
OpenKnowledge

FP6-027253

OpenKnowledge File Front-End

David Dupplaw1, Paolo Besana2, Madalina Croitoru1, Srinandan
Dasmahapatra1, Bo Hu1, Paul Lewis1, Antonis Loizou1, Liang Xiao1

1 IAM Group, School of Electronics and Computer Science, University of
Southampton, Southampton, SO17 1BJ, UK.

2 Centre for Intelligent Systems and their Applications, University of
Edinburgh, Edinburgh, EH8 9LE, UK.

Report Version: final
Report Preparation Date: December 2007
Classification: deliverable 5.4
Contract Start Date: 1.1.2006 Duration: 36 months
Project Co-ordinator: University of Edinburgh (David Robertson)
Partners: IIIA(CSIC) Barcelona

Vrije Universiteit Amsterdam
University of Edinburgh
KMI, Open University
University of Southampton
University of Trento

1

OpenKnowledge File Front-End: Using

Interaction Deferral and Delegation

David Dupplaw Paolo Besana Madalina Croitoru
Srinandan Dasmahapatra Bo Hu Paul Lewis

Antonis Loizou Liang Xiao

January 2, 2008

Abstract

OpenKnowledge aspires to create networks of peers that are able to
share data. This deliverable describes the file-front end that allows peers
to share larger data items than would be sensible to share during an
interaction. It is implemented as an OpenKnowledge component. It is
described in the context of a multimedia application and introduces the
idea of deferred interaction model execution. For deferred interaction
model execution, the subscription negotiators, that provide the list of
mutually compatible peers during interaction bootstrapping, need to be
able to select peers by the specific identifiers.

1 Introduction and motivation

The well-known peer-to-peer networks, like Kazaa, eMule, etc., provide the
means for users to share files. Although this is not the aspiration of the Open-
Knowledge project, providing a means for sharing data is an important part of
allowing peers to interact. The interaction of peers is controlled by a coordi-
nation language, LCC [3, 4], and small data items can be transferred between
peers using the standard OpenKnowledge messaging systems of the peers dur-
ing a normal interaction. However, there are many data items that would be
too large to be sensibly passed in interaction messages due to the time over-
head transferring them would incur. We may wish to first make available cheap
summary metadata about the data with an option for the requesting peer to
retrieve the full data should they require it.

We have previously presented a means for large data items to be described
with summary metadata descriptions that can be transferred using the standard
messaging system [2]. Within the interaction these metadata objects are stored
as the value of a single variable but represent the entire object. The aspiration
is that the transfer of the large data object can be deferred until the data is
required. The challenge is for the OpenKnowledge peer to transfer the data
transparently to minimise the authoring overhead for interaction models.

2

The file front-end is a small protocol implementation that allows files to be
intentionally shared on the network by users but also allows running interactions,
that involve large data items, to share data transparently. The implementation
is realised, naturally, as an LCC interaction model with supporting OpenKnowl-
edge components. The protocol itself is a very simple bilateral interaction but
utilises two interesting parts of the OpenKnowledge kernel: interaction model
deferral and delegation and subscription negotiation.

To make concrete the ideas that are explained here we will introduce a very
simple application that will utilise the file-front end.

2 The Photo-Library Scenario

A magazine editor has OpenKnowledge running on her peer and wishes to buy
a photograph for the front-page of her special-issue magazine all about insects.
She needs to initiate an interaction with a photographic library that allows pho-
tographs to be purchased. The magazine editor subscribes to an appropriate
interaction model that she found already published on the network. She sub-
scribes in the photo buyer role and starts an interaction with a photographic
library who is already subscribed in the photo lib role. The editor enters the
keyword ‘insects’ and is returned a list of possible images that she is able to in-
terrogate based on their licencing conditions, overall resolution, relevancy, cost
and other metadata provided by the library. She chooses the one she thinks is
perfect for the front page of her magazine and proceeds with the purchase. Her
payment is processed without a problem and the image is downloaded to the
editor’s peer and shown to her. As it is now on her peer, she can import it into
her design application just like any other file.

The interaction model the editor and the photo library subscribed to is
shown in Model 1.

3

a(photo lib, PL) ::
photoRequest(Keywords) ⇐ a(photo buyer, PR) then
photoDetails(ImageList) ⇒ a(photo buyer, PR)

← getImages(Keywords, ImageList) then
(

buyImage(I) ⇐ a(photo buyer, PR)← inList(ImageList, I) then
imageBought(I) ⇒ a(photo buyer, PR)← acceptPayment(PR) or
paymentFailed(I) ⇒ a(photo buyer, PR)

) or
cancel() ⇐ a(photo buyer, PR)

a(photo buyer, PR) ::
photoRequest(Keywords) ⇒ a(photo lib, PL)

← getKeywords(Keywords) then
photoDetails(ImageList) ⇐ a(photo lib, PR) then
(

buyImage(I) ⇒ a(photo lib, PL)← selectImage(ImageList, I) then
(

imageBought(I) ⇐ a(photo lib, PL) then
null← getImage(I, Idata) and saveImage(Idata) then
null← showImage(I, Idata)

) or
paymentFailed(I) ⇐ a(photo lib, PL)

) or
cancel() ⇒ a(photo lib, PL)

visual(getKeywords(Keywords), input(“Enter Search Terms:”, Keywords))
visual(selectImage(ImageList, I), chooseImage(ImageList, I))
visual(showImage(I, Idata), showImage(Idata))

(1)

Model 1, the model for the photographic library application, is based on a
standard request-response pattern.

In the initial search results list, the server initially returns only metadata
about the requested photograph to the requester; for example, it may return
the licencing conditions, the price, the image resolution, creator, etc. This
not only makes sense from a efficiency point-of-view, but also makes particular
sense in this case, as a photo library would not want to send the full-resolution
photograph to the buyer before they had paid for it. This metadata will be in
a language that the photo library has considered to be best for them. However,
it may not match the requester’s local knowledge representation, so mapping
between schemas will need to take place for execution of the process.

Once a user selects an image to buy, the payment is processed and the
server responds with an imageBought(I) message, where I contains the image
metadata (that may undergo mapping).

4

The getImage constraint of the photo buyer role is where the interaction
model delegation takes place before the image is saved to the disk. The getImage(I, Idata)
retrieves the image data from the photo library based on the implicit image in-
formation, in I, that is provided by the photo library. The type and value of I is
deliberately tacit; the open nature of the interaction model definition should not
be constrained to any particular image format. It is therefore imperative that
the mapping is able to provide good enough results for implementations of the
getImage(I, Idata) method. So, clearly, the way the image-data retrieval is ac-
tually achieved depends on the OKC implementation. In the interest of showing
the interaction deferral and delegation functionality we can assume here that
the retrieval of the image data, Idata, uses an interaction model that the photo
library server has provided to the buyer through the image metadata, I, in the
message imageBought(I). The interaction model defines an interaction that
will allow the buyer to retrieve the actual image data of the photograph. When
the buyer requires the actual image data they can invoke the interaction model
included with the image metadata which will start an interaction with the photo
library and download the image to their peer. This interaction model is an in-
stance of the file-front end and an example of the interaction deferral which we
will describe in the following sections.

3 File Front-End Requester Component

The file front-end requester role (the role the buyer will delegate to in our
scenario) is a simple protocol that states a peer will make a request for a given
data item from a peer in the supplier role, when it knows the item identifier.
The peer in the supplier role then returns the data item’s raw data, or returns
an error message. On success, the data is stored onto the local peer. In Section
7 we will describe how this model can provide other means for data transfer.

The LCC model is shown in Model 2.

a(ffe requester(ItemID,Data,D), R) ::
retrieve(ItemID) ⇒ a(ffe supplier, D)
dataItem(Data) ⇐ a(ffe supplier, D)← saveData(Data)
or
error(Msg) ⇐ a(ffe supplier, D)

(2)

It is clear how a user might use this to manually request items from other
peers, but by statically injecting the values for ItemID and/or D into the
interaction model, this model will only perform one single specific request. This
makes the application of the interaction model delegation easier to handle for
the requester.

In the photo library example, the item returned in the imageBought message
is a metadata structure that contains an instance of this interaction model.
The instance will have some statically injected values that limit the requester
to retrieving only a certain photograph from a certain photographic library.

5

Model 3 shows how the input to the model might be statically defined for an
item by the photo library server.

a(ffe requester(“12345”,Data,“photolib.com:4000:AB43AB3”), R) ::
...

(3)

If this interaction model was executed the requester would only communicate
with the server component at the given EndPointID (photolib.com:4000:AB43AB3)
and only for the given item identifier (12345). Doing so allows the requester to
be agnostic to the means for retrieval of the item and allows the server to limit,
to some extent, the actions of the requester.

When the requester subscribes to this model, a bootstrapping mode is en-
tered that allows the supplier to check which requesters are wanting to download
data. The Subscription Negotiator module of the kernel on the photo library
peer handles this bootstrapping interaction, as is described below with the com-
plimentary part of the file front-end model.

4 File Front-End Delivery Component

The file front-end delivery component is the complimentary protocol to the
requester protocol and so is also very simple. It delivers some raw data when
requested, or an error message if the data is not available.

Model 4 shows the file front-end delivery protocol. This model accepts a
request for a data item, identified by a given item description that may need
to be mapped to the delivery peer’s local ontology. If the item exists and the
instantiated role is able to associate it as the value of a variable, the role returns
the item in the message dataItem(Data).

a(ffe supplier, FFE) ::
null← getItemToShare(Item) and shareItem(Item)
a(ffe supplier(Item), FFE)

visual(getItemToShare(Item), chooseFile(Item))

a(ffe supplier(Item), FFE) ::
retrieve(Item) ⇐ a(ffe requester, R)← exists(Item)
dataItem(Data) ⇒ a(ffe requester, R)← getItem(Item,Data)
or
error(Msg) ⇒ a(ffe requester, R)← getLastError(Msg)

(4)

A user could manually subscribe to this interaction model directly using the
first of the clauses. This allows the user to select an item from their local disk
and flag it in the peer’s state as being shareable. Alternatively, an actor can
begin execution at the second clause with an item ID pre-defined, as would

6

occur if the data were being delivered as part of a deferred interaction model
execution. In this case, it must be ensured that the item data is only delivered to
the correct requester and instantiation of an appropriate subscription negotiator
at the deliverer can help to achieve this.

5 Subscription Negotiation

The subscription negotiator is a module that exists for each subscription on
every peer and is responsible for deciding on which other peers it is prepared to
play with in that interaction.

During interaction bootstrapping, the coordinator receives from the Dis-
covery Service a list of all the possible actors that may play the roles in the
interaction model that the coordinator has been selected to orchestrate. The
coordinator asks each peer for a list of peers that it is prepared to play with
for each role. The coordinator then runs a constraint satisfaction algorithm on
the result to find the maxmimum set of mutually compatible peers. If all roles
are filled by at least the minimum number of peers that the interaction model
defines, the interaction is started.

All OpenKnowledge Components (OKCs) have end-point identifiers that
allow a specific OpenKnowledge component to be identified uniquely on the
network. For OKCs that are playing in an interaction, identity of the other
players is provided by the coordinator. End-point identifiers consist of two
parts: one, a peer identifier which in the current kernel implementation is the
IP address of the machine with a port number but theoretically can be any
unique identifier; and two, a unique identifier that represents the OKC on that
peer. During creation of a subscription negotiator, the server must ensure that
the comparison routine will match peer identifiers and not end point identifiers,
as the OKC that will play on the client side in the deferred interaction will not be
known in advance, but the peer will. For a computer on which multiple peers are
running, such as a web-based OpenKnowledge server, each peer identifier should
be associated with a single user, thereby making the peer identifier synonymous
with a user.

The kernel is able to provide a subscription negotiator that will only choose
a specific peer for each role. The OKC generating the deferral will ask the peer
to create a subscription for a given interaction model. The peer is the central
knowledgeable unit in the kernel and all peer processes must be handled via the
peer. Therefore, the OKC asks the peer to subscribe, although the peer is not
obliged to do so. Listing 1 shows the Java code for subscribing to an interaction
model.

The subscribe function that is provided by the OKC will ask the peer to
subscribe to the given model in the given role (with the given arguments). The
returned negotiator is set to only accept the peer identified by peerID in the
role ffe requester. Both peerID and Item are local to the OKC in the peer
and will be gathered from the interaction variables.

An extension to this mechanism, that will make the subscription process

7

i f (pub l i sh (l c c))
l o g g e r . warn (‘ ‘ Could not pub l i sh ’ ’) ;

Subsc r ip t i onNego t i a to r sa =
s ub s c r i b e (l c c , ‘ ‘ f f e s u p p l i e r ’ ’ , Item) ;

i f (sa == null)
l o g g e r . warn (‘ ‘ Could not su b s c r i b e ’ ’) ;

else
sa . addF i l t e r (new Peer IDFi l t e r (peerID ,

new Role (‘ ‘ f f e r e q u e s t e r ’ ’))) ;
Listing 1: OKC Code for interaction subscription

more efficient, is to ensure that the discovery service filters the potential actors
for an interaction prior to negotiation. If the kernel and discovery service were
able to provide a form of tagging for peers, groups can be formed within the peers
such that peers that are to play in a closed interaction can be pre-selected by the
discovery service using their group tags. Doing so will mean the number of peers
that are contacted during bootstrapping will be greatly reduced. However, the
subscription negotiation phase still need to be robust such that malicious peers
that are tagging themselves incorrectly will still be disallowed from playing in
the interaction.

6 Interaction Delegation

In an interaction, a peer may receive a metadata item that contains a deferred
interaction model that allows retrieval of the actual data. The peer must block
its execution of the current interaction and delegate the execution to the other
interaction model instance. In this way, the interaction delegation process is
a means for a constraint satisfaction routine to depend on the result of the
execution of another interaction model. This mechanism provides a powerful
way to make the peers more proactive.

OpenKnowledge components are modules that are used to satisfy constraints
in interaction models. In the OpenKnowledge Java SDK, these components
should extend the OKCFacadeImpl class that provides a limited set of functions
that the developer is able to use to communicate with the kernel on which the
OKC is running. It is in this abstract class that we add a function that allows
the OKC to subscribe the peer to other interactions.

The deferred interaction model definition is provided in LCC, along with the
identifier of the role which the peer should play when delegation takes place.
The deferral should have a flag that informs the peer whether another peer
will already be subscribed in a role on that interaction model. In the case of
the file front-end, another peer will already be subscribed in the ffe delivery
role when the interaction model is received by the requester. This means the

8

receiving peer is able to simply subscribe to the interaction. If this flag indicates
that the actor list may be entirely distinct from the list of actors in the current
interaction model, the peer is obliged to first publish the interaction model, as
it may not exist on the network. Publishing models that are already published
has no effect in the OpenKnowledge network.

Allowing OKCs to subscribe the peer to interactions also requires the OKC to
specify new OKCs that will be used to solve constraints in that new interaction.
As this is usually a manual step that the user initiates, we need an intelligent
way in which to achieve the association of OKCs with the interaction instance.

There are two parts to the procurement of an appropriate OKC for subscrip-
tion to a deferred interaction model. The most obvious is that the local peer’s
functionality (OKC repository) is searched for appropriate components that will
play in the interaction. Components that have a direct mapping may be used
without user intervention, however if a mapping takes place to ensure interop-
erability, the user may be required to validate the OKC. The ‘Good Enough
Answers’ score can be used to determine this.

In the case that an appropriate OKC is not found in the local peer’s func-
tionality, it could be procured from the network, if the user’s policy allows this.
As every interaction model has a unique identifier, OKCs that are associated
with that identifier directly, could be located on the network and downloaded
(with the appropriate permission from the user). These could then be instanti-
ated and used in the new interation instance. Finding appropriate OKCs on the
network that are not directly associated with interaction models has not been
implemented in OpenKnowledge.

Once the appropriate OKCs exist on the local peer, they must be instantiated
as part of a subscription negotiator, and the subscription negotiator should,
again, be aligned to the peer from which the deferred interaction model was
received. Once the subscription is complete, the interaction model will play out
until it ends and control is returned to the OKC that subscribed to the model.

In LCC, roles within interaction models do not have return values. However,
parameterised roles can be used to identify return values, by side-affecting the
parameter values, as long as these roles are used as entry roles. The call to
the parameterised role, in the OKC initiating the delegation, would have to
align with the parameterised role in the deferred interaction model definition
such that the values of the return variables can be copied into the variables of
the blocked interaction model. Indeed, a subscription to the parameterised role
could automatically transfer the required values to the OKC’s scope to make
the process easier to implement.

For example, a subscription to the parameterised role ffe requester, in
Model 2 would use the OKC’s in-built functions to initiate the subscription,
while automatically updating the local symbol table at the end of the delegation.
The listing below shows a simplified call to the subscription function, where
Item and D are local variables in the blocked OKC.

Clearly, in the case that ItemID is statically defined in the model, the
initial value of Item will have no affect, but it will be side-affected at the end
of execution of the subscribeAndWait function call.

9

i f (! subscribeAndWait (l c c , ‘ ‘ f f e r e q u e s t e r ’ ’ , Item , Data))
l o g g e r . warn (‘ ‘ Could not su b s c r i b e ’ ’) ;

Listing 2: OKC code for interaction delegation

7 On-The-Fly OKC Installation

It could be that the raw data that the client requires might be better delivered
using a different technique than the standard OpenKnowledge messaging. For
example, if the user required a large video, it may be more efficient that the video
is retrieved from many peers all at once as the BitTorrent protocol provides; or
an application server may be maximising the control of their data by using a
proprietry communication method. The default transfer mechanism as provided
by the OpenKnowledge messaging system may not be enough for all types of
data and it is in the interest of an open system that OpenKnowledge provides
other options for data transfer. The definition of the file-front-end is generic
enough that other mechanisms can be used if OKCs are provided that implement
the constraints in a different manner.

Model 2 introduced the interaction protocol for the requester of data. The
model defines the constraint saveData(Data) that stores raw data that has
been transferred from the server, onto the local peer.

However, it could be that the implementation of the saveData(Data) con-
straint uses BitTorrent to download the data, whose reference is given by the
server in the variable Data. It could be that the implementation uses a propri-
etory method for downloading the data and needs to enact a specific low-level
protocol that is based on some information in the value of Data. Either way,
the implementation is specific to the retrieval technique and may be in a form
that the client does not yet know about.

To overcome this, the kernel can provide a mechanism by which OKCs are
installed on-the-fly into the local peer. The server should publish the relevant
OKCs to the network and pass, in the image metadata, the relevant OKC iden-
tifier such that the client can retrieve the OKC from the network and install it.
Alternatively a more flexible approach could be used, by mapping the semantic
markup.of the data to the semantic markup of OKCs on the network.

For the appropriate OKC to be identified on-the-fly by the kernel, when no
OKC identifier is provided, the kernel must be able to identify the protocol for
data retrieval and use it in the mapping process for subscription. If no match
can be found for particular constraints in the subscription, the appropriate OKC
can be sourced from the network based on its semantic markup. As long as the
OKC code is semantically marked up (as described in Deliverable 1.3 [1]) the
process can be automated.

Clearly, downloading and installing OKCs on-the-fly could introduce some
security concerns. It is therefore essential that the user is informed of such on-
the-fly installations and be responsible for giving the go-ahead to download an
install the appropriate OKCs.

10

Figure 1: The Photo Library deferred interaction model sequence diagram

8 The Photo Library Deferral and Delegation
Process

If we return to the photography library example, we can show how the defer-
ral process works in context. Figure 1 shows the sequence of messages in the
interaction, showing the OKCs and their interactions.

Initially, the interaction takes place as normal. The photographic library
returns a set of image metadata based on the user’s keyword terms. When the
user successfully pays for an image, the photo library server subscribes to the file
front-end delivery component with buyer specified in its subscription negotia-
tor’s role filter. When the buyer received the imageBought message, containing
the deferred interaction model definition, it is able to begin the execution of that
interaction model (delegate) to retrieve the image data. It subscribes to the file
front-end model and bootstrapping begins. The server’s subscription negotiator
for the OKC that will deliver the bought image, will only accept the buyer (or
their peer identifier) to play with in the requester role so only the buyer is able
to receive the requested image. When the delegated interaction completes the
original interaction is able to continue - in this case, the showImage constraint
is satisfied.

9 Conclusions

In this article, we have discussed a simple OpenKnowledge component that is
able to deliver data between peers. We have introduced how the component can
be provided as a deferred interaction model for retrieval of large data, thereby

11

allowing the message passing to be efficient and responsive in cases where the
large data transfer would be unnecessary. We described how the deferred model
can be executed using the interaction model delegation mechanism that blocks
the execution of an interaction model and delegates execution to another model
instance. The results of a delegation can then be used when the blocked model
restarts. To achieve the communication between the peer that generates and
subscribes to the deferred model and the peer that receives and subscribes to
the deferred model, the kernel’s subscription negotiator needs to be extended
to allow selection of specific peer identifiers in specific roles. The kernel’s com-
ponent APi also needs to be carefully modified to allow OKCs to subscribe to
roles on the networkm both asynchronously and synchronously. Implementing
these changes in the kernel will provide much greater autonomy for peers and
should provide some powerful functionality.

References

[1] Paolo Besana, OpenKnowledge plug-in components, Tech. Report Deliverable
1.3.

[2] Antonis Loizou, Mischa M. Tuffield, Paul H. Lewis, David Dupplaw,
Madalina Croitoru, Liang Xiao, and Srinandan Dasmahapatra, Markup tools
for OpenKnowledge, Tech. Report Deliverable 5.2.

[3] Dave Robertson, A lightweight coordination calculus for agent systems,
Declarative Agent Languages and Technologies, 2004, pp. 183–197.

[4] David Robertson, Multi-agent coordination as distributed logic program-
ming., ICLP, 2004, pp. 416–430.

12

