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Abstract. Matching has been recognized as a plausible solution for the seman-
tic heterogeneity problem in many traditional applications, such as schema in-
tegration, ontology integration, data warehouses, data integration, and so on.
Recently, there have emerged a line of new applications characterized by their
dynamics, such as peer-to-peer systems, agents, web-services. In this deliver-
able we extend the notion of ontology matching, as it has been understood in
traditional applications, to dynamic ontology matching. In particular, we exam-
ine real-world scenarios and collect the requirements they pose towards a plau-
sible solution. We consider five general matching directions which we believe
can appropriately address those requirements. These are: (i) approximate and
partial ontology matching, (ii) interactive ontology matching, (iii) continuous
”design-time” ontology matching, (iv) community-driven ontology matching and
(v) multi-ontology matching. We give an overview of state of the art matching
systems as well as their evaluation principles from the dynamic ontology match-
ing perspective. Finally, the key open issues and challenges towards a plausible
dynamic ontology matching solution are discussed, thereby providing a vision for
future activities.

� OpenKnowledge is a 3 year long STReP project financed under the European Commission’s
6th Framework Programme. See, http://www.openk.org/ for details.



1 Introduction

Matching is a critical operation in many application domains, such as schema inte-
gration, ontology integration, data warehouses, data integration, and so on. It takes as
input the ontologies, each consisting of a set of discrete entities (e.g., tables, XML
elements, classes, properties, rules, predicates), and determines as output the relation-
ships (e.g., equivalence, subsumption) holding between these entities [81]. Many di-
verse solutions to the matching problem have been proposed so far, see for surveys
[8, 49, 52, 53, 70, 79, 81, 88]. Some examples of particular matching systems can be
found in, e.g., [9, 15, 20, 22, 25, 31, 38, 45, 48, 51, 58, 60, 68] 1.

Matching has been viewed so far as a plausible solution to the semantic heterogene-
ity problem almost always in traditional applications, such as data warehouses, data
integration (also known as enterprise information integration), and so on. Typically,
these applications are based on a design-time matching operation. The explicit use of
design-time matching to address the semantic heterogeneity problem is, however, more
in tune with a classical codification-centered knowledge management tradition (see,
for instance, the discussion in [18]). Such tradition comprises several efforts carried
out mainly in the 90s to define standard upper-level ontologies [54, 66] or to estab-
lish public ontology repositories for specific domains to favour knowledge reuse [32].
Although the proliferation of efforts on ontologies have shifted the emphasis toward
defining mappings between separately kept ontologies, design-time matching still con-
tinues this codification-centered knowledge management tradition. Corrêa da Silva and
Agustı́ remark in [18] that “centralized ontologies [. . .] promise to bring the control
of the organization back to what was possible under classical management techniques.
The problem is that they may also bring back the rigidity of agencies organized under
the classical management tenets.”

Experience has proved that semantic interoperability is highly context- and task-
dependent and that common conceptualizations or ontology mappings will rarely turn
out to be generally reusable, regardless of how abstract and high-level they might be.
At present, there is an emerging line of applications which can be characterized by their
openness and dynamics (e.g., agents, peer-to-peer systems, web services) [81]. In these
sorts of applications it is more realistic to confine semantic interoperability within the
scope of an interaction (or class of interactions) between peers, achieving certain lev-
els of semantic interoperability by matching terms dynamically. Contrary to traditional
applications, such applications ultimately may require a run-time matching operation.
This means that the corresponding matching solutions have to (besides being effective)
possess some real-time performing characteristics, namely being able to discover and
execute mappings in a short period of time (e.g., 2 seconds) in order to avoid having a
user waiting too long for the system respond.

In this deliverable, with the help of three real-world scenarios from biomedicine,
emergency response and open browsing/query answering applications, we collect the
requirements they pose towards a plausible solution. We consider five general matching
directions which we believe can appropriately address requirements of the dynamic
applications. These are: (i) approximate and partial ontology matching, (ii) interactive

1 See, www.OntologyMatching.org for a complete information on the topic.



ontology matching, (iii) continuous ”design-time” ontology matching, (iv) community-
driven ontology matching and (v) multi-ontology matching.

The main contributions of this deliverable are:

– an identification of dynamic ontology matching as a separate class of matching
problems;

– a set of requirements from a number of real world applications towards dynamic
ontology matching;

– an analytical overview of the current matching technology from the dynamic ontol-
ogy matching perspective, including theoretically sound foundations of the prob-
lem, plausible matching approaches, state of the art systems and their evaluation
principles.

The rest of the deliverable is organized as follows. Section 2 introduces, via exam-
ples, the conventional ontology matching problem as well as some basic motivations
behind the dynamicity characteristic of the emerging applications. Section 3 overviews
three application scenarios and the requirements they pose towards a matching solu-
tion. Section 4 provides a conceptual framework for comparison of dynamic ontology
matching techniques and discusses in detail a number of possible alternatives. Section
5 discusses some of the relevant state of the art in matching systems and evaluation ef-
forts. Section 6 addresses some open issues and challenges towards a plausible dynamic
ontology matching solution. Finally, Section 7 reports conclusions.

2 Preliminaries

In this section we first briefly introduce the problem of ontology matching as it has been
understood in traditional applications. Then, we provide a common ground for under-
standing the dynamicity characteristics of many emerging applications via an example
of peer-to-peer information systems.

2.1 Ontology matching

We view ontology matching as the process that takes as input at least two formal struc-
tures, generically called ontologies2, O1 and O2, and computes as output at least a third
formal structure, called alignment, A. An alignment captures the semantic relations be-
tween O1 and O2’s discrete entities with respect to some background knowledge K
underlying the matching process. K itself may be determined by matching parameters
(p) such as weights and thresholds, and external resources (r) such as common knowl-
edge and domain specific thesauri. This definition of matching can be extended in a
straightforward way to the use of an input alignment (A0) which is to be completed by
the process and also to multi-ontology matching, that is, when multiple ontologies are
taken as input.

2 An ontology typically provides a vocabulary that describes a domain of interest and a spec-
ification of the meaning of terms used in the vocabulary. Depending on the precision of this
specification, the notion of ontology includes sets of terms (queries), classifications, thesauri,
database schemas, axiomatized theories [80].



Following the work in [81], for instance, an alignment consists of a set of map-
ping elements3: 5-tuples 〈id, e, e′, n, R〉, where id is a unique identifier of the given
mapping element; e and e′ are the entities (e.g., classes, properties, XML elements) of
the first and the second ontology respectively; n is a confidence measure in the [0 1]
range holding for the correspondence between the entities e and e ′; R is a relation (e.g.,
equivalence (=); subsumption (�,�), disjointness (⊥)) holding between the entities e
and e′.

This sort of matching assumes (in formal approaches at least) that (i) the background
knowledge K is brought into the matching process by means of some particular kind
of formal structure (e.g., a taxonomic hierarchy, propositional expressions, or a set of
axioms in a description logic, coming thus equipped with a logical semantics); and (ii)
each ontologies’ local entities are put into relation with this formal structure (e.g., by
means of a theory interpretation as defined, for example, for first-order logic in [28]).
Ontology matching is therefore relative to the background knowledge K and to the way
local vocabularies are interpreted in K .

Fig. 1: Two simple ontologies and alignment

Figure 1 shows parts of two ontologies describing an academic department 4. For
example, according to some matching algorithm based on linguistic and structure anal-
ysis, the confidence measure (for the fact that the equivalence relation holds) between
entities with labels Research Associate in ontology on the left, and Researcher in on-
tology on the right could be 0.68, thereby producing the following mapping element:
〈id4,3, ResearchAssociate, Researcher, 0.68, =〉. However, the relation between the
same pair of entities, according to another matching algorithm which is able to de-
termine that the first entity is a kind of the second entity, could be exactly the less
general relation (without computing the confidence measure). Thus, in this case, the
5-tuple 〈id4,3, ResearchAssociate, Researcher, n/a,�〉 is returned to the user [91].
Notice that output correspondences can have different cardinalities. In fact, the corre-
spondence which involves node 2 in the ontology on the right represents one-to-one
(1-1) relationship, while the correspondence which involves node 3 in the ontology on
the right represents one-to-many (1-n) relationship.

Finally, it is worth mentioning that heterogeneity is typically reduced into two steps:
(i) match the ontologies, thereby determining the alignment, and (ii) execute the align-
ment according to application needs (e.g., query answering, data translation). In this
deliverable, we focus only on the first step.

3 These also sometimes called mappings in the literature.
4 A large part of the example under consideration has been taken from [91].



2.2 Peer-to-peer information management systems

Peer-to-Peer (P2P) is a fully distributed communication model in which totally au-
tonomous parties have equivalent functional capabilities in providing each other with
data and services, done in a transitive point-to-point manner [90]. Information systems
(ISs), built on top of P2P architectures, offer the prospects of higher scalability, lower
cost of ownership and better fault resilience and aggregate performance than traditional
ISs, built on intrinsically centralized architectures [63].

A P2P IS consists of system components, also called peers, where each of them is
logically represented by a local information source (LIS) and a local ontology (LO).
The LIS of a peer stores its data, and the LO describes the part of the data shared with
other peers. Each peer has an owner, which is independent from the owners of the other
peers in the system. Owners can submit queries to the LO of their peers, and collect
query results from a set of relevant peers in the system.

While answering a user query, peers transitively propagate the query and, subse-
quently, query results from one to another. To do this, peers establish a set of acquain-
tances with other peers in the system. Acquaintances are other peers that a peer knows
about and which have data that can be used to answer a specific query [42]. Thus, when
it receives a query, a peer answers it using the data from its LIS and propagates it to a
subset of its acquaintances; they, in turn, propagate it to their acquaintances, and so on.

Because peers are totally autonomous, their LOs will almost always be mutually
heterogeneous in the way they represent the same or similar concepts. This fact requires
that there must be a way for a translation of a query expressed with respect to the peer’s
LO, to a query expressed with respect to the LO of its acquaintance. A widely adopted
solution for this problem in many heterogeneous schema-based P2P data management
systems is to specify a set of mappings between the LOs of the two peers (e.g., [14,
44, 90]). In the simplest case, a mapping defines, for an element of one LO, to which
element of another LO it corresponds and what the type of this correspondence is (recall
the example shown in Figure 1). In some other approaches the mappings are defined not
between atomic elements but between complex structures, such as queries to the LOs
(e.g., [44]). The mappings are then used for the identification of acquaintances, relevant
to a query and for the query rewriting and propagation, as well as for the propagation
of query results [90].

In Figure 2 we present a logical view of a P2P IS with three peers. Here, peer 2 is an
acquaintance of peer 1, and peer 3 is an acquaintance of peer 2. When peer 1 processes a
user query, it translates and propagates the query to peer 2 using the mappings specified
from peer 1 to peer 2. When peer 2 receives the query, it computes it, sends the result
back to peer 1, and then transitively propagates the query to peer 3 using the mappings
from peer 2 to peer 3. In this simple example we assume that the mappings between
peers are valid, i.e., they correctly relate corresponding elements of the peers’ schemas.

The total autonomy of peers implies that the P2P IS can be highly dynamic in many
aspects. Below we list some forms of autonomy and show how they affect dynamics.
The reader interested in a detailed discussion of various forms of autonomy in P2P ISs
and their impact on dynamics is referred to [90].



Fig. 2: A logical view of a P2P information system

– Design autonomy: peers are free to decide what data to store, how to describe the
data, what constraints to use on the data and what interpretation to associate with
the data. Peers are free to change any of these parameters at any time;

– Association autonomy: peers are free to decide how much of their functionality and
data to share and which other peers to share them with. Peers are free to change
their sharing settings at any time;

– Participation autonomy: peers decide when to join and when to leave the system,
which logically means that they decide when to communicate and share their re-
sources with other peers. This fact implies that the constitution of the P2P IS can
be very transient – new peers may join it, and participating peers may eventually
leave it.

Dynamic changes as described above happen chaotically in the P2P IS and there is
no way to predict them or restrain them from happening. Also, the fact that something
has changed is usually discovered at run-time when a certain peer receives a request
for a service or a certain mapping is attempted to be used for query or query result
propagation. The number of discovered changes in the system is conditional on two
factors:

– Rate of change: which defines how often a change is introduced in the P2P IS. The
rate of change associated with the design form of autonomy is inversely propor-
tional to the sunk costs spent for setting up of data and metadata at peers. Changes
associated with the association and participation forms of autonomy can occur
much more often because they are of much less cost to the peers which are sub-
ject to these changes;



– Propagation scope: as noted above, for each user query there is a finite set of peers
which answer the query. This set defines the propagation scope for the query. The
size of the propagation scope of a query affects the probability that a change in the
system is discovered during the query answering. The size of the P2P IS is not the
only factor that defines query propagation scopes. Generally, the propagation scope
for a query depends on the parameters of the query, on the peer to which the query
was submitted and on the moment in time when the query was submitted [42].

The dynamics leads to two main problems: resource discovery and heterogeneity
resolution. The former problem has to deal with the fact that peers may need to find new
acquaintances. The latter problem deals with the fact that new mappings between peers
have to be specified, or existing ones have to be reconsidered. And, while the former
problem can be dealt with by exploiting sophisticated resource discovery machineries
of P2P platforms such as JXTA [1], the latter represents a serious research challenge.
Particularly, in order to compensate for the effect of the dynamics the P2P IS, at the
run-time of a query, may need to:

– recompute an invalidated mapping with an existing acquaintance;
– find a new acquaintance and establish a new mapping relevant for the answering of

the query;
– approximate query answers if some mappings became (temporarily) unavailable or

invalid;
– (re-)compute a direct mapping between two peers, taking into consideration the

mappings on an existing path between these peers.

Resolving the problems introduced by dynamics at the run-time of a query may lead
to unacceptably long execution times and too poor query results. Therefore, the activi-
ties listed above can also be performed off-line, i.e., before query answering. In this case
the system can take advantage of the fact that the execution time becomes a non-critical
requirement and that the user can be involved into the process if needed. Combining
off-line and run-time activities to resolve the problems introduced by dynamics is the
core strategy for designing large-scale dynamic P2P IS applications.

Note that dealing with the problem of dynamics at the run-time of a query is what
makes the crucial difference between P2P and standard data integration solutions. In
the latter class of systems, dynamics are seen rather as a planned activity performed
by a system administrator. At the time of a query submission, all the mappings in such
systems are assumed to be valid and query results are therefore correct and complete.
Note that the activities suggested to be performed at the run-time of a query in a P2P IS
do not make sense in the context of data integration systems.



3 Motivating scenarios

In this section we discuss three concrete scenarios from dynamic applications which
require ontology matching. These scenarios include: P2P proteomics (§3.1), emergency
response (§3.2) 5, and open browsing/query answering (§3.3). We summarize the re-
quirements that these applications pose towards a plausible ontology matching solution
in §3.4.

3.1 P2P proteomics in OpenKnowledge

Proteomics studies the quantitative changes occurring in a proteome (which is the pro-
tein equivalent of a genome) and its application for disease diagnostics and therapy and
for drug development. We shall focus here on the initial step of protein analysis, called
expression proteomics. During this step proteins are extracted from the cells and tis-
sues, are separated either by two dimensional gel electrophoresis (2DE) or liquid chro-
matography (LC) techniques, and further digested, identified and sequenced by mass
spectrometry (MS) methods. These techniques take advantage of the current knowledge
of the genome from humans and other species, which is available in public databases
and can be accessed through data-mining software that relates MS spectrometric infor-
mation with database sequences. Protein sequence data held in databases, however, is
mostly produced from the direct translation of gene sequences. But protein activity is
determined by maturation events that include so called pre- and post-translational mod-
ifications of their structure. The importance of these modifications is so high that gene
and protein expression in eucariotes show no correlation in many cases.

Currently, however, technology allows the high throughput sequencing of proteomes
using techniques such as multidimensional liquid cromatography coupled with tan-
dem mass spectrometry (MDLC-MS/MS), which not only offer information on the
proteins present in the proteome but also on their sequence (that can differ from the
one in the translated databases), and type and position of their modifications. Unfortu-
nately, MDLC-MS/MS proteomic analysis is currently an impossible task for humans to
achieve. It produces a huge amount of spectra, each yielding several peptide or peptide
tags candidates that can belong to the same or different proteins. Each step produces an
identification score whose final evaluation (of hundreds of spectra) is performed manu-
ally or by taking high probability data.

The speed of production of this type of information is increasing very fast as a good
number of proteomic laboratories being involved in the characterization of proteomes,
protein complexes and networks using these strategies. Sequencing information, are es-
pecially those archives that do not produce clear identifications with the tools available
to the source laboratory at a given moment, is rarely accessible to other groups involved
in similar tasks and most of it will never be reflected in protein database annotation. The
most probable scenario is that this information is eventually trashed. This information,
however, could be of high importance for other groups analysing the sequence/function

5 P2P proteomics and emergency response are the two main working scenarios of the Open-
Knowledge project.



of this or other homologue proteins. Modification information and sequence tags gen-
erated in one lab could be used by other labs in order to evaluate the confidence of ex-
perimental or predicted sequences derived from their work in the same or other species.

We envision, therefore, a scenario in which various proteomic laboratories join a
P2P network into which they feed the sequencing information generated locally at
their respective labs so that other proteomic laboratories of the network can look for
sequencing information in those files that proteomics laboratories deemed “useless”,
because they did not yield the information they required for their own particular pro-
teomic analysis. This is particularly so with the mass spectra themselves, as no mass
spectrum database is currently available, and spectra whose sequences do not give hits
in a database search are trashed.

The level of semantic heterogeneity in P2P information sharing in expression pro-
teomics is currently not at the level of sequence tags or mass spectra. However, there
are a high number of proteomics technologies, each of which has developed several
approaches and analytical conditions, and although proteomics facilities in Spain, for
instance, are using up to seven different types of mass spectrometers producing their
own file formats and using different procedures for raw data management, standard
procedures for mass spectra interchange have already been proposed, such as mzXML
[69] or HUP-ML[50]. Semantic heterogeneity arises at the annotation level of mass
spectra and sequence tags. Annotation information ranges from the identification of the
organism, cell, organelle or body fluid from which the analysed sample was extracted,
to the name of the identified peptide/protein of a mass spectra or sequence tag.

Although most of this annotation will usually not yield semantic mismatches be-
tween proteomics laboratories, it may nevertheless be the case that such semantic mis-
matches need to be addressed. This is particularly the case with protein names, due to
the variability of terms used for identical sequences. For example, the protein lympho-
cyte associated receptor of death has several synonyms including LARD, Apo3, DR3,
TRAMP, wsl, and TnfRSF12. Researchers often use different names to refer to the same
protein across sub-domains. Semantic matching techniques will need to dynamically
resort to external sources, such as scientific publications in which protein equivalences
have been identified, in order to overcome this sort of semantic mismatches. They will
also need to be capable of disambiguating homonyms, i.e., two or more protein names
spelled alike but different in meaning [89].

Success of peptide and protein identification depends on database and file quality,
in terms of non-annotated protein sequences, database errors in sequence annotations,
post-translational modifications, protein mixtures, etc. It is necessary to get as much
good quality precision and recall of hits in public databases and peer files as possible,
as this increases the confidence in the identification of the proteins of the analysed
sample. Still, matching of sequence annotation may be approximate and partial and still
be valuable for the task of protein identification: a sequence tag taken from a human
tissue, for instance, matching that of a protein coming form the sample of a rat’s kidney
still may provide high confidence measure to the identification task as both organism
are mammals.



3.2 Emergency response in OpenKnowledge

This scenario describes the situation in which a fire engine is fighting a fire and requires
more assistance from other fire engines. The fire engine has a peer on board which can
be accessed by the firemen as necessary. One option the firemen would have in this
situation is to contact a control centre and get them to find a nearby fire engine to send
to help. However, in an emergency scenario, lines of communication may be unreliable,
the control centre may be swapped with requests for assistance, or be otherwise unable
to help. In this case, the fire engine peer would broadcast a request for help to all other
fire engine peers. Any fire engines that expected to have to work together would en-
sure that they were using mutually comprehensible interaction models (IMs) 6 and so
communication would be straightforward. However, in an unexpectedly large disaster
it may be that fire engines from a different region were called in and they may have
slightly different or outdated expectations of the interaction.

This scenario is formalized with the help of Lightweight Coordination Calculus
(LCC) [73] as follows:

a(find_available_peers(Relevant_peers,Peer_info,Final_peer_info),RFE)::
(
check_suitability(fire(Size,Type,Urgency),Location) => a(fire_engine_peer,Peer1)

<- first_peer(Peer1,Rest_peers,Relevant_peers)
& size_of_fire(Size) & type_of_fire(Type)
& urgency_of_fire(Urgency) & location(Location)

then
(
available(Location1) <= a(fire_engine_peer,Peer1)

then
a(find_available_peers(Rest_peers,[[Peer1,Location1]|Peer_info],

Final_peer_info),RFE)
)
or
(
not_available <= a(fire_enginge_peer,Peer1)

then
a(find_available_peers(Rest_peers,Peer_info,Final_peer_info),RFE)

)
)

or
null <- Peer_group = [] and Peer_info = Final_peer_info

In the IM above, note that a(rolename, PeerID) refers to a particular peer playing
the specified role, double arrows (⇐;⇒) refer to message passing and single arrows
(←;→) refer to constraints on and effects of the message passing. The example above
shows a portion of an IM for the requesting fire engine peer (RFE) which details how
it finds which fire engine peers are available. The role find available peers, which
is taken on by the RFE, takes three arguments: (i) a list of relevant peers, (ii) a list of
information about their whereabouts, which is initially empty and is built up during the
performance of the role as the peer gathers information, and (iii) a final peer information
list which is uninstantiated until the end of the procedure, when it takes the value that

6 An IM is a set of protocols, one for each role in the interaction, which describe the messages
that must be passed and received by the peer playing that role, and the constraints on and
effects of those messages. The example in this section shows a part of an IM detailing the
protocol of only one of the roles.



has been built up in the peer information list. Firstly, the RFE will choose the first
peer from the list and send it a request to return information about its location if it is
suitable for it to attend. Information about the fire (size, type, urgency and location)
is given so that the fire engine peer can determine its suitability. The RFE then waits for
a response: if this response is positive (the fire engine is available) it adds the fire engine
to its list of peers, together with its location, and recurses to check with the other peers.
If the response is negative, the RFE behaves in the same way except that it doesn’t add
the fire engine peer to its list of peers. The recursion continues until it is not possible
to find the first peer in the list: i.e., the list is empty. The value Final peer info is then
instantiated. Note that this portion of the IM shows only a part of what the RFE must
do. After it has gathered the names of all potential helpers, it must then decide which to
summon.

In this scenario there are three areas in where matching may be necessary:

– Role identifiers;
– Constraints on messages;
– Message contents.

Role identifiers indicate what kind of role peers may be performing, and these have
to be mapped to peer’s expectations of what this name may be. For example, a peer on a
fire engine may consider itself to be a fire truck peer or fire emergency assistant
and thus will not immediately identify with the role name fire engine peer, which is
the name of the peer with which the example interaction above is taking place (the
role description for this peer is not included in this example for the sake of brevity).
Therefore, a matching (notice, which includes an option of approximation) between
these roles is needed.

Once a peer has identified the role it wishes to play, it must ensure that it can fulfil
the constraints on the messages that must be passed whilst playing that role. This entails
firstly that it must be able to interpret the constraints and secondly that it must be able
to satisfy them. The matching process must assist in the interpretation aspect of this,
but whether or not a peer can satisfy the constraints depends on its abilities and knowl-
edge. In the section of role description above, there are constraints on the first message.
The first constraint first peer(Peer1, Rest peers, Relevant peers) is intended to
identify the first peer from a list of peers and the other four constraints are intended
to instantiate variables that must be passed to the fire engine peer. For example, a
fire engine peer may expected a constraint fire size(Size), which must be mapped
to size of fire(Size), or it expected a constraint attributes of fire(Size, T ype),
which is an amalgam of the size and type constraints, or perhaps it has a more sophisti-
cated notion of what type a fire can have, such as type of fire(Source, Risk level).
Alternatively, the peer may have expected more or fewer constraints than are present.

Message content cannot be fully determined by observation of the IM; this can only
be discovered during the interaction. The IM may give detail about the format of the
message: in the first message of the example above, for instance, it is determined that
the message must take two arguments and that the first argument will be a relation
fire which will take three arguments. Nevertheless, however much structure a message
may be given, it will still contain variables that are not instantiated until interaction



commences, and these variables may be instantiated in various ways. In this exam-
ple, the fire engine peer will know that the first message it receives will be of the
form check suitability(fire(Size, T ype, Urgency), Location), but it cannot deter-
mine exactly how the variables Size, Type, Urgency and Location will be instanti-
ated. It is therefore necessary to match message contents on-the-fly during interaction.
The difficulty of doing this will depend on the complexity of the message.

Matching is not always a precise process: e.g., type of fire(Source, Risk level)
is only an approximate match to the constraint type of fire(Type). It will often be the
case that the matches found are not exact matches; they may be only approximate or par-
tial matches because there is no guarantee that different sources (such as different fire
brigades) will choose to represent things to the same level of detail or consider the same
aspect of the problems. If a mapping can be found that allows sufficient information to
instantiate a constraint found in the LCC then this is considered to be good enough. For
example, if the fire engine peer knows that Type and Source are related or equivalent
then it can use its knowledge of how to instantiate type of fire(Source, Risk level)
to instantiate type of fire(Type): Source is matched to Type and Risk level is ig-
nored. Since the peers are engaged in interaction, they are also able to use the inter-
action to negotiate about matching if necessary. For example, the fire engine peer may
not know anything about the concepts Source or Risk level but, from matching on
the predicate name type of fire, could infer that one or both of them might somehow
be connected to Type. It could then initiate a discussion with the other peer as to the
meaning of these terms: if the other peer can provide some context about the concepts,
the fire engine peer may be able to match them into its own concept hierarchy.

3.3 Open browsing and query answering

These scenarios are based on experience with the Magpie [24] and AquaLog/PowerAqua
[55, 56] tools. Magpie aims to support web browsing by exploiting semantic data asso-
ciated with the viewed web pages. AquaLog is an ontology based question answering
system. Let us discuss in turn the scenarios where these tools are operating.

Magpie makes use of the semantic annotation associated with a web page to help
the user get a quicker and better understanding of the information on that web page.
Concretely, given an ontology and a set of instances belonging to this ontology, Magpie
is able to recognize instances in the web pages viewed by the user. When one con-
cept is selected (e.g., Person) all its instances in the web page are highlighted. Using
this mechanism, users can quickly identify interesting items in the page being viewed.
Additionally, for each identified instance a set of services is available, e.g., show all
publications of a selected person. Magpie allows the user to choose the appropriate on-
tology from a list of ontologies that are known to the tool. However, the current version
relies on a single ontology active at any moment in time. In order to extend the current
approach towards open browsing, it is necessary to be able to select, at run-time, the ap-
propriate ontologies for the given browsing context. Thus, ontology matching is needed
to identify correspondences between a set of terms that describe the topic of the actual
web page and available on-line ontologies.

Let us consider an example. The following short news story is both about trips to
exotic locations and talks.



“For April and May 2005, adventurer Lorenzo Gariano was part of a ten-man col-
laborative expedition between 7summits.com and the 7summits club from Russia, led
by Alex Abramov and Harry Kikstra, to the North Face of Everest. This evening he will
present a talk on his experiences, together with some of the fantastic photos he took.” 7

An ontology that covers such terms as adventurer, expedition, talk and photos should be
selected (discovered) from the web. This requires that the above mentioned terms are
matched to the corresponding terms from the available on-line ontologies. Our prelim-
inary experiments with Swoogle8 have shown that queries containing (equal or) more
than three terms drawn from different topic domains are likely to retrieve no ontologies
if only string-based matching algorithms are used to match between the query terms and
the concept labels of ontologies. Therefore, more sophisticated techniques are needed
to broaden the scope of the query and ensure that relevant semantic data is found. In
other words, if some of the search terms cannot be found in an ontology, mappings to
more/less general concepts in the ontology are acceptable. This means that matching is
required to have an option of being approximate. Finally, it is worth noting that not all
the entities of the ontology need to be involved in matching. It is sufficient to consider
only those entities that are similar to the query terms. This means that matching can be
partial.

AquaLog is an ontology based question answering system. To concisely give an
impression of how the system operates, let us consider an example. Suppose that the
system is aware of an ontology about academic life9 which has been populated to de-
scribe KMi related knowledge10. Also, let us suppose that the following query is posed
to the system: Which projects are related to researchers working with ontologies? To
answer this query, Aqualog needs to interpret it in terms of entities available in the sys-
tem’s ontology. For this, Aqualog first translates this query into the following triples:
〈projects, related to, researchers〉 and 〈researchers, working, ontologies〉. Then
it attempts to match these triples to the concepts of the underlying ontology. For ex-
ample, the term projects should be identified to refer to the ontology concept Project
and ontologies is assumed equivalent to the ontologies instance of the Research-Area
concept. In general, the matching problem exists here since the user specifies her/his
query by using her/his own terminology, which is unlikely to be identical to the one of
the system.

Currently, the scope of AquaLog is limited by the amount of knowledge encoded in
the ontology of the system. A new version of AquaLog, called PowerAqua [55], extends
its predecessor (as well as some other systems with similar goals, such as OBSERVER
[61]) towards open query answering. PowerAqua aims to select and aggregate informa-
tion derived from multiple heterogeneous ontologies on the web. Matching constitutes
the core to this selection task. Notice that, unlike AquaLog, matching is now performed
between the triples and many on-line ontologies (not just one ontology of the system).

7 http://stadium.open.ac.uk/stadia/preview.php?s=29&whichevent=
657

8 http://swoogle.umbc.edu/
9 http://kmi.open.ac.uk/projects/akt/ref-onto/

10 This populated ontology can be browsed through a semantic portal at: http://
semanticweb.kmi.open.ac.uk



This matching also differs from what is required by Magpie: it is performed between
a set of triples and on-line ontologies and not just a set of (sometimes, random) terms
from a web page and ontologies. Our experiments with Swoogle have shown that iden-
tifying relations that link the subject and the object of the triples is rather difficult and
decreases the chances of finding relevant ontologies. For example, we found no ontolo-
gies on the web to cover the triples mentioned in the example above. However, it is not
necessary to match all query triples within one ontology. When no ontology concept is
found for the element of a triple, the use of more general concepts is also acceptable.
This means that matching can be approximate. Similar to the case of Magpie, it is not
necessary to try to match the whole ontology against the query, but only the relevant
fragments. This means that matching can be partial.

3.4 Requirements

Let us summarize requirements of the dynamic applications discussed in §3.1-§3.3, see
Table 1. We present them according to functional 11 and non-functional12 views on the
requirements.

Functional requirements are discussed according to the dimensions of input, pro-
cess, output and ultimate goal of matching:

– Input is concerned with the (i) knowledge representation formalism, e.g., OWL
[83], RDF [12], FOAF [13], and (ii) type of knowledge, namely either schema-
level, or instance-level, or both, that a matching system is expected to handle.

– Process is concerned with some specific behavior of matching, such as options for
(i) being approximate, (ii) being partial, and (iii) being performed at run-time.

– Output is concerned with (i) the cardinality of the resulting alignment, namely,
whether it is 1-1, 1-n, or n-m, correspondences that are needed; (ii) the type of
relation which stands for the discovered correspondence, namely, whether it is
equivalence, subsumption, or any other types of relations, e.g., disjointness, that are
needed; (iii) the output format, e.g., OWL [87], C-OWL [11], SKOS [62], SWRL
[47] in which the discovered alignment is expected to be specified.

– Ultimate goal stands for the type of processing the discovered alignment needs in
order to finally make the application operational. Some examples of the ultimate
goal of matching exercise include query answering, navigation on the web, data
translation, and so on.

Non-functional requirements are discussed according to the matching performance,
quality of matching results and number of peers dimensions. Matching performance is
concerned with the execution time and main memory indicators. Quality of matching
results is concerned with the standard measures of correctness (precision) and complete-
ness (recall). Number of peers estimates quantitively how many of peers can potentially
be involved in the scenario.
11 Functional requirements specify specific behavior or functions available from a system in order

to implement a scenario (business case).
12 Non-functional requirements specify criteria (technical constraints) that can be used to judge

the operation of a system to be developed.



P2P Emergency Open browsing/
proteomics response query answering

Input
language mzXML, HUP-ML LCC OWL, FOAF
data instances

√ √

Process
approximate

√ √ √
partial

√ √ √
run-time (ideally)

√ √
negotiation of mismatches

√

Output
1-1, 1-n, n-m 1-1, 1-n 1-1, 1-n 1-1, 1-n
type of relation =;�;�;⊥ =;�;�;⊥ =;�;�
output format C-OWL C-OWL C-OWL

Ultimate action query answering semantic navigation,
coordination query answering

Quality of alignment
precision (low, medium, high) medium high high
recall (low, medium, high) medium medium low

Matching performance
execution time, sec. < 104 < 0.5 < 1
main memory, MBs. no limit < 128 < 256

Number of participating peers ∼ 102 ∼ 102+ ∼ 104 ∼ 103

Table 1: A summary of the requirements from the scenarios under consideration

Below we discuss in some detail non-functional requirements (since these were not
a part of scenarios descriptions) based on the emergency response example from §3.2.

Quality of answers and performance. Poor or slow information can be fatal; on the
other hand, a reasonable relaxation of what to do may be better than doing nothing.
The components themselves should contain some indication of the necessary quality of
matching: in some situations, this should be very high, and in other situation it could be
lower. For example, precision is more important than recall. Indeed, we do not need to
retrieve all relevant information as long as what is retrieved is correct.

Number of peers. There is a potentially large number of peers who may become
involved. These are:

– Institutional, such as fire centres, hospitals, etc., probably less than 20;
– Local responder teams, such as fire engines, ambulance crews, etc., larger than the

number of institutions but probably less than 100;
– Specialised resources/services, which could be a wide number of things, depending

on the type of emergency: for example, the doctor of an injured person with a
particular medical history. Numbers could range from none to hundreds, depending
on the circumstances;

– Public at large, who can provide information on the ground to emergency services.
Numbers could be large, potentially into the thousands;

– Sensors and devices, which, depending on the circumstances, could be providing
important information from within buildings. Numbers could be into the thousands
or hundreds of thousands.



4 Dynamic ontology matching

From the functional perspective, more precisely in terms of inputs/outputs, in dynamic
settings the matching problem remains the same as stated in §2.1. The major difference
is in the matching process, namely the addition of at least three knobs in the matching
process. These are the requirements of approximate (α), partial (π) and run-time (ρ)
matching. The dynamic matching process is schematically presented in Figure 3.
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Fig. 3: The dynamic matching process

From the non-functional perspective, the major differences between ontology match-
ing in dynamic applications and ontology matching in traditional ones include the
matching performance and quality of matching results requirements.

Therefore, the core of dynamic ontology matching approaches is in addressing those
functional and non-functional requirements. We envisage at least two directions for such
dynamic ontology matching approaches. These are based on:

– exploiting a possibility of discovering an incomplete alignment, and/or of match-
ing with relaxed quality results (thereby yielding some efficiency) which are still
good enough for the application. We group such approaches under the heading of
approximate and partial ontology matching. Notice, these approaches are different
from those used in traditional applications. For example, in traditional applications
mistakes in matching results are not acceptable, hence, mappings have to be cor-
rect and complete. Therefore, ontology matching approximation techniques gain a
particular importance in dynamic settings.

– involving and exploiting the participating parties in the matching process, thereby
resulting in interactive ontology matching. In this case, when there are mismatches,
it is perhaps possible to negotiate them among the involved parties, still in an au-
tomated way. These approaches are different from traditional ones because in the
latter there is no possibility for negotiation at all. In fact, there is only one party,
namely database/knowledge base administrator, who fixes the mismatches, while
in dynamic settings other parties, such as multiple agents, can participate in this
process.

There are a number of plausible matching approaches which are used in traditional
applications. These, under some reasonable assumptions, can also be adapted or can
provide some support for ontology matching in dynamic settings. Thus, based on the



dynamic application peculiarities, we also assume that (i) changes in the ontologies of
the involved parties will be evolutionary (and not revolutionary), which is quite rea-
sonable; and that (ii) in these emerging scenarios there are multiple agents (not only, a
single, e.g., database/knowledge base administrator, as in the traditional applications).
We envisage a number of possible relevant matching alternatives which are worth being
considered here. These are:

– performance of updates of mappings between the ontologies of necessary parties 13

when the actual application is idle. We group such solutions under the heading
of continuous ”design-time” matching. Similarly to traditional applications, where
matching is performed at design-time, which means that mappings are precom-
piled, the same (precompiling) strategy can contribute (to some extent) to dynamic
ontology matching. However, updates of mappings in this case should happen more
frequently according to the dynamics of the application.

– involvement and exploitation of the participating parties in the matching process
in order to re-distribute the workload of producing the alignments. For example, it
is possible to perform and exploit annotations of mappings, thereby enabling map-
pings’ recommendation and propagation mechanisms. We group such solutions un-
der the heading of community-driven (social) ontology matching [91]. Eventually,
once an alignment has been determined, it can be saved, annotated and further
reused as any other data on the web. Thus, a (large) repository of annotated map-
pings has a potential to increase the effectiveness of matching systems by providing
yet another source of domain specific knowledge besides, e.g., WordNet. In this
sense this approach can be used in traditional applications. However, this approach
seems promising and worth being taken into account in dynamic settings at least
for the following two reasons. Firstly, it enables a set of repositories of domain spe-
cific (subjective) knowledge. This is of high importance since lack of background
knowledge and, most often, domain specific knowledge is one of the main problems
of state of the art matching systems these days [39]. Secondly, this approach can be
naturally combined with interactive ontology matching in the sense of negotiating
(e.g., logically contradictory) mappings.

– involvement in the matching operation of all the relevant ontologies to be matched,
as opposed to a pair-wise ontology matching. We group these approaches under the
heading of multi-ontology matching. The rationale behind these solutions is that
it is often the case that matching is reduced to a simple term to term matching.
Therefore, the context in which terms occur is often opaque, and hence, by tak-
ing as input more ontologies (presumably, from the same application domain, e.g.,
book selling), it is more likely to guess the context, see, e.g., [45]. Of course, these
approaches are used in traditional applications as such. However, they are worth
being re-considered in dynamic settings since, as in the item above, they elaborate
on the problem of the lack of background knowledge in ontology matching.

13 Notice, it is assumed here that these necessary parties have already been located.



4.1 A conceptual framework

We shall now sketch a formal framework in which to provide precise characterizations
of the basic concepts at work in ontology matching in general, and dynamic ontology
matching in particular. It takes its inspiration from the mathematical theories of logic
and the flow of information in distributed systems [7, 35, 43].

We call vocabulary the set V of words and symbols used by a system to represent
and organise its local knowledge, such as XML elements, properties, roles, classes, and
so on. The language is then the set L(V ) of all well-formed formulae over a given
vocabulary V , i.e., grammatically correct complex expressions based on the language’s
vocabulary (e.g., concept descriptions, first-order sentences, DB queries). We shall also
write L when we do not want to explicitly refer to the underlying vocabulary language
L. We call the elements of a language L sentences.

In formal, logic-based representation languages, knowledge is represented and or-
ganised by means of theories. DL-based ontologies are such an example. A convenient
way to abstractly characterise theories in general is by means of the notion of conse-
quence relation. Given a language L, a consequence relation over L is, in general, a
binary relation � on subsets of L which satisfying certain structural properties 14. Con-
sequence relations are also suitable to capture other sorts of mathematical structures
used to organise knowledge in a systematic way, such as taxonomic hierarchies. When
defined as a binary relation on L (and not on subsets of L), for instance, it coincides
with a partial order. Furthermore, there exists a close relationship between consequence
relations and classification relations (which play a central role in ontological knowledge
organisation), which has been thoroughly studied from a mathematical perspective in
[7, 23, 35].

We call a theory a tuple T = 〈LT ,�T 〉, where �T⊆ P(LT ) × P(LT ) is a conse-
quence relation, hence capturing with this notion the formal structure of an ontology in
general. Finally, in order to capture the relationship between theories, we call a theory
interpretation a map between the underlying languages of theories that respects conse-
quence relations. That is, a function i : LT → LT ′ is a theory interpretation between
theories T = 〈LT ,�T 〉 and T ′ = 〈LT ′ ,�T ′〉 if, and only if, for all Γ, Δ ⊆ L we have
that Γ �T Δ implies i(Γ ) �T ′ i(Δ) (where i(Γ ) and i(Δ) are the direct set of images
of Γ and Δ along i, respectively)15.

14 These are commonly those of Identity, Weakening and Global Cut, see [7, 23].
15 Theories and theory interpretations as treated here can also be seen as particular cases of the

more general framework provided by institution theory and thoroughly studied in the field of
algebraic software specification, see [43].



Paraphrasing now the problem statement given in Section 2.1, we shall call ontology
matching the process that takes (at least) two theories T1 and T2 as input —called local
theories— and computes (at least) a third theory T1↔2 as output —called a bridge the-
ory— that captures the semantic alignment of T1 and T2’s vocabularies with respect to
some reference theory T underlying the semantic interoperability of T 1 and T2 achieved
by the matching process16.

Next, we provide precise definitions of what we mean for a bridge theory to capture
a semantic alignment of vocabularies. This will be important later when we attempt to
situate approaches to dynamic ontology matching with those discussed in the beginning
of Section 4 within the context of our formal conceptual framework. For this reason we
need first to introduce the formal notion of semantic integration.

Definition 1. Two theories T1 and T2 are semantically integrated with respect to T , if
there exist theory interpretations i1 : T1 → T and i2 : T2 → T .

T

T1

i1

���������
T2

i2

���������

We call I = {ii : Ti → T }i=1,2 the semantic integration of local theories T1 and T2

with respect to reference theory T .

In ontology matching we are interested in determining the semantic relationship be-
tween languages LT1 and LT2 on which semantically integrated theories T1 and T2 are
expressed. Therefore, a semantic integration I of T1 and T2 with respect to a reference
theory T as defined above is not of direct use yet. What we would like to have is a
theory TI over the combined language LT1 + LT2 expressing the semantic relationship
that arises by interpreting local theories in T . We call this the integration theory of I,
and it is naturally defined as the inverse image of the reference theory T under the sum
of the theory interpretations in I. Following are the precise definitions.

Definition 2. Let i : T → T ′ be a theory interpretation. The inverse image of T ′ under
i, denoted i−1[T ′], is the theory over the language of T such that Γ � i−1[T ′] Δ if, and
only if, i(Γ ) �T ′ i(Δ).

It is easy to prove that for every theory interpretation i : T → T ′, T is a subtheory
of i−1[T ′], i.e., �T⊆�i−1[T ′].

16 Rigorously speaking, ontology matching process actually takes two presentations of local the-
ories as input and computes a presentation of the bridge theory as output. However, from a
conceptual perspective, in this formal framework we shall characterise ontology matching in
terms of the theories themselves. If the language L is infinite, any consequence relations over
L will be infinite as well. Therefore, one deals in practice with a finite subset ofP(L)×P(L),
called a presentation, to stand for the smallest consequence relation containing this subset. A
presentation may be empty, in which case the smallest consequence relation over a language
L containing it is called the trivial theory. We will write Tr(L) for the trivial theory over L.



Definition 3. Given theories T1 = 〈LT1 ,�T1〉 and T2 = 〈LT2 ,�T2〉, the sum T1 + T2

of theories is the theory over the sum of language (i.e., the disjoint union of languages)
LT1+LT2 such that �T1+T2 is the smallest consequence relation such that �T1⊆�T1+T2

and �T1⊆�T1+T2 .
Given theory interpretations i1 : T1 → T and i2 : T2 → T , the sum i1 + i2 :

T1 + T2 → T of theory interpretations is just the sum of their underlying map of
languages.

Definition 4. Let I = {i1,2 : T1,2 → T } be a semantic integration of T1 and T2 with
respect to T . The integration theory TI of the semantic integration I is the inverse
image of T under the sum of interpretations i1 + i2, i.e., TI = (i1 + i2)−1[T ].

The integration theory faithfully captures the semantic relationships existing be-
tween sentences in LT1 and LT2 as determined by their respective interpretation into
T , but expressed as a theory over the combined language L T1 + LT2 . The sum of local
theories T1 + T2 is therefore always a subtheory of the integration theory TI , because
it is through the interpretations in T that we get the semantic relationship between lan-
guages. It captures the important idea that an integration is more than the sum of its
parts.

In ontology matching one usually isolates as output to the matching process the bit
that makes TI genuinely a supertheory of T1 + T2. The idea is to characterise a theory
T1↔2 over the disjoint union of subsets L1 ⊆ LT1 and L2 ⊆ LT2 , called a bridge the-
ory, which, together with T1 and T2, uniquely determines the integration theory TI . To
keep everything characterised uniformly in the same conceptual framework, the bridge
theory, together with its relationship to the local theories T1 and T2, can be expressed
by a diagram of theory interpretations as follows:

T1 T1↔2 T2

Tr(L1)

�����������

�����������
Tr(L2)

�����������

�����������

All arrows in this diagram are inclusions of theories. Following [46] we call a diagram
of the sort above a semantic alignment of local theories T1 and T2 through bridge theory
T1↔2. It will be a semantic alignment underlying a semantic integration I of local
theories if the integration theory TI is a colimit (in a category-theoretical sense [57]) of
the above diagram in the category of theories and theory interpretations.

Dynamic ontology matching. What conceptually distinguishes particular instances of
ontology matching is the integration I, which is basically (a) the virtual reference theory
T with respect to which semantic integration occurs, and (b) the theory interpretations
i1 and i2 capturing the way local vocabulary is interpreted in this reference theory.
In the remainder of this section we briefly discuss these conceptual differences in the
context of dynamicity. A thorough theoretical treatment of these differences, however,
is outside scope of this deliverable.

First, though, it is important to remark that, for dymanic ontology matching, the ref-
erence theory T is usually not a fixed, explicit input of the ontology matching process



and not even a presentation of it. Instead it should be understood as the mathematical
object that stands for the background knowledge determined by the concrete match-
ing parameters and external resources used by an ontology matcher during a particular
matching process in order to infer semantic relationships between the underlying vocab-
ularies of the respective input theories. Hence, T is relative to a particular occurrence
of matching. For a manual matcher, for instance, the reference theory may be entirely
dependent on the particular user input during the matching process, while a fully auto-
matic matcher would need to rely on automatic services (either internal or external to
the matcher) to infer such reference theory. It is for this reason that we talk of a virtual
reference theory, since it is neither explicitly provided to the ontology matcher, nor is
it a fixed, unchanging object. It is implicit in the way parameters and external or in-
ternal sources are brought into a particular matching process as background theory for
ontology matching.

Approximation and partiality. Relativity of ontology matching with respect to the vir-
tual reference theory underlying each particular matching process brings up the issue
of relationship between separate occurrences of matching.
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If the above diagram commutes, i.e., if interpreting each local theory T i into T ′ and
consequently into T is equivalent to interpreting it directly into T , we say that the
semantic integration with respect to T ′ is a refinement of the semantic integration with
respect to T . A direct consequence of this is that we shall be able to give a precise
characterisation of when the resulting semantic alignment is ‘more accurate’ or when
we will have ‘less information loss’ when moving from one theory to the other: the
integration theory of the refined semantic integration will include the theory of the less
refined integration.

Continuous ontology matching. Reuse of previously established mappings brings up the
issue of incrementally constructing semantic alignments from previous ones. Concep-
tually, this amounts to finding the refinement T1↔2 → T ′1↔2 between bridge theories,
which translates to a refined semantic alignment

T1 T ′1↔2 T2

T1↔2
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from a refined semantic integration:
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Interactive ontology coordination and negotiation. We shall model meaning coordina-
tion with a coordinated semantic integration, a semantic integration that captures how
T1 and T2 are progressively coordinated and which captures the integration achieved
through an interaction between two peers [76]. The coordinated semantic integration
is the mathematical model of this coordination that captures the degree of participa-
tion of a peer at any stage of the coordination process. This degree of participation can
be captured in a straightforward way with a theory interpretation g i : T ′i → Ti. The
coordination is then established not between the original theories T i but between the
subtheories T ′

i that result from the interaction carried out so far:

T

T1 T ′1g1
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�� T2

4.2 Plausible dynamic ontology matching directions

Below, we discuss five general matching directions that we have identified previously
as plausible ones.

Approximate and partial matching. Let us exemplify approaches to approximate and
partial matching in turn.

Approximate querying. Many existing automated or semi-automated systems treat on-
tology matching as a black-and-white question, i.e., two entities are either equivalent or
disjoint. When matching is invoked to facilitate, for example, query answering among
peers, “gray” areas also become significant. Confidence values are used in some sys-
tems [4] mainly indicating to what extent a human user trusts the results provided by
the system. Such a trust measurement helps to introduce fuzziness when exact mutual
understanding cannot be established among peers. For instance, using LCC notation,
similar term(B, n) ⇐ a(aligner, P ) suggests that an imperfect correspondence to-
gether with a numeric value (n) is passed from a peer (P ) acting as aligner. Peers
receiving this message can compile the similarity value, the trust value of aligner and
their local behaviour protocol, and make further decisions accordingly.



Similarity values, whose semantics are not clearly defined, are, however, highly
subjective. It neglects the ambiguity of human expressions in conceptualising and con-
veying meanings and the fact that the accuracy of matching results can only be justified
within the application context of the matching. Approximate querying, which has been
studied in database and information systems literature [3, 65], might be an alternative.
Approximate querying allows us to obtain the semantic relaxation during interactions
of peers. Suppose a peer submits a query ask(Ci) with concepts (terms) from its local
vocabulary. Let us also suppose that ask(Ci) returns an empty set as the answer. This
means either that there is no correspondence of C i or that all the potential correspon-
dences are untrustworthy. In such a case, a query (and the underlying correspondences,
in turn) can be relaxed to include neighborhood answers to the original query. Gen-
erally, answers to a query can be expanded by i) rewriting predicates as more general
ones and ii) rewriting a constant (concept or property) with more general ones. The first
relaxation replaces predicates with equivalent but less restrictive ones. For instance, if
a peer receives a query flight(A, B) and fails to find any local correspondences, it re-
laxes the message, breaks it down into sub-queries and accepts interim stops to increase
the chance of finding answers:

flight dest(A, From), f light dest(B, To), travel(From, , T o)

The second relaxation is performed by replacing concepts with their approxima-
tions, e.g., the least upper bounds and the greatest lower bounds of C [85] drawn from
the hierarchies that the concepts are related to. This is done under the assumption that
by querying with a more general concept, we can retrieve a larger set of answers, includ-
ing the ones that we are looking for. For instance, instead of asking for a specific digital
camera, e.g., asks(cannon S500), a more general concept asks(cannon S series)
can be used to relax a query. Although it might be the case that enquirees might not have
correspondences of asks(cannon S500) in his/her local vocabulary, we stand more
chance of obtaining a nonempty set of instances when using asks(cannon S series)
instead. When multiple concepts (terms) are present in the query, the upper and lower
bounds are computed as the conjunction

∧
lub(Ci) and disjunction

∨
glb(Ci) of re-

spective upper and lower bounds of each individual concepts.

Partial Matching. When inspected from P2P perspective, it is more likely that map-
pings are only sought between fragments of ontologies due to the prohibitive cost of
identifying a complete set of alignments among entire ontologies, especially for enor-
mous ontologies such as Gene Ontology and Anatomist Foundational Model (FMA)
[74]. Such a situation gives raise, for example, to techniques for segmenting (parti-
tioning of) ontologies. Ontology segmentation reduces the complexity of the ontology
matching problem by focusing only on most relevant concepts.

Given an arbitrary concept C in ontology O, fragmentation methods, e.g., [78],
single out the contexts that C is niched into. Fragmenting ontologies helps to reduce the
overhead that is required for processing a particular query. For instance, an LCC script

a(buyer, B) ::
ask(canonS500) ⇒ a(shopkeeper, S) ← . . .



might trigger a fragmentation around concepts camera, shopkeeper and buyer. The
resultant set of concepts are given higher priority than others when ontology matching
is to be performed, while matching with regard to other concepts then falls into the
category of lower priority.

The reduced cost benefits from partial matching and approximate matching that comes
with a price: inaccuracy. It is, however, our contention that in P2P environment, the in-
accuracy of ontology matching cannot be entirely prevented for the following reasons.
In a real-time environment, time and resource constraints simply mean that establishing
complete and accurate matching is impractical, if not impossible. Meanwhile, peers ex-
ist in contexts and thus the perfectness/imperfectness of matches are context-specific.
Implanting defined mappings from their original context into another introduce approx-
imateness. Moreover, the freedom and dynamic nature of peers imply that mappings
established a priori might often be broken. Residual peers might have to live with in-
complete mappings before such links are recovered.

Interactive ontology matching. When ontology matching is done during run-time,
full information about the ontologies to be matched is not usually available; instead,
each peer attempts to interpret specific statements from other peers with which it is
interacting by matching those statements to parts of its own ontology. This means that
the context of statements is not revealed and so there may not be enough information
to discover correct mappings. However, since this matching is occurring specifically
during the interactions of the peers, it is possible for the peers to use the interaction
to discuss the matching process. This allows the peers to extract information about the
statement to be mapped that it may not be possible to infer. Additionally, this allows
the peers to negotiate about what terms will be used in the discussion which will be
comprehensible to both of them.

For example, consider a buying-selling interaction in which peers pass messages
concerning what they wish to purchase, what the cost of that is, and so on. Let us sup-
pose that the buying peer requests an item (say, a book) and the selling peer returns the
following message: cost(book, 10, euros, visa card). The buying peer would likely
have been expecting a message about cost, but may have been expecting it to be slightly
different: in this situation, the payment method is relevant - perhaps the cost is greater if
a different card is used - but perhaps the buying peer’s ontology does not consider this
aspect and represents cost as a ternary function: cost(Item, Amount, Currency). If
the buying peer does not recognise the term visa card, it may not know how to inter-
pret this extra argument. However, because it is currently interacting with the peer that
is using this representation, they can temporarily leave the buying-selling protocol and
enter an ontology negotiation protocol. The buying peer may ask what type of object
visa card is and discover from the selling agent that it is of type credit card. The buy-
ing agent is then able to expand its concept classification to include this new object, and
also alter its understanding of the relation cost to be one that may take an additional ar-
gument of type credit card. Or perhaps it already understood the relation cost to take
four arguments, the last of which was cash: this may have come about through a similar
interaction in which a selling peer wanted cash. Encountering this argument instantiated
as credit card indicates that the peer’s original notion of the correct type for the fourth



argument was too specific and it should be extracted to be of type payment method.
Additionally, now that it can tie this unexpected object into its own ontology, it can ne-
gotiate about other possibilities. It cannot fulfil the request to pay by visa card since,
as it has only just learnt what a visa card is, it clearly does not have one. However, it
will now be able to deduce that access card is a sibling concept, and can attempt to
negotiate with the selling peer about paying with that.

Continuous ”design-time” matching. Traditionally, ontology matching is performed
off-line, mainly at design-time by dedicated ontology engineers and/or domain experts.
It has long been thought that good initial ontology matching at design-time will elimi-
nate, or at least alleviate, follow-up matching efforts. Many of us have grown to believe
that matching tasks performed at design-time would have knock-on effect on ontol-
ogy related interoperability issues, and if such issues persist it is probably because of
a wrongly selected matching method or inherent problems with the ontologies them-
selves. This static perspective of most current matching systems will struggle in a dy-
namic P2P environment. We opt for the agile development method in software engi-
neering and suggest the continuity of design-time matching to the entire life-cycle of a
peer.

Continuous ”design-time” matching is based on the assumption that in P2P envi-
ronment, interoperability becomes a pertinent issue only when requests are submitted
and processed. Once a query has been tackled and the communication channel has been
established, data translation becomes the dominant issue till new requests are raised.
It is, therefore, reasonable to relocate the interim periods between two consecutive re-
quests to refine and update existing mappings.

The current matching capability normally captures ontologies with a set of fea-
tures, e.g., names, relations with other entities. Based on the extent to which they take
on features from adjacent entities as evidence, matching algorithms can be classified
and arranged along an axis of increasing computational complexity [15, 16]. A possi-
ble continuous matching scenario might, therefore, be as follows. In the first step, a
set of features are selected from a peer’s local vocabulary and an initial consensus is
defined. We call this the current consensus. In subsequent steps, as follow-up interac-
tions broach more features of the ontologies from both the query submitting peer and
the query handling peers, candidates in the current consensus are re-examined so that
non-qualified ones are discarded. In this way, the current consensus becomes smaller
and more accurate at each recursive step. By keeping a good explanation and back-
tracking mechanism, it is possible to recover discarded candidates when conflicts are
encountered. Let us consider an example. Suppose a peer P is seeking to download
annotated mammographic images. When processing a request asks(mammogram),
the initial current consensus can be established by applying algorithms from the cheap-
est category, e.g., string-based methods. It might fill the current consensus with terms
such as mammogen, mammoplasty, mammotropin, and so on, which are obviously
unsatisfactory answers to a query regarding mammogram. Further interactions gath-
ered from tells(X is-a Xray image) might reveal the fact that Mammogram is a sub-
concept of Xray image based on which mammogen, mammoplasty and mammotropin



are pruned and the current consensus is refined. Such a process continues till a fix-point
is reached or a satisfactory answer is accept by the enquirer.

Note that there are three prerequisites of such a continuous approach. Firstly, it
should be possible to extract and categorise a set of features, the matching task of which
presents a spectrum of increasing accuracy and/or computational complexity. Secondly,
a fix point that terminates refinement procedure can be defined. The simplest form of
such a fix point can be a “hard” deadline when the matching process has to stop. Finally,
candidates in the current consensus are represented in languages understandable and
executable by software agents, who are then able to restore the previous execution and
combine it with newly discovered knowledge.

Community-driven ontology matching. 17 Below, we discuss one of the community-
driven ontology matching approaches, called public alignment reuse [91]. A rationale
behind the alignment reuse is that many ontologies to be matched are similar to al-
ready matched ontologies, especially if they are describing the same application do-
main [70, 81]. Eventually, once an alignment has been determined, it can be saved and
further reused as any other data on the web. Thus, a (large) repository of mappings
has the potential to increase the effectiveness of matching systems by providing yet
another source of domain specific knowledge. Unlike, e.g., COMA++ [5], which fol-
lowed a private alignment reuse approach (where access to the system is limited to
individual users who usually do not know each other, and hence they do not communi-
cate with each other); in a public approach, any agent can match ontologies, save the
alignments so that these are available for any other agents to reuse, thus, enabling the
cross-fertilization between the participating parties and helping to achieve the goals of
these parties cooperatively.

Let us consider a simple scenario which involves four researchers from two natural
science communities. The researchers are Mark, Michael,Jenny, and Alexander.
They are represented by roles held in their communities (i.e., end user, knowledge en-
gineer, developer) and web domains/communities where they interact (e.g., biology,
chemistry). These researchers have the following profiles:

name Mark
interacts biology, chemistry web applications
role(s) end user

name Jenny
interacts chemistry web application
role(s) end user, developer

name Michael
interacts biology, chemistry web applications
role(s) end user, knowledge engineer

name Alexander
interacts biology, chemistry web applications
role(s) end user

Suppose the following two actions take place:

– Michael creates an alignment m between ontologies coming from biology and
chemistry web applications;

– Alexander uses the alignment m.

17 The example under consideration has been taken from [91].



The result of a public alignment reuse is the alignment m, which is recommended to
Mark. After a tool recommends a new mapping to Mark, he, as a researcher, can benefit
from the extended interoperability between biology and chemistry web applica-
tions without applying any effort to rediscover the new knowledge (already established
by Michael and validated by Alexander). In the proposed scenario, alignment m is
not recommended to Jenny, because she does not use the biology web application.

A specific feature of correspondences resulting from this kind of ontology matching
is their customization to the user/community and application requirements (subjective
alignments). All these relations are represented via annotated mappings and are to be
propagated to the communities associated with the human contributor. Notice that sub-
jective alignments are appropriate for specific tasks in a specific community, but may
be inappropriate or even contradicting to the practices of other communities.

Multi-ontology matching. In some applications it is often the case that many agents
are involved in it and a consensus is growing from a pool of information. For instance,
in e-commerce scenarios, surrogates representing the customers might need to negoti-
ate with more than one service and product provider as well as among the surrogates
themselves. In such communications, ternary and quaternary dialogues (and, in turn,
correspondences, as opposed to binary ones) abound while each participant might hold
his/her own view of the domain of discourse, see, e.g., [17, 45]. To put in line the above
example, let us imagine an on-line natural science forum, in which Jenny is a regis-
tered developer and has her ontology aligned with the rest of the group. In a particular
point, Michael, Mark and Alexander log in as new users, each of whom brings a
new domain ontology. In such cases, a ternary consensus would allow Michael, Mark
and Alexander to “kick-off” discussions immediately on a subtopic of biology that
they are all interested in.

One of the obstacles in multi-ontology matching is that ontology matching tech-
niques may often be computationally expensive, and therefore, cannot scale to a large
number of ontologies. To cope with this issue we envisage a distributed approach. For
example, distributed hash tables (DHTs) of [71, 84] provide implementations of self-
organizing DHTs on a P2P network. They produce a hash value for the keys of objects
that are to be stored, and place them in the peer with ID closest to that hash-value. Thus,
a peer is responsible for key K when K’s hash value lies closest to the ID of that peer.

We use a DHT as a naming system for a method in which peers decide which data
is relevant to them, muster more relevant data and repeat. Although this approach can
be applied to a variety of techniques and types of ontologies, we will describe a simple
case: using folksonomies (i.e., sets of related terms)18 together with the method pro-
vided by Schutze in [77] for automatic word sense discrimination. Each folksonomy
is registered in the peers responsible for each of its terms. Therefore, for example, the
peer responsible for XML will contain all folksonomies with the term XML. This pro-
vides us with an initial clustering of related folksonomies into peers. Obviously, this is
the simplest clustering possible. After this, we may use a more computationally com-
plex clustering algorithm to extract the most important terms. Finally, clusters of terms,

18 See, for example, http://del.icio.us/.



for example which are synonyms, result in equivalence correspondences between all
the terms from such a cluster.

In [77], terms and their senses are represented in a real-valued high-dimensional
space where closeness in the space corresponds to semantic similarity. As input for this
method one may use the folksonomies for each term. From the representations of terms
in the high-dimensional space it is possible to determine the similarity between terms.
This can be done by evaluating when senses are close in the high-dimension space of
Schutze, in which case it is likely that they have similar meanings.

Synthesis. Techniques presented in this section are by no means mutually exclusive. In
fact, a closer look at the above discussions might reveal that some techniques might be
the prerequisite or outcomes of and, in many cases, the trigger for the applications of
others. For instance, continuous “design-time” matching might rely on initial approx-
imate or partial matching and aims to provide sufficiently “good” approximate/partial
matching results at the end of each revision; interactive matching might underpin the
continuous “design-time” matching by gradually unveiling the domain of discourse
through communications; a public alignment towards a set of common ontologies would
certainly allows multi-ontology matching to emerge.

A possible combinatory scenario might be as follows. Let us suppose that a query
buy(canonS500) is submitted to a group of peers, G, public alignment reuse method
facilitates the retrieval of known mappings from previous interactions. The peers in G
then evaluate each known mapping within the context of the current interaction and
gather possible mappings that might answer the query into the initial partial matching
consensus Mc. If previous mappings are not trustworthy, G populates M c by mappings
that are obtained with relatively “cheap” methods, e.g., partial matching and/or “shal-
low matching” [16] or approximate matching, e.g., classifying canonS500 as camera,
photocopier, printer, that are products of Canon Inc. While sending the responses
drawn from Mc back to and awaiting the feedback from the enquirer, peers in G con-
tinuously work on Mc by applying more expensive algorithms or consulting external
peers.

Having received messages from G, the enquirer might be in one of the following
states: (i) it might consider that the answers from G are satisfactory and terminate the
interactions with G; (ii) it might relax the query to include approximate answers; (iii)
it might refine the query with the new knowledge discovered in the answers from G.
Further interactions between G and the enquirer would help to shape a more accurate
Mc that allows the latter to obtain satisfactory answers. For instance, new evidence
might suggest a refinement according to the known model code “S500” or the fact that
the enquirer is asking information about a camera to pin down the type of the referred
product.



5 Systems and evaluation

5.1 State of the art prototypes

At present there exists around fifty matching prototypes, see, e.g., [9, 20, 22, 31, 38, 51,
58, 60, 68]. Most of them have been already discussed in the previous surveys address-
ing the ontology matching topic, see, e.g., [8, 21, 49, 53, 67, 70, 81, 88]. Thus, in this
section we revisit only those (several) systems (e.g., QOM [25]) which are of partic-
ular interest for us from the dynamic ontology matching perspective. It is worth also
noting that ontology matching is an area which evolves quite fast itself. Therefore, we
have considered here a number of recent prototypes which try to deal with dynamic
applications.

DCM framework (U. of Illinois at Urbana-Champaign). MetaQuerier [17] is a mid-
dleware system that assists users to find and query multiple databases on the web. It ex-
ploits the DCM (dual correlation mining) matching framework to facilitate, e.g., source
selection according to a user’s search keywords [45]. The system takes as input multi-
ple schemas and returns mappings between all of them. DCM automatically discovers
complex mappings (e.g., {author} corresponds to {first name, last name}) between at-
tributes of the web query interfaces in the same domain of interest (e.g., books). As
the name DCM indicates, schema matching is viewed as correlation mining. The idea
is that co-occurrences of patterns often suggest the complex matches. That is, group-
ing attributes, such as first name and last name, tend to co-occur in query interfaces.
Technically, this means that those attributes are positively correlated. Contrary, attribute
names which are synonyms, e.g., quantity and amount, rarely co-occur, thus represent-
ing an example of negative correlation between them. Matching is performed in two
phases. During the first phase (matching discovery), a set of matching candidates is
generated by mining first positive and then negative correlations among attributes and
attribute groups. Also, some thresholds and a specific correlation measure (H-measure)
are used. During the second phase (matching construction), by applying some strategies
of ranking (e.g., scoring function, rules) and selection (iterative greedy selection), the
final alignment is produced.

FOAM: QOM (U. Karlsruhe). FOAM is a Framework for Ontology Alignment and
Mapping. It includes such matching systems as NOM, QOM, and APFEL [25–27]. In
the context of this deliverable we are interested primarily in the QOM system. However,
we briefly revisit also NOM in order to facilitate understanding of QOM.

NOM (Naive Ontology Mapping) [27] combines a set of elementary matchers based
on rules, exploiting explicitly codified knowledge in ontologies, such as information
about super- and sub-concepts, super- and sub-properties, etc. At present the system
supports 17 rules. For example, rule (R5) states that if super-concepts are the same, the
actual concepts are similar to each other.

QOM (Quick Ontology Mapping) [25] is a successor of the NOM system. The ap-
proach is based on the idea that the loss of quality in matching algorithms is marginal (to
a standard baseline); however improvement in efficiency can be tremendous. This fact



allows QOM to produce mapping elements fast, even for large-size ontologies. QOM
is grounded on the matching rules of NOM. However, for the purpose of efficiency
the use of some rules has been restricted, e.g., R5. Also, QOM avoids the complete
pair-wise comparison of trees in favor of a (n incomplete) top-down strategy, thereby
focusing only on promising matching candidates. The similarity measures produced by
matching rules are aggregated by using a sigmoid function, thereby emphasizing high
individual similarities and de-emphasizes low individual similarities. Finally, with the
help of thresholds, the final alignment is produced.

OntoBuilder (Technion Israel Institute of Technology). OntoBuilder is a system for
information seeking on the web [64]. A typical situation the system deals with is, for
example, when a user is searching for a car to be rented. Obviously, the user would like
to compare prices from multiple providers in order to make an informed decision. Thus,
the same input information has to be typed in many times. OntoBuilder operates in two
phases, namely: (i) ontology creation (the so called training phase) and (ii) ontology
adaptation (the so called adaptation phase). During the training phase an initial ontol-
ogy (in which a user’s data needs are encoded) is created by extracting it from a visited
web-site of, e.g., AVIS car rental company. The adaptation phase includes on-the-fly
matching and interactive merging operations of the related ontologies with the actual
(initial) ontology. Ontology creation is out of the scope of this deliverable. Hence, we
concentrate only on the ontology adaptation phase. During the adaptation phase the
user suggests the web sites (s)he would like to further explore, e.g., the Hertz car rental
company. Each such a site goes through the ontology extraction process, thus, result-
ing in a candidate ontology, which is then merged into the actual ontology. To support
this, the best match for each existing term in the actual ontology (to terms from the
candidate ontology) is selected. Selection strategy employs thresholds. The matching
algorithm works in a term to term fashion. It sequentially executes a number of match-
ers. Some examples of the matchers used here are removing noisy characters and stop
terms and substring matching. If all else fails, a thesaurus look-up is performed. Fi-
nally, mismatched terms are presented to the user for manual matching. Some further
matchers such as those for precedence matching were introduced in a later work in [34].
Also Top-K mappings as alternative for single best matching (i.e., top-1 category) was
proposed in [33].

ORS (University of Edinburgh). The Ontology Refinement System (ORS) [59] deals
with the problem of syntactic mismatch between similar first-order ontologies in agent
settings. Its ultimate goal is slightly different compared with the other systems dis-
cussed in this section, namely it is concerned with the repair of ontologies. The system
has a built-in grammar of potential mismatches - for example, for first order relations
these may be mismatches in the predicate name or in the number, ordering or types
of arguments - and diagnoses mismatches using algorithms that pinpoint the poten-
tial mismatch with reference to this grammar. For example, a mismatch in the predi-
cate name exist between price(Item, Amount) and cost(Item, Amount). However,
price(Item, Amount) would also be mismatched with price(Item, Amount, Pay−
mentMethod), price(Amount, Item) and price(Book, Amount) in terms, respec-



tively, of number, order of type of the arguments. Unlike many ontology matching sys-
tems, ORS does not require full access to two (or more) external ontologies between
which it acts as a third-party interpreter. Instead it is designed as a matching process
that can be attached to an agent that is, in the course of its other activities, attempting
to interpret the locutions of other agents. Thus ORS requires access to one complete
ontology (the ontology of its agent, to which these locutions must be mapped) and only
the small parts of other ontologies that are revealed in locutions. Matching entire on-
tologies is not the goal; only those parts that are central to the comprehension of the
interaction that is currently taking place are relevant. Since, in a large-scale, multi-user
system, it is not possible to predict which agents will be interacted with and what locu-
tions these interactions contain, it is neither practical nor possible to do this matching
off-line; instead these locutions must be matched during the interactions as the need
for them is revealed. ORS particularly focuses on mismatches caused by abstractions,
where ontological objects have been made more general, or refinements, where ontolog-
ical objects have been made more specific. This is because ontologies are often changed
since they have been found to contain unnecessary detail or to be lacking in necessary
detail. Examples of such changes are adding or removing arguments from relations so
that they contain more or less information; changing the types of the arguments to more
or less general types (sub- or super-types); changing the relation itself into a more or
less general relation.

PowerMap (Open University). PowerMap is a matching algorithm that has been de-
veloped in the context of the PowerAqua question answering system [55]. As such, it
was designed to be integrated in an open environment, such as the semantic web, where
concepts extracted from a user query are matched to on-line ontologies at run-time
and the selected ontologies are used for answering the question. PowerMap is a hy-
brid matching algorithm comprising linguistic and structural matching techniques with
the assistance of a thesaurus, e.g., WordNet. The algorithm takes as input a triple or a
set of triples and returns semantically equivalent ontology entities (classes, instances,
properties) for each of the terms of the triples. PowerMap has two major phases.

The first phase identifies a set of candidate mappings for the query terms: given
the terms of the triples, this step returns mappings to entities in on-line ontologies that
are lexically related to these terms. This terminological phase concentrates on element-
level matching and identifies candidate classes and instances from different ontologies
to be matched to each query term. This step relies on lemmatization, acronyms (for
instances), string-based comparison (e.g., edit distance) and thesauri look-up for syn-
onyms, hypernyms and hyponyms.

The second phase takes as input the candidate mappings identified in the previous
step and filters out those that are indeed relevant. For example, if the term capital is
matched to concepts with identical labels in a geographical and a financial ontology, the
system needs to decide which mapping is relevant for the sense of the query term. This
step uses structural matching over the class hierarchy. It computes semantic similarity
between the user query terms and candidate ontology class terms, and between the
candidate ontology classes themselves. Similarity between classes is measured once
the meaning of the ontology class (its sense) is made explicit by an interpretation not



only of its label but also of its WordNet sense determined by its position in the ontology
taxonomy (in particular, the sense of an ontology class is determined by the sense of
its ascendant/descendant in the ontology). Similarity between classes is measured by
the distance (depth) and common subsumers between the two concept/senses in the
WordNet “IS-A” hierarchy (as in hierarchy distance based matchers).

This method avoids a global interpretation of the matched ontologies and aims to
provide partial mappings. Not all the concepts of the ontology are interpreted, only
those that seem similar to the mapping terms (i.e., those identified by the first step of the
algorithm). The obtained mappings are stored in a semantic data repository (Sesame) in
order to enable their future reuse.

S-Match (University of Trento). S-Match [36–38] is a schema-based matching sys-
tem. It takes two graph-like structures (e.g., XML schemas, classifications) and returns
semantic relations (e.g., equivalence, subsumption) between the nodes of the graphs that
correspond semantically to each other. The relations are determined by analyzing the
meaning (concepts, not labels) which is codified in the elements and the structures of
schemas/ontologies. In particular, labels at nodes, written in natural language, are trans-
lated into propositional formulas which explicitly codify the label’s intended meaning.
This allows for a translation of the matching problem into a propositional unsatisfiabil-
ity problem, which can then be efficiently resolved using (sound and complete) state
of the art propositional satisfiability deciders. S-Match was designed and developed as
a platform for semantic matching, namely a highly modular system with the core of
computing semantic relations where single components can be plugged, unplugged or
suitably customized. At present, S-Match libraries contain 13 element-level matchers,
see [40], and 3 structure-level matchers (e.g., SAT4J [10]).

S-Match has been used so far mostly in traditional applications. Based on the recent
optimizations and evaluations, see [41], S-Match has significantly improved its per-
formance characteristics. Thus, it demonstrates a good potential also for the emerging
applications.

5.2 Evaluation methodology

Evaluation problem. In general, we think of evaluation as an assessment of perfor-
mance or value of a system, process, product, or policy. As [75] indicates, an evaluation
activity requires:

– A system or its representation such as prototype, product, etc.; together with its
underlying process (algorithm, simulation, etc.);

– Criteria representing the objectives of the systems;
– Measures based on the criteria;
– Measuring instruments to register (or compute) the measures;
– Methodology for obtaining the measurements and conducting the evaluation (i.e.,

set of tools and methods applied in order to obtain the experimental results).

Let us review these general requirements one by one from the matching perspective.
The system and process in this case include the test cases and their associated processing
under given algorithms and procedures.



The major criterion exploited in the matching evaluation is relevance, i.e., how rel-
evant are the mappings produced by a matching system with respect to the end user. Let
us consider measures of relevance that are well known in information retrieval, such as
Precision, Recall, and F-measure, which were adapted to the matching domain, e.g.,
[19]. Calculation of these measures is based on the comparison of the mappings pro-
duced by a matching system (R) with the reference mappings considered to be correct
(C).

– Precision varies in the [0,1] range; the higher the value, the smaller the set of wrong
mappings (false positives) which have been computed. Precision is a correctness
measure. It is computed as follows:

Precision =
|C ∩R|
|R| (1)

– Recall varies in the [0,1] range; the higher the value, the smaller the set of correct
mappings (true positives) which have not been found. Recall is a completeness
measure. It is computed as follows:

Recall =
|C ∩R|
|C| (2)

– F-measure varies in the [0,1] range. It is global measure of the matching quality,
which increases if the matching quality increases. The version presented here is
computed as a harmonic mean of Precision and Recall:

F −measure =
2 ∗Recall ∗ Precision

Recall + Precision
(3)

The other important criterion is efficiency, i.e., how fast the mappings are produced.
Usually the execution time is taken as a measure of efficiency.

In computation of the relevance based measures the experts play the role of mea-
suring instruments, since they define the relevance of the mappings. For execution time
the clock is considered as a measuring instrument.

Finally, the testing methodology includes design, manner and techniques used to
obtain and analyze the evaluation result. These, in turn, also need to be evaluated for
their validity and reliability.

Evaluation efforts. To the best of our knowledge (coordinated international) ontology
matching evaluation efforts have emerged only recently 19, see [2, 4, 86]. These are:

I3CON 20. In I3CON of 2004, five ontology matching systems have been evaluated
on eight test cases taken from various domains. The ontologies were taken from
the web and matched against their modifications (e.g., adaptation to the concerned
topic, language translation). The biggest matching problem was constructed from

19 http://oaei.ontologymatching.org/
20 http://www.atl.external.lmco.com/projects/ontology/i3con.html



the ontologies with hundreds of classes. The reference mappings were produced
by consensus of an external group of students. Precision, Recall and F-measure
have been calculated for all the test cases and compared among the systems. The
best systems demonstrated 0.7-0.8 Precision and 0.7-0.8 Recall, which produced a
0.6-0.75 F-Measure. Efficiency of the systems was not considered in the evaluation.

EON 21. In the EON contest of 2004, four ontology matching systems have been eval-
uated on a test bed consisting of 20 matching problems. In particular, the initial
ontology taken from the bibliography domain was matched against its 16 modifi-
cations obtained in a (semi) automatic way (e.g., flattened hierarchy, no instances)
and 4 ontologies of the same domain developed by the different institutions. These
ontologies contained tens of classes. The reference mappings were known by par-
ticipants in advance, which allowed them to tune their systems. The tools for map-
pings management and evaluation of the matching quality measures were provided
[29]. The qualitative measures (such as Precision and Recall) were calculated for
all the matching problems and the analysis of results were performed by the authors
of the matching systems. The best Precision results were in 0.9-0.99 range while
Recall slightly exceeded 0.8. Efficiency of the systems was not considered in the
evaluation.

OAEI-2005 22. Ontology Alignment Evaluation Initiative (OAEI) of 2005 aimed at
performing comparative evaluation of the matching quality of seven ontology match-
ing systems. As from [4], these are: OMAP, CMS, Dublin20, Falcon, FOAM, OLA,
and ctxMatch2. The evaluation consisted of two parts:

– A systematic test set composed from ontologies of bibliographic domain (tens
of nodes). This is a slightly modified version of the EON-2004 test set.

– Two large scale real world matching tasks, namely: (i) the first matching task
was extracted from Google, Looksmart,Yahoo web directories and (ii) the sec-
ond task was matching the FMA [74] and GALEN [72] medical ontologies
(tens of thousands of nodes). For the task of matching medical ontologies no
reference mappings were known in advance, and therefore, no matching qual-
ity measures can be estimated. For the web directories an incomplete reference
mappings set was provided. Notice that this incomplete reference mappings set
allows the evaluation of only Recall of matching solutions.

Nearly all the systems participating in the evaluation demonstrated high or very
high results in systematic tests. For example, five systems out of seven have shown
Precision higher than 0.8 and Recall higher than 0.7. At the same time web direc-
tory matching task turned out to be much harder. In fact, the best Recall value was
about 0.3 which is significantly lower that previously reported results. Medical on-
tologies matching task was exploited as a scalability test for the matching systems
and only a few of them (namely, CMS and Falcon) were capable of providing the
results for this kind of matching task. Finally, it is worth noting that efficiency of
the systems was not considered in the evaluation.

Let us now discuss two evaluation efforts performed individually by matching sys-
tems developers. In [25] (the QOM system), three ontology matching systems were

21 http://oaei.ontologymatching.org/2004/Contest/
22 http://oaei.ontologymatching.org/2005/



evaluated on 3 pairs of ontologies composed from hundreds of entities. The matching
quality and efficiency indicators were computed. A trade off between efficiency and
quality have been demonstrated for two of the systems. The highest F-measure (for the
tests under consideration) of 0.8 has been reported. The most efficient matching solution
solved the task in 10 seconds and demonstrated F-Measure of 0.6.

In [41] (the S-Match system), the efficiency of four matching solutions was eval-
uated on 2 artificially produced and 4 real world matching problems. The size of the
matching tasks varied from tens up to thousands of nodes. The evaluation results showed
that the fastest matching system were able to solve the matching tasks with tens of nodes
in less than a second. The matching tasks with hundreds of nodes were solved in 10-200
seconds. The biggest matching tasks involving thousands of nodes were solved in 10
minutes.

Evaluation summary. At present, nearly all state of the art matching systems suffer
from the lack of evaluation. Till very recently there was no comparative evaluation and
it was quite difficult to find two systems evaluated on the same dataset. Often authors
artificially synthesize datasets for empirical evaluation but they rarely explained their
premises and assumptions. Also, most of the current evaluation efforts were devoted to
ontologies with tens of nodes and only some works (see, e.g., [25]) present the eval-
uation results for the matching problems with hundreds of nodes. At the same time,
industrial sized matching problems may contain up to tens of thousands of nodes. This
is the case mostly due to lack of large scale annotated mapping datasets obtained from
real world matching tasks.

Given the fact that coordinated international evaluation of matching approaches in
general is still in its infancy, unfortunately, dynamic applications as providers of match-
ing tasks are largely ignored for the time being.

6 Open issues and challenges

In this section we discuss some open issues and challenges which have to be addressed
in order to realize the dynamic ontology matching.

Lack of background knowledge. Recent industrial-strength evaluations of matching sys-
tems, see, e.g., [6, 30, 39], show that lack of background knowledge, most often domain
specific knowledge, is one of the key problems of matching systems. In fact, most state
of the art systems, for complex real world matching tasks, produce much lower val-
ues of recall (∼30%) than for toy examples, where the recall was most often around
80-90%. This problem has a particular significance in dynamic settings. In fact, the
matching input is often much more shallow, being a set of (sometime, random) terms,
and therefore, it incorporates fewer clues to result in plausible mappings.

Performance. Following the above mentioned examples from the industrial-strength
evaluations, besides the effectiveness of the results, there is an issue of performance.
Performance is of prime importance in many dynamic applications, for example, where
a user can not wait too long for the system to respond. Execution time indicator shows



scalability properties of the matchers and their potential to become industrial-strength
systems. Also, referring to the above mentioned evaluations, the fact that some systems
ran out of memory on some test cases, although being fast on the other test cases,
suggests that their performance time was achieved by using a large amount of main
memory. Therefore, usage of main memory should also be taken into account.

Interactive (automated) approaches. In traditional applications, as the above mentioned
results of evaluations indicate, automatic ontology matching usually cannot deliver a
high quality results, especially on huge datasets. Thus, for traditional applications, semi-
automatic matching is a plausible way to improve the effectiveness of the results. Dy-
namic applications in this sense have a specific feature which traditional applications do
not. In fact, since there are multiple parties (agents) involved in the process, mismatches
(mistakes) could be negotiated (corrected) in a fully automated way. Obviously, during
interaction the full context of ontological objects used will not be available. However,
this can involve negotiation between the agents as to what these objects are referring to
and how they may be matched into each other’s ontologies or some shared understand-
ing. Along the lines of interactions, argumentation schemas the agents use are becoming
important, since this is the way that agents may build a consensus. Therefore, explana-
tions of matching [82], being an argumentation schema, become crucial. In fact, if two
agents are going to trust the fact that two terms may have the same meaning, then they
need to understand the reasons leading a matching system to produce such a result.

Social aspects. The impact of social networks, web communities and direct involve-
ment of humans (in a distributed fashion) on dynamic ontology matching has to be
analyzed and distilled. As the public alignment reuse approach (discussed previously)
indicates, once an alignment has been determined, it can be saved, annotated, and fur-
ther reused as any other data on the web. A first open issue here is what should be
succinctly included in the annotation (codifying social aspects) of a mapping element
in order to be practically useful in the future. On the one hand, a (large) repository of
mappings has the potential to increase the effectiveness of matching systems by provid-
ing yet another source of domain specific knowledge [91]. On the other hand, users can
publish different and even contradicting alignments. Hence, one of the open problems
here is how to manage the contradictory mappings in the repositories.

Self-configuration and customizing technology. In dynamic settings, it is natural that
applications are constantly changing their characteristics. Therefore, approaches that
attempt to tune and adapt automatically matching solutions to the settings in which an
application operates are of high importance. This includes automation of the combina-
tion of individual matchers and libraries of matchers, namely which matchers to use
and where, what are the most appropriate thresholds, weights, coefficients, and so on.

Evaluation. There are at least two challenges in evaluation of dynamic ontology match-
ing. The first one concerns automated dataset construction methodologies, e.g., how to
acquire the reference mappings automatically in dynamic settings. The second chal-
lenge concerns new quality measures, which are application specific; that is, how to
assess whether the result of matching is good enough for the application.



7 Conclusions

In this deliverable we have extended the notion of ontology matching to dynamic on-
tology matching. We have considered three scenarios operating in dynamic settings
from various applications, namely biomedicine, emergency, open browsing/query an-
swering, and collected the requirements they pose towards a matching solution. Based
on these requirements we have identified the main difference between dynamic match-
ing and conventional ontology matching. In particular, this difference lies in a number
of functional and non-functional requirements. These functional requirements include:
(i) approximate, (ii) partial and (iii) run-time matching. Non-functional requirements
include: (i) good enough quality of matching results and (ii) matching performance
constraints. We have discussed five general matching directions which we believe can
appropriately address those requirements. These are: approximate and partial ontology
matching; interactive ontology matching; continuous ”design-time” ontology matching;
community-driven ontology matching; and multi-ontology matching. We overviewed
state of the art matching systems as well as their evaluation principles from the dynamic
ontology matching perspective. Finally, the key open issues and challenges towards re-
alizing dynamic ontology matching were discussed, thereby providing a vision for the
major future activities.
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