer level, which means the peer, holding an account on a specific OKBook

server, can grant this server the privilege of sharing the information about the peer

itself with other OKBook servers.

Summary

Inspired by the OpenKnowledge system, this chapter proposes an approach for forming

and evolving peer communities based on the shared choreography specifications (IMs).

According to this approach, a proof-of-concept system, named as OKBook, has been

3.5. OKBook Federation 63

O
KBook

O
KBook

Federation

O
KBook

Federation

Federation

switch_on()

switc
h_on()

switch_off()

push_update()

push_update()

push_update()

Figure 3.12: Example of the OKBook federation

implemented to assist peers in publishing, discovering and (un)subscribing to IMs.

Two kinds of discovery services are currently provided via meta-search engine and

peer grouping, respectively. This approach complies with principles of Linked Data so

as to be capable of both contributing to and benefiting from the Web of data. Although

message passing is not prescribed by LCC (Robertson, 2004), since each IM execution

is a message-intensive process, this needs to be carefully handled to make our approach

actually work with the current Web architecture in terms of design and implementation,

and we explore this in the next Chapter.

Chapter 4

Interaction Model Execution on a P2P

Communication Layer

Following Chapter 3, this chapter takes one step further the development of the OK-

Book system. Since the Interaction Model (IM) execution is a message-intensive pro-

cess, how to deal with the message passing effectively and efficient in an open de-

centralised environment becomes a key issue which needs to be tackled. Focused on

this issue, Section 4.1 gives a brief overview on the redesign of the communication

layer of OpenKnowledge as well as describes the motivation behind that. Section 4.2

proposes a solution to message passing in a peer-to-peer manner and the involved pro-

tocols. Section 4.3 introduces a new operator which achieves the concurrency of IM

execution without blocking any I/O process. Section 4.4 illustrates the overall platform

architecture of OKBook as an interaction-driven peer-to-peer community.

4.1 OpenKnowledge Communication Layer Redesign

As mentioned earlier, the OpenKnowledge system has been designed to randomly se-

lect a peer as the coordinator which will run an IM. The coordinator is in charge of

interpreting IM code and helping involved peers in passing messages to one another.

This middle-man design can mitigate the burden on participants by handling most com-

putation for that interaction on a single and central coordinator. However, this does not

either make good use of resources available on peers themselves or comply with the

spirit of the distributed computation. On the other hand, due to the autonomy of peers,

65

66 Chapter 4. Interaction Model Execution on a P2P Communication Layer

some of them may not want to be coordinators or share their limited computational

resources to other peers without any payback. In this section, the OpenKnowledge

system is redesigned based on a new architecture, in which peers can communicate

without any assistance from coordinators.

4.1.1 Motivations

OpenKnowledge aims to provide peers with a system which allows them to interact

with one another without any global agreements or knowledge about who else will

participate in a particular interaction or how this interaction is executed (Robertson

et al., 2009). However, several issues have not been addressed in the existing system.

For instance, in the current OpenKnowledge system, peers have to interact with one

another via coordinators which are selected by the OpenKnowledge kernel randomly

and which behave like super peers when IMs are executed. This design has increased

the burden on the limited bandwidth offered by each coordinating peers and some of

them may refuse to contribute their bandwidth for delivering messages during interac-

tions. In this case, the triggering of the interaction will fail and the kernel has to keep

on searching until it finds another peer willing to play the coordinator role. Sometimes

this may cause a significant delay on running an interaction.

According to the above analysis, OKeilidh has been implemented as a prototype of the

redesigned architecture based on a cross-domain instant messaging protocol. OKeilidh

is an extension of the communication layer of OpenKnowledge 1 and focused on chore-

ography execution within the peer-to-peer environment.

4.1.2 Communication Layer Framework

OKeilidh provides a decentralised environment for peers to interact with one another

on the Web. In order to implement this design and make it comply with the traditional

Web architecture, a domain-crossing strategy needs to be applied. Extensible Mes-

saging and Presence Protocol (XMPP) allows users to pass messages to others from

different domains (servers). This protocol eliminates the limitation of the conventional

server/client structure in which clients can send requests to servers but servers cannot

1http://www.openk.org/

4.1. OpenKnowledge Communication Layer Redesign 67

send requests to clients. In this chapter, OKeilidh has been built based on this proto-

col, although note that any instant messaging protocols which are capable of getting

around widely spread Firewalls or Network Address Translations (NATs) can replace

XMPP here and serve the same purpose. As a matter of fact, OKeilidh makes a su-

per peer (server) delegated to each normal peer (client) and when a client is queried,

its delegated server is identified and becomes its spokesman. Figure 4.1 depicts the

framework for OKeilidh in which a number of OKBook peers from different domains

are involved. Alice and Bob registered in the same sub-domain of the server okbook1.

Carol also registered on the okbook1 but in another sub-domain while Daniel regis-

tered on another server okbook2. Here, some of them are from different domains,

but XMPP allows them to do the cross-domain interactions even if the Transmission

Control Protocol (TCP) ports are blocked by firewalls. Under this circumstance, both

the client and the server can listen to the normal Hypertext Transfer Protocol (HTTP)

ports anyway. Besides an XMPP-awared client, each peer has been equipped with the

LCC Interpreter (LCCI) which takes the IM and its execution state as input and tries to

solve the constraints this peer has committed to satisfying and the output will be this

IM itself plus its new execution state if the interaction has not yet been completed.

alice@sub1.okbook1.com

sub1.okbook1.com

sub1.okbook2.com

sub2.okbook1.com

bob@sub1.okbook1.com carol@sub2.okbook1.com

daniel@sub1.okbook2.com
XMPP://

X
M

P
P
:/
/

XM
PP://

XMPP://

OKBook

OKBook

OKBook

XMPP://

X
M

P
P
:/
/ X

M
P
P
://

OKeilidh

Figure 4.1: Communication Layer Framework

68 Chapter 4. Interaction Model Execution on a P2P Communication Layer

4.1.3 Peer Interaction Messaging Flows

Each message defined in a specific IM is de facto the information carrier and plays

a key role within the peer interaction process. In this section, its schema is designed

carefully for assisting peers in understanding the current state in which the execution

of the IM is and what the message receiver should do in the next step, and at the

same time maximising the compatibility with respect to a variety of software/hardware

environments peers may live in.

4.1.3.1 Message Schema

In OKeilidh, each message is in XML and contains several fields such as clause,

IM content, common knowledge, from role, from jid, to role, to jid, last msg. These

fields behave like metadata for each message and provide the LCCI with necessary

information required for running part of an IM as well as generating the next message

if necessary. A message handler will wrap these fields into a particular predicate or

method, which will be taken as the initialisation before the Lightweight Coordination

Calculus (LCC) is actually interpreted.

4.1.3.2 Message Parsing and Update

Here, we use Openfire 2 to equip super peers as discussed above with XMPP servers.

Each peer installed with an OKBook server has been installed with an Openfire server

as well, which will employ a different port to do the message passing. Therefore, peers

which registered on a specific OKBook server will be assigned with a corresponding

OKeilidh account. For instance, if a peer has an OKBook account with the name an

on a server with the domain name okbook.com, this peer will also get an OKeilidh

account with the name an@okbook.com (Jabber ID) by which this peer can interact

with other peers via XMPP. Message parsing will be done in terms of the message

schema defined above. LCCI has a method which can bind values of fields parsed from

received messages to the internal variables used for initialising the OpenKnowledge

Components (OKCs). There is a configuration file sitting on the peer-side terminal

device (a PC or a mobile phone, etc) and it is used for informing the LCCI of the paths

of OKCs installed on this peer.

2http://www.igniterealtime.org/projects/openfire/

http://www.igniterealtime.org/projects/openfire/

4.1. OpenKnowledge Communication Layer Redesign 69

A LCC clause is a role definition of an IM, whose constraints and message passing

are supposed to be solved and performed respectively by the host peer. After the LCC

clause extracted from the received message begins to be executed, the LCCI will in-

form the host peer of the value update of each argument and all updates are wrapped

into a new message which will be passed to the receiver in terms of the peer’s OKeilidh

account thereafter. Taking the IM described in Figure 3.8 as an example, when shop

S receives message buy(PC,CC) from client C, the value of variable R (which denotes

the receipt) is undefined. After constraint complete order is solved at S’s side, R will

be assigned the actual ID of the receipt and sent back to C along with other argu-

ments via message receipt(R). Note that the LCCI can be implemented using various

programming languages and this diversity can be handled by our LCC engine which

provides a generic interface used for communicating with LCCIs such as the Prolog

LCCI and the Java LCCI.

4.1.3.3 Message Passing Between Various Peers

LCC was developed and adopted in the OpenKnowledge project 3 for choreographing

services provided by a large number of peers. It is a compact but expressive chore-

ography description language and in this thesis it is also employed for writing IMs,

although other choreography description languages could be used alternatively. Since

human users can be taken as units which are capable of fulfilling tasks during interac-

tions, they are also recognised as peers along with computing devices. Autonomous

peers may play multiple roles simultaneously and as mentioned earlier, it is recom-

mended that the discovery peers (also called community peers, on which IMs and col-

laborators are searched) are also installed with the communication components so as

to become Discovery and Communication (D&C) peers for making better use of lim-

ited resources. Technically speaking, any peers can be installed with both a discovery

service and a communication service (in charge of message passing) at their own will

so as to be D&C peers. With respect to the hub peers (see in Section 3.1.2), on each

of them there may be a hash table curated for storing the subscription information of

peers. So we are basically discussing three types of servers here, including discovery

servers, communication servers and hub servers, any of which could be installed on

any peers.

3http://www.openk.org

http://www.openk.org

70 Chapter 4. Interaction Model Execution on a P2P Communication Layer

In the peer community formed based on our approach, peers exchange messages us-

ing HTTP and Transmission Control Protocol/Internet Protocol (TCP/IP) essentially.

Communication peers (e.g., equipped withXMPP (Saint-Andre, 2004) servers) also

use these protocols to pull messages from or push messages to others. Since many of

polls do not return new data based on the long polling mechanism, pushing is more

efficient, but a real push also requires circumstances under which TCP is possible.

Messages passed between different peers may be processed and delivered in different

ways. A super peer is a discovery peer and/or communication peer which is always on-

line, changes less frequently and can provide trustworthy services continuously. Peers

that are not super peers are called normal peers. The ways of messaging between these

different roles are summarised here. In our approach, the messages are passed between

peers according to XMPP under the following circumstances:

a. Messaging Between Normal Peers and Discovery Peers. For users’ activities

(e.g., browsing an IM, querying a SPARQL Protocol and RDF Query Language

(SPARQL) endpoint, signing in/out, etc.), the browser itself is the equivalent of

a peer which delegates the user to send HTTP queries to another peer inside the

community and renders the result sent back.

b. Messaging Between Discovery Peers and Peers Playing the Initial Role. As soon

as all roles defined in an IM are filled up by certain peers, a discovery server

will bootstrap the interaction by sending the message containing subscription

information to the peer which is committed to playing the initial role.

c. Messaging Between Discovery Servers. When a peer cannot find an IM which

is good enough to meet its requirement, the discovery server on which this peer

has been logged on will forward an IM querying message (a SPARQL query

wrapped in an HTTP request) to other adjacent discovery servers.

d. Messaging Between Normal Peers During an Interaction. During the running

of an IM, involved peers talk to one another according to the protocol employed

by the communication server. There is no coordinator (an intermediate peer)

in charge of interpreting involved messages and each peer has its own message

handler which is capable of parsing the incoming messages and sending out mes-

sages wrapping LCC clauses together with the variables (which may be bound

to some values) to the receiver’s local LCCI).

e. Messaging Between Normal Peers and Communication Peers Normal peers send

4.2. Peer-based IM Execution Design 71

messages to and receive messages from communication servers according to the

protocol these servers have been employing.

4.2 Peer-based IM Execution Design

Nowadays, widely used Web browsers (e.g., Internet Explorer, Firefox, Safari, Opera

and Chrome, etc.) have become windows through which clients can interact with a va-

riety of Web Services or even other clients. In this section, we introduce a framework

for designing an LCC interpreter embedded in the browser which will render a user

interface so as to provide a rudimentary and easy-to-access peer for users to use. A

proof-of-concept implementation for the framework has been built and the demonstra-

tion is available in here4.

Most Web browsers nowadays have built-in JavaScript interpreters and thus our Web

version of the LCC interpreter has been also developed in JavaScript. Moreover,

JavaScript incorporates functional programming capabilities and makes the event-based

programming possible, which share common features with process languages like LCC

and many of them are strait forward to be implemented in JavaScript. On the other

hand, one of the differences between XMPP and HTTP is that HTTP is a stateless pro-

tocol but XMPP is stateful. This statefulness is an essential requirements for running

IMs in LCC. We use Bidirectional-streams Over Synchronous HTTP (BOSH) 5 here

for connecting HTTP requests with XMPP servers from inside browsers due to the

unavailability of TCP connection there. Our IM Web Interpreter is discussed in detail

below.

4.2.1 Bridge HTTP and XMPP

Since browsers normally have restrictions on supported protocols and have not widely

supported XMPP, it is impossible for users to create direct connections from browsers

to XMPP servers. XMPP requires a long term TCP connection between the client and

the server, which cannot be realised via HTTP’s very short term connection. Therefore,

if users want to connect with XMPP servers from inside browsers using HTTP, there

must be a proxy-like middleware to reconcile these two different protocols. BOSH is

4http://www.openk.org/okeilidh
5http://wiki.xmpp.org/web/Tech_pages/BOSH

http://www.openk.org/okeilidh
http://wiki.xmpp.org/web/Tech_pages/BOSH

72 Chapter 4. Interaction Model Execution on a P2P Communication Layer

a transport protocol that emulates a bidirectional stream between two entities (such as

a client and a server) by adopting multiple synchronous HTTP request/response pairs

without requiring the use of polling or asynchronous chunking (Paterson et al., 2010).

In this specification, we use BOSH to forward HTTP requests to XMPP servers. There

are currently two types of BOSH connections. Firstly, the XMPP server itself can ex-

pose a BOSH HTTP endpoint to outside but this endpoint can however just be used

for connecting with one delegated server; Secondly, an increasing number of stand-

alone BOSH proxies have been or are being implemented and they can be used for

connecting any XMPP servers which published their Service Record (SRV). The latter

type of the XMPP proxy needs to be powerful since there could be hundreds of thou-

sands of clients try to connect with various XMPP servers through this proxy which in

this case the proxy needs to curate a great number of long term TCP connections and

cause large overhead on itself. Still, the stand-alone proxy solution is recommended

because of its flexibility and possible higher quality than the former endpoint solution.

OKeilidh harnesses public stand-alone bindings of HTTP and XMPP.

4.2.2 Overview of XLCC Grammar

The LALR(1) parser and lexical analyser has been used for creating our eXtended

Lightweight Coordination Calculus (XLCC) Web interpreter (XLCC is an extended

version of LCC and dedicated to the Web ecosystem on top of the Internet). Compared

with LCC, XLCC allows peers to script IMs via JavaScript-aware user agents such as

Web browsers as discussed in (Bai et al., 2012). The Backus-Naur Forms (BNFs) of

LCC are not discussed here and have been detailed in (Robertson, 2004) and Table 4.1

describes the BNFs of XLCC.

The grammar overview of XLCC is described as in Table 4.2 (LHS stands for the left-

hand side and RHS stands for the right-hand side). Note that since XLCC will be

interpreted in JavaScript, JavaScript Object Notation (JSON), as a lightweight data-

interchange format based on a subset of JavaScript, is supported and recognised as

a default data model (e.g., the subscription information can be fed into the XLCC

interpreter as a JSON object). The state overview, the pop table, the action table and

the goto table related to XLCC parsing are listed in Appendix A.

4.2. Peer-based IM Execution Design 73

Table 4.1: XLCC syntax

IM := Clause List|head(Constant). Clause List

Clause List := Clause|Clause List

Clause := Role :: Def .|Role.|plays(Constant, Constant).|knows(Constant).|iid(Constant).

Role := a(Type, Id)

Def := Message|Def then Def |Def or Def |Def niob Def |{ Def }
Message := M ⇒ Role|M ⇒ Role← C|M⇐ Role|C ←M ⇐ Role|null ← C|Role|Role ← C

C := Constant|Constant()|Constant(Terms)|C && C|C || C|list(Variable, Variable, Variable)

C = C|C Operator C|not(C)

Terms := Term, Terms|Term

Type := Term

Id := Constant|Variable

M := Constant(Term)

Term := Constant|Variable|Constant(Terms)|
Operator := ==|! =|>|<|>=|=<

Constant := lower case character, sequence or number

Variable := upper case character, sequence or number

4.2.2.1 Interpreter Input

Besides the LCC code, the LCC Web interpreter needs extra information to run an

interaction. For instance, the interpreter needs to know which role defined inside a par-

ticular IM is associated with which peer. Since each involved peer also needs to know

which OKC(s) provided by itself has been registered in the peer community before the

interaction, this information about OKCs should also be fed into the interpreter to help

peers “recall” these predefined OKCs on their servers. This kind of information can

be serialised in any formats which are friendly for data exchange on the Web. We use

JSON here due to its reputation for high processing speed and scalability (Crockford,

2006). Then the final data fed into the interpreter contains two sections: The header

section is the subscription information serialised in JSON and the body section is the

IM coded in LCC. An example input of our LCC Web interpreter is given in Figure 4.2.

Note that the interpreter identifies each interaction within the running of an IM by

giving each of them an interaction ID. An interaction ID is a unique identifier gener-

ated from a particular peer community which triggered this interaction. Since there

exists more than one community on the Web and peers may interact with those ones

from other communities, if the interaction IDs were not defined carefully, some of

74 Chapter 4. Interaction Model Execution on a P2P Communication Layer

Table 4.2: XLCC grammar overview

Grammar Overview

Left-hand side FIRST-set Right-hand side

IM’ head plays knows iid a IM

Clause List a Clause

Clause Clause List

BuiltIn List plays knows iid BuiltIn

BuiltIn BuiltIn List

IM head plays knows iid a Clause List BuiltIn List

BuiltIn List Clause List

head (JSONLIST) . Clause List

Clause List head (JSONLIST) .

head (JSONLIST) . Clause List BuiltIn List

head (JSONLIST) . BuiltIn List Clause List

Clause a Role :: Def .

Role .

Role a a(Type , Id)

Def { null a Constant not Variable LIST String list Interaction

Def then Def

Def or Def

Def niob Def

{ Def }
BuiltIn plays knows iid plays (Constant , Constant) .

knows (Constant) .

iid (Constant) .

Type Constant Variable LIST String Term

Id Constant Variable LIST String Constant

Variable

LIST

String

Term Constant Variable LIST String Constant

Variable

LIST

Constant (Terms)

String

Interaction null a Constant not Variable LIST String list Message => Role

Message => Role <- Constraint

Message <= Role

Constraint <- Message <= Role

null<- Constraint

Role

Role <- Constraint

Message Constant Constant(Terms)

Constraint Constant not Variable LIST String list Constant

Constant ()

Constant(Terms)

not(Constraint)

Id == Id

Id != Id

Id > Id

Id < Id

Id >= Id

Id =< Id

Variable = Id

Constraint && Constraint

Constraint || Constraint

list (Id , Id , Id)

Terms ConstantVariableLISTString Terms , Term

Term

them could overlap. These overlapped IDs may cause issues within the processes of

running IMs because they have the same identifier but represent different interactions,

respectively. Therefore, we attach the above interaction ID (e.g., a unique timestamp

plus the secure hash of the IM Uniform Resource Identifier (URI)) with the ID of the

4.2. Peer-based IM Execution Design 75

head(
[
{

jid : "admin@okbook.inf.ed.ac.uk",
role: ",
roleType : "trigger",
okcs : [],
iid : "XYZ"

}
,
{

jid : "alice@okbook.inf.ed.ac.uk",
role : "client",
roleType : "initial",
okcs : ["http://okbook.inf.ed.ac.uk:8188/okbook/im/alice.js"]

}
,
{

jid : "bob@okbook.inf.ed.ac.uk",
role : "shop",
roleType : ",
okcs : ["http://okbook.inf.ed.ac.uk:8188/okbook/im/bob.js"]

}
]

).

a(client(PC, CC), C)::

buy(PC, CC)⇒ a(shop, S)← payby(CC) && lookup(S) then

receipt(R)⇐ a(shop, S).

a(shop, S)::

buy(PC, CC)⇐ a(client(),C) then

receipt(R)⇒ a(client(), C)← enough credit(CC, PC)&&

complete order(PC, CC, R).

a(client("Harry Potter", "8686868686868686"), C).

Figure 4.2: Simple trade IM in XLCC with the header

community which triggered this interaction to form a unique ID for each interaction

on the whole network, which is here called the cross-Community Interaction ID (XCI

ID). Peer communities use XCI IDs to trace interactions triggered by themselves. On

the other hand, a specific peer may interact with more than one group of peers simul-

taneously and a message routing mechanism is required to distinguish incoming and

outgoing messages since this peer may receive messages belonging to different interac-

76 Chapter 4. Interaction Model Execution on a P2P Communication Layer

tion processes. According to RFC 3920 6, a full Jabber ID (JID) may have a resource

binding that indicates which resource has the higher priority than other resources in

terms of handling and processing messages passed around. Here, in order to make

peers differentiate messages coming from different interactions, we use the above XCI

ID as the JID resource name, which will behave like a channel for each peer, with all

the messages belonging to a particular interaction being filtered out based on this XCI

ID and further processed by the interpreter interpreting the corresponding IM. But how

do we deal with an extreme case in which an IM has more than one instance (inter-

action) triggered by the same community server, involving the same group of peers

and starting at the same time? To address this problem, we further improve the XCI

ID by adding a random factor to the original timestamp to generate a new randomised

timestamp. All in all, In terms of the above analysis, an interaction can be identified by

its XCI ID whose value will be influenced by the triggering community, the triggering

time, the corresponding IM and a random factor over the triggering time.

As aforementioned, each peer has a LCCI running on itself and a single LCCI is sup-

posed to be dedicated to the LCC clause(s) which defined the role(s) its owner peer is

about to play. Therefore, the community server will hide other irrelevant LCC clauses

(i.e., other role definitions) and segments of sensitive information (e.g., the OKC loca-

tions of other peers) for the sake of privacy before sending the triggering information

to each peer that will be involved later on. During the execution of IMs, each involved

peer’s states will be maintained by its installed interpreter and these states (recognised

as key-value pairs by the LCCI) could be also wrapped in messages being passed be-

tween peers. This has been discussed in (Robertson, 2004) as an alternative method for

peer coordination. However, since the peer interaction is a message-intensive process

which may cause considerable overhead on the network node with limited bandwidth

or resources allocated on each of them. LCCIs do not allow peers to pass around their

states (which may be sensitive or confidential) via messages.

4.2.2.2 Interpreter Output

The output of the LCC Web interpreter will be generated and sent back to the peer com-

munity which triggered a specific interaction after every interpreter on each involved

peer is terminated. This termination can be caused when an interaction is finished

6http://xmpp.org/rfcs/rfc3920.html

http://xmpp.org/rfcs/rfc3920.html

4.2. Peer-based IM Execution Design 77

successfully (there is no more XLCC code that needs to be executed for all involved

peers) or when some exceptions/errors occur during the interaction. Since for each in-

teraction, the involved peers will finish their jobs and leave the interaction seperately.

So in the body of each XMPP message, there needs to be an indicator to show how

many involved peers had finished their interactions when the message is created in or-

der to inform the peer community of the progress on peer interactions. Based on the

interpreter input described in Section 4.2.2.1, each peer can know how many peers are

involved in a particular interaction by parsing out the JSON header of the correspond-

ing IM forwarded to itself beforehand. The value of the indicator will be increased as

the interaction progresses. If the number of peers is equal to the value of the indicator

plus one, the interaction is finished and there will not be any message passing after-

wards. Peers need to know when they should increase the value of the indicator and

this requires locally-installed LCCIs to look ahead to the rest of their role definitions

before sending out any messages. In other words, each interpreter needs to pend the

sending of a message and check if the peer will be waiting for a new incoming message

or will send another message out in the near future. If not, the value of its indicator will

be consequently increased by one, and otherwise, the value stays the same as before.

Figure 4.3 depicts how this method works using an dummy IM in which messages are

passed in a circle. From this IM, we can see that Bob will first finish his interaction

job and MSG2, containing the indicator about this accomplishment, will be sent to

Carol. Then Carol finishes her interaction job and the value of this indicator will be

changed and sent to Alice who is the last peer that finishes its interaction job. After

that, Alice’s LCC interpreter will send a message informing the original interaction

trigger sub1.okbook1.com of the accomplishment of the whole interaction. Note that

the arrow lines with dots denote that the messages is not passing directly but via XMPP

servers.

The advantage of this method is that there will be only one message sent from the

last peer which is on completion of its interaction duty and before that the commu-

nication server does not have to record any accomplishment information from any

other involved peers. However, since there is only one shared indicator, some message

passings mayneed to be pending, which could block both the interaction to which the

indicator is associated and other interactions possibly running at the same time. In

this case, all other potential message recipients cannot get messages from the same

message sender. There is another issue for this method when there is no single “last

78 Chapter 4. Interaction Model Execution on a P2P Communication Layer

sub1.okbook1.com sub2.okbook1.com

bob@sub1.okbook1.com carol@sub2.okbook1.com

X
M

P
P

://

X
M

P
P
:/
/

XM
PP://

OKBook

OKBook

XMPP://

alice@sub1.okbook1.com

a(r1, alice@sub1.okbook1.com)::

MSG1 => a(r2, bob@sub1.okbook1.com) then

MSG3 <= a(r3, carol@sub2.okbook1.com).

a(r2, bob@sub1.okbook1.com)::

MSG1 <= a(r1, alice@sub1.okbook1.com) then

MSG2 => a(r3, carol@sub2.okbook1.com).

a(r3, carol@sub2.okbook1.com)::

MSG2 <= a(r2, bob@sub1.okbook1.com) then

MSG3 => a(r1, alice@sub1.okbook1.com).

M
S

G
1

MSG2 (Bob’s interaction is finished)

M
SG

3
(Carol’s

interaction
is

finished)

trig
e
r()

fin
is

h
e
d
()

Figure 4.3: Interaction accomplishment indicators are wrapped in messages

recipient” for the running of a specific IM. Figure 4.4 illustrates this issue by giving

an interaction with more than one last recipient. We can see that Alice sends a mes-

sage to Bob and Carol respectively and there is no interaction between Bob and Carol.

So within this interaction, Bob and Carol both think themselves as the last recipient

and unsurprisingly, two finishing signals will confuse the trigger peer. Thus, another

method needs to be designed here to address the above issue.

As mentioned earlier, based on our peer community design, it is recommended that

each community server also has an cross-domain instant-messaging service installed

so we can let involved peers ping the community server which triggered the interaction

when each peer finishes its interactive task. In this case, the community server needs

to maintain an interaction accomplishment list and every time when it gets a ping from

a involved peer it will update the state of this peer in the list and check if all the peers

have done their jobs. This maintenance will not cause extra burden on community

servers since each of them has already got a list of peers’ subscriptions and the ac-

complishment information can be just attached to that list as an extra property for each

participant. This however requires that, in the header section of every message, there

needs to be a JSON object which contains the information about the trigger such as

the Uniform Resource Locator (URL) or JID (or both) for identifying and pinging the

community server. Figure 4.5 depicts how this method works on the same IM already

described in Figure 4.3. Bob is the peer who first sent his interaction accomplishment

4.2. Peer-based IM Execution Design 79

sub1.okbook1.com sub2.okbook1.com

bob@sub1.okbook1.com carol@sub2.okbook1.com

X
M

P
P

://

X
M

P
P
:/
/

XM
PP://

OKBook

OKBook

XMPP://

alice@sub1.okbook1.com

a(r1, alice@sub1.okbook1.com)::

MSG1 => a(r2, bob@sub1.okbook1.com) then

MSG2 => a(r3, carol@sub2.okbook1.com).

a(r2, bob@sub1.okbook1.com)::

display(MSG1) <- MSG1 <= a(r1, alice@sub1.okbook1.com).

a(r3, carol@sub2.okbook1.com)::

display(MSG2) <- MSG2 <= a(r1, alice@sub1.okbook1.com).

M
S

G
1

M
SG2

(Bob’s interaction
is finished)

trig
e
r()

fin
is
he

d(
)

finished()

Figure 4.4: Indicator relay for the two-last-recipient case

signal to the trigger sub1.okbook1.com and Carol is the second. After the trigger gets

the signal from Alice, it will know the whole interaction is accomplished. Thanks to

the maintained list on each server, this method can therefore distinguish accomplish-

ment signals coming from different participants and will not have the issue depicted in

Figure 4.4.

sub1.okbook1.com sub2.okbook1.com

bob@sub1.okbook1.com carol@sub2.okbook1.com

X
M

P
P

://

X
M

P
P
:/
/

XM
PP://

OKBook

OKBook

XMPP://

alice@sub1.okbook1.com

a(r1, alice@sub1.okbook1.com)::

MSG1 => a(r2, bob@sub1.okbook1.com) then

MSG3 <= a(r3, carol@sub2.okbook1.com).

a(r2, bob@sub1.okbook1.com)::

MSG1 <= a(r1, alice@sub1.okbook1.com) then

MSG2 => a(r3, carol@sub2.okbook1.com).

a(r3, carol@sub2.okbook1.com)::

MSG2 <= a(r2, bob@sub1.okbook1.com) then

MSG3 => a(r1, alice@sub1.okbook1.com).

M
S

G
1

MSG2

M
SG

3

trig
e

r()

A
lic

e
’s

in
te

ra
c
tio

n
is

 fin
is

h
e
d

Bob’s

interaction
is

finished

Carol’s interaction is finished

Figure 4.5: Interaction accomplishment signals are sent to the trigger

80 Chapter 4. Interaction Model Execution on a P2P Communication Layer

4.2.3 Security

Security in the peer-to-peer community is provided by message encryption, platform

authentication and authorisation. As discussed in Section 4.1, XMPP has been em-

ployed as the message passing protocol and based on its specifications (Saint-Andre,

2004), the robust security which is achieved via Simple Authentication and Security

Layer (SASL) 7 and Transport Layer Security (TLS) 8 has been built into the core.

Alternatively, other appropriate certification authority, digital certificate or encryption

technique may be used here alternatively to solve possible security issues. However,

discussion of this is out of the scope of this thesis.

4.3 Event-Driven Concurrent Interpretation of IMs

Each IM is a work-flow description of an interaction between peers and their obliga-

tions (reflected by constraints). Actually, every IM models a process driven by diverse

events including constraint solving and message passing, etc. Some events may trigger

other events that influence activities operating in parallel. Multi-threads (or processes)

and event-driven single thread are two typical ways of enabling this sort of concurrent

programming, and both of them have pros and cons. The former way is straightforward

to implement and has been boosted with the development of multi-core processors but

suffers from overhead of configuration, initialisation and memory consumption. The

latter way is more complicated to implement compared to multi-threads (or processes)

but is more lightweight and scales to environments with massive computation units

such as peer-to-peer networks. Traditional event-driven programming requires the

thread to be blocked when an I/O event occurs during the execution progressing. The

I/O operation will occupy the whole thread so other operations, which do not require

the I/O operation to be finished and could run simultaneously, will be unnecessarily

blocked and wait until that I/O blocking is unblocked. Under this circumstance, as

time goes by, it is not surprising that considerable computing resources will be wasted

due to some unnecessary I/O blocks. Message passing is a key operation within the

process of running IMs and demands careful design to tackle the potential scalability

issue but so far little attention has been paid to the optimisation. In this section, by

7http://tools.ietf.org/html/rfc4422
8http://tools.ietf.org/html/rfc5246

http://tools.ietf.org/html/rfc4422
http://tools.ietf.org/html/rfc5246

4.3. Event-Driven Concurrent Interpretation of IMs 81

taking advantage of both thread-driven programming and event-driven programming,

we propose an efficient way of interpreting IMs, which also incorporates non-blocking

I/O mechanism.

On that basis, here we employ the Event-based Asynchronous Pattern (EAP), one of

concurrency design patterns, to interpret IMs coded in LCC.

4.3.1 IM Events

Based on the design of LCC, so far four types of interaction-related events have been

extracted as follows (Within the process of running IMs, these events will be curated

in a so-called event list and functions attached to them will be executed after the events

are emitted.):

1. OKC Loaded Events. This kind of events will be registered in the event list as

soon as an IM starts running and will be emitted when the OKCs provided by an

involved peer are all loaded into its runtime environment (i.e., a browser). Mul-

tiple OKC files may be harnessed and in order to improve the loading efficiency,

peers are allowed to load them asynchronously. This requires peers to possess

knowledge about the how many OKCs are going to be used and also maintain

a counter to check if all the OKCs needed have been loaded. Each loading will

trigger a callback function in which the value of the OKC counter will increase

by one.

2. Message Arrival Events. This kind of events will be registered in the event list

as soon as the LCC interpreter encounters a message receiving definition during

the parsing of the IM and will be emitted when an external message actually

arrives. As already defined in Table 4.1, a message-receiving definition in LCC

is in the form of either Constraints ← Message ⇐ Peer or Message ⇐
Peer.

3. Next Then Events. This kind of events will be registered in the event list as

soon as the LCC interpreter encounters the operator then during the parsing of

the IM code and will be emitted when the left-hand-side definition (of then) is

successfully executed (true is returned). If not successful, the whole interaction

will be terminated and an exception will be thrown and later bought by a specific

handler.

82 Chapter 4. Interaction Model Execution on a P2P Communication Layer

4. Next Or Events. This kind of events will be registered in the event list as soon as

the LCC interpreter encounters the operator or during the parsing of the IM code

and will be emitted when the left-hand-side definition (of or) is not successfully

executed(false is returned). if successful, this event will be removed from the

event list and never be emitted in the rest interaction.

Modern Web browsers are designed based on the Publish/Subscribe which is by nature

one of models for event-based programming and this also influenced us to materialise

our event-driven LCC interpreting in browsers.

4.3.2 Non-Blocking Messaging

As aforementioned, significant overhead during the IM execution will be caused by

message passing and a message-intensive system such as the one capable of running

IMs requires a non-blocking I/O architecture to mitigate the efficiency problem. Tra-

ditional virtual machines have been designed to support multiple processes/threads so

in this case, each IM execution will make a virtual machine either fork a new process

or spawn a new thread to handle itself. In each thread, if there is an I/O event, the

whole thread will be blocked so other actions following this will be suspended and

tremendous time will be wasted on waiting for the I/O to finish or in even worse case,

the I/O action will not finish properly so the waiting will be infinite until a preset time-

out is reached. Modern browsers normally are single-threaded (Google Chrome has

one thread for each tab) and support non-blocking I/O natively. Our LCC interpreter

has been designed to run in the browsers and thanks to its non-blocking I/O design,

considerable resources and time will be saved during the running of IMs, as indicated

by the experimental results in Section 7.3.

4.3.3 Design of the niob Operator

LCC originally had the operator par to connect definitions that will be expanded in par-

allel and this requires the virtual machine to fork two processes or spawn two threads

in a single process to perform these parallel tasks. As discussed above, this type of

concurrency programming is expensive and computational resources could inevitably

wasted, especially when lots of I/O blackings occur. Event-driven programming har-

nessing I/O blocking can provide a relatively lightweight way to run a lightweight

4.3. Event-Driven Concurrent Interpretation of IMs 83

language like LCC but since message passing play a key role in IM executions, the

I/O blocks during peers’ interactions will bring considerable delays in the whole ex-

ecution process. Therefore, we propose a novel operator niob here to make XLCC

leverage the event-driven interpretation with non-blocking I/O, which can improve the

efficiency on the message-intensive peer interaction.

Besides par, there are currently two operators to determine the message sequence in

LCC clauses: then and or. The former describes the left-hand side def denoted by

S1 will be completed first and after that, the right-hand side def denoted by S2 will

be completed. The later describes either S1 or S2 will be completed while S1 will be

attempted first. Now with the new operator niob, we have the following interpretation

(in Javascript-like pseudo code) for three operators supported in XLCC:

Table 4.3: Interpretation for sequence operators in XLCC

Operators Interpretations

S1 then S2 execute(S1, function(err) {
if (!err) execute(S2);

});
S1 or S2 execute(S1, function(err) {

if (err) execute(S2);

});
S1 niob S2 excute(S1); execute(S2);

In Table 4.3, callback functions are used for assuring the strict execution sequences

for then and or in which S1 will be completed first and S2 will be attempted in the

callback body with the err parameter which indicates whether the completion of S1

is successful or not. However, in the niob sequence, there is no callback function so

in this case, if there is a message passing that occurs in S1, the execution of S2 will

not be blocked if it does not share any variables updated in S1. Note that the XLCC

interpreter employs lazy evaluation to interpret the XLCC codes.

4.3.4 Handling Multiple niob Operators

As of now, we have introduced a new operator to materialise the non-blocking I/O

within the processes of running IMs which involve one or more messages. The ex-

84 Chapter 4. Interaction Model Execution on a P2P Communication Layer

ecution of a specific IM which does not have message passing will not benefit from

applying niob operators so suppose S1 and S2 are two def s without message passing

and we have the following formula showing that in this case niob can be replaced with

then.

S1 niob S2 ⇔ S1 then S2 (i f neither S1 nor S2 has ⇐ or ⇒) (4.1)

In order to interpret IMs with more than one niob operator, the LCCI needs to take

more care about the relations between them. Assume there are n niobs ({n|n≥ 2,n ∈
N}) appear in a single role definition which is consequently split into n+ 1 segments

named as niob contexts as shown as follows:

a(role,X) ::

T henOrDe f

...

T henOrDe f

context1

niob−−−−−−−niob1

T henOrDe f

...

T henOrDe f

context2

niob−−−−−−−niob2

...

niob−−−−−−−niobn

T henOrDe f

...

T henOrDe f .

contextn+1

During the running of an IM, the defs belonging to a particular context will be exe-

cuted in sequence (blocking I/O) and the defs from different context may be however

executed in an arbitrary sequence that depends on the progress in each context. Each

IM has a default niob context even if it does not employ any niob operator so all defs

derived from this default context will be also executed in sequence. In the LCCI, each

context will be maintained with a specific identifier by which the rest defs will be

resumed after the main thread comes back to that context.

4.3. Event-Driven Concurrent Interpretation of IMs 85

4.3.5 XLCC Semantics

The semantics of XLCC mainly inherits the operational semantics originally defined

in LCC (see in (Robertson, 2004)). Also, XLCC has extended LCC by bringing in

a new operator and several built-in predicates. As mentioned in (Robertson, 2004),

LCC does not prescribe the means of transmitting messages, but since XLCC has been

designed as a browser-focused service choreography scripting language in this thesis,

the semantics behind message passing in a peer-to-peer manner needs to be grounded.

4.3.5.1 Messaging

In XLCC,⇒ and⇐ denote sending a message to and receiving a message from another

peer respectively. In order to achieve peer-to-peer message passing, any cross-domain

messaging protocol could be used here for serving this purpose. By “cross-domain”,

we mean any messaging client is able to fulfil incoming connections in either a physical

manner or a logical manner.

4.3.5.2 Concurrency

XLCC has not employed the par operator originally designed in LCC and instead

invents the niob operator which is inspired by non-blocking I/O to achieve the concur-

rent computing. The niob operator is a binary operator and differentiate itself from the

then operator by removing the unnecessary I/O blocking when the left-hand-side def

is evaluated. As soon as a message reading is encountered, the XLCC interpreter will

create a callback function and wrap all the remainder of the left-hand-side, which has

not been evaluated, into this function, and after that, the interpreter will begin to eval-

uate the right-hand-side def of niob. During this evaluation, if the message passing

(which occurred when the left-hand-side sub-clause was evaluated) finishes, a callback

signal will be sent back to the interpreter from the listening socket and the correspond-

ing callback function will be retrieved and evaluated immediately afterwards. After

this moment, the evaluation of the right-hand-side sub-clause may or may not have

finished. If not, the remainder of the def will be appended to a queue maintained

internally by the XLCC interpreter and as soon as the evaluation of the left-hand-side

def finishes or another message passing occurs, the interpreter will grab that remainder

of the queue and resume the evaluation on it. On the other hand, if the left-hand-side

86 Chapter 4. Interaction Model Execution on a P2P Communication Layer

of niob does not involve any message passing, the evaluation will proceed exactly the

same when the then operator would be applied. Under this circumstance, the niob

operator can be substituted by the then operator, as already described in Equation 4.1.

4.3.5.3 Built-In-Predicates

At time of writing this thesis, XLCC is still evolving and has following built-in predi-

cates which will handle diverse supportive information required by the IM execution.

a. plays: This predicate defines which peer will play which role during the IM

execution. It has two parameters, the first of which denotes the peer’s ID and

the second one denotes the role name. This predicate does not need to support

the multi-role selection since if a peer intends to play multiple roles defined in

the same IM, role changing would be applied here to serve the same purpose.

Hence, a peer just needs to select the entry role to play using this predicate.

b. knows: This predicate defines which OKC(s) the current logged-in peer will

provide. It has a single parameter which denotes the URL of the OKC document.

Multiple OKC URLs can be specified by repetitively employing this predicate.

c. iid: This predicate defines the universal ID (a.k.a., XCIID describe din Sec-

tion 4.2.2.1) of an interaction which denotes a one-time execution of a specific

IM. It has a single parameter which denotes the XCIID. The value of this ID can

be generated by a community peer (Bai et al., 2010) which is about to trigger

this interaction.

d. list: This predicate mimics the list operations in Prolog which inspired the

original design of LCC. It has three parameters, the first of which denotes the

whole list while the second and the third ones denote the head and the tail of this

list respectively.

4.4 Overall Platform Architecture

So far, we have a redesigned communication layer supporting peer-to-peer message

passing and the way of integrating this layer into OKBook discussed in Chapter 3, and

constituting a fully functional knowledge sharing ecosystem is actually pretty much

4.4. Overall Platform Architecture 87

straightforward and will be discussed in this section. As aforementioned, each OK-

Book peer will persist information about peers’ subscriptions till the actual interaction

is triggered. During this persisting process, each new subscription will make the OK-

Book peer check if all the roles in the target IM have been filled with at least one peer.

If they are, an IM execution will come into the launching stage and otherwise, the

execution will be pending for the time being and conducted later when all the roles

are filled. For the role(s) which has(have) multiple peers attempting to play, through

OKBook other role players will have a chance to vote for their favourite peer(s) they

want to interact with. It can be a basic five-star voting and peers which are waiting

to be voted will have initial ranks on the basis of their historical performances. After

synthesising the votes, the OKBook peer will select peers, either with highest votes

or with no competitor for a particular role, as a collaborative team for an interaction

(peers with the same number of votes will be randomly selected). Thereafter, the

OKBook peer will assign each team member an interaction-triggering URL with the

subscription information as the URL parameters. Every time a peer is logged in, it

can access its pending-interaction page displaying those interaction-triggering URLs

(behind each of which there is an interaction waiting to be triggered). When the peer

clicks on a specific URL, a service on OKBook will be called with those attached URL

parameters based on which the OKBook peer will automatically generate and embed

the required XLCC code into a Web document. Finally, this kind of documents will be

reduced into the peer-side browsers which will commence interacting with other team

members on behalf of the current logged in peers. Figure 4.6 describes a sequence di-

agram about choreographing Web Service (WS) from the perspective of a single peer

and the OKBook server on which it is logged.

According to previous discussions, the peer side layered architecture and the OKBook

side layered architecture are summarised and depicted in Figure 4.7 and Figure 4.8,

respectively. The former contains two layers in Figure 4.7: the representation layer

and the communication layer, both of which are also contained by the OKBook side

architecture but on OKBook, the representation layer does not provide the profile an-

notator and moreover, the communication layer is not installed with any LCCI. Besides

the above two layers, the OKBook side architecture contains an acquisition layer and

a discovery layer in between, and as shown in Figure 4.8, both the representation layer

and the acquisition layer need the PuSH implementation.

It is worth noticing that when having one or more pending interactions displayed on

88 Chapter 4. Interaction Model Execution on a P2P Communication Layer

Peer OKBook

serach_for_im(keywords)

subscribe_to(im)

serach_result(res)

finished(signal)

push(document)

Figure 4.6: Choreographing WS from a single peer’s perspective

Figure 4.7: Layered architecture of a peer

OKBook, a peer will be provided with two environments to actually run the IM(s) be-

hind those interactions, as described in Figure 4.9. One of environments is named as

4.4. Overall Platform Architecture 89

Figure 4.8: Layered architecture of OKBook

theexecuting environment, in which all the peer needs to do is clicking a start button

to fire an interaction or use the annotator to semantically enhance the current IM and

republish it. The other environment is named as the debugging environment, in which

the peer side browser will be equipped with more functionalities provided by OKeilidh

in order to enable peers with professionals on both XLCC and JavaScript to debug and

improve the current IM, configure the BOSH endpoint, and also import or generate

OKCs on the fly if needed. Screenshots on IM editing and other supplementary func-

tionalities in the OKeilidh debugging environment can be found in Figure 4.10 and

Figure 4.11, respectively.

Figure 4.9: Screenshot on pending interactions

90 Chapter 4. Interaction Model Execution on a P2P Communication Layer

Fi
gu

re
4.

10
:

S
cr

ee
ns

ho
to

n
ed

iti
ng

an
IM

in
O

K
ei

lid
h

4.4. Overall Platform Architecture 91

Figure 4.11: Screenshot on creating OKCs with a template snippet

Summary

In this chapter, the underlying message passing mechanism employed by OKBook

is described as the redesign of the communication layer of OpenKnowledge. Even

though LCC does not prescribe that mechanism, in order to function in the Web en-

vironment, the LCCI needs to ground semantics behind the mechanism in one way

or another and OKBook chose an effective and efficient way to synthesise Web-based

peer-to-peer communication protocols and a concurrent implementation which does

not allow blocking I/O within the progress on interactions. In the next chapter, we will

look further into the messages themselves to see how annotations can semantically

enhance IMs and benefit peer interactions, and how to (semi)automatically generate

annotations.

Chapter 5

Interaction Models as Semantic Web

Documents

Several solutions exist for semantically describing Web Services (WSs) from the per-

spective of orchestration but little is known about how semantics benefit WS chore-

ography. The most extreme challenge encountered by a choreography task occurs in

peer-to-peer systems where shared semantics of data may need to be established via

service interactions. In this chapter, we present a solution to this problem by sharing

metadata via semantically enhanced Interaction Models (IMs) and since no pre-unified

ontology is required in our approach, peers can make use of existing heterogeneous

resources having been described in the Resource Description Framework (RDF) data

model flexibly and compatibly. The experimental results in Chap 7 indicate that our

approach can semantically enhance WS choreography (described in Lightweight Co-

ordination Calculus (LCC)) in a lightweight way which complies with principles of

Linked Data and published IMs with suitable semantic annotations can further facili-

tate the development related to other available linked WSs in one way or another (e.g.,

the formation of peer communities generated through peers’ interactions). The remain-

der of this chapter is described as follows. Section 5.1 gives the motivations behind

annotating IM documents. Section 5.2 designs an interaction-dedicated vocabulary

which underpins the whole annotation process. Section 5.3 details the mechanism

behind the generation of annotation-embedded documents and how these annotations

will be consumed. Section 5.4 introduces an auxiliary tool, which can help publish-

ers to generate IMs semiautomatically based on existing RDF triples, and describes its

internal architecture.

93

94 Chapter 5. Interaction Models as Semantic Web Documents

5.1 Motivations

In a peer-to-peer network, peers are equal to each other from the perspective of au-

tonomy and each of them has both server and client capabilities as mentioned earlier.

From the perspective of choreography, peers collaborate through interactions in this

thesis and LCC has been used for describing the choreographies inside the peer-to-

peer network. Although our approach employs LCC here, the specific choice of the

process language is not essential to the core arguments of this chapter, which means

other choreography languages could be used for the same purpose but, since LCC has

been carefully designed as a neat and lightweight languages based on the process cal-

culus, we recommend it to peers who expect to avoid possible overheads caused by

the understanding of the execution of choreography description languages. The syntax

of LCC is described in (Robertson, 2004) and this thesis employs eXtended Light-

weight Coordination Calculus (XLCC) as its extended version, whose syntax has been

described in Table 4.1.

IMs work as protocols which direct involved peers to interact with one another and

LCC has first-class processes, which means it treats processes as first-class objects. A

first-class object is an entity that can be constructed at run-time, passed as a parameter

to a subroutine, returned as the result of a subroutine, assigned in variables and data

structures or have an intrinsic identity (Scott, 2009). In order to choreograph peers’s

services, we have this choreography description language now but how do peers share

the meanings behind these IMs in the peer-to-peer environment? Figure 5.1 describes

a journey-planning IM in XLCC involving six roles including one role-change.

The concepts employed in LCC are lightweight and message passing ocurring under

particular satisfiable conditions is a key which is easy for IM publishers to understand

and define. However, LCC’s lightweight feature also has its downsides due to there

being no explanation about any of the elements (e.g., roles, messages and constraints)

inside IMs so it is difficult if not impossible for a peer to easily recognise whether an

IM is exactly the one he/she really need. Unfortunately, the vocabulary employed by

the IM in Figure 5.1 is not fully machine-readable, nor is it easy for humans to under-

stand. For instance, we cannot understand what CC denotes unless the original pub-

lisher has added free text comments as shown in between /∗ and ∗/ in Figure 5.1. The

IM publisher could use more self-descriptive names for arguments, like CreditCard

instead of CC but this does not help from the perspective of machines unless there is

5.1. Motivations 95

/∗ First, a traveller T sends to a travel agent TA the times and locations of her departure

and arrival. Second, TA normalises the query and sends it to a CRS (Carrier Routing

System) C which will generate routes from the journey start and endpoint information.

TA also sends the journey query to an evaluation unit E in order to constantly get

latest statistics on travellers’ queries. Third, C sends each generated route to a GDS

(Global Distribution System) G to obtain costs for each route and then sends journey

information back to TA, which will reprice each journey and also generate final options

for T . After receiving a message with journey options from TA, T makes a choice and

notifies a TMC (Travel Management Company) TM for booking by her credit card.

Finally, TM sends the ticket and the receipt back to the interaction initiator T . ∗/

a(traveller, T)::

search(Departure, Arrival, DepTime, ArrTime) ⇒ a(tavelAgent, TA) then

display(Options) ← options(Options) ⇐ a(travelAgent, TA) then

book(JourneyID, CC) ⇒ a(tmc, TM) ← chooseJourney(Options, JourneyID) && payby(CC) then

booked(Tickets, Receipts) ⇐ a(tmc, TM).

a(travelAgent, TA)::

search(Departure, Arrival, DepTime, ArrTime) ⇐ a(traveller, T) then

journeyQuery(Query) ⇒ a(crs, C) ← normalise(Departure, Arrival, DepTime, ArrTime, Query) then

recommend(Journeys) ⇐ a(crs(Routes, Journeys), C) then

options(Options) ⇒ a(traveller, T) ← repricing(Journeys, Options) then -----> niob

record(Query) ⇒ a(evaluator, E) then

evaluation(Statistics) ⇐ a(evaluator, E).

a(crs, C)::

journeyQuery(Query) ⇐ a(travelAgent, TA) then

a(crs(Routes, []), C) ← findRoutes(Query, Routes).

a(crs(Routes, Journeys), C)::

recommend(Journeys) ⇒ a(travelAgent, TA) ← Routes == [] or

{
priceQuery(Route) ⇒ a(gds, G) ← list(Routes, Route, RestRoutes) then

price(Route, Price) ⇐ a(gds, G) then

a(crs(RestRoutes, Builtup), C) ←list(Builtup, [Route, Price], Journeys)

}.

a(gds, G)::

priceQuery(Route) ⇐ a(crs(Routes, Journeys), C) then

price(Route, Price) ⇒ a(crs(Routes, Journeys), C) ← calculatePrice(Route, Price).

a(tmc, TM)::

book(JourneyID, CC) ⇐ a(traveller, T) then

booked(Tickets, Receipts) ⇒ a(traveller, T) ← charge(JourneyID, CC, Receipt) && print(Ticket).

a(evaluator, E)::

record(Query) ⇐ a(travelAgent, TA) then

evaluation(Statistics) ⇒ a(travelAgent, TA) ← evaluate(Query, Statistics).

Figure 5.1: Basic Travel Planning IM in XLCC

96 Chapter 5. Interaction Models as Semantic Web Documents

accompanying ontology which provides a semantics for that more readable label, such

as http://dbpedia.org/resource/Credit_card. On the other hand, IMs without

semantic enhancement cannot be properly discovered or repurposed. Suppose a user

originally does not know that the above basic travel planning IM can provide the ser-

vice he/she desires. Then he/she creates a query by typing in keywords like buy tickets,

credit card in order to find suitable IMs and collaborative peers. Since there is no string

in this IM can match these keywords, this query will be ignored by the keyword-based

discovery service. So IMs without semantical enhancement will affect the discovery

recall. Based on the above analysis, service discovery and reuse are both hampered

by the lack of semantic information about IMs. In the following sections, we propose

an approach for semantically enhancing interactions between peers from the perspec-

tive of choreography using annotations later on. Figure 5.7 will give the excerpt of

proportional source codes of a Web page on which the trade IM described in Fig-

ure 3.8 has been annotated with OWL for Processes and Protocols (OWL-P) (Mallya

et al., 2005) (a process and protocol modelling language encoded in Web Ontology

Language (OWL)) and the OPENK vocabulary for OpenKnowledge. OWL-P defines

several process-calculus-related concepts such as messages, protocols, roles, proposi-

tions and commitments. With respect to commitments, commitment machines (Yolum

and Singh, 2002) are used to formally represent social relationships between agents.

Since OWL-P has enclosed this concept, it can be used for describing protocols that

actually form commitment machines forever. LCC so far cannot be used for describ-

ing a commitment machine in a straightforward manner because it uses constraints to

restrict peers to their obligations. Therefore, checking if policies inside IMs have been

obeyed boils down to a Constraint Satisfaction Problems (CSP) for peers to solve.

Since LCC itself cannot describe the CSP semantics, here, we use the CSP vocabu-

lary (Badra et al., 2011) to express the constraint solving (constraints are expressed by

boolean expressions on fluents) during the execution of IMs. On the other hand, the

IM involves extra process-calculus-dedicated concepts such as peers, OpenKnowledge

Components (OKCs) and so on, which have not been covered in either OWL-P or CSP.

Therefore, we propose a lightweight choreography ontology named as Web Service

Choreography As Interaction Models (WSCAIM)1 by bringing in OWL-P, CSP and

OPENK which was originally designed in (Bai and Robertson, 2010) for describing

the interaction-driven peer-to-peer community. WSCAIM is a lightweight ontology

1http://openk.org/wscaim.owl

http://dbpedia.org/resource/Credit_card
http://openk.org/wscaim.owl

5.1. Motivations 97

and its content is illustrated in Figure 5.2 with the assistance of RDFGravity 2.

2http://semweb.salzburgresearch.at/apps/rdf-gravity/

http://semweb.salzburgresearch.at/apps/rdf-gravity/

98 Chapter 5. Interaction Models as Semantic Web Documents

Fi
gu

re
5.

2:
W

S
C

A
IM

on
to

lo
gy

vi
su

al
is

ed
in

R
D

FG
ra

vi
ty

5.2. Marking Up IMs Using WSCAIM 99

5.2 Marking Up IMs Using WSCAIM

In this section, we present our semantically enhanced approach for publishing IMs

linking them to the Web of data. The corresponding publishing tools have been de-

signed and implemented, which assist IM publishers in annotating IMs and semi-

automatically generating Web pages with semantic markups. Methods for consum-

ing embedded annotations are given based on the logics behind the OpenKnowledge

system. Web-page-based marking-up provides a lightweight way of embedding sur-

rounding information about IMs into Web pages. Several formats such as Embedded

RDF (eRDF), Microformat and Resource Description Framework in Attributes (RDFa)

were proposed. eRDF does not support full RDF while Microformat requires users to

create new data models for new formats. RDFa allows users to embed any resources

complying with the RDF model and has been a W3C recommendation since 2008.

Here, we use RDFa in our approach and make it carry the semantic that an IM element

should have. Section 5.1 described an example for semantically enhancing IMs using

compound vocabularies derived from OWL-P and CSP, which are actually used for

annotating different aspects of each IM and will be discussed as follows.

5.2.1 Process-Dedicated Annotations

LCC has been designed as one of related approaches from the diverse process cal-

culi family for modelling interactions between peers in an open knowledge-sharing

environment. OWL-P is employed here to provide IM publishers with a vocabulary

focused on message passing between peers. As mentioned above, in this chapter, IMs

will be annotated and serialised in HTML or XHTML ((X)HTML)+RDFa. Figure 5.3

describes an excerpt of message-passing-related RDF triples extracted from an IM

document and serialised in Turtle (Beckett and Berners-Lee, 2008).

5.2.2 Constraint-Dedicated Annotations

An IM does not handle peers’ commitments explicitly using any particular syntax but

commitments are interleaved with LCC codes all over the IM. Peers are expected to

have their own constraint solvers and message handlers to serve the similar purpose

the commitment machine can serve. Therefore, we use the CSP vocabulary here to

100 Chapter 5. Interaction Models as Semantic Web Documents

@prefix wscaim: <http://www.openk.org/wscaim.owl#>

@prefix owlp: <http://research.csc.ncsu.edu/mas/OWL-P/Protocol.owl#> .

@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .

@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#> .

<http://homepages.inf.ed.ac.uk/s0896253/purchase.html#purchase> a

wsc:InteractionModel ;

rdfs:comment """this is an interaction model about purchase.""" .

:buyer a owlp:Role ;

owlp:hasRole :shopkeeper .

:shopkeeper a owlp:Role .

:buy owlp:later :receipt .

[a owlp:Message ;

owlp:sendMessage :buy].

[a owlp:StringSlot].

[a owlp:IntegerSlot].

[a owlp:Role ;

owlp:hasReceiver :shop].

[a owlp:Message ;

owlp:receiveMessage :receipt].

[a owlp:IntegerSlot].

[a owlp:Role ;

owlp:hasSender :shop].

[a owlp:CompositionProfile ;

owlp:definedBy [a owlp:EventOrderAxiom ;

owlp:stipulate [owlp:earlier :buy ; owlp:hasRole :buyer],

[a owlp:KnowledgeBase ; owlp:consults

[owlp:contains [a owlp:Proposition], [a owlp:Commitment]]

]

]].

Figure 5.3: RDF triples related to message passing

annotate the constraint elements of IMs. Figure 5.4 describes an excerpt of constraint-

solving-related RDF triples extracted from a semantically enhanced IM document and

serialised in Turtle.

Note that the above CSP vocabulary however does not support comparison between

values of variables and unfortunately, without the more expressive annotations related

to this comparison, it is difficult if not impossible for IM publishers to annotate con-

straints on relations between variables. Here, we extend CSP with the Mathematical

5.2. Marking Up IMs Using WSCAIM 101

@prefix csp: <http://vocab.deri.ie/csp#> .

@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .

@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#> .

<http://homepages.inf.ed.ac.uk/s0896253/purchase.html#clientArgumentRelation>

a csp:Relation ;

csp:isSatisfiable "true"∧∧<http://www.w3.org/2011/XMLSchema#Boolean> ;

csp:supports (

[csp:or

[csp:var :PC; csp:val :UPC], [csp:var :PC; csp:val :EPC]]).

<http://homepages.inf.ed.ac.uk/s0896253/purchase.html#shopArgumentRelation>

a csp:Relation ;

csp:isSatisfiable "true"∧∧<http://www.w3.org/2011/XMLSchema#Boolean> ;

csp:supports (

[csp:and

[csp:var :CC; csp:val :VISA], [csp:var :R; csp:val :VISA REC]]

[csp:and

[csp:var :CC; csp:val :MASTER], [csp:var :R; csp:val :MASTER REC]]).

Figure 5.4: RDF triples related to constraint solving

Markup Language (MathML) 3 in order to make the data comparison concerned about

by the IM constraint solving possible. The triples dedicated to realising this extension

are described in Figure 5.5.

5.2.3 Annotation Serialisation

Our approach for serialising this semantic enhancement will be exemplified in this sec-

tion. Here, we improve the IM described in Figure 3.8 a bit by adding extra arguments

CCC and PCP which denote the remaining credit in one’s credit card and the price

for a specific product respectively. The new version of the trade IM we have got is

described in Figure 5.6.

3http://www.w3.org/TR/MathML3/

http://www.w3.org/TR/MathML3/

102 Chapter 5. Interaction Models as Semantic Web Documents

@prefix m3: <http://www.w3.org/TR/MathML3#> .

@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .

@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#> .

...

<http://homepages.inf.ed.ac.uk/s0896253/purchase.html#shopArgumentRelation>

a csp:Relation ;

csp:isSatisfiable "true"∧∧<http://www.w3.org/2011/XMLSchema#Boolean> ;

csp:supports (

[csp:and

[csp:var :CC; csp:val :VISA], [csp:var :R; csp:val :VISA REC],

[m3:apply [m3:geq [m3:ci :CCC], [m3:ci :PCP]]]]

[csp:and

[csp:var :CC; csp:val :MASTER], [csp:var :R; csp:val :MASTER REC],

[m3:apply [m3:geq [m3:ci :CCC], [m3:ci :PCP]]]]).

Figure 5.5: Constraint solving with mathematical comparisons

a(client(PC, CC, CCC), C)::

buy(PC, CC, CCC)⇒ a(shop, S)← payby(CC)∧ lookup(S) then

receipt(R)⇐ a(shop, S)

a(shop, S)::

buy(PC, CC, CCC)⇐ a(client(),C) then

receipt(R)⇒ a(client(), C)← enough credit(CC, CCC, PC, PCP)∧
complete order(PC, CC, R)

Figure 5.6: Yet another trade IM in LCC

5.3 IM Annotation Injection and Consumption

As already discussed in Chapter 3, the peer community can be initialised by automat-

ically discovering peer groups and in order to describe peer community, OpenKnowl-

edge in the peer community (OPENK) has been designed and serves as a vocabulary

for the OpenKnowledge peer community (Bai et al., 2009). By extending WSCAIM, a

new vocabulary dedicated to choreography-driven peer community has been proposed

and named as VOOK (Vocabulary Of OpenKnowledge) 4. As aforementioned, there

is no explicit concept about commitments inside IMs coded in LCC and also, peers

are encouraged to have their own constraint solvers to meet the policies incorporated

4http://www.openk.org/vook.owl

5.3. IM Annotation Injection and Consumption 103

<html

xmlns=‘‘http://www.w3.org/1999/xhtml’’

xmlns:wscaim = ‘‘http://www.openk.org/wscaim.owl#’’

xmlns:owlp=‘‘http://research.csc.ncsu.edu/mas/OWL-P/Protocol.owl#’’

xmlns:dbpedia=‘‘http://dbpedia.org/resource/’’

>

...

<div typeof=‘‘wscaim:InteractionModel’’>

<div rel=‘‘owlp:hasRole’’>

<div typeof=‘‘owlp:Role’’>a(

client(

<span rel=‘‘openk:has arg’’ typeof=‘‘openk:Argument

dbpedia:Universal Product Code’’>

PC), C)::

buy(

PC,

CC)

...

Figure 5.7: Excerpt of the annotated trade IM document

in IMs (Willmott et al., 2006). Moreover, neither OWL-P nor CSP has covered the

notions incorporated by peer-to-peer communications. Therefore, WSCAIM has been

designed used for serving both above purposes as an imported vocabulary in VOOK.

In Vocabulary Of OpenKnowledge (VOOK), three important notions are wsc:Peer (as

a subclass of foaf:Agent), vook:P2PC-ommunity (a subclass of sioc:Usergroup) and

wsc:InteractionModel (a subclass of owlp:Protocol). Here, we make our best efforts

in using existing ontologies and creating as less classes/properties as possible. These

three notions are coined in terms of concepts involved in the OpenKnowledge ecosys-

tem. Since the Friend of a Friend (FOAF) (Brickley and Miller, 2007) vocabulary is

good at describing persons, activities and relationships, we employ it here to describe

104 Chapter 5. Interaction Models as Semantic Web Documents

peers and their relationships. VOOK has been created according to semantics behind a

lightweight language (LCC), which has been employed by the OpenKnowledge kernel

as a Web Service choreography description language and gives an intimate connection

between interaction processes and the community ontology. To revisit our architecture

already discussed in Chapter 4, each peer has a profile composed of triples dedicated to

peer features such as which roles this peer can play and which OKCs this peer can pro-

vide (with the WSCAIM vocabulary). An OKC is a plug-in component that contains

methods used for solving constraints in IMs (sometimes human interventions are also

involved in the process of constraint solving). With regard to the Linked Data princi-

ples, the Web is essentially very close to a peer-to-peer network because each user on

the Web can digest existing data as a consumer or publish new data and also interlink

it with other external data as a data contributor. Figure 5.8 gives an illustration of the

network topology of a Web-based peer-to-peer community. Each peer has a Knowl-

edge Base (KB) composed of a local vocabulary, a peer profile, an IM repository and

an OKC repository. Users log on to or join a specific community via their existing user

accounts or register to get new ones.

Figure 5.8: Peer-to-peer network topology

5.3. IM Annotation Injection and Consumption 105

5.3.1 Annotation Injection

The annotation-embedding strategy will be employed within the IM publishing pro-

cess. An IM defines the behaviours of roles involved in a specific interaction and in

reality users can use whatever ontologies at their own will to annotate and publish IMs.

On the other hand, when peers receive IMs published by others using heterogeneous

ontologies, they can also use local ontology matchmakers to fulfil this mapping task,

and this has been explored in the OpenKnowledge project (Besana et al., 2009) and will

however not be discussed here due to the scope targeted by this thesis. Traditionally,

users are allowed to query RDF repositories through exposed SPARQL Protocol and

RDF Query Language (SPARQL) endpoints. Compared with that, using annotation-

embedded Web pages to publish IMs and exchange them with other peers, publishers

can keep their own private KB confidential and just expose the knowledge related to

the being-published IMs they want other peers to know. Several problems need to be

tackled here for us to achieve the above goal. Firstly, a preprocessor is needed for un-

derstanding different input methods in terms of the diverse IM locations. For example,

a user can import existing IMs from local file systems or remote repository via Hy-

pertext Transfer Protocol (HTTP), or compose new IMs on the fly. Secondly, during

the annotating process, a user needs to be allowed to browse the employed ontology

and existing instances in the local profile in order to pick up proper Uniform Resource

Identifiers (URIs) to annotate the IM content. Thirdly, a user needs to be allowed to

revise existing annotations and dump them in various popular data-exchange formats.

Therefore, our IM publishing tool accordingly provides the following functionalities:

LCC code editing, peer profile browsing, IM annotating/revising and annotation dump-

ing. These functionalities are achieved through the following modules which have been

designed and implemented in our IM publishing tool:

a. Preprocessing Module. This module is used for assisting a peer in importing

the IM it expects to publish as well as its local profile. An IM can be imported

in two ways, one of which is that the user can type in raw LCC code directly

and then submit the code as an IM on the fly. The other way is that the user can

select and submit an IM file which already exists in the local or remote storage.

b. Profile Browsing Module. In order to give IM publishers an intuitive and user-

friendly environment for publishing IMs, this module is dedicated to display-

ing auxiliary information which will be derived from peers’ profiles. A class-

106 Chapter 5. Interaction Models as Semantic Web Documents

hierarchy view can assist publishers in browsing classes and properties that can

be used by publishers to annotate IM elements. Information about existing in-

stances inside profiles will be displayed as well for the purpose of reusing peer-

side resources.

c. Annotating Module. This module helps publishers to describe IM elements by

linking them to ontologies. It provides a user interface for publishers to achieve

this goal. Via this module, IM publishers can reuse existing instances which have

been annotated inside local profile documents, or create brand new instances if

needed. For the former case, other existing instances related to the reused in-

stance will be also imported during the annotation process based on Algorithm 2,

through which triples containing a particular resource can be extracted from an

existing profile in RDF and weaved into an (X)HTML+RDFa snippet.

Algorithm 2: Marking Up Algorithm
Input: The triple store derived from a profile, triples and the URI of the targeted

instance, Ruri.

Output: The published snippet, snippet.

begin
pat = new Pattern([[<Ruri>, ,], [, , <Ruri>]]);

statements = triples.match(pat);

for each statement stat ∈ statements do
sub ject = stat.getSubject();

predicate = stat.getPredicate();

ob ject = stat.getObject();

if sub ject.uri equals Ruri then
if ob ject instanceOf Literal then

snippet = snippet + “<span property=‘ ” + predicate + “ ’ content=‘ ”

+ object.value + “ ’/>”;

else
snippet = snippet + “<span rel=‘ ” + predicate + “ ’ resource=‘ ” +

object.uri + “ ’/>”;

else
snippet = snippet + “<span rev=‘ ” + predicate + “ ’ resource=‘ ” +

subject.uri + “ ’/>”;

5.3. IM Annotation Injection and Consumption 107

d. Revising Module. Embedded RDFa may be inappropriate or incorrect, so there

is a chance for IM publishers to delete, modify or replace existing annotations

through this module before the final publication.

e. Issuing Module. This module has two functionalities, one of which is to harvest

embedded RDFa which belong to a specific IM as new knowledge and add it to

the host peer’s local KB. The other functionality is to generate a Web document

and push it on the Distributed Discovery Service (DDS) thereafter. The RDFa

harvest task can be fulfilled using one of existing RDFa parsers 5.

Figure 5.9 is supplied to depict the sequence diagram for the process of publishing

IMs. Section 7.4 will present the preliminary implementation for assisting users in

publishing IMs based on the above design, and give an example of publishing an IM

that describes how a peer sends a greeting text to another peer followed by the latter

one displaying the received text. A screenshot on our publishing tool is also depicted

in Figure 7.7 of that section.

5.3.2 Annotation Consumption

Published IMs can be consumed in a variety of ways and an intuitive one is to assist

the DDS in discovering IMs which meet peers’ requirements. The DDS is one of the

original key components for the OpenKnowledge system, and with IMs being located

on different peers in a distributed manner, the DDS is in charge of discovering the de-

sired IMs and corresponding collaborative peers in terms of the input query (a “query”

is here keyword-based). OKBook is an open online platform on which peers are en-

abled to publish IMs, discover IMs and subscribe/unsubscribe to IMs (Bai et al., 2010).

It has a Discovery Module (as shown earlier in Figure 3.1) which actually combines

the service discovery and the service-repository curation previously done separately in

the OpenKnowledge system so we replaced DDS with OKBook (as shown earlier in

Figure 3.6). Moreover, this online platform supports not only keyword-based queries

but also URI-based queries, which is comparatively less ambiguous thanks to the URI

suggested by OKBook. But URIs are usually difficult to memorise and some of them

are also heterogeneous. Therefore, on OKBook, users are allowed to use URIs found

by RDF search engines such as Sindice or URI curated by DBpedia 6 and discovered

5http://rdfa.info/rdfa-implementations
6http://www.dbpedia.org

http://rdfa.info/rdfa-implementations

108 Chapter 5. Interaction Models as Semantic Web Documents

Figure 5.9: Sequence diagram for IM republication

by the Lookup service 7. After being published, IM documents are already attached

with markups and, by harvesting embedded RDF triples, the Discovery Module can

provide a more precise and extensible query processing also thanks to dereference-

able URIs which are widely spread on the Web of Linked Data. In terms of service

discovery, another way of making use of IM annotations is to rely on search engines

which are capable of providing metadata indexing. Taking the process-dedicated an-

notations (discussed in Section 5.2.1) as an example, users can discover desired IMs

via those search engines based on annotations associated with processes, policies or

commitments (powered by OWL-P) carrying detailed service descriptions which have

not been covered by (X)LCC semantics. Under this circumstance, a service requester

has a chance to type in finer-grained and semantically richer search phrases, which can

be later mapped to corresponding annotations, compared with those phrases used on

search engines indexing the annotations about IM elements only.

7http://lookup.dbpedia.org/api/search.asmx

5.4. Semi-Automatic IM Publication Using RDFa2 109

Another way of consuming embedded RDFa will be adopted when an IM is executed

after all required roles are filled with specific peers. Note that one role could be filled

with more than one peer and peers will then be allowed to select those they want to

interact with based on the Peer Ranking (Robertson, 2008) mechanism employed in

the OpenKnowledge kernel. Within the above process, sometimes peers, especially

who are interested in data integration and reuse, may query the embedded annotations

themselves, which may help them to fulfil complex interactions. For example, a peer

may be willing to know the author of an IM, its publish date and revision history,

etc. However, the type of these queries is different from the aforementioned one that

triggers the IM execution as well as the one used for collaborative-peer discovery.

This type of query will be more specific and more targeted at tasks themselves such as

a tourist asking an airline service for a cheap flight ticket with a concrete destination

and relevant departure/arrival time or an unemployed man asking a job vacancy service

for a job with a reasonable salary and located close to where he/she lives. Under this

circumstance, peer-side applications or user agents (e.g., Web browsers) should have

annotation gleaners equipped to extract the embedded data and conduct interesting

queries over them in one way or another, and however, the discussion on this is out of

the scope of this thesis.

5.4 Semi-Automatic IM Publication Using RDFa2

An approach relying on the WSCAIM ontology to helping publishers to annotate their

IMs has been discussed in the above sections. WSCAIM covers the basic elements

and skeleton of IMs encoded in LCC and XLCC, and publishers however still need to

find the URIs themselves with the help from the Semantic Web search engines (e.g.,

Sindice) to annotate arguments which are subject to particular use cases and cannot

be dealt with in a generic way. On the other hand, an increasing number of WS de-

scriptions in the RDF model exist (e.g., seekda!8 is curating more than 28,000 WS

descriptions in its catalogue at the time of writing this thesis), which are retrievable

thanks to the accessibility of HTTP URIs, and are ready to reuse by providing IMs

publishers with URIs for arguments or other elements which cannot be covered by

WSCAIM. With the aim of addressing the RDFa publishing bottleneck, we propose

a generic approach to automatically generating hypertext content in (X)HTML+RDFa

8http://webservices.seekda.com/

 http://webservices.seekda.com/

110 Chapter 5. Interaction Models as Semantic Web Documents

using existing RDF triples on the Web and have also implemented a proof-of-concept

online tool called RDFa2 (Bai, 2011; Bai et al., 2011). With the help of RDFa2, the

above problem encountered by IM publishers can be alleviated during the annotation

processes. OWL-S (Martin et al., 2004) (formerly DAML-S) and Web Service Model-

ing Ontology (WSMO) are ontologies used for encoding WS descriptions and adopted

in the Semantic Web community in parallel with other alternatives. These ontologies

are either from the perspective of service orchestration, or service choreography or

both. Inside those WS description documents sit a large amount of triples which are

hidden and not accessible to users without expertise. By employing RDFa2, IM pub-

lishers can cherry-pick their favourite WS descriptions from any RDF repository (e.g.,

seekda!) and publish IMs attached with some of those triples as annotations in a both

human-readable and machine-readable manner. The remainder of this section details

the our approach to generating hypertext content with annotations.

5.4.1 Topic Nodes and Topic Trees

Our approach for transforming RDF documents to (X)HTML+RDFa pages is based

on automatically generated templates. These templates are schematic (X)HTML doc-

uments, and have a tree structure. By contrast, the RDF data model is a graph, and

cannot be converted to a single tree without duplicating re-entrant nodes. In order to

overcome this problem, the conversion from RDF requires users to select a specific

node in the RDF graph which then forms the root of a tree of RDF statements. Which

node should the user choose? In practice, this seems to follow straightforwardly from

the user’s goals, namely to focus on the resource which is his or her main topic of

interest in the resulting (X)HTML page. For example, in the case of a FOAF file, the

obvious resource to choose is the value of the maker or primaryTopic property.

The node that is targeted in this way is called the topic node. The RDF document from

which the topic node is derived is called the RDF context, and relative to a context C ,

a set of RDF statements rooted in a topic node is called a topic C -tree. We distinguish

between two kinds of topic trees, depending on the position (the subject or the object)

of the topic node inside a specific triple. Given a resource r, context C , and RDF

statement (s, p,o), the subject (topic) C -tree based on r is defined as {(s, p,o) ∈ C |
s = r}, and similarly for the object (topic) C -tree based on r.

The notion of a topic tree for a topic node is essentially the same as a bounded de-

5.4. Semi-Automatic IM Publication Using RDFa2 111

scription of a resource; that is, where “a sub-graph can be extracted from a data set

which contains all of relevant properties and relationships associated with a resource”

(Dodds and Davis, 2010). For the sake of clarity, a topic node is not necessarily the

global topic of an RDF document; rather, it corresponds to a resource in the document

which the user regards as interesting enough to represent in (X)HTML. Figure 5.10

illustrates the selection of a subject topic tree from an RDF context.

knows

workplaceHomepage

name

name

name

topic node

Figure 5.10: Subject (topic) C -tree of a FOAF document

In this figure, for the sake of brevity, we have omitted the name spaces (henceforth

abbreviated as Name Space (NS)) of all properties here. In this figure, circles de-

note resources and squares denote literals. The node coloured in dark grey is the

current topic node while the sub-graph surrounded by the dashed line is the subject

topic tree for this node. The labelling information about the resources in the subject

position are also included in the topic tree in order to make the resources themselves

human-readable on the RDF-embedded page. Although the most straightforward use

case for our approach creates a standalone (X)HTML page from an RDF document,

RDFa2accommodates cases where the output of this approach is inserted as a snippet

into a larger (X)HTML document.

5.4.2 Embedded-Annotation Generation

Our approach to assisting users (e.g., Web content publishers) in generating annota-

tions embedded in their hypertext content is detailed in this section. This approach

has the ability to automatically discover a candidate set of topic nodes (from existing

112 Chapter 5. Interaction Models as Semantic Web Documents

RDF contexts) which can be offered to the user thereafter and also supports federated

integration in the sense that users can embed multiple topic nodes from multiple RDF

contexts into a single Web page. Within the publishing process, publishers can revise

suggested annotated blocks or raw pages in terms of their individual requirements.

Moreover, templates are also provided via our approach and customised by publishers

(and also stored, loaded and reused) if needed. Algorithm 3 describes the annotation

generation process (generating the partial snippet for the subject topic tree) and will

be further discussed in the following subsections. Likewise, the snippet generation

corresponding to the object topic tree is not described here for the sake of brevity but

can be achieved by revising this algorithm and moving the topic node from the subject

position to the object position. For mashup purposes, the embedded RDF triples can

be harvested and serialised in several formats such as Notation3 (N3) (Berners-Lee,

1998), RDF/XML (Beckett and McBride, 2004), N-Triples (Grant et al., 2004) and

Turtle (Beckett and Berners-Lee, 2008).

5.4.2.1 Topic-Node Discovery

In the preceding section, we assumed that topic nodes will be selected by the user.

However, this requires the user to understand the basic syntax of the RDF context in-

side which these node are represented. One way of automatically identifying topic

nodes in a given RDF context is to query the document for URIs with properties that

are diagnostic of topic-hood, such as foaf:primaryTopic or foaf:maker in FOAF

files. However, not all RDF documents contain such properties, and even in FOAF

files which do employ them, they do not always take semantically appropriate values.

Consequently, topic nodes cannot reliably be detected just in terms of the semantics of

statements in the RDF context itself. Zhang et al. (2007) compared five measurements

from three categories (degree centrality, shortest-path-based centrality and eigenvector

centrality) for automatically summarising ontologies in a topic-independent manner

and their interesting evaluation showed that weighted in-degree centrality measures

and several eigenvector centralities all have good performance on ontology summari-

sation. As analysed in (Bai et al., 2008), for the case that the target RDF documents

mix up ontology-related triples and individual-related triples, the above topic-free mea-

surements may be affected by unforeseen noise nodes. Moreover, each property could

have a corresponding inverse property so it is difficult if not impossible to draw a

conclusion that an RDF node’s in-degree (or out-degree) prioritises its out-degree (or

5.4. Semi-Automatic IM Publication Using RDFa2 113

Algorithm 3: RDFa Snippet Generation Algorithm (subject (topic) C -tree)
Input: topic uri, the URI of the topic node and model, the model containing triples

in the current context.
Output: rd f a snippet, the RDFa snippet representing the information about the

inputted topic node.
begin

def rd f a snippet = getDIVHead(topic uri);
def sub topic tree = model.getStantementsBySubject(topic uri);
def properties = model.getUniquePropertiesBySubject(topic uri);
for each property in properties do

def ob jects = sub topic tree.getObjectsByProperty(property);
def prop local name = property.getLocalName();
def prop node name = (property.getNameSpace() + ” ” + prop local name
+ ”rel”).replace(” ”, ”dash”);
def prop curie name = model.getPrefix(property.getNameSpace()) + ”:” +
prop local name;
for each ob ject in ob jects do

if ob ject.isListeral() then
rd f a snippet += ”<#if topic.” + prop node name + ”??>” + ”<#list
topic.” + prop node name + ”?keys as key>” +
getLiteralStyle(prop local name, property.getURI()) + ... ;

else
def snippet = ””;
if ob ject.isURIResource() && ob ject.getURI().indexOf(”.”) ! = -1
then

def ob j uri = ob ject.getURI();
def expansion = ob j uri.subString(ob j uri.lastIndexOf(”.”));
snippet += getSnnipetByExpansion(prop curie name,
prop node name);

else
snippet += ”<a rel=’” + prop curie name + ”’ href=’${topic.” +
prop node name + ”[key].uri}’ onclick=’return false;’>${topic”
+ prop node name + ”[key].uri}
”;

rd f a snippet += ”<#if topic.” + prop node name + ”??>” + ”<#list
topic.” + prop node name + ”?keys as key>” + ”<# if topic.” +
prop node name + ”[key].uri??>” +
getResourceStyle(prop local name, property.getURI(), true) +
snippet + ”<#if><#list><#if>”;

return rd f a snippet;

in-degree). In this thesis, we propose an improved algorithm for semi-automatically

discovering and recommending topic nodes. Since the RDF data model is a directed

graph and nodes are connected to one another through directed edges, one solution for

discovering the topic node is based on node connectivity. In other words, the more

edges (outgoing or incoming) a node has, the more important it is likely to be. In order

to maximise the accuracy of this heuristic, our algorithm selects the top n most highly

114 Chapter 5. Interaction Models as Semantic Web Documents

connected URIs and offers them to users for subsequent confirmation 9. Perhaps not

surprisingly, this algorithm works especially well for RDF documents such as FOAF

files that usually do have a central topic.

When a user inputs the URI of a resource that she wants to integrate into her Web

page, together with an RDF context, RDFa2 will query this context with the selected

URI for all statements in which the URI is either subject or object. From this set,

a subject (respectively, object) topic tree will automatically be selected if it exists.

Its root will be the topic node and its corresponding properties and values will be

stored in other nodes or leaves. Then the user can refer to any information about this

topic node using the path structure root.predicate.values[key].[resource] or

root.predicate.values[key].

[literal] in the template which will be discussed in Subsection 5.4.2.3. Here, root

denotes the resource currently being integrated; predicate denotes a specific property

with which this resource is associated; and values is a list that stores the values of a

property (since some properties may have multiple values).

5.4.2.2 Federated-Annotation Generation

We do not want to exclude the possibility of the user selecting more than one topic

node from a given RDF context. For example, a user may wish to render the FOAF

document vocabulary (i.e., encoded as a set of RDF statements) as (X)HTML, and in

this use case, all of the nodes foaf:Person, foaf:Agent and foaf:Document, for

example, should be treated as topics. We can use multiple templates to help the user

achieve this goal. Once a user selects a temporary topic node, a hash tree, a template

and an (X)HTML+RDFa page will be generated based on node occurrences. Mean-

while, the relevant NSs are also grouped and displayed on the final page. Thereafter,

the generated (X)HTML+RDFa snippets will be automatically combined into a single

snippet.

It is not uncommon that users publish an (X)HTML+RDFa page using triples from

different RDF sources (or in our terminology, from different contexts). We can ac-

commodate this in a way similar to our approach to dealing with multiple topic nodes.

Our approach supports federated integration by managing the NSs derived from dif-

9The value of n can be any reasonable integer. Although RDFa2 takes n to 10, by default it only just
shows the top three URIs to users. It is also worth noting that blank nodes are filtered out from the set
of candidates.

5.4. Semi-Automatic IM Publication Using RDFa2 115

ferent RDF documents separately and combining them at the final stage. However, it

should be noted that different vocabularies do not necessarily employ the same Quali-

fied Name (QName) prefix for a given NS. prefix.cc (PCC) 10 alleviates the issue that

RDF documents involve different prefixes indicating the same NS or the same prefix

indicating more than one NS by allowing users to look up the collected NSs on PCC

and vote for their favourite ones. Nevertheless, it is difficult if not impossible to stop

people from using ambiguous prefixes. Our approach can automatically detect if a

prefix is ambiguous across a set of contexts, and will synthesise new prefixes to ensure

disambiguation by generating different prefixes as substitutions. Moreover, many of

the NSs in the original RDF context set are unused in the final (X)HTML+RDFa Web

pages. In order to avoid an unnecessary burden on browsers rendering the page, the

NSs which are not used in the user’s RDF-embedded Web page will be automatically

excluded. Note that RDFa 1.1 harnesses @profile to come over the lengthy declara-

tion of NS prefixes recommended in RDFa 1.0 and this can be also used for avoiding

possible ambiguous prefixes to some extent.

Figure 5.11 illustrates how our approach assists users in creating Web pages annotated

with RDF triples derived from different data sources. Users inform RDFa2 of the target

in one or more RDF contexts by providing one or more Uniform Resource Locator

(URLs). These documents will be retrieved on the fly and each of them forms an RDF

context. After the topic nodes are selected, triples related to them will be extracted.

Finally, the page with RDFa annotation will be sent back to users.

RDF Triples

Context

RDF Triples

Context

U
R

L
s

T
o

p
ic

N
o

d
e

s

RDF Contexts

R
D

F
a

P
a
g

e
s

HTTP
Requests

RDF
Files

RDF File

RDF Triples

Context

Figure 5.11: Context-based federated integration

10http://prefix.cc

http://prefix.cc

116 Chapter 5. Interaction Models as Semantic Web Documents

5.4.2.3 Customisation and Template Reuse

One of the primary functions of our approach is to automatically carry out a template-

based transformation of RDF to (X)HTML+RDFa. However, the result of the trans-

formation will almost certainly not be in the precise form required by users, and con-

sequently it is important to allow users to further edit the output. The RDFa2 interface

provides the user with both a rendered preview and the source code of the generated

(X)HTML+RDFa. Users without expertise in RDF(a) can modify the output by click-

ing and editing elements on the preview page or editing the content in the What-You-

See-Is-What-You-Get (WYSIWYG) way as shown in Figure 5.12. More experienced

users can edit the page source and check its preview but it is recommended that re-

visions are limited to the text nodes of the page since manually edited RDFa needs

revalidation.

Figure 5.12: Personalise the automatically generated Web page

When users deal with a great number of RDF documents of the same type (e.g., all

of them are FOAF documents), they may have to carry similar or even identical man-

ual revisions for each document processed by RDFa2. To avoid this unnecessary effort,

we provide users with another way of personalising the RDFa-embedded web pages by

letting them revise the templates. Each transformation will generate a template and this

5.4. Semi-Automatic IM Publication Using RDFa2 117

template will be returned before being applied to the RDF context. A basic template

is generated using placeholders of the kind standardly offered by template tools (e.g.,

FreeMarker 11 applied here). Each placeholder indicates a piece of information which

will be extracted during the transformation process (e.g., personal.firstname and

personal.lastname are two placeholders which will be replaced with the first name

and the last name of a particular person, respectively). As long as a template is gener-

ated, a hash tree that stores the data about the topic nodes is also generated, based on

the RDF context: we call this an intermediate tree. The structure of the intermediate

tree is derived from the structure of the topic tree but is more friendly to templating.

The triples taking the topic node as subjects or objects may take literals or other re-

sources as their objects. Both of these two cases have to be taken into consideration

before the template is generated. If the object is a literal, it will be enclosed within an

HyperText Markup Language (HTML) tag with @property (@ATTRIBUTE is used here-

after for denoting a tag’s attribute in terms of the XML Path Language (XPath) syntax)

indicating the predicate attached with this object. If the object is a resource, it will be

enclosed within by an HTML tag with @resource taking this object as its value and

@rel indicating the predicate attached to this object. As mentioned in Section 5.4.1,

the text value of this tag node will be the preferred label (if exists) of the resource

rather than its URI. This complies with the modelling pattern introduced in (Dodds

and Davis, 2010).

5.4.2.4 Self-Adaptability and Reflections on RDF Features

Our approach queries the RDF context using SPARQL with the topic node either given

by the user or discovered by the topic recommender semiautomatically, which has

been discussed above. The result will be used for replacing the pre-generated place-

holders insides templates. In a specific RDF vocabulary, some properties may be de-

fined as functional properties (e.g., foaf:gender and foaf:primaryTopic in FOAF).

Each of them only takes one object or one literal as its value. Other properties (e.g.,

foaf:maker and foaf:member) may take more than one object or literal as their val-

ues. The SPARQL query results are grouped in terms of properties. With respect

to the evolution of an RDF vocabulary, new classes or properties may be involved

and some classes or properties may be deprecated. Since templates are created and

11http://freemarker.org

http://freemarker.org

118 Chapter 5. Interaction Models as Semantic Web Documents

applied on the fly and always are based on the given vocabularies (RDF contexts),

the above evolution will be transparent to users. For those users who want to reuse

their templates, their existing templates can be merged with the newly generated ones.

However, some manual reconciling work on these two kinds of templates and basic

knowledge of (X)HTML+RDFa may be involved within this process.

According to (Adida et al., 2008), @resource and @href can be used for hooking the

object of an RDF triple. The value of the former is a URI which is ”not intended

to be clickable” and normally denotes a non-information resource while the value of

the latter is a URI which normally denotes a information resource. The minters of

non-clickable URIs need to provide relevant information resources as these URIs’ rep-

resentations (Lewis, 2007). RDFa2 currently assumes each non-information resource

has an informational representation and by clicking it, users will be redirected to an-

other information resource associated with it. Thus, either information resources or

non-information resources will be wrapped in <a> tags and attached to @href rather

than @resource here. Since @href supports only URIs, the object of each RDF triple

will not be expressed in Compact URI (CURIE) syntax in the final page. With respect

to Blank Nodes (BNodes), the labelling property (if exists) and corresponding value

surrounding a specific BNode in the original RDF context will be used as the repre-

sentation. Nevertheless, users are recommended not to use BNodes when publishing

Linked Data on the Web (Bizer et al., 2007).

5.4.2.5 Linking Annotations to the LOD Cloud

There is one step to go before RDF triples are injected into Web pages because these

embedded triples may otherwise cause provenance and trust issues. RDF statements

are focused on describing who said what but statements themselves may or may not

be true. Additionally, the licence is another thing that should not be ignored especially

when users attempt to reuse data by other data providers. Therefore, the enriched

documents need to be associated with provenance information and linked to the Link-

ing Open Data (LOD) Cloud 12. Here, we use the Vocabulary of Interlinked Datasets

(voiD) (Alexander et al., 2009) to describe the relationships between the annotations

and the RDF contexts from which the harnessed triples are derived. This vocabulary

has been used here due to its simplicity and concision but alternative linked dataset

12http://linkeddata.org

http://linkeddata.org

5.4. Semi-Automatic IM Publication Using RDFa2 119

vocabularies could be applied here for the same purpose. Suppose the URI of the

topic node is denoted by Turi and the URI of the RDF context (provenance) is denoted

by Curi. An (X)HTML+RDFa snippet will be automatically generated to describe the

provenance of Turi as follows:

<div about="Turi" xmlns:void="http://rdfs.org/ns/void#"

xmlns:dcterms="http://purl.org/dc/terms/">

</div>

Summary

In this chapter, by introducing interaction-dedicated vocabularies, we have described

our approach to generating, injecting and consuming annotations of IMs. A proof-

of-concept implementation has been delivered for helping publishers to semiautomati-

cally generate ready-to-publish IM Web pages from existing RDF triples and a demon-

stration can be found here.13 More experiments and use cases on IM annotations will

be provided in Chapter 7 and before that, based on the approaches discussed previ-

ously, a generalised specification on forming peer communities will be presented in

the next chapter, as a guider for peer community builders.

13http://demos.inf.ed.ac.uk:8836/rdfasquare/

http://demos.inf.ed.ac.uk:8836/rdfasquare/

Chapter 6

Social Group Formation and

Maintenance

An increasing number of Social Networking Sites (SNSs) and online communities

have emerged, aiming at providing users with online experiences which run alongside

their real daily life. This virtualisation movement facilitates the development of tech-

niques for instant messaging, electronic payment and social relationship management,

etc. However, most of these techniques are focused on forming online communities in

architectures that have several well-known disadvantages (Yeung et al., 2009). Most

machines are behind firewalls and clients cannot interact with one another without

the supervision of a centralised computer and it is common that in this centralised

client/server environment, the vendor (e.g., Facebook, Myspace, Twitter, etc.) is not

only the community curator but also the data curator deligating each network node.

Little work has been done in forming and maintaining communities in more dynamic

and decentralised environments such as ad hoc and peer-to-peer networks. On the

other hand, traditional online communities are usually formed and augmented via sub-

scription links which can be either unidirectional (e.g., Twitter) or bidirectional (e.g.,

Facebook). However, in real life people are not simply connected via links but via

interactions that are more dynamic and task-dependant. For example, a single person

may play different roles within different interactions and these roles will determine

his/her temporary relationships with others. Role is a common and important concept

in the real world but it is often ignored or is at most implicit in traditional online com-

munities. In this chapter, based on semantic-enriched peer interactions, a generic spec-

ification to forming and evolving online communities is proposed for peers to share

121

122 Chapter 6. Social Group Formation and Maintenance

knowledge in a decentralised manner. Inside the ecosystem inspired by this specifica-

tion, peers can freely join any community without sacrificing their private data or rights

because each of them can personally control the Interaction Model (IM) it uses in in-

teracting with others and can choose the role to play during the interaction. Section 6.1

provides a specification by generalising our approaches which have been discussed in

previous chapters. Section 6.2 analyses features of the IM, which are related to ser-

vice composition. Section 6.3 describes the social effects of the ecosystem driven by

interactions and powered by the peer-to-peer community.

6.1 Interaction-Driven Peer-to-Peer Community Speci-

fication

This specification involves terms defined according to either common concepts de-

rived from traditional peer-to-peer networks and Web architecture or particular con-

cepts minted for describing the interaction-driven peer community. A glossary of

peer community terms can be found in the Glossary section of this thesis. Some of

them have been used in previous chapters, and considering the distributed and dy-

namic environment, this glossary gives more concrete definitions on these terms which

are significant when peers communicate and share knowledge with each other in an

open environment. In this specification, all statements of optional behaviour use either

must, must not, required, may, may not, should, should not, recommended and optional

which are interpreted as described in (Bradner, 1997).

6.1.1 Messaging Among Interaction Participants

In the peer community ecosystem, peers exchange messages using the Hypertext Trans-

fer Protocol (HTTP) protocol essentially. The communication servers, such as Extensi-

ble Messaging and Presence Protocol (XMPP), also use HTTP in a polling or pushing

way. Since (in polling) many of polls do not return new data, pushing is comparatively

more efficient. Messages passed between different peers may be processed and deliv-

ered in different ways. In this specification, a super peer is either a discovery peer or

a communication peer (or both) which is always online, changes less frequently and

provides trustworthy services continuously while peers which are not super peers are

6.1. Interaction-Driven Peer-to-Peer Community Specification 123

called normal peers. As mentioned in Section 4.1.2, a peer’s community ID and com-

munication ID can be the same one when the registered server is installed with both a

discovery service and a communication service. Message passing between interaction

participate fall into the following categories:

a. Between Normal Peers and Discovery Peers. For users’ activities (e.g., brows-

ing an IM, querying a SPARQL Protocol and RDF Query Language (SPARQL)

endpoint, signing in/out, etc.), the browser itself is the equivalent of a peer which

delegates the user to send HTTP queries to another peer aware of by the com-

munity and render the result sent back. A discovery peer behaves like a resource

sniffer and should be integrated with functionalities such as peer group discovery

and the meta-search engine, which can help peers in finding their group members

of similar interests as well as the desired IMs and corresponding collaborative

peers. Other functionalities which are dedicated to bootstrapping peer groups

or providing searching with higher precisions and recalls may be integrated into

discovery peers which should be always-online and change less frequently. Here,

the messages are passed between peers and discovery servers according to HTTP

1.1.

b. Between Normal Peers During an Interaction. During the running of a specific

IM, involved peers talk to one another according to the protocol employed by

the communication server. There is no coordinator (middle man) in charge of

interpreting messages involved and each of these peers has its own message han-

dler which is capable of parsing the incoming messages and sending the results

to the peer’s local Lightweight Coordination Calculus (LCC) Interpreters (LCC

Interpreters (LCCIs)) as well as encapsulating the outputs after interpretations

and sending them to other collaborators. The message handler may be imple-

mented in more than one form such as a browser plugin or a desktop application

which can work with Transmission Control Protocol/Internet Protocol (TCP/IP).

Note that, though LCC is recommended, it may be replaced with other service

choreography description languages and then LCCI should be replace with the

corresponding interpreters if possible.

c. Between the Discovery Peer and the Initial Role. As soon as all roles defined

in an IM are filled in by specific peers, a discovery server should bootstrap the

interaction by sending the message of subscription information to the peer which

is about to play the initial role. This message should contain the interaction ID,

124 Chapter 6. Social Group Formation and Maintenance

the content of this IM or the indicator pointing to the content, communication

IDs of all the peers which will be the involved in the target interaction as well

as the corresponding roles also described in the same IM. Here, the messages

are passed between the discovery peer and the peer about to play the initial role

according to HTTP 1.1.

d. Between Discovery Servers. When a peer cannot find an IM which meets its

requirement, the discovery server on which this peer has logged will forward

its message (HTTP request) for querying IMs (in SPARQL) to other adjacent

discovery servers. The “adjacent” here should be defined by the designers them-

selves and this will possibly bring overhead to the discovery server. So the server

must deal with the overhead without affecting the precision and the user experi-

ence of the discovery. Here, forwarding messages are passed between discovery

servers according to HTTP 1.1.

e. Between Normal Peers and Communictation Peers. Peers send messages to and

receive messages from communication servers according to the employed pro-

tocol. The protocol must guarantee that in most cases this message passing will

not be blocked. For instance, even if the Transmission Control Protocol (TCP)

port is blocked by a firewall, communication servers should still communicate

with peers via the normal HTTP port which can maintain the robustness of the

connectivity. XMPP is recommended as the protocol to handle the interactions

between normal peers and communication peers.

6.1.2 Service Registry inside the Peer Profile

Peers subscribing to a specific IM need to provide services to satisfy the corresponding

roles’ constraints and fulfil their committed obligations. The services a peer can offer

should be described in its peer profile which may be serialised in Resource Description

Framework (RDF) or Resource Description Framework in Attributes (RDFa) or other

Web-friendly data-exchange formats. Simple Object Access Protocol (SOAP) (Curbera

et al., 2002), REpresentational State Transfer (REST) (Fielding, 2000), or RESTful

SOAP (Mitra and Lafon, 2007) are optional and can be used for launching a peer’s

Web Service (WS) interactive interfaces but the peer should indicate which option a

particular service chose. Technically speaking, since REST-based WSs have a lower

barrier to entry than SOAP-based ones, the REST way is recommended in this speci-

6.1. Interaction-Driven Peer-to-Peer Community Specification 125

fication. In the OpenKnowledge (Robertson, 2008) system, services are wrapped into

the OpenKnowledge Components (OKCs), and Figure 6.1 and Figure 6.2 showcase a

peer’s specific OKC described in RDF with the SOAP model and the RESTful model

respectively:

<openk:Peer rdf:about="http://www.example.org/pid">

<openk:registerService>

<openk:OKC rdf:resource="http://www.example.org/okcs/enoughCredit">

<openk:serviceArchitecture>SOAP</openk:serviceArchitecture>

<openk:request>

<openk:method>POST</openk:method>

<openk:param>

<openk:bindings

rdf:resource="http://www.example.org/okcs/enoughCredit/wsdl"/>

<rdf:label>envelope</rdf:label>

</openk:param>

</openk:request>

<openk:response>

<openk:chunk rdf:datatype="xsd:boolean"/>

<openk:bindings/>

</openk:response>

</openk:OKC>

</openk:registerService>

</openk:Peer>

Figure 6.1: OKC described with the SOAP model

In the above example, an OKC identified by “http://www.example.org/okcs/eno-

ughCredit” will be registered as soon as this peer registers on a community peer

which will harness all OKCs described in its profile and do interesting computations

based on them later on. OKCs will be invoked when the peer’s local LCCI finds rele-

vant constraints which need to satisfy during the running of a specific IM and OKCs

can be either internal (on the same server with the peer) or external (on different

servers). Internal OKCs are always accessible to the host peer whilst external OKCs

are accessible only if they are published as public on-line services and the retrieving

peer holds the corresponding legitimate authentication.

As described in Chapter 5, IM publishers may mint new Uniform Resource Identifiers

(URIs) or reuse existing ones to annotate the IM being published. For a pair of a

126 Chapter 6. Social Group Formation and Maintenance

<openk:Peer rdf:about="http://www.example.org/pid">

<openk:registerService>

<openk:OKC rdf:resource="http://www.example.org/okcs/enoughCredit">

<openk:serviceArchitecture>REST</openk:serviceArchitecture>

<openk:request>

<openk:method>POST</openk:method>

<openk:param

rdf:resource="http://www.example.org/okcs/enoughCredit/args/creditCard">

<rdfs:label>cc</rdfs:label>

</openk:param>

<openk:param

rdf:resource="http://www.example.org/okcs/enoughCredit/args/productCode">

<rdfs:label>pc</rdfs:label>

</openk:param>

</openk:request>

<openk:response>

<openk:chunk rdf:datatype="xsd:boolean"/>

<openk:bindings/>

</openk:response>

</openk:OKC>

</openk:registerService>

</openk:Peer>

Figure 6.2: OKC described with the RESTful model

constraint and an OKC, if they were annotated using different URIs in the IM page

and in the OKC provider’s profile, respectively, ontology mapping (Choi et al., 2006)

may be used for mapping one URI to the other, and needless to say, the accuracy of

this mapping will affect the IM discovery process. Discussion on this is however out

the scope of this specification.

6.1.3 Peer CRUD Features

Create, Read, Update and Delete (CRUD) are basic functionalities for database man-

agement systems. Likewise, in the peer community, peers are also associated with

these features in order to work as persistent storage:

a. Create: peers should only create and publish documents (e.g., profiles, IMs) on

their own local servers.

6.2. Service Composition and IMs 127

b. Read: peers may not only read documents on their own local servers but also re-

trieve remote documents dereferenceable via specific URIs using HTTP requests

or query remote SPARQL endpoints.

c. Update: peers should only modify documents on their own local servers.

d. Delete: peers should only remove documents on their own local servers.

Other subscribers (e.g., OKBook servers) of these documents should be automatically

notified of any document updates via Publish/Subscribe protocols (e.g., the PubSub-

Hubbub protocol as discussed in Section 3.1.2).

6.2 Service Composition and IMs

WS composition can be investigated from two different perspectives: orchestration and

choreography. Actually, both views are supported in IMs. Orchestration is more con-

cerned about the internal service composition for a single peer, and in an IM, the con-

straints a clause uses to define roles are an orchestrating composition of these services

this role needs to provide in order to satisfy these constraints. On the other hand, chore-

ography is more concerned about the external service collaborations among different

peers, and from this perspective, the IM itself is a description of WS choreography.

Orchestrated services are OKCs which are either accessible endpoints (SOAP style) or

on-line resources (REST style) as aforementioned. Since each IM is also regarded as

an on-line document and has a URI pointing to itself. From both above perspectives,

WSs and their compositions are all accessible via HTTP requests and also indexable

on various search engines which actually become distributed WS discovery hubs in the

peer community.

6.3 Social Effects

Just like human beings influence one another in society, there are social phenomena

and effects within the peer community as well including relationships, social groups,

trust, reciprocity and tolerance.

128 Chapter 6. Social Group Formation and Maintenance

6.3.1 Peer Relationship Layers

The formation of the peer community is driven by interactions which include com-

munication, transactions, data sharing, competitions, collaborations and any other ac-

tivities involving at least two peers. Peers’s multidimensional relationships in this

distributed environment are more sophisticated and prolific than binary relationships

which have been widely used on most SNSs. Hierarchically speaking, a peer commu-

nity has two layers and the top one is composed of nodes and edges but peers do not

connect with one another directly via links but via interactions. The bottom layer is

composed of conventional binary relationships for “physically” connecting nodes. In

Figure 6.3, these two layers can be briefly depicted via an example related to the simple

trade IM used in Chapter 3. Each IM has one or more interactions (circles in this fig-

ure) as its instances which may involve different peers playing the same role(s). Inside

a particular interaction, involved peers may be collaborators with one another but out-

side it, peers may be either friendly or rival to one another. In Figure 6.3, suppose the

underlying market is a buyer’s market in which the supply from producers (e.g., shop

in Figure 3.8) is more than the demand from consumers (e.g., client in Figure 3.8).

Unsurprisingly, peers playing the shop role become competitors to one another while

peers playing the client role are friendly since some of clients may follow other clients

which are aware of source information about better sales and some of them may even

become friends in order to share the information of common interest without others in

between.

Note that peers which are rivals for one type of interaction may be collaborators for

another type of interaction. In the example above, the relationships would be changed

in the market dominated by sellers. Based on these analysis, we can see that the

interaction-driven peer community is not static and peer’s relationships differ accord-

ing to viewpoints as time goes by.

6.3.2 Peer Group

Peers may join or leave a community at their own will and this process is termed

community evolution. Within the growth of a peer community, a group of peers will

interact with one another more frequently due to some particular common types of in-

teractions but rarely interact with other peers outside this group. These peers actually

6.3. Social Effects 129

IM

is
_c

lie
nt

_o
f

is
_s

ho
pp

er
_o

f

is
_c

lie
nt

_o
f

is
_s

ho
pp

er
_o

f

is
_c

lie
nt

_o
f

is
_s

ho
pp

er
_o

f

is_running_of

is
_r

un
ni

ng
_o

f

is_running_of

Buyer’s Market
Figure 6.3: Community relation layer

form a sub-community called a peer group in this specification. As mentioned in (Ne-

jdl et al., 2003), peer clustering can benefit query routing in peer-to-peer networks and

the authors classified this clustering into three categories: ontology-based clustering,

rule-based clustering and query-based clustering. In this specification, peer grouping

is driven by shared IMs which may be viewed as protocols (or rules) for guiding peers

to interact with one another so it shall fall into the rule-based clustering category.

A group may be formed surrounding one or more IMs which are relevant to the in-

terests of this group itself in one way or another. Peer groups do not have explicit

boundaries and may overlap each other. Through interacting with the overall commu-

nity, groups evolve continually by so new members may join in and existing members

may leave. In the interaction-driven peer community, IMs play a key role within the

formation of peer groups. There is however more than one approach to discovering

130 Chapter 6. Social Group Formation and Maintenance

to which group a particular peer belongs and the results of grouping the same bundle

of peers may be different according to these different approaches, which basically fall

into two categories:

a. Single IM Focused. An intuitive and simple approach to grouping peers is that

each IM will yield a peer group in which all the peer members were involved

in the running of this IM in the past. This approach works especially when a

limited number of IMs are shared in the current community.

b. Multiple IMs Spanned. Some IMs are related to each other and they share more

common peers than other IMs in their past executions. Starting with a single

particular IM, we can discover those peers also involved in the executions of

other IMs. This approach works especially when a large number of IMs are

shared in the current community.

6.3.3 Trust

In the peer community, peers may come across other strange ones with which it has not

interacted before and trust therefore becomes important for them to make a decision

on whether or not to interact with those strangers. Efforts have been paid to finding a

way of managing trust in a decentralised environment (Aberer and Despotovic, 2001;

Cornelli et al., 2002; Damiani et al., 2002; Kamvar et al., 2003). Since our peer com-

munity driven by peer interactions, it is straightforward that the trust can be calculated

according to a peer’s performance on its historical interactions (i.e., interaction logs)

and OKBook adopts a lightweight foaf:knows-driven solution in calculating the trust

degrees between peers and it is detailed in this subsection.

There is originally no notion of degree for foaf:knows prescribed in the FOAF vocab-

ulary and the issue of “to what extent a peer can believe what another peer commits”

has not yet been addressed. Needless to mention, a peer knowing another peer does

not imply that they 100% trust each other. We could ignore this issue and leave subtle

judgements of trust to human interpretation but, as an illustration of how this issue

might be addressed, we propose an approach for letting peers declare how well they

know one another.

Suppose Peer Pa has OKBook curate its profile copy in which Pa is linked to Peer Pb via

foaf:knows. At the time when this link was about to be created, Pa was asked “How

6.3. Social Effects 131

well do you know Pb?” by OKBook. For the sake of simplicity, Pa had the chance

to provide a percentage indicating the extent to which it trusts Pb. By subjectively

choosing a percentage, Pa actually assigned a weight to the outbound f oa f : knows

link pointing to Pb. OKBook however will not simply take this percentage as Pa’s de-

gree of trust in Pb because, in the real world, a person meets another normally through

introduction from their common friends or events they were both attending (i.e., peo-

ple make friends in terms of their similar interests). PageRank (Page et al., 1999) can

indeed be applied to the peer community which is composed of peers and directional

connections thereof to calculate trust degrees and further discussion on this is outside

the scope of this thesis. Here, we however expect peers to have subjective options on

trusts in others instead of using an overall centralised algorithm such as PageRank to

rule them all. Driven by this motivation, we give a lightweight algorithm for calculat-

ing the trust degree, as shown in Algorithm 4.

Algorithm 4: Trust-Degree Calculation Algorithm
Input: A peer P and a community C in which P participates.
Output: An array trust containing P’s degrees of trusts in other peers participating in

C.
begin

for each peer p in C do
trust[p] = 0;
for each neighbour n p of P do

trust[n p] = trust in(P, n p);
//trust in() returns the original degree of trust in an adjacent peer.

S = the set of all peers in C except P;
while |S| 6= 0 do

u = peer in S with highest trust degree;
if trust[u] == 0 then

break;
else

remove u from S;
for each neighbour n u of u do

new trust = trust[u] × trust in(u, n u) - 1
|S|−1 ;

if new trust > trust[n u] then
trust[n u] = new trust;

for each peer p′ in S do
trust[p′] = trust[p′] + 1

|S|−1 ;
if trust[p′] < 0 then

trust[p′] = 0;

In this algorithm, note that the trust degree is calculated not only based on the weight

132 Chapter 6. Social Group Formation and Maintenance

associated with each link in the graph of linked peers but also based on how many

links via which a peer is pointing to others. 1
|S|−1 punishes the trust degree once a

new link is added to the path, where |S| denotes the size of the set S. The reason

for carrying out this punishment is because the more peers a foaf:knows path goes

through the less trustworthy its source peer (where the path begins) will be to them.

The punishment weight relies on the total number of peers in a community. Suppose

the source peer reaches the target peer (where the path ends) by going through several

ones and each of them in between 100% trust its superseding peers. If there is no

punishment involved, a conclusion will be drawn that the source peer knows the target

peer well. Actually, this is not the case in the real world especially when the size of the

community is humongous. If the punishment weight is set to 1
|S|−1 , the above extreme

case will not happen (note this punishing strategy will not work when |S| is too small).

However, since the minimum size of a peer community can be possibly predefined by

peers who are willing to run OKBook servers, the circumstance under which the size of

community is too small (e.g., a community just accommodates two peers) is unlikely

to occur.

Our trust-degree calculation algorithm has been designed to be associated with foaf:k-

nows links. Since foaf:knows is not defined as a symmetric property in the orig-

inal FOAF vocabulary and the description on this property is generic, the direction

of foaf:knows needs to be clearly considered in our algorithm which is “direction-

sensitive”. Hence, peers described in Algorithm 4 form a directed graph in which

network nodes are connected by directional foaf:knows.

As an example, Figure 6.4 depicts the relationships between peers participating in

a community with the size ten (it accommodates ten peers). Suppose PeerA is the

source peer whose degrees of trust in other peers are going to be calculated. Based on

Algorithm 4 and initial trust degrees associated with each edge in the above community

graph, PeerA can figure out the extent to which it can trust other nine community

members. From the above figure, we can see that even though PeerA does not know

PeerC, PeerE, PeerF , PeerG, PeerH, PeerI and PeerJ, it can still trust some of them

thanks to propagations of trust degrees. For instance, if we set the trust threshold to

70%, in Figure 6.4, PeerA can trust PeerC, PeerE and PeerG besides PeerB and PeerD

known beforehand. In the real world, people make new friends and trust them through

their existing friends who are trustworthy. Here, “trustworthy” is actually a neutral

word (neither positive or negative) and a trustworthy peer does not imply that a task

6.3. Social Effects 133

Figure 6.4: PeerA’s trusts in other community members

committed by itself will be finally performed in a positive way (i.e., requirements are

met) and this peer could always break its commitments in a negative way. Thus, one

peer’s trust in another is nothing but a judgement on the latter’s commitments and it

does not mean those commitments will be successfully fulfilled in the end. Therefore,

a peer trusting another means the former either believes the latter will always keep its

commitments or believes the latter will always break its commitments.

Based on Algorithm 4, we can figure out how well each peer has known others in a

community. Furthermore, we can also calculate the overall trustworthiness of a peer

for other community members. Peers’ trust degrees in an n-peer community (|s|= n),

denoted by TC , can be described with the following n×n trust matrix:

TC =



T11 T12 T13 · · · T1n

T21 T22 T23 · · · T2n

T31 T32 T33 · · · T3n
...

...
...

Tn1 Tn2 Tn3 · · · Tnn


(6.1)

In the above matrix, Ti j denotes the ith peer’s degree of trust in the jth peer. Columns

denote peers and rows denote degrees of trusts in those peers. Unlike Algorithm 4 in

which we let Tii = 1(1 6 i 6 n), when we calculate the overall trust degree of a specific

peer, we will not take its trust in itself into consideration, and in the trust matrix, we

let Tii = 0(1 6 i 6 n). Therefore, peers’ overall trust degree in an n-peer community,

134 Chapter 6. Social Group Formation and Maintenance

denoted by Trusto, can be calculated according to the following equation:

Trusto =



T11 T12 T13 · · · T1n

T21 T22 T23 · · · T2n

T31 T32 T33 · · · T3n
...

...
...

Tn1 Tn2 Tn3 · · · Tnn



′

×



1
n−1

1
n−1

1
n−1

...
1

n−1




n rows (6.2)

Here, Trusto is an n× 1 matrix and the value in the ith row denotes the overall de-

gree of trust in the ith peer. For instance, the overall degree of trust in each peer, as

shown in Figure 6.4, can be calculated according to Euquation 6.2 and the final result

can be found in Figure 6.5. A threshold should be selected for filtering out the peers

which are not trustworthy. Suppose this threshold is set to 0.6 and PeerG and PeerJ

will be selected as trustworthy peers based on Figure 6.5. Although PeerD has more

foaf:knows connections (6 outbound foaf:knowss and 4 inbound foaf:knowss),

other peers have relatively low degree of trust in PeerD. The reason for this is because

actually PeerE, PeerG, PeerH and PeerJ have no path (either directly or indirectly)

to peerD. Although PeerD apparently has more connections in terms of the number

of outbound and inbound foaf:knowss, it is actually less close to other community

members. Our trust-degree calculating algorithm assures that intuitively implicit trust-

worthy peers can be discovered from the peer community, which would otherwise be

overlooked due to the ignorance to their implicit (or indirect) relationships with other

peers.

6.3.4 Peer Reciprocity and Community Tolerance

One of the most important reasons for why the community exists is due to peers’

autonomy and social behaviours. The peer community will grow fast when all peers

or most of them are reciprocal to one another. Here, reciprocity basically means that

peers can easily acquire desired services shared by other community members via

interactions.

Peers are egocentric so it is inevitable that some of them are not always on-line or

sticking to their commitments. Therefore, a robust community should have tolerance

for either intentional or unintentional faults caused by those members. This means

there should be a community norm, especially for peers which are not responsible for

6.3. Social Effects 135

Figure 6.5: Overall trusts of community members

those faults, for dealing with peers’ faults and mitigating the resulting damage on it

members and our next-step research will be focused on improving fault tolerance of

the peer community.

Summary

In this chapter, a generic specification on forming peer-to-peer communities is de-

scribed based on approaches already discussed in previous chapters. Also, features

and social effects of peer communities are described. Developers or online community

maintainers may refer to this specification when building peer-to-peer communities by

employing alternative techniques and at same time maximise the flexibility and the

extensibility by preserving the features and social effects as discussed earlier. The

next chapter will focuse on experiments with our system, including effectiveness of

annotation-based discovery, stress tests on distributed peers curating communities, the

comparison between two message-passing methods based on non-blocking I/O and

blocking I/O and IM semantic enhancement as well as several case studies in different

user scenarios.

Chapter 7

Evaluation of the OKBook Architecture

This chapter provides evaluations and a usage scenario on functionalities so far pro-

vided by the system implemented based on our approaches in this thesis. Section 7.1

describes how peer groups can make service discovery effective. Section 7.2 presents

stress tests on our system and shows how peer community evolvement can be achieved

in terms of scalability. Section 7.3 provides evidences on that our non-blocking-I/O

design is superior to the traditional methods which usually achieve concurrency by

suspending threads or processes. Section 7.4 and Section 7.5 give a basic usage sce-

nario where IM annotation/consumption and the OKBook system are demonstrated as

a whole, respectively.

7.1 Effectiveness of IM Discovery Based on Peer Groups

In order to showcase how Interaction Models (IMs) and collaborative peers can be dis-

covered via peer groups, we experimented with the Interactions From An Interaction

(IFAI) algorithm (described in Algorithm 1) by simulating the peer interactions in this

section. Firstly, 100,000 peers and 10 IMs were generated as the test set. According

to the Openfire (mentioned in Section 4.1.3.2) scalability test reported by Jive Soft-

ware, 300 to more than 50,000 peers can be handled by a Sun 280R Server with two

1.2GHz UltraSPARC-III CPUs and 4 GB RAM1, and therefore, 100,000 peers were

chosen here since our machine doubled the CPU capacity and the memory of the above

one. Since each interaction will basically involve at least two peers, we here assumed

1http://www.igniterealtime.org/about/OpenfireScalability.pdf

137

http://www.igniterealtime.org/about/OpenfireScalability.pdf

138 Chapter 7. Evaluation of the OKBook Architecture

each IM owns two roles and 80,000 interactions in total take place (where the CPU

usage reached 100%) over each experiment. In each interaction, one IM and two peers

were randomly selected to generate the interaction instance and play the defined roles

respectively. Moreover, a bidirectional link was generated to connect every pair of

collaborative peers. After peers were grouped based on IFAI, we calculated how many

peers can find desired IMs only making use of our peer-group-based discovery rather

than the assistance of the meta-search engine on OKBook. The aim of the experi-

ment is to measure the percentage (named as Winning Proportion (WP)) of peers that

can obtain the IMs they need from their group members. Empirically, there is more

chance for a peer to find interesting IMs from its groups in which it has (in)directly

interacted with others before, compared with the chance to find those IMs from groups

not containing this peer as their member. In order to minimise the number of cases

of unforeseen situations, omissions or errors, we ran this experiment 1,000 times and

found that on average, 38.99% of peers got desired IMs from their own group members

without searching on the meta-search engine, which indicates that peer groups can re-

duce the burden on OKBook as well as other Semantic Web Search Engines (SWSEs)

which have indexed republished IMs and exposed IM search services.

Secondly, since this proportion was probably related to the parameters such as the

number of peers, the number of IMs and the number of interactions, in order to dis-

cover the relations, we redid the above experiment by changing one parameter (e.g.,

the number of peers) but keeping other two (e.g., the number of IMs and the number of

interactions) fixed each time and calculating the WP in three cases. The results are de-

picted in Figure 7.1(a), Figure 7.1(b) and Figure 7.1(c). Figure 7.1(a) and Figure 7.1(b)

indicate that for those peer communities which have a relatively large number of peers

and shared IMs, it is more difficult for their members to discover desired services and

collaborators from peer groups, compared with small sized peer communities. On the

other hand, we can also see that even though the augmentation of the whole peer-to-

peer network and the number of interactions are unpredicted (especially for popular

peer communities), community members can still try to make the number of harnessed

IMs as small as possible to maximise the WP as shown in Figure 7.1(b) (i.e., by limit-

ing the interests of each peer community). Moreover, as time goes by, more and more

interactions will occur in the peer-to-peer community and the WP will also go up in

terms of our experimental result as shown in Figure 7.1(c).

Thirdly, IMs may contain more than two roles and the WP value in reality is probably

7.1. Effectiveness of IM Discovery Based on Peer Groups 139

 0.4

 0.45

 0.5

 0.55

 0.6

 0.65

 0.7

 50000 60000 70000 80000 90000 100000

p
ro

p
o
rt

io
n
 o

f
w

in
n
e
rs

number of peers

changing-peer-no

(a) WP change with peers

 0

 0.2

 0.4

 0.6

 0.8

 1

 5 10 15 20 25 30 35 40 45 50

p
ro

p
o
rt

io
n
 o

f
w

in
n
e
rs

number of IMs

change-IM-no

(b) WP change with IMs

 0.36

 0.38

 0.4

 0.42

 0.44

 70000 75000 80000 85000 90000

p
ro

p
o
rt

io
n
 o

f
w

in
n
e
rs

number of interactions

change-interaction-no

(c) WP change with peer interactions

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 20 40 60 80 100

p
ro

p
o
rt

io
n
 o

f
w

in
n
e
rs

running times

two-role IMs
three-role IMs
four-role IMs

(d) WP change with IM roles

Figure 7.1: Experimental results of the group-based IM discovery

higher than the above two-role cases because under this circumstance, more group

members and connections may come up after each interaction. Based on the previous

configuration of our experiment (100,000 peers, 10 IMs and 80,000 interactions), we

also investigated the performance of the peer-group-based discovery in the situations

where interactions involved three peers or four peers. The discovery programme was

run for 100 times (when the WP value of each case had become almost flat) in each

of the two cases and the result is shown in Figure 7.1(d). For the three-role case, on

average, 72% of peers got desired IMs via their own group members while for the

four-role case, this proportion went up to 91.43%. Therefore, for communities with a

limited number of resources (peers and IMs), if more peers (roles) are involved in each

interaction, community members will gain more benefits within the discovery process.

140 Chapter 7. Evaluation of the OKBook Architecture

7.2 Stress Tests on Distributed Peers Curating Com-

munities

Scalability is a particular concern when the Web is taken as the infrastructure that un-

derpins the peer community discussed in this thesis. In this section, an experiment was

designed and completed to simulate peers as well as their interactions and do stress

tests on a communication peer (which is a PC with an Intel Pentiumr D 3.00GHz

processor and 1 GB RAM). Another peer (which is a laptop with an Intel CoreTM2

Duo 2.2GHz processor and 1 GB RAM) was used as the client for constantly register-

ing new users and passing messages. This experiment took 1,800 seconds in total to

finish. During this period, in the interval of each second there was a new peer which

was launched and registered on the communication peer. Here, each peer engaged in

five transactions including connection, registration, authentication, online msg and of-

fline msg. Note that in each transaction, one or more requests were sent to the commu-

nication peer. The connection transaction sent out the connect request; The registration

transaction sent out the register request; The authentication transaction sent out three

requests including authenticate, password and initial; The online msg transaction sent

out a message to a randomly selected online peer while the offline msg transaction sent

out a message to a randomly selected offline peer. The thinking time, which is used

for simulating users’ idle activity, for each user between each two transactions is set

to one second. After the running of this experiment, 1,467 peers in total successfully

joined the community by registering on the community server. The highest rate for

the size of responses is 29.15 Kbits/sec and their total size after the experiment is 1.95

MB. Whilst, the highest rate for the size of requests is 15.73 Kbits/sec and their total

size is 1.21 MB. Figure 7.2 describes both the change of membership and the change

of simultaneous online members.

As shown in this figure, around the 600th second, the number of connected peers

reached 1,009 and then exceeded the limit that the client can handle. Around the

900th second, the client exceeded the time of max connection retries and began to

disconnect existing connections. The maximum number of simultaneous online peers

are 1,146 in the end. We can see that although the performance is currently hampered

by our limited but improvable computing resources, the result still indicates that the

peer community can be formed incrementally based on our approach and the system

can adapt to changes in peer membership via communication protocols that have been

7.3. IM Execution in Browsers: Non-Blocking I/O vs Blocking I/O 141

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 0 200 400 600 800 1000 1200 1400 1600 1800

v
a

lu
e

unit = sec

 simultaneous

users

connected

Figure 7.2: Simultaneous online members

employed here. In extreme cases, if the number of simultaneously online peers is n,

there needs to be d n
1000e communication peers on the Web to appropriately handle all

the traffic. Note that this number was calculated in terms of the PC used in this test

and may vary depending on the allocated computing resources on each communication

peer.

The rates for the above five transactions are depicted in Figure 7.3, from which we

can see that a large portion of time was spent on page (i.e., users browsing pages

and corresponding thread(s) being idle) and other interaction-related transactions were

finished comparatively more efficiently.

7.3 IM Execution in Browsers: Non-Blocking I/O vs Block-

ing I/O

eXtended Lightweight Coordination Calculus (XLCC) has extended Lightweight Co-

ordination Calculus (LCC) by introducing a new operator to materialise the non-blocking

I/O within the process of running IMs. In order to showcase the advantage of XLCC

142 Chapter 7. Evaluation of the OKBook Architecture

 0

 2

 4

 6

 8

 10

 12

 0 200 400 600 800 1000 1200 1400 1600 1800

tr
a

n
s
a

c
ti
o

n
s
/s

e
c

unit = sec

 rate

page
tr_online_msg

tr_authentication
tr_connection
tr_registration
tr_offline_msg

Figure 7.3: Five transactions for each peer

over the opposite blocking I/O design, our XLCC interpreter’s performance on the

IM execution with non-blocking I/O is compared with the performance on the I/O-

blocking execution in this section. This comparison involved two peers, one of which

triggers the interaction by sending a message to the other and receives responses later

on. Each sending and receiving pair forms a basic request/response unit (RnR) in

which message sending and message receiving should happen sequentially. Mean-

while, the operator then is used here to connect message sending and message re-

ceiving in each RnR and interactions, each of which containing only one unit, are not

considered here since I/O will be blocked by then in this case. The lengths of mes-

sages which are passed during peer interactions could be different in the real world but

in order to simplify the experiment, message lengths are uniform here. We conducted

the experiment on the performance of the XLCC interpreter by calculating the costs

of the time spent on running IMs with non-blocking I/O (RnRs are joined with niobs)

and running IMs with blocking I/O (RnRs are joined with thens) respectively. After

each calculation, the number of units was increased by one and the experiment was re-

peated. Figure 7.4 describes the result of calculations on the time costs of interactions

between two peers according to the above experiment design.

7.3. IM Execution in Browsers: Non-Blocking I/O vs Blocking I/O 143

 10000

 20000

 30000

 40000

 50000

 60000

 70000

 5 10 15 20 25 30 35 40 45 50

C
o

s
t

o
f

T
im

e
 (

m
s
)

Number of Messages

Message Passing Between Two Peers

Blocking I/O
Non-Blocking I/O
TimeoutblockingI/O

Figure 7.4: Comparison between interactions with non-blocking and blocking I/Os

From the above figure, with the increasing of the number of RnR units, there is a

steep linear increase in the time cost of running IM with blocking I/O. However, for

the IM executions with non-blocking I/O, time cost is almost constant. Moreover, the

experiment on the running of IMs with blocking I/O stop progressing when the number

of RnRs reached 35, which occurred due to the timeout of the employed Hypertext

Transfer Protocol (HTTP) endpoint based on Bidirectional-streams Over Synchronous

HTTP (BOSH). This could of course be improved by reconfiguring the BOSH property

settings or employing another endpoint with better performance. Nevertheless, with

the same timeout setting as shown in Figure 7.4, running IMs in a non-blocking-I/O

manner can handle more RnR unites so our approach which supports non-blocking

I/O scales to the peer-to-peer knowledge sharing environment with a large number of

messages being passed around better than those approaches based on the traditional

blocking-I/O manner.

Since our solution here conforms to HTML5, technically, the agent state can be per-

sisted inside the local storage of each Web browser. As of writing of this thesis, large

browser vendors including Mozilla Firefox, Google Chrome and Opera have provided

5 MB local storage space on average, and Microsoft IE has provided 10 MB for each

144 Chapter 7. Evaluation of the OKBook Architecture

entire domain. Presumably, each IM has five LCC clauses, each of which has five

variables and the average lengths of variable names and values are four and ten, re-

spectively. With 5 MB local storage space, approximately 7,000 (5,000,000÷ (5×
5× (4×2+10×2))) interactions can be persistent for each IM. Note that this number

was calculated based on the above presumption and may vary on a case-by-case basis.

Nevertheless, that number of interactions is fairly enough for an agent (a peer) to per-

sist and remember in practice at any one time and with improvement in both software

and hardware, this capacity will, in any case, continue to increase.

7.4 Experiments and Case Study on IM Semantic En-

hancement

This section experiments with the semantic enhancement strategy applied to IMs and

gives case studies on IM annotation/consumption. We used a PC with Intel Pentium

Duo 3.0GHz CPUs and 1 GB of RAM to consult the experiment. As mentioned above,

one way of harnessing published IMs is to assist the Distributed Discovery Service

(DDS) in discovering appropriate IMs that meet peers’ requirements. In the peer-to-

peer network, an atomic interaction occurs between two peers. We used two PCs as

peers with the same performance, each of which has been installed with a communi-

cation server that can communicate with the other peer, and this makes each machine

have both client and server capabilities. IMs owned by each peer have been published

on the DDS and are also stored in its local IM repository. Suppose a peer, P, sends

a query (note that both Uniform Resource Identifier (URI)-based queries and phrase-

based queries are supported) to a DDS peer, D. By matching the query against with

semantic annotations embedded in persisted IMs, D can select most relevant IMs which

are likely to meet the requirement of the user who has logged on to P and made that

query. Several matching and ranking strategies can be adopted as already discussed

in Chapter 3. When a specific IM was selected and is currently being browsed by P,

P’s Resource Description Framework in Attributes (RDFa) parser (e.g., this parser has

been installed on P’ as an add-on/plugin) can automatically parse the IM page into Re-

source Description Framework (RDF) triples. By querying these triples, P can check

if it can play a specific role in this IM by investigating OpenKnowledge Components

(OKCs) and constraints. If P can provide all the OKCs which this IM requires a spe-

7.4. Experiments and Case Study on IM Semantic Enhancement 145

cific role to provide, P is able to subscribe to this IM and play this role during the

IM execution. On the other hand, P will also have a chance to query the above har-

vested triples to find out if this IM has belonged to some communities and then P can

apply for a membership to join these communities at its own will. Suppose the URI

for this IM is denoted by im uri; the named graph containing P’s profile is denoted by

IMtriples; the URI for the graph containing harvested triples is denoted by IM. Then

the following SPARQL Protocol and RDF Query Language (SPARQL) query will help

the peer figure out which role it can play and which potential communities it may join:

SELECT ?role ?community

FROM 〈IM〉
FROM NAMED 〈IMtriples〉
WHERE {

GRAPH 〈IMtriples〉 {?P a wsc:Peer. ?role a owlp:Role:

Role. ?P wsc:plays ?role.}
?community a vook:P2PCommunity.

〈im uri〉 owlp:hasRole ?role.

〈im uri〉 vook:belongs to ?community.

}

Another way of making use of published IMs occurs in their running processes. In

order to analyse this usage, we created and published an IM targeting the job vacancy

service on the UK Civil Service Website 2. This IM can help people not only find

out appropriate job information services but also look for desired jobs from these ser-

vices. Since each job vacancy is published on a Web page with embedded semantic

annotations (RDFa 1.0 on this Website), when the IM is executed, users looking for

jobs will query the service and get the job pages back for further checking if they can

play roles in this IM. Using the Atom feed published by this Website, we retrieved

338 pages corresponding to 338 jobs in total. Suppose each page is given a unique ID

(e.g., 0 to 337) and then the time costs of page retrievals are described in Figure 7.5.

Job vacancy pages from this site are based on a unified form actually forms a template

by which the site administrator can create and update job information. On average,

the time cost interval for retrieving job vacancy pages is [171ms, 188ms]. Then the

embedded RDF triples are harvested from the above pages and the corresponding time

cost for each harvest is described in Figure 7.6. In this figure, most of pages are parsed

within the time cost interval [3ms, 5ms]. The first page and the last page cost 43ms and

2http://www.civilservice.gov.uk/jobs/

146 Chapter 7. Evaluation of the OKBook Architecture

27ms respectively, which are extraordinarily long compared with the others and can

be ignored in this experiment because much time was spent on the preparation before

the loading of retrieved pages and resource disposal after the overall RDFa harvest.

We checked extracted triples and found that some of them are duplicated due to the

RDFa parser (still under active development at the time of writing this thesis) we used.

However, duplicated triples are repeated with equal times for different pages so the

duplication will not influence the performance on the comparison and can be ignored

in our experiment.

 140

 160

 180

 200

 220

 240

 260

 280

 300

 0 50 100 150 200 250 300 350

C
os

t o
f T

im
e

(m
s)

Doc Index

Retrieving Web pages

Figure 7.5: Time cost of retrieving pages

 2

 3

 4

 5

 6

 7

 8

 9

 0 50 100 150 200 250 300 350

C
os

t o
f T

im
e

(m
s)

Doc Index

Loading and harvesting Web pages

Figure 7.6: Time cost of harvesting RDFa data

Figure 7.7 gives a screenshot on a publisher publishing/annotating an IM in which a

peer sends a greeting sentence to another and then the recipient displays this sentence.

7.4. Experiments and Case Study on IM Semantic Enhancement 147

After being published, the Extensible HyperText Markup Language (XHTML) page of

the IM will be persisted on the DDS and also stored in the publisher’s local IM reposi-

tory. As soon as the publisher receives acknowledgement of the successful publishing

from the DDS, it will be asked whether or not to subscribe to the IM by choosing a

role to play.

148 Chapter 7. Evaluation of the OKBook Architecture

Fi
gu

re
7.

7:
S

cr
ee

ns
ho

to
n

th
e

us
er

in
te

rfa
ce

fo
ra

nn
ot

at
in

g
IM

s

7.5. Usage Scenario 149

By matching the user’s query with semantic annotations embedded in published IMs,

an IM is discovered as shown in Figure 7.8 (note that this IM is encoded with LCC

and a(client, initial, 1, 1) means the client role is the one that starts the interaction

while a(shop, necessary, 1) means at least one peer needs to play the shop role during

the interaction). Various peer side applications can be designed and implemented for

digesting and reusing the semantically enhanced IMs in one way or another but further

discussion of this is outside the scope of this thesis. Figure 7.8 depicts a peer-side

consumer analyses the discovered IM and informs the peer of which roles it can play

and which communities it may join in terms of its local profile.

Figure 7.8: Snapshot of the user interface of a peer side consumer

7.5 Usage Scenario

This section revisits the problems which have not been fully tackled due to the limita-

tions on the traditional keyword-based search and service discovery techniques briefed

150 Chapter 7. Evaluation of the OKBook Architecture

in Section 1.3 and presents a usage scenarios for OKBook. Two additional case studies

targeting those problems are also provided as a system walkthrough in Appendix B.

Several Social Networking Sites (SNSs) have emerged such as MySpace, Facebook

and Twitter, and one of their common features is that they are all built on top of binary

relations between nodes (a.k.a users) no matter if interlinks are unidirectional or bidi-

rectional. They are based on a centralised server approach and users have to register

on them in order to interact with other users. In the decentralised environment like the

OpenKnowledge system, peers are more autonomous and expect more diverse social

events. This requires that services provided by existing SNSs might be represented

in a more generic way without any centralised server and users can interact with each

other based on their own agreements. For instance, any peer that can play the role of a

service provider in an IM, which defines a Facebook style of social interaction, could

become a localised substitute for Facebook from the perspective of the client/server

architecture depending on how constraints of this role will be satisfied.

In this thesis, the peer community is formed based on interaction logs and foaf:knows

links between peers which are bidirectional. After an IM is successfully finished, the

involved peers certainly neither have to to create foaf:knows links pointing to every-

body nor have to create foaf:knows links pointing to others with which they have col-

laborated in that interaction. Peers are autonomous and egocentric so they can choose

to know specific peers on different occasions. On the other hand, historical records of

interactions especially which were successfully fulfilled can provide peers with more

trustworthy collaborative peers and trigger the formation of groups of interests.

Thanks to IMs, functionalities owned by existing SNSs can be mapped to several

OKCs. Suppose a peer expects to know which are its closest peers as observed by

some other trusted peer and then it can subscribe to the IM described in Figure 7.9.

Note that peers may have various algorithms to implement the OKC for solving the

constraint search neighbors(N,S) here. For example, users on Facebook are linked

via undirected edges while nodes on Twitter are linked via directed ones. Suppose

Peer A and Peer B both have registered on Facebook and Twitter respectively. Then

their relationships can be described using the following two formulas:

R f acebook(A,B)↔ links to(A,B)∧ links to(B,A)

Rtwitter(A,B)↔ links to(A,B)∨ links to(B,A)

Taking the peer-to-peer network as a directed social graph, discovery services from

7.5. Usage Scenario 151

different social networks can be generalised and unified via a single IM, and any newly

devised discovery algorithms can be therefore wrapped into OKCs capable of solving

a corresponding constraint like search neighbours(N,S).

/∗ An individual peer, I, sends out a message to a potential social network commissary,

C, in order to retrieve I’s closest members. Then based on I’s neighbourhood informa-

tion stored in N (a particular data model storing a graph taking peers as nodes and their

relations as edges) and a specific algorithm derived from the graph theory, C find out

I’s closest peers. Finally, C returns the discovered peer set S to I. There will be one

peer playing the individual role and more than one peer playing the commissary role.

∗/

a(individual, I)::

retrieve closest peers(N)⇒ a(commissary, C) then

offer peer set(S)⇐ a(commissary, C).

a(commissary, C)::

retrieve closest peers(N)⇐ a(individual, I) then

offer peer set(S)⇒ a(individual, I)← not(isolate(N)) &&

search neighbours(N, S).

Figure 7.9: IM for retrieving the set of closest peers

As mentioned in Figure 7.9, N is a data model holding the information about all of a

peer’s neighbours. A peer could just work out the set of its closest peers by employing

a particular algorithm but as mentioned above, there are a variety of algorithms for

doing this job so it is necessary to separate each peer with those algorithms and wrap

them into public services which can be invoked whenever needed. Arguably, peers

should only send their personal data to others they trust so it is obviously more secure

for them to keep their data local and perform as many tasks over those data locally as

possible. On the other hand, manipulating data locally may bring lots of burdens on

peers especially those which have limited computation capacities or limited accesses

to nearby computation resources. Thus, a trade-off needs to be found to balance data

privacy and data sharing, which is however out of the scope of this thesis. Since the

peer social graph is directed, N can be a two-columns table in which each row denotes

an edge. One column denotes the direction of the edge and the other column denotes

the connected peer via this edge. Based on diverse types of interactions, peers that

152 Chapter 7. Evaluation of the OKBook Architecture

want to play a social community commissary role can compose various IMs and em-

ploy diverse algorithms to implement OKCs for the purpose of meeting other peers’

social requirements. For example, Figure 7.10 illustrates the peer A’s closest peers B,

C and I, which were discovered based on the breath-first search algorithm and bidi-

rectional interlinks (depth = 1). This actually simulates a user’s set of Facebook-like

closest peers. However, if a peer wants a set of Twitter-like closest peers such as a

set composed of all its followers (or followees), another OKC needs to be created

based on single directional interlinks. These IMs will be also published on microdata-

embedded pages, so our IM discovery service on OKBook will find the most suitable

interaction(s) in which peers prefer being involved.

Figure 7.10: Peer A’s Facebook-like closest peer discovery (depth = 1)

On Facebook, users can interact with each other in several ways. The first and the

most basic one is that users can post on their friends’ Walls (serve as the primary

asynchronous messaging boards) or their own, and probably their friends may reply to

these posts later on. Users can contact with their friends via the email service and the

instant messenger internally. Photo sharing is one of most important functionalities and

another type of interaction is that users comment on photos uploaded by their friends

or themselves. Users can also interact with others through applications such as games,

online markets and blogs. Last but not least, Mini-Feeds can provide a continually

refreshed list of all user events including creation of new social links, Wall posts, photo

comments and application notifications. So based on different types of interactions we

can build corresponding IMs for Facebook. For example, Figure 7.11 describes an IM

which helps peers to share photos with their subscribers in a peer-to-peer manner.

OKBook is dedicated to peers’ interactions and it also provides functionalities of social

networks but in a more interactive way. The aforementioned interactions on Facebook

7.5. Usage Scenario 153

/∗ An individual peer, P, uploads a latest photo and send it to a peer community, OKB,

in order to share the photo with other community members who are the subscribers of

this peer. Then OKB finds all its subscribers and sends a message of wall update to

each of them (including the publishing peer itself). ∗/

a(peer, P)::

post(Pic)⇒ a(community, OKB)← upload(Pic) then

update wall(Pic, Pub)⇐ a(community, OKB).

a(community, OKB)::

post(Pic)⇐ a(Peer, P) then

a(community(Pic, P, S), OKB)← find subscribers(P, S) niob

update wall(Pic, P)⇒ a(Peer, P).

a(community(Pic, Pub, S), OKB)::

null← S = []

or

update wall(Pic, Pub)⇒ a(peer, Sub)← S = [Sub|R] then

a(community(Pic, Pub, R)).

Figure 7.11: IM for posting pictures to subscribers’ walls

can be boiled down to several IMs, and the main difference between the friend graph

derived from Facebook and the peer community derived from OKBook is that the

former is formed by manually created links from one registered user to another and

the latter is formed by automatically recorded interactions in which peers have been

involved.

Summary

In this chapter, several experiments were carried out from different aspects of the OK-

Book system. The experimental results indicate that lightweight annotations can ben-

efit peers all through their interaction processes including discovery and data reuse,

and at the same time they do not explicitly increase the payload at the consumer side.

The stress tests showcase that the scalability of the system powered by OKBook can

handle massive numbers of registered peers and passed messages in a decentralised

environment. Blocking-I/O is sometimes not necessary and may even effect the sys-

154 Chapter 7. Evaluation of the OKBook Architecture

tem performance. So on that basis, our approach instead chooses non-blocking-I/O to

obtain a communication layer with better efficiency. Finally, this chapter returns to

the problems raised at the beginning of this thesis and gives basic case studies which

describe how OKBook can tackle these problems based on the approaches and designs

previously described in this thesis.

Chapter 8

Conclusions and Future Work

An approach has been proposed in this thesis to the formation of peer communities

based on peer interaction protocols in the form of Interaction Models (IMs). A platform

called OKBook has been created as a preliminary implementation of this approach

taking OpenKnowledge as its inspiration. OKBook provides peers with a platform for

publishing, discovering and (un)subscribing to IMs. Within the publishing process,

linkable metadata is used for annotating elements inside IMs which will be finally

published on Web pages. For the discovery process, the two mechanisms proposed are

based on a meta search engine and a dynamic peer grouping algorithm.

Compared with Web Service (WS) orchestration, WS choreography provides an al-

ternative model for representing how peers collaborate with one another in order to

achieve their top-level goals. In this thesis, we also presented OKeilidh as a decen-

tralised proof-of-concept system which encodes choreography as IMs and executes

interactions within modern Web browsers. A demonstration screencast is available

here1 and more are coming up on the OKeilidh Website2. eXtended Lightweight Co-

ordination Calculus (XLCC) extends Lightweight Coordination Calculus (LCC) as a

lightweight and browser-focused language used for encoding choreography. In addi-

tion, we have developed a vocabulary that makes it convenient for service publishers

to annotate their services and link those services to others in an interconnected man-

ner. This in turn benefits and enriches the increasing number of resources (including

services) published in conformity to Linked Data principles. In future work, we will

further integrate OKeilidh into OKBook and thus make IM management and IM exe-

1http://vimeo.com/user9076607/qna-with-okeilidh
2http://www.openk.org/okeilidh/

155

http://vimeo.com/user9076607/qna-with-okeilidh
http://www.openk.org/okeilidh/

156 Chapter 8. Conclusions and Future Work

cution interoperate seamlessly together.

Our Web-oriented knowledge sharing platform has emerged from the ad hoc and peer-

to-peer networks, and as discussed in this thesis, IM execution is a message-intensive

process so tremendous traffic will occur, especially when a massive amount of in-

teractions occur in a decentralised environment simultaneously. Therefore, we have

introduced a new operator to materialise the non-blocking I/O within the process of

running IMs, and the experimental results show that running IMs in a non-blocking-

I/O manner is superior to running them in a blocking-I/O manner by being capable

of handling more request/response units. So this operator design scales to the decen-

tralised knowledge sharing environment with a large number of messages able to be

passed around, and more than the traditional approaches based on the blocking-I/O

manner. On the other hand, OKeilidh incorporates Extensible Messaging and Presence

Protocol (XMPP) as the peer communication protocol in the communication layer. As

discussed in Section 2.5, Advanced Message Queuing Protocol (AMQP) is a wire-level

protocol based on Transmission Control Protocol (TCP) and various patterns can be de-

signed and built on top of it. Therefore, considering the strengths and weaknesses of

both XMPP and AMQP, we believe it is also important for OKeilidh to support AMQP

in the future, and make this protocol complementary to and cooperate with XMPP in

the communication layer.

Also, from the perspective of WS choreography, this thesis proposes a new approach

for republishing the IMs associated with metadata in a peer-to-peer knowledge sharing

environment. We add a semantic layer on top of the IM encoded in LCC by repub-

lishing it using the annotation-embedded Web page. These republished IMs can assist

peers by discovering desired services and collaborative peers precisely thanks to the

unambiguous Uniform Resource Identifiers (URIs) of online resources. IM publica-

tion complies with the Linked Data principals and will further contribute to and also

benefit from the Web of data. Moreover, the IM publication provides a more secure

and controllable way of transferring knowledge within the distributed environment. On

the other hand, peers can be ranked in terms of their reputations in a community based

on the algorithm discussed in (Besana et al., 2009). There is a possibility that the peer

currently being targeted was subscribed to a specific IM in the past and the IM page

will also inform this peer of those previous subscriptions with meta information such

as how many subscriptions have been made by this peer before via which OKBook

servers.

157

OKeilidh is currently at the stage of demonstration and further explorations into the

aspect of its use in practice are necessary and can be outlined via several directions.

It can be used as a distributed multi-agent system running in Web browsers and how

to deal with argumentation and security problems which have been faced by existing

multi-agent systems has not been thoroughly investigated in this thesis. We expect to

develop OKeilidh into a full-fledged system comparable with contemporary systems

(such as Jade, Jason and Jadex, etc.) though it may not have to be FIPA-complaint.

Our long term goal is to create an ecosystem for generic task-driven peer collabo-

rations/competitions. OKBook heavily relies on the Semantic Web as its underlying

data/inference infrastructure and as discussed earlier, a number of tasks performed on

this platform benefit from appropriately applied vocabularies/ontologies. To tackle the

potential problem related to knowledge heterogeneity, this thesis introduces existing

methods such as ontology mapping and light weight same-as services. However, as of

writing this thesis, people from the Semantic Web community have not found a widely

accepted solution to address the above problem. Therefore, how our approaches can

help practitioners to eliminate the heterogeneity problem (for example, via negotia-

tions between involved peers on a specific task) and by doing so, how our approaches

can at the same time benefit from this (for example, via enriched semantics leading to

better performance on IM/peer discovery) will be further explored in the near future.

Nowadays, more and more service providers begin to look for customers instead of

waiting for customers to look for their services. So we believe that in the near future,

we will not search for services but services will automatically find us in one way or

another (e.g., through the peer community). Our approaches proposed in this thesis,

accompanied with implemented proof-of-concept prototypes, are trying to achieve this

goal within decentralised knowledge sharing environments such as ad hoc and peer-

to-peer networks.

Bibliography

Aberer, K. and Despotovic, Z. (2001). Managing trust in a peer-2-peer information

system. In Proceedings of the Tenth International Conference on Information and

Knowledge Management (CIKM 2001), pages 310–317. ACM Press.

Adida, B., Birbeck, M., McCarron, S., and Pemberton, S. (2008). RDFa in

XHTML: Syntax and Processing, W3C Recommendation. http://www.w3.org/

TR/rdfa-syntax.

Akkiraju, R. (2005). Web Service Semantics-WSDL-S (Version 1.0). http://www.

w3.org/Submission/WSDL-S/.

Akram, A. and Allan, R. (2005). Virtual Peer Communities and the Community Coor-

dinator. In Proc. SKG ’05, pages 110–119.

Alexander, K., Cyganiak, R., Hausenblas, M., and Zhao, J. (2009). Describing

Linked Datasets - On the Design and Usage of voiD, the ‘Vocabulary of Interlinked

Datasets’. In Proc. WWW Workshop on LDOW ’09.

Auer, S., Bizer, C., Kobilarov, G., Lehmann, J., and Ives, Z. (2007). DBpedia: A

Nucleus for a Web of Open Data. In Proceedings of the 6th International Semantic

Web Conference, pages 11–15. Springer.

Auer, S., Dietzold, S., Lehmann, J., Hellmann, S., and Aumueller, D. (2009). Triplify:

Light-Weight Linked Data Publication from Relational Databases. In Proceedings

of the 18th International Conference on World wide web, pages 621–630. ACM.

Badra, F., Servant, F.-P., and Passant, A. (2011). A Semantic Web Representation of

Product Range Specification based on Constraint Satisfaction Problem in the Auto-

motive Industry. In Proceedings of the ESWC Workshop on Ontology and Semantic

Web for Manufacturing (OSEMA’11), Heraklion, Greece, 29 May, 2011.

159

http://www.w3.org/TR/rdfa-syntax
http://www.w3.org/TR/rdfa-syntax
http://www.w3.org/Submission/WSDL-S/
http://www.w3.org/Submission/WSDL-S/

160 Bibliography

Bai, X. (2011). Addressing the RDFa Publishing Bottleneck. In Proceedings of the

20th international conference companion on World wide web, WWW ’11, pages

331–336. ACM.

Bai, X., Cheng, B., and Robertson, D. (2009). Mobile Widget Sharing By Mining Peer

Groups. In Proceedings of the 1st Workshop on Inductive Reasoning and Machine

Learning on the Semantic Web at ESWC 2009. CEUR-WS.org.

Bai, X., Delbru, R., and Tummarello, G. (2008). RDF Snippets for Semantic Web

Search Engines. In Proc. OTM ’07, volume 5332, pages 1304–1318. Springer.

Bai, X., Klein, E., and Robertson, D. (2011). RDFa2: Lightweight Semantic En-

richment for Hypertext Content. In Pan, J., Chen, H., Kim, H.-G., Li, J., Wu, Z.,

Horrocks, I., Mizoguchi, R., and Wu, Z., editors, The Semantic Web, volume 7185 of

Lecture Notes in Computer Science, pages 318–333. Springer Berlin / Heidelberg.

Bai, X., Klein, E., and Robertson, D. (2012). Choreographing Web Services with

Semantically Enhanced Scripting. In IEEE/WIC/ACM International Conference on

Web Intelligence (WI 2012 to appear).

Bai, X. and Robertson, D. (2010). Service Choreography Meets the Web of Data via

Micro-Data. In Proceedings of the AAAI Spring Symposium on Linked Data Meets

Artificial Intelligence (LINKEDAI 2011), pages 8–13. AAAI Press.

Bai, X., Vasconcelos, W., and Robertson, D. (2010). OKBook: Peer-to-Peer Commu-

nity Formation. In Proceedings of the Extended Semantic Web Conference, pages

106–120. Springer.

Barker, A., Walton, C., and Robertson, D. (2009). Choreographing Web Services.

Services Computing, IEEE Transactions on, 2(2):152 –166.

Beckett, D. and Berners-Lee, T. (2008). Turtle - Terse RDF Triple Language, W3C

Team Submission. http://www.w3.org/TeamSubmission/turtle.

Beckett, D. and McBride, B. (2004). RDF/XML Syntax Specification (Revised), W3C

Recommendation. http://www.w3.org/TR/REC-rdf-syntax.

Bellifemine, F., Poggi, A., and Rimassa, G. (1999). JADE - A FIPA-compliant agent

framework. In Proceedings of Practical Application of Intelligent Agents and Multi-

Agent Technology (PAAM’99), pages 97–108.

http://www.w3.org/TeamSubmission/turtle
http://www.w3.org/TR/REC-rdf-syntax

Bibliography 161

Berners-Lee, T. (1998). Notation 3 Specification, W3C Design Issues. http://www.

w3.org/DesignIssues/Notation3.html.

Berners-Lee, T. (2000). Semantic Web on XML. http://www.w3.org/2000/Talks/

1206-xml2k-tbl.

Berners-Lee, T. (2006). Linked Data. http://www.w3.org/DesignIssues/

LinkedData.html.

Berners-Lee, T., Fischetti, M., and Dertouzos, T. M. (1999). Weaving the Web:

The Original Design and Ultimate Destiny of the World Wide Web by its Inventor.

HarperCollins.

Berners-Lee, T., Hendler, J., and Lassila, O. (2001). The Semantic Web. Scientific

American, 284(5):34–43.

Besana, P., Patkar, V., Barker, A., and andDavid Glasspool, D. R. (2009). Sharing

Choreographies in OpenKnowledge: A Novel Approach to Interoperability. Journal

of Software, 4(8):833–842.

Birman, K. and Joseph, T. (1987). Exploiting Virtual Synchrony in Distributed Sys-

tems. SIGOPS Oper. Syst. Rev., 21(5):123–138.

Bizer, C., Cyganiak, R., and Heath, T. (2007). How to Publish Linked Data on the

Web. http://www4.wiwiss.fu-berlin.de/bizer/pub/LinkedDataTutorial.

Bradner, S. (1997). Key Words for Use in RFCs to Indicate Requirement Levels (IETF

RFC 2119). http://www.ietf.org/rfc/rfc2119.

Brickley, D. and Miller, L. (2007). FOAF Vocabulary Specification. http://xmlns.

com/foaf/spec/.

Busi, N., Gorrieri, R., Guidi, C., Lucchi, R., and Zavattaro, G. (2005). Choreography

and Orchestration: A Synergic Approach for System Design. In Proceedings of

the 3rd International Conference of Service-Oriented Computing, pages 228–240.

Springer.

Carroll, J. J., Bizer, C., Hayes, P., and Stickler, P. (2005). Named graphs, provenance

and trust. In Proceedings of the 14th International Conference on World Wide Web,

pages 613–622. ACM.

http://www.w3.org/DesignIssues/Notation3.html
http://www.w3.org/DesignIssues/Notation3.html
http://www.w3.org/2000/Talks/1206-xml2k-tbl
http://www.w3.org/2000/Talks/1206-xml2k-tbl
http://www.w3.org/DesignIssues/LinkedData.html
http://www.w3.org/DesignIssues/LinkedData.html
http://www4.wiwiss.fu-berlin.de/bizer/pub/LinkedDataTutorial
http://www.ietf.org/rfc/rfc2119
http://xmlns.com/foaf/spec/
http://xmlns.com/foaf/spec/

162 Bibliography

Çelik, T. and Meyer, E. (2004). XHTML Friends Network. In Proceedings of the ACM

Hypertext. ACM.

Cheng, G., Ge, W., and Qu, Y. (2008). Falcons: Searching and Browsing Entities on

the Semantic Web. In Proceedings of the 17th International Conference on World

Wide Web, pages 1101–1102. ACM.

Chirita, P. A., Alex, P., Chirita, R., Idreos, S., Koubarakis, M., and Nejdl, W. (2004).

Publish/Subscribe for RDF-based P2P Networks. In Proc. ESWS ’04, volume 3053,

pages 182–197. Springer.

Choi, N., Song, I.-Y., and Han, H. (2006). A survey on ontology mapping. SIGMOD

Rec., 35(3):34–41.

Christensen, E., Curbera, F., Meredith, G., and Weerawarana, S. (2001). Web Services

Description Language (WSDL) 1.1. http://www.w3.org/TR/wsdl/.

Cornelli, F., Damiani, E., di Vimercati, D. C., Paraboschi, S., and Samarati, P. (2002).

Choosing Reputable Servents in a P2P Network. In Proceedings of the Eleventh

International Conference on World Wide Web (WWW 2002). ACM Press.

Crockford, D. (2006). JSON: The Fat-Free Alternative to XML. In Proceedings of

XML 2006.

Curbera, F., Duftler, M., Khalaf, R., Nagy, W., Mukhi, N., and Weerawarana, S. (2002).

Unraveling the Web services web: an introduction to SOAP, WSDL, and UDDI.

Internet Computing, IEEE, 6(2):86–93.

Damiani, E., di Vimercati, D. C., Paraboschi, S., Samarati, P., and Violante, F. (2002).

A Reputation-Based Approach for Choosing Reliable Resources in Peer-to-Peer

Networks. In Proceedings of the 9th ACM conference on Computer and Communi-

cations Security (CCS 2002). ACM Press.

Davoust, A. and Esfandiari, B. (2008). Towards Semantically Enhanced Peer-to-Peer

File-Sharing. In Proc. OTM Workshops ’08, volume 5333, pages 937–946. Springer.

Davoust, A. and Esfandiari, B. (2009). Linking and Navigating Data in a P2P File-

Sharing Network. In Proc. WWW Workshop on LDOW ’09.

de Pinninck Bas, A. P., Dupplaw, D., Kotoulas, S., and Siebes, R. (2007). The Open-

Knowledge Kernel. International Journal of Applied Mathematics and Computer

Sciences (IJAMCS), 4(3):162–167.

http://www.w3.org/TR/wsdl/

Bibliography 163

Dietze, S., Yu, H. Q., Pedrinaci, C., Liu, D., and Domingue, J. (2011). SmartLink: A

Web-Based Editor and Search Environment for Linked Services. In Proceedings of

ESWC ’01, volume 6644, pages 436–440. Springer.

Ding, L., Finin, T., Joshi, A., Pan, R., Cost, R. S., Peng, Y., Reddivari, P., Doshi, V., and

Sachs, J. (2004). Swoogle: A Search and Metadata Engine for the Semantic Web.

In Proceedings of the Thirteenth ACM International Conference on Information and

Knowledge Management, pages 652–659. ACM.

Dodds, L. and Davis, I. (2010). Linked Data Patterns - A Pattern Catalogue

for Modelling, Publishing, and Consuming Linked Data. http://patterns.

dataincubator.org/book.

Farrell, J. and Lausen, H. (2007). Semantic Annotations for WSDL and XML Schema.

http://www.w3.org/TR/2007/REC-sawsdl-20070828/.

Fielding, R. T. (2000). Architectural Styles and the Design of Network-based Software

Architectures. PhD thesis, University OF California, Irvine.

Finin, T., Fritzson, R., McKay, D., and McEntire, R. (1994). KQML as an agent

communication language. In Proceedings of the third international conference on

Information and knowledge management, pages 456–463. ACM.

Fischer, M., Purtell, T. J., and Lam, M. S. (2011). Email Clients as Decentralized

Social Apps in Mr. Privacy .

Fitzpatrick, B., Slatkin, B., Atkins, M., and Genestoux, M. (2012). PubSubHubbub

Core 0.4 — Working Draft. https://superfeedr-misc.s3.amazonaws.com/

pubsubhubbub-core-0.4.html.

Grant, J., Beckett, D., and McBride, B. (2004). RDF Test Cases, W3C Recommenda-

tion. http://www.w3.org/TR/rdf-testcases.

Hammer-Lahav, E. (2010). The OAuth 1.0 Protocol (IETF RFC 5849). http://

tools.ietf.org/html/rfc5849.

Hampton, K., Goulet, L. S., Rainie, L., and Purcell, K. (2011). Social networking sites

and our lives. Technical report, Pew Internet and American Life Project.

Häsel, M. (2011). Opensocial: an enabler for social applications on the Web. Commun.

ACM, 54(1):139–144.

http://patterns.dataincubator.org/book
http://patterns.dataincubator.org/book
http://www.w3.org/TR/2007/REC-sawsdl-20070828/
https://superfeedr-misc.s3.amazonaws.com/pubsubhubbub-core-0.4.html
https://superfeedr-misc.s3.amazonaws.com/pubsubhubbub-core-0.4.html
http://www.w3.org/TR/rdf-testcases
http://tools.ietf.org/html/rfc5849
http://tools.ietf.org/html/rfc5849

164 Bibliography

Hendler, J. A. (2009). Tonight’s Dessert: Semantic Web Layer Cakes. In Proceedings

of the 6th European Semantic Web Conference (ESWC 2009), volume 5554, page 1.

Springer-Verlag.

He, A., Johnston, E., and Kushmerick, N. (2004). ASSAM: A Tool for Semi-

Automatically Annotating Semantic Web Services. In Proceedings of 3rd Inter-

national Semantic Web Conference (ISWC’04), pages 320–334. Springer-Verlag.

Hickson, I. (2012). HTML Microdata , W3C Working Draft. http://www.w3.org/

TR/microdata/.

Idehen, K. and Erling, O. (2008). Linked Data Spaces & Data Portability.

Joachims, T. (1998). Text Categorization with Support Vector Machines: Learning

with Many Relevant Features. In Machine Learning: ECML-98, volume 1398, pages

137–142. Springer Berlin / Heidelberg.

Kamvar, S. D., Schlosser, M. T., and Garcia-Molina, H. (2003). The Eigentrust al-

gorithm for reputation management in P2P networks. In Proceedings of the 12th

international conference on World Wide Web, pages 640–651. ACM.

Kavantzas, N., Burdett, D., Ritzinger, G., and Lafon, Y. (2005). Web services Choreog-

raphy Description Language Version 1.0. http://www.w3.org/TR/ws-cdl-10/.

Kaykova, O., Kononenko, O., Terziyan, V., and Zharko, A. (2004). Community For-

mation Scenarios in Peer-to-Peer Web Service Environments. In Proc. IASTED on

Databases and Applications ’04, pages 62–67. ACTA Press.

Kelsey, J., Schneier, B., and Wagner, D. (1998). Protocol Interactions and the Cho-

sen Protocol Attack. In Proceedings of the 5th International Workshop on Security

Protocols, pages 91–104. Springer-Verlag.

Khambatti, M., Ryu, K. D., and Dasgupta, P. (2004). Structuring Peer-to-Peer Net-

works Using Interest-Based Communities. In Proc. VLDB workshop on DBISP2P

’04, volume 2944, pages 48–63. Springer.

Klusch, M., Fries, B., and Sycara, K. (2006). Semantic Web Service Selection with

SAWSDL-MX. In Proceedings of the International Conference on Autonomous

Agents and Multi-Agent Systems (AAMAS 2006), pages 915–922. ACM Press.

Klusch, M. and Kapahnke, P. (2008). Semantic Web Service Selection with SAWSDL-

MX. In Proceedings of the International Workshop on Service Matchmaking and

http://www.w3.org/TR/microdata/
http://www.w3.org/TR/microdata/
http://www.w3.org/TR/ws-cdl-10/

Bibliography 165

Resource Retrieval in the Semantic Web (SMR2 2008) at ISWC 2008, pages 3–18.

CEUR-WS.org.

Kobilarov, G., Scott, T., Raimond, Y., Oliver, S., Sizemore, C., Smethurst, M., Bizer,

C., and Lee, R. (2009). Media Meets Semantic Web — How the BBC Uses DB-

pedia and Linked Data to Make Connections. In Proceedings of the 6th European

Semantic Web Conference, pages 723–737. Springer.

Kopecky, J., Gomadam, K., and Vitvar, T. (2009). hRESTS: An HTML Microfor-

mat for Describing RESTful Web Services. In Proceedings of the IEEE/WIC/ACM

International Conference on Web Intelligence and Intelligent Agent Technology (WI-

IAT’08), pages 619–625. IEEE CS.

Kotoulas, S. and Siebes, R. (2007). Adaptive Routing in Structured Peer-to-Peer Over-

lays. In Proceedings of the 3rd International IEEE Workshop on Collaborative

Service-Oriented P2P Information Systems (WETICE 2007). IEEE Computer Soci-

ety.

Kramer, J. (2009). Advanced Message Queuing Protocol (AMQP). Linux Journal,

2009(187):3.

Langridge, S. and Hickson, I. (2002). Pingback 1.0. Technical report.

Lara, R., Roman, D., Polleres, A., and Fensel, D. (2004). A Conceptual Comparison

of WSMO and OWL-S. In Proceedings of the European Conference on Web Service

(ECOWS 2004), pages 254–269. Springer.

Lewis, R. (2007). Dereferencing HTTP URIs. http://www.w3.org/2001/tag/doc/

httpRange-14/HttpRange-14.html.

Liu, K., Bhaduri, K., Das, K., Nguyen, P., and Kargupta, H. (2006). Client-Side Web

Mining for Community Formation in Peer-to-Peer Environments. ACM SIGKDD

Explorations, 8(2):11–20.

Mallya, A. U., Desai, N., Chopra, A. K., and Singh, M. P. (2005). OWL-P: OWL for

Protocol and Processes. In Proceedings of the fourth International Joint Confer-

ence on Autonomous Agents and Multiagent Systems, AAMAS ’05, pages 139–140.

ACM.

Martin, D., Burstein, M., Hobbs, J., Lassila, O., McDermott, D., McIlraith, S.,

Narayanan, S., Paolucci, M., Parsia, B., Payne, T., Sirin, E., Srinivasan, N., and

http://www.w3.org/2001/tag/doc/httpRange-14/HttpRange-14.html
http://www.w3.org/2001/tag/doc/httpRange-14/HttpRange-14.html

166 Bibliography

Sycara, K. (2004). OWL-S: Semantic Markup for Web Services. W3C Member

Submission. http://www.w3.org/Submission/OWL-S/.

McBride, B. (2004). RDF Primer, W3C Recommendation. http://www.w3.org/TR/

2004/REC-rdf-primer-20040210.

Milner, R. (1999). Communicating and Mobile Systems: the π-Calculus. Cambridge

University Press, New York, NY, USA.

Mitra, N. and Lafon, Y. (2007). SOAP Version 1.2 Part 0: Primer

(Second Edition), W3C Recommendation. http://www.w3.org/TR/2007/

REC-soap12-part0-20070427/.

Moro, G., Ouksel, A. M., and Sartori, C. (2003). Agents and Peer-to-Peer Comput-

ing: A Promising Combination of Paradigms. In Proceedings of the 1st Interna-

tional Conference on Agents and Peer-to-Peer Computing (AP2PC’02), pages 1–14.

Springer-Verlag.

Nejdl, W., Siberski, W., and Sintek, M. (2003). Design Issues and Challenges for RDF-

and Schema-Based Peer-to-Peer Systems. ACM SIGMOD Record, 32(3):41–46.

O’Reilly, T. (2007). What Is Web 2.0: Design Patterns and Business Models for the

Next Generation of Software. International Journal of Digital Economics, (65):17–

37.

Page, L., Brin, S., Motwani, R., and Winograd, T. (1999). The PageRank Citation

Ranking: Bringing Order to the Web. Technical Report 1999-66, Stanford InfoLab.

Palma, R., Haase, P., and Gómez-Pérez, A. (2005). Oyster - Sharing and Re-using

Ontologies in a Peer-to-Peer Community. In Proc. ISWC ’05, volume 3729, pages

1059–1062. Springer.

Paolucci, M., Kawamura, T., Payne, T. R., and Sycara, K. P. (2002). Semantic Match-

ing of Web Services Capabilities. In Proceedings of the First International Semantic

Web Conference on The Semantic Web, ISWC’02, pages 333–347. Springer-Verlag.

Papazoglou, M. P. (2003). Service-Oriented Computing: Concepts, Characteristics and

Directions. In Proceedings of the Fourth International Conference on Web Informa-

tion Systems Engineering, 2003. WISE 2003, pages 3–12. IEEE Computer Society.

Passant, A., Breslin, J., and Decker, S. (2010). Open, Distributed and Semantic

http://www.w3.org/Submission/OWL-S/
http://www.w3.org/TR/2004/REC-rdf-primer-20040210
http://www.w3.org/TR/2004/REC-rdf-primer-20040210
http://www.w3.org/TR/2007/REC-soap12-part0-20070427/
http://www.w3.org/TR/2007/REC-soap12-part0-20070427/

Bibliography 167

Microblogging with SMOB. In Web Engineering, volume 6189, pages 494–497.

Springer Berlin / Heidelberg.

Paterson, I., Smith, D., Saint-Andre, P., and Moffitt, J. (2010). Bidirectional-streams

Over Synchronous HTTP (BOSH). http://xmpp.org/extensions/xep-0124.

html.

Patil, A., Oundhakar, S., Sheth, A., and Verma, K. (2004). Meteor-S Web Service

Annotation Framework. In Proceedings of the 13th International Conference on the

World Wide Web, pages 553–562. ACM Press.

Pedrinaci, C. and Domingue, J. (2010). Toward the Next Wave of Services: Linked

Services for the Web of Data. J. UCS, 16(13):1694–1719.

Peltz, C. (2003). Web Services Orchestration and Choreography. Computer,

36(10):46–52.

Porter, C. E. (2004). A Typology of Virtual Communities: A Multi-Disciplinary Foun-

dation for Future Research. Journal of Computer-mediated Communication, 10(1).

Prodromou, E., Vibber, B., Walker, J., and Copley, Z. (2010). OSta-

tus 1.0 Draft 2. http://ostatus.org/sites/default/files/ostatus-1.

0-draft-2-specification.html.

Recordon, D. and Hardt, D. (2012). The OAuth 2.0 Authorization Protocol (draft-ietf-

oauth-v2-25). http://tools.ietf.org/html/draft-ietf-oauth-v2-25.

Recordon, D. and Reed, D. (2006). OpenID 2.0: A Platform for User-Centric Iden-

tity Management. In Proceedings of the second ACM workshop on Digital Identity

Management, pages 11–16. ACM.

Reiter, R. (1991). Artificial Intelligence and Mathematical Theory of Computation.

pages 359–380. Academic Press Professional, Inc.

Robertson, D. (2004). Multi-Agent Coordination As Distributed Logic Programming.

In Proceedings of the International Conference on Logic Programming, pages 416–

430. Springer.

Robertson, D. (2008). Webs of Interactions: Exploring Peer Ranking Via Simulation

in OpenKnowledge. Technical Report, OpenKnowledge, University of Edinburgh.

Robertson, D., Walton, C., Barker, A., Besana, P., Chen-Burger, Y., Hassan, F., Lam-

http://xmpp.org/extensions/xep-0124.html
http://xmpp.org/extensions/xep-0124.html
http://ostatus.org/sites/default/files/ostatus-1.0-draft-2-specification.html
http://ostatus.org/sites/default/files/ostatus-1.0-draft-2-specification.html
http://tools.ietf.org/html/draft-ietf-oauth-v2-25

168 Bibliography

bert, D., Li, G., McGinnis, J., Osman, N., Bundy, A., McNeill, F., van Harmelen,

F., Sierra, C., and Giunchiglia, F. (2009). Models of Interaction as A Grounding

for Peer to Peer Knowledge Sharing. In Advances in Web Semantics, vol 1, pages

81–129. Springer.

Saint-Andre, P. (2004). Extensible Messaging and Presence Protocol (XMPP): Core

(IETF RFC 3920). http://www.ietf.org/rfc/rfc3920.

Scott, D. (1970). Outline of a Mathematical Theory of Computation. Fourth Annual

Princeton Conference on Information Sciences and Systems, pages 169–176.

Scott, M. L. (2009). Programming Language Pragmatics. Morgan Kaufmann, 3.

edition.

Smarr, J. (2008). Portable Contacts 1.0 Draft C. http://portablecontacts.net/

draft-spec.html.

Sporny, M., Inkster, T., Story, H., Harbulot, B., and Bachmann-Gmür, R. (2011).

WebID 1.0 — Web Identification and Discovery, W3C Editor’s Draft. http:

//www.w3.org/2005/Incubator/webid/spec/.

Suda, B. (2006). Using Microformats. O’Reilly press.

Tummarello, G., Delbru, R., and Oren, E. (2007). Sindice.com: Weaving the Open

Linked Data. In The Semantic Web, volume 4825, pages 552–565. Springer Berlin /

Heidelberg.

Verborgh, R., Steiner, T., Van Deursen, D., Van de Walle, R., and Gabarr Valls, J.

(2011). Efficient Runtime Service Discovery and Consumption with Hyperlinked

RESTdesc. In Proceedings of the 7th International Conference on Next Generation

Web Services Practices. IEEE CS.

Videla, A. and Williams, J. J. (2012). RabbitMQ in Action. Manning.

Vitvar, T., Kopecký, J., Viskova, J., and Fensel, D. (2008). WSMO-Lite Annotations

for Web Services. In Proceedings of the 5th European Semantic Web Conference

(ESWC’08), pages 674–689. Springer-Verlag.

Wang, F.-Y., Carley, K., Zeng, D., and Mao, W. (2007). Social Computing: From

Social Informatics to Social Intelligence. Intelligent Systems, IEEE, 22(2):79–83.

Willmott, S., Vreeswijk, G., Chesevar, C., South, M., Mcginnis, J., Modgil, S., Rah-

http://www.ietf.org/rfc/rfc3920
http://portablecontacts.net/draft-spec.html
http://portablecontacts.net/draft-spec.html
http://www.w3.org/2005/Incubator/webid/spec/
http://www.w3.org/2005/Incubator/webid/spec/

Bibliography 169

wan, I., Reed, C., and Simari, G. (2006). Towards an Argument Interchange Format

for Multiagent Systems. In Proc. of the 3rd Int. Workshop on Argumentation in

Multi-Agent Systems.

Yao, W. and Julita, V. (2004). Trust-Based Community Formation in Peer-to-Peer File

Sharing Networks. In Proc. WI ’04, pages 416–430. IEEE CS.

Yeung, C. M. A., Liccardi, I., Lu, K., Seneviratne, O., and Berners-Lee, T. (2009).

Decentralization: The Future of Online Social Networking. In Proceedings of the

W3C Workshop on the Future of Social Networking ’09.

Yolum, P. and Singh, M. P. (2002). Commitment Machines. In Revised Papers from the

8th International Workshop on Intelligent Agents VIII, ATAL ’01, pages 235–247.

Springer-Verlag.

Zhang, X., Cheng, G., and Qu, Y. (2007). Ontology Summarization Based on RDF

Sentence Graph. In Proc. WWW ’07, pages 707–716. ACM Press.

Zuckerberg, M. and Taylor, B. (2010). The Open Graph Protocol. http://ogp.me.

http://ogp.me

Appendix A

XLCC State Overview and Parse Tables

State Overview

states[0].kernel
Lookahead Production
$ IM’ -> . IM

states[1].kernel
Lookahead Production
$ IM’ -> IM .

states[2].kernel
Lookahead Production
$ IM -> Clause List . BuiltIn List
$ IM -> Clause List . head (JSONLIST) .

states[3].kernel
Lookahead Production
$ IM -> BuiltIn List . Clause List

states[4].kernel
Lookahead Production
$ IM -> head . (JSONLIST) . Clause List
$ IM -> head . (JSONLIST) . Clause List BuiltIn List
$ IM -> head . (JSONLIST) . BuiltIn List Clause List

states[5].kernel
Lookahead Production
plays knows iid head $ Clause List -> Clause .
plays knows iid head $ Clause List -> Clause . Clause List

states[6].kernel
Lookahead Production
a $ BuiltIn List -> BuiltIn .
a $ BuiltIn List -> BuiltIn . BuiltIn List

states[7].kernel
Lookahead Production
plays knows iid head a $ Clause -> Role . :: Def .
plays knows iid head a $ Clause -> Role . .

states[8].kernel
Lookahead Production
a plays knows iid $ BuiltIn -> plays . (Constant , Constant) .

states[9].kernel
Lookahead Production
a plays knows iid $ BuiltIn -> knows . (Constant) .

states[10].kernel
Lookahead Production
a plays knows iid $ BuiltIn -> iid . (Constant) .

states[11].kernel
Lookahead Production
:: . <- then or niob} Role -> a . (Type , Id)

states[12].kernel
Lookahead Production
$ IM -> Clause List head . (JSONLIST) .

states[13].kernel
Lookahead Production
$ IM -> Clause List BuiltIn List .

states[14].kernel
Lookahead Production
$ IM -> BuiltIn List Clause List .

states[15].kernel
Lookahead Production
$ IM -> head (. JSONLIST) . BuiltIn List Clause List
$ IM -> head (. JSONLIST) . Clause List BuiltIn List
$ IM -> head (. JSONLIST) . Clause List

171

172 Appendix A. XLCC State Overview and Parse Tables

states[16].kernel
Lookahead Production
plays knows iid head $ Clause List -> Clause Clause List .

states[17].kernel
Lookahead Production
a $ BuiltIn List -> BuiltIn BuiltIn List .

states[18].kernel
Lookahead Production
plays knows iid head a $ Clause -> Role . .

states[19].kernel
Lookahead Production
plays knows iid head a $ Clause -> Role :: . Def .

states[20].kernel
Lookahead Production
a plays knows iid $ BuiltIn -> plays (. Constant , Constant) .

states[21].kernel
Lookahead Production
a plays knows iid $ BuiltIn -> knows (. Constant) .

states[22].kernel
Lookahead Production
a plays knows iid $ BuiltIn -> iid (. Constant) .

states[23].kernel
Lookahead Production
:: . <- then or niob} Role -> a (. Type , Id)

states[24].kernel
Lookahead Production
$ IM -> Clause List head (. JSONLIST) .

states[25].kernel
Lookahead Production
$ IM -> head (JSONLIST .) . Clause List

$ IM -> head (JSONLIST .) . Clause List BuiltIn List
$ IM -> head (JSONLIST .) . BuiltIn List Clause List

states[26].kernel
Lookahead Production
plays knows iid head a $ Clause -> Role :: Def . .
. then or niob Def -> Def . then Def
. then or niob Def -> Def . or Def
. then or niob Def -> Def . niob Def

states[27].kernel
Lookahead Production
. then or niob} Def -> Interaction .

states[28].kernel
Lookahead Production
. then or niob} Def -> { . Def }
states[29].kernel
Lookahead Production
. then or niob} Interaction -> Message . => Role
. then or niob} Interaction -> Message . => Role <- Constraint
. then or niob} Interaction -> Message . <= Role

states[30].kernel
Lookahead Production
. then or niob} Interaction -> Constraint . <- Message <= Role
<- && || Constraint -> Constraint . && Constraint
<- && || Constraint -> Constraint . || Constraint

states[31].kernel
Lookahead Production
. then or niob} Interaction -> null . <- Constraint

states[32].kernel
Lookahead Production
. then or niob} Interaction -> Role .
. then or niob} Interaction -> Role . <- Constraint

states[33].kernel
Lookahead Production
=> <= Message -> Constant . (Terms)
<- && || Constraint -> Constant .
<- && || Constraint -> Constant . ()
<- && || Constraint -> Constant . (Terms)
== != > < >= =< Id -> Constant .

states[34].kernel
Lookahead Production
<- && || . then or niob}) Constraint -> not . (Constraint)

states[35].kernel
Lookahead Production
<- && || . then or niob}) Constraint -> Id . == Id
<- && || . then or niob}) Constraint -> Id . != Id
<- && || . then or niob}) Constraint -> Id . > Id
<- && || . then or niob}) Constraint -> Id . < Id
<- && || . then or niob}) Constraint -> Id . >= Id
<- && || . then or niob}) Constraint -> Id . =< Id

states[36].kernel
Lookahead Production
<- && || . then or niob}) Constraint -> Variable . = Id
== != > < >= =< Id -> Variable .

states[37].kernel
Lookahead Production

173

<- && || . then or niob}) Constraint -> list . (Id , Id , Id)

states[38].kernel
Lookahead Production
== != > < >= =< <- && || . then or
niob}) ,

Id -> LIST .

states[39].kernel
Lookahead Production
== != > < >= =< <- && || . then or
niob}) ,

Id -> String .

states[40].kernel
Lookahead Production
a plays knows iid $ BuiltIn -> plays (Constant . , Constant) .

states[41].kernel
Lookahead Production
a plays knows iid $ BuiltIn -> knows (Constant .) .

states[42].kernel
Lookahead Production
a plays knows iid $ BuiltIn -> iid (Constant .) .

states[43].kernel
Lookahead Production
:: . <- then or niob} Role -> a (Type . , Id)

states[44].kernel
Lookahead Production
, Type -> Term .

states[45].kernel
Lookahead Production
,) Term -> Constant .
,) Term -> Constant . (Terms)

states[46].kernel
Lookahead Production
,) Term -> Variable .

states[47].kernel
Lookahead Production
,) Term -> LIST .

states[48].kernel
Lookahead Production
,) Term -> String .

states[49].kernel
Lookahead Production
,) Term -> .

states[50].kernel
Lookahead Production
$ IM -> Clause List head (JSONLIST .) .

states[51].kernel
Lookahead Production
$ IM -> head (JSONLIST) . . BuiltIn List Clause List
$ IM -> head (JSONLIST) . . Clause List BuiltIn List
$ IM -> head (JSONLIST) . . Clause List

states[52].kernel
Lookahead Production
. then or niob} Def -> Def niob . Def

states[53].kernel
Lookahead Production
. then or niob} Def -> Def or . Def

states[54].kernel
Lookahead Production
. then or niob} Def -> Def then . Def

states[55].kernel
Lookahead Production
plays knows iid head a $ Clause -> Role :: Def . .

states[56].kernel
Lookahead Production
. then or niob} Def -> { Def . }
} then or niob Def -> Def . then Def
} then or niob Def -> Def . or Def
} then or niob Def -> Def . niob Def

states[57].kernel
Lookahead Production
. then or niob} Interaction -> Message <= . Role

states[58].kernel
Lookahead Production
. then or niob} Interaction -> Message => . Role <- Constraint
. then or niob} Interaction -> Message => . Role

states[59].kernel
Lookahead Production
<- && || . then or niob}) Constraint -> Constraint || . Constraint

states[60].kernel
Lookahead Production
<- && || . then or niob}) Constraint -> Constraint && . Constraint

states[61].kernel
Lookahead Production
. then or niob} Interaction -> Constraint <- . Message <= Role

states[62].kernel
Lookahead Production
. then or niob} Interaction -> null <- . Constraint

174 Appendix A. XLCC State Overview and Parse Tables

states[63].kernel
Lookahead Production
. then or niob} Interaction -> Role <- . Constraint

states[64].kernel
Lookahead Production
<- && || Constraint -> Constant (. Terms)
<- && || Constraint -> Constant (.)
=> <= Message -> Constant (. Terms)

states[65].kernel
Lookahead Production
<- && || . then or niob}) Constraint -> not (. Constraint)

states[66].kernel
Lookahead Production
<- && || . then or niob}) Constraint -> Id =< . Id

states[67].kernel
Lookahead Production
<- && || . then or niob}) Constraint -> Id >= . Id

states[68].kernel
Lookahead Production
<- && || . then or niob}) Constraint -> Id < . Id

states[69].kernel
Lookahead Production
<- && || . then or niob}) Constraint -> Id > . Id

states[70].kernel
Lookahead Production
<- && || . then or niob}) Constraint -> Id != . Id

states[71].kernel
Lookahead Production
<- && || . then or niob}) Constraint -> Id == . Id

states[72].kernel
Lookahead Production
<- && || . then or niob}) Constraint -> Variable = . Id

states[73].kernel
Lookahead Production
<- && || . then or niob}) Constraint -> list (. Id , Id , Id)

states[74].kernel
Lookahead Production
a plays knows iid $ BuiltIn -> plays (Constant , . Constant) .

states[75].kernel
Lookahead Production
a plays knows iid $ BuiltIn -> knows (Constant) . .

states[76].kernel
Lookahead Production
a plays knows iid $ BuiltIn -> iid (Constant) . .

states[77].kernel
Lookahead Production
:: . <- then or niob} Role -> a (Type , . Id)

states[78].kernel
Lookahead Production
,) Term -> Constant (. Terms)

states[79].kernel
Lookahead Production
$ IM -> Clause List head (JSONLIST) . .

states[80].kernel
Lookahead Production
$ IM -> head (JSONLIST) . . Clause List
$ IM -> head (JSONLIST) . . Clause List BuiltIn List
$ IM -> head (JSONLIST) . . BuiltIn List Clause List

states[81].kernel
Lookahead Production
. then or niob} Def -> Def niob Def .
. then or niob} Def -> Def . then Def
. then or niob} Def -> Def . or Def
. then or niob} Def -> Def . niob Def

states[82].kernel
Lookahead Production
. then or niob} Def -> Def or Def .
. then or niob} Def -> Def . then Def
. then or niob} Def -> Def . or Def
. then or niob} Def -> Def . niob Def

states[83].kernel
Lookahead Production
. then or niob} Def -> Def then Def .
. then or niob} Def -> Def . then Def
. then or niob} Def -> Def . or Def
. then or niob} Def -> Def . niob Def

states[84].kernel
Lookahead Production
. then or niob} Def -> { Def } .

states[85].kernel
Lookahead Production
. then or niob} Interaction -> Message <= Role .

states[86].kernel
Lookahead Production
. then or niob} Interaction -> Message => Role .

175

. then or niob} Interaction -> Message => Role . <- Constraint

states[87].kernel
Lookahead Production
<- && || . then or niob}) Constraint -> Constraint || Constraint .
<- && || . then or niob}) Constraint -> Constraint . && Constraint
<- && || . then or niob}) Constraint -> Constraint . || Constraint

states[88].kernel
Lookahead Production
<- && || . then or niob}) Constraint -> Constant .
<- && || . then or niob}) Constraint -> Constant . ()
<- && || . then or niob}) Constraint -> Constant . (Terms)
== != > < >= =< Id -> Constant .

states[89].kernel
Lookahead Production
<- && || . then or niob}) Constraint -> Constraint && Constraint .
<- && || . then or niob}) Constraint -> Constraint . && Constraint
<- && || . then or niob}) Constraint -> Constraint . || Constraint

states[90].kernel
Lookahead Production
. then or niob} Interaction -> Constraint <- Message . <= Role

states[91].kernel
Lookahead Production
<= Message -> Constant . (Terms)

states[92].kernel
Lookahead Production
. then or niob} Interaction -> null <- Constraint .
. then or niob} && || Constraint -> Constraint . && Constraint
. then or niob} && || Constraint -> Constraint . || Constraint

states[93].kernel
Lookahead Production
. then or niob} Interaction -> Role <- Constraint .
. then or niob} && || Constraint -> Constraint . && Constraint
. then or niob} && || Constraint -> Constraint . || Constraint

states[94].kernel
Lookahead Production
=> <= Message -> Constant (Terms .)
<- && || Constraint -> Constant (Terms .)
) , Terms -> Terms . , Term

states[95].kernel
Lookahead Production
<- && || . then or niob}) Constraint -> Constant () .

states[96].kernel
Lookahead Production
) , Terms -> Term .

states[97].kernel
Lookahead Production
<- && || . then or niob}) Constraint -> not (Constraint .)
) && || Constraint -> Constraint . && Constraint
) && || Constraint -> Constraint . || Constraint

states[98].kernel
Lookahead Production
<- && || . then or niob}) Constraint -> Id =< Id .

states[99].kernel
Lookahead Production
<- && || . then or niob}) , Id -> Constant .

states[100].kernel
Lookahead Production
<- && || . then or niob}) , Id -> Variable .

states[101].kernel
Lookahead Production
<- && || . then or niob}) Constraint -> Id >= Id .

states[102].kernel
Lookahead Production
<- && || . then or niob}) Constraint -> Id < Id .

states[103].kernel
Lookahead Production
<- && || . then or niob}) Constraint -> Id > Id .

states[104].kernel
Lookahead Production
<- && || . then or niob}) Constraint -> Id != Id .

states[105].kernel
Lookahead Production
<- && || . then or niob}) Constraint -> Id == Id .

states[106].kernel
Lookahead Production
<- && || . then or niob}) Constraint -> Variable = Id .

states[107].kernel
Lookahead Production
<- && || . then or niob}) Constraint -> list (Id . , Id , Id)

states[108].kernel
Lookahead Production
a plays knows iid $ BuiltIn -> plays (Constant , Constant .) .

states[109].kernel
Lookahead Production
a plays knows iid $ BuiltIn -> knows (Constant) . .

states[110].kernel

176 Appendix A. XLCC State Overview and Parse Tables

Lookahead Production
a plays knows iid $ BuiltIn -> iid (Constant) . .

states[111].kernel
Lookahead Production
:: . <- then or niob} Role -> a (Type , Id .)

states[112].kernel
Lookahead Production
,) Term -> Constant (Terms .)
) , Terms -> Terms . , Term

states[113].kernel
Lookahead Production
$ IM -> Clause List head (JSONLIST) . .

states[114].kernel
Lookahead Production
$ IM -> head (JSONLIST) . BuiltIn List . Clause List

states[115].kernel
Lookahead Production
$ IM -> head (JSONLIST) . Clause List . BuiltIn List
$ IM -> head (JSONLIST) . Clause List .

states[116].kernel
Lookahead Production
. then or niob} Interaction -> Message => Role <- . Constraint

states[117].kernel
Lookahead Production
<- && || . then or niob}) Constraint -> Constant (. Terms)
<- && || . then or niob}) Constraint -> Constant (.)

states[118].kernel
Lookahead Production
. then or niob} Interaction -> Constraint <- Message <= . Role

states[119].kernel
Lookahead Production
<= Message -> Constant (. Terms)

states[120].kernel
Lookahead Production
) , Terms -> Terms , . Term

states[121].kernel
Lookahead Production
<- && || Constraint -> Constant (Terms) .
=> <= Message -> Constant (Terms) .

states[122].kernel
Lookahead Production
<- && || . then or niob}) Constraint -> not (Constraint) .

states[123].kernel
Lookahead Production
<- && || . then or niob}) Constraint -> list (Id , . Id , Id)

states[124].kernel
Lookahead Production
a plays knows iid $ BuiltIn -> plays (Constant , Constant) . .

states[125].kernel
Lookahead Production
:: . <- then or niob} Role -> a (Type , Id) .

states[126].kernel
Lookahead Production
,) Term -> Constant (Terms) .

states[127].kernel
Lookahead Production
$ IM -> head (JSONLIST) . BuiltIn List Clause List .

states[128].kernel
Lookahead Production
$ IM -> head (JSONLIST) . Clause List BuiltIn List .

states[129].kernel
Lookahead Production
. then or niob} Interaction -> Message => Role <- Constraint .
. then or niob} && || Constraint -> Constraint . && Constraint
. then or niob} && || Constraint -> Constraint . || Constraint

states[130].kernel
Lookahead Production
<- && || . then or niob}) Constraint -> Constant (Terms .)
) , Terms -> Terms . , Term

states[131].kernel
Lookahead Production
. then or niob} Interaction -> Constraint <- Message <= Role .

states[132].kernel
Lookahead Production
<= Message -> Constant (Terms .)
) , Terms -> Terms . , Term

states[133].kernel
Lookahead Production
) , Terms -> Terms , Term .

states[134].kernel
Lookahead Production
<- && || . then or niob}) Constraint -> list (Id , Id . , Id)

states[135].kernel
Lookahead Production
a plays knows iid $ BuiltIn -> plays (Constant , Constant) . .

177

states[136].kernel
Lookahead Production
<- && || . then or niob}) Constraint -> Constant (Terms) .

states[137].kernel
Lookahead Production
<= Message -> Constant (Terms) .

states[138].kernel
Lookahead Production
<- && || . then or niob}) Constraint -> list (Id , Id , . Id)

states[139].kernel
Lookahead Production
<- && || . then or niob}) Constraint -> list (Id , Id , Id .)

states[140].kernel
Lookahead Production
<- && || . then or niob}) Constraint -> list (Id , Id , Id) .

178 Appendix A. XLCC State Overview and Parse Tables

Pop Table

Left-hand side Number of symbols to pop

0 1
44 2
44 2
44 6
44 6
44 7
44 7
42 1
42 2
45 4
45 2
43 1
43 2
48 7
48 5
48 5
46 6
49 1
47 1
47 3
47 3
47 3
47 3
52 3
52 5
52 3
52 5
52 3
52 1
52 3
54 1
54 3
54 4
54 4
54 3
54 3
54 3
54 3
54 3
54 3
54 3
54 3
54 3
54 8
55 3
55 1
51 1
51 1
51 1
51 4
51 1
51 1
50 1
50 1
50 1
50 1
53 4

179

Ac
ti

on
Ta

bl
e

St
at

e
W
H
I
T
E
S
P
A
C
E

h
e
a
d

a
o
r

t
h
e
n

n
i
o
b

k
n
o
w
s
p
l
a
y
s
i
i
d

l
i
s
t
n
u
l
l

n
o
t
:
:

,
.

(
)

[
]
{
}

=
=

!
=

>
<

>
=
=
<

=
>

<
=
-
>

<
-
=

|
V
a
r
i
a
b
l
e

C
o
n
s
t
a
n
t
J
S
O
N
L
I
S
T

L
I
S
T

S
t
r
i
n
g

|
|

&
&

$
0

s4
s1

1
s9

s8
s1

0
1

r0
2

s1
2

s9
s8

s1
0

3
s1

1
4

s1
5

5
r7

s1
1

r7
r7

r7
r7

6
r1

1
s9

s8
s1

0
r1

1
7

s1
9

s1
8

8
s2

0
9

s2
1

10
s2

2
11

s2
3

12
s2

4
13

r1
14

r2
15

s2
5

16
r8

r8
r8

r8
r8

17
r1

2
r1

2
18

r1
0

r1
0

r1
0

r1
0

r1
0

r1
0

19
s1

1
s3

7
s3

1
s3

4
s2

8
s3

6
s3

3
s3

8
s3

9
20

s4
0

21
s4

1
22

s4
2

23
s4

9
s4

6
s4

5
s4

7
s4

8
24

s5
0

25
s5

1
26

s5
3

s5
4

s5
2

s5
5

27
r1

8
r1

8
r1

8
r1

8
r1

8
28

s1
1

s3
7

s3
1

s3
4

s2
8

s3
6

s3
3

s3
8

s3
9

29
s5

8
s5

7
30

s6
1

s5
9

s6
0

31
s6

2
32

r2
8

r2
8

r2
8

r2
8

r2
8

s6
3

33
s6

4
r5

2
r5

2
r5

2
r5

2
r5

2
r5

2
r3

0
r3

0
r3

0
34

s6
5

35
s7

1
s7

0
s6

9
s6

8
s6

7
s6

6
36

r5
3
r5

3
r5

3
r5

3
r5

3
r5

3
s7

2
37

s7
3

38
r5

4
r5

4
r5

4
r5

4
r5

4
r5

4
r5

4
r5

4
r5

4
r5

4
r5

4
r5

4
r5

4
r5

4
r5

4
r5

4
39

r5
5

r5
5

r5
5

r5
5
r5

5
r5

5
r5

5
r5

5
r5

5
r5

5
r5

5
r5

5
r5

5
r5

5
r5

5
r5

5
40

s7
4

41
s7

5
42

s7
6

43
s7

7
44

r1
7

45
r4

6
s7

8
r4

6
46

r4
7

r4
7

47
r4

8
r4

8
48

r5
0

r5
0

49
r5

1
r5

1
50

s7
9

51
s8

0
52

s1
1

s3
7

s3
1

s3
4

s2
8

s3
6

s3
3

s3
8

s3
9

53
s1

1
s3

7
s3

1
s3

4
s2

8
s3

6
s3

3
s3

8
s3

9
54

s1
1

s3
7

s3
1

s3
4

s2
8

s3
6

s3
3

s3
8

s3
9

180 Appendix A. XLCC State Overview and Parse Tables

55
r9

r9
r9

r9
r9

r9
56

s5
3

s5
4

s5
2

s8
4

57
s1

1
58

s1
1

59
s3

7
s3

4
s3

6
s8

8
s3

8
s3

9
60

s3
7

s3
4

s3
6

s8
8

s3
8

s3
9

61
s9

1
62

s3
7

s3
4

s3
6

s8
8

s3
8

s3
9

63
s3

7
s3

4
s3

6
s8

8
s3

8
s3

9
64

s9
5

s4
9

s4
6

s4
5

s4
7

s4
8

65
s3

7
s3

4
s3

6
s8

8
s3

8
s3

9
66

s1
00

s9
9

s3
8

s3
9

67
s1

00
s9

9
s3

8
s3

9
68

s1
00

s9
9

s3
8

s3
9

69
s1

00
s9

9
s3

8
s3

9
70

s1
00

s9
9

s3
8

s3
9

71
s1

00
s9

9
s3

8
s3

9
72

s1
00

s9
9

s3
8

s3
9

73
s1

00
s9

9
s3

8
s3

9
74

s1
08

75
s1

09
76

s1
10

77
s1

00
s9

9
s3

8
s3

9
78

s4
9

s4
6

s4
5

s4
7

s4
8

79
s1

13
80

s1
1

s9
s8

s1
0

81
s5

3
s5

4
s5

2
r2

1
r2

1
82

s5
3

s5
4

r2
0

r2
0

r2
0

83
r1

9
s5

4
r1

9
r1

9
r1

9
84

r2
2

r2
2

r2
2

r2
2

r2
2

85
r2

5
r2

5
r2

5
r2

5
r2

5
86

r2
3

r2
3

r2
3

r2
3

r2
3

s1
16

87
r4

2
r4

2
r4

2
r4

2
r4

2
r4

2
r4

2
s5

9
s6

0
88

r3
0

r3
0

r3
0

r3
0
s1

17
r3

0
r3

0
r5

2
r5

2
r5

2
r5

2
r5

2
r5

2
r3

0
r3

0
r3

0
89

r4
1

r4
1

r4
1

r4
1

r4
1

r4
1

r4
1

r4
1

s6
0

90
s1

18
91

s1
19

92
r2

7
r2

7
r2

7
r2

7
r2

7
s5

9
s6

0
93

r2
9

r2
9

r2
9

r2
9

r2
9

s5
9

s6
0

94
s1

20
s1

21
95

r3
1

r3
1

r3
1

r3
1

r3
1

r3
1

r3
1

r3
1

r3
1

96
r4

5
r4

5
97

s1
22

s5
9

s6
0

98
r3

9
r3

9
r3

9
r3

9
r3

9
r3

9
r3

9
r3

9
r3

9
99

r5
2

r5
2

r5
2

r5
2
r5

2
r5

2
r5

2
r5

2
r5

2
r5

2
10

0
r5

3
r5

3
r5

3
r5

3
r5

3
r5

3
r5

3
r5

3
r5

3
r5

3
10

1
r3

8
r3

8
r3

8
r3

8
r3

8
r3

8
r3

8
r3

8
r3

8
10

2
r3

7
r3

7
r3

7
r3

7
r3

7
r3

7
r3

7
r3

7
r3

7
10

3
r3

6
r3

6
r3

6
r3

6
r3

6
r3

6
r3

6
r3

6
r3

6
10

4
r3

5
r3

5
r3

5
r3

5
r3

5
r3

5
r3

5
r3

5
r3

5
10

5
r3

4
r3

4
r3

4
r3

4
r3

4
r3

4
r3

4
r3

4
r3

4
10

6
r4

0
r4

0
r4

0
r4

0
r4

0
r4

0
r4

0
r4

0
r4

0
10

7
s1

23
10

8
s1

24
10

9
r1

4
r1

4
r1

4
r1

4
r1

4
11

0
r1

5
r1

5
r1

5
r1

5
r1

5
11

1
s1

25
11

2
s1

20
s1

26

181

11
3

r4
11

4
s1

1
11

5
s9

s8
s1

0
r3

11
6

s3
7

s3
4

s3
6

s8
8

s3
8

s3
9

11
7

s9
5

s4
9

s4
6

s4
5

s4
7

s4
8

11
8

s1
1

11
9

s4
9

s4
6

s4
5

s4
7

s4
8

12
0

s4
9

s4
6

s4
5

s4
7

s4
8

12
1

r5
6
r5

6
r3

2
r3

2
r3

2
12

2
r3

3
r3

3
r3

3
r3

3
r3

3
r3

3
r3

3
r3

3
r3

3
12

3
s1

00
s9

9
s3

8
s3

9
12

4
s1

35
12

5
r1

6
r1

6
r1

6
r1

6
r1

6
r1

6
r1

6
12

6
r4

9
r4

9
12

7
r6

12
8

r5
12

9
r2

4
r2

4
r2

4
r2

4
r2

4
s5

9
s6

0
13

0
s1

20
s1

36
13

1
r2

6
r2

6
r2

6
r2

6
r2

6
13

2
s1

20
s1

37
13

3
r4

4
r4

4
13

4
s1

38
13

5
r1

3
r1

3
r1

3
r1

3
r1

3
13

6
r3

2
r3

2
r3

2
r3

2
r3

2
r3

2
r3

2
r3

2
r3

2
13

7
r5

6
13

8
s1

00
s9

9
s3

8
s3

9
13

9
s1

40
14

0
r4

3
r4

3
r4

3
r4

3
r4

3
r4

3
r4

3
r4

3
r4

3

182 Appendix A. XLCC State Overview and Parse Tables

Goto Table

State IM’ Clause List BuiltIn List IM Clause Role Def BuiltIn Type Id Term Interaction Message Constraint Terms
0 2 3 1 5 7 6
1
2 13 6
3 14 5 7
4
5 16 5 7
6 17 6
7
8
9
10
11
12
13
14
15
16
17
18
19 32 26 35 27 29 30
20
21
22
23 43 44
24
25
26
27
28 32 56 35 27 29 30
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52 32 81 35 27 29 30
53 32 82 35 27 29 30
54 32 83 35 27 29 30
55
56
57 85
58 86
59 35 87
60 35 89
61 90
62 35 92
63 35 93
64 96 94
65 35 97
66 98
67 101
68 102
69 103
70 104
71 105
72 106
73 107
74
75
76
77 111
78 96 112
79
80 115 114 5 7 6
81
82
83
84
85
86
87
88
89
90
91

183

92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114 127 5 7
115 128 6
116 35 129
117 96 130
118 131
119 96 132
120 133
121
122
123 134
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138 139
139
140

Appendix B

Case Studies on OKBook

Case Study I

OKBook provides users with not only interactions in which they were involved but

also new interactions in which their interactees were involved. The latter kind of in-

teractions can form seeds for expansion of social groups via which users are likely to

interact with more users whom they are difficult if not impossible to know only based

on the searching functionality offered by Web sites like eBay. Here, let’s revisit the

discovery problem briefed in Section 1.3. Suppose with the help of OKBook, Alice

bought a product from Bob via the trade IM described in Figure 3.8. This IM depicts

an interaction in which a client purchases a product referenced by a product code from

a shop catalogue using his or her credit card. Suppose Bob is a retailer who bought

the same product from another peer Carol (the original manufacturer of this product)

using cash via another IM in the past. By logging on to OKBook, Alice may reach and

subscribe to this IM via the automatically discovered peer groups. Therefore, when

Alice intends to buy the same product next time, she has a chance to interact with

other peers such as Carol via those newly discovered IM instead of with Bob via the

former one and Alice will be likely to get a lower price this time. Meanwhile, from

Carol’s perspective, OKBook has assisted her in discovering a new customer. Once

their interaction is finished, Alice’s group will be enlarged by absorbing a new group

member (Alice) as well as a new IM. The group-driven interaction was summarised in

a sequence diagram previously detailed in Figure 3.9.

185

186 Appendix B. Case Studies on OKBook

Case Study II

Conventionally, when a user accesses to shopping Web sites such as eBay, he/she

searches a desired product by typing in relevant keywords via the front-end search User

Interface (UI). This is based on the precondition that providers have already registered

on this Web site and published adverts for that product on the server. So it is difficult

if not impossible for those Web sites to find services providers who had not yet regis-

tered based on customers’ requirements. On the other hand, keyword-based search has

its natural limitations caused by the synonymity and the ambiguity of phrases. Taken

as annotations, URIs can provide less ambiguous identifiers to concepts that convey

meanings users want search interfaces to be truly knowledgable about. In the peer-

to-peer network, peers are more autonomous and there is no central server having an

overall control in this distributed environment with the help from the OKBook plat-

form, all a user has to do is search for an appropriate IM (recommended by OKBook)

and subscribe to it no matter if collaborative peers exist or not at that time. Then OK-

Book will try to automatically find other peers who can collaborate with this user and

fulfil the interaction afterwards. Even if there is no peer yet providing the expected

product for the time being, the subscription of this user will be still valid for a period

of time (each subscription has an expiry time). But for most conventional Web sites,

this temporarily “no result” is likely to end up with a page giving a Hypertext Transfer

Protocol (HTTP) 404 error. As soon as enough collaborative peers subscribe to an

IM, this user will be informed that this IM goes into the execution process. In Fig-

ure B.1, the sequence diagram illustrates on-line shopping cases on eBay and OKBook

described based on the above analysis. Here, if the requester searches for a product P

on eBay which actually does not have a suitable service provider logged on itself, then

the service provider group S = φ. At the same time, the interaction finishes without

the requester obtaining the desired product. However, on OKBook, if the requester

subscribes to a specific IM and there is no decent service provider for the time being,

then as mentioned earlier, the subscription will still be valid for a period of time. When

one or more sellers shows up and the requester’s subscription is still valid by chance,

the IM along with the subscription information will be sent to both the requester peer

and the provider peer for running.

On the other hand, the annotating strategy employed by OKBook can improve the user

experience on the peer side. Metadata-embedded Web pages provide a hybrid way

187

Figure B.1: Sequence diagram for on-line shopping using eBay and OKBook

of publishing human-readable data and machine-readable data via the same medium.

Therefore, when users are browsing this kind of Web pages, peer-side applications can

harvest and further digest the metadata and after that, some information of users’ in-

terests may be digger out. For example, suppose all items on eBay are published with

metadata, if a user does a keyword search for a specific item, the peer-side application

can display those appropriate items (e.g., clothes fitting into the user’s own gender)

at the top of the result list by analysing the user’s profile against with the search re-

sult originally returned by eBay. Or, when a user looks at a page about a restaurant

and based on the embedded location information (e.g., latitude/longitude or postcode),

the browser will automatically calculate how long it is going to take for him/her to

drive/walk to this restaurant. The above tasks are difficult for conventional server-side

applications to perform due to their lack of ability to consume data carried by either

embedded annotations or user profiles stored in distribute.

Glossary

communication ID A peer’s communication ID is an email-address-like Jabber ID
that contains a peer’s XMPP account and this XMPP server’s domain name,
which are separated by @. Literally, a peer’s community ID and communication
ID can be the same when the registered server is installed with both OKBook
and XMPP so as to be a community and communication peer.

communication peer A communication peer is a server which is installed with XMPP.
It is recommended that the community peers are also installed with XMPP can
become a communication peer at the same time.

community ID A peer’s community ID is an email-address-like ID that contains a
peer’s OKBook account and this OKBook server’s domain name, which are sep-
arated by @.

community peer A community peer is a server which is installed with OKBook and
curate the group data.

hub A hub is a server which curates subscribers’ callback functions and subscribed
peers registered on itself (e.g., in hash tables). When a peer publishes/updates
its profile or an IM and pings a hub, the hub will push the updated content to all
of its subscribers.

interaction ID Aninteraction ID is a unique identifier generated by a particular peer
community which trigger this interaction.

LCC clause A clause is a self-contained definition of a role, with message passing
being the only means of transferring information between roles.

message A message is a piece of content which is wrapped in a specific format and
passed from one peer to another via a particular socket in the peer-to-peer net-
work.

peer A peer is a computation network node (e.g., a PC or a mobile terminal, etc.)
which is able to delegate users to interact with other peers and access local re-
sources or external resources. Most users have their own peers dedicated to work
for themselves.

189

190 Glossary

peer group A group is a set of peers which share common interests.

peer profile A peer profile accommodates its owners public information such as which
roles it can play and also proprietary information such as how it can solve partic-
ular constraints and corresponding methods wrapped in OpenKnowledge Com-
ponents.

publisher A publisher is a peer who publishes both its profile and IMs on the peer-to-
peer network.

PubSubHubbub An open protocol for distributed publish/subscribe communication
on the Internet.

subscriber A subscriber is a community peer which has subscribed to its members’
profiles and certain IMs.

super peer A super peer is either a community peer or a communication peer which
is always online, changes less frequently and provides trustworthy services con-
tinuously.

user A user is a client who is a service provider or a service stackholder who can play
a specific role defined in an IM or is configured to access certain peers which
delegate users to play specific roles defined in IMs. A user is also a peer.

Acronyms

(X)HTML HTML or XHTML. 38, 99, 106, 109–111, 114, 115, 117, 118

ACL Agent Communication Language. 22, 23

AMQP Advanced Message Queuing Protocol. 25, 158

AMS Agent Management System. 22

AP Agent Platform. 22

API Application Programming Interface. 18, 24, 26, 41

BBS Bulletin Board Service. 10, 12

BNF Backus-Naur Form. 72

BNode Blank Node. 118

BOSH Bidirectional-streams Over Synchronous HTTP. 71, 72, 89, 142

CMS Content Management System. 13, 32

CRUD Create, Read, Update and Delete. 126

CSP Constraint Satisfaction Problems. 96, 99, 100, 103

CSV Comma-Separated Value. 38

CURIE Compact URI. 118

DDS Distributed Discovery Service. 45, 107, 144, 146

DF Directory Facilitator. 22, 23

EAP Event-based Asynchronous Pattern. 81

EOGP Extended Open Graph Protocol. 48–51

eRDF Embedded RDF. 19, 99

FIPA Foundation for Intelligent Physical Agents. 22, 23

191

192 Acronyms

FOAF Friend of a Friend. 32, 42, 103, 110, 113, 114, 116, 117

GUI Graphical User Interface. 16

hRESTS HTML for RESTful Service. 18

HTML HyperText Markup Language. 19, 117

HTTP Hypertext Transfer Protocol. 2, 18, 25, 33, 39, 59, 61, 67, 70–72, 105, 109,
122–124, 127, 142, 150

IFAI Interactions From An Interaction. 43, 44, 137

IM Interaction Model. iii, 2–5, 12, 13, 16, 17, 19, 20, 26, 29–32, 35, 36, 38–52,
54, 56–59, 61–63, 65–74, 76–78, 80–84, 86–89, 91, 93, 94, 96, 99–110, 119,
122–130, 135, 137, 138, 142–146, 148–155, 157, 158

IMAP Internet Message Access Protocol. 24

JID Jabber ID. 61, 75, 76, 78

JSON JavaScript Object Notation. 23, 72, 73, 77, 78

KB Knowledge Base. 104, 105, 107

KQML Knowledge Query and Manipulation Language. 22

LCC Lightweight Coordination Calculus. 2, 3, 5, 16, 22, 29, 44, 63, 68, 69, 71–73,
76, 77, 81–83, 85, 86, 91, 93, 94, 96, 99, 102, 104, 105, 109, 123, 142, 157, 158

LCCI LCC Interpreter. 67–70, 76, 77, 84, 87, 91, 123, 125

LOD Linking Open Data. 7, 118

MathML Mathematical Markup Language. 100

MSM Minimal Service Model. 18

MTS Message Transport Service. 22, 23

MWSAF METEOR-S Web Service Annotation Framework. 18

NAT Network address translation. 67

NS Name Space. 111, 114, 115

ODS OpenLink Data Space. 26

OGP Open Graph Protocol. 48, 49

OKC OpenKnowledge Component. 16, 32, 36, 68, 73, 76, 81, 86, 89, 96, 104, 125–
127, 144, 152, 153

Acronyms 193

OPENK OpenKnowledge in the peer community. 102

OWL Web Ontology Language. 96

OWL-P OWL for Processes and Protocols. 96, 99, 103

OWLS-MX OWL-S Matchmaker. 17

QName Qualified Name. 114

RDF Resource Description Framework. 8, 11, 19, 21, 32–34, 38, 39, 41, 51, 56, 93,
99, 100, 105–119, 124, 144

RDFa Resource Description Framework in Attributes. 7, 19, 30, 31, 34, 38, 41, 49,
99, 106–110, 114–118, 124, 144, 145

REST REpresentational State Transfer. 18, 61, 124, 125, 127

RPC Remote Procedure Call. 41

RSS RDF Site Summary or Really Simple Syndication. 36

SA-REST Semantic Annotations for REST. 18

SASL Simple Authentication and Security Layer. 80

SAWSDL Semantic Annotations for WSDL and XML Schema. 17, 18

SAWSDL-MX SAWSDL Matchmaker. 17

SMOB Semantic MicroBlogging. 26

SMS Short Message Service. 24

SMTP Simple Mail Transfer Protocol. 24

SNS Social Networking Site. 10, 12, 15, 23, 24, 26, 27, 121, 128, 151, 152

SOAP Simple Object Access Protocol. 124, 125, 127

SPARQL SPARQL Protocol and RDF Query Language. 7, 31, 33, 39, 51–56, 70,
105, 117, 123, 124, 127, 144

SRV Service Record. 72

STOMP Simple (or Streaming) Text Orientated Messaging Protocol. 25

SW Semantic Web. 17, 20

SWS Semantic Web Service. 7, 18

SWSE Semantic Web Search Engine. 30, 39, 41, 42, 46, 138

TCP Transmission Control Protocol. 2, 25, 67, 70–72, 124, 158

TCP/IP Transmission Control Protocol/Internet Protocol. 70, 123

194 Acronyms

TLS Transport Layer Security. 80

UI User Interface. 5, 6, 13, 57, 149

URI Uniform Resource Identifier. 3, 7, 8, 18, 19, 26, 30, 31, 38–42, 44, 49, 50, 58,
61, 74, 105–109, 113, 117, 118, 125–127, 144, 149, 158

URL Uniform Resource Locator. 36, 38, 41, 46, 61, 78, 86, 87, 115

voiD Vocabulary of Interlinked Datasets. 118

VOOK Vocabulary Of OpenKnowledge. 103, 104

WP Winning Proportion. 138

WS Web Service. 4, 7, 10, 15, 17–19, 27, 31, 87, 93, 109, 110, 124, 127, 157, 158

WS-CDL Web Services Choreography Description Language. 17

WSCAIM Web Service Choreography As Interaction Models. 96, 97, 102–104, 109

WSDL Web Services Description Language. 17

WSMO Web Service Modeling Ontology. 18, 109

WWW World Wide Web. 1, 6, 10–12, 15, 27, 38

WYSIWYG What-You-See-Is-What-You-Get. 115

XCI ID cross-Community Interaction ID. 74, 76

XFN XHTML Friends Network. 32

XHTML Extensible HyperText Markup Language. 19, 146

XLCC eXtended Lightweight Coordination Calculus. 2, 72, 76, 83, 85–87, 89, 94,
109, 142, 157

XMPP Extensible Messaging and Presence Protocol. 2, 22, 25, 26, 66–68, 70–72, 77,
80, 122, 124, 158

XPath XML Path Language. 117

	Introduction
	Overview of OpenKnowledge
	Web-Oriented Infrastructure for Knowledge Sharing
	Bringing the (Semantic) Web into OpenKnowledge

	Relevant Literature
	Underlying Architecture of OpenKnowledge
	Semantic Web Services and Their Descriptions
	Peer-to-Peer Communities
	Agent-based Peer-to-Peer Architecture
	Social Networks: State of the Art

	Decentralised Interaction-Driven Knowledge Sharing on OKBook
	How OKBook Architecture Meets the Requirements
	Knowledge Representation for OKBook
	Peer Profile Management
	Discovery of IMs and Collaborative Peers

	Ranking on OKBook
	IM Ranking Criteria
	Other Rankings
	Extended Open Graph Protocol

	Inference Driven Evolution of the Peer Community
	Analysis and Comparison Against the OpenKnowledge Architecture
	Acquiring IMs From Discovered Group Members
	Peer Subscriptions and IM Consumptions

	OKBook Federation

	Interaction Model Execution on a P2P Communication Layer
	OpenKnowledge Communication Layer Redesign
	Motivations
	Communication Layer Framework
	Peer Interaction Messaging Flows

	Peer-based IM Execution Design
	Bridge HTTP and XMPP
	Overview of XLCC Grammar
	Security

	Event-Driven Concurrent Interpretation of IMs
	IM Events
	Non-Blocking Messaging
	Design of the niob Operator
	Handling Multiple niob Operators
	XLCC Semantics

	Overall Platform Architecture

	Interaction Models as Semantic Web Documents
	Motivations
	Marking Up IMs Using WSCAIM
	Process-Dedicated Annotations
	Constraint-Dedicated Annotations
	Annotation Serialisation

	IM Annotation Injection and Consumption
	Annotation Injection
	Annotation Consumption

	Semi-Automatic IM Publication Using RDFa2
	Topic Nodes and Topic Trees
	Embedded-Annotation Generation

	Social Group Formation and Maintenance
	Interaction-Driven Peer-to-Peer Community Specification
	Messaging Among Interaction Participants
	Service Registry inside the Peer Profile
	Peer CRUD Features

	Service Composition and IMs
	Social Effects
	Peer Relationship Layers
	Peer Group
	Trust
	Peer Reciprocity and Community Tolerance

	Evaluation of the OKBook Architecture
	Effectiveness of IM Discovery Based on Peer Groups
	Stress Tests on Distributed Peers Curating Communities
	IM Execution in Browsers: Non-Blocking I/O vs Blocking I/O
	Experiments and Case Study on IM Semantic Enhancement
	Usage Scenario

	Conclusions and Future Work
	Bibliography
	XLCC State Overview and Parse Tables
	Case Studies on OKBook
	Glossary
	Acronyms

