
OpenKnowledge

FP6-027253

Initial Semantic Router

Spyros Kotoulas and Ronny Siebes

Faculty of Sciences, Vrije Universiteit Amsterdam, The Netherlands

Report Version: final
Report Preparation Date:
Classification: deliverable D2.2
Contract Start Date: 1.1.2006 Duration: 36 months
Project Co-ordinator: University of Edinburgh (David Robertson)

Partners: IIIA(CSIC) Barcelona
Vrije Universiteit Amsterdam
University of Edinburgh
KMI, Open University
University of Southampton
University of Trento

Adaptive routing in structured peer-to-peer overlays

Spyros Kotoulas and Ronny Siebes
Vrije Universiteit Amsterdam

Department of Computer Science
De Boelelaan 1081, 1081HV, Amsterdam
The Netherlands {kot,ronny}@few.vu.nl

Abstract

Finding content that is described by a large set of terms
is a challenging problem in Peer-to-Peer (P2P) systems.
One promising direction to solve it are Distributed Hash
Tables (DHTs). The first DHT approaches were not able to
efficiently store and retrieve the content because each term
needs to be mapped to a key and routed to a peer that is
responsible for it. Current solutions based on shared data-
structures or on popularity-based metrics still have some
disadvantages that may be tackled. We hope to contribute
by this paper in two ways. First, we present an scalable
and efficient multi-attribute routing algorithm in a struc-
tured DHT-like P2P network that adapts according to the
popularity of the terms in the content description. Secondly,
we have implemented this as a distributed discovery service
for the OpenKnowledge system. For this implementation,
we have performed a preliminary performance evaluation.

1 Introduction

Peer-to-Peer is a promising technology addressing some
of the major challenges in modern distributed systems. First
of all, it provides scalability through distribution of the de-
ployment cost. Secondly, all peers have the same function-
ality, providing robustness by redundancy. Furthermore, it
alleviates the problem of undisclosed and censored infor-
mation; for example, a search engine might choose to cen-
sor specific information or rank information according not
only to relevance, but according to advertisement income,
just to name one. Finally, there is no guarantee of privacy,
as the organization providing a specific service is free to
log all and any information submitted by the user (for in-
stance, search engines may correlate queries with IP ad-
dresses, domains etc). Notably, the currently most popu-
lar search engines are notoriously committed to the above.
Peer-to-peer systems that rely on flooding have the most

straightforward design and implementation. Nevertheless,
they cannot scale, since the number of messages increases
linearly with the size of the network, to preserve the same
recall.

One promising direction to solve the scalability problem
is the research on Distributed Hash Tables.

Distributed hash tables (DHTs) are currently seen as an
important building block for peer-to-peer systems for stor-
ing and allocating content in a completely decentralized
way [?]. This allows each node to function independently
and collectively form the complete efficient search system
without any central coordination. The general idea of DHTs
is that each item shared on the network is hashed to a unique
key, and that this key together with the content (or a pointer
to it) are efficiently routed to the unique peer responsible for
that key. In this way, each peer is responsible for storing the
content (or a pointer to it) that is associated with the key. In
principle, all DHT based systems provide two functionali-
ties: store(key, object) storing an object identified by its key,
and search(key) which returns the object (when it exists)
from the peer whose network identifier is numerically clos-
est to the key. The current systems based on DHTs provide
these efficient key lookup and storage algorithms needing
only O(log(N)) messages per search and storage, where N
is the number of peers in the network. Although the current
DHT solutions seem to deal well with automatic load bal-
ancing and robustness, there are still some challenges. One
of them is multi-attribute searching and indexing. Espe-
cially when the number of keys for an item is large. For ex-
ample, this research paper could be annotated with the fol-
lowing terms [p2p, dht, search, experiments,
rare-terms, ...]. In current DHT solutions, each
term would be a key, mapped with this document and stored
in the network. One disadvantage is that it requires a lot of
network usage and storage to put them all on the responsi-
ble peers. Also when you have multi-term queries, all terms
in a query would be mapped to keys and routed to the re-
sponsible peers. The results would then be joined which is
computationally expensive.

As a solution to the problem on managing large term sets
and multi- term search, this work focussing on popularity-
based approaches. The key idea is that popular content is
easily available on the network due to high degree of repli-
cation. Therefore, we do not need to spend much effort on
indexing it, in contrast to rare items. It is intuitively true,
and experimentally verified[4], that for very popular items,
we need no sophisticated routing, even a flooding approach
would suffice. In addition, it has also been verified (looking
at the results of previous research) and in [4], that for rare
items, additional effort is required.

In [4], the authors suggest that for queries for common
items, flooding queries is sufficient, while for rare items,
DHT performs best. Research in the context of the PIER
project 1 [1] also suggests a hybrid flooding/DHT mecha-
nism (albeit with no efficient way to determine which items
are rare). Indeed, for commons terms we are not interested
in getting all results, if there are millions of them; a hundred
would be enough. On the other hand, for rare terms, we
are interested in all results. Nevertheless, most popularity-
based approaches assume prior knowledge of which items
are popular which is unrealistic. Our approach is to use sta-
tistical information, which is automatically calculated in a
distributed way, to determine, on-the-fly, which terms are
rare and which queries refer to them, and adapt the routing
process accordingly.

Since this work is focussed on indexing before querying,
we do not investigate caching techniques [3]. The meth-
ods proposed in this paper are orthogonal to these solutions
and therefore it may be expected that both can benefit from
each-other.

In the next section we show the naive traditional DHT
approach and its fallacies. After that, in section 2 we show
our approach. Section 3 shows our design, implementation
and evaluation of the algorithm. We conclude our work in
section 5.

2 Our approach

In our approach we exploit the structure in DHTs to ex-
tract interesting statistical information. As we mentioned in
the introduction, the objects in our DHT are described by
a set of terms, for example a keyword list. We call this set
a descriptor. In our default implementation, these descrip-
tors may be placed in bins, which are peers where one of
the terms hashes to. Each of these bins(peers) will contain
many (or all) descriptors for this specific term. We expect
that this information alone is enough to calculate interesting
statistical information. As a simple example, we can calcu-
late the popularity of a feature or with which other features
it frequently appears with. The statistical information can

1http://pier.cs.berkeley.edu

be used to optimize routing of queries and distribution of
descriptors. In [4], the authors have observed and empiri-
cally evaluated that even though for popular items a flood-
ing approach will return sufficient results, when it comes
to rare items, additional effort should be made to provide
for effective retrieval. By using the bins, we can easily find
out how popular term is, so we can adjust the routing pro-
cess and the descriptor placement in order to cater for rare
items. Similarly, if two features tend to appear frequently
together, we can save space and network traffic by placing
the descriptor only on one of the two bins.

Now we show which settings we test in our experiments.

2.1 Different settings we test

Considering the number of design choices,it is impossi-
ble to perform an exhaustive search over all possible designs
and strategies. Consequently, we made educated guesses
on settings that may work well based on doing some prior
experiments. We will leave testing of all possible tech-
niques presented as future research. Therefore, following
our analysis of existing and possible new approaches we
have picked out a number of interesting settings to experi-
ment on:

2.1.1 Setting 1 - Use the DHT as a distributed index

A simple p2p indexing system based on a DHT. Similar to
the current indexing system of JXTA. The DHT is used as
a distributed index and query answering is based on dis-
tributed joins.

Inserting Descriptions For every term t1...tn the de-
scription, we store the tuple [t, DescriptionID] in the re-
sponsible peer. On a system with unlimited resources and
no failures, this would lead to perfect recall.

Querying For a query q(t1...tn), we retrieve all tuples
with t1...tn. We perform a join to retrieve the relevant doc-
uments.

2.1.2 Setting 2 - Replicate whole term-set

Similar to the previous setting, but instead we insert the
whole description instead of only the [t,DescriptionID]
tuple.

Inserting Descriptions For every term t1...tn the de-
scription, we store the tuple [t1...tn, DescriptionID] to the
responsible peer. On a system with unlimited resources and
no failures, this would lead to perfect recall. We need the
same number of messages as in the first setting, but the size

Algorithm 1 Setting 1
Require: A description d with terms (t1 · · · tn) and identi-

fier id .
Ensure: q is stored.

1: for i := 1 to i := n do
2: send({tn, id},Pti

)
3: end for

—————————————————————
Require: A query q for terms (t1 · · · tn).
Ensure: q is forwarded.

1: for i := 1 to i := n do
2: send(q,Pt1)
3: end for
4: performlocaljoin

of these messages is much greater (equal to the size of all
terms in the description + the size of the ID).

Querying It is enough to choose only one of the terms
from the query, and send the whole query to the peer re-
sponsible for that term. That peer can locally match the
query with its stored tuples, and return results with 100%
recall.

Algorithm 2 Setting 2
Require: A description d with terms (t1 · · · tn) and identi-

fier id .
Ensure: q is stored.

1: for i := 1 to i := n do
2: send({t1 · · · tn, id},Pti

)
3: end for

———————————————————————
———-
Require: A query q for terms (t1 · · · tn).
Ensure: q is forwarded.

1: send(q,Pt1)

2.1.3 Setting 3 - Replicate only on a subset

Although it can guarantee 100% recall with only 1 query
message, setting 2 is inappropriate for descriptions with
many terms (hundreds). The network bandwidth and the
space required to send and store the hundreds of replicas
would be prohibitive. We can use the statistical properties
of descriptions to reduce the number of replicas required,
on the expense of additional query messages.

Inserting descriptions A random subset of terms s is
chosen, and the description is replicated on the peers re-
sponsible for these terms, in a similar fashion with Setting
2.

Querying Queries are forwarded to the peers responsible
for each of the query terms. Results are returned as in set-
ting 2. Note that this approach does not guarantee 100%
recall. Nevertheless, it offers a trade-off between expensive
insertion(and storage) and expensive retrieval.

Algorithm 3 Setting 3
Require: A description d with terms (t1 · · · tn) and iden-

tifier id . Let parameter k be the number of peers to
replicate to.

Ensure: d is stored.

1: s1···k := picksubset(t1···n, k)
2: for i := 1 to i := k do
3: send({s1 · · · sk, id},Pti)
4: end for

———————————————————————
———-
Require: A query q for terms (t1 · · · tn).
Ensure: q is forwarded.

1: for i := 1 to i := n do
2: send(q,Pt1)
3: end for

2.1.4 Setting 4 - Walk the descriptions

On systems with a Zipf distribution of descriptions, finding
queries that lie in many peers is easy and straightforward;
we can just flood queries to the network and the probabil-
ity of encountering such descriptions is quite high. On the
other hand, for rare descriptions, flooding would require a
very large number of messages and a large amount of time,
if we also consider traffic congestion caused by flooding.
On the other hand, DHTs can guarantee efficient routing,
but registering all terms of a description in a DHT is very
costly. Ideally, we would like a system which uses a cheap
mechanism to replicate common descriptions and a mech-
anism providing high recall for rare queries. The previous
approaches (especially 1 and 2) can be configured for high
recall, but for a cost that is not acceptable. In this setting, we
will exploit the fact that a peer responsible for a term, con-
tains much semantic information about this term, namely
with which other terms it appears.

Inserting descriptions Peers forward descriptions to the
peer responsible for term with the lowest frequency in their

descriptions. Although unintuitive at first glance, it has
the following characteristics: First, rare terms are favored
against common terms, since, by definition, common terms
will appear more frequently. Secondly, descriptions will be
”spread” across a wide semantic area (also see sections ??
and ??). Descriptions are thus walked to peers responsible
for diverse and rare terms.

Querying We can use a similar approach for querying.
Initially, the query is routed to the peer responsible for a ran-
dom term in the query set. If not enough results are found,
it is routed to the peer that is responsible for the term that
appears the least number of times in that peer’s description.
In the event that there are still not enough results, similar to
setting 4, peers may forward the query to the peers respon-
sible for the terms that co-occur the most with the query
term.

Algorithm 4 Setting 4
Require: A description d with terms (t1 · · · tn) and identi-

fier id . Let parameter hops denote the maximum num-
ber of hops the description can be forwarded, originat-
ing peer set Pr, the description set of this peer D

Ensure: d is stored.

1: t := tm|∀t, |Dt| > |Dtm
| and Pt /∈ Pr

2: if hops > 0 then
3: hops:=hops-1
4: send(q,hops,Pr,Ptm)
5: end if

——————————————————
Require: A query q for terms (t1 · · · tn). Let parameter

hops denote the maximum number of hops the query
can be forwarded, originating peer set Pr and the de-
scription set of this peer D.

Ensure: q is forwarded.

1: for i := 1 to i := n do
2: send(q,Pt1 ,this)
3: end for

——————————————————
Require: A query q for terms (t1 · · · tn), originating peer

set Pr, the description set of this peer D.
Ensure: q is forwarded.

1: if enough results found then
2: return
3: else
4: t := tm ∈ (t1 · · · tn)|∀t, |Dt| > |Dtm| and Pt /∈ Pr
5: Pr := Pr ∪ this
6: send(q,Ptm

,Pr)
7: end if

Setting #Ins.
Mess.

Ins.
Mess
Size

#Q.
Mes.

#Ans. M.

Sett.1 n 1 O(n) |D(t1)|+...+|D(tn)|
Sett.2 n n 1 |D(t1...tn)|
Sett.3 s n O(n) Ω|D(t1...tn)|
Sett.4 hops n O(n) Ω|D(t1...tn)|

Table 1. Costs in terms of network traffic. We
can see the costs associated with the basic
operations of the discovery system, abiding
to settings one and two.

Figure 1. Left: Number of terms per query.
Right: Number of results per query (cumula-
tive). We can see that for approx. 50% of the
queries, we have less than 50 results and for
30% of the queries, we have less than 4 re-
sults.

Now that we have shown the different settings, it is time
to evaluate them.

3 Evaluation

rip some sections from proute/pnear/theses

3.1 Dataset

We have used the dataset developed for [2]. It was
created by crawling a large number of real user queries
from SearchSpy2 and applying a natural language process-
ing method on the results retrieved for these queries using
Google3, to get relevant descriptions. The input to our sys-
tem was derived from the following:

• Corpus We have used a corpus of 260.000 descrip-
tions. Each document was made up by a list of terms.

2http://www.infospace.com/info.xcite/searchspy
3http://www.google.com

Figure 2. Left: Number of terms per query.
Right: Distribution of the number of terms per
document.

• Descriptions Out of these descriptions, we have se-
lected a random set of 100.000 descriptions to use in
our system. On average, each document contained ap-
prox. 104 terms (the distribution is shown in fig. ??).
The distribution of terms, as expected, follows a zipf-
like distribution(fig ?? and ??), we can see that more
than half of all terms appear only 1 time, while 1 term
appears in more than half of the descriptions (58204
times).

• Queries To generate queries, we have used the follow-
ing method:

1. Randomly pick the number of terms |t|
for the query using the probability distribution
0.16, 0.29, 0.26, 0.15, 0.07, 0.03, 0.01, 0.006, 0.006
(fig. 2).

2. Pick at random a description out of the Corpus.

3. Pick |t| terms (randomly using a uniform dis-
tribution) out of the chosen description and use
them as the query terms.

Note that not all queries yield results, because some of
them are generated by documents from the Corpus that
do not exist in the Descriptions.

In figure 2, we can see the number of answers per query;
for most queries, there are fewer than 50 answers in the
dataset.

3.2 Criteria

In order to evaluate our discovery system, we will use
description Recall, queries served, and query latency . We
consider relevant all documents that contain all terms in
the query. To gain additional insight, we will always take
into consideration the number of answers in the system, and

bool isLocalPeerResponsible(String key);
void route(String key, Message msg);
void send(Node dest, Message msg);
void newMessage(Message msg); //Called

//when a new
//message is received

Table 2. The DHT API

limit them to a fixed threshold (50 answers). Thus, for our
experiments, recall is defined as follows:

DRecall =
|Dreturned

⋂
Drelevant|

min(|Drelevant|, 50)

We will also perform a series of load tests, to measure the
efficiency of our system. We will measure the total number
of queries served and query latency:

3.3 Design, implementation and evalua-
tion

Design Our system is based on a three-layer architecture:

• The bottom layer consists of a DHT implementation.
We require only the basic functionality of a DHT,
which is described in table ??.

• The second layer consists of an object store and a dis-
tributed index supporting multi-attribute search. The
distributed index relies on the algorithms described in
2.1.

• The third layer is application specific, in our case the
OpenKnowledge service and peer discovery.

Implementation We have implemented our system using
Java 1.5. For the bottom layer, we have used the FreePastry
DHT implementation, version 2.0b4. The second layer are
a translation of the algorithms in 2.1 in Java. The applica-
tion on top is the discovery service of the OpenKnowledge
platform [?]. It consists of a series of hosts collaborating
to provide discovery of shared process-flows, services, soft-
ware components and peers. The details of this application
are out of the scope of this papers5.

Testing environment We have used the DAS-2 dis-
tributed supercomputer6 that provided computational power

4http://www.freepastry.org
5For more information, the reader is referred to http://www.openk.org
6http://www.cs.vu.nl/das2/

adequate to run a large number of instances of our dis-
tributed system. We have used one node on the DAS-2 as a
bootstrap, which was used as an access point to the system
for the rest. We have used Globus[] to start 500 instances
of our system, which contact the bootstrap node, and self-
organize according to the Pastry protocol. This process took
less than 5 minutes. Next, instances published in parallel
200 descriptions each(100.000 in total). Finally, each in-
stance made 100 queries and collected the results.

4 Results and discussion

The straightforward approaches 1 and 2 described in
subsection 2.1 produced a very large number of messages
which resulted in a very inefficient system, with no men-
tionable performance. Therefore, we have limited our eval-
uation to the two more efficient approaches, namely setting
3: random replication, and setting 4: replication accord-
ing to rarest terms. Figure 3 shows the results of our ex-
periments. We can see that even in a small overlay of 500
peers we gain a substantial increase in recall using the same
number of messages. It is expected that when the network
size grows, the recall of the random approach will deterio-
rate faster than that of setting 4. At the moment of writing
this paper we are expecting that in the following weeks, the
DAS-3 supercomputer7 will be made available, providing
up to 3.5 teraflops of processing power and 1TB of main
memory. Furthermore, we have developed a grid-based
simulator using the Ibis middleware8. With these tools we
can verify if indeed it holds that when the network grows
the difference in performance will be even larger in benefit
of the rarity approach.

5 Conclusions

In this paper we propose an algorithm that reduces the
scalability problem of multi-attribute search and annota-
tions of objects in DHT networks. The intuition behind the
algorithm is that indexes which store attribute sets for any
object can deduce popularity of each individual attribute in
its index. The algorithm automatically calculates attribute
popularity and uses it to reduce the degree of replication
which leads to a more equal distribution of attributes. We
have implemented this algorithm in a real system which
we tested by emulating 500 instances on the DAS-2 su-
percomputer. The results indicate that an algorithm that
adapts routing according to attribute popularity outperforms
an algorithm that either stores all attributes or a random
subset. Future work lies in testing how this performance
gain changes when the network size increases. Besides this,

7http://www.cs.vu.nl/das3/
8http://www.cs.vu.nl/ibis

Figure 3. Description recall as a function
of the number of matching descriptions per
query.

the robustness of our system towards a high peer churn rate
needs to be tested.

Acknowledgements: This work has been supported by the
FP6 OpenKnowledge project9.

References

[1] B. T. Loo, R. Huebsch, I. Stoica, and J. M. Hellerstein. The
case for a hybrid p2p search infrastructure, 2004.

[2] R. Siebes. pnear - combining content clustering and dis-
tributed hash tables. In Proceedings of the IEEE’05 Work-
shop on Peer-to-Peer Knowledge Management., San Diego,
CA, USA, July 2005.

[3] G. Skobeltsyn and K. Aberer. Distributed cache table: ef-
ficient query-driven processing of multi-term queries in p2p
networks. In P2PIR ’06: Proceedings of the international
workshop on Information retrieval in peer-to-peer networks,
pages 33–40, New York, NY, USA, 2006. ACM Press.

[4] K. Sripanidkulchai, B. Maggs, and H. Zhang. Efficient con-
tent location using interest-based locality in peer-to-peer sys-
tems. In Proceedings of the IEEE INFOCOM conference, San
Fransisco, CA, USA, march 2003.

9http://www.openk.org/

