
INCREASING THE VERSATILITY OF
HEURISTIC BASED THEOREM

PROVERS

Alistair Manning, Andrew Ireland
and Alan Bundy

DAI Research Paper No. 633
June 1993

Published 

in LPAR'93

Copyright (c) Alistair Manning, Andrew Ireland and Alan Bundy, 1993



Alistair Manning Andrew Ireland Alan Bundy

Abstract

Heuristic based theorem proving systems typically impose a fixed order-
ing on the strategies which they embody. The ordering reflects the general
experience of the system designer. As a consequence, there will exist a vari-
ety of specific instances where the fixed ordering breaks down. We present
an approach which liberates such systems by introducing a more versatile
framework for organising proof strategies.

Introduction

1

Theorem proving, in general, is a goal-directed activity. In the case of heuristic
based theorem provers goal decomposition is achieved by the application of proof
strategies. A proof strategy can be viewed as having two components: a heuristic
component and a guarantee component. The heuristic component determines the
applicability of the strategy in a given situation while the guarantee component
ensures the soundness of the resulting proof steps.

There are however many situations where more than one strategy is applicable to
a given goal. As a result strategies are ordered. This ordering is determined by
the system designer and usually reflects their g~neral experience of the domain to
which the system is being applied. As a consequence, there will usually exist a
variety of specific instances where the fixed ordering of strategies breaks down. To
overcome this problem we have developed a more versatile framework for organ-
ising proof strategies which supports the re-ordering of strategies dynamically.

Our ideas have been applied to the domain of inductive proof and in §2 we outline
two heuristic based theorem provers upon which our work builds. In reviewing

*This paper was published in: Logic Programm%ng and Automated Reasoning LPAR'93,
St. Petersburg , Lecture Notes in Artificial Intelligence Springer-Verlag 1993. The research repor-
ted in this paper was supported by SERC grant GR/H/23610 and SERC studentship 91425046
to the first author.



Increasing the Versatility of Heuristic Based Theorem Provers

the traditional approach to organising strategies (§3) we outline the basic flaw in
adopting the approach of a fixed ordering of strategies. More detailed motivation
for our work is presented in §4 where the benefits of the dynamic re-ordering of
strategies is illustrated. Our versatile framework for strategy selection is presented
in §5 while implementation details are outlined in §6. Preliminary results are
presented in §7 and further extensions are discussed in §8.

2

The technique being presented is applicable in any domain which requires a heur-
istic based theorem proving approach. Our technique has been applied within the
domain of inductive proof and builds upon CLAM-OYSTER [van Harmelen 89], a
composite theorem proving system for inductive proof based upon the notion of
proof plans [Bundy 88]. The OYSTER component is a re-implementation of the
NUPRL [Constable et a186] proof development environment which supports tac-
tic based theorem proving [Gordon et a179]. Tactics support goal-directed proof.
Primitive tactics correspond to the primitive rules of the logic. In addition, such
systems provide tactic combinators which enable the construction of sophisticated
strategies built up from the primitive tactics. The CLAM component automates
the search for a proof within the OYSTER logic using a predefined set of tactic
specifications called methods. A method describes explicitly, through declarative
preconditions, the general context in which a tactic is applicable. For a given
conjecture CLAM constructs a composite method (or proof plan) from the list of
methods. This composite method is tailored to the particular conjecture and the
corresponding tactic controls the construction of a proof at the OYSTER level.

The strategies captured within CLAM-OYSTER are a rational reconstruction and
extension of those embedded within NQTHM [Boyer & Moore 79]. In general terms
both systems share the same basic ordering of strategies1:

.simplification

.generalisation

.induction

Note that simplification refers to a class of rewriting techniques which preserve

equivalence. Typically, simplification involves the application of definitional re-
writes. The form of goal generalisation exploited is the replacement of common
sub expressions by a new universally quantified variable.

Both systems differ significantly in the way in which strategies are represented.
In the case of CLAM -OYSTER the heuristic component is made explicit through a

1 For presentational purposes we ignored the cross-fertilization strategy which controls the use

of hypotheses. Our implementation, however, includes this strategy.



Increasing the Versatility of Heuristic Based Theorem Provers :3

method's preconditions while the guarantee component is encoded separately as a
tactic. In contrast, the strategies of NQTHM are "black-boxes". Both the control
heuristics and guarantee components for each strategy are integrated with a single
subroutine.

While both systems impose a fixed ordering on strategies the "glass-box" approach
to expressing proof strategies taken by CLAM-OYSTER gives greatest potential for
building flexibility into the application of strategies. It is for this reason that we
chose to build directly upon the CLAM -OYSTER system. We will use both systems,
however, as the basis for comparison in §7.

3

As mentioned in §2 both NQTHM and CLAM-OYSTER impose a strict ordering on
strategies and only the first successful candidate is applied. Any other strategy
not yet tested will not be considered except as a result of backtracking2. However,
given that some strategies may lead to non-termination one cannot rely upon
backtracking to find a proof. Consequently it is very important that the list of
allowable strategies is ordered with great care. The general basis of this ordering
depends, to differing degrees, upon the following:

.The consequences of a strategy being applied inappropriately

.The degree of complexity involved in testing for the applicability of the

strategy;

.The number of subgoals the strategy produces.

Note that the inappropriate application of a strategy may on the one hand lead to
unnecessary steps in the resulting proof while on the other hand it may result in
the non-termination of the theorem prover. The extent to which a strategy can be
inappropriately applied is a very general concept and one that is not considered
within this paper. It has been included simply to highlight the problems associated
with strategy ordering.

If a strategy produces no subgoals then it should naturally occur early on in the
list. Alternatively, if multiple subgoals are produced, as in the case of induction
where base and step case subgoals are generated, it should be considered later on
in the list since it will lead to further work.

As with any general purpose routine there are usually examples of exceptions to
the norm. The wide scope of possibilities that can occur within theorem proving
give rise to a large range of examples contrary to the general rules. With this

2Note that in the case of NQTHM backtracking is only permitted in very restricted
circumstances.



Increasing the Versatility of Heuristic Based Theorem Provers 4

knowledge in mind it is therefore quite a.pparent that generating a fixed order of
strategies to cope with all situations is tricky if not impossible. If the only option
is further refinement of a strategy, or more precisely its preconditions, then not
only do the strategies become more complicated, they begin to lose their appealing
declarative nature. Allowing for flexibility in the ordering of the strategies may
therefore be a good, way to overcome some of the problems encountered due to
specific exceptions to the general rules.

4

In §3 the shortcomings of a fixed strategy ordering within heuristic based theorem
proving systems was outlined. We now present concrete examples which demon-
strate the need for a framework in which strategies can be dynamically re-ordered.

4.1

Generalisation VB Induction

Consider the following conjecture

'v'x, y, z : nat. x x (z x 0) y x (z X 0)

to which generalisation and induction are applicable:

Generalisation: replacement of the common subexpression (z x 0) by a new
universal variable p;

Induction: on either x, y or z is possible.

If the order in which the strategies are tested for applicability is fixed, as presented
in §2, then the generalisation will be applied. Note however that the generalisation
presented above gives rise to the following subgoal

Vx,y,p: nat. x x p = y x p

which is easily shown to be a non-theorem.

This problem can be avoided by either reversing the order of the two strategies
or by refining the generalis at ion preconditions to prevent applicability. Changing
the re-ordering displaces rather than solves the problem. To illustrate this point
consider the conjecture

'v'x,y,z:nat. xx(zxy)=(zxy)xx

Both generalisation and induction are required to prove (2). However, performing
generalis at ion before induction significantly reduces the complexity of subsequent



.5

inductions. Generalisation is thus more appropriate than induction in this case.
Increasing the strength of the generalisation preconditions3, to prevent incorrect
applications, without affecting any appropriate usage is extremely difficult (if not
impossible) as illustrated in [Hesketh 91]. However, if a more flexible approach
could be found which enabled the strategies to be dynamically re-ordered then
some of these problems can be addressed.

Simplification vs Generalisation4.2

The above examples illustrate the problems associated with ordering induction and
generalisation. This problem is not unique to these two strategies. For instance,
consider the conjecture

Vn : nat. s(s(n)) x 1 = s(s(n)) (3)

to which both simplification and generalisation are applicable:

Simplification: given the following defining equations for x

OxY

)xY

0

s(X

XxY

)+y

s(s(n))+1.) + 1

Generalisation: replacing the subexpression s( s( n)) in (3) by a new unive]~sal
variable, say p, to give

Vp : nat. p x =p

In this case, the simplification is unnecessary and a proof can be achieved more
directly using the generalisation.

Now consider the conjecture

'v'n: nat. 0 x s(s(n)) = (0 + 0) x s(s(n)) (4)

again simplification and generalisation are applicable:

Simplification: given the following defining equations for +:

and the definition of x given above, a proof of (4) is immediate;
~



Increasing the Versatility of Heuristic Based Theorem Provers 6

Generalisation: replacing the sub expression s( s( n)) in (4) by a new universal
variable gives

'rip : nat. 0 x p (0 + 0) x p

In this case the generalisation is unnecessary since simplification goes directly to
a proof.

4.3 Simplification vs Induction

Finally we consider the relative ordering of simplification and induction. Given
the conjecture

\Ix : nat. 0 x x xxO (5)
the alternatives are as follows:

Simplification: reduces the goal to

'It'x: 

nat. 0 = x x 0

Induction: on x is possible.

Here simplification is preferred since it leads to a simplier inductive proof. If an
induction is performed first then an additional simplification step is required.

In contrast, consider the conjecture

x x (z + s(s(y)))'v'x, y, z : nat. x x (s(s(z)) + y)

here the alternatives are as follows:
(6)

Simplification: gives rise to

'v'x, y, z: nat. x x s(s(z + y)) x x (z + s(s(y)))

Induction: on x or z is possible.

A proof of (6) requires induction on x. The simplification of the expression
s( s( z)) + y is unnecessary for the induction to succeed. Induction should therefore
be preferred over simplification.

We have shown that in a variety of situations involving different strategies some
additional work is performed as a direct consequence of the fixed ordering ap-
proach. It could be argued at this point that if it is only extra work and not
outright failure which results, then maybe the fixed ordering is after all accept-
able. Unfortunately for the current systems this is not so, as illustrated by (1)
and more interestingly by:

Vx, y, z: nat. x + (s(s(z)) x y) = x + (y x s(s(z))) (7)

Vx, y, z: nat. (s(.s(z)) x x) x y = s(s(z)) x (x x y) (8)

In these examples an application of simplification or induction in preference to a
generalisation leads to non-termination (see §7).



Increasing the Versatility of Heuristic Based Theorem Provers

5

We achieve the dynamic re-ordering of strategies illustrated in §4 by introducing
the notion of a strategy's total promise, a numeric score, which we defined in terms
of the following three features:

.The original rank of the strategy within the theorem prover's fixed ordering;

.The size or complexity of the goal to which the strategy is to be applied;

.A measure of the merit of a strategy which is dependent upon the extent to
which its preconditions are satisfied.

Below we describe each of these features in detail together with how the total
promise is calculated.

The original ranking of the strategies

This is obviously very important when one considers that most general theorem
provers use the fixed ordering of strategies as their only means of assessing a
strategy's promise. The higher the position of the strategy within this list the
greater the promise the strategy is deemed to have. This rudimentary scoring has
value in its simplicity since the strategies are assessed in ranking order, as soon
as a strategy is found to be applicable, every other untried strategy is considered
to have less promise and hence need not be consulted unless as a result of failure
and backtracking.

The new basic versatile promise value follows the same pattern as the old ranking
system, with more promise given to the simplification strategy than to the gener-
alisation strategy. This in itself has no effect, it is simply a means of coordinating
the score given to the overall strategy's importance, with that of the merit measure
of the strategy. In other words only if a strategy's micro promise (merit measure)
is striking enough will the original order of the strategies be disturbed.

Goal size and complexity

Consider the expressions a + band aC x b. Which is the more complicated? Ob-
viously the second but the actual processes in determining just how much more
complex is outwith the scope of this paper. Here it will suffice to explain the
general empirical concepts behind this value, as opposed to the actual factors that
influence it. In determining this value for any expression, two factors should be

considered, namely,

.How many functors and variables are present and where each is located in
the expression;



Increasing the Versatility of Heuristic Based Theorem Provers 8

.The complexity of each functor,

e.g. exponential is defined in terms of x which is in turn defined using +.

The reasoning behind employing this measure is simple enough. If a choice has to
be made between pursuing the proof of a goal that is complicated and one that
is not, then it is common sense to follow the latter (at least initially). If a proof
can be found via this route then it is more likely to be shorter and more compact
than one derived via the alternative.

5.3 The measure of a strategy's merit

The general approach with regards to the preconditions of a strategy is that all of
the conditions must be satisfied in order for the strategy to be deemed applicable.
This is a very stringent test and one that allows little flexibility. The flaw behind
this approach lies in the fact that all of the preconditions are given the same
importance. If anyone is falsified the strategy is not applicable. On the one hand,
if the preconditions are too strong then potentially fruitful parts of the search
space will not be explored. On the other hand, if preconditions are too weak there
is an increased risk of unprofitable and infinite branches of the search space being
explored with obvious consequences. The strategy designer is thus forced into a
compromise. Our approach liberates the strategy designer from this compromised
position by introducing three categories of preconditions:

Standard: conditions which are necessary and sufficient for the legal application
of the logical inference which underpins the strategy;

Strengthening: conditions which increase the likelihood of the strategy resulting
in a proof;

Weakening: conditions which decrease the likelihood of the strategy resulting in
a proof

Evaluating the applicability of the strategy is now a two part process. Firstly, the
standard preconditions are evaluated. These must all succeed for the strategy to
be applicable. Secondly, given that the standard preconditions hold, then both
the strengthening and weakening preconditions are evaluated. Strengthening pre-
conditions contribute a positive score while weakening preconditions contribute in
a negative sense. Consequently, the second part of evaluating the applicability of
a strategy may cause the dynamic re-ordering of strategies.

To illustrate in more detail consider the following, simplified, preconditions for the
generalisation of subexpressions in the context of equality goals:

Standard: There exists a non-atomic term t in the goal;



Increasing the Versatility of Heuristic Based Theorem Provers 9

Strengthening: 

The term t occurs on both sides of the equality;

Weakening: 

No occurrence of t is in a recursive argument position.

Now consider again conjecture (1). Evaluating the standard precondition for gen-
eralisation gives rise to three candidate terms for t. The successful evaluation of
the strengthening precondition ranks the term (z x 0) as the most promising can-
didate for generalising. Note, however, that neither occurrence of (z x 0) is in a
recursive argument position. Consequently, the weakening precondition succeeds
and reduces the merit score associated with the application of the strategy. It is
this weakening precondition which achieves the dynamic re-ordering of generalisa-
tion and induction illustrated in §4.1.

5.4 Calculating total promise

In order to combine the three measures each value is individually weighed against
all the others so that large disparities do not arise to upset the global theorem
proving system. Most weight, however, is still given to the original strategy or-
dering; minor abnormalities within a strategy's preconditions should have little if
any overall effect.

6

The ideas presented above have been implemented as an extension to the CLAM-
OYSTER system [Manning 92]. The flexibility of the resulting system manifests
itself in the form of a best first search algorithm in which the heuristic score is
given by promise of a method (strategy).

As a conjecture is investigated a tree structure is developed in which each branch
represents a different disjunctive choice made within the search. Each leaf shows
the extent to which its branch has been explored, with the success of a search
indicated when a leaf contains no goals. At such a point the complete proof plan
of the original conjecture can be determined by following the branch from the leaf
to the root.

At every stage of the search the most promising leaf is extended by one step,
thus creating new leaves, each with its own promise value. At no stage is a lt~af
discarded, even the most unlikely ones are maintained, albeit with a low priority.
In this manner the search can opportunistically traverse the search space, each
time examining only the most promising leaf.

Each leaf is comprised of a conjunction of methods each with its own input goal and
promise value. When a leaf is extended, each method is applied to its respective
input goal generating a series of subgoals. Each subgoal is tested for applicability



Increasing the Versatility of Heuristic Based Theorem Provers

10

with respect to the method set, thus creating a list of applicable methods and
related promise values, one for each subgoal. These lists are combined together in
all possible ways to generate a number of sets, such that one and only one element
from each list is found in each set. A set represents a new leaf with a promise
value equal to its lowest Rriority element.

7

In both the NQTHM and CLAM-OYSTER systems limited "ad-hoc" versions of
strengthening conditional merits have been implemented within some strategies.
In neither case, however, does this allow the merit measure of a strategy to alter
the actual order of the strategies, nor to incorporate weakening merits.

The ranking of strategies is such that our implementation performs as well as, if not
better than, CLAM-OYSTER on its library of theorems4. The implementation was
also tested with the examples given in §4. The results together with a comparison
with CLAM-OYSTER and NQTHM are summarised in table 1.

Examples (1), (3), (4), (5) and (6) all illustrate that the versatile CLAM-OYSTER
system either produces the same or an improved proof over those generated by
the other two systems. Note the extra work, however, required by CLAM-OYSTER
in the case of examples (3) and (6).

The other examples (2), (7) and (8) are more illuminating as they illustrate failures
of the fixed strategy ordering systems. It is interesting to note that NQTHM and
CLAM-OYSTER have different approaches to overcoming initial failure.

NQTHM has an "ad-hoc" pre-programmed mechanism which appears to force an
induction if a simplification fails. This, as (7) and (8) exemplify, can result in an
opportunity for generalisation being missed with fatal consequences.

In contrast CLAM -OYSTER relies on a pre-deterministic backtracking mechanism,
i.e. one that returns to the fixed strategy list. This has weak points in that inap-
propriate strategies are applied simply due to their rank with no account taken of
the current situation. In (7) and (8), an initial simplification prevents a profitable
generalisation. Here the error occurred in its first step but its consequence (i.e.
failure) does not arise until deep within the proof. The backtracking, being do-
main independent, is unable to return to this initial stage before an infinite branch
of the search space is encountered.

The versatile CLAM -OYSTER system improves on these two approaches by being
more sensitive in its application of strategies (i.e. by choosing only the most
promising in each situation). It tries to avoid the inappropriate application of
strategies which would otherwise lead to extra work or failure. In addition, because

4This library is a subset of the NQTHM corpus.



Increasing the Versatility of Heuristic Based Theorem Provers

11

of its use of the Best First Search algorithm itH backtracking is opportunistic. Even
an inappropriate application anywhere within a search can be easily rectified.

8 Conclusions and further work

As can be seen from the discussion in §7 the incorporation of flexibility into
strategy ordering has improved upon the pf~rformance of both the NQTHM and
CLAM-OYSTER systems.

The technique examined in this paper can l,e extended in a variety of different
ways. For example, consider the following conjecture

Vy, z : nat. 0 + (s(s(z)) x y) = y x s(s(z))

Ideally we would like to only partially5 simplify this goal using the definition of +
to give

Vy, z : nat. s(s(z)) x y = y x s(s(z))

Now a generalisation sets us up for a relatively straightforward induction:

Vy,p: nat. p x y =: y X P

Such an extension requires only the inclusion of extra strengthening or weakening
preconditions with associated merit scores.

In conclusion, our results serve to question the advantages of pursuing a fixed
ordering on proof strategies. Can a strategy's preconditions be fine tuned so as
to only be satisfied when it is profitable to do so? Is such fine tuning compatible
with maintaining declarative preconditions? I'~mpirical evidence will determine the
answers to these questions. Our extension to the CLAM-OYSTER system provides
a framework in which this evidence can be gathered.

References

[Boyer & Moore 79] R.S. Boyer and J.S. Moore. A Computat2:onal Logic. Aca-
demic Press, 1979. AC:r..[ monograph series.

[Bundy 88] A. Bundy. The use of (~xplicit plans to guide inductive proofs.
In R.. Lusk and R. Overbeek, editors, 9th Conference on
A utomated Deduction, pages 111-120. Springer-Verlag, 1988.
Longer version availabh~ from Edinburgh as DAI R.esearch
Paper No. 349.

5Note that r.urrently simplification is an "all or fiC,J;hing" strategy.





Increasing the Versatility of Heuristic Based Theorem Provers 13

[Constable et al86] R.L. Constable, S.F. Allen, H.M. Bromley, et al. Implement-
ing Mathematics with th,e Nuprl Proof Development Syste'm.
Prentice Hall, 1986.

[Gordon et a179]

M.J. 

Gordon, A.J. Milner, and C.P. Wadsworth. Edinburyh
LCF -A mechanised logic of computation, volume 78 of Lec-
ture Notes in Computer Science. Springer Verlag, 1979.

[Hesketh 91] J. T. Hesketh. Using Middle-Out Reasoning to Guide Induct-
ive Theorem Proving. Unpublished PhD thesis, University of
Edinburgh, 1991.

[Manning 92] A. Manning. Representing preference in proof plans. Un-
published M.Sc. thesis, Dept. of Artificial Intelligence, Edin-
burgh, 1992.

[van Harmelen 89] F. van Harmelen. The CLAM proof planner, user manual
and programmer manual: version 1.4. Technical Paper TP-
4, DAI, 1989.


