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Abstract

This deliverable presents an evaluation of the OpenKnowldge (OK) ontology
matching component (OMC). Specifically, we discuss: (i) an evaluation dataset
that we have automatically built in order to measure quality and efficiency indica-
tors of OMC, and (ii) the evaluation results of OMC on the dataset constructed.

1 Introduction
The OpenKnowledge system is a peer-to-peer (P2P) network of knowledge or service
providers. Each computer in the network is a peer which can offer services to other
peers. OK is viewed as an infrastructure, where we only provide some core services
which are shared by all the peers, while all kinds of application services are to be
plugged on top of it. When a peer needs to perform a task that requires other peers,
it asks the discovery service (DS) a list of interaction models (IM) described by a set
of keywords: the interaction models, written in Lightweight Coordination Calculus
(LCC) [13], define the messages exchanged between the participants. The messages
have pre-conditions and post-conditions, that the peer needs to solve: as described
in [1], the conditions - or constraints - are solved by methods contained in plug-in
components in the peer, called OKCs.

However, methods and constraints may have different signatures, that must be com-
pared and matched: the ontology matching component [8, 5, 17] is used for selecting
the IM whose constraints best match the peer components and for creating the adap-
tors between the methods and the constraints. The goal of this deliverable is to conduct
empirical tests of the OK ontology matching component.

The rest of the deliverable is organized as follows. Section 2 briefly presents the
OK OMC to be evaluated. Then, Section 3 discusses an evaluation dataset that we
have automatically built in order to measure quality and efficiency indicators of OMC.
Section 4 provides the evaluation results of OMC on the dataset constructed. Finally,
Section 5 summarizes the findings of the deliverable and outlines future work.

2 The ontology matching component
The OMC should be able to recognize when a constraint and a method are similar
enough, and to identify the correspondences between the arguments when different
names and positions are used [17]. In turn, the correspondences are used to generate
adaptors [15] that allow the decoupling between plug-ins and protocols: the program-
mer of a plug-in can use the arguments of a method as defined by the method semantics,
without worrying how the method will be called in future interactions. Furthermore,
if DS returns many similar IMs for a particular task, the matching scores can be used,
together with other measures, such as the popularity of the IMs, to rank and choose
IMs when they all match the peer’s components with an acceptable score.
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Parameters in constraints and methods can be atomic, like strings or integers, or
structured objects. Both constraints and methods can be represented as labelled trees,
with the root being the predicate or the method name and its subtrees the arguments:

accept_proposal(
car(
brand,
model,
engine(cc,hp)),

cost(
original_price,
discount))

A branch in the tree corresponds to an element of a parameter. In the example above,
the branch /accept_proposal/car/brand identifies a specific value of the first parameter
in the constraint.

The OMC takes two tree-like structures, for example, Get_Wine(Region, Country,
Color, Price) and Get_Wine(Region(Country, Area), Colour, Cost, Year), and returns a
global similarity coefficient in the [0 1] range between these trees (e.g., 0.57) as well
as the set of one-to-one correspondences between the semantically related nodes of
these trees (e.g., that Color in the first tree corresponds to Colour in the second one).
The following two structural properties are preserved: (i) functions are matched to
functions and (ii) variables are matched to variables [9, 17].

The matching process is organized in two steps: (i) node matching and (ii) tree
matching. Node matching solves the semantic heterogeneity problem by considering
only labels at nodes and domain specific contextual information of the trees. We use
here the S-Match system [8]. Technically, two nodes n1 and n2 in trees T1 and T2
match if: c@n1 R c@n2 holds based on S-Match. c@n1 and c@n2 are the concepts
at nodes n1 and n2, and R ∈ {=,v,w,⊥}. When non of the R′s can be explic-
itly computed a special “not related” relation is returned. In particular, in semantic
matching [6] as implemented in the S-Match system [8] the key idea is that the rela-
tions (e.g., =,v) between nodes are determined by (i) expressing the entities of the
tree-like structures as logical formulas, and (ii) reducing the matching problem to a
logical validity problem. Specifically, the nodes are translated into logical formulas
which explicitly express the concept descriptions as encoded in the tree-like structure
and in external resources, such as WordNet [12, 4]. This allows for a translation of
the matching problem into a logical validity problem, which can then be efficiently
resolved using sound and complete state of the art satisfiability (SAT) solvers [7]. The
result of this stage is the set of correspondences holding between the nodes of the trees.

Tree matching, in turn, exploits the results of the node matching and the structure
of the trees to find if these globally match each other. As from [9], two trees T1 and
T2 approximately match if and only if there is at least one node n1i in T1 and node
n2j in T2, such that: (i) n1i approximately matches n2j , (ii) all ancestors of n1i are
approximately matched to the ancestors of n2j .
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3 Evaluation set-up
The ontology matching evaluation theme has been given a chapter account in [3]. Its
more recent advances have been described in [14] and several summaries have been
reported in [16, 19]. A peculiarity of OpenKnowledge is that constraints or methods
are simple labelled trees and not fully-fledged ontologies. Moreover, these trees are
usually not too deep and large, and thus, the OMC will have to deal with many small
trees. Also, we make the following two assumptions in our evaluation:

• Having looked at various application programming interfaces (APIs), we do an
assumption that the terms are likely not to be semantically related between each
other within a single constraint or method. Examples from the Java API include:
set(index, element) and put(key, value). Thus, a tree representing a method or
a constraint can be considered as being composed of nodes whose labels are
random terms.

• Often methods and constraints to be matched are derived or inspired one from
the other: a developer sees an IM that (s)he wants to use, and writes the corre-
sponding OKC; then the IM is altered in order to include a new case that was
not considered; a new, similar IM is written; the OKC is refactored; and so on.
Therefore, it is reasonable to compare a tree with another one derived from the
original one. This also allows to verify what types of alterations of the tree are
beyond the capabilities of OMC, and thus, help revealing its weaknesses.

Since evaluation datasets for OMC from the OK testbeds, such as emergency re-
sponse and bioinformatics are still under way [19], we followed here an alternative ap-
proach. In particular, bearing the above mentioned assumptions in mind and similarly
to the work on systematic benchmarks of the Ontology Alignment Evaluation Initiative
(OAEI) [2], our dataset was composed of trees that are alterations of the actual trees.
Unlike the work on systematic benchmarks in OAEI, the actual trees here were gener-
ated automatically. The process used for tree generation and alteration is described in
Table 1. Notice that using the same external resource or oracle as employed by OMC
when replacing a term with another related term can bias the results by overestimating
them: the OK matching component uses WordNet. Therefore, as mentioned in Ta-
ble 1, the term is extracted both from WordNet 3.0 (notice that OMC uses version 2.1
of WordNet) and from the Moby Thesaurus1. However, while in WordNet the relations
between words are always defined, Moby is more generic, and simply returns a list of
related words, not only synonyms. A brief analysis of the returned terms has shown
that some of the related words can have very little relation with the original term.

We have generated 100 trees. For each original tree, 30 altered ones are created.
Notice that the transformations applied to a tree generate a new tree that can be more
or less distant from the original one: changing the root element with an unrelated

1http://www.mobysaurus.com/
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• Tree creation:

– Trees are currently one level deep.

– Labels are composed of a random number of words (minimum 1), selected
from 9000 words extracted from part of the Brown Corpus [10].

– The number of children (corresponding to arguments in methods and con-
straints) is random. We used Gaussian distribution with average 2 and
deviation 2. These settings for the Gaussian distribution were used in order
to emulate functions, that are rarely longer than 4 parameters.

• Tree alteration:

– Label replacement, with probability 0.2 (obtaining nodes that are not re-
lated to the original one).

– Label syntactic alterations, with probability 0.2 (letters dropped, added,
changed).

– Words addition or removal in labels, with probability 0.15.

– Words replacement in labels, with probability 0.4, using:

∗ synonyms, hyponyms, hypernyms (extracted from WordNet 3.0, using
all the possible parts of speech of the word);

∗ related words (extracted from the Moby thesaurus), in order to reduce
the bias due to WordNet 2.1 use by OMC.

– Nodes deletion (the number of nodes to remove is computed using a Gaus-
sian distribution with average 0 and standard deviation 0.9).

– New nodes addition, with probability 0.25.

– Nodes shuffling, with probability 0.4.

The probabilities of the alteration operations have been chosen by trial and error
in order to obtain reasonably altered trees, without having completely unrelated
trees.

Table 1: Tree creation and alteration process.
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label puts the generated tree at a maximum distance, but dropping or adding nodes,
adding errors, using synonyms put the trees at variable distances. Pairs composed of
the original tree and one varied tree are fed to the OMC that returns the similarity score
between trees and the correspondences between their nodes. The experiment described
above was repeated 5 times in order to remove noise in the results.

Similar to the work in [2, 11], since the tree alterations made are known, these
provide the ground truth, and hence, the reference results are available for free by
construction. This allows for the computation of the matching quality measures [19].
In particular, the standard matching quality measures (recall, precision and F-measure
being a harmonic mean of recall and precision [18, 19]) for the similarity between trees
have been computed.

4 Evaluation results
We are interested in the following three aspects of the evaluation results:

• The proportion of trees correctly evaluated as similar (§4.1). The similarity is
used to select the IMs that the peer is able to perform given its OKCs.

• The proportions of branches correctly matched (§4.2). The correspondences
form the adaptors used within the OKC methods to access the parameters.

• Efficiency of OMC on the test cases of the dataset (§4.3).

4.1 Similarity between trees
Let us look at how close are the scores returned by the OMC to those computed during
the tree transformations. As shown in Figure 1, the majority (63%) of the results
computed by OMC are within a distance of 0.1 from the expected value.

Figure 1: Error distribution: a negative error means that the expected value was lower
than the one computed by OMC, while a positive error value means that the expected
value was higher than the computed one.
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This error directly influences the ranking of the IMs: it may give a wrong position to
an IM in a list provided by the DS, possibly prompting the peer to choose an IM that
is not the best given its OKCs.

Another issue is whether the error influences the selection of good enough IMs,
independently of the rankings. It may well be that the error does move the score,
but keeping it above the good-enough threshold: if the expected score is 0.9 and the
computed score is 0.7, the error is 0.2, but with a threshold of 0.7 it does not influence
the selection. Given a threshold, it is possible to compute the standard matching quality
measures. Different thresholds result in different values of matching quality measures,
see Figure 2. For example, setting the threshold at 0.5 yields precision of 0.92 and
recall of 0.78, while setting it at 0.7 results in precision of 0.93 and recall of 0.67.

Figure 2: Evaluation results. Different precision, recall and F-Measure given differ-
ent good-enough thresholds. The correspondences are expressed as ratio between the
expected correspondences and all the possible trees to be matched.

Increasing the threshold reduces the correspondences considered good-enough: the
steepest drop takes place between 0.5 and 0.7 where the correspondences drop plunge
from more than 50% to less than 30%: this drop corresponds to a drop in recall. The
drop in recall, never fully recovered, is partially caused by the change in proportion of
true positives and true negatives: as the number of correspondences decreases, errors
have stronger influence on recall: if 80 are wrongly excluded at threshold 0.3, the
influence on recall is 0.12 (80/650), while if 80 are excluded at threshold 0.7, the
influence is above 0.25 (80/330). The threshold interval between 0.5 and 0.7 is likely
to be critical because the alterations applied to the trees are possibly on the edge of
the OMC capabilities. For lower thresholds errors in evaluating similarity are less
important, as most of the matches have scores higher than low thresholds. Higher
thresholds, on the other hand, involve trees only slightly altered, that are more easily
recognized by OMC, diminishing the errors and improving the recall.
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4.2 Branch matching
The errors we have observed in §4.1 are in turn caused by errors in identifying the
correspondences between branches in different trees: if two similar branches are not
recognized by OMC, then the overall score of tree similarity decreases. Conversely,
two unrelated branches incorrectly considered similar by OMC increases the similarity
score, possibly causing an interaction to fail, because of a constraint cannot be satisfied
at run time, or causing unpredictable results if a method accesses the wrong parameter.

Quality results for branch matching are as follows: recall is 0.71, precision is 0.99,
and F-measure is 0.83. The expected correspondences, whose number is overestimated
by about 2-3% as we have observed in §4.1, constitute 64% of the total comparisons
(3000 for each experiment).

Analyzing the statistics about the relations found between nodes, the not related
relation is normally - and correctly - found between nodes whose label has been re-
placed with an unrelated one or whose parent node was not related. However, it is
possible to spot a number of errors, in particular when hypernyms or hyponyms were
used to replace terms in the label. Terms replaced with related words are often difficult
to match, as the replacing word may be not be directly linked in WordNet to the old
one. The OMC is predictably and quite consistently unable to match two nodes when
a label in a node belonging to the original node has been replaced in the altered tree
with a synonym/hypernym/hyponym and then some syntactic changes were applied as
well.

4.3 Performance evaluation
The trees matched by OMC were small, being composed on average of 4.4 nodes.
The experiments were run on an Intel Dual Core (1.86 Ghz) with 1Gb of RAM. The
execution time of OMC between the original tree and the altered version takes on
average 18ms, that is about 4ms per single node comparison. The quantity of main
memory used by OMC during matching did not rise more than 3Mb higher than the
standby level.

5 Conclusions and future work
In this deliverable we have presented an automatically created dataset for evaluating
quality and efficiency indicators of the OK ontology matching component. The eval-
uation results look promising, especially for what concerns the efficiency indicators.
Also, precision is consistently high: this is particularly important, as the consequences
of matching constraints to the wrong methods can be much worse than the conse-
quences of failing to find an interaction. However, the evaluation approach followed
in this deliverable, based on random transformation of randomly generated trees, may
suffer from some limitations. In particular, due to the limited availability of good
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thesauri for the generation of related terms. This limitation biases the performances
both positively (terms extracted from WordNet are certainly known by OMC) and
negatively (poor thesauri do not distinguish the related terms, and often include terms
which are very weakly related).

Future works proceeds at least along the following directions: (i) extensive testing
using deeper trees and wider sets of generated and altered trees in order to evaluate the
behavior of OMC in more complex scenarios (this requires an additional tree alteration
operation, that allows branches to be moved into different positions, etc.); (ii) devising
a baseline matching solution and conducting a comparative evaluation that involves
OMC, a baseline solution, etc.
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