
OpenKnowledgeFP6-027253Plug-in ComponentsCoordinator: Paolo Besana1,with ontributions fromDavid Dupplaw2, Adrian Perreau de Pinnik3

1 University of Edinburgh
2 University of Southampton

3IIIA (CSIC) Barelona

Report Version: �nalReport Preparation Date: 21.12.2007Classi�ation: deliverable D1.3Contrat Start Date: 1.1.2006 Duration: 36 monthsProjet Co-ordinator: University of Edinburgh (David Robertson)Partners: IIIA(CSIC) BarelonaVrije Universiteit AmsterdamUniversity of EdinburghKMI, Open UniversityUniversity of SouthamptonUniversity of Trento
1



AbstratConstraints in LCC protool are preonditions on message sending,and postonditions (possibly hanging the peer internal state) on messagereeiving.The onstraints do not speify how they must be solved: peers solveonstraints through plug-in omponents, alled OKCs. An OKC exposesmethods that are mapped to onstraints in protools: the ativity ofhoosing to what interation subsribe - with the aim of ating in theinteration in a partiular role - requires the omparison between the on-straints of the roles in an interation model and the methods in its repos-itory of OKCs. The omparison proess results in an evaluation of thesimilarity between the protool and the peers omponents, and if possiblein a set of adaptors between the onstraints and the methods. Similarly,adaptors are used by the OKC to aess methods exposed by the peer (forsubsribing to other interations, for example).1 IntrodutionThe main objetive of the OpenKnowledge projet is to study an open, dis-tributed system for sharing knowledge about proesses. The development ofthe kernel is an attempt of providing a working framework able to answer theserequirements.The peers in the OpenKnowledge system share the desriptions of proessesin the form of Interation Models : an Interation Model is de�ned in LightweightCoordination Calulus [2℄, and ontains a set of lauses for the various roles thatthe peers an perform during an interation. The peers exhange messages, anda message an have onstraints upon sending and reeption.The onstraints are used to bridge between the interation and the peers'knowledge, either querying for values or hanging the loal state of the peer.The suess or the failure of a onstraint is used to hoose among di�erentpossible paths in the interation. In the fragment of interation in �gure 1, thepeer's knowledge is �rst aessed to obtain what he wants, and then to verify ifthe peer aepts the o�ers. Depending on the result of the last onstraint, theinteration an take two di�erent paths, one in whih an aeptane message issent, and another where a rejetion is sent.We need a tehnique to link onstraints in Interation Models to peers'knowledge. Moreover, peers should be able to take part in many di�erent inter-ations, some of whih may not have been onsidered when the peer was devel-oped. Finally, as the system is open, it is impossible to assume that knowledgeis represented uniformly in interation models and in peers.2 Plug-in arhitetureThe �rst engineering deision taken is to link onstraints to methods in thepeer ode body. When a onstraint needs to be solved, a method in the peer2



a(buyer, B) ::
ask(X)⇒ a(seller, S)← want(X)
then

offer(X, P )⇐ a(seller, S)
then




accept⇒ a(seller, S)← affordable(X, P )
or

reject⇒ a(seller, S)



Figure 1: The buyer lause from a simple purhase interation modelis alled. A onstraint in LCC is a prediate, where some of its argumentsmay be instantiated and others still to unify. The task of the method is toinstantiate arguments if possible, and to return true or false to indiate whetherthe onstraint was suessfully satis�ed. The method solving the onstraint
want(X) will instantiate X with the produt desired by the peer, while themethod solving affordable(X, P ) will either return true or false depending onsome loal utility funtion. Constraints are solved by methods de�ned as:

boolean methodName(Argument A1, ..., Argument An)The link between the onstraint and the method is provided by adaptors, aswe will see in Setion 4.The seond engineering deision taken is to use a plug-in arhiteture forthe methods: initially peers do not have the methods in their ode used forsolving onstraints in interations. The methods are in omponents, alledOKCs (OpenKnowledge Components), that an be added to the peer reposi-tory of omponents. An OKC is a Java Arhive (jar) �le ontaining a lassextending the superlass OKCFaadeImpl, that provides the methods for solv-ing onstraints. The jar �le is used to ontain auxiliary resoures used by themethods. Figure 2 shows the UML lass diagram of an OKCFaade lass.3 Lifeyle of an OKC3.1 Developing and Obtaining OKCsThe reation of the OKC jar �le for a spei� role in an Interation Model anbe done through the OpenKnowledge GUI: one an interation has been hosenand a role has been seleted, by liking on �Create New OKC for Role� it ispossible to selet the �les to inlude in the OKC. The appliation automatiallygenerates the jar, with the orret manifest and okinfo.xml �les. Anotheruseful tool for generating OKCs is the WSDL2OKC appliation for aessingweb servies: it reeives the URL of a WSDL �le and it automatially generatesthe OKC able to all the web servie. The operations listed in the WSDL �leare onverted into methods in the OKC.3



«datatype»
Argument

InquirerOKC

+ ask(out word : Argument)
+ show(word : Argument, definition : Argument)

OKCDescription

+ newOKCInstance() : OKCFacade
«interface»
OKCFacade

+ setParameter()
+ setParemeters()

OracleOKC

+ define(word : Argument, out definition : Argument)

OKCFacadeImpl
� parameters : int
+ setParameter()
+ setParameters()
+ getParameter()

Figure 2: UML Class diagram for two example OKCsOne an OKCs has been developed, it an either be kept private and installedonly on a restrited number of mahines, or it an be published and shared onthe Disovery Servie. A published OKC is desribed by a set of keywords thatother peers an use to �nd them querying the Disovery Servie.The .jar �les are stored on the peer's hard disk, and the peer keeps a reordof them as OKCDesriptions in its loal OKC repository.3.2 Subsription to an Interation ModelWhen a peer needs to perform a task it asks the Disovery Servie [1℄ for a listof Interation Models mathing the desription of the task. Then, for eah re-eived Interation Model, the peer ompares the methods in its OKCs with theonstraints in the entry role it is interested in. If the peer �nds an InterationModel whose onstraints (in the role the peer needs to perform) are overed bythe methods in its OKCs, then the peer an subsribe to that Interation Modelin the Disovery Servie. The subsription is handled by a subsription negotia-tor and an be interpreted as an intention to partiipate in the interation. Thesubsription, through a subsription adaptor, binds the Interation Model to aset of methods in the OKCs in peer. A subsription an endure for only a singleinteration run or for many, possibly unlimited, interation runs: a buyer willlikely subsribe to run a purhase interation one, while a vendor may want tokeep selling its produts or servies.An additional funtionality for subsription, not yet inluded in system, is toallow an interation to speify the OKCs it requires, and let the peer download4



Figure 3: Exhange of messages between peers and DS for subsriptionthem (given permission by the user and some threshold on the trust level forthe IMs and OKCs) in order to run the interation.3.3 Interation bootstrapWhen all the roles in the Interation Model have subsriptions, the DisoveryServie selets a random peer as a oordinator. The oordinator bootstraps andruns the interation. The bootstrap involves �rst asking the peers who theywant to interat with, among all the peers that have subsribed to the variousroles, then reating a team of mutually ompatible peers and �nally - if possible- asking the seleted group of peers to ommit to the interation. Figure 4 showsthe exhange of messages between the peers, the oordinator and the DisoveryServie.For a peer, ommitting to an interation, implies the reation of an InterationRunContext,that reeives the SubsriptionAdaptor from the SubsriptionNegotiator asin Figure 5.3.4 Interation runThe run of the interation is handled by the oordinator and the InterationRunContextof the involved peers. The oordinator peer runs the interation loally: themessages are exhanged between loal proxies of the peers. However, whenthe oordinator enounters a onstraint in a role lause, it sends the mes-sage solveConstraintMessage to the InterationRunContext in the peerperforming the role. The message ontains the onstraint to be solved. TheInterationRunContextasks the SubsriptionAdaptor the orresponding method- found during the omparison at subsription time. The OKCs are instantiatedlazily: if the OKC that ontains the method orresponding to the onstrainthas not been instantiated yet within the ontext of the interation, the lass isinstantiated, and stored in the ontext. If the instane exists in the ontext, theorresponding method is alled dynamially. The method will use the adaptorto aess the elements of the arguments. The peer then sends bak the message5



Figure 4: Bootstrap of interation: exhange of messages for the seletion ofpeers and ommitment

6



�adaptors

«interface»
InteractionRunContext

ConstraintAdaptor

SubscriptionAdaptor
� adaptors : ConstraintAdaptor

InteractionRunContextImpl
� subscriptionAdaptor : SubscriptionAdaptor
� OKCFacadeInstances : OKCFacade
+ handleMessage(msg : Message)

SubscriptionNegotiatorImpl
� interactionModelID : int
� Role : int
� description : int
� adaptor : SubscriptionAdaptor

�subscriptionAdaptor�adaptor

Figure 5: UML lass diagram of Subsription/ContextRun

Figure 6: Interation Run: exhange of messages between the oordinator andthe peersSolveConstraintResponseMessage to the oordinator with the updated valuesof variables and the boolean result obtained from satisfying the onstraint.4 Mapping Constraints to MethodsThe mather, desribed in [3℄, allows the OKCs and the Interation Modelsto be deoupled. The peer ompares the onstraints in the roles in whih it isinterested with the methods in its OKCs and reates a set of adaptors that mapsthe onstraint in the roles to similar methods. In order to math onstraintsand methods they both need to be semantially annotated.7



4.0.1 Semanti Mark-up of MethodsThe exhanged messages an ontain omplex strutures. The strutures anbe trees or lists. The struture of the arguments is de�ned in the semantiannotation of the method, written using Java 5 annotations:�MethodSemanti(language=tag,args={�produt(brand, name, ost(urreny, value))�,�buyer(name, surname, address(street, postode, ity))�})publi bool registerPurhase(Argument P, Argument B) {...}The ode inside the method an aess the elements in the struture by path(similarily to XPath):System.out.println(P.getValue("/produt[0℄/ost[0℄/value[0℄�)+� � +P.getValue("/produt[0℄/ost[0℄/urreny[0℄�))The nodes in the path are oupled with an index, beause there might be morethan one node of the same ontologial type at the same depth. For example,a parameter that ontains a relationship an be a expressed as tree with twoidential hildren:�MethodSemanti(language=tag,args={'friends(person,person)'})publi boolean add(Argument F){...System.out.println(F.getValue(�friends[0℄/person[0℄�) + � knows �+F.getValue(�friends[0℄/person[1℄�));...}The elements of the struture are reahed independently of how they are keptin the exhanged messages: the adaptor between the onstraint and the methodmaps the elements in the arguments of the onstraint to the elements in thearguments of the method.4.0.2 ListsWe have two possibilities: one is to only allow aess to the lists through LCCoperators and reursion, the other is to use the indexes of the root elements:�MethodSemanti (..., args={"[move(from,to,vehile)℄"})8



Figure 7: Adaptor between register(...) onstraint andregisterPurhase(...) methodrepresents an argument that ontains a list. To aess the elements in the list,the index of the root hanges.publi boolean do(Arg A){System.out.println(A.getValue("/move[2℄/from[0℄");}4.1 AdaptorsFor example, the onstraint in the following snippet of a protool:register(P,B) <- bought(P,B) <= a(buyer, ID)where the onstraint is de�ned as:register(produe(make,name,ost,urreny),purhaser(surname, address, ity, postode))will be mapped to the method in the OKC seen in the previous setion with theadaptor in Figure 7.Allowing the ode inside the method to aess the elements without knowinghow they are atually strutured in the message, deoupling de fato the protoolfrom the omponents.5 Aess to the peer stateSome of the onstraints are funtional : they expet that the method in theomponent, given a set of input arguments, will always unify the non instanti-ated arguments with the same values, or will sueed or fail, independently of9



the peer that has downloaded and exeuted the omponent. For example, theonstraint sort(List,SortedList) for sorting a list of elements should alwaysunify SortedList with the ordered version of List, even though di�erent peersmay have OKCs that implement di�erent algorithms for sorting it.Other omponents work as bridge between the interation model and thepeer loal knowledge, and will unify non instantiated variables with values thatdepend on the peer in whih the OKC is running. For example, a onstraintprie(Produt, Prie) expets that the orresponding method in the OKCuni�es the variable Prie with the prie assigned to Produt by the peer, pos-sibly aessing the database loal to the peer: di�erent peers may have di�erentpries for the same produt. Similarly, in the emergeny response senario, the�re�ghters are queried about their loation when they need to satisfy the on-straint at(Position): every �re�ghter will have a di�erent loation, and willset Position with their loal position.Moreover, the same peer an be involved in many interations simultane-ously, and the peer loal knowledge (or state) is hanged by one interationand read in another. For example, a peer selling produts will have the totalamount of available produts redued after eah suessful selling interation.For peer loal knowledge, or internal state, we mean any element of informationthat an persist over di�erent interations (and possibly be altered by them):for example the database of produts just desribed.At the moment the OKCs are given the referenes, at instantiation time, ofthe objets they need to use through the setParameter(..) and getParameter(...)methods: for example, the peer that runs the simulator in the emergeny re-sponse senario is given the referene to the Prolog lient that allows it to querythe Prolog environment in whih the simulator is atually run.In the planned development, the peer will expose a set of methods thatallow the OKCs to aess its internal state, and the OKCs will expose the listof methods in the peer they need to use. The same mathing proess thattakes plae between the onstraint and the methods in the OKC will take plaebetween the OKC and the peer exposed method, generating a set of adaptorsallowing the methods in the OKC to aess the peer loal knowledge.The lass implementing the OKCFaade interfae is annotated (via Java 5.0annotations) with the semanti desriptions of the peer's methods it needs touse. When a peer downloads an OKC, the methods required by it are mathedagainst the methods exposed by the peer: if the mathing is good enough (theremight be OKCs not ompatible with a partiular implementation of a peer),then the result of omparison is an adaptor, similar to those between OKCmethods and onstraints, that allow the OKC methods to aess the elementsin the peer's methods using its internal terminology.The peer's ontology is onsidered as loal knowledge. The atual implemen-tation of the ontology handler is up to the peer developers, but the OKCs -if they need it - an aess it through the same proedure of alling a set ofexposed methods. 10



5.1 Deferred InterationsAn interesting possibility is for the OKC method to ask the peer to run anotherinteration in order to ollet further information, or to obtain something asyn-hronously. Starting another interation an happen in two ways: impliitly orexpliitly.In the impliit ase, the peer is asked for further information, and it is up tothe peer to deide how to ollet the information: it may already have it, andanswer diretly, or it may deide to proeed with a new interation to obtainthe information.In the expliit ase, the method an either tell the ID of the interationto perform to the peer, together with additional �lter information for the sub-sription and the bootstrap, or be more generi and tell the peer to searhan interation using a set of keywords, and follow the standard subsriptionproedure.Referenes[1℄ S. Kotoulas and R Siebes. Deliverable 2.2: Adaptive routing in struturedpeer-to-peer overlays. Tehnial report, OpenKnowledge.[2℄ D Robertson. A lightweight oordination alulus for agent systems. InDelarative Agent Languages and Tehnologies, pages 183�197, 2004.[3℄ P Shvaiko, F. Giunhiglia, M. Yatskevith, J. Pane, and P. Besana. Deliv-erable 3.6: Implementation of the ontology mathing omponent. Tehnialreport, OpenKnowledge, 2007.

11


