
1OpenKnowledgeFP6-027253OpenKnowledge ManualDavid Dupplaw1, Paolo Besana2, Dave Robertson2

1 IAM Group, Shool of Eletronis and Computer Siene, University ofSouthampton, Southampton, SO17 1BJ, UK.
2 Informatis, University of Edinburgh, Edinburgh, EH8 9LE, UK.

Report Version: �nalReport Preparation Date: 24th January 2008Classi�ation: deliverable 9.2Contrat Start Date: 1.1.2006 Duration: 36 monthsProjet Co-ordinator: University of Edinburgh (David Robertson)Partners: IIIA(CSIC) BarelonaVrije Universiteit AmsterdamUniversity of EdinburghKMI, Open UniversityUniversity of SouthamptonUniversity of Trento

2

Contents
1 Introdution 52 The OpenKnowledge System in a Nutshell 73 Writing OpenKnowledge Interations in LCC 113.1 A Basi Example . 113.2 LCC Syntax . 143.2.1 Variables, Constants, Terms, IDs and Roles 143.2.2 Messages . 153.2.3 Constraints . 153.2.4 Comments . 163.2.5 Sequene and Choie . 173.3 Design Patterns . 174 How the OpenKnowledge Kernel Operates 214.1 The Subsribe-Bootstrap-Run Cyle 214.1.1 Subsription to an Interation Model 214.1.2 Bootstrapping an Interation 224.1.3 Running an Interation 224.2 Mapping Constraints to Methods 244.2.1 Adaptors . 254.3 Aess to Peer State . 265 Programming for the OpenKnowledge Kernel 295.1 Introdution . 295.2 Creating Interation Models . 295.2.1 Publishing Interation Models 355.3 Creating Components . 385.3.1 Programming New Components 385.3.2 Creating Component JAR Files 395.3.3 Loading in Loal Components 405.3.4 Publishing Components 405.3.5 Providing Alternate User Interfaes 413

4 CONTENTS

Chapter 1IntrodutionThe purpose of this manual is to introdue you to programming for the Open-Knowledge kernel. There are several ways in whih you might be interested inOpenKnowledge programming:
• You are not a programmer but you want to know what it would take towrite programs for OpenKnowledge. Your best option is to read Chapter 2and quikly skim through the remainder of the manual.
• You want to desribe interations in OpenKnowledge but you are notinterested in writing speialised omponents to do new things as part ofthose interations. Read up to the end of Chapter 3 and skim the rest.
• You are intending to take a good look at the open soure ode for theOpenKnowledge system and want an introdution to the main operationalmehanism before you ome to grips with the ode. Read up to the endof Chapter 4.
• You want to write your own omponents to �re o� appliations within aninteration so you need to know how those are onneted before looking atexamples on www.openk.org. Read the whole manual, perhaps skimmingover Chapter 4.Muh of the disussion in this manual relates to the OpenKnowledge intera-tion modelling language (LCC). Several interpreters for LCC have been writtenin di�erent languages (Prolog, Lisp, Java) but the OpenKnowledge kernel (whihyou an download from www.openk.org) is the �rst attempt to produe a kernelsystem that ombines LCC with peer to peer query routing, ontology mathingand visualisation. It has been released as Java open soure, so you an developyour own system based on it or ontribute to our version.Many of the ideas ontained in this manual are overed in the (basi and ad-vaned) video tutorials available from the tutorial area of the www.openk.org).You may �nd those helpful as an alternative presentation of the same onepts.5

6 CHAPTER 1. INTRODUCTIONThis manual will hange as our work on the OpenKnowledge projet pro-eeds. If you have suggestions for improvements to this manual then please mailthem to Dave Dupplaw (dpd�es.soton.a.uk).

Chapter 2The OpenKnowledge Systemin a NutshellSuppose you want to get something omplex done using omponents (suh asWeb servies) that are available on the Internet. You ould write your ownWeb servie, that alls out to those other omponents, and host that on yourown system but that will only work for you alone. What if you think othersmight bene�t from oordinating in a similar way, or if you want to avoid alwayshaving your system perform the oordination? That's where OpenKnowledgeomes in. It provides you with a ompat language for desribing oordinationand, if you wish to do so, a means of sharing oordination with others.The �world view� taken by OpenKnowledge is illustrated in the piture be-low, where the di�erent oloured arrows represent people (or automated sys-tems) partiipating in di�erent interations. Eah interation is oordinated bya model of the interation, disussed later. An individual gains knowledge ofhow to interat with other individuals through interating with those who he orshe already knows. For example, in the illustration in Figure 2.1 the individualon the left might initially know about only two other individuals (the two inter-ating via the light green arrows) but those two individuals know about otherinterations (in dark blue and in lime green) so an ommuniate them to theindividual on the left.Interation models are an be shared and used in many di�erent ways but thestandard way to use them is by downloading the OpenKnowledge kernel systemfrom www.openk.org. The kernel is a ompat program that automatially�nds interation models that you might want to use; allows you to subsribe tointerations that interest you; and interprets the interation models in whihyou atually beome involved. In the illustration of Figure 2.2, the red dots areopies of the kernel system (loaded from the supplier) being run on individualpeers.Although our interation models are portable and ould be used by di�erentsystems, there is a soial advantage in having many peers running the same7

8 CHAPTER 2. THE OPENKNOWLEDGE SYSTEM IN A NUTSHELL

Figure 2.1: People share knowledge through shared interations

Figure 2.2: Interations are �injeted� into per groups from servie areas, likewww.openk.org

9

Figure 2.3: Interations are shared by routing through the peer network.OpenKnowledge kernel. The soial advantage omes from query routing, whihworks roughly as illustrated in Figure 2.3. Suppose that the peer at bottomright of the piture wants to undertake an interation but does not have anappropriate interation model. That peer would desribe the sort of interationhe or she is seeking, using a sequene of keywords (in a similar way to the way yousearh for Web pages in traditional Web browsers). This query then is routedthrough the peer network until mathing interation models are found (in ourpiture the interation model in blak mathes the query) and are relayed bakto the peer. When the peer reeives the interation model it reeives not onlythe interation but, through it, may also aess other peers in the network withwhih it may not previously have interated. In this way, sharing interationmodels extends and reinfores soial networks.If you want simply to use interation models then you do not need to under-stand any tehnial detail of the underlying system beause using an interationmodel is analogous to using a program - if the interation model is well raftedthen it will be easy for an appropriate group of people to use without themknowing how it is built. You may, however, want to write your own interationmodels or adapt those you �nd on the network. This is the topi of the nexthapter.

10 CHAPTER 2. THE OPENKNOWLEDGE SYSTEM IN A NUTSHELL

Chapter 3Writing OpenKnowledgeInterations in LCCThe language used in OpenKnowledge is the Lightweight Coordination Calulus(LCC). This hapter explains how to write interation models in LCC, whih youan then use and share with others. There is more to onstruting interationmodels than just the spei�ation of the interation itself; there is also the issueof onneting interations to servies and other omputational omponents. Weget to this in Chapter 5 but our task in the urrent setion is to introdue yousimply to writing interations. We begin with a basi example (Setion 3.1)then desribe LCC syntax in detail (Setion 3.2); then desribe some essentialdesign patterns (Setion 3.3).3.1 A Basi ExampleThe diagram in Figure 3.1 shows an interation between three peers: p1, p2 and
p3. Eah peer knows di�erent things:
• p1 knows that queries asking about p(Y) an be sent to p2 and that queriesasking about q(Z) an be sent to p3. We write this as query_from(p(Y), p2)and query_from(q(Z), p3).
• p2 knows that p(a) is true. We write this as know(p2, p(a)).
• p3 knows that q(b) is true. We write this as know(p3, q(b)).The interation we require is depited by the numbered messages in thediagram:
• p1 sends a message ask(p(Y)) to p2.
• p2 sends a message ask(p(a)) to p1.11

12CHAPTER 3. WRITING OPENKNOWLEDGE INTERACTIONS IN LCC

Figure 3.1: Basi interation example
• p1 sends a message ask(q(Z)) to p3.
• p3 sends a message ask(q(b)) to p1.Let us �rst de�ne an interation model that does exatly the message passingde�ned above. There are two roles that agents take in this model: the role ofa requester (whih asks for information) and the role of an informer (whihsupplies information). We de�ne a LCC lause for eah role as shown below.For the requester (p1) we have simply given the sequene of four messagesorresponding to those above. Then we have de�ned a lause for the role ofinformer that de�nes the behaviour expeted of p2 and p3.a(requester, A) ::

ask(X1) ⇒ a(informer, p2)← query_from(X1, p2) then
tell(X1) ⇐ a(informer, p2) then
ask(X2) ⇒ a(informer, p3)← query_from(X2, p3) then
tell(X2) ⇐ a(informer, p3)a(informer, B) ::
ask(X) ⇐ a(requester, B) then
tell(X) ⇒ a(requester, B)← know(X)

(3.1)
The LCC de�nition above overs the example but suppose we want a moregeneral type of requester that takes a list, L, of the form [q(Query, Peer), . . .],where Query is the query we want to make and Peer is an identi�er for thepeer to whih we want to send the query. We want the requester to sendan ask(Query) message to the appropriate Peer for eah query and reeive a

tell(Query) reply eah time. A standard way to do this is by giving L as aparameter to the requester role (so it beomes requester(L)) and making the

3.1. A BASIC EXAMPLE 13

Figure 3.2: Event sequenes for the examplede�nition of this role reursive, taking the �rst element of L and then applyingthe same de�nition to the remainder of the list, Lr, as shown below.
a(requester(L), A) ::

(ask(Query) ⇒ a(informer, Peer)← L = [q(Query, Peer)|Lr] then
tell(Query) ⇐ a(informer, Peer) then
a(requester(Lr), A))
or
null← L = []

a(informer, B) ::
ask(X) ⇐ a(requester(), B) then
tell(X) ⇒ a(requester(), B)← know(X) (3.2)If we were to run the interation model shown above, starting with the roleof requester for the list of queries [q(ask(p(X)), p2), q(ask(q(Y)), p3)], then weget the message sequenes shown in Figure 3.2. On the left is the sequenefor a(requester([q(ask(p(X)), p2), q(ask(q(Y)), p3)]), p1). On the right are thesequenes for a(informer, p2) and a(informer, p3) whih are the roles under-taken by p2 and p3 in response to p1. The dashed lines indiate synhronisationvia message passing between peers.In our earlier example (de�nition 1 above) we made some of the messagepassing events ontingent on onstraints. For example sending the message

ask(X1) ⇒ a(informer, p2)was ontingent on satisfying the onstraint query_from(X1, p2).These onstraints are satis�ed by onneting them to methods for omputingthe onstraint. Although some basi methods (suh as for basi forms of visual-isation) are pre-supplied by OpenKnowledge we expet that most methods willbe spei� to appliation domains and so will need to be written or re-used byinteration model developers. To make it possible to share these methods, we al-low appropriately pakaged methods to be shared, so that peers an aumulate

14CHAPTER 3. WRITING OPENKNOWLEDGE INTERACTIONS IN LCC
Clause := Role :: Def

Role := a(Type, Id)
Def := Role |Message | Def then Def | Def or Def

Message := M ⇒ Role |M ⇒ Role← C |M ⇐ Role | C ←M ⇐ Role
C := Constant | P (Term, . . .) | ¬C | C ∧ C | C ∨ C

Type := Term
Id := Constant | V ariable
M := Term

Term := Constant | V ariable | P (Term, . . .)
Constant := lower case character sequence or number
V ariable := upper case character sequence or numberFigure 3.3: LCC syntaxrepositories of methods that they �nd useful. We all these OpenKnowledgeComponents (OKCs). A more detailed desription of OKCs appears in Se-tion 4.3 and Chapter 5.3.2 LCC SyntaxEah LCC interation model is de�ned by a set of lauses where eah lause hasthe syntax shown in Figure 3.3. Eah lause is a self ontained de�nition of arole, with message passing being the only means of transferring information be-tween roles. Message passing is also the only means of synhronisation betweenroles.In the setions whih follow we explain what eah element of LCC syntaxmeans from a programming point of view.3.2.1 Variables, Constants, Terms, IDs and RolesVariables must start with an upper ase letter. The sope of a variable is loalto a lause (in other words, if you use the same variable name in di�erent lausesthen these names refer to di�erent variables). When it is unneessary to give aspei� name for a variable (beause it is not used elsewhere in a lause) youan use an undersore (_) for the variable name. Constants must start witha lower ase letter. Numbers also are onstants. Terms are tree-strutured -that is, they are either a onstant or are of the form F (A1, . . . , An) where F isa non-numerial onstant and eah Ai is a term. IDs are unique identi�ers forpeers whih must be non-numerial onstants. Roles are terms that desribethe type of role played by a peer in a given interation.

3.2. LCC SYNTAX 153.2.2 MessagesThere are two types of messages:Inoming messages : are of the form Term ⇐ a(Role, ID), where Term isthe ontent of the message. When using ASCII, the symbol ⇐ is writtenusing <=.Outgoing messages : are of the form Term ⇒ a(Role, ID), where Term isthe ontent of the message. When using ASCII, the symbol ⇒ is writtenusing =>.Constraints an be attahed to both inoming and outgoing messages (seebelow).3.2.3 ConstraintsConstraints assoiate message passing events with onditions established by thepeer.
Message← constraint(Arg1, ...ArgN) (3.3)Constraints also may be assoiated with the speial null event whih repre-sents an event that is not assoiated with a spei� message. This frequentlyis used in reursive role de�nition where terminating the role depends on aparameter to the role, rather than a spei� message passing event.When using ASCII the onstraint operator (←) should be written using <-.Visual ConstraintsA onstraint an have a mapping made available to it using the visual(,) op-erator. The visual operator maps a onstraint to a visual term. Visual termsprovide an abstrat representation for a partiular type of user interation.visual(onstraint(Arg1, ...ArgN), visualT erm(vArg1, ...vArgN)) (3.4)The OpenKnowledge kernel has a number of built-in visual term implemen-tations, listed below:

msg(M〈, T 〉) Display a message M to the user, with the optional title T .
text(〈T, 〉M) Display a large amount of text in M to the user, with the optionaltitle T .
input(〈Q, 〉V) Ask the user to input some value into V , providing optional ques-tion text in Q.

16CHAPTER 3. WRITING OPENKNOWLEDGE INTERACTIONS IN LCCList OperationsList operations are a ommon basis of the reursion tehniques available whenwriting LCC. List operations make use of the bar | operation that delineatesthe head (H , �rst element) of a list from the rest of the list (T , the tail); thatis, L = [H |T].In the ase that H has some value, you an append this value to the headof the list using the following onstraint:
. . .← L = [H |T] (3.5)For example, if before the operation H ontained the value 5, and the list, L,ontained [6, 7, 8], after the operation the list would ontain the values [5, 6, 7, 8].In the ase that H is not set, the following LCC will extrat into H the valueof the head of the list.
. . .← L = [H |T] (3.6)Notie that T is itself a list, so that the head of T will be the seond elementin the list. This allows for reursion on T . If the list is empty, and no valuefor H an be determined, the onstraint will fail. For example, if before theoperation H was unset and the list, L, ontained [6, 7, 8], after the operation Hwould have the value 6 and the T would have the value [7, 8].To test whether a list is empty, use the following LCC:

. . .← L = [] (3.7)This onstraint will fail if L is not empty.Logial OperatorsConstraints an be onneted by the logial operators and and or:
• C1 and C2 sueeds if both onstraints C1 and C2 sueed, with C1 beingattempted �rst.
• C1 and C2 sueeds if one of the onstraints C1 and C2 sueeds, with C1being attempted �rst.3.2.4 CommentsTo omment your LCC you an use the C-like omments // . . . or /∗ . . .∗/. Thedouble-slash omment form will make the interpreter ignore the rest of the line.The slash-star omment form will ignore everything until the next star-slash.The following are valid omments:

3.3. DESIGN PATTERNS 17// A va l i d s i n g l e l i n e omment// Another s i n g l e l i n e omment/∗ A va l i dmult i−l i n eomment
∗/ Listing 3.1: Valid omment forms in LCC3.2.5 Sequene and ChoieThe basi operations used in LCC to determine the sequene of messages in alause are sequene and hoie, as de�ned below (where E1 and E2 are sequeneexpressions or message passing events):Sequene : is written as E1 then E2. This sequene is ompleted if both E1or E2 is ompleted, with E1 being ompleted �rst.Choie : is written as E1 or E2. This sequene is ompleted if either E1 or E2is ompleted, with E1 being attempted �rst. E2 will only be attempted if

E1 fails. If E1 sueeds then E2 will not be attempted.3.3 Design PatternsPerhaps the easiest way to understand LCC programming is through designpatterns. These are standard ways of struturing lauses that are used to obtainspei� forms of interation. The broad idea is similar to design patterns in moretraditional languages but the good news for LCC is that you only need to knowa small number of patterns, whih you then ombine to make more omplexprograms. The four key patterns are given below.Pattern 1: InterationThe simplest thing we an do with LCC is to speify a message being sent fromone peer to another. To do this we deide the role (r1) being taken by thesender; then write M ⇒ a(r2, Y)← C to desribe the message, M , being sentout to the reipient, Y , whih is expeted to reeive it in role r2. The onstraint
C1 is used to determine whether this message an be sent by the sender, and itoften is used also to determine values for any variables that appear in M . In thespei�ation of the reipient's role we write C2 ← M ⇐ a(r2, X) to desribethe message, M , being reeived, with C2 giving a onstraint that should holdas a onsequene of reeiving it.

18CHAPTER 3. WRITING OPENKNOWLEDGE INTERACTIONS IN LCC
a(r1, X) ::

. . .
M ⇒ a(r2, Y)← C1
. . .

a(r2, Y) ::
. . .
C2←M ⇐ a(r2, X)
. . .

(3.8)
An example of using this pattern is an interation that sends a message, M ,to a reipient, Y , where the hoie on M is made by the onstraint message(M)and the hoie of reipient is made by the onstraint recipient(Y). Aeptaneof the message by the reipient is determined by the onstraint accept(M).

a(sender, X) ::
M ⇒ a(recipient, Y)← message(M) and recipient(Y)

a(recipient, Y) ::
accept(M)←M ⇐ a(sender, X)

(3.9)Pattern 2: SequeneUsually we want to put an ordering on the sequene of events that an ouras part of a role. To do this we use the "then" operator to say that the earlierevent, E1, omes before the later event, E2.
a(r, X) ::

. . .
E1 then
E2
. . .

(3.10)An example that uses this pattern twie is when the reipient of the mes-sage returns a message to the sender, where response(M1, M2) is a onstraintdetermining the reipient's response message, M2, from the sender's message,
M1.

a(sender, X) ::
M1 ⇒ a(recipient, Y)← message(M1)andrecipient(Y) then
accept(M2)←M2 ⇐ a(recipient, Y)

a(recipient, Y) ::
accept(M1)←M1 ⇐ a(sender, X) then
M2 ⇒ a(sender, X)← response(M1, M2)

(3.11)

3.3. DESIGN PATTERNS 19Pattern 3: ChoieWe may want a peer taking some role, r, in an interation to make a hoieabout the ourse of its interation with other peers. This is done by writing
E1← C1orE2← C2 to say that the interation desribed by E1 should be doneunder the onditions stipulated by onstraint C1 or the interation desribedby E2 should be done under the onditions stipulated by onstraint C2. Thehoie we are making here is a ommitted hoie, meaning that if C1 is satis�edthen the alternative hoie (E2← C2) will not be attempted.

a(r, X) ::
E1← C1
or
E2← C2
. . .

(3.12)An example of this pattern is when a buyer wants to send a message to aseller aepting some Offer (reeived earlier in the de�nition of the buyer role)if it is aeptable or otherwise it sends a message to the seller rejeting that
Offer if it is unaeptable.

a(buyer, X) ::
. . .
accept(Offer) ⇒ a(seller, Y)← acceptable(Offer)
or
reject(Offer) ⇒ a(seller, Y)← unacceptable(Offer)

(3.13)Sine LCCmakes ommitted hoies, we know in this example that if acceptable(Offer)is satis�ed then the seond option (in whih the peer attempts to satisfy unacceptable(Offer))will not be attempted, so if testing unaeptability is not important then wemight shorten this example to:
a(buyer, X) ::

. . .
accept(Offer) ⇒ a(seller, Y)← acceptable(Offer)
or
reject(Offer) ⇒ a(seller, Y)

(3.14)
Pattern 4: ReursionOften we want an interation to be ontrolled by some data struture, for ex-ample we might want to have a similar sub-interation for eah of the elements

20CHAPTER 3. WRITING OPENKNOWLEDGE INTERACTIONS IN LCCin a list (as in the basi example above). The pattern below desribes this. Inthe pattern r(A) is a role, r, with the data struture as its argument, A. Some-where within the de�nition of the of the role appears a onstraint, R(A, Ar),that redues A to some "smaller" struture, Ar. Then the role reurses as r(Ar).Normally there also is an alternative hoie for when the data struture doesnot redue any further but meets some test, P (A), that it is has reahed someterminating state.
a(r(A), X) ::

(. . . R(A, Ar) . . .
a(r(Ar), X))
or
(. . . P (A) . . .)

(3.15)One example of using this pattern is an interation that sends as a messageeah element, M , from a list [M1, ...] to peer p2 in role r2.
a(r(A), X) ::

(M ⇒ a(r2, p2)← A = [M |Ar] then
a(r(Ar), X))
or
(null← A = [])

(3.16)A seond example is an interation that sends N messages to peer p2, eahwith the same ontent, M . Here, N and M are parameters to the role, r.
a(r(N, M), X) ::

(M ⇒ a(r2, p2)← N > 0 and N1 is N − 1 then
a(r(N1, M), X))
or
(null← N =< 0)

(3.17)Many examples of LCC in use for speifying interations an be found atwww.openk.org, either as example interation models, in the models area, or asase studies, in the publiations area.

Chapter 4How the OpenKnowledgeKernel OperatesThis hapter explains how the OpenKnowledge works, from the point of view ofits main funtional elements: the subsribe-bootstrap-run yle through whihinterations are deployed (Setion 4.1); the mapping between onstraints andmethods through whih interation models are onneted to appliation ompo-nents (Setion 4.2); and the ways in whih it is possible to aess peer internalstate (Setion 4.3).4.1 The Subsribe-Bootstrap-Run CyleInterations in OpenKnowldge take plae via a yle of subsription (when peerssay they want to take part in interations); bootstrapping (to initiate a fullysubsribed interation) and running (to perform the bootstrapped interation).Eah of these is desribed below with the aid of four pitures (labelled A, B, C,D) in Figures 4.1, ref�g:Bootstrap-of-interation and 4.4. Taking these piturestogether gives a piture of the whole yle.4.1.1 Subsription to an Interation ModelThe proess of subsription is depited in piture A of Figure 4.1. When a peerneeds to perform a task it asks the Disovery Servie for a list of InterationModels mathing the desription of the task (steps 1, 2 and 3 in piture A).Then, for eah reeived Interation Model, the peer ompares the methods inits OKCs with the onstraints in the entry role it is interested in (step 4 inpiture A). If the peer �nds an Interation Model whose onstraints (in the rolethe peer needs to perform) are overed by the methods in its OKCs, then thepeer an subsribe to that Interation Model in the Disovery Servie (step 5 inpiture A). The subsription is handled by a subsription negotiator and an beinterpreted as an intention to partiipate in the interation. The subsription,21

22 CHAPTER 4. HOW THE OPENKNOWLEDGE KERNEL OPERATES

Figure 4.1: Exhange of messages between peers and disovery servie for sub-sriptionthrough a subsription adaptor, binds the Interation Model to a set of methodsin the OKCs in peer. A subsription an endure for only a single interation runor for many, possibly unlimited, interation runs: a buyer will likely subsribeto run a purhase interation one, while a vendor may want to keep selling itsproduts or servies.4.1.2 Bootstrapping an InterationThe proess of bootstrapping is depited in pitures B and C of Figure 4.2.When all the roles in the Interation Model have subsriptions, the DisoveryServie selets a random peer as a oordinator (steps 1 and 2 of piture B). Theoordinator then bootstraps and runs the interation. The bootstrap involves�rst asking the peers who they want to interat with, among all the peers thathave subsribed to the various roles (steps 3, 4 and 5 of piture B), then reatinga team of mutually ompatible peers (step 6 of piture B) and �nally - if possible- asking the seleted group of peers to ommit to the interation (piture C).For a peer, ommitting to an interation, implies the reation of an InterationRunContext,that reeives the SubsriptionAdaptor from the SubsriptionNegotiator asin Figure 4.3.4.1.3 Running an InterationThe proess of bootstrapping is depited in piture D of Figure 4.4. This partof the yle is handled by the oordinator and the InterationRunContextof the involved peers. The oordinator peer runs the interation loally: themessages are exhanged between loal proxies of the peers. However, whenthe oordinator enounters a onstraint in a role lause, it sends the messagesolveConstraintMessage to the InterationRunContext in the peer perform-ing the role (step 1 in piture D). The message ontains the onstraint to besolved. The InterationRunContext asks the SubsriptionAdaptor the or-responding method - found during the omparison at subsription time (step 2

4.1. THE SUBSCRIBE-BOOTSTRAP-RUN CYCLE 23

Figure 4.2: Bootstrap of interation: exhange of messages for the seletion ofpeers and ommitment

�adaptors

«interface»InteractionRunContext

ConstraintAdaptorS
ubscriptionAdaptor�adaptors:ConstraintAdaptor
InteractionRunContextImpl�subscriptionAdaptor:SubscriptionAdaptor�OKCFacadeInstances:OKCFacade+handleMessage(msg:Message)SubscriptionNegotiatorImpl�interactionModelID:int�Role:int�description:int�adaptor:SubscriptionAdaptor�subscriptionAdaptor�adaptor

Figure 4.3: UML lass diagram of Subsription/ContextRun

24 CHAPTER 4. HOW THE OPENKNOWLEDGE KERNEL OPERATES

Figure 4.4: Interation Run: exhange of messages between oordinator andpeersof piture D). The OKCs are instantiated lazily: if the OKC that ontains themethod orresponding to the onstraint has not been instantiated yet within theontext of the interation, the lass is instantiated, and stored in the ontext. Ifthe instane exists in the ontext, the orresponding method is alled dynami-ally. The method will use the adaptor to aess the elements of the arguments.The peer then sends bak the message SolveConstraintResponseMessage tothe oordinator with the updated values of variables and the boolean resultobtained from satisfying the onstraint (step 3 of piture D).4.2 Mapping Constraints to MethodsThe mather (desribed in detail in OpenKnowledge Deliverable 3.6), allowsthe OKCs and the Interation Models to be deoupled. The peer ompares theonstraints in the roles in whih it is interested with the methods in its OKCsand reates a set of adaptors that maps the onstraint in the roles to similarmethods. In order to math onstraints and methods they both need to besemantially annotated.Semanti Mark-up of MethodsThe exhanged messages an ontain omplex strutures. The strutures anbe trees or lists. The struture of the arguments is de�ned in the semantiannotation of the method, written using Java 5 annotations:�MethodSemanti(language=tag,args={�produt(brand, name, ost(urreny, value))�,�buyer(name, surname, address(street, postode, ity))�})publi bool registerPurhase(Argument P, Argument B) {...}

4.2. MAPPING CONSTRAINTS TO METHODS 25The ode inside the method an aess the elements in the struture by path(similarily to XPath):System.out.println(P.getValue("/produt[0℄/ost[0℄/value[0℄�)+� � +P.getValue("/produt[0℄/ost[0℄/urreny[0℄�))The nodes in the path are oupled with an index, beause there might be morethan one node of the same ontologial type at the same depth. For example,a parameter that ontains a relationship an be a expressed as tree with twoidential hildren:�MethodSemanti(language=tag,args={'friends(person,person)'})publi boolean add(Argument F){...System.out.println(F.getValue(�friends[0℄/person[0℄�) + � knows �+F.getValue(�friends[0℄/person[1℄�));...}The elements of the struture are reahed independently of how they are keptin the exhanged messages: the adaptor between the onstraint and the methodmaps the elements in the arguments of the onstraint to the elements in thearguments of the method.ListsWe have two possibilities: one is to only allow aess to the lists through LCCoperators and reursion, the other is to use the indexes of the root elements:�MethodSemanti (..., args={"[move(from,to,vehile)℄"})represents an argument that ontains a list. To aess the elements in the list,the index of the root hanges.publi boolean do(Arg A){System.out.println(A.getValue("/move[2℄/from[0℄");}4.2.1 AdaptorsFor example, the onstraint in the following snippet of a protool:register(P,B) <- bought(P,B) <= a(buyer, ID)

26 CHAPTER 4. HOW THE OPENKNOWLEDGE KERNEL OPERATES

Figure 4.5: Adaptor between register(...) onstraint andregisterPurhase(...) methodwhere the onstraint is de�ned as:register(produe(make,name,ost,urreny),purhaser(surname, address, ity, postode))will be mapped to the method in the OKC seen in the previous setion with theadaptor in Figure 4.5.Allowing the ode inside the method to aess the elements without knowinghow they are atually strutured in the message, deoupling de fato the protoolfrom the omponents.4.3 Aess to Peer StateSome interation onstraints are funtional : they expet that the method in theomponent, given a set of input arguments, will always unify the non instan-tiated arguments with the same values, or will sueed or fail, independentlyof whether the peer that has downloaded and exeuted the omponent. Forexample, the onstraint sort(List,SortedList) for sorting a list of elementsshould always unify SortedList with the ordered version of List, even thoughdi�erent peers may have OKCs that implement di�erent algorithms for sortingit. Other omponents work as a bridge between the interation model and thepeer loal knowledge, and will unify non instantiated variables with values thatdepend on the peer in whih the OKC is running. For example, a onstraintprie(Produt, Prie) expets that the orresponding method in the OKCuni�es the variable Prie with the prie assigned to Produt by the peer, pos-sibly aessing the database loal to the peer: di�erent peers may have di�erentpries for the same produt. Moreover, the same peer an be involved in manyinterations simultaneously, and the peer loal knowledge (or state) is hanged

4.3. ACCESS TO PEER STATE 27by one interation and read in another. For example, a peer selling produtswill have the total amount of available produts redued after eah suessfulselling interation.OKCs are given the referenes, at instantiation time, of the objets theyneed to use through the setParameter(..) and getParameter(...) meth-ods. The lass implementing the OKCFaade interfae is annotated (via Java 5.0annotations) with the semanti desriptions of the peer's methods it needs touse. When a peer downloads an OKC, the methods required by it are mathedagainst the methods exposed by the peer: if the mathing is good enough (theremight be OKCs not ompatible with a partiular implementation of a peer),then the result of omparison is an adaptor, similar to those between OKCmethods and onstraints, that allow the OKC methods to aess the elementsin the peer's methods using its internal terminology.The peer's ontology is onsidered as loal knowledge. The atual implemen-tation of the ontology handler is up to the peer developers, but the OKCs -if they need it - an aess it through the same proedure of alling a set ofexposed methods.

28 CHAPTER 4. HOW THE OPENKNOWLEDGE KERNEL OPERATES

Chapter 5Programming for theOpenKnowledge Kernel5.1 IntrodutionThis hapter is intended for programmers who intend to reate interation mod-els as well as reating omponents whih implement roles in these models. Tomake the disussion self-ontained we reap some material from earlier haptersbut, if you are oming to OpenKnowledge for the �rst time, we reommend youat least skim through those bakground hapters before reading this one.Let us assume you are sitting in front of a omputer and you run the Open-Knowledge software; this will reate what is known as a peer on the Open-Knowledge network. In most ases, you an onsider your omputer to be asingle peer on the network and for now we shall assume this. Your peer storesbits of ode that allow it to do interesting things when it is ontated. Thesebits of ode are alled OKCs (whih stands for OpenKnowledge Components).To start with, this is all you should need to know, so we will start in setion5.2 by desribing how to reate interation models in the default language forOpenKnowledge interation models: LCC.5.2 Creating Interation ModelsChapter 3 desribes the LCC language. Here we use it to begin a basi program-ming example that bridges interation models to OpenKnowledge omponents(from Chapter 4). We will examine a simple form of interation that most of uswould be familiar with: greeting someone.During the interation that ours when you greet someone, you would �rstsay �Hello� and then you might expet a reply �Good Morning� bak. In thissimple interation you would be the initial `greeter' while the person you aregreeting might be desribed as a `responder'. So let us write that interation in29

30CHAPTER 5. PROGRAMMING FORTHE OPENKNOWLEDGE KERNELsequene:
• Greeter: Say �Hello�
• Responder: Say �Good Morning�We an be a little more rigorous in our desription, as the responder willonly reply �Good Morning� after they hear the initial greeting. So let us writethis as a sequene:
• Greeter: Say �Hello�
• Responder: Hears �Hello�
• Responder: Say �Good Morning�
• Greeter: Hears �Good Morning�Now that the interation has been fully desribed, it is lear whih of thepeople in the interation are doing what and, very importantly, when they do it.The person assuming the `greeter' role says �Hello� and hears the reply �GoodMorning�. The person assuming the `responder' role hears �Hello� so replies�Good Morning�.Let's write out the sequene of ations for Johnny, who is going to be takingthe `greeter' role in our interation:

greeter : JohnnySay Hello to BobHear Responder Bob say Good MorningBob is going to be the responder, so let's write out his ations, whih arepretty muh the exat opposite:
responder : BobHear Greeter Johnny say HelloRespond to Greeter Johnny with Good MorningIn LCC, the at of interating is represented by the idea of sending andreeiving messages. In our simple example, saying hello is the equivalent ofsending the message hello to the responder. In the example above Bob is takingthe responder role, so we would write the �rst interation like this in LCC:

hello ⇒ a(responder, Bob) (5.1)You an read this as `Message hello is sent to responder Bob'.In this partiular interation, where Bob is playing responder, he will beexpeting to hear hello from a greeter alled Johnny, so we write this like so:
hello ⇐ a(greeter, Johnny) (5.2)

5.2. CREATING INTERACTION MODELS 31You an read this as 'Message hello is reeived from greeter Johnny'.Note: You an type ⇒ as => and ⇐ as <=.So, if we were to extend this to the full interation and allow any people toplay it (not just Johnny and Bob), we would end up with this LCC interationmodel: a(greeter, P erson1) ::
hello ⇒ a(responder, P erson2) then
goodMorning ⇐ a(responder, P erson2)a(responder, P erson2) ::
hello ⇐ a(greeter, P erson1) then
goodMorning ⇒ a(greeter, P erson1)

(5.3)
Notie that we de�ne the roles of greeter and responder above the sequeneof interations that they should perform. The start of a role is de�ned using thenotation: a(role, name) :: Also notie that the sequene of events is de�nedusing the then operator.LCC has the onept of variables, or plaeholders, into whih values anbe plaed and then passed in the messages. Let's extend our simple interationmodel so that our greeter �rst asks the name of our responder, then greets them.To ahieve this, the responder must send their name through a message to thegreeter in a variable. For example, if N = Bob, 'Hello N ' will expand to 'HelloBob'.The interation is now something like:
• Greeter: What's your name?
• Responder: My name is N

• Greeter: Hello N

• Responder: Good MorningThe interation model expands beause eah role now desribes an intera-tion that will determine the responder's name. The �rst two lines of eah roledesribe the interation to ask for the responder's name.

32CHAPTER 5. PROGRAMMING FORTHE OPENKNOWLEDGE KERNELa(greeter, P erson1) ::
askName ⇒ a(responder, P erson2) then
name(N) ⇐ a(responder, P erson2) then
hello(N) ⇒ a(responder, P erson2) then
goodMorning ⇐ a(responder, P erson2)a(responder, P erson2) ::
askName ⇐ a(greeter, P erson1) then
name(N) ⇒ a(greeter, P erson1)← getMyName(N) then
hello(N) ⇐ a(greeter, P erson1) then
goodMorning ⇒ a(greeter, P erson1)

(5.4)
The LCC above introdues two new aspets. The �rst is the idea of variablesand showing how they an be passed through messages (N in our message

hello(N)). However, during the atual interation, you do not want to say �Hello
N �, you want to say �Hello Bob�. This means that N has to be assigned to thevalue `Bob'. This is ahieved by the last part of the line ← getMyName(N).We all this thing a onstraint beause we an only send the message name(N)if we have a value for N (Bob or whatever).Let's look at that line in more detail.

name(N) ⇒ a(greeter, P erson1)← getMyName(N) (5.5)This an be read: `Send name(N) to greeter Person1 only if I an getMyName(N)'.We will disuss more about how getMyName(N) atually works later, but fornow, assume it sets the value of N to be the responder's name. In a bit, we willalso disover what happens if the responder has amnesia and annot remembertheir name!Let's expand the example a little further and introdue the idea of alternateoptions. For example, as a greeter we may only wish to ask someone their nameif we don't already know it. So �rst we should ensure we only ask for their nameif we do not know who they are. You will hopefully have notied that this is aonstraint on the askName message on the �rst line of the greeter role: `askname to responder only if I do not reognise them'.
askName ⇒ a(repsonder, P erson2)← doNotReognise(Person2)(5.6)In the ase that doNotReognise(Person2) is true, the message askingfor their name will be sent. What happens if the onstraint is false and we doreognise that person? We want to simply say hello. So, to summarise, we asktheir name if we don't reognise them (then we say hello) or we just say hello.

5.2. CREATING INTERACTION MODELS 33The or operator allows us to say that diretly in LCC. Let's see the wholegreeter role with the alternative options:a(greeter, P erson1) ::
(

askName ⇒ a(responder, P erson2) then
name(N) ⇐ a(responder, P erson2) then
hello(N) ⇒ a(responder, P erson2)

)
or

hello ⇒ a(responder, P erson2)
then
goodMorning ⇐ a(responder, P erson2)

(5.7)
Notie the use of parentheses for grouping together the operations on eitherside of the or operator. The indentation is merely to make it lear whihstatements are in the branhes of the or operator; LCC is agnosti to white-spae.It is important when using the or operator with onstraints to understandthe idea of bak-traking. If a onstraint fails (suh as doNotReconise returningfalse) the interation will `bak-trak'. This just means that it retraes its stepsuntil it gets to an alternate option (spei�ed by the or) and exeutes the otheroption. Of ourse, there are ertain points in the interation model that annotbe re-traed. For example, if the model sends a message and then a subsequentonstraint fails, the interation annot bak-trak past the message operation;the pragmati reason being that the message is now on the network and annotbe retrated. If this happens, or there are no alternate options available, theinteration will fail and will be shut-down.Now we will have a look at the other role in this interation:a(responder, P erson2) ::

(
askName ⇐ a(greeter, P erson1) then
name(N) ⇒ a(greeter, P erson1)← getMyName(N) then
hello(N) ⇐ a(greeter, P erson1)

)
or

hello ⇐ a(greeter, P erson1))
then
goodMorning ⇒ a(greeter, P erson1) (5.8)Again, this role mirrors the other role fairly losely. This role will startby waiting for the askName message to arrive; in the ase that it doesn't thealternative branh of the or will be exeuted, where the hello message is

34CHAPTER 5. PROGRAMMING FORTHE OPENKNOWLEDGE KERNELexpeted. If some other message arrives, the interation will ontinue to waitfor one or other of these messages.So, our �nal interation for two ators greeting eah other is shown below.a(greeter, P erson1) ::
(askName ⇒ a(responder, P erson2) then
name(N) ⇐ a(responder, P erson2) then
hello(N) ⇒ a(responder, P erson2)
or
hello ⇒ a(responder, P erson2)) then
goodMorning ⇐ a(responder, P erson2)a(responder, P erson2) ::
(askName ⇐ a(greeter, P erson1) then
name(N) ⇒ a(greeter, P erson1)← getMyName(N) then
hello(N) ⇐ a(greeter, P erson1))
or
hello ⇐ a(greeter, P erson1) then
goodMorning ⇒ a(greeter, P erson1)

(5.9)
For details of how to implement the OpenKnowledge omponents that willprovide the funtionality of the getMyName(N) onstraint, see setion 5.3.1.Alternatively, this onstraint ould be satis�ed visually, using onstraint visu-alisation, desribed in setion 5.2.LCC VisualisationDuring the interations between peers, it will sometimes be neessary to getsome user input. Earlier in this hapter we introdued and de�ned in LCC asimple interation that desribed how two ators would greet eah other (seeModel 26). One of these ators has the onstraint getMyName(N) whihretrieves into the variable N the name of the ator. This ould be ahievedthrough user input, allowing the user at the peer to type in their name. Inthis setion will be show how this an be ahieved using visualisation beforedisussing a little more generally about the visualisations that are providedwith the OpenKnowledge ore software.Let's return to the simple interation where two ators greet eah other. The`greeter' �rst asks the `responder' their name, and replies with a personalisedgreeting.The responder role ontains this line within the model (for the full modelsee Model 26).

name(N) ⇒ a(greeter, P erson1)← getMyName(N) then (5.10)

5.2. CREATING INTERACTION MODELS 35The onstraint getMyName(N) returns the name of the responder in N .We ould retrieve this name by asking the user to type in their name. To do thiswe ould implement an OpenKnowledge Component that performs some userinteration. However, this is not reommended, as your OKC may be used onany number of di�erent types of peers on the OpenKnowledge network and youhave no idea the best way to present that interation; inputting words on a PCis quite di�erent to using a mobile phone. So, an extension to the basi LCCprovides a simple means for suggesting user interations within an interationmodel very simply by adding one line the model.For our example model, the visualisation line would look like this:visual(getMyName(N),qask(N)) (5.11)The two parameters to the visual(,) operator de�ne a mapping from theonstraint to a `visual term' that desribes what type of user interation isrequired. The example here shows that getMyName(N) is mapped to thevisual term qask(N). qask() is a visual term that desribes asking the user aquestion. The qask() visual term has been implemented suh that it an alsoaept the question text. For example, this line maybe re-written:visual(getMyName(N),qask(�Please enter your name�, N)) (5.12)The advantage of providing visualisations in this way is that a peer mayimplement the qask() visual term in whih ever way it sees �t. It looks likeFigure 5.2 for a standard Windows PC, but may be implemented in a di�erentway on a mobile devie, or may be disallowed on a rak-mounted server mahinethat has no sreen.5.2.1 Publishing Interation ModelsYou an publish interation models from the tool provided by the standard userinterfae. To get to the tool selet �Publish IM� from the Tools menu.Figure 5.2.1 shows the dialog box for publishing interation models. Thisdialog box allows you to enter a new interation model, or you an load one fromyour loal dis using the �Load Interation Model From File� button. Figure5.2.1 shows the seletion of an interation model from the dis. Use the dropdown box to hange the type of interation model you wish to searh for (thedefault is LCC).One the interation model that you wish to publish has been ompletelyde�ned, you an hek the syntax using the �Chek Syntax� button on the rightof the window shown in Figure 5.2.1. Then, enter a set of keywords for desrib-ing the interation model in the box at the bottom. Bear in mind that thesekeywords will be mathed against when a user searhes the OpenKnowledge

36CHAPTER 5. PROGRAMMING FORTHE OPENKNOWLEDGE KERNEL

Figure 5.1: Built-in visualisation invoation to ask a user's name

Figure 5.2: The `Publish Interation Model' dialog box

5.2. CREATING INTERACTION MODELS 37

Figure 5.3: Seleting an interation model to publish

Figure 5.4: Giving desriptive tags to the interation model

38CHAPTER 5. PROGRAMMING FORTHE OPENKNOWLEDGE KERNELnetwork, so hoose keywords that would be expeted to return an interationmodel like the one you are publishing.Press the `Publish Interation Model' button to send the model to the dis-overy servie. If the publishing sueeds a message will pop up (see Figure5.2.1).5.3 Creating ComponentsOpenKnowledge Components (OKCs) provide implementations of servies forthe OpenKnowledge network. The interation models desribe how these pieesof ode an be used together to provide an appliation. The interation modelsspeify what funtionalities the servies must implement.The funtionality that an OpenKnowledge omponent must implement isspei�ed in the interation model in the form of onstraints. Let us take a lookat the example below:a(stokist, ID) ::
checkItem(X) ⇐ a(_, ID)← validItem(X)
itemStockCount(X, N) ⇒ a(_, ID)← inStock(X, N)

(5.13)This simple example shows one role in a stok hek operation. Other rolesinterat with this role by sending it the checkItem(X) message, where X is theitem to hek. If the item exists and the item is in stok, the model returns thenumber of items in stok in the message itemStockCount(X, N).The setions below use this example to desribe how to build ode to providethe funtionality for these omponents (setion 5.3.1), how to reate omponentJAR �les (setion 5.3.2), and how to publish your omponents on the networkso that others may use their implementations (setion 5.3.4)5.3.1 Programming New ComponentsWe introdued the simple stok hek interation model in Model 30. Thissimple example requires two spei�ed funtions to be provided, and they arede�ned in the onstraint desription: validItem(X) and inStock(X, N).The onstraint simply de�ne what funtion needs to take plae at this pointin the interation; it does not provide any partiular implementation of thisfuntion. OpenKnowledge omponents provide this implementation and theremay be many implementations for any partiular interation model.For the Java version of OpenKnowledge, implementations of onstraints areprovided in the form Java ode wrapped into a Java Arhive (JAR) �le. These�les are shared on the network and ontain the ode to run when a onstraintneeds to be satis�ed by the model.Preparing the ode to do this has been made as simple a task as possible.

5.3. CREATING COMPONENTS 39Components must implement a spei� (empty) interfae that is de�ned aspart of the OpenKnowledge ore software. However, they do not need to im-plement any spei� methods other than those required for the onstraint satis-fation. In Java, what this means is that the lass you write to provide the imple-mentation for the onstraints must implement the interfae org.openk.ore.OKC.OKCFaade.This interfae atually de�nes some methods, so to make programming of om-ponents as easy as possible, an implementation of these has been provided inthe lass org.openk.ore.OKC.impl.OKCFaadeImpl. You should extend thislass to reate your OpenKnowledge omponent.Code Listing 5.1 gives the skeleton for an OpenKnowledge Component.pakage myok ;import org . openk . ore .OKC. OKCFaadeImpl ;publi lass MyOKC extends OKCFaadeImpl{} Listing 5.1: Skeleton Class for OpenKnowledge ComponentsYou an see that there is nothing more to reating an OpenKnowledge Com-ponent than to extend OKCFaadeImpl.To make it even easier, the interation model de�nes the method signaturethat you must implement. Beause the library works by using re�etion on youOpenKnowledge Component lasses, you just need to implement the onstraintsas methods.Your methods for the onstraints should return boolean values; this rep-resents whether the onstraint was satis�ed or not. You methods an throwexeptions and this will be onsidered as a onstraint failure by the system.Listing 5.2 shows an example of a full implementation of the stok hekerOpenKnowledge omponent.The arguments that are passed to your onstraint methods math those thatare de�ned in the interation model. You an use Argument.getValue() andArgument.setValue() to hange the interation's state.5.3.2 Creating Component JAR FilesIn OpenKnowledge, omponents an be shared aross the network, so that otherusers an download your omponent and run it on their mahine; that is, theyan assume a ertain role in an interation by using your ode for that role.The omponents are shared using a Java Arhive, whih is similar to a zip �le.The easiest way to reate these omponents is by using the tool built into thedefault user interfae.First you need to publish the interation model for whih you have a om-ponent. One published, searh for it on the network. If it is already publishedon the network, then you an simply searh for it.

40CHAPTER 5. PROGRAMMING FORTHE OPENKNOWLEDGE KERNELExpand the role-list for the interation model in the results table, and likon the role for whih you have a omponent. The button �Create New OKCFor Role� beomes available. When you lik this button a window will appearthat will let you reate the omponent JAR.5.3.3 Loading in Loal ComponentsIf you have reated some OpenKnowledge omponents in JAR �les that youhave stored loally on a dis, you an load these into the loal state of yourpeer. To do this, use aess the File menu and selet �Import OKC�. You willbe presented with a dialog box from whih you an selet the OKC JAR �le.Note that restoring OKCs from dis into the state of your loal peer will notsubsribe your peer to any role; to do this, read setion 5.3.4. b The omponentyou have loaded will appear under the �Loal Components� under `My Peer'.5.3.4 Publishing ComponentsPublishing omponents is very easy from the user interfae. One a omponenthas been loaded into the loal state of your peer (see setion 5.3.3) you an seletthat omponent from `My Peer' (it will be listed under `Loal Components').One seleted lik the `Share Component' button; this will send a opy of theomponent to the network where it an be retrieved by other parties and usedby them.Programming a New VisualisationVisualisations are small user interfae modules that are used to satisfy on-straints in an interation model. They are entirely distint from the user inter-fae, but the user interfae is responsible for providing a means for displayingthem on the sreen (see setion 5.3.5 on providing alternate user interfaes).Setion 5.2 desribed how visualisations are inorporated into interationmodels. They utilise the visual(,) operation. The LCC below shows as exampleof the visualisation introdued earlier.visual(getMyName(N),qask(�Please enter your name�, N)) (5.14)The �rst part of the visualisation de�nition is the interation model on-straint (getMyName(N)), and the seond part is the visual term(qask(�Please enter your name� , N)).The visual term does not speify how the visualisation will be realised, it onlyprovides a hook for providing implementations. This means that a peer mayhave many implementations for a partiular visual term, while also allowingdi�erent devies to have di�erent implementations. For example, an imageviewer on a mobile phone will be di�erent to that on a desktop PC. There are a

5.3. CREATING COMPONENTS 41number of visual term implementations built-in to the kernel; see Setion 3.2.3for a list.5.3.5 Providing Alternate User InterfaesThe OpenKnowledge kernel has been spei�ally developed to be easy to extend.All of the omponents that interfae to the kernel have an appliation program-mers' interfae (API) de�ned for them. The user interfae is no exeption tothis, meaning that you an reate new appliations that use the OpenKnowl-edge network, but look distint from the default user interfae that has beensupplied.As an example, Figure 5.3.5 shows the user interfae that has been developedfor oordination of emergeny servies in one of the OpenKnowledge demonstra-tion systems. In this appliation eah emergeny servie vehile (ambulane,�re engine, et.) is a peer on the OpenKnowledge network. They ommuniatethrough the network to oordinate themselves to aid in an emergeny. For thissenario, the default OpenKnowledge user interfae is too limited. The applia-tion is spei� and requires a spei� user interfae that provides a map of theemergeny area showing where the individual emergeny vehiles are.

42CHAPTER 5. PROGRAMMING FORTHE OPENKNOWLEDGE KERNEL

Figure 5.5: Suessfully published interation model

Figure 5.6: Emergeny Response User Interfae

5.3. CREATING COMPONENTS 43
pakage myok ;import org . openk . ore .OKC. OKCFaadeImpl ;publi lass StokChekerOKC extends OKCFaadeImpl{ /∗∗

∗ So lve the va l i d I t em (X) on s t r a i n t
∗ Sueeds i f X i s a v a l i d item number
∗
∗ �param X The item i d e n t i f i e r
∗ �return TRUE i f X i s a v a l i d i d e n t i f i e r ,
∗ FALSE otherw i s e
∗/publi boolean va l idI tem (Argument X){ St r ing itemID = X. getValue () ;i f (StokCheker . va l id I tem (itemID))return true ;return fa l se ;}/∗∗
∗ So lve the inStok (X) on s t r a i n t . Returns
∗ the number o f i tems o f X in s tok in N.
∗
∗ �param X The item i d e n t i f i e r
∗ �param N The number o f i tems in s tok
∗ �return Always re turns TRUE
∗/publi boolean inStok (Argument X, Argument N){ St r ing itemID = X. getValue () ;N. setValue (StokCheker . hekStok (itemID)) ;return true ;}} Listing 5.2: Stok Cheker OpenKnowledge Component

