
Extracting and incorporating keyword semantics

in a DHT-based discovery system

Spyros Kotoulas
August 2006, Amsterdam

M.Sc. Thesis

email:kot@few.vu.nl
Department of Computer Science,

Vrije Universiteit Amsterdam,
The Netherlands

Advisors: prof. F. van Harmelen, dr. R. Siebes, prof M. van Steen

Contents

1 Introduction 1
1.1 Terminology . 3

2 Extracting Term Semantics 5
2.1 Semantics from one peer . 5
2.2 Semantics from more than one peer 6
2.3 Interdependencies with the discovery system 7

3 Statistics-aware discovery 8
3.1 Simple DHT-based discovery . 8
3.2 Why are DHTs not enough? . 9

4 Policy Breakdown 11
4.1 Description Manipulation . 11

4.1.1 Push-based . 12
4.1.2 Pull-Based . 13
4.1.3 Description Agglomerators 15

4.2 Peer Selection . 15

5 Multi-Attribute search: The case for a hybrid semantic/DHT
based overlay 17
5.1 Principles . 18

6 Settings 21
6.1 Setting 1 - Use the DHT as a distributed index 21

6.1.1 Inserting Descriptions . 21
6.1.2 Querying . 21

6.2 Setting 2 - Replicate whole term-set 21
6.2.1 Inserting Descriptions . 22
6.2.2 Querying . 22

6.3 Setting 3 - Replicate only on a subset 22
6.3.1 Inserting descriptions . 23
6.3.2 Querying . 23

6.4 Setting 4 - Forward queries/descriptions 23

1

6.4.1 Inserting descriptions . 23
6.4.2 Querying . 24

6.5 Setting 5 - Walk the descriptions 24
6.5.1 Inserting descriptions . 25
6.5.2 Querying . 25

7 JXTA 27
7.1 Design Goals . 27
7.2 Design and Implementation Pillars 28
7.3 JXTA Discovery Service . 29

7.3.1 A loosely consistent DHT 29
7.3.2 Advertisements . 30
7.3.3 Shared Resource Distributed Index 31
7.3.4 Queries in JXTA . 32

8 Evaluation 33
8.1 Dataset . 33
8.2 Criteria . 36
8.3 Implementation . 37

8.3.1 Settings . 38
8.3.2 Process . 39
8.3.3 Setup . 40

8.4 Results . 41
8.5 Fallacies and pitfalls . 45

8.5.1 Stale documentation and examples 45
8.5.2 Inadequate code documentation 47
8.5.3 Obnoxious bugs . 47
8.5.4 Erratic vices . 48
8.5.5 Transient Errors/Unreliable 48
8.5.6 RPV Convergence . 48

8.6 Conclusions . 50

9 Future Directions 51
9.1 Large-Scale Simulations . 51
9.2 Explicit semantics . 51
9.3 Going beyond subset matching 51
9.4 Specifying what can be approximated 52

10 Summary 53

2

Abstract

The focus of this thesis is on peer-to-peer systems where peers describe their
services and data by sets of terms. The contribution of this paper is twofold:
First, we propose a distributed system that efficiently calculates statistics about
these terms. Second, we use these statistics to replicate the term sets among a
selection of peers in order to enable clustering and improve the peer selection
process. As a side effect, we expect that this process will have a positive influ-
ence on the performance of the statistical analysis. We perform an evaluation
of the JXTA peer-to-peer infrastructure, focusing on scalability and discovery,
revealing a series of programming flaws that lead to grave performance issues.
Furthermore, we implement, deploy and evaluate a part of the proposed system
using the DAS-2 supercomputer. We use five settings to experiment with our
discovery platform, and the best of them yields a large increase in the query
throughput of our system, while preserving or increasing recall, compared to
the naive approach.

Chapter 1

Introduction

In recent years, a wide variety of resource discovery systems have been proposed
and developed. Most of them, like UDDI[35] and Napster[22], support attribute-
based retrieval. Their major problem is that they are centralized approaches,
with all the disadvantages that this entails: single point of failure, scalability
issues, privacy issues and the possibility for censorship, just to name a few.

To alleviate these problems, many peer-to-peer indexing systems have been
proposed. Initially, such systems built on an unstructured distributed index
and relied on flooding for the propagation of queries[18]. This approach led to
a great number of network messages and thus, could not scale [1].

In the past 5 years, Distributed Hash Tables (DHT) [24][23][31][32] have
emerged as an efficient and scalable distributed naming system. Nevertheless,
they do not provide off-the-shelf functionality for approximate answers/queries
or queries with multiple terms. In [33], a solution involving using a precomputed
LSI [9] matrix was proposed. The disadvantage of this approach is that this
matrix should be globally shared, and updating it is prohibitively expensive.

Parallel to these, we have also witnessed the development of semantic over-
lays [28][27][37]. Yet, such overlays still either do not use sophisticated term
semantics [37] or require some precomputed and (sometimes) globally shared
knowledge (eg. a distance table derived from an ontology [27] or LSI [28][33]).

Automatically calculating and maintaining such knowledge about semantics
proves to be a challenge for the following reasons:

• Computational resources Techniques like LSI are computationally ex-
pensive. According to [21], circa 1999 the amount of textual information
produced yearly amounts to 23-240 Terabytes (1TB ∼= 1012bytes), and
continues to grow rapidly. Obviously, computers are no longer able to
locally store all data, let alone process it efficiently. Note that there are
systems that appear as a single computer (e.g. centralized search engines
like Google), but are made up of thousands of computer, each of them
hosting different data.

• Data locality In systems that map terms into a space maintained by

1

a structured overlay using semantic information (eg pSearch), updating
the terms that can be mapped is prohibitively expensive, as it requires
to take into consideration a representative (thus large) fraction of data
and rearrange all terms in space. In unstructured semantic overlays [28],
peers will, typically, not have enough information to locally extract enough
semantic information. In both cases, there is a need for an automatic and
scalable way to extract semantics on large datasets.

On the other hand, in the field of computational linguistics and information
retrieval, there has been a plethora of algorithms developed to obtain seman-
tic relationships from large amounts of data [14]. Nevertheless, considering the
amount of data that has to be processed, applications are either very computa-
tionally expensive or restricted to specific fields.

In our approach, we are assuming that data or services are described through
sets of terms and that the system contains a large number of such sets. We are
proposing using research methods from the fields of computational linguistics,
information retrieval and distributed systems to calculate term semantics and
provide a scalable and distributed discovery service.

We are identifying a series of research directions in peer-to-peer discovery
systems and focus on DHT-based discovery systems. We are proposing methods
to enrich such systems with statistical and semantic information, to improve
performance and to facilitate extraction of this information.

We are aspiring to contribute in the following:

• A distributed method to extract term semantics: Once we have
descriptions clustered in peers, peers can (locally) extract term semantics
using statistical information. More precisely, peers will be able to calcu-
late term generality1, computed based on the overlap between term sets
containing that term, compare term generality, computed based on the
containment relation between the respective term sets, and term similar-
ity, using one of the techniques found in the literature.

• An efficient discovery method using statistical and semantic in-
formation: As previously mentioned, current systems cannot provide a
self-organizing scalable distributed discovery service, that takes automatically-
update term semantics into consideration. We will use the term seman-
tics extracted to optimize peer selection during the discovery process and
provide support for approximate answers. Furthermore, in section 5 we
will describe a hybrid semantic/DHT overlay that opportunistically routes
queries according to DHT or semantic criteria.

• Implementation of a distributed discovery system: We have imple-
mented and deployed for experimentation a distributed discovery system
based on JXTA discovery. It can discover resources based on relatively
short(100-term) descriptions and multiple-attribute queries.

1In layman’s terms, we can define as term generality the more/less specific relationship
between two terms

2

• Evaluation of five JXTA data distribution and query answer-
ing models: Finally, we evaluate five discovery approaches based on
the JXTA platform from the perspective of data distribution. As a by-
product, since there is a significant lack of information on the scalability
of the JXTA discovery system (previous experiments were limited to 4
peers), we will perform measurements on the off-the-shelf discovery mech-
anism of JXTA. Secondly, we will optimize this discovery mechanism for
multi-attribute search and evaluate our system with five different data dis-
tribution settings. We will perform a series of experiments by deploying
our system on the DAS-2 distributed supercomputer2.

The structure of the rest of the document is as follows: In the following sec-
tion, we will provide a brief terminology overview. In chapter 2, we will outline
a method to extract term semantics in a distributed setting. Following a review
of the implementation of a discovery system based on distributed hash tables its
pitfalls(chapter 3), we will attempt a decomposition of the main functionality of
a discovery system (chapter 4). A hybrid overlay that opportunistically routes
messages will be described in chapter 5. We will solidify some of the meth-
ods presented by devising 5 concrete settings in chapter 6. In chapter 7, we
will describe an existing implementation of a peer-to-peer substrate, the JXTA
platform. We will evaluate our approaches as well as the performance of JXTA
in chapter 8. Finally, future directions along with conclusions will be provided
in the last two chapters.

1.1 Terminology

Throughout this paper, we will be using the following terminology:

• (Semantic) description: Information is inserted into the discovery sys-
tem by means of descriptions. These descriptions are made up by a set
of terms, along with any optional identifier(s).

• Term: A term is a string in any language/alphabet. For instance it can
be a word, an acronym or a technical term.

• Query: A query is a set of terms to be matched against the terms in a
semantic description.

• Pull Descriptions: Peers actively seek for semantic descriptions that
they consider relevant to theirs

• Register: DHTs produce a hash value for the keys of objects that are to
be stored, for each hash-value, there exists a register, which contains all
objects with that hash-value.

• Peer: A register peer is a host in the system. It may contain a number
of registers.

2http://www.cs.vu.nl/das2

3

• Responsible Peer: A peer is responsible for a term if it contains the
register for that term.

4

Chapter 2

Extracting Term Semantics

A lot of information is conveyed in the descriptions stored on a discovery sys-
tem, which can be extracted and used for a variety of purposes: calculating
result rankings, optimizing the query routing process, term matching and term
mapping, just to name a few. To extract this information, we can use tools and
techniques developed in the fields of text processing, computational linguistics
and information retrieval. In our approach, instead of applying these methods
on random subsets of all data, we would like to exploit clustering in the discov-
ery system to improve performance and develop a more scalable solution. Hence
follows a short description of how we can use a DHT-based system to extract
some simple term semantics, with practically no performance overhead for the
discovery system.

Descriptions are stored according to each of their terms. Therefore, the
peer responsible for ”XML”, will contain all descriptions with the term ”XML”.
This provides us with enough information to extract some term semantics us-
ing statistical information. Some semantics can be extracted using only local
information (descriptions that are stored in the peer), while for others, it may
be necessary to contact one additional peer.

2.1 Semantics from one peer

With semantics from one peer, we are assuming that either the peer that is
interested in the information is responsible to the relevant term, or that it is
willing to route to the peer responsible for the term. In [25] a method for
Automatic Word Sense Discrimination is proposed. Words, contexts and senses
are represented in Word Space, a real-valued space where closeness corresponds
to semantic similarity. From this representation, we can extract the following
information:

• Term generality: The variance in contexts should give us a metric of
how general a term is. We can define our metric for generality to be

5

proportional to this variance. To be more precise, we define generality as
the variance of the sense vectors described in [25].

• Homonyms: Different senses of a term are, by definition, homonyms.

• Term similarity: In [25] vector coefficients are used as good indications
for term similarity.

• Term popularity: The peer responsible for a term can calculate how
many times this term appears in its descriptions and we can define term
popularity as that number divided by the total number of terms in the
peer. Note that this measure does not precisely calculate how popular is
the term in all the data; it is a relevant measure for popularity and its
accuracy is conditional on the description distribution policy of the system.
Leaping into the subject of the following chapters, consider that we place
descriptions in the peers responsible for each of their terms. Now imagine
that we need to determine the popularity of any term in the system: all
we need to do is to route a query to the peer responsible for that term,
and ask it to return the number of instances of the term. In this case, we
can accurately calculate the popularity of the term since every description
with that term will appear in that peer.

2.2 Semantics from more than one peer

By contacting an additional peer (i.e. to calculate semantics for two terms,
we need one responsible peer for each term), we can compare term generality :
Given a term that the peer is responsible for, we can calculate how more/less
general it is compared to any other term in the system. This information can be
valuable for the functions of the discovery system: performing query relaxation,
calculating result rankings and determining query routing and replication paths
can all benefit from it. As a simple example, consider that a query yields no
results; we can decide to replace one or more of the terms in the query with
a similar and more general term and reissue the query (query relaxation). We
emphasize that to achieve that, we need to consider both term similarity (see
previous paragraph) and compare term generality.

As an illustration of how this method would work, assume that we are inter-
ested to find out if RDF’ is more or less general than ’OWL’. Initially, we will
route a query to the peer responsible for ’RDF’ to return what is the frequency
of ’OWL’ in its descriptions containing ’RDF’ (f′OWL′|′RDF ′) and a query to
the peer responsible for ’OWL’ to return the frequency of ’RDF’ in its descrip-
tions containing ’OWL’. (f′RDF ′|′OWL′) . We can define the comparison of
generality as follows:

generality(x1, x2) =
freq(x1/x2)

freq(x2/x1)

6

where generality (x1, x2) > 1 means that x1 is more general than x2. Note that
this generality measure is only appropriate once we have established that 2 terms
are similar enough to perform query relaxation. For instance, comparing term
generality of ’RDF’ and ’Car’ would return more or less useless information,
since there is little similarity between the 2 terms.

2.3 Interdependencies with the discovery sys-
tem

We expect that even with the description distribution of a simple DHT-based
discovery system (as described in section 3.1), the methods above will provide
useful information, both for the discovery system itself and for services dealing
with these descriptions. On the other hand, extracting term semantics would
greatly benefit from some of the more advanced description manipulation tech-
niques described in chapter 4.1 and especially from the process described in
4.1.3.

As future research, it would be interesting to investigate how we could inte-
grate these semantic information in the hybrid semantic/DHT overlay described
in section 5. Furthermore, it could be possible to use this information to create
an automatically-maintained hierarchical topology

7

Chapter 3

Statistics-aware discovery

Traditionally, discovery systems (and more generally, information retrieval sys-
tems) have relied on inverted indexes as a straightforward and efficient method
for matching requests to resources.

In recent years, a collection of systems, commonly referred to as Distributed
Hash Tables (DHT), has been developed[8]. DHTs provide a uniform naming
scheme, assigning a random ID to each peer from a large ID space. In the
same time, they assign each possible ID to a peer (in most cases, to the peer
numerically closest to the ID). They are efficient and effective in storing and
retrieving (key, value) pairs. Each key is hashed and mapped into a point in a
large ID space and its value is stored at the peer which is responsible for the
zone that contains this point. To locate an object, it is sufficient to route to
the peer with the zone that contains the hash-value of the object. When a new
peer joins the network, it splits an area owned by another peer and takes over
part of it (including the corresponding keys). When a peer leaves the network,
its area is taken up by its neighbors.

DHTs provide the infrastructure for reaching any peer within a few hops.
Although dependent of the particular implementation, simulation results have
shown that most DHTs have a message complexity of approximately log(N) to
reach any peer in a network of N peers[23][24]etc. Therefore, they can be used to
maintain this ”traditional” inverted index, as we will show in the next section.

3.1 Simple DHT-based discovery

In this section, we will highlight the design of a discovery protocol based on
an inverted index distributed over a DHT, assuming that we are searching for
resources described by sets of terms.

To insert a new resource into the system, for each term in its description,
we insert an entry using the terms as the key and the resource, or the ID of the
resource, as the value.

To retrieve a resource, for each term of the query, we make a lookup for

8

that term in the DHT. We examine the results one by one or, in the case that
we have inserted only the ID, we perform a local join.

Algorithm 1 Simple DHT-based discovery
Require: A resource d with terms (t1 · · · tn) and identifier id .
Ensure: Resource d is indexed.

1: for i := 1 to i := n do
2: DHT.put({tn, id})

———————-
Require: A query q for terms (t1 · · · tn).
Ensure: Every id with termsid ⊇ termsq is retrieved.

1: Set¡terms,id¿ returned1···m
2: for i := 1 to i := n do
3: returned.add(DHT.get(q))
4: Set¡id¿ results
5: for i := 1 to i := m do
6: if returnedi.terms ⊇ q then
7: results.add(returnedi.id)
8: return results

In this system, recall is guaranteed to be 100% , assuming no system or
network failures.

3.2 Why are DHTs not enough?

We have demonstrated in the previous section how to design a simple DHT-
based discovery system with perfect recall. Be that as it may, to the best of
our knowledge there exists no efficient implementation of such a system. Where
does it all go wrong?

• Distributed join is costly To perform a distributed join, the initiating peer
has to gather all index entries for all terms in the query. The cost of this
can be prohibitively high, especially for queries with lots of keywords. The
problem is further aggravated by the distribution of the frequency of terms.
In document retrieval systems, terms usually follow a zipf distribution[5]
(also see figure 8.1). Therefore, a query with at least one of these common
terms, will be incredibly expensive to calculate. Note that it would not be
effective to limit the number of entries sent for common terms, since there
is no way to know in advance which of these entries are useful. To illustrate
our case, consider a query for ”data”,”Spyros Kotoulas”; ”data” would
appear in hundreds of thousands of descriptions while ”Spyros Kotoulas”
would appear in about a dozen descriptions. Nevertheless, this query
would still require transferring all entries for ”data”, which may be several
MB.

9

We can circumvent this problem by storing the entire description to the
peers responsible for each term. Of course, this comes at the cost of
additional storage and bandwidth costs for inserting descriptions. On the
other hand, it makes query answering a local operation. In fact, querying
now costs only 1 message in the DHT.

• Load balancing As previously mentioned, the term frequency distribution
follows a zipf pattern. This gives rise to severe load balancing problems,
considering that a peer responsible for a very common term would have
to store a large number of descriptions and process a large fraction of
the total queries. To party alleviate this problem, we can bound the
number of descriptions that a peer can store for each term and send a
query message for each of the query terms. This way, queries will be
answered as response to the messages for uncommon terms. In the event
that a query has only common terms, a large number of results will still be
obtainable, and will be, for most purposes, sufficient. Note that there exist
load balancing techniques for DHTs[6] , but they do have a significant
maintenance overhead and, in any case, the benefit from storing these
common entries is very small compared to the resources they consume.
As an example, in the dataset used in our experiments, a term appears
on half of the descriptions, even if we use a large peers as registers for
that term, thus counterworking the effects of the steep distribution, we
will still have to pay a high cost to maintain all these, practically useless,
entries.

• Long descriptions In the previous two paragraphs, we have assumed that
descriptions are replicated to all the peers responsible for each of their
terms. What if these descriptions are large? It is not unrealistic to as-
sume that they contain hundreds of terms. In this case, both storage and
network bandwidth become an important obstacle.

In [30], the authors suggest that for queries for common items, flooding
queries is sufficient, while for rare items, DHT performs best. Indeed, for
commons terms we are not interested in getting all results, if there are
millions of them; a hundred would be enough. On the other hand, for rare
terms, we are interested in all results.

In chapter 4, we will try to break down the important policies of a peer-to-
peer discovery system. We will use example systems from the literature along
with novel ideas. We will substantiate some of these ideas by constructing and
evaluating solid settings in section 6.

10

Chapter 4

Policy Breakdown

We have undertaken the task of decomposing the functionality of a class of dis-
tributed systems that share the same basic functionality. Depending on back-
ground, these systems may be branded as peer-to-peer discovery, peer-to-peer
search, peer-to-peer overlays or peer-to-peer information retrieval systems.

A common trait of current systems of this type is that they are either not
aware of term semantics (and therefore base retrieval only on the representation
of objects) ([35][24][17][19][34]) or if they do ([33][28][10]) , updating the (shared)
structures that capture such semantics is expensive.

We will perform an analysis of how are descriptions and queries handled from
the perspective of existing approaches as well as from possible new approaches.
We will solidify some of the novel ideas in this chapter in 6.

4.1 Description Manipulation

Initial p2p approaches [18], did not distribute any kind of index for stored
documents. Naturally, this resulted in having to search the entire network. In
this section we are making an analysis of how and what kind of indexes we can
distribute over the network. Note, that indexes need not refer to documents or
descriptions of documents, they may refer to peer or they may be implicit (we do
not distribute indexes, we change the organization of peers instead). Since these
issues are very strongly connected, we have decided to examine them together.

Peers can acquire descriptions using either a pull or a pushed based ap-
proach. Most systems use the former [28][10][19]: Peers advertise their data (or
a summary of their data), and other peers decide to remember them or not.
Alternatively, one may argue that it would be more efficient for peers to pro-
actively pursue data that will enhance their local knowledge, since they are not
bound by then response time restrictions common in processing and forwarding
queries.

The terms push-based and pull-based are similar in meaning to passive clus-
tering and active clustering in this context. We have chosen the former set,

11

to emphasize that description manipulation need not lead to clustering, since,
there are approaches that push descriptions randomly [19], and hence cluster
neither descriptions nor peers.

4.1.1 Push-based

Traditionally, information dissemination and peer clustering is achieved through
push-based dissemination of information. A plethora of such approaches has
been proposed:

In [27], peers advertise their expertise descriptions to their ”neighboring”,
semantically close peers. In [28], peers may also forward advertisements to the
neighbors that, they deem, will be most interested in the advertisement. Finally,
in [37], an epidemic protocol is used to disseminate information to semantically
close peers as well as random set of all peers.

On the other hand, some approaches employ DHTs as an efficient and uni-
form mechanism to address peers. In pSearch[33] documents are abstracted in a
high-dimensional vector, which is mapped into a space maintained by a CAN[23].
In pNear[26], peers are described by sets of keywords. From these keywords,
they select a random subset, and forward their description to the peers that are
responsible for these keywords. Furthermore, they cluster semantically, using
peers recommendations from these peers.

Irrespective of whether we are replicating document or peer descriptions, we
are considering the following:

Part of the description

Depending on the nature of the descriptions, they may be large, or contain word
of little discriminating value. For example, a natural language description will
contain articles, which, most likely should be ignored for indexing and retrieval
purposes. Which part of the description should we take into consideration?

All We take the whole description into consideration .

Random We pick a random subset of the terms in the description.

Most important We extract the most important terms in the description, and
index according to them.

Rare We extract the most rare terms in the description, and index according
to them.

Dissimilar Use the most semantically apart terms in a description. At first
thought, it may seem like an unintuitive approach, nevertheless, consider
the following example: We have a description consisting of the terms
”animal”,”rdf”, ”xml”,”semantic web”. If we choose to replicate according
to ”rdf”, and ”semantic web”, we will steer the description toward peers
semantically close to the AI field. It will be unlikely for subsequent queries
for ”animal” to reach peers in the AI field. On the other hand, if we choose

12

”animal” and ”semantic web”, the description will be stored both in peers
close to AI and in peers close to Nature.

Replication point

After deciding which will be the replication criteria (namely, what terms are we
going to take into consideration to decide about the placement of a description),
we need to determine how we will decide to which peers we want to replicate
the description:

Randomly Replicate to a random set of peers. Most primitive peer-to-peer
file-sharing systems distributed indexes to a random set of peers. No-
tably, Gnutella (v0.6 with super-peers), Overnet and Kazaa distribute
file indexes this way. Some subsequent approaches also query peers in a
random fashion. The epidemic protocol proposed in [37] propagates ad-
vertisements to peers from a random subset to decrease peer clustering
time. In pNear, to save on DHT messages, a random subset of terms is
chosen and the index is propagated to the peers that correspond to these
terms.

Dimensionality Reduction (hash) Reduce the dimensionality of the descrip-
tion using a hash-function. In the general case, the description space is
extremely large. To be able to use functionality provided by DHTs, we
need to reduce and bound this space. A straightforward way to do this, is
to use a hash-function. pNear and JXTA use this method to map terms
found in a description to the same space used for peer identifiers. Note
that this appoach takes into account only the textual representation and
not the semantics of descriptions.

Dimensionality Reduction (lex. analysis) Reduce the dimensionality of
the description using a lexical analysis method. pSearch performs LSI on
a representative set of descriptions and maps documents to this, lower-
dimensional, real-valued space. To maintain this space, it employs a
content-addressable network (CAN); queries and descriptions are mapped
into the same cartesian space, and therefore, retrieval is straightforward
and efficient. The disadvantage with this approach is that all possible com-
ponents of descriptions must be known in advance, in order to calculate
the mapping. Updating the mapping function is prohibitively expensive
as it would require moving all descriptions in the system.

Similar Replicate to the peers that contain similar descriptions. Note that the
criteria used to determine similarity widely vary according to approach.

4.1.2 Pull-Based

With the exception of [36], in the vast majority of p2p overlays, peers focus on
sending descriptions to (potentially) interested peers. It would be interesting

13

System Random Hash Lex. anal. Similar
Gnutella X
Epidemic X X
pRoute X
pNear X X

pSearch X X

Table 4.1: The replication criteria in some systems in the literature

to explore the possibility of peers preemptively asking for descriptions close to
their own expertise. Research in the area of epidemic networks suggests that
combining push and pull dissemination of information results in peers being
”infected” faster and with a greater probability. Although we are not interested
in sharing knowledge globally, intuition suggests that pushing advertisements
will benefit peer clustering.

It is important that peers ask for the most useful descriptions. Nevertheless,
it is not obvious what criteria should be used to determine which are these. To
this end, we have identified some possible mustering policies:

None Peers do not pull descriptions. Therefore, peers contain descriptions with
hash-value close to their own id, and only those descriptions. Note that
this does not rule out descriptions being replicated in more than one peer.

Random Peers pull descriptions from other peers chosen randomly. This can
be either achieved by keeping a random set of peers, ala [36] or by using
a dht (the design of such a mechanism is usually straightforward)

Frequently appearing terms Peers ask for descriptions with terms that ap-
pear most often in their own descriptions. Descriptions for which they
are responsible themselves are excluded, since they are very likely to have
such descriptions already. The motivation behind this choice lies in the
Distributional Hypothesis[12]: Words that appear in the same context
tend to be similar in meaning. By picking the most frequently appearing
terms, we are maximizing the peer’s knowledge on the context in which
frequent terms appear. In turn, this knowledge can be used to calculate
second-order term co-occurance as a similarity measure. Finally, it im-
proves data locality, since terms that tend to appear in the same query
will be stored in the same peer, reducing the total number of peers that
need to be contacted.

Most important terms Peers calculate which are the most important terms
for them and ask for descriptions with these terms, again excluding terms
that they are responsible for. This calculation can be made using one of
the many methods in the literature [16][4].

14

4.1.3 Description Agglomerators

We are proposing a method where peers play the roles of Description Agglom-
erators. They have an evolving set of interests, and they pro-actively pursue
expanding their collection on that set. As they collect more descriptions, their
interests may evolve, becoming more, or less specialized. The basic characteris-
tic of this approach, it that these interests will be semantically converging.

To determine their interests, peers calculate which are the most important
terms for them (they can use a categorization algorithm to this end). Then, they
pull descriptions close to their interests using the DHT. For example, a peer
responsible for ’Body’ can easily detect that ’Heart’ and ’Head’ are important
terms for it. Then, it can ask for descriptions with these terms from the peers
responsible for them. Now, it will have a broader view on topics close to ’Heart’,
and in the same time, ’Body’ will become a more interesting term for it. We can
apply such a process recursively. Peers compute the most important terms in
their local data, ask for more descriptions with that terms and repeat, therefore
improving semantic locality. A very desirable aspect of this algorithm is its
anytime behavior: at any point, peers are expected to have a consistent set of
interests, along with descriptions matching these interests. Furthermore, we can
expect that by adjusting the parameters of the algorithm (e.g. the proportion
of new to old descriptions), we expect that it will eventually converge. We
base this belief on the fact that, asking for more descriptions matching a given
interest would only make this interest stronger, once recalculated.

We expect that this technique will improve the performance of language
processing techniques that are applied locally (eg LSI) since the dataset where
they will be applied will has a more restricted semantic range. Note that it
cannot substitute such a technique applied to the whole dataset, it is rather a
scalable alternative that decomposes the dataset for the methods that normally
are very computationally complex, and thus cannot be applied to large data-sets.

Furthermore, it should improve the efficiency of the discovery system, since
now data are semantically instead of lexicographically clustered. In pRoute, we
have seen that semantic clustering of peers can increase recall by an order of
magnitude compared to a random overlay[28]. We expect that clustering data
instead of peers will have a similar effect, since, in both cases, we are clustering
sets of related terms.

4.2 Peer Selection

The key to efficient p2p information retrieval is knowing which peer to ask.
While DHTs can provide a global naming scheme for documents and peers,
the problem usually is that we do not know what exactly we are searching for.
Peer selection plays an equally important role to description manipulation in
designing an efficient and scalable p2p system. We can identify the following
popular policies:

15

Flooding Queries are forwarded to random peers. A straightforward approach
followed by many systems. For instance, in Gnutella (all versions) flooded
queries to a large subset of the total peers in the network; unfortunately,
this resulted in a very large number of network messages and thus, it
was not scalable, inefficient and suffered from low recall. On the other
hand, when combined with more complex description manipulation poli-
cies, flooding can work efficiently. For example, in [29], semantic clustering
of peers with random query forwarding gave recall an order of magnitude
higher than a Gnutella-like approach. Similarly, in pNear, once peers
were clustered, a random selection of neighbors gave more than 40% re-
call, with a very small number of messages. Research results so far suggest
that flooding of messages is a good idea only if there is another mechanism
to refine the set of possible target peers.

Lexicographic We can use the lexicographic representation of terms to effi-
ciently route to a fixed ”rendezvous” for that term. This is a commonly
used technique in systems based on DHTs, but for the reasons mentioned
in 3.2 they cannot be used for a general-purpose, multiple-attribute dis-
covery system.

Similarity Queries are forwarded to the peers with descriptions similar to the
query. The similarity criteria vary from approach to approach. In [29] it
has been shown, that irrelevant of whether we use a semantic description
distribution policy, semantic forwarding of queries results in higher recall
with a lower number of messages. Furthermore, we can expect that, by
employing this strategy, we can use a less expensive method for description
manipulation.

16

Chapter 5

Multi-Attribute search:
The case for a hybrid
semantic/DHT based
overlay

To exploit the features of the semantic overlay, combined with the DHT, we
propose a hybrid overlay, that opportunistically routes queries according to
semantic criteria or via the DHT. In contrast with what we have described in
the previous section, in this approach, we propose a modified DHT, rather than
a system using a DHT as a substrate. It can be considered as a DHT optimized
for multi-key search, but without offering the hard guarantees of traditional
DHTs.

Focusing on large descriptions, we realize that many of the policies described
in chapter 4 have to be enforced on-the-fly rather than a priori, in the peer
issuing the query or publishing the content. This arises from the fact that a
random peer does not have enough data to decide whether a term is common,
if the description or the query is common and so on.

Such knowledge is crucial to effective retrieval, especially as far as queries or
documents that contain terms with varying discrimination value are concerned.
To illustrate our case, a query for a very rare (or unique) term, should be routed
using the DHT; i.e. a query for {A5213FED433} should be routed using a DHT-
like mechanism, and retrieval will be very effective and efficient. On the other
hand, imagine a query {I want a tutorial to edit OWL in XML using XMLspy
on my computer}1. Firstly, some words provide practically no information and
can be removed using a stop-word list. For example, ’I’, ’a’, ’to’, ’in’, ’using’,
’on’, ’my’ are removed, leaving us with {want tutorial edit OWL XML XMLspy
computer}. Some of the terms in this query are important, while others, in this

1OWL is a language written in XML

17

context ’want’, ’edit’, ’XML’ and ’computer’ provide little information compared
to the others. How can we detect these words? One possible approach would
be to use WordNet[20]; but we stumble on the following: ’OWL’, ’XML’ and
’XMLspy’ do not appear on WordNet. This arises from the fact that WordNet
is meant as a general-purpose dictionary.

Besides generality, another problem with most semantic networks like Word-
Net is that they rely on human users to build and maintain them, which makes
this approach costly and requires human expertise.

We propose to use term information, extracted as discussed in section 2. In
this case our query would be likely to become {tutorial OWL XMLspy}, since
these terms are related to and less general than {XML, edit, computer}.

But unless we perform as many DHT lookups as the number of terms in a
query (see 2.2), how can a peer know which terms are common and which not?
Intuitively, we expect that the knowledge that the term ”my” is common, is
widely spread over the network, since all peers should have many descriptions
with that term. On the other hand, the knowledge that ”XML” is related to
”OWL” should lie in a much smaller number of peers.

Therefore, it becomes evident that we need to involve semantics in the DHT
routing process itself. Following is a series of principles that such a system
should abide to.

5.1 Principles

En-route replication of descriptions Any peer that receives a description,
even if it does so in order to forward it according to DHT criteria, should
also replicate that description. Notice the similarity with social networks: not
only do people forward information to the right direction, they also keep it for
themselves and provide answers later on. The underlying motivation, along with
the expected impact in parentheses, is threefold:

• Very popular terms will be present and detectable by most peers in the
network.(reduce the number of messages, decrease query latency)

• It will not be necessary to actually reach the peer responsible for a very
popular term, since its neighboring peers are already very likely to con-
tain information about the popular term.(improvement in load balancing,
decrease latency, reduce accuracy of statistics)

• Increase the probability, especially for queries with many answers, that
during the DHT forwarding process, enough answers will be found before
even reaching a peer responsible for a query term. Note that this comes
on the expense of additional storage for peers; considering the low cost of
storage media and the small size of descriptions, we do not believe that
it is a substantial cost to pay.(increase recall, reduce number of messages,
load balancing, decrease latency, increase required storage space)

18

Forwarding If a peer receives a query for which it has no knowledge about,
it has no choice but to forward it according to DHT criteria. Due to the con-
struction of the DHT and the fact that advertisements are also copied locally
in their forwarding process, the query will be forwarded to a peer that will be
more likely to contain information about the query. This strategy is also best
for very rare or unique terms. Depending on how much information they have
for the terms of the query, peers may decide to use semantic criteria instead.
Again, we can consider the analogy to humans, if we are asked something for
which we know nothing about, we are likely to consult an encyclopedia or a
dictionary(both of each index material lexicographically). On the other hand,
if we have some idea about the subject, we are more likely to ask other people,
or consult specialized sources. As an illustration, imagine that we want to know
about ’Brobdingnag’2, most likely, the best thing we can do is consult a dictio-
nary or an encyclopedia, and surprisingly enough we will find the answer3. On
the other hand, if we were interested in ’Distributed Systems’, the best approach
would be to consult a colleague or a more specialized source.

Description Replication Descriptions should lie near all the peers respon-
sible for their terms. Therefore, the description should be ”spread” over all its
topics in order to increase the chance of being found by searching in any of
the semantic neighborhoods (and thus increase recall). Furthermore, rare terms
should be preferred to common terms, since they have greater discrimination
value, and they are an indication that the description itself is rare.

Term selection for forwarding queries Queries and descriptions should be
forwarded toward the peer responsible for the least general terms, as it is likely
that the peer responsible for the least general term will also have information for
the more general terms. The justification for this claim is straightforward: since
descriptions are clustered into peers, for all descriptions in a semantic area, we
will have more information about popular terms than about rare terms, since
popular terms, by definition, appear more often. In any case, the peers for the
least general terms are very likely to have shortcuts to the peers with the most
general (and related) terms.

Furthermore, compared with picking a random term, the system will offer
more natural load balancing, since the peer responsible for a very general term
will not have to process as many queries.

Forwarding descriptions Contrary to queries, inserting new descriptions in
the system is not bound by a strict latency constraints. Therefore, it would be
more efficient to ”walk” descriptions so as to have more information when mak-
ing decisions on which peers or according to which terms to replicate. For ex-
ample, consider the description {”XML”,”RDF”,”OWL”,”OWL-S”}, and that

2the region in Swift’s Gulliver’s Travels where everything was of enormous size.
3in Dictionary.com Unabridged (v 1.0.1) Based on the Random House Unabridged Dictio-

nary, Random House, Inc. 2006

19

initially, and erroneously, ”RDF” is picked as the rarest term. It will be routed
to the peer responsible for ”RDF”. That peer will be very likely to know, that
in reality, ”OWL-S” is the most specific and rarest term in the set, and will be
able to determine that the query should be replicated to the peer responsible
for that term as well.

Furthermore, walking the descriptions should facilitate spreading of descrip-
tions over all semantic neighborhoods. Consider description {”XML”, ”OWL”,
”Car”, ”Sportscar”, ”Ferrari”, ”Porsche”}; a peer having little to do with any
of the subjects may calculate the following popularity vector for this query:
{10, 0, 9, 0, 0, 0}, and decide that the description should be forwarded to
the peer responsible for ”OWL”, ”Sportscar”, ”Ferrari” or ”Porsche”. Assume
that it randomly picks ”Sportscar” and forwards it to that peer. That peer,
in turn, is very likely to know both about ”Ferrari” and ”Porsche”, and make
good decisions on whether the description should be forwarded to the peers re-
sponsible for any of those terms (and probably decide that it should not, since
they are similar enough to ”Sportscar”). In addition, the peer responsible for
”Sportscar” is also sure that it is not relevant to ”OWL”, and therefore the
description should be also forwarded to the peer responsible for ”OWL”. In the
end, the description is replicated on ”OWL” and ”Sportscar”. If the originator
peer would have to decide, it would be quite likely that it would have chosen
only terms about cars, and the description would never have been registered in
the semantic neighborhood of ”XML” and ”RDF”.

20

Chapter 6

Settings

Considering the number of design choices presented in the previous subsections,
it is impossible to perform an exhaustive search over all possible designs and
strategies. Consequently, we made educated guesses on settings that may work
well based on previous research. We will leave testing of all possible techniques
presented as future research. Therefore, following our analysis of existing and
possible new approaches we have picked out a number of interesting settings to
experiment on:

6.1 Setting 1 - Use the DHT as a distributed
index

A simple p2p indexing system based on a DHT. Similar to the current indexing
system of JXTA. The DHT is used as a distributed index and query answering
is based on distributed joins.

6.1.1 Inserting Descriptions

For every term t1...tn the description, we store the tuple [t,DescriptionID] in
the responsible peer. On a system with unlimited resources and no failures, this
would lead to perfect recall.

6.1.2 Querying

For a query q(t1...tn), we retrieve all tuples with t1...tn. We perform a join to
retrieve the relevant documents.

6.2 Setting 2 - Replicate whole term-set

Similar to the previous setting, but instead we insert the whole description
instead of only the [t,DescriptionID] tuple.

21

Algorithm 2 Setting 1
Require: A description d with terms (t1 · · · tn) and identifier id .
Ensure: q is stored.

1: for i := 1 to i := n do
2: send({tn, id},Pti)

——————————————————————————-
Require: A query q for terms (t1 · · · tn).
Ensure: q is stored.

1: for i := 1 to i := n do
2: send(q,Pt1)
3: performlocaljoin

6.2.1 Inserting Descriptions

For every term t1...tn the description, we store the tuple [t1...tn, DescriptionID]
to the responsible peer. On a system with unlimited resources and no failures,
this would lead to perfect recall. We need the same number of messages as in
the first setting, but the size of these messages is much greater (equal to the
size of all terms in the description + the size of the ID).

6.2.2 Querying

It is enough to choose only one of the terms from the query, and send the whole
query to the peer responsible for that term. That peer can locally match the
query with its stored tuples, and return results with 100% recall.

Algorithm 3 Setting 2
Require: A description d with terms (t1 · · · tn) and identifier id .
Ensure: q is stored.

1: for i := 1 to i := n do
2: send({t1 · · · tn, id},Pti

)
——————————————————————————-
Require: A query q for terms (t1 · · · tn).
Ensure: q is stored.

1: send(q,Pt1)

6.3 Setting 3 - Replicate only on a subset

Although it can guarantee 100% recall with only 1 query message, setting 2
is inappropriate for descriptions with many terms (hundreds). The network

22

bandwidth and the space required to send and store the hundreds of replicas
would be prohibitive. We can use the statistical properties of descriptions to
reduce the number of replicas required, on the expense of additional query
messages.

6.3.1 Inserting descriptions

A random subset of terms s is chosen, and the description is replicated on the
peers responsible for these terms, in a similar fashion with Setting 2.

6.3.2 Querying

Queries are forwarded to the peers responsible for each of the query terms.
Results are returned as in setting 2. Note that this approach does not guarantee
100% recall. Nevertheless, it offers a trade-off between expensive insertion(and
storage) and expensive retrieval.

Algorithm 4 Setting 3
Require: A description d with terms (t1 · · · tn) and identifier id . Let parameter

k be the number of peers to replicate to.
Ensure: d is stored.

1: s1···k := picksubset(t1···n, k)
2: for i := 1 to i := k do
3: send({s1 · · · sk, id},Pti

)
——————————————————————————-
Require: A query q for terms (t1 · · · tn).
Ensure: q is forwarded.

1: for i := 1 to i := n do
2: send(q,Pt1)

6.4 Setting 4 - Forward queries/descriptions

We can also consider forwarding queries or description indexes to save messages
and storage space. We can tap on the fact that rather than being randomly
chosen, terms in a description are semantically related, and thus, tend to appear
in similar contexts.

6.4.1 Inserting descriptions

Similar to the previous approach ,we select a subset s of the description terms.
We replicate the description index to the peers responsible for these terms as in
settings 3 and 4.

23

6.4.2 Querying

As in setting 3, queries are forwarded to the peers responsible for each of the
query terms. If not enough results are found, queries are also forwarded to the
peer responsible for the terms that co-occur the most with the query terms.
Note that the best peer to determine this is the peer responsible for the query
term.

Algorithm 5 Setting 4
Require: A description d with terms (t1 · · · tn) and identifier id . Let parameter

k be the number of peers to replicate to.
Ensure: d is stored.

1: s1···k := picksubset(t1···n, k)
2: for i := 1 to i := k do
3: send({s1 · · · sk, id},Pti

)
——————————————————————————-
Require: A query q for terms (t1 · · · tn).
Ensure: q is forwarded.

1: for i := 1 to i := n do
2: send(q,Pt1 ,this)

——————————————————————————-
Require: A query q for terms (t1 · · · tn), originating peer set Pr, the description

set of this peer D.
Ensure: q is forwarded.

1: if enough results found then
2: return
3: else
4: t := tm|∀t, |Dt| < |Dtm

| and Pt /∈ Pr
5: Pr := Pr ∪ this
6: send(q,Pr,Ptm)

6.5 Setting 5 - Walk the descriptions

(We are borrowing ’walk’ from the notion of network walk)
On systems with a Zipf distribution of descriptions, finding queries that lie in

many peers is easy and straightforward; we can just flood queries to the network
and the probability of encountering such descriptions is quite high. On the
other hand, for rare descriptions, flooding would require a very large number of
messages and a large amount of time, if we also consider traffic congestion caused
by flooding. On the other hand, DHTs can guarantee efficient routing, but
registering all terms of a description in a DHT is very costly. Ideally, we would
like a system which uses a cheap mechanism to replicate common descriptions

24

Setting #Ins. Mess. Ins. Mess Size #Q. Mes. #Ans. M.
Sett.1 n 1 O(n) |D(t1)| + ... + |D(tn)|
Sett.2 n n 1 |D(t1...tn)|
Sett.3 s n O(n) Ω|D(t1...tn)|
Sett.4 hops n O(n) Ω|D(t1...tn)|
Sett.5 hops n O(n) Ω|D(t1...tn)|

Table 6.1: Cost of each setting in terms of network traffic. We can see the costs
associated with the basic operations of the discovery system, abiding to settings
1-5.

and a mechanism providing high recall for rare queries. The previous approaches
(especially 1 and 2) can be configured for high recall, but for a cost that is not
acceptable. In this setting, we will exploit the fact that a peer responsible for a
term, contains much semantic information about this term, namely with which
other terms it appears.

6.5.1 Inserting descriptions

Peers forward descriptions to the peer responsible for the terms with the lowest
frequency in their descriptions. Although it may be unintuitive at first glance,
it has the following characteristics: First, rare terms are favored against com-
mon terms, since, by definition, common terms will appear more frequently.
Secondly, descriptions will be ”spread” across a wide semantic area (also see
sections 4.1 and 5). Descriptions are thus walked to peers responsible for di-
verse and rare terms.

6.5.2 Querying

We can use a similar approach for querying. Initially, the query is routed to
the peer responsible for a random term in the query set. If not enough results
are found, it is routed to the peer that is responsible for the term that appears
the least number of times in that peer’s description. In the event that there are
still not enough results, similar to setting 4, peers may forward the query to the
peers responsible for the terms that co-occur the most with the query term.

25

Algorithm 6 Setting 5
Require: A description d with terms (t1 · · · tn) and identifier id . Let parameter

hops denote the maximum number of hops the description can be forwarded,
originating peer set Pr, the description set of this peer D

Ensure: d is stored.

1: t := tm|∀t, |Dt| > |Dtm | and Pt /∈ Pr
2: if hops > 0 then
3: hops:=hops-1
4: send(q,hops,Pr,Ptm

)
——————————————————————————-
Require: A query q for terms (t1 · · · tn). Let parameter hops denote the max-

imum number of hops the query can be forwarded, originating peer set Pr
and the description set of this peer D.

Ensure: q is forwarded.

1: for i := 1 to i := n do
2: send(q,Pt1 ,this)

——————————————————————————-
Require: A query q for terms (t1 · · · tn), originating peer set Pr, the description

set of this peer D.
Ensure: q is forwarded.

1: if enough results found then
2: return
3: else
4: t := tm ∈ (t1 · · · tn)|∀t, |Dt| > |Dtm| and Pt /∈ Pr
5: Pr := Pr ∪ this
6: send(q,Ptm

,Pr)

26

Chapter 7

JXTA

The JXTA platform[17] is currently the most mature generic peer-to-peer infras-
tructure. It is especially attractive because it abstracts from network protocols,
thus circumventing common connectivity problems in P2P networks such as
over-restrictive firewalls and NATs.

It boasts a load of very useful features: automatic maintenance of group
shared data structures, decoupling of peers from physical hosts, post-boxes from
peers that temporarily go off-line, an infrastructure for secure communication
and secure groups and more.

On the other hand, there has been limited evaluation of its scalability prop-
erties. Previous experiments, with the exception of [15] have involved a very
small number of peers (i.e. [11]). Moreover, as far as the discovery subsystem
is concerned, there has been practically no evaluation of its performance (i.e.
scalability, robustness). Consequently, we would like to perform a series of ex-
periments on the JXTA discovery system, at the very least to have a baseline
for the evaluation of our own discovery system.

In the following sections we will briefly the JXTA platform (version 2.4) and
its main design goals. We will focus our description on the discovery mechanisms
and the rendezvous network, since they are the most relevant to our experiments.

7.1 Design Goals

JXTA serves as middleware, abstracting from networks protocols and topologies,
as well as from peer topology. Furthermore, it provides network instrumentation
functionality and a discovery protocol for peers and services. From various
published documents concerning JXTA design and implementation 1 2, we have
extracted the following goals along with their corresponding design decisions 3 :

1http://www-128.ibm.com/developerworks/java/library/j-jxta2/?ca=dnt-445
2http://spec.jxta.org/v1.0/docbook/JXTAProtocols.html
3Please note that not all information presented here appear in these documents; some were

subsumed by examining the implementation and documentation of the system

27

Scalability JXTA aspires to provide scalability in the number of participating
peers, services and management of the network.

Performance Use the most efficient communication methods available, to get
comparable performance to a system designed directly on top of the trans-
port layer.

Developer Friendliness Design a simple API to hide the complexity of the
system from programmers

Transparency Applications running on top of JXTA need not know about
which network protocol is being used. Furthermore, they need not be
aware of the location of peers, obstacles in the network (such as firewalls
and NATs). Finally, the network self-organizes for purposes of infrastruc-
ture failures. On the whole, it aspires to offer Access, Location, Migration,
Failure and Security transparency.

Mobility The JXTA platform is mobile in terms of platforms (currently there
exist implementations for J2SE, J2ME and C) and in terms of node mo-
bility (peers may switch network protocols and endpoints while they are
on-line).

7.2 Design and Implementation Pillars

The JXTA architecture is based on 3 pillars:

Organization in Groups Peers are organized in autonomous peer Groups
which are, in turn, organized in a hierarchy. Each group is responsible
for maintaining its own services and policies. For instance, each group
has its own, independent discovery service and its own security policies
along with the mechanisms to enforce these policies (peers running these
services are different for each group). Note that a peer may belong to
more than one group, possibly having different roles in different groups.

Super-Peer network For each group, network services are maintained by a
Super-Peer network, called the Rendezvous network. Peers are free to join
or leave this network at any time, subject to group policies. There is a
core set of services (known as core peer group services) that need to be
run in this network, namely:

• Discovery Service, used to find peers, services and groups.

• Resolver Service, Resolves JXTA identifiers into network addresses.

• Membership Service, the mechanisms to implement the policies con-
cerning which peers are allowed to join a group and with what role.

• Access Service, to validate requests from peers (e.g. handling cre-
dentials)

28

• Monitoring Service, monitor the state of peers and communication
channels.

• Relay Service, used to propagate JXTA messages using the underly-
ing network protocols, possibly circumventing firewalls and NATs.

The Rendezvous network typically consists of well-connected, powerful
peers, although this is not mandated by the protocol; for instance, a super-
peer network of a small group may consist only of one, relatively weak,
peer. Finally, if there is no rendezvous network for a group yet, any peer
that detects that, has the responsibility to become a rendezvous itself.

Implementation-neutrality The JXTA protocols is implementation-neutral,
allowing porting to any system, from cell phones to enterprise servers.

7.3 JXTA Discovery Service

We will focus on the reference implementation of the JXTA Discovery Service,
since it is most relevant to our research. JXTA comes with some discovery
mechanisms implemented. For each group, a single discovery service is main-
tained which is responsible for discovering any type of resource (Peers, services,
groups etc).

7.3.1 A loosely consistent DHT

(Also refer to [34] and [3].)

Traditional DHTs (e.g. [23], [31], [24] etc) rely on the assumption of a
network with a low churn rate. Maintaining and managing a host with high
availability may be a strong deterrent to contributing resources to a p2p net-
work. The reference implementation of JXTA uses a loosely consistent DHT for
the super-peer network, which tries to strike a balance between the high main-
tenance of traditional DHTs and the inefficiency of unstructured peer-to-peer
systems.

There are 3 major differences between the JXTA DHT and traditional DHTs:

• Global View In traditional DHTs, peers know a subset of the rest of the
peers in the DHT (determined by the structure of the DHT, and of size in
the order of O(log(N)) where N is the total number of peers in the DHT).
In the loosely consistent DHT, peers keep a global peer view (in JXTA
terminology, it is called the Rendezvous Peer View(RPV)). Consequently,
one can expect that the loosely consistent DHT is very efficient for small
RPVs and networks with small churn rate, since a DHT lookup would
cost only 1 message. On the other hand, it can not scale to large numbers
of peers like traditional DHTs. JXTA developers recommend somewhere
between 100 and 200 peers4.

4Private correspondence with Mathieu Jan

29

• Consistency Unlike traditional DHT approaches, the Peer View in JXTA
needs not be consistent: peers make a best effort to keep a consistent
global peer view. Therefore, in networks with high availability, we can
expect that peers are able to manage this; in networks with low availability,
JXTA falls back to a more expensive crawling approach, described in the
following paragraph.

• Limited Range Walker Since it cannot rely on the consistency of the
RPV, JXTA employs a walker that performs a search in the vicinity of
the peer where the ID should be located. A more detailed description is
given when we describe DHT lookups.

The mechanism implementing the loosely-consistent DHT is straightforward:
Each peer has a unique ID, randomly chosen from a large space(128-bits) using
a uniform distribution and keeps a list of all other peers that it knows, ordered
according to peer ID. This list is called Rendezvous Peer View and elements
in that list are periodically exchanged with other peers. In the following para-
graphs, we will describe the main DHT functions.

Peer Joins The new peer is added to the RVP of the entry peer, and copies
the RVP of the entry peer. Other peers will be eventually informed about the
new peer either by being contacted by the new peer itself, or by the entry peer.

Peer Leaves Peers are assumed to fail or leave the network silently. Failure
is detected by periodic pinging and failed entries are purged from the RPV.

Publish Items to be indexed in the DHT are assigned an identifier, determined
by a hash function. The identifier space is divided in equal zones according to the
number of peers in the RPV, and the item is indexed in the peer corresponding
to the appropriate zone. For fault-tolerance purposes, the item is also replicated
in the neighboring peers as well.

Lookup The hash function is applied to the query to get the identifier in
the DHT. The same process as in publishing is applied to send the message to
the peer that should contain the item. If the item is not found, the Limited
Range Walker protocol is initiated: The receiving peer propagates the message
iteratively upwards and downwards in its RPV until the item is found or a
maximum number of hops is reached. As a clarification, the query will be
propagated to the peers with nearby IDs(remember that peers in the RPV are
sorted according to ID).

7.3.2 Advertisements

Central to the discovery system of the JXTA platform is the use of advertise-
ments, small XML documents containing the specification and/or location of an

30

Peer 1 Peer 2 Peer 3 Peer 4 Peer 5
1 1 1 1 2
2 2 2 2 3
3 4 3 3 4
4 5 4 4 5
5 5 5

Table 7.1: The RPVs of 5 peers, with peer 2 having an inconsistent view. For
simplicity assume an identifier space of 100 and 1 replica per object. Consider
the following example: (a) Peer 1 inserts object with ID=86: In its RPV of size
5, 86 maps to the 5th position, therefore, the item will be replicated to peer 5.
(b) Peer 3 looks up object with ID=86: In its RPV of size 5, 86 maps to the
5th position, therefore, it will forward the query to peer 5, which will contain
the object. (c) Peer 2 inserts object with ID=61: In its (inconsistent RPV of
size 4, 61 maps to the 4rth position, therefore, the item will be replicated to
peer 5. (d) Peer 1 looks up object with ID=61: In its RPV of size 5, 61 maps
to the 4rth position, therefore, it will forward the query to peer 4, which will
not contain the object. Peer 4 will propagate the query its neighboring peers (3
and 5), the object will be located in peer 5.

object or a resource. They are used to convey information concerning the loca-
tion of peers, objects, entry points to groups, services, specifications of groups,
group descriptions etc. It is beyond the scope of our work to describe all possi-
ble advertisement types; therefore, we will limit ourselves to describe the part
related to discovery:

Advertisements are mobile descriptions consisting of a unique
identifier and a number of fields (e.g. name, endpoint). Some of
these fields are indexed (and thus handled by the Shared Resource
Distributed Index), so as to optimize search.

7.3.3 Shared Resource Distributed Index

The Shared Resource Distributed Index (SRDI), leverages the DHT to provide
efficient search among rendezvous peers. It uses the DHT as an distributed
index for advertisement fields. Focused on reducing network traffic, it sim-
ply propagates collections of {fieldID, fieldValue, peerID} tuples among
peers, where fieldID is the attribute to which fieldValue refers (for ex-
ample, fieldID can be ”Name” and fieldvalue ”OpenKnowledge”). The
peerID is the ID of the peer where the advertisement resides. We empha-
size rather than replication the whole advertisement is not, JXTA merely dis-
tributes indexes for some of its fields. The propagation mechanism is straight-
forward: On fixed intervals, peers select all advertisements that they have
not propagated through the DHT. For each advertisement, they forward a
{fieldID, fieldValue, peerID} tuple for each of its indexed fields to the peer

31

where the concatenation of fieldID,fieldValue maps. Otherwise phrased,
they publish on the loosely-consistent DHT all tuples with indexed fields, using
the concatenation of fieldID,fieldValue as a key and the peer as value.

To improve redundancy and performance of the DHT, provided that the
rendezvous network exceeds a certain size threshold (currently 3), the whole
advertisement is replicated to adjacent peers in the RPV.

We will leave explanation of SRDI lookups in the context of general JXTA
querying to be described in the next section.

7.3.4 Queries in JXTA

We will present the methods used by JXTA to answer queries. We are referring
only to remote searches, i.e. searches that are commenced after failing to find
results in the local cache. Sorted according to cost, JXTA tries the following
(in this order):

1. propagate to LAN via broadcast/multicast: The query is broadcast
or multicast over the local area network, to reap the rewards of data
locality and similarity in interests in the local network. The cost is merely
a local area broadcast/multicast message, and the expected latency very
low.

2. send to rendezvous: If no answers are found, the query is propagated
to the rendezvous peer of the querying peer. The rendezvous peer may
already contain an answer to the query, in which case it returns it and the
query process finishes.

3. check SRDI local entries: If no answer is found in the advertisement
store of the rendezvous peer, the latter consults its SRDI entries. If there
exists an entry satisfying the query, it is forwarded to the peer denoted
in that entry. This peer is then responsible to contact the querying peer
with the result.

4. map into RPV starting point: The loosely consistent DHT is used to
find the peer which would contain an entry matching the query. Using the
mechanism described in 7.3.1, the query is routed to the peer where the
SRDI entry should lie. If a matching entry is found, the query is routed
to the peer containing the advertisement for that entry.

5. use limited range walker As a last resort, the query is walked upwards
and downwards from the RPV starting point(also see previous section and
table 7.1).

32

Chapter 8

Evaluation

We will focus our evaluation on the techniques described in section 6. Further-
more, we will use the default discovery mechanism of JXTA as the baseline for
our experiments and we will modify and extend it with our algorithms.

8.1 Dataset

We have used the dataset developed for [26]. It was created by crawling a large
number of real user queries from SearchSpy1 and applying a natural language
processing method on the results retrieved for these queries using Google2, to get
relevant descriptions. The input to our system was derived from the following:

• Corpus We have used a corpus of 260.000 descriptions. Each document
was made up by a list of terms.

• Descriptions Out of these descriptions, we have selected a random set
of 100.000 descriptions to use in our system. On average, each document
contained approx. 104 terms (the distribution is shown in fig. 8.3). The
distribution of terms, as expected, follows a zipf-like distribution(fig 8.1
and 8.2), we can see that more than half of all terms appear only 1 time,
while 1 term appears in more than half of the descriptions (58204 times).

• Queries To generate queries, we have used the following method:

1. Randomly pick the number of terms |t| for the query using the proba-
bility distribution 0.16, 0.29, 0.26, 0.15, 0.07, 0.03, 0.01, 0.006, 0.006 (fig.
8.4).

2. Pick at random a description out of the Corpus.

3. Pick |t| terms (randomly using a uniform distribution) out of the
chosen description and use them as the query terms.

1http://www.infospace.com/info.xcite/searchspy
2http://www.google.com

33

Figure 8.1: Term popularity distribution. We can see the number of terms
that appear in the dataset, as a function of their popularity(i.e. the number of
documents that it appears in). The size of the bubbles represent the occurrences
of the terms in the dataset (essentially, they are the product of the values in the
2 axes).

34

Figure 8.2: Term popularity distribution. Each bar represents how many terms
appear the number of times specified in the x axis (for example, the second bar
represents that 70.000 terms appear 2 times. Note that most terms appear only
once.

35

Figure 8.3: Number of terms per document.

Note that not all queries yield results, because some of them are generated
by documents from the Corpus that do not exist in the Descriptions.

In figure 8.4, we can see the number of answers per query; for most queries,
there are fewer than 50 answers in the dataset.

8.2 Criteria

In order to evaluate our discovery system, we will use description Recall, queries
served, and query latency . We consider relevant all documents that contain
all terms in the query. To gain additional insight, we will always take into
consideration the number of answers in the system, and limit them to a fixed
threshold (50 answers). Thus, for our experiments, recall is defined as follows:

DRecall =
|Dreturned

⋂
Drelevant|

min(|Drelevant|, 50)

We will also perform a series of load tests, to measure the efficiency of our
system. We will measure the total number of queries served and query latency :

Finally, to evaluate the loosely-consistent DHT of JXTA, we will measure
the size of the RPV for each peer.

36

Figure 8.4: Left: Number of terms per query. Right: Number of results per
query (cumulative). We can see that for approx. 50% of the queries, we have
less than 50 results and for 30% of the queries, we have less than 4 results.

8.3 Implementation

We provide an implementation of a discovery system implementing the methods
described in section 6. We have tested it using the DAS-2 distributed supercom-
puter. In the following paragraphs, we will outline our implementation, describe
our experimental results, issues encountered while implementing the system and
guidelines for future research and development of the system.

We have used the JXTA peer-to-peer infrastructure as a basis for our imple-
mentation. To isolate our experiments from the global JXTA network, we have
created a private (root) group consisting only of rendezvous peers. One peer
in that group created a new group, with the customized discovery mechanism.
Other peers found and joined that group. Upon joining the group and after
waiting for a period of 4 minutes, for the RPV to converge, all peers except
for the one that initiated the group, published a number of advertisements con-
taining the descriptions with an interval of 250ms. Following the publication
of the advertisements, they waited for 3 minutes, for the SRDI indexes to be
propagated. Then all peers posted queries with an interval of 150ms and waited
for 5 minutes for results (we did not expect any more messages to arrive af-
ter that time frame). Note that we have used the above settings so as to get
reasonable results for all experiments. We have experimented with additional
settings, but the results were not significantly different, or we were unable to
perform some experiments (e.g. setting the intervals too low resulted in peers
issuing practically no queries at all).

37

8.3.1 Settings

In this section, we will highlight the implementation of the settings described
in 6 which was based on the JXTA reference implementation. It should be
noted that the JXTA architecture and reference implementation can be extended
with additional functionality, therefore, our modifications extended rather than
modified the JXTA framework.

Setting 1 To implement Setting 1 we have intersected JXTA single-attribute
searches. Therefore, for each description, we published a number of adver-
tisements equal to the number of terms in its description. Peers returned all
advertisements that match any term, and the query issuing peer was respon-
sible to determine which of these advertisements indeed matched the query.
In each advertisement 3 , we have included the description itself. Note that
the description was not used for query processing since JXTA does not allow
searching according to multiple criteria. The description was only used to tell
correct answers (i.e. answers that contained all terms) from all returned an-
swers. This way, we were able to keep description precision to 100%, so as to
have comparable results with the other approaches.

Setting 2 We have extended the default discovery mechanism to cater for
multi-attribute queries. To achieve this, we had to create a new discovery
mechanism to be used only in our group of peers. Note that this implemen-
tation is fully compatible with the JXTA architecture and reference implemen-
tation, since it allows groups to have customized discovery services. We have
enriched the advertisement mechanism with a new field for descriptions with
multiple attributes. Queries also modified to support multiple attributes, and
they were now matched locally. Thus, peers only returned the advertisements
that matched all query terms and matching queries with advertisements was
done only at the responder.

For settings 3-5 we have implemented a configuration mechanism to specify
strategies to be used by peers. Strategy classes are specified in a settings file,
and loaded dynamically during execution. This eliminates the need to ever
change the implementation code, for purposes of strategy specification, even if
new strategy classes are created. As an example, the directive:

org.nl.vu.ok.semanticRouting.replicationStrategy.ReplicationStrategy-

3Initially, we had tried the following approach: to insert a new description, we inserted a
new advertisement for each of its terms containing a {term,description-id} pair. To search
for a description, we issued a separate query for each query term, and we aggregated the
{term,description-id} pairs of these queries. We performed a join of these pairs with the
query and got the results. It yielded very bad results for two reasons:

• Failure to retrieve one index for a query meant that the query failed.

• JXTA has a built-in threshold of 50 results.

38

org.nl.vu.ok.semanticRouting.replicationStrategy.Random(4):
org.nl.vu.ok.semanticRouting.replicationStrategy.Rarest(3)

specifies that the description replication strategy is to replicate according to 4
random terms plus the 3 rarest terms. It is possible to create a new strategy
class:

org.nl.vu.ok.semanticRouting.replicationStrategy.StrangeNewStrategy(3,"penguin")

with no change or recompilation of the system, allowing for on-line strategy
changes.

Setting 3 For the implementation of the third setting, we have used the afore-
mentioned policy specification mechanism to replicate descriptions according to
a maximum of 8 terms, chosen randomly. The search mechanism remained the
same as in the previous setting.

Setting 4 Instead of being sent directly to the chosen peers, queries were
sent to only one peer that, in turn, forwarded them, assuming that not enough
answers had been found. Furthermore, they were forwarded according to the
most rare term, but the maximum number of times that they could be forwarded
was fixed.

Setting 5 Descriptions were forwarded according to terms with frequency
less than 5%. There was no threshold for the maximum number of times a
query could be forwarded, but each term can be selected for forwarding only
once (terms that have already been selected are m̈arked̈ın the query. Therefore,
implicitly, the maximum number of hops for a query was the number of query
terms.

8.3.2 Process

To clarify the method followed, we provide a short overview of all steps taken.
Note that rather than being a linear process, we had to fall back to the previous
steps numerous times, to refine our settings and implementation.

1. Parse the Corpus file.

2. Extract the descriptions to be used and calculate statistics for them.

3. Generate query set and calculate statistics.

4. Define settings and strategies.

5. Run emulation, and write log files for each peer.

6. Process the log files and create statistics for the run.

39

Figure 8.5: Host Configuration. Arrows represent unrestricted network connec-
tivity (no firewall)

8.3.3 Setup

To verify its correctness and to experiment with its behavior, we have deployed
our system in a small variety of host configurations (fig 8.5).

local A standard desktop machine (AMD Athlon64 3500+, 1GB memory, Win-
dows XP) running up to 5 instances of peers. We have used this config-
uration to verify that our discovery system works and produces correct
results.

local+servers We have set up a larger experiment involving the local machine
plus a number of compute servers available in the faculty, namely:

• rattler and kits (Sun Fire V440z, 4x AMD Opteron 852 2594 MHz
CPU, 16.0 GB memory, Debian GNU/Linux)

• keg and fluit (Sun Fire V440, 4x Sun UltraSPARC-IIIi 1281 MHz
CPU, 8.0 GB memory), Solaris 9

On the Linux servers, we were able to run up to 50 instances of peers(processes),
albeit with a big impact on performance. On the Solaris servers, we could
run up to 20 peer instances. This experiment verified, that indeed, our
discovery system was able to run on heterogeneous hosts. Nevertheless,
as the number of processes per host increased performance plunged to
unacceptable levels.

local+das2@vu In this setup, we have used the local computer as an fixed ref-
erence point and nodes in the VU cluster of the DAS-2 supercomputer as
rendezvous peers. We have tried our system with up to 50 nodes (2xPIII

40

1Ghz, 1GB memory, Red hat enterprise Linux), running 2 peer instances
each. When running more than 2 peer instances per node, they experi-
enced performance problems. Unfortunately, we were negatively surprised
by the RPV convergence. As also described in section 8.5.6, the RPV
dissemination was not what would be expected from a system running on
a fast local network.

local+das2 The DAS-2 consists of 5 geographically distributed clusters. We
have run our system using the Amsterdam cluster and 2 more other clus-
ters. Again we have used the local machine as a reference and entry point
to the system. What made this experiment interesting was the fact that
the nodes in remote clusters (clusters other that the VU-cluster) were pro-
tected by a firewall. Consequently, the local machine could not contact
them. On the other hand, the local machine could be contacted, since we
had requested a port opened on the VU firewall. We have noticed that,
contrary to specifications, the system should perform adequately, it took
a severe performance blow, and many peers had difficulty connecting at
all.

local+das2+servers Our final experiment was to use several DAS-2 clusters
along with the compute servers in the VU with the local machine again
acting as the entry point to the system. The result was comparable with
the previous experiment. Finally, we have decided the using only the VU
cluster, with the local machine as an access point, was the only setting that
could produce reproducible results with a relatively low performance vari-
ation between runs. Even so, in many cases, the loosely-coupled DHT did
not perform as expected on several occasions, and suffered from frequent
transient failures. Note that all hosts were connected by fast networks; the
local machine and the compute servers being connected by Gigabit Eth-
ernet, the DAS-2 nodes in clusters by 100Mbps Ethernet and multi-Gbps
inter-cluster connections. To the best of our knowledge, in no occasion
was the network congested. Instead, CPU power became the bottleneck.

8.4 Results

In this section, we will present some experimental results concerning the settings
previously presented.

In figure 8.6, we can see a performance comparison of the five settings,
concerning recall and number of successful queries. In settings 1 and 2, the
inefficient description inserting mechanism has a negative effect the total number
of queries that can be posted, since peers are busy forwarding thousands of
descriptions instead of issuing new queries; therefore, queries are throttled to
almost one third of the maximum. On the other hand, recall is not very seriously
affected and is on par with the rest of the settings.

An important observation is that for queries with over 1000 answers, all set-
tings performed perfectly, corroborating evidence given in [30] that for popular

41

items (or equivalently, queries with many results) even a flooding approach is
effective enough.

Furthermore, we can see a very big difference in the number of queries that
were issued in each setting: In settings 1 and 2, less than half of the queries
possible were issued, due to throttling mechanisms cutting back the number of
queries posted. On the other hand, in setting 5, almost all queries were posted,
and there was an important difference with settings 1-4. The reason behind this
is that the term selection algorithm of setting 5 has implicit load adaptation
properties: Terms according to which descriptions are replicated are chosen
according to their popularity (only terms with popularity below a threshold are
chosen). When peers contain few descriptions, many terms are selected because
they are not popular enough, increasing the number of advertisements posted
in the system. On the other hand, when peers contain many descriptions, and
are more likely to be busy, less advertisements will be posted.

Although we can see some difference in performance (especially in the num-
ber of queries posted), it is not as significant as we would have expected. We
are convinced that this is due to the dysfunctional DHT of the JXTA reference
implementation (see also 8.5.6).

Setting 1, as expected, consumed a large number of messages to index de-
scriptions according to all terms. Even more, it performed worse than setting
2 (particularly for queries with few results) because it returned descriptions
matching any term. Combined with a maximum of 50 results per query (per
peer), even if a peer did contain the correct answer, it may be that that answer
was not included in the result set. In 8.7, we can see a scatter graph of recall for
queries with different number of answers. As expected, recall increases as the
total number of answers in the system grows larger; we notice, that for queries
with more than 2000 answers, recall is perfect. We also note, that for queries
with 4-100 answers, recall is lower for queries with 1-3 answers. This is due to
the query forwarding mechanism of the loosely-consistent DHT: The query is
forwarded to the peer where the index should lie, if no answers are found, the
query is propagated to the neighboring peers. Even if one answer is found, the
query is not propagated; therefore, the system does much more effort to return
the first result compared to the effort for subsequent results.

Setting 2 still produced a very large number of advertisement messages.
Nevertheless, on the queries that did manage to get posted it has the best recall
for queries with few results. Of course, due to load issues, it was still far from
the theoretical 100% recall.

In figure 8.8 we can see the distribution of the delay for each answer received.
Successful queries required more time, while local hits (hits in few ms) adversely
affected recall. This can be explained as that these queries were not preferred
for forwarding, since some results were already returned. Elaborating, in figure
8.9 one can see recall as a function of the query latency for each answer as a
scatter graph(defined as the time period between the posting of the query and
time the answer was received). We can see a tendency to higher recall as the
latency of the answer increases. Nevertheless, a number of queries were fully
satisfied (recall=1) by the local peer (latency was very low).

42

F
ig

ur
e

8.
6:

C
om

pa
ri

so
n

of
th

e
5

se
tt

in
gs

in
te

rm
s

of
R

ec
al

l.
T

he
5

te
xt

ur
ed

ba
rs

fo
r

ea
ch

se
tt

in
g

re
pr

es
en

t
av

er
ag

e
re

ca
ll

fo
r

qu
er

ie
s

w
it

h
1-

10
,1

1-
10

0,
10

1-
10

00
,1

00
1-

10
00

0
an

d
m

or
e

th
an

10
00

0
an

sw
er

s.
W

e
w

ou
ld

lik
e

to
re

m
in

d
th

e
re

ad
er

th
at

th
er

e
is

a
m

ax
im

um
th

re
sh

ol
d

of
50

an
sw

er
s

fo
r

ea
ch

qu
er

y,
th

us
,

if
fo

r
a

qu
er

y
th

er
e

ar
e

20
00

0
an

sw
er

s
an

d
w

e
ge

t
ba

ck
80

,
w

e
co

ns
id

er
re

ca
ll

to
be

1.
T

he
w

id
er

,b
la

ck
co

lu
m

n
re

pr
es

en
ts

th
e

nu
m

be
r

of
qu

er
ie

s
th

at
w

er
e

su
cc

es
sf

ul
ly

is
su

ed
;n

ot
ic

e
th

e
bi

g
di

ffe
re

nc
e

be
tw

ee
n

se
tt

in
gs

,
be

in
g

du
e

to
th

e
la

rg
e

nu
m

be
r

of
m

es
sa

ge
s

us
ed

in
th

e
fir

st
2

se
tt

in
gs

to
in

se
rt

ne
w

de
sc

ri
pt

io
ns

.

43

F
ig

ur
e

8.
7:

R
ec

al
l
as

a
fu

nc
ti

on
of

th
e

to
ta

l
nu

m
be

r
of

an
sw

er
s

(a
ve

ra
ge

d
ov

er
al

l
qu

er
ie

s
w

it
h

th
e

sa
m

e
nu

m
be

r
of

an
sw

er
s)

.
T

he
si

ze
of

th
e

bu
bb

le
s

re
pr

es
en

ts
th

e
nu

m
be

r
of

sa
m

pl
es

.
Fo

r
in

st
an

ce
,t

he
le

ft
m

os
t

bu
bb

le
si

gn
ifi

es
th

at
fo

r
qu

er
ie

s
w

it
h

on
ly

1
re

su
lt

in
th

e
sy

st
em

(x
-a

xi
s)

,a
ve

ra
ge

re
ca

ll
w

as
ar

ou
nd

0.
35

(y
-a

xi
s)

an
d

th
er

e
w

er
e

lo
ts

of
su

ch
qu

er
ie

s
(s

iz
e

of
bu

bb
le

).
T

he
bl

ac
k

lin
e

is
a

tr
en

d
lin

e,
de

pi
ct

in
g

th
e

ro
lli

ng
av

er
ag

e
ov

er
a

w
in

do
w

of
10

0
sa

m
pl

es
.

44

Figure 8.8: Recall as a function of latency, averaged over queries answered in
the same time frame.

Finally, in figure 8.10, we can see the average number of returned answers for
the queries in setting 3. We can see a peak forming at around 2000 answers per
query. We can explain as follows: queries with a very high number of results will
be satisfied locally, and will never be forwarded (which could result in gathering
more that the threshold of 50 descriptions). Therefore, the average number of
returned results is lower. On the other hand, queries with less answers are less
likely to be forwarded, and have more than 50 results (queries answered locally
will never have more than 50 results).

8.5 Fallacies and pitfalls

Much to our regret, we have come across a number of issues while experimenting
with the JXTA platform. In the following paragraphs, we outline the most
important problems encountered.

8.5.1 Stale documentation and examples

Although considerable documentation efforts have been made, the most notable
being the JXTA programmers guide4 and the companion examples5, in many
occasions, the examples presented contained deprecated code and code that did
no longer compile. To make matters worse, the documentation in the JXTA
programmers guide was, for a large part, stale, resulting in confusion.

4http://www.jxta.org/docs/JxtaProgGuide v2.3.pdf
5http://www.jxta.org/ProgGuideExamples.zip

45

F
ig

ur
e

8.
9:

R
ec

al
la

s
a

fu
nc

ti
on

of
la

te
nc

y.
E

ac
h

do
t

re
pr

es
en

ts
an

an
sw

er
w

it
h

la
te

nc
y

on
th

e
x-

ax
is

an
d

re
ca

ll
(i

n
to

ta
l,

fr
om

al
l
an

sw
er

s)
on

th
e

y-
ax

is
.

T
he

lin
e

re
pr

es
en

ts
th

e
ro

lli
ng

av
er

ag
e

ov
er

10
0

sa
m

pl
es

.
N

ot
e

th
at

m
or

e
re

ca
ll

va
lu

es
ar

e
n
ot

th
e

av
er

ag
e

fo
r

al
l
qu

er
ie

s
w

it
h

th
e

sa
m

e
re

ca
ll.

46

Figure 8.10: Returned answers as a function of all answers in the system. Dots
in the graph represent the number of answers in the dataset (x-axis) and the
average number of answers returned (y-axis). The line is a trend line of a rolling
average with a window of 200 samples. Note that a maximum of 50 answers was
requested, and therefore, the ideal value on the y-axis is 50. The cases where
we had more than 50 answers are attributed to the query being sent to more
than one peer simultaneously.

8.5.2 Inadequate code documentation

Despite the complex architecture of JXTA, on many occasions the documenta-
tion of the code was inadequate, misleading or wrong. Especially lacking were
the descriptions of how to use classes, information that could only be inferred
by the companion example and, mostly, by community effort on various forums.
Of course, getting over trivial examples was a laborious task requiring careful
examination of labyrinthine code fragments.

In many occasions, we were forced to resort to looking at the implementation
to figure out what was the exact function of the methods in the API, although,
as described in 8.5.2 and 8.5.3 many times, that did not help either.

8.5.3 Obnoxious bugs

While modifying and extending the JXTA reference implementation, we came
across a series of bugs. To our regret, due to the size of the code and the
complexity of the architecture, it is difficult to detect, let alone correct, such
bugs.

To make matters worse, in some cases the JXTA reference implementation
displays a dicey behavior. For instance, we have noticed, that if a peer has
more than approx. 600KB (in UTF-8, approx 800 100-word descriptions) of
new advertisements, JXTA does not use the SRDI, even when it is manually
instructed to push SRDI indexes. What makes the problem very difficult to

47

tackle, is that, when doing so, if produces no warning or error whatsoever.
To circumvent such problems, we have resorted to arbitrary measures, such as
forcing an SRDI update after inserting 150KB.

A more amusing, though in reality grave, bug, lies in the following code seg-
ment(note that the fact that the only indication that this method does nothing
is commented out):

/**
* Specify the Relay enabler.
*
* @param isEnabled Relay enabler
*/
public void setRelay(boolean isEnabled) {

// throw new UnsupportedOperationException("this doesn’t work");
}

8.5.4 Erratic vices

Following the main source of documentation, the JXTA programmer’s manual,
along with the examples, we have encountered a series of problems that required
solutions that were undocumented and seemed arbitrary. For example, the
publishing vice:

To create a group, you have to create an advertisement, publish it, discover
it and then join the group. Creating a group, and using the advertisement to
join the group will not work.

8.5.5 Transient Errors/Unreliable

Finally, the JXTA implementation is tormented by a series of inexplicable tran-
sient failures. To animate our argument, in every experiment, some peers (ap-
prox 10%) connected to the rendezvous peers, but were unable to discover and
join the group. They were issuing discovery requests, but, for some reason,
their requests were ignored. This kind of errors make the system unreliable and
difficult to benchmark.

8.5.6 RPV Convergence

We have performed a number of experiments to determine the convergence speed
of the RPV of the peers in the network. Although all nodes were participating
in the same LAN, the RPV did not seem to converge, even after a time frame
of 10 minutes.

In figure 8.11, we present the RVP sizes of the peers in one experiment. After
joining the network, peers were given 4 minutes for their RVP to converge. Then,
descriptions were posted by every peer at a rate of 5 descriptions/second followed
by a time period of 4 minutes for the indexes to be distributed. Following, peers
posted queries at a rate of 6.66 queries/second. We can see that most peers had

48

Figure 8.11: Size of the RPV for each peer. The vertical lines represent the
minimum and maximum number of peers in the RPV of each peer. The hor-
izontal lines represent the average RPV measured at 4 points: before posting
descriptions, after posting descriptions, before posting queries and after posting
queries.

a very limited view of the network and no peer seemed to connect to more than
70% of all peers. Note that according to specification, the views of the peers
should converge to a shared, global view.

Another problem encountered had to do with network partitioning; we have
tried the following scenario:

1. Peer acting as reference point it started.

2. 100 peers are started and find this node, and each other.

3. Peer acting as reference point is forcefully stopped.

4. Peer acting as reference point is started.

5. New peer enters the network, and it finds reference point peer.

6. Neither the new peer or the reference peer are connected again to the 100
peers. This is due to these peers not searching for the reference point
peer any more. The network is partitioned and does not recover. Note
the IP address of the reference point peer is available through a URL6.
As it seems, this is a bug rather than a design fault, since in the JXTA
protocol, peers periodically check with the referenced peers found in this
addressed. They are called the seeding rendezvous, and they are supposed
to accelerate RPV convergence.

6http://www.few.vu.nl/k̃ot/jxtabootstrap.txt

49

It goes without saying, that with a dysfunctional RPV mechanism, the
loosely-consistent DHT is very unlikely to work effectively. The recovery mech-
anisms described in section 7.3.1 cannot compensate for so large differences in
the RPVs; note that in our experiments, the average RPV size was around 40%
of the total peers in the network. Although additional research to determine to
what numbers is this implementation of the loosely-consistent DHT capable to
scale is needed, our results were discouraging. Unfortunately, to the best of our
knowledge, there are no simulation results either.

In turn, this has adversely affected our experimental results, since our meth-
ods assume a fully-functional DHT mechanism and we were not able to exper-
iment with large number of peers/physical hosts. On the bright side, we have
come to the conclusion, that the tested method do perform well even in the
presence of severe failures in the underlying DHT.

8.6 Conclusions

Evaluation our system, we have come to the following conclusions:

• Increase in number of queries served Unlike most simulation work, which
primarily deals with number of messages and maximum number of hops,
we have taken a more pragmatic approach, considering mainly the total
number of queries served and query latency. We have seen that with
relatively simple modifications to the simple DHT based approach, we
can increase the query throughput of our system up to 4 times, without
sacrificing recall.

• Unreliability of JXTA platform Unfortunately, we came across a large
number of problems while experimenting with the JXTA platform, mostly
due to the numerous programming errors in the reference implementation
and the lack of appropriate documentation.

• Simulate or use a ”bare” peer-to-peer substrate The existence of a discov-
ery mechanism already implemented in JXTA complicated rather than
simplified our own implementation, making it difficult to predicte the be-
havior of the system and to interpret results, since we have not found
a detailed specification of the JXTA discovery reference implementation.
For future experiments, we would recommend either simulating the sys-
tem, or using a ”bare” DHT implementation (e.g. P-Grid[2], Pastry[24],
Freenet[7])

50

Chapter 9

Future Directions

9.1 Large-Scale Simulations

We have implemented a Grid-Based peer-to-peer simulator on top of the Ibis1

middleware, able to simulate network latency (and adapt the simulation to ac-
tual network latency between simulation nodes) and capable of handling millions
of peers. In combination with the DAS-3, which will be available in the following
months, we will have the infrastructure to run very-large scale simulations for
the methods described in this work (1 Terabyte of main memory and close to 3.5
Teraflops of processing power). Alternately, we can use one of the experimental
DHT implementations available (e.g. FreePastry, Bamboo)

9.2 Explicit semantics

It would be interesting to specify directives to explicitly insert semantic infor-
mation in a peer to peer network. The challenge would be to determine in which
peer should this information reside. Apart from the obvious solution of using
the hash-table, it might be that in topologies that take semantics into account,
it would be beneficial to spread this information to other, potentially interested
peers.

9.3 Going beyond subset matching

In this work, we have made the simplifying assumption that we have a query
result, when all query terms appear in a description. Current information re-
trieval research has proposed a plethora of more sophisticated measures. It
would be interesting to compare our results against one of these approaches, or
even more, incorporate such an approach in our discovery system.

1http://www.cs.vu.nl/ibis

51

9.4 Specifying what can be approximated

Going beyond sets of descriptive terms, for a full-fledged discovery system we
need to specify what can be approximated and how. For instance, if we are
searching for computational resources, and we have stored an enormous number
of descriptions with ”Operating System=Microsoft Windows XP”, in no case
can we dismiss this information for not having enough discriminating value. It
is very unlikely that we will be able to infer whether the information above
can be approximated. In most cases, approximating it with ”Operating Sys-
tem=Microsoft Windows CE” because they appear on similar context would
simply be a bad idea.

One can argue, that the only semantics that we need to be explicit about
is whether approximation is appropriate for each term. This should be done
both when inserting a description, for purposes of optimizing replication, and
when querying. To this end, maybe it would be appropriate to develop a simple
query language, specifying whether terms can be approximated, and perhaps,
how loose should this approximation be.

It would be interesting to also examine this future work in relation to the
PIER project2, and especially the language used to query structured peer-to-
peer networks[13].

2http://pier.cs.berkeley.edu

52

Chapter 10

Summary

We have proposed a series of methods for multi-attribute search, with a focus
on using statistics to optimize replication and retrieval. The methods are not
limited to textual descriptions, but can be applied to any content from which we
can extract comparable features. Moreover, we have adumbrated their design
and the expected challenges and benefits.

We have evaluated the JXTA architecture and reference implementation by
deploying it on a relatively large number of computers. To this end, we have
performed a series of experiments to evaluate its performance and its adher-
ence to specifications. We came to the conclusion that it suffers from serious
programming errors and inadequate documentation.

In addition, we have designed and partially implemented a distributed dis-
covery system that is novel in the following ways:

• It can extract term semantics from a large number of sets of related terms.

• It uses a novel algorithm to replicate data. Peers pro-actively search for
descriptions fitting their expertise and adapt their expertise to these new
descriptions.

• It employs a new query routing technique that takes into consideration
semantic data about terms, when such data is available, and still performs
well in the absence of this data.

Compared to systems in the literature, our system is unique in that automat-
ically extracts and updates useful semantic information about data with a low
maintenance cost and uses this data to optimize the discovery process.

To evaluate our system, we have performed a series of experiments on the
DAS-2 distributed supercomputer. Despite the fact that our deployment was
inhibited by failures in the JXTA substrate, compared to a naive DHT-based
discovery system, one of out most advanced settings had four times higher query
throughput and a moderate increase in recall. The results also indicate tolerance
of our methods toward a dysfunctional DHT.

53

We have concluded with a chapter on additional research that can be carried
out in the field.

On the whole, we have provided some new research directions toward multi-
attribute search in peer-to-peer systems and have started evaluating them. We
are planning to proceed in this research line, elaborating in the methods pre-
sented in this paper and deploying them as the discovery infrastructure for the
OpenKnowledge project.

54

Bibliography

[1] K. Aberer. P-grid: A self-organizing access structure for p2p information
systems. In Sixth International Conference on Cooperative Information
Systems (CoopIS 2001),, volume 2172 of Lecture Notes in Computer Sci-
ence, Trento, Italy, 2001. Springer Verlag.

[2] K. Aberer, P. Cudré-Mauroux, A. Datta, Z. Despotovic, M. Hauswirth,
M. Punceva, and R. Schmidt. P-grid: a self-organizing structured p2p
system. SIGMOD Rec., 32(3):29–33, 2003.

[3] Ahkil and B. T. Project jxta 2.0 super-peer virtual network.

[4] M. W. Berry, Z. Drmac, and E. R. Jessup. Matrices, vector spaces, and
information retrieval. SIAM Rev., 41(2):335–362, June 1999.

[5] L. Breslau, P. Cao, L. Fan, G. Phillips, and S. Shenker. Web caching and
zipf-like distributions: Evidence and implications. In Proceedings of the
IEEE INFOCOM’99 conference, pages 126–134, New York, USA, March
1999.

[6] J. Byers, J. Considine, and M. Mitzenmacher. Simple load balancing for
distributed hash tables, 2002.

[7] I. Clarke, O. Sandberg, B. Wiley, and T. W. Hong. Freenet: A distributed
anonymous information storage and retrieval system. In Proceedings of
Designing Privacy Enhancing Technologies: Workshop on Design Issues in
Anonymity and Unobservability, pages 46–66, July 2000.

[8] F. Dabek, B. Zhao, P. Druschel, and I. Stoica. Towards a common api for
structured peer-to-peer overlays, 2003.

[9] S. C. Deerwester, S. T. Dumais, T. K. Landauer, G. W. Furnas, and R. A.
Harshman. Indexing by latent semantic analysis. Journal of the American
Society of Information Science, 41(6):391–407, 1990.

[10] P. Haase, J. Broekstra, M. Ehrig, M. Menken, P. Mika, M. Olko,
M. Plechawski, P. Pyszlak, B. Schnizler, R. Siebes, S. Staab, and C. Tem-
pich. Bibster - a semantics-based bibliographic peer-to-peer system. In

55

S. A. McIlraith, D. Plexousakis, and F. van Harmelen, editors, Interna-
tional Semantic Web Conference, volume 3298 of Lecture Notes in Com-
puter Science, pages 122–136. Springer, 2004.

[11] E. Halepovic, R. Deters, and B. Traversat. Performance evaluation of
jxta rendezvous. In On the Move to Meaningful Internet Systems 2004:
CoopIS, DOA, and ODBASE: OTM Confederated International Confer-
ences, CoopIS, DOA, and ODBASE 2004, volume 3291, pages 1125 – 1142,
2004.

[12] Z. Harris. The Philosophy of Linguistics, chapter Distributional Structure,
pages 26–47. Oxford University Press, 1985.

[13] R. Huebsch, B. Chun, J. Hellerstein, B. Loo, P. Maniatis, T. Roscoe,
S. Shenker, I. Stoica, and A. Yumerefendi. The architecture of pier: an
internet-scale query processor, 2005.

[14] N. Ide and J. Veronis. Introduction to the special issue on word sense
disambiguation: the state of art. Computational Linguistics, 24(1):1–40,
June 1998.

[15] M. Jan and D. A. Noblet. Performance evaluation of jxta communication
layers. Research Report RR-5350, INRIA, IRISA, Rennes, France, October
2004.

[16] T. Joachims. Text categorization with suport vector machines: Learning
with many relevant features. In ECML ’98: Proceedings of the 10th Euro-
pean Conference on Machine Learning, pages 137–142, London, UK, 1998.
Springer-Verlag.

[17] Project jxta. www.jxta.org.

[18] G. Kan. Gnutella. In A. Oram, editor, Peer-to-Peer: Harnessing the Power
of Disruptive Technologies, pages 94–122. O’Reilly and Associates, 2001.

[19] N. Leibowitz, M. Ripeanu, and A. Wierzbicki. Deconstructing the kazaa
network. 3rd IEEE Workshop on Internet Applications (WIAPP’03). Santa
Clara, CA., 2003.

[20] D. Lin”. Review of wordnet an electronic lexical database, 1998.

[21] P. Lyman, H. R. Varian, J. Dunn, A. Strygin, and K. Swearingen. How
much information?, 2000.

[22] Napster. Web Page.

[23] S. Ratnasamy, P. Francis, M. Handley, R. Karp, and S. Shenker. A scalable
content-addressable network. In Proceedings of ACM SIGCOMM ’01, 2001.

56

[24] A. Rowstron and P. Druschel. Pastry: Scalable, distributed object location
and routing for large-scale peer-to-peer systems. In IFIP/ACM Interna-
tional Conference on Distributed Systems Platforms (Middleware), pages
329–350, Heidelberg, Germany, November 2001.

[25] H. Schutze. Automatic word sense discrimination. Computational Linguis-
tics, 24(1):97–123, 1998.

[26] R. Siebes. pnear - combining content clustering and distributed hash tables.
Journal on Data Semantics (Springer LNCS), 2006.

[27] R. Siebes, P. Haase, and F. van Harmelen. Expertise-based peer selec-
tion in peer-to-peer networks. To appear in: Journal of Knowledge and
Information Systems, 2006.

[28] R. Siebes and S. Kotoulas. proute: Expertise-based selection using shared
term similarity matrices. In K. Verbeeck, K. Tuyls, A. Nowé, B. Manderick,
and B. Kuijpers, editors, Proceedings of the 17th Belgian-Dutch Conference
on Artificial Intelligence, pages 202–208, Brussels, Belgium, October 2005.
Contactforum.

[29] R. Siebes and S. Kotoulas. proute: Peer selection using shared term similar-
ity matrices. To appear in: Journal of Web Intelligence and Agent Systems,
2006.

[30] K. Sripanidkulchai, B. Maggs, and H. Zhang. Efficient content location
using interest-based locality in peer-to-peer systems. In Proceedings of the
IEEE INFOCOM conference, San Fransisco, CA, USA, march 2003.

[31] I. Stoica, R. Morris, D. Karger, M. F. Kaashoek, and H. Balakrishnan.
Chord: A scalable peer-to-peer lookup service for Internet applications. In
Proceedings of the ACM SIGCOMM ’01, 2001.

[32] C. Tang, Z. Xu, and S. Dwarkadas. Peer-to-peer information retrieval
using self-organizing semantic overlay networks. Technical report, HP Labs,
November 2002.

[33] C. Tang, Z. Xu, and M. Mahalingam. pSearch: Information retrieval in
structured overlays. In ACM HotNets-I, October 2002.

[34] B. Traversat, M. Abdelaziz, and E. Pouyoul. A Loosely-Consistent DHT
Rendezvous Walker. Technical report, Sun Microsystems, Inc, March 2003.

[35] Universal Description, Discovery and Integration of Business for the Web.

[36] S. Voulgaris, A.-M. Kermarrec, L. Massoulie, and M. van Steen. Exploiting
semantic proximity in peer-to-peer content searching. In 10th International
Workshop on Future Trends in Distributed Computing Systems (FTDCS),
Suzhou, China, may 2004.

57

[37] S. Voulgaris and M. van Steen. Epidemic-style management of semantic
overlays for content-based searching. In Euro-Par, pages 1143 – 1152, 2005.

58

	Introduction
	Terminology

	Extracting Term Semantics
	Semantics from one peer
	Semantics from more than one peer
	Interdependencies with the discovery system

	Statistics-aware discovery
	Simple DHT-based discovery
	Why are DHTs not enough?

	Policy Breakdown
	Description Manipulation
	Push-based
	Pull-Based
	Description Agglomerators

	Peer Selection

	Multi-Attribute search: The case for a hybrid semantic/DHT based overlay
	Principles

	Settings
	Setting 1 - Use the DHT as a distributed index
	Inserting Descriptions
	Querying

	Setting 2 - Replicate whole term-set
	Inserting Descriptions
	Querying

	Setting 3 - Replicate only on a subset
	Inserting descriptions
	Querying

	Setting 4 - Forward queries/descriptions
	Inserting descriptions
	Querying

	Setting 5 - Walk the descriptions
	Inserting descriptions
	Querying

	JXTA
	Design Goals
	Design and Implementation Pillars
	JXTA Discovery Service
	A loosely consistent DHT
	Advertisements
	Shared Resource Distributed Index
	Queries in JXTA

	Evaluation
	Dataset
	Criteria
	Implementation
	Settings
	Process
	Setup

	Results
	Fallacies and pitfalls
	Stale documentation and examples
	Inadequate code documentation
	Obnoxious bugs
	Erratic vices
	Transient Errors/Unreliable
	RPV Convergence

	Conclusions

	Future Directions
	Large-Scale Simulations
	Explicit semantics
	Going beyond subset matching
	Specifying what can be approximated

	Summary

