
OpenKnowledge

FP6-027253

Empirical tests of semantic routing

George Anadiotis, Spyros Kotoulas, and Ronny Siebes

{gan,kot,ronny}@few.vu.nl,
Vrije Universiteit Amsterdam,

De Boelelaan 1081HV,
Amsterdam,

The Netherlands

Report Version: final
Report Preparation Date: 14-12-2007
Classification: deliverable 7.3
Contract Start Date: 1.1.2006 Duration: 36 months
Project Co-ordinator: University of Edinburgh (David Robertson)

Partners: IIIA(CSIC) Barcelona
Free University of Amsterdam
University of Edinburgh
KMI, Open University
University of Southampton
University of Trento

1



Preface

This deliverable concerns empirical tests regarding semantic routing. We
have had two papers published on the subject, which form deliverable 7.3.
The paper entitled “Rarity-based routing in structured Peer-to-Peer over-
lays”, published at the IEEE WETICE, presents a novel routing technique
for structured Peer-to-Peer overlays, its application on the OpenKnowledge
system and an empirical large-scale evaluation. Although not strictly re-
quired, we have also included the paper entitled “An architecture for Peer-
to-Peer reasoning”. This is a first step towards knowledge sharing through
Peer-to-Peer interactions, combined with the scalability of structured overlay
networks.

2



Rarity-based routing in structured peer-to-peer overlays

Spyros Kotoulas and Ronny Siebes
Vrije Universiteit Amsterdam

Department of Computer Science
De Boelelaan 1081, 1081HV, Amsterdam

The Netherlands
{kot,ronny}@few.vu.nl

Abstract

The OpenKnowledge project aims at knowledge sharing
through open and flexible peer interactions. Within this
project, we are developing a system that supports search-
ing, developing and sharing of interactions/workflows con-
sisting of roles implemented by software that can be shared
and executed by peers. Its main requirements are open-
ness, scalability, decentralization and robustness. Part of
this system is a discovery service, which will be the focus
of this paper. This service aspires to fulfill the above re-
quirements featuring a Peer-to-Peer architecture and Dis-
tributed Hash Tables (DHTs) to achieve robustness through
redundancy and scalability through decentralization. Re-
sources are discovered using a set of attribute-value pairs.
A straightforward DHT-based approach that creates a dis-
tributed inverted index suffers from a linear increase of mes-
sages and replicas with the number of attributes. We try to
reduce this number by proposing an efficient multi-attribute
routing algorithm. We emulate and test our implementation
on the DAS-2 distributed supercomputer.

1 Introduction

Peer-to-Peer is a promising technology addressing some
of the major challenges in modern distributed systems since
it provides scalability through distribution of the deploy-
ment cost and all peers have the same functionality, pro-
viding robustness by redundancy.

The EU-funded OpenKnowledge project1 has as one of
its goals to build a P2P system, which we call the OK-
system, for sharing knowledge, not only in the form of data
but also in the way the data is processed 2. Using this sys-
tem, people can publish workflow descriptions (also called
Interaction Models or IMs), and peers can subscribe them-

1http://www.openk.org
2for additional information about OpenKnowledge the reader is re-

ferred to: http://www.cisa.informatics.ed.ac.uk/OK/deliverables.html

selves to play one or more of the roles in them. The role-
code (i.e. software) that a peer needs to have to play such a
role can also be shared and downloaded via the OK-system.
Peers can also subscribe themselves to be coordinators of
IMs, being responsible for their correct execution. All com-
ponents of the OK-system will be implemented in a way
that everything runs distributed without any central control.
In this paper we focus on the component responsible for
finding:

• Interaction Models Interaction models define the way
services interact, expressed in a formal language like
LCC[11] or BPEL3. They are described by a set of
attribute-value pairs, they have small size and their
search is facilitated by multi-attribute search. In ta-
ble 1 an example descriptor of an IM is given. The
unique identifier of the IM is Auction5443FF, and
it is described by a set of attributes pertaining to its
use and characteristics. These attributes (e.g. Type or
Role) are fixed for OpenKnowledge, although we will
see later that our discovery service does not depend on
such a fixed schema.

• Service descriptions Services are described by a (po-
tentially large) set of attribute-value pairs. They
are small in size, and expected to be transferred
over the network often. Consequently, we need
efficient mechanisms for multi-attribute search, in-
corporating methods from information retrieval. In
table 1 we show an example descriptor of a ser-
vice description. For example, a user that has
found the example interaction model can search for
{‘IM=Auction5443FF’,‘Role=Buyer’} to find com-
patible service implementations for the role she wants
to play, which is possible because a service descrip-
tion has at least one pointer to a role it implements for
a given IM.

• Service implementations Service implementations are
pieces of software statically bound to a service descrip-

3http://www.oasis-open.org/committees/tc home.php?wg abbrev=wsbpel



tion. They are typically of average size and consist of
a compressed file.

• Coordinators Finally, we need functionality to find co-
ordinators. As can be seen in table 1, a coordinator
should specify the languages it is able to interpret. In-
telligent as opposed to random selection of coordina-
tors for an interaction can have many advantages (e.g.
if we select the same coordinator for multiple invoca-
tions of the same interaction, we can add interaction
participants at runtime).

To the best of our knowledge, there exist no scalable,
efficient and fully-distributed implementations for multi-
attribute indexing and search. The JXTA project claims to
have implemented such a system, but unfortunately, after
conducting extensive tests, we discovered that its imple-
mentation could not scale to more than a handful of ren-
dezvous peers[7]. The focus of this paper is on scalable,
open, efficient and robust publishing and discovery of these
resources through a community-supported Peer-to-Peer sys-
tem.

DHT implementations [10, 12, 1, 9, 2] are currently seen
as an important building block for Peer-to-Peer systems
for storing content in a completely decentralized way [5].
Nodes function autonomously and collectively form a com-
plete and efficient system without any central coordination.
In DHT overlays, each object is associated with a key, cho-
sen from a large space. This space is partitioned in zones,
and each peer is responsible for the keys and correspond-
ing objects in a zone. Peers need to maintain connections
only to a limited number of other peers and the overlay has
the ability to self-organize, with respect to peer connections
and object distribution, to handle network churn. In prin-
ciple, all DHT-based systems provide the following func-
tionality: store(key, object) storing an object identified by
its key, and search(key) which returns the object (when it
exists) from the peer responsible for the key. Current sys-
tems need approximately O(log(N)) messages to search or
store and each peer needs to keep from O(1) to O(log(N))
pointers to other peers, where N is the number of peers in
the network [9, 10, 12, 1]. Although they seem to deal very
well with key lookups, automatic load balancing and robust-
ness, their application domain is constricted by the absence
of efficient methods to search for richly described content.

The discovery service of OpenKnowledge is imple-
mented as a layer on top of DHTs to provide efficient
discovery, multi-attribute search and distributed storage
through use of the semantics of data being stored. In this
paper, we are providing the fundaments for such a system
by presenting a novel popularity-based algorithm for multi-
attribute search over richly-described content.

In section 2 we outline the motivation our research. Our
approach is described in section 3. We give an evaluation of
the system in 4 and we conclude our work in section 6.

1. Auction5443FF {Type=IM,
Descr.Term=Auction, Descr.Term=Buy,
Descr.Term=Sell, Descr.Term=Dutch Auction,
Role=Buyer, Role=Seller}

2. Buyer4325 {Type=Service description,
IM=Auction5443FF, Role=Buyer,
Descr.Term=Buy}

3. CoordinatorFF32 {Parser=LCC,
Parser=BPEL, Certification=Verisign}

Table 1. Examples of resource descriptors.

2 Multi-attribute search by joining single-
attribute searches

It is relatively easy to design a discovery system over
a DHT that maintains a distributed inverted index over all
attribute-value pairs. Namely, to insert a new resource
into the system, one could hash each attribute-value pair
and store it together with a pointer to the resource in the
DHT overlay. Furthermore, to retrieve a resource, for each
attribute-value pair of a query, a lookup on the hash of this
pair is performed and a local join is performed over the re-
sults.

We have adumbrated the design of a simple DHT-based
discovery system with perfect recall. Be that as it may, to
the best of our knowledge there exists no efficient imple-
mentation of such a system. Where does it all go wrong?

• Distributed join is costly To perform a distributed join,
the initiating peer has to gather all index entries for all
the attribute-value pairs in the query. The cost of this
can be prohibitively high, especially for queries with
many pairs. The problem is further aggravated by their
distribution of frequency. In document retrieval sys-
tems, terms usually follow a zipf distribution[4] (also
see figure 1). Therefore, a query with at least one of
these common attribute-value pairs will be too expen-
sive to calculate, since it would imply retrieving all the
indexes containing that attribute-value.

Note that it would not be possible to limit the
number of entries sent for common terms, since
there is no way to know in advance which
of these entries are popular. To illustrate our
case, consider a query for ”Type=Service descrip-
tion”,”IM=Auction5443FF”; ”Type=Service descrip-
tion” would appear in hundreds of thousands of de-
scriptions while ”IM=Auction5443FF” would appear
in only a few.

We can circumvent this problem by storing the entire
description to the peers that correspond to the hash of
each attribute-value pair. This comes at the cost of ad-
ditional storage and bandwidth costs for inserting de-
scriptions but it makes query answering a local oper-
ation and querying now costs only 1 message in the



DHT. In the next two paragraphs, we see why this is
still inadequate.

• Load balancing As previously mentioned, the term fre-
quency distribution often follows a Zipf pattern. This
gives rise to severe load balancing problems, consid-
ering that a peer responsible for a very common at-
tribute/value would have to store a large number of
descriptions and process a large fraction of the total
queries. To partly alleviate this problem, we can bound
the number of descriptions that a peer can store and
send queries to the peers for each of the attribute-value
pair. Even so, this would solve the problem only for
the querier, since the peers which would have to store
popular content would be unresponsive for all keys that
are mapped to them. For instance, imagine that the
very popular attribute-value ”Type=Service descrip-
tion” and rare attribute-value ”Descr. Term=Dutch
Auction” are both mapped to the same peer. The first
will cause the peer to be overloaded and unresponsive.
Despite the fact that this may not be a serious problem
for the popular term, since descriptions with popular
terms are common by definition, it will be problematic
for the rare term.

• Long descriptions In the previous two paragraphs, we
have assumed that descriptions are replicated to all the
peers responsible for each of their attribute-value pairs.
What if these descriptions are large? It is not unre-
alistic to assume that they contain hundreds of terms.
In this approach, the number of messages and replicas
increases linearly with the number of attribute-value
pairs in the description, which makes the approach
non-scalable.

3 Our approach

As a solution to the problem of managing large descrip-
tions and multi- attribute search, this work is focused on
popularity-based approaches. The key idea is that popu-
lar content is easily available on the network due to a high
degree of replication. Therefore, we do not need to spend
much effort on indexing it, in contrast to rare items.

In [15], the authors suggest that for queries for common
items, flooding queries is sufficient, while for rare items,
DHTs perform best. Research in the context of the PIER
project 4 and in [8] also suggests a hybrid flooding/DHT
mechanism (albeit with no efficient way to determine which
items are rare). Indeed, for commons terms we are not in-
terested in getting all results, if there are millions of them;
a hundred would be enough. On the other hand, for rare
terms, we are interested in all results. Nevertheless, most
popularity-based approaches assume prior knowledge of
which items are popular which is unrealistic. Our approach

4http://pier.cs.berkeley.edu

Algorithm 1 Rarity-based walk

Require: A description d with attributes/values (t1 · · · tn) and identifier
id . Let parameter PR denote the originating peer set and D the
description set of this peer

Ensure: d is stored.

1: t := tm ∈ (t1 · · · tn)|∀t, |Dt| > |Dtm| and Pt /∈ Pr
2: if (t = ∅) then
3: return
4: else
5: Pr := Pr ∪ this
6: send(d,Ptm ,Pr)
7: end if

——————————————————
Require: A query q for terms (t1 · · · tn), originating peer set Pr, the

description set of this peer D.
Ensure: q is forwarded.

1: if (enough results found) then
2: return
3: else
4: t := tm ∈ (t1 · · · tn)|∀t, |Dt| > |Dtm| and Pt /∈ Pr
5: if (t = ∅) then
6: return
7: else
8: Pr := Pr ∪ this
9: send(q,Ptm ,Pr)

10: end if
11: end if

is to use statistical information, which is automatically cal-
culated in a distributed way, to determine, on-the-fly, which
terms are rare and which queries refer to them, and adapt
the routing process accordingly.

An interesting and relevant approach is Mercury[3], sup-
porting efficient multi-attribute and range search using a
small to medium-size schema. It relies on hubs, consisting
of a collection of peers responsible for storing indexes with
a specific attribute, functioning as a sort of sub-overlays.
Descriptions are routed to all hubs, which means that the
number of messages and replicas is proportional to the num-
ber of attributes in a description. Furthermore, each peer in
the network needs to know at least one peer in each hub,
meaning that the number of peer references that need to be
kept by each peer is at least proportional to the number of
attributes in the system. Needless to say, this approach can-
not scale beyond a schema with a dozen of attributes.

In this paper, we focus on index placement and do not
investigate caching techniques, or the use of shortcuts to
peers that gave good results in the past[14]. The methods
proposed in this paper are orthogonal to them and it may be
expected that both can benefit from each-other.

The novelty of our approach lies in exploiting the struc-
ture in DHTs to extract statistical information useful for
routing, with the goal of alleviating the problems with join-
ing single-attribute searches and current popularity-based
approaches. We will describe an algorithm that uses sta-
tistical information from the local storages of peers to
place descriptors more efficiently. The intuition behind
our popularity-based approach is that rare attribute-value



pairs are preferred for replication, since: (1) For common
attributes-values, it is likely that we will find answers any-
way, since more matching descriptors will exist in the sys-
tem. (2) Rare attributes-values yield a higher information
value. (3) Peers responsible for common descriptions are
likely to be overwhelmed by descriptions.

To illustrate our case, imagine the following re-
source description: In the simple approach described
in 2, the description ‘Buyer4325’ would be repli-
cated to the peers responsible for ‘Type=Service de-
scription’, ‘IM=Auction5443FF’, ‘Role=Buyer’ and ‘De-
scr.Term=Buy’. It is reasonable to expect that a query for
{‘Type=Service description’} would be easily satisfied by
many peers. Therefore, it would be a waste of resources
and a network hot-spot to replicate the description to the
peer responsible for this attribute/value pair (i.e. to the peer
where the string ‘Type=Service description’ maps to). On
the other hand, ‘IM=Auction5443FF’ is rare, and the de-
scription should be replicated to the peer responsible for
it, since it would be difficult to find another peer that has
this rare attribute-value. But how do we determine whether
an attribute-value is rare? Unlike previous approaches, we
do not assume external or centralized sources of statistical
information, but rely on the properties of the distribution
of terms into descriptions and the DHT. So, going back
to our example, assume that initially(by random choice)
the peer responsible for ‘IM=Auction5443FF’ is selected
for replication. It is very likely that this peer will already
have descriptions with ‘Type=Service description’ since
(a) ‘Type=Service description’ is a very common attribute-
value and (b) ‘IM=Auction5443FF’ and ‘Type=Service de-
scription’ are semantically correlated. Therefore, in our ap-
proach, it should decide not to replicate it to the peer re-
sponsible for ‘Type=Service description’ since subsequent
queries including ‘IM=Auction5443FF’ would be answered
by the peer responsible for ‘IM=Auction5443FF’, while
queries including for ‘Type=Service description’ can be
easily answered by many other peers (or at least by the peer
responsible for ‘Type=Service description’).

Our algorithm is described in natural language in the fol-
lowing paragraphs and formally in algorithm 1.

Inserting descriptions Insertion messages consist of the
description and the attribute/value pairs of the description
that have already been used (this set is initially empty). All
attribute/value pairs with frequency over a given threshold
parameter Dtm, over the descriptions of the local peer are
marked as used. The attribute/value pair that has the low-
est frequency and has not been used is selected (i.e the at-
tribute/value pair with the smallest number of occurrences
in the descriptions stored locally in the peer). If such an
attribute-value pair exists, it is marked as used and the
message is forwarded to the peer responsible for that at-
tribute/value pair in the DHT.

Querying For each attribute-value in the description, the
hash-value is calculated and the query is routed to the peer
in the DHT to which that value corresponds. However, if

enough answers are found on the peers en-route, the mes-
sage is not routed further toward the destination peer (ac-
cording to the DHT routing algorithm) and the query pro-
cess for that attribute-value pair stops. This is meant to pro-
tect peers to which popular attribute-value pairs map to.

Compared to an algorithm that replicates according to
attribute-value pairs chosen at random, our approach has
negligible additional computational costs, as both determin-
ing which are the rarest terms in a description and maintain-
ing a list of term frequencies is very fast.

Furthermore, it is interesting to note its anytime behav-
ior. In the beginning, when peers have no overview of which
terms are rare, they will replicate descriptions to all peers,
since the threshold for replication will not be reached. As
the number of descriptions in the system grows, so will the
local knowledge in each peer about which attributes-values
are popular, since peers can approximate the popularity of
an attribute-value by counting the occurrences in their own
data. No additional mechanisms to decide whether there is
enough information are required.

4 Evaluation

In this section, we evaluate our approach against an ap-
proach that replicates according to attribute-value pairs cho-
sen at random.

4.1 Dataset

Since, to the best of our knowledge, there exists no
large dataset for resource descriptions for service work-
flows/interaction models, we decided to use a dataset cre-
ated for general-purpose information retrieval, developed
for [13]. We believe that this is a realistic assumption
because, in a discovery setting attribute-value pairs in a
description are semantically correlated. Future research
should give additional insight on attribute-value distribu-
tion. For now, we assume that it is similar which the dis-
tribution of terms in documents. Our dataset was created by
crawling a large number of real user queries from Search-
Spy5 and applying a natural language processing method on
the results retrieved for these queries using Google6, to get
relevant descriptions. The input to our system was derived
from the following:

• Corpus We have used a corpus of 260.000 documents,
resulting in the same number of descriptions. Each de-
scription consists of a set of terms.

• Descriptions From these descriptions, we have se-
lected a random set of 100.000. On average, each doc-
ument contained approx. 104 terms (the distribution is
shown in fig.1). The distribution of terms, as expected,

5http://www.infospace.com/info.xcite/searchspy
6http://www.google.com



1

2

11

3

13

6 5 4

10

7 8 9

12

15

16 17

18

17 18

645

19

645 645 21

20

645

45

465

645

34

645 645 867

645 457

0

100

200

300

1 2 3 4

5
-1

0

1
1
-1

0
0

1
0
1
-1

0
0
0

>
1
0
0
0

T
e
rm

 P
o
p
u
la

ri
ty

(x
1
0
0
0
)

#Terms

0
100
200
300
400
500
600
700

0

2
0
0

4
0
0

6
0
0

8
0
0

1
0
0
0

1
2
0
0

#
 D

o
c
u
m

e
n
ts

#Terms

0%

20%

40%

60%

80%

100%

1 4

1
6

6
4

2
5
6

1
0
2
4

4
0
9
6

1
6
3
8
4

6
5
5
3
6

%
 Q

u
e
ri
e
s
(C

u
m

u
la

ti
v
e
)

#Results

0

500

1000

1500

2000

2500

3000

3500

1 2 3 4 5 6 7 8 9

#
Q

u
e

ri
e

s

#Terms

Figure 1. Top left: Term popularity. For example, around
290.000 terms appear only once in the dataset, and around 60.000
appear 2 times. Top right: Distribution of the number of terms per
document. Bottom left: Number of results per query (cumulative).
We can see that for approx. 50% of the queries, we have less than
50 results and for 30% of the queries, we have less than 4 results.
Bottom right: Number of terms per query.

follows a zipf-like distribution(fig.1). It is interesting
that more than half of all terms appear only 1 time,
while 1 term appears in more than half of the descrip-
tions (58204 times).

• Queries To generate queries, we have used the fol-
lowing method: (a) Randomly pick the number of
terms |t| for each query (according to the distribution
in fig.1(bottom right)). (b) Pick at random a descrip-
tion out of the corpus. (c) Pick |t| terms (randomly
using a uniform distribution) from the chosen descrip-
tion and use them as the query terms. For most queries,
there are fewer than 50 answers

4.2 Criteria

In this paper, we will evaluate our system in terms of de-
scription recall. To gain additional insight, we will always
take into consideration the number of answers in the sys-
tem, but limit the number of answers we are interested in
to (e.g. maximum 50 answers, which is a parameter that
can be changed for each query). The reason behind this,
is that, in a discovery setting, there is no point in trying to
retrieve all answers. Instead, we are interested in getting
enough answers to satisfy the user. Nevertheless, this is not
a limitation of our algorithm itself, it is a choice to make our
evaluation more realistic. Thus, for our experiments, recall
is defined as follows:

DRecall =
|Dreturned

⋂
Drelevant|

min(|Drelevant|, 50)

4.3 Design, implementation and experi-
mentation

Design Our system is based on a three-layer architecture,
the bottom layer consisting of a DHT implementation. The
second layer consists of an object store and a distributed in-
dex supporting multi-attribute search and relies on the algo-
rithms described in 3. Finally, the third layer is application
specific, in our case the OpenKnowledge service and peer
discovery.

Implementation We have implemented our system us-
ing Java 1.5. For the bottom layer, we have used the FreeP-
astry DHT implementation, version 2.0b7. The second layer
is an implementation of the algorithm in section 3 and the
subset replication approach. The application on top is the
discovery service of the OpenKnowledge system[6], as de-
scribed in the introduction of this paper.

Testing and experimentation We have used the DAS-
2 distributed supercomputer8 to test and evaluate our sys-
tem. One node on the DAS-2 acted as a bootstrap, being
used as an access point to the system for the rest. We have
used Globus9 to start 500 instances of our system, which
contacted the bootstrap node, and self-organized according
to the Pastry protocol[12]. This process took less than 5
minutes. Next, nodes published in parallel 200 descrip-
tions each (100.000 in total). Finally, each node made 100
queries and collected the results.

We have compared our approach to one that replicates
descriptions according to a subset of its attributes/values,
chosen randomly. For our evaluation, and to have a refer-
ence point, we have chosen replicate according to a max-
imum of 10 attributes/values, thus maintaining 10 index
replicas. An approach that would replicate according to all
terms would offer perfect recall. Nevertheless, it would re-
quire an average of 104 DHT messages and index replicas
for each description, which is not scalable. Subset repli-
cation does not offer perfect recall, but it does reduce the
number of replicas for each description by a factor of 10.
Fortunately, as we will see, it does not lead to a proportion-
ate reduction in recall.

For our rarity-based walk algorithm we have adjusted
Dtm to get the same number of messages and replicas as
the subset replication approach. Moreover, for querying,
we have used the same policy for both approaches. There-
fore, the network, computational and storage costs for the
rarity-based walk and the subset replication are very simi-
lar.

5 Results and discussion

Figure 2 shows the results for the two approaches. Each
approach required the same number of query messages,

7http://www.freepastry.org
8http://www.cs.vu.nl/das2/
9http://www.globus.org/



0%

20%

40%

60%

80%

100%

1 10 100 1000

R
e
c
a
ll

#Matching documents

Rarity-based 
walk

Subset 
replication

Figure 2. Description recall as a function of the number of
matching descriptions per query.

an average of 2,5 DHT messages. The first impression
is that, for both approaches and for queries with more
than 300 matching descriptions, we get almost perfect re-
call using ten times less replicas and messages compared
to an approach that would replicate according to all at-
tributes/values. Our rarity-based walk yields a recall in ex-
cess of 60% for queries with only a single matching descrip-
tion, which are the most difficult to answer, an increase of
approx. 35%, compared to the subset replication approach.
In total, even for a relatively small overlay of 500 peers, we
gain a substantial increase in recall using the same num-
ber of messages. It is expected that as the network size
grows, the recall of the subset replication will deteriorate
faster than that of our rarity-based walk approach, since the
load balancing problems of the former will be augmented.
At the moment of writing this paper we are expecting that
in the following weeks, the DAS-3 supercomputer10 will
be made available, providing substantially greater compu-
tational power for experimentation which will enable us to
verify the aforementioned claim.

6 Conclusions

In this paper we outline the functionality and design of
a scalable peer-to-peer discovery service. We provide an
implementation that incorporates a novel algorithm that re-
duces the scalability problems of multi-attribute indexing
and search in DHT networks by automatically calculating
attribute/value popularity and using it to reduce the degree
of replication. Our implementation was tested by emulat-
ing 500 instances of our system on the DAS-2 supercom-
puter. The results indicate that an algorithm that takes at-
tribute/value popularity into consideration for routing out-
performs an algorithm that does not. Future work lies in
testing how this gain in performance changes as the network
size increases and measuring the robustness of our system
toward a high peer churn rate.

10http://www.cs.vu.nl/das3/

References

[1] K. Aberer, P. Cudré-Mauroux, A. Datta, Z. Despotovic,
M. Hauswirth, M. Punceva, and R. Schmidt. P-grid: a self-
organizing structured p2p system. SIGMOD Rec., 32(3):29–
33, 2003.

[2] M. S. Artigas, P. G. López, J. P. Ahulló, and A. F. Gómez-
Skarmeta. Cyclone: A novel design schema for hierarchical
dhts. In Peer-to-Peer Computing, pages 49–56. IEEE Com-
puter Society, 2005.

[3] A. R. Bharambe, M. Agrawal, and S. Seshan. Mercury:
supporting scalable multi-attribute range queries. In R. Ya-
vatkar, E. W. Zegura, and J. Rexford, editors, SIGCOMM,
pages 353–366. ACM, 2004.

[4] L. Breslau, P. Cao, L. Fan, G. Phillips, and S. Shenker. Web
caching and zipf-like distributions: Evidence and implica-
tions. In Proceedings of the IEEE INFOCOM’99 confer-
ence, pages 126–134, New York, USA, March 1999.

[5] F. Dabek, B. Zhao, P. Druschel, and I. Stoica. Towards a
common api for structured peer-to-peer overlays. In IPTPS
’03, February 2003.

[6] A. P. de Pinninck, D. Dupplaw, S. Kotoulas, and R. Siebes.
The openknowledge kernel. Technical report, Open-
knowledge consortium, 2006.

[7] S. Kotoulas. Extracting and incorporating keyword seman-
tics in DHTs, MSc thesis. Vrije Universiteit Amsterdam,
2006.

[8] B. T. Loo, R. Huebsch, I. Stoica, and J. M. Hellerstein.
The case for a hybrid p2p search infrastructure. In In Proc.
IPTPS, 2004.

[9] G. Manku, M. Bawa, and P. Raghavan. Symphony: Dis-
tributed hashing in a small world, 2003.

[10] S. Rhea, D. Geels, T. Roscoe, and J. Kubiatowicz. Han-
dling churn in a DHT. In Proceedings of the 2004 USENIX
Annual Technical Conference (USENIX ’04), Boston, Mas-
sachusetts, June 2004.

[11] D. Robertson. Multi-agent coordination as distributed logic
programming. In B. Demoen and V. Lifschitz, editors, ICLP,
volume 3132 of Lecture Notes in Computer Science, pages
416–430. Springer, 2004.

[12] A. Rowstron and P. Druschel. Pastry: Scalable, distributed
object location and routing for large-scale peer-to-peer sys-
tems. In IFIP/ACM International Conference on Distributed
Systems Platforms (Middleware), pages 329–350, Heidel-
berg, Germany, November 2001.

[13] R. Siebes. pnear - combining content clustering and dis-
tributed hash tables. In Proceedings of the IEEE’05 Work-
shop on Peer-to-Peer Knowledge Management., San Diego,
CA, USA, July 2005.

[14] G. Skobeltsyn and K. Aberer. Distributed cache table: ef-
ficient query-driven processing of multi-term queries in p2p
networks. In P2PIR ’06: Proceedings of the international
workshop on Information retrieval in peer-to-peer networks,
pages 33–40, New York, NY, USA, 2006. ACM Press.

[15] K. Sripanidkulchai, B. Maggs, and H. Zhang. Efficient
content location using interest-based locality in peer-to-peer
systems. In Proceedings of the IEEE INFOCOM conference,
San Fransisco, CA, USA, march 2003.



An architecture for peer-to-peer reasoning

George Anadiotis, Spyros Kotoulas, and Ronny Siebes

Department of Artificial Intelligence, Vrije Universiteit Amsterdam, The Netherlands
{gan,kot,ronny}@few.vu.nl

Abstract. Similar to the current Web, the key to realizing the Seman-
tic Web is scale. Arguably, to achieve this, we need a good balance be-
tween participation cost and perceived benefit. The major obstacles lie
in coping with large numbers of ontologies, authors and physical hosts,
inconsistent or inaccurate statements and the large volume of instance
data. Our focus is on scalability through distribution. Most current ap-
proaches split ontologies into triples and distribute them among peers
participating in a structured peer-to-peer overlay. Identifying a series of
drawbacks with this, we propose an alternative model where each peer
maintains control of its ontologies.

1 Introduction

The success of the Web is attributed to its scalability and its low entry cost.
One would expect at least the same requirements for the Semantic Web. Un-
fortunately, state-of-the-art technology permits for neither, as current methods
and systems make assumptions that limit its usability, especially with regard to
scale.

In [8], a series of assumptions in logical reasoning are identified, which are
also largely present in infrastructures developed for the Semantic Web, namely
Small set of axioms, e.g. limited number of concepts/relationships, Small num-
ber of facts, e.g. limited number of instance data, Trustworthiness, correctness,
completeness and consistency of facts and axioms, implying some sort of cen-
tral control or management and Static domains, e.g. infrequent updates or fixed
semantics.

With aspirations toward a truly usable and global Semantic Web, research
has turned into a number of directions such as approximation, trust infrastruc-
tures, database technologies and distribution. The focus of this paper will be on
distribution.

In this domain, peer-to-peer (p2p) systems are often seen as a vehicle for
the democratization of distributed computing. Rather than relying in a possibly
large set of professionally run commercial servers, they consist of community-
volunteered hosts that collaborate on equal terms to achieve a common goal.
Some of their perceived advantages are low cost, through the distribution of
computation and self-organization, no single point of failure, due to their sym-
metric functionality and redundancy, no single point of administration or control,



making censorship or preferential disclosure of information impossible and, un-
der some conditions, scalability, due to the fact that the network can grow on
demand.

We can tap into the vast resources offered by p2p systems to develop scalable
infrastructures for the Semantic Web. A plethora of approaches has already
been suggested [4, 2, 18, 15, 13, 3, 17, 9, 16, 11], mainly focusing how to efficiently
distribute large numbers of triples among peers in the network. We argue against
this approach, claiming that although it solves scalability issues concerning the
number of facts in the system, it fails to address the rest of the issues mentioned
above and, in some cases, it actually makes additional non-realistic assumptions.

We propose an alternative approach, using ontologies instead of triples as
the standard level of data granularity, thus moving complexity from the p2p
overlay to peer interactions. This allows for efficient and secure maintenance of
information provenance and control of the publishers over access and availabil-
ity of information. We also hope that this model will eventually facilitate the
development of methods to attest results calculated in a distributed manner and
improve performance over current systems, since it can exploit concept locality
in ontologies.

We are aspiring to combine the scalability of structured p2p overlays with the
perceived advantages of our model. To this end, we are sketching an architecture
that uses a global index maintained by a Distributed Hash Table(DHT) to find
the correct peers that interact to resolve queries. Furthermore, some technologies
that would be useful in this architecture are suggested.

The rest of the paper is structured as follows: In section 2.2 we are presenting
the most important systems for RDF storage and reasoning. We argue that there
is a need for a shift of paradigm in section 3. Section 4 is a description of our
approach, for which we are giving some performance indicators in section 5. We
are concluding and outlining future work in section 6.

2 Relevant literature

2.1 Distributed hash tables

DHTs are a well researched flavour of structured p2p systems [14] . Nodes func-
tion autonomously and collectively form a complete and efficient system without
any central coordination. In DHT overlays, each object is associated with a key,
chosen from a large space. This space is partitioned in zones, and each peer
is responsible for the keys and corresponding objects in a zone. Peers need to
maintain connections only to a limited number of other peers and the overlay
has the ability to self-organize, with respect to peer connections and object dis-
tribution, to handle network churn. In principle, all DHT-based systems provide
the following functionality: store(key, object) storing an object identified by its
key, and search(key) which returns the object (when it exists) from the peer re-
sponsible for the key. Current systems need approximately O(log(N)) messages
to search or store and each peer needs to keep from O(1) to O(log(N)) pointers
to other peers, where N is the number of peers in the network.



2.2 Scalable RDF storage

DHT-based Research into scalable RDF storage lies closest to the focus of
this paper. Considerable research has been conducted in the area with most
approaches sharing the following fundamental design choices:

– RDF queries are broken down into subqueries, namely triples with one or
more variable values, for instance <?,ns:lives_in,cities:amsterdam>.

– Query results are sets of bindings for variables.
– No single node can be assumed to have the answers to all subqueries, so

the problem then consists of decomposing the original query and routing the
‘right’ subqueries to the ‘right’ node, and then composing partial results to
obtain the answer to the original query.

The first to propose the use of DHTs to implement a distributed RDF store
was RDFPeers [4]. The basic functionality for storing RDF triples involves hash-
ing the triple’s subject, predicate and object and storing it in the three peers that
are responsible for each of the resulting keys. Queries are answered by hashing
the (at least one) constant part of the query triple pattern and routing the query
to the node responsible for storing that constant. RDFPeers has the ability to
resolve atomic, disjunctive and conjunctive multi-predicate RDF queries at a
minimum cost of log(N) (for atomic queries), however it has poor load balanc-
ing capabilities, completely lacks reasoning support and assumes a shared RDF
schema.

GridVine [2] constitutes a logical layer of services offered on top of the P-
Grid [1] DHT. It exposes higher level functionalities built on top of P-Grid: In-
sert(RDF schema), Insert(RDF triple), Insert(Schema translation) and Search-
For(query). RDF triples are inserted into GridVine by using the same method
introduced by RDFPeers and it can also answer the same set of queries, but has
the additional advantage of supporting translations between RDF schemata.

PAGE [18] is a proposal for a distributed RDF repository implementation
that combines the index structure of YARS [10] with a DHT. YARS uses 6 differ-
ent indexes and stores RDF quads (triples augmented with context information).
PAGE works by using the same indexes (hence replicating triples 6 times) and
achieves more efficient query processing, but also lacks reasoning support and
load balancing.

RDFCube [15] builds on RDFPeers by adding a second overlay that indexes
triples based on an ’existence bit’ and then performs a logical AND operation
on this existence bit before actually retrieving the triples when evaluating a
query. This results in more lookups and higher maintenance cost for the extra
overlay, but reduces the required amount of data that has to be transferred on
the network.

[13] proposes two different algorithms for evaluating conjunctive multi-predicate
queries. The first one, QC, uses the indexing scheme of RDFPeers to index
triples, with a small modification: if there are more than one constant parts for a
subquery, then preference is given to indexing on the subject, then the object and
then the predicate, as it is expected that this will also be their ranking according



to discrete values. Subqueries are also sorted according to expected selectivity
before execution. Then, a ’query chain’ is formed that consists of the nodes re-
sponsible for each subquery. The second algorithm, SBV, uses additional triple
indexing and dynamic query chain formation exploiting local variable bindings
for subqueries.

In BabelPeers [3], nodes are also organized in a DHT overlay, and inserted
triples are hashed on their subject, predicate and object, and stored by the
node responsible for the resulting key. BabelPeers nodes however host different
RDF repositories, making a distinction between local and incoming knowledge
and applying RDFS reasoning rules. Nodes are additionally organized in a tree
overlay structure in order to deal with overly popular values.

Non-DHT based [17] is based on the notion of path queries to build an index
only on paths and subpaths, but not on individual elements for a datasource.
Every RDF model is seen as a graph, where nodes correspond to resources and
arcs to properties linking these resources. The result of a query to such a model
is a set of subgraphs corresponding to a path expression. Since the information
that makes up a path might be distributed across different datasources, the index
structure to use should also contain information about subpaths without losing
the advantage of indexing complete paths, and the most suitable way to represent
this index structure is a hierarchy, where the source index of the indexed path
is the root element. In terms of space, the complexity of the index is O( s * n2),
where s is the number of sources and n is the length of the schema path. The
trade-off is that query answering without index support at the instance level is
much more computationally intensive, so different techniques (partly similar to
the ones used in [13], in terms of query chain formation and subquery ordering)
are applied on the basis of an initial naive query-processing algorithm in order
to perform join ordering and overall optimization, under the assumption that
nodes do not have local join capabilities.

Bibster [9] follows an unstructured semantic-based p2p architecture: each
peer knows about its expertise and finds out about the expertise of neighboring
peers through active advertising. Thus peers for expertise clusters. When a peer
receives a query, it tries to answer it, or forwards it to other peers whom it judges
likely to be able to answer the query, based on similarity functions between the
subject of the query and the previously-advertised expertise topics, using the
schema hierarchy and text-similarity methods.

Edutella [16] is a p2p architecture designed for distributed search of educa-
tional content based on meta-data. The meta-data is stored in RDF format in
distributed repositories that form a super-peer-based p2p network, arranged in
a hypercube topology. While it allows the use of multiple schemas, neither map-
ping nor RDF semantics are supported. Additionally it uses a broadcast-based
approach which would not scale gracefully.

Federated RDF repositories [11] aim at offering unified access among different
RDF repositories by integrating them according to the federated repositories ap-
proach. Semantic Federations are collections of heterogeneous distributed RDF



repositories that can be accessed as a unique local Semantic Repository. This ap-
proach however is based on static definition of participating repositories and uses
flooding to distribute queries among repositories; it therefore lacks the ability to
scale and to dynamically update federation membership.

3 Motivation

For the remainder of this paper, we will focus on systems using a DHT infras-
tructure, since, so far, they are the only scalable solutions that do not rely on
fixed schemata. Efficient as they may be in storing instance data and ontolo-
gies, these approaches do not address scalability in reasoning, are not dealing
with provenance of information and do not support user/peer control over their
own data. Hence, we argue that they are not appropriate infrastructures for the
Semantic Web and are more similar to distributed databases, useful and impor-
tant in their own regard. In the following paragraphs, we highlight some of their
shortcomings, also in respect to the set of criteria mentioned in the introduction.

3.1 Reasoning

Partly due to their computational complexity, current reasoning techniques do
not scale beyond a relatively small set of axioms. Focusing on approaches that
distribute the reasoning process and, in particular, some of the systems pre-
sented in section 2.2, we can identify performance problems in both storing and
retrieving triples:

Storing All approaches that support reasoning store the transitive closure of
triples. Assume a music hierarchy where a class “Music” has hundreds of sub-
classes like “Rock”, “Pop” etc. Storing the statement <Joe,likes, 70’s Rock>
implies storing a triple for each superclass of rock (e.g. <Joe,likes, Classic Rock>,
<Joe,likes, Rock>, <Joe,likes, Music> etc), which may count in the dozens.
Similarly, assuming that we use an approach like [2], to store these tuples in a
DHT, we will need at least twice the number of messages as the number of tu-
ples to be stored. To make matters worse, updating the ontology can be very
expensive. Adding the statement <Music,subclass_of,Art> means that for all
statements with Music, we need to insert an additional triple. The number of
these triples increases by O(N) with the number of axioms in the system, i.e.
we have overall storage and message complexity of O(M × N) where M is the
number of facts and N is the number of axioms in the system.

Querying Let us assume a query to find all subclasses of Music which are not a
subclass of Rock. Resolving this implies retrieving all triples <?,subclass_of,Rock>
and proceeding recursively down the hierarchy. Then all subclasses of Music have
to be retrieved and the intersection of the two sets has to be calculated. To re-
solve this query, the entire hierarchy has to be retrieved. Although in terms of
data traffic, this may sometimes be acceptable, the number of messages required



is prohibitively high: resolving this query means sending at minimum a number
of DHT messages roughly equal to the number of concepts in the hierarchy.

The aforementioned examples clearly indicate the shortcomings in the current
approaches for triple generation in large-scale systems.

3.2 Control over ontologies

All DHT-based stores presented in section 2.2 share the following design assump-
tion: All ontologies and instance data are made public and are maintained in a
distributed manner. This is done by using the triple notation and distributing
these triples among the hosts in the network, according to some indexing scheme.
This means that hosts effectively have no control over the location and admin-
istration of their ontologies and instance data. We can identify the following
weaknesses in this design:

Provenance of information The issue of information reliability that pertains
the Web is also valid and even more exacerbated for the Semantic Web,
since in this case information is meant to be processed and acted upon via
automated reasoning techniques. Existing techniques[5] dealing with this
issue are limiting in that they do not enforce identity verification, but assume
a trusted environment. On the other hand, the only way to guarantee data
integrity in such a distributed and dynamic environment would be the use of
electronic signatures; i.e. each peer signs the triples it inserts in the system
using its electronic key, which is certified by some certification authority.
This however would impose a disproportionate overhead, since storing an
electronic signature for each triple would require more space than the triple
itself.

Publishers are not in control of their ontologies Ontologies and instance
data are becoming important assets for businesses and organizations as they
are expensive to develop, may contain business intelligence etc. Thus, it is
very unlikely that publishers would want to relinquish their control to a
set of community-volunteered computers. This would be as preposterous as
suggesting to large companies to use one of the existing p2p file sharing
systems to distribute their software.

Ontologies and instance data are made public Even in the case where
relinquishing control would be acceptable, there would be many cases where
access control would be required. Again important issues arise on how should
this access control be implemented by a number of untrusted and unreliable
peers.

Having identified a set of limitations that could inhibit the development of
the Semantic Web on current infrastructures, we will propose an alternative
paradigm that could provide solutions to some of these problems and lay the
foundation for future research.



4 Our approach

The main innovation of our approach is shifting the level of granularity for
peer data from triples to entire ontologies. We propose a model where peers
retain control of their ontologies and reasoning is done in a p2p manner. Query
resolution is done in an incremental and distributed manner.

6. Reformulate 

query

2. Determine 

concepts and 

relationships 

required for 

reasoning

3. Localize 

concepts and 

relationships 

required for 

reasoning

4. Perform 

reasoning 

locally

5. Enough?No

Query

1. Partition 

query and 

select sub-

query

Query resolution 

and ontology 

mapping go here

Good enough 

answers go here

Reasoners

go here

Yes

Query resolution 

goes here

Semantic routing goes here

Fig. 1. Querying in our proposed model.

All peers have reasoning capabilities and are able to decide when they have
had enough answers and query processing should be finished. Furthermore,
queries can be decomposed into triple patterns(e.g. <?, type_of, mtv:MUSIC>).
Figure 1 summarizes our proposed model. We will illustrate the explanation of
each step using a simple example, the resolution of the query
SELECT X WHERE X type_of mtv:music

using RDFS reasoning rules (i.e. this query should return all X that are the
predicate of a “type of” relationship with object being mtv:music or any of its
subclasses.

1. Partition query and select sub-query Initially, the part of the query to be resolved
first needs to be determined. Our example query can be written in a triple pattern
format as <?, type_of, mtv:music>. Obviously, there is no point in splitting this
query further.

2. Determine concepts and relationships required for reasoning Out of the triple
pattern <?, type_of, mtv:music>, we need to select a starting point for routing our
query. There are the following two choices: type_of and mtv:music. Intuitively, the
best choice would be mtv:music, since it is more selective and we can use semantic
routing techniques to determine that in a distributed manner. Furthermore, note that
instead of mtv:music, we may have a literal and not a concept. In this case, we will
need to anchor it to a concept. This is where ontology anchoring and ontology mapping
techniques come in handy.



3. Localize concepts and relationships required for reasoning For this step, either the
triples that match the pattern have to be retrieved or the query should be forwarded to
the peer(s) that store the ontology(-ies) with these triples. In our example, as in most
cases, it is wiser to forward the query, since it is much smaller in size (just a single
pattern with no results so far, in this case).

4. Perform reasoning locally Now reasoning can be performed locally and the first results
can be returned.

5. Determine if answers are adequate The next choice is whether the retrieved results
were enough for the user or application. If enough results were found, query resolution
stops, otherwise, the query is reformulated to be further processed.

6. Reformulate query To retrieve additional results and according to RDFS semantics,
instances that have a type which is a subclass of mtv:music should be returned1.
Therefore, we can reformulate the query as follows:

SELECT X WHERE X type_of Y and Y subclass_of mtv:music

Alternatively, the local peer may start a new search for

SELECT Y WHERE Y subclass_of mtv:music

and continue processing once it gets back the results. Assuming that the peer followed
the first option, query resolution would resume to step 1.

1’. Now, the query will be SELECT X WHERE X type_of Y and Y subclass_of mtv:music.
The choice now lies between pattern <?, type_of, ?’> and <?, subclass_of, mtv:music>.
The latter is preferred, since it has more bounded variables.

2’. mtv:music will be preferred over subclass_of, since it is more selective.
3’. The local peer is already knowledgeable about mtv:music (see 3.), so chances are, no

forwarding is needed.
4’. The Y that are subclasses of music are found.
5’. Answers are still not adequate.
6’. Query is reformulated as SELECT X WHERE X type_of Z and Z subclass_of Y

1”. <?, subclass_of, Y> will be selected.
2”. Y will be selected.
3”. Query will be forwarded to peers with some of the possible Y.
4”. Additional results will be returned
5”. Assuming that there are now enough answers, querying is finished. Otherwise, we can

continue with step 6.

.

4.1 Architecture

We propose an architecture abiding to the above model. Ontology descriptions or part
of ontologies (i.e. concepts or relationships) are stored in a distributed public index
and querying takes place in a p2p manner. The public index is maintained by a DHT
consisting of a set of volunteer peers with adequate computational resources and fast,

1 Note that this is not the only RDFS rule that applies in this case; for instance, we
could look for subclasses of the relationship



stable Internet connections. This index is used to resolve URIs to locations, i.e. locating
the peers containing the ontologies and instance data for each relationship, concept
or instance and to Anchor terms to concepts in ontologies, in case we want to anchor
literals to ontology concepts or relationships (e.g. anchor “lives” to namespace1:lives).

Each peer stores a number of ontologies. Although ontologies may be moved across
peers and replicated, this is not necessary. i.e. peers may choose to retain complete
control over their ontologies or replicate them for performance. For instance, the RDFS
ontology is used in the inference process and is public. So, it should be replicated to
practically all peers for performance reasons. On the other hand, some peers may decide
that they do not want their ontologies fully disclosed, and therefore store them only
locally and answer queries on them. For such cases, the approach described in [12]
comes to direct use.

In the simplest form of the system, all URI lookups are done through the DHT.
Indexing is equally straightforward: Peers store on the DHT mappings from the URIs
of the resources they want to answer to their address.

4.2 Optimizations

A series of simple optimizations are suggested to improve the efficiency of the system.

Triple caches To avoid redundant network messages, peers may cache received
triples. This would drastically improve performance but it would also imply some
sort of soft-state mechanism to manage updates or deletions.

Ontology caches/replicas Sometimes, a peer may need data from an ontology so
often, that it would make sense to keep a copy of the entire ontology, and perhaps
share it with other peers. Note however, that this would only be possible for public
ontologies.

A semantic topology Apart from maintaining the global index, peers can be or-
ganized in a semantic topology, determined by the overlap of their resource de-
scriptions. To this end, they would maintain a set of pointers to “interesting”
peers, along with the resource descriptions they contain. This would substitute
expensive DHT messages with direct network messages and would improve perfor-
mance on the expense of some additional storage space per peer, which is gener-
ally considered of minor importance. Updating these pointers is straightforward.
When a new ontology is inserted with a triple <X,r,Y>. For each triple, a pointer
will be stored to the peer with the relevant concepts/relationships. For example,
for <wwf:seal, rdfs:subclass_of, mom:monk_seal>, we will make a lookup for
wwf:seal and mom:monk_seal and retrieve the peers which have triples with these
concepts. We will store a pointer to the publishing peer to each one of those peers.
Thus, future queries that involve these concepts will be forwarded without having
to consult the DHT.

5 Performance indicators

In this section we try to evaluate how our system would work by analyzing some prop-
erties of ontologies currently available on the web. For example, by analyzing the re-use
of concepts (i.e. inter-linkage) between ontologies we can predict the consequences on
how scalable our approach is since our approach performs better where there is not
much re-use.



DHT

Peer 1

wwf:hog

wwf:seal

wwf:animal

wwf:seal
wwf:habitat

rdfs:subclass_of

wwf:lives_in

Peer 2

mom:monk

_seal

rd
fs:su

b
cla

ss_
o
f

wwf:seal

seal

wwf:lives_in

rdfs:subclass_of

mom:monk_seal

P2@134.2.4.1, P1@123.4.1.42

P2@134.2.4.1, P1@123.4.1.42

P1@123.4.1.42

P2@134.2.4.1, P1@123.4.1.42

P2@134.2.4.1

Public Index

Peer3

Select X, Y 

From 

{X}wwf:lives_in{Y}

rdfs:subclass_of

1. {wwf:lives_in}?2. P1@
134.2.4.1

3. Select X, Y 

    From {X}wwf:lives_in{Y}

    U
sing namespace     

wwf=<http://…
>

4. Select X, Y 

    From {X}subclass_of{Y}

    Where Y=wwf:seal

    Using namespace ...    

5. {X=mom:monk_seal}

6. {X,Yl} = 

{mom:monk_seal, wwf:sea}

{wwf:hog, wwf:wilderness}

1
'.
 w

w
f:
a

n
im

a
l

  
  
 w

w
f:
liv

e
s
_

in
,

  
  
 w

w
f:
h

a
b

it
a

t,

  
  
 w

w
f:
h

o
g

,

  
  
 r

d
fs

:s
u

b
c
la

s
s
_

o
f,

  
  
 w

w
f:
s
e

a
l

Fig. 2. The proposed architecture. 1’ Peers index (parts of) their ontologies by
sending a flat list to the distributed index. 1-6 Querying consists of (1) Lookup
on the index for a peer containing concepts or relationships that are part of the
query, (2) Index returns the address(es) of the matching peer(s), (3) Query is
forwarded to the selected peer(s), (4) Peer 1 creates a new sub-query according
to RDFS reasoning rules and forwards it to Peer 2 using the semantic topology,
(5) Peer 2 returns the results of the subquery to Peer 1, (6) Peer 1 aggregates
the results and returns them to the querying peer.



Swoogle [7] is a search and meta-data engine for the Semantic Web. Besides the
core search functionality, it also provides detailed statistics about the more than 10.000
ontologies it stores, where Swoogle considers a Semantic Web document (SWD) to be
a document represented as an RDF graph and a term refers to a rdfs:Resource node
in a SWD.

5.1 Namespace usage

Namespaces used in an ontology are pointers to other ontologies and therefore an
indication of re-use. Their statistics2 show that there are 4576 namespaces used by
329987 SWDs. The purple line in figure 3a3shows the distribution of namespaces. As
can be seen, the popularity follows some power-law disribution, meaning that only a
few namespaces are very popular (like the rdf namespace) and most are rarely used.
This confirms our hypothesis that ontologies are not strongly connected which means
that in most cases the possible answers can be found locally on a single peer hosting
the ontology/-ies of interest.

Fig. 3. a) Cumulative Term/Namespace Usages Distribution and b)Cumulative
SWD

5.2 Local reasoning.

Swoogle provides statistics on the distribution of SWDs per website. There are 132206
websites indexed that are hosting 337182 SWDs, meaning an average of three SWDs per
website. However figure 3a shows that the distribution follows Zipf’s law except in the
tail, meaning that most hosts4 will only have one or two ontologies. If we combine this
with the statistics on the number of terms per SWD (distribution shown in figure 3b)
we see that in most cases local reasoning only needs to be done over a relatively small
ontologies. Namely, the figure shows that the number of class and property definitions
in most cases is smaller than 10 is one order of magnitude smaller than the number of

2 http://swoogle.umbc.edu/2005/modules.php?name=Swoogle Statisticsfile=usage namespace
3 http://swoogle.umbc.edu/2005/modules/Swoogle Statistics/images/figure5-2004-

09.png
4 note that we consider the number of hosts to be equal to the number of websites



populations. Most SWDs do not define classes or properties at all, but just populate
instances, meaning that in most cases only local reasoning on instance checking needs
to be done.

The number of SWDs per suffix5 , not shown in this paper, shows that most on-
tologies are written only in rdf and only a few also in owl, daml or rdfs, meaning
that not much extra reasoning is needed currently than simple rdf triple matching. For
now, this is a counter argument to our approach in favor to distributed triple storage
mechanisms in terms of the need of lack of complex local reasoning in the latter ap-
proach. However the arguments of desired local control and provenance still favor our
approach. Besides this, [6] states that the increased use of two OWL equality assertions:
owl:sameAs (279,648 assertions in 17,425 SWDs) and owl:equivalentClass (69,681 as-
sertions in 4,341 SWDs) may be an indication of increased ontology alignment, and
therefore increased use of richer languages.

6 Conclusions and future work

In this paper, we have presented a new method for distributed ontology storage and
querying which has ontologies as the normal level of granularity for data distribution.
Examining the ontologies currently on the Internet indicates that local reasoning is,
most of the times, sufficient for query resolution. In this case, our approach clearly
outperforms ones that rely on triple distribution on top of DHT.

Future work lies in more diligent evaluation of our approach, doing simulation and
emulation experiments. Furthermore, we have not examined the scenario where peers
do not have the capacity to store their own ontologies/instance data. In this case, the
latter would have to be split and distributed among several peers. It would be very
interesting to investigate methods to accomplish that, for example using past queries
to determine which concepts/instances/relationships are used together, or splitting the
ontology graph so as to keep overlap between the resulting graphs to a minimum.

References

1. Karl Aberer, Philippe Cudré-Mauroux, Anwitaman Datta, Zoran Despotovic, Man-
fred Hauswirth, Magdalena Punceva, and Roman Schmidt. P-grid: a self-organizing
structured p2p system. SIGMOD Rec., 32(3):29–33, 2003.

2. Karl Aberer, Philippe Cudré-Mauroux, Manfred Hauswirth, and Tim Van Pelt.
Gridvine: Building internet-scale semantic overlay networks. In Sheila A. McIlraith,
Dimitris Plexousakis, and Frank van Harmelen, editors, International Semantic
Web Conference, volume 3298 of Lecture Notes in Computer Science, pages 107–
121. Springer, 2004.

3. D. Battré, A. Höing, F. Heine, and O. Kao. On Triple Dissemination, Forward-
Chaining, and Load Balancing in DHT based RDF stores. In Fourth Interna-
tional Workshop on Databases, Information Systems and Peer-to-Peer Computing
(DBISP2P) in scope of 32st International Conference on Very Large Data Bases,
2006.

4. Min Cai and Martin Frank. RDFPeers: A scalable distributed RDF repository
based on a structured peer-to-peer network. In Proc. 13th International World
Wide Web Conference, New York City, NY, USA, May 2004.

5 http://swoogle.umbc.edu/2005/modules.php?name=Swoogle Statisticsfile=swd suffix



5. J. Carroll, C. Bizer, P. Hayes, and P. Stickler. Named graphs, provenance and
trust. In WWW ’05: Proceedings of the 14th international conference on World
Wide Web, pages 613–622, New York, NY, USA, 2005. ACM Press.

6. Li Ding and Tim Finin. Characterizing the Semantic Web on the Web. In Pro-
ceedings of the 5th International Semantic Web Conference, November 2006.

7. Li Ding, Tim Finin, Anupam Joshi, Rong Pan, R. Scott Cost, Yun Peng, Pavan
Reddivari, Vishal Doshi, and Joel Sachs. Swoogle: a search and metadata engine for
the semantic web. In CIKM ’04: Proceedings of the thirteenth ACM international
conference on Information and knowledge management, pages 652–659, New York,
NY, USA, 2004. ACM Press.

8. Dieter Fensel and Frank Van Harmelen. Unifying reasoning and search to web
scale. IEEE Internet Computing, 11(2):94–96, March/April 2007.

9. Peter Haase, Jeen Broekstra, Marc Ehrig, Maarten Menken, Peter Mika, Michal
Plechawski, Pawel Pyszlak, Björn Schnizler, Ronny Siebes, Steffen Staab, and
Christoph Tempich. Bibster - a semantics-based bibliographic peer-to-peer system.
In Proceedings of the Third International Semantic Web Conference, Hiroshima,
Japan, 2004, NOV 2004.

10. A. Harth and S. Decker. Optimized Index Structures for Querying RDF from the
Web. In LA-WEB ’05: Proceedings of the Third Latin American Web Congress,
page 71, Washington, DC, USA, 2005. IEEE Computer Society.

11. Javier Jaen. MoMo: A Grid Infrastructure for Hybrid Museums, PhD Thesis.
Polytechnic University of Valencia, 2006.

12. Spyros Kotoulas and Ronny Siebes. Scalable discovery of private resources. In
IEEE SECOVAL at SECURECOMM ’07, Nice, France, 2007.

13. E. Liarou, S. Idreos, and M. Koubarakis. Evaluating Conjunctive Triple Pattern
Queries over Large Structured Overlay Networks. In I. Cruz, S. Decker, D. Alle-
mang, C. Preist, D. Schwabe, P. Mika, M. Uschold, and L. Aroyo, editors, The
Semantic Web - ISWC 2006, volume 4273 of LNCS, pages 399–413. Springer,
2006.

14. Keong Lua, J. Crowcroft, M. Pias, R. Sharma, and S. Lim. A survey and compari-
son of peer-to-peer overlay network schemes. Communications Surveys & Tutorials,
IEEE, pages 72–93, 2004.

15. A. Matono, S., Mirza, and I. Kojima. RDFCube: A P2P-based Three-dimensional
Index for Structural Joins on Distributed Triple Stores. In Databases, Information
Systems, and Peer-to-Peer Computing, Trondheim, Norway, 2006. Springer.

16. Wolfgang Nejdl, Boris Wolf, Changtao Qu, Stefan Decker, Michael Sintek, Ambjörn
Naeve, Mikael Nilsson, Matthias Palmér, and Tore Risch. Edutella: A P2P net-
working infrastructure based on rdf. In Proceedings to the Eleventh International
World Wide Web Conference, Honolulu, Hawaii, USA, May 2002.

17. H. Stuckenschmidt, R. Vdovjak, J. Broekstra, and G-J Houben. Towards dis-
tributed processing of RDF path queries. Int. J. Web Engineering and Techonology,
2(2/3):207–230, 2005.

18. E. Della Valle, A. Turati, and A. Ghioni. PAGE: A Distributed Infrastructure for
Fostering RDF-Based Interoperability. In DAIS, pages 347–353, 2006.


