
OpenKnowledge

FP6-027253

Extension of LCC as a Visualisation Language

David Dupplaw1, Dave Robertson2, Madalina Croitoru1,
Srinandan Dasmahapatra1, Bo Hu1, Paul Lewis1, and Liang Xiao1

1 School of Electronics and Computer Science, University of Southampton, UK
2 School of Informatics, University of Edinburgh, UK

Report Version: final
Report Preparation Date: 31.1.2007
Classification: deliverable D5.1
Contract Start Date: 1.1.2006 Duration: 36 months
Project Co-ordinator: University of Edinburgh (David Robertson)

Partners: IIIA(CSIC) Barcelona
Vrije Universiteit Amsterdam
University of Edinburgh
KMI, Open University
University of Southampton
University of Trento

Visualisation and Message Markup in

OpenKnowledge

David Dupplaw
dpd@ecs.soton.ac.uk

Dave Robertson
dr@inf.ed.ac.uk

Madalina Croitoru
mc3@ecs.soton.ac.uk

Srinandan Dasmahapatra
sd@ecs.soton.ac.uk

Bo Hu
bh@ecs.soton.ac.uk

Paul Lewis
phl@ecs.soton.ac.uk

Liang Xiao
lx@ecs.soton.ac.uk

January 31, 2007

Abstract

OpenKnowledge relies on the interaction of peers in a peer-to-peer
network to provide constraint satisfaction of constraints on interactions
within an interaction model. Currently, if constraints in the interaction
model fail, with no alternative during a back-tracking operation, the whole
interaction fails. In certain cases this is the correct thing to do. In other
cases a human could be introduced in the process to act as an agent
that will solve the constraint manually, thereby allowing the interaction
to continue.

In this document we suggest ways in which this interaction may occur.
This has effects on the design of parts of the system. Therefore we describe
how the markup of the interaction state should be passed through the
messages so that the visualisation may appear correctly. An example
involving multimedia markup is also presented.

We also describe other non-interactive visualisation operations, both
online and offline, that can be implemented in the system.

1 Introduction

The issue of visualisation of information when sharing knowledge in distributed
systems has not featured prominently in debates in the knowledge engineering
community. One reason for this is the ubiquity of visualisation and the diversity
of visualisation tools. Another reason is that one might assume the visualisation
issue is readily solved: all we do is use our favourite visualisation tool for the

1

type of information we wish to view. In this paper we demonstrate that in true
distributed knowledge sharing (of the sort we need for activities like large scale,
open semantic webs) the visualisation problem is non-trivial - in the worst case
insoluble - for conventional systems. We then provide a means of avoiding the
worst case, to achieve a practical solution in a peer-to-peer setting.

Suppose that we have two existing Web services with API’s available (e.g.
via WSDL): the first is one that requires as input someone’s weight and height
and then calculates as output his or her body mass index; the second is a lifestyle
recommendation service that will generate as ouptut some life-enhancing sug-
gestions based on the input of a person’s body mass index. As engineers, we
would like to combine these services so that people can offer their weights and
heights and get lifestyle recommendations without having to go to the trouble
of accessing each service separately. The traditional method of tackling this
problem is simply to build a new Web service that calls the other two, with a
user interface appropriate to our new service. The user interface (all of it spe-
cific to our new service) might prompt the person for weight and height; then
call the BMI calculation service; then call the lifestyle service; then display the
recommendations back to the person. Stripped of the details necessary to get
the job done in a Web environment, this simply is function composition:

lifestyle from bmi = display(lifestyle(bmi(input(weight), input(height))))

where lifestyle from bmi is the function giving us our new service; lifestyle
and bmi are the functions corresponding to calls to our existing two services;
input is a function allowing user input; and display is a function providing a
visualistaion to the user of the lifestyle output.

This works for a single application but it is limiting because the input and
display functions are built purely for the lifestyle from bmi service, so each
time we think of a new service we must build the interface for it anew. There
are far too few interface (and Web service) designers in the world to construct
all the bespoke interfaces we need.

Service composition languages (such as OWL-S) offer a radically different
solution to the service composition problem. In this view, the inputs and outputs
of services would be typed, so an automated system could detect which input to
bmi was of type height and which was of type weight, and might also (modulo
ontology matching) be able to infer that the output of bmi could supply the input
to lifestyle. If we also could infer the visualisation necessary for communication
with users then this would solve the problem of having to write visualisations.
We might infer for example that an input of type weight could be supplied via
an interface that asked the question “What is your weight?” and accepted a
response typed into an edit field. Unfortunately this is impractical as a general
solution because:

• Type information must be very specific in order to identify visualisations
reliably. In our example, perhaps a sliding scale might be better, since
weight in kilos varies between 0 and (say) 500, but to infer this requires

2

more information than we could expect reliably to obtain in practice via
typing.

• The interaction can influence the visualisation. In our example, we might
want the display of lifestyle recommendations to say things like “based
on your calculated BMI of 31, given that you said you were 1.7m tall we
recommend you take more exercise”. This requires the visualisation of the
output of the lifestyle service to be presented in the context of the inputs
and output of the bmi service.

From the above, some aspects of the visualisation of knowledge must be
specified in addition to bare knowledge services and, furthermore, the speci-
fication of visualisation may apply across service interactions. A language in
which interactions are described therefore appears essential in order to tackle
this problem. One such language is the Lightweight Coodination Calculus being
used as part of the OpenKnowledge project.

OpenKnowledge is a system for the execution of distributed applications,
where the applications’ functionalities reside on different computer systems. The
network connecting these systems is a peer-to-peer network, although Open-
Knowledge is largely agnostic to the underlying implementation. Interaction
models are defined as constrained message passing operations; that is, message
passing occurs between two peers in the network if some constraint can be sat-
isfied. In effect, this pushes the implementation of the service functionalities
into a constraint on the sending of the result message.

In OpenKnowledge we make these interaction models the currency of the
system, sharing, transmitting and composing them. A simple interaction model
formalised in LCC is shown in Model 1. This has an agent in role1 sending a
message to an agent in role2, if the variable C can be created. The agent in role
2 simply accepts the message.

a(role1, ID) ::
m1(C) ⇒ a(role2, ID2)← find(C)

a(role2, ID2) ::
m1(C) ⇐ a(role1, ID)

(1)

During this simple interaction we have a constraint on the message send-
ing operation. In the execution of such a protocol the constraint will invoke
some code to side-effect C. Depending on the nature of the code, this may be
achievable automatically, but in the case that it is not we have a number of
choices:

• Constraint is unsatisfiable: If the code cannot find a value for C, the code
may simply say the constraint is unsatisfiable, and the interaction protocol
will need to back-track, or in Model 1 it will fail.

3

• Do some matching: If C is of a particular type, but we are unable to create
objects of that type, the constraint code may invoke an ontology matcher
to mediate the variable and the constraint code [ZAvH06].

• Ask someone: Perhaps the code is unable to generate C automatically,
but failure of the interaction model is undesirable, so we may invoke a
visualisation to ask a user for the value of C.

There are a number of difficulties associated with such visualisation; for
example, where should the visualisation appear (on which peer in the network)
and how should the visualisation appear?

Defining how the visualisation should appear relies very much on the content
of the object to visualise. The content of such objects needs to be passed to
the visualiser via the interaction state. Markup of the interaction state will
involve the markup of those objects which the visualiser will be able to use to
formulate an appropriate visualisation. In section 5 we describe how the markup
for objects can be achieved.

In the following sections, we shall introduce the reason for visualisation and
how it has an impact on the way in which messages and objects are marked up.
In section 7 we also discuss related visualisation techniques for visualisation of
the state of the interaction, for user feedback purposes. As a preliminary to
this, we describe in the next section the basic style of visualisation proposed for
OpenKnowledge, using our BMI example for illustration.

2 Basic Visualisation in LCC

In the previous section we explained why it is difficult, when composing services,
to divorce visualisation from the interaction of which it is a part. The issue then
is whether we can include with our specification of interaction a specification
of its accompanying visualisation. In doing so, we prefer to maintain some sep-
aration between the specification of the dynamics of interaction and its visual
aspects, so that we can re-use interactions with different visualisations. We also
want to use an abstract specification language for the visualisation component,
to avoid the need to have numerous device-specific visualisations for each inter-
action model. The most direct way to achieve this is to associate visualisation
specifications with constraints in the interaction model, as we shall explain using
our BMI example.

Suppose that the engineer of our BMI service (the first of the two in our
earlier example) decides to use LCC to specify a preferred form of interaction
with the service. There are two roles: the role of the BMI supplying service
(getBMI) and the role of its client (bmiClient). In the interaction the client
asks for a BMI, supplying height and weight information as part of the request,
and receives a BMI estimate calculated by the service.

4

a(getBMI, X) ::
ask bmi(H,W) ⇐ a(bmiClient, Y) then
bmi estimate(B) ⇒ a(bmiClient, Y)← bmi(H,W,B)

a(bmiClient, Y) ::
ask bmi(H,W) ⇒ a(getBMI, X)← weight(W) and height(H) then
bmi estimate(B) ⇐ a(getBMI, X)

(2)

The definition above is independent of visualisation but we can identify
visualisation related components of the specification (constraints that might
be satisfied interactively or messages that might be visualised upon receipt).
We use the relation visual(Term, V isualisation) to connect a term from the
interaction model to an appropriate abstract description of visualisation. For
our example this might be:

visual(weight(W), qask(′What is your weight in kilos?′,W))
visual(height(H), qask(′What is your height in metres?′,H))
visual(bmi estimate(B),message([′Y our BMI is′, B]))

(3)

These visualisation descriptions now allow the LCC interpreter to know
when a visualisation needs to occur and the form of visualisation that is impor-
tant. However, this visual relation does not explicitly state how the visualisation
should be presented to the user.

Following a similar approach to the lifestyle advisor service gives us the
following interaction model

a(lifestyleAdvisor, X) ::
tell bmi(B) ⇐ a(lifestyleClient, Y) then
lifestyle advice(L) ⇒ a(lifestyleClient, Y)← lifestyle(B,L)

a(lifestyleClient, Y) ::
tell bmi(B) ⇒ a(lifestyleAdvisor, X)← bmi(B) then
advised(L)← lifestyle advice(L) ⇐ a(lifestyleAdvisor, X)

(4)

and we could add to it the following visualisation definitions in order that the
interpreter can question the user for their BMI and present the list, L, of lifestyle
advice.

visual(bmi(B), qask(′What is your bmi?′, B))
visual(advised(L),message(L)) (5)

Now suppose that we want to describe the more complex interaction de-
scribed in the Introduction involving both services. The roles for getBMI

5

and lifestyleAdvisor need not change but we can write a new role for client,
bmiLifestyleClient, that allows it to interact in sequence with both services:

a(bmiLifestyleClient, X) ::
ask bmi(H,W) ⇒ a(getBMI, X1)← weight(W) and height(H) then
bmi estimate(B) ⇐ a(getBMI, X1) then
tell bmi(B) ⇒ a(lifestyleAdvisor, X2) then
advised(H,L)← lifestyle advice(L) ⇐ a(lifestyleAdvisor, X2)

(6)

We then add the following visualisation definition (replacing those above) to
give:

visual(weight(W), qask(′What is your weight in kilos?′,W))
visual(height(H), qask(′What is your height in metres?′,H))
visual(advised(H,L),message([′Based on height′,H, L]))

(7)

This describes the basic form of visualisation used to accompany LCC in
OpenKnowledge. It provides a simple, yet effective, way to allow interleaving
of interaction with visualisation - thus allowing LCC itself to provide a stan-
dard backbone for attaching visualisation to services and (importantly) also to
compositions of services.

It is important to note that these visual relations do not specify how the
visualisation will occur, they simply provide an archetype of the visualisation
that is required. It is important that the peer that will be performing the
visualisation is able to choose the best way to perform the visualisation, and
the semantic description that accompanies any objects may be used to infer the
specifics of the visualisation procedure.

In the following sections we describe in more detail pros and cons of the
approach.

3 Complex Visualisation

In the previous section we described how specific visualisation cues can be pro-
vided as part of an interaction protocol by specifying relations between a term
in the interaction model and some visualisation declaration. The visualisation
declaration is related to the interaction model but is not part of it; this is im-
portant as the interaction may or may not invoke the visualisation, depending
on whether that constraint can be automatically satisfied or not. It is only in
the case when the constraint cannot be satisfied automatically that visualisation
occurs based on this relation.

In the previous section the term qask was invented to represent the visu-
alisation that would ask a user a question. However, it is foreseen that richer
forms of visualisation will be required for richer objects.

6

Let us take the example of a service, deployed as an OpenKnowledge com-
ponent, that provides a place where users can watch and comment on videos.
The basic function is that a user may search for video files based on some key-
word tagging, watch the video and highlight parts of the video providing their
comments. The interaction model is given in Model 8.

a(videoServer, V) ::
(findV ideo(K) ⇐ a(videoFinder, V F) then
videos(VL) ⇒ a(videoFinder, V F)← searchV ideoDB(K, VL))
or
(comment(C, V) ⇐ a(videoFinder, V C) then
commentSaved(C, V) ⇒ a(videoFinder, V C)← saveComment(C, V))
then
a(videoServer, V)

a(videoFinder, V F) ::
findV ideo(K) ⇒ a(videoFinder, V F)← getKeywords(K) then
videos(VL) ⇐ a(videoServer, V S)← selectV ideo(VL, V) then
comment(C, V) ⇒ a(videoServer, V S)← getV ideoComment(V,C) then
commentSaved(C, V) ⇐ a(videoServer, V S)

(8)

There are certain constraints in this model that can only be satisfied with
the direct input of a user (getV ideoComment for example). The visualisation
relations may be configured for this model as follows:

visual(getKeywords(K), qask(‘Enter some keywords′,K))
visual(selectV ideo(VL, V), choose(‘Select a video′, VL, V))
visual(getV ideoComment(V,C), vidServerDisplay(V,C))

(9)

The first two visual terms (qask and choose) can be considered part of the
underlying OpenKnowledge visualisation library; they simply ask a question and
accept a string answer, or allow the choice of one from a list. However, the very
specialised video display that allows users to peruse a video, highlight parts and
comment on them, is very likely to be visualisation that has been supplied by
the service provider. Because it is not part of the underlying OpenKnowledge
library it will have to be installed by the user. In section 4 we describe how
specialised visual components can be handled by this visual relation abstraction.

4 Framework for Visualisation

The visual relation approach provides the ability to map visualisation requests
to actual visualisation implementations. This provides a number of advantages:

• Device Portability: The device on which the visualisation is to take place
can choose the best method for providing the interaction. For example,

7

qask may provide a text box on a workstation, but may prompt for voice
input on a mobile phone.

• User Preference Support: A user may prefer particular ways in which to
perform a particular type of interaction, or may deny particular types
of visualisation. It can also provide multiple visualisations for particular
visual terms, allowing the user to select (or perhaps automatically deter-
mine) which visualisation to use for particular visual terms.

• Extensibility: The language of visualisation can be extended, providing a
means for adding new visualisation for the system. New implementations
of visualisation can be made available for a user to download.

The framework for visualisation needs to provide the means for mapping the
visualisation term to the implementation of the visualisation. Again, this can
be provided by a simple set of relations that map the visual term to a set of
implementations.

Should an interaction model contain a visual term that the client does not
understand, the client can provide the user with the option to download an im-
plementation from a list sourced from an external repository of implementations.
Such downloads may be performed in advance of the interaction execution too
(say, during subscription to a role). The repository in this case may be a vali-
dated set available from a trusted website (say the OpenKnowledge website), or
potentially from a discovery procedure on the OpenKnowledge network itself.

The video server example in Model 8 uses a service-specific visualisation,
and uses the service-specific visual term vidServerDisplay(V,C). When the
interaction model execution requires visualisation for this visual term, the user
is prompted to download the visualisation implementation if they wish. If they
decline the download, the interaction will fail. The download can be certificated
to assure authorship. Because the visualisation is mapped via the visual term,
the user is free to download third-party implementations of the visualisation,
allowing community-driven growth of the visualisation repository.

The specific visualisation, vidServerDisplay, will require some video to
present to the user. Unlike the simple qask visual term that takes a string (the
question) and the variable to fill, the visualisation vidServerDisplay(V,C), in
Model 8, takes the term V which represents a video file. Clearly, video cannot
be sent within the messages themselves, as it may be many mega-bytes in size.
Similary, other applications dealing with large multimedia objects will need to
transfer the objects, so in Section 5 we describe a means for marking up these
large objects and other multimedia in such a way to minimise transfer of data,
by only transferring meta-data until the raw data is needed. Section 6 considers
some extensions to this system that might provide some automatic visualisation
selection by reasoning.

8

5 Markup for Interaction and Visualisation

The OpenKnowledge system is all about sharing knowledge that is marked up
using ontological structures. The base layer for ontological markup will be
RDF/OWL [MvH04] which will allow ontological mapping to take place at vari-
ous intersection points in the system. This markup is critical for facilitiating in-
teroperation between disparate systems that are utilising different vocabularies.
For example, two independent processes that understand different vocabularies
will only be able to interoperate if an ontological mapping can be calculated
that will allow the two systems to communicate. This interoperability is also
necessary to allow visualisations of data that have been presented in a different
language.

There is a tendency to consider multimedia data as different to other data,
such as numerical or textual data; however, multimedia data can be marked up
in much the same way as non-multimedia data. Indeed, the less explicit nature
of the semantics of multimedia data means that it is almost always necessary
that it is marked up. There are already well established methods for marking up
such data and as long as ontological expressions of these markup languages can
be sought, the multimedia data can be used much like any other. For example,
MPEG-7 [MKP02] provides a good framework for the markup of multimedia
data. Initially, this was defined as XML-schemas, however, work has been un-
dertaken that resulted in an OWL version of the MPEG-7 schema [Hun01] and
this could provide the basis of a multimedia markup language for OpenKnowl-
edge. Of course, if another language was utilised by some other component,
interoperability can still be obtained as long as a mapping from that language
to MPEG-7/OWL is available or computable.

It is perhaps worth mentioning that, in most cases, data can be transmitted
alongside the markup - a floating point number representing a monetary value
is probably smaller in bytes than the markup to indicate it represents currency.
However, in some cases and moreso with multimedia data, the data will be many
megabytes but processes acting upon the data may only require the metadata:
it could be unnecessary to pass the data around in the messages. Instead,
the messages might contain the data markup with some extra information to
indicate to the peer how to retrieve the large block of data. This information
might well consist of another interaction model that provides a means to contact,
negotiate and download the data. Such meta-models could be automatically
instantiated when the deferred elements of the interaction state are accessed
remotely, thereby providing fast throughput of messages when the large data
items are not required, yet requiring no authoring overhead in the creation of
the interaction model when such objects are required.

5.1 Message Markup

One of the important issues when designing the communication layer within
the system, is to ensure that all markup is transmitted across the network in
a portable and re-useable way; it is a fundamental functionality of the Open-

9

@prefix : <http://www.openk.org/message#> .
@prefix mm: <http://www.openk.org/multimedia#> .
@prefix bio: <http://www.inf.ed.ac.uk/onto/bioinf#> .

:messageContent
:interactionModelType "LCC";
:interactionModel """r(role1, initial) a(role1, id) :: ...""" ;
:interactionState [

:symbolTable [
:symbol [

:name "I";
:value [

mm:type mm:Image;
mm:width 320;
mm:height 240;
bio:hasProtein "NC";

]]]] .

Listing 1: An OpenKnowledge message marked up with TURTLE

Knowledge system. Because all our markup will be in the form of RDF (even if
that RDF is OWL), then it seems logical to use RDF for message markup, as
it will keep all ontological markup as first-class citizens in the representation.
Using XML is a possibility, but all markup would then be demoted to strings
so that they may be passed around the system requiring further processing
overhead if reasoning is to take place.

There are many ways to represent RDF, but TURTLE (Terse RDF Triple
Language) [Bec] is by far the most usable. TURTLE is a simple, plain-text,
punctuated representation of RDF that has low parsing overheads and a small
size, both of with RDF/XML lacks [Bec03]. Using TURTLE allows our markup
to remain first-class (ideal for reasoning), while also providing us with usabil-
ity and low-overheads. TURTLE is widely supported by RDF libraries like
Sesame [BKvH02] and Jena [CDD+03], so incurs almost no overhead in devel-
opment.

Listing 1 shows an example of how a message might be encoded with TUR-
TLE. This message contains an interaction state that contains objects that have
ontological markup. The markup shows that the object I is an image (defined
by the ontological type mm:Image), and has dimensions 320x240. It is also
marked up with concepts from another ontology, the bio ontology that is de-
fined in the TURTLE header. This gives some further information about the
image. All these concepts and literals remain first-class in this message, because
we are using RDF for the message interface. Unmarshalling of this message is
straightforward when using RDF libraries like Sesame.

10

6 Visualisation Reasoning

In the previous sections we have introduced how the visualisation of constraints
within the system is divided into two: the declaration of the visualisation and
the device-specific implementation of the visualisation. In further versions of the
system we might foresee reasoning taking place at either of these two interfaces
to minimise the chances of the interaction model failing.

The use of the visual terms for abstracting the implementation from the
declaration could allow for reasoning to take place in the case that an interaction
model contains a constraint that, in the current context, is unsatisfiable and
there has been no visualisation defined for the unsatisfiable constraint. It may be
possible to reason over the current context and infer an appropriate visualisation
to insert. Such a situation might arise if an interaction model has been authored
inefficiently. Clearly, this will need prior knowledge of which visualisations are
available and the types of data they deal with. The visualisation repository may
be able to provide this.

Another situation where reasoning might be employed is in the case where
a peer does not have an implementation to invoke for a particular visualisation
request. Through inference and ontology mapping it may be possible to find a
visualisation that the peer does have access to that may be able to provide the
visualisation that is being requested. The final choice of visualisation will, of
course, be user-driven.

7 Execution State Visualisation

Visualising the execution state is useful for user feedback and execution history
perusal, both important for building a user’s trust in the system, as well as for
diagnosing faults during component authoring. This is a distinct problem to
the problem of visualisation of constraints that are unsatisfiable automatically.

Allowing the user to see the execution state of a running interaction model
is useful for providing the user with feedback to prove that their interaction
model is actually executing, or for providing feedback on where the interaction
model is slow. A simple block diagram of the roles within the model and some
form of display that gives each role’s progress would suffice. Because roles are
orchestrated by a coordinator peer, peers in the model who wish to be informed
of the current interaction state, for visualisation purposes, may quite simply
register with the coordinator who will respond with interaction state objects
when the state changes, allowing the user’s peer to update its display. Using
the coordinator event-driven paradigm could allow for peers outside the current
interaction to ‘listen-in’ to the state of the interaction, and it may be necessary
to enforce the coordinator to only provide state updates to those who are playing
roles in the current interaction model.

Visualisation of execution history is a special case of visualisation of a run-
ning interaction model where the interaction model is at the final step of its
interaction. The state should be visualisable in the same way as a running

11

execution model, allowing objects to be inspected and visualised using the vi-
sualisation mapping on the local peer.

It may be necessary to provide protection for interaction objects that are
vunerable to malicious intent; for example, it is possible the interaction state
may contain the maximum bid value for bidders in an auction, and these must
not be visible to other bidders within the interaction. As always, careful building
of interaction models may alleviate the problem, but in a large community-
driven network, adding such support would make the system more trustable
and easier to use.

8 Conclusions

In this document we have described the various methods of visualisation (user
interaction) for the OpenKnowledge system. Visualisation during interaction
execution may be invoked during constraint satisfaction when constraints cannot
be satisfied automatically.

We have introduced the idea of dividing the definition of a visualisation into
a declaration that declares an intent to visualise, and an implementation that
supports the declaration on the specific device on which the peer is running.
This allows the interaction model and implementation to remain discrete while
maintaining maximum flexibility. We have described a framework in which this
visualisation functionality can be provided in an extensible way encouraging
open, community-driven expansion of the available visualisations.

To achieve the visualisation of complex, multimedia objects that cannot be
delivered within the messages themselves, we have introduced the idea of RDF-
based messaging that provides an extensible language into which ontological
definitions of objects can be included where necessary. These definitions would
provide meta-data for the multimedia objects and may include information on
how to download the data, should the visualisation require it.

We have also described how the current and previous states of the interaction
may be visualised at a peer, both for history perusal and for user feedback -
both important for building users’ trust of the system.

Acknowledgement

This work has been undertaken in the ‘OpenKnowledge’ Specific Targeted Re-
search Project (STREP), sponsored by the European Commission under con-
tract number FP6-027253.

References

[Bec] D. Beckett. Turtle - terse RDF triple language. ILRT
University of Bristol, first announced January 2004,
http://www.ilrt.bris.ac.uk/discovery/2004/01/turtle/.

12

[Bec03] D. Beckett. A retrospective on the development of the RDF/XML
revised syntax. Technical Report 1017, ILRT, University of Bristol,
11 June 2003.

[BKvH02] Jeen Broekstra, Arjohn Kampman, and Frank van Harmelen.
Sesame: A generic architecture for storing and querying RDF and
RDF schema. In I. Horrocks and J. Hendler, editors, Proceedings
of the First Internation Semantic Web Conference, number 2342 in
Lecture Notes in Computer Science, pages 54–68. Springer Verlag,
July 2002.

[CDD+03] Jeremy J. Carroll, Ian Dickinson, Chris Dollin, Dave Reynolds, Andy
Seaborne, and Kevin Wilkinson. Jena: Implementing the semantic
web recommendations. Technical report, HP Laboratories Bristol,
HPL-2003-146, Dec. 24, 2003.

[Hun01] J. Hunter. Adding multimedia to the semantic web: Building an
mpeg-7 ontology. In J. Euzenat I. F. Cruz, S. Decker and D. L.
McGuinness, editors, in SWWS, pages 261–283, 2001.

[MKP02] JM Martinez, R Koenen, and F Pereira. Mpeg-7-the generic multi-
media content description standard, part 1. 9(2):78–87, 2002.

[MvH04] Deborah L. Mcguinness and Frank van Harmelen. OWL web on-
tology language overview. W3C recommendation, W3C, February
2004.

[ZAvH06] W. ten Kate Z. Aleksovski, M. Klein and F. van Harmelen. Matching
unstructured vocabularies using a background ontology. Proceedings
of Knowledge Engineering and Knowledge Management (EKAW),
2006.

13

