
The Reactive Accompanist: Applying Subsumption

Architecture To Software Design

Joanna Bryson, Alan Smaill, Geraint Wiggins

The Department of Artificial Intelligence
The University of Edinburgh
80 South Bridge, Room F3

Edinburgh
EH1 1MN

UK
joanna@zeus.chi.il.us, smaill@aisb.ed.ac.uk, geraint@aisb.ed.ac.uk

March 10, 2005

Abstract

Many knowledge-based systems suffer from structural problems such as
inefficiency rooted in overinformedness and inability to cope with the unex-
pected or exceptional nature of real-world data. Behaviour-based architec-
tures are better suited for such problems, but are not yet widely applied,
possibly because design strategies are not yet well established. In robotics,
subsumption architecture has proven an effective framework for developing
such systems. In this paper we suggest the techniques of subsumption archi-
tecture can be transferred to other areas of Artificial Intelligence, and present
a project implemented in this fashion. The development strategies used and
the types of problems approachable by this method are also discussed.

Subject: Architectures in Artificial Intelligence

1



1 Introduction

One of the main purposes of research in Artificial Intelligence is to apply progress
made in understanding natural intelligence to improving the performance of intelli-
gent artifacts. This paper discusses the general utility of a relatively recent model
of cognition, the behaviour-based paradigm, within software engineering. It also
addresses the issue of a methodology for applying this model. We suggest that
subsumption architecture, as developed by Rodney Brooks for robotic control, can
be utilised successfully in software development with relatively little modification.
As evidence we present a software system developed under this strategy: a com-
puter “folk musician” which accompanies unfamiliar melodies in real time without
knowledge of music theory or any form of rule base.

The first section of this paper discusses the potential problems of centralised,
knowledge-based systems. It goes on to discuss the rise of distributed intelligence
and behaviour-based systems, their impact on the area of robotics, and the advan-
tages of subsumption architecture in particular as a design methodology. The next
section describes the Reactive Accompanist, and the way subsumption architecture
was used in its development. The third section discusses what we learned about this
methodology, the nature of problems for which we would suggest this new approach,
and a few samples of such problems. The final section is a summary.

2 The Utility of Subsumption Architecture

2.1 Software Design and Centralised Planning

The development of quality software products and systems is seen by many as the
main bottle neck in computing today.[Ratcliff, 1987] Often software developers are
faced with problems that consist of a large number of perfectly tractable, even triv-
ial, subparts; but are overwhelmed by the task of organising them into a coherent
system that can be easily run and maintained. Once a system is built, on instal-
lation it is often found that exceptions and unanticipated requirements make the
program unusable. This situation is often addressed by wedging changes into the
original framework, complicating both the design and the code sometimes beyond
recognition; or sometimes by the more costly method of returning to the design
stage. In the worst case, entire projects are abandoned.[Brooks, 1975]

These problems are symptomatic of the traditional, knowledge-based design.
As programmers, we are naturally inclined to think that every problem is best
addressed by breaking it down into constituent, sequential steps towards the opti-
mal solution. But in fact, an overly centralised approach can have the same effect
computer system that it does on an economy. Huge inefficiencies are introduced by
having large parts of the system over-informed, while reactions to the unpredictable
events of the real world can be slowed to the points of annoyance or even useless-
ness. Many everyday situations are likely to be completely unresolvable within the
existing framework.

It is particularly strange that the design of Artificial Intelligence systems often
falls into this predicament. After all, part of the goal of AI is to understand and
model our own, biological intelligence. Human and animal intelligence show little
of the fragility associated with traditional computer programs — we tend to adapt
and react rapidly to changing environments and opportunities[Chater, 1992]. From
a biological perspective, the complexity and number of steps we ascribe to perform-
ing tasks are completely intractable within the limited neural systems of insects that
perform them, or even within our own brains given the slow nature of the chemi-
cal reactions we use for communicating between neurons. And introspectively, we

2



should admit how little of our daily life conforms to a carefully planned procedure
— even when playing chess[Agre and Chapman, 1988].

2.2 Behaviour-Based Systems and Robotic Control

AI has produced other concepts of organisation. Connectionism has provided an al-
ternate theory of distributed intelligence since the 1950’s[Rosenblatt, 1958]. Then,
in the 1980’s, behaviour-based systems first began to be proposed as a possible mech-
anism for both biological and artificial intelligence[Minsky, 1985]. The behaviour-
based paradigm explains intelligence in terms of small, simple, and coherent be-
haviours or competences. These competences operate independently, each with its
own goal. People who follow this methodology believe that most of what we perceive
as complex intelligent behaviour is in fact emergent from the interactions between
these simple behaviours, and need never be explicitly planned, represented, or even
recognised by the overall agent.

One branch of AI that behaviour-based systems have significantly affected is
robotics. Robotics has been suffering since its inception from the difficulties de-
scribed above as associated with centralised planning. Since the late 1980’s, how-
ever, several laboratories have made considerable progress in overcoming such prob-
lems using behaviour-based strategies[Malcolm et al., 1989]. This is largely due to
the impact by the research of Rodney Brooks and his development of subsumption
architecture. Subsumption architecture, either in its original form or modified into
“hybrids” with symbolic planners, has been used extensively in academic laborato-
ries, and is now so widely accepted that it is being used by NASA for development
of robots to send to Mars.[Brooks, 1991a]

Subsumption architecture is a robotic control methodology. It consists of two
primary principles: that the control is decomposed into layers in turn composed
of “task achieving behaviours” or modules, and that these layers are incrementally
implemented and debugged in the “real world”[Brooks, 1991b]. The modules are
solely simple augmented finite state machines. Important features of a subsump-
tion architecture machines are that they are totally reactive, that is, any action is
a consequence of a stimulus in the environment; and that they engage in no sym-
bolic processing. Higher levels are able to observe the inputs and outputs of lower
ones, and to subsume their behaviours. More detailed descriptions of subsumption
architecture strategies are given in section 3.5.

2.3 The Advantages of Subsumption Architecture

We believe that many other problems currently approached with centralised, knowledge-
based systems could be better addressed with behaviour-based control. The main
difficulty is that, as a relatively new architecture, there are no established design
strategies for creating such systems. We suggest that the methodology of subsump-
tion architecture is well suited to providing guidelines for development of behaviour
based systems for the following reasons:

• It has well defined principles and procedures for development[Brooks, 1991b].

• There are already many successful implementations documented[Maes, 1990].

• Its incremental, bottom-up approach almost necessitates that any solution
developed with it will be

– functional in the real world with real data, and

– as minimally informed as possible,

3



To investigate the accuracy of these claims, we undertook a project to use sub-
sumption architecture to implement a behaviour-based system which emulates a
human cognitive capacity. The particular ability is that of a musician to provide
chord accompaniment in real time to an unfamiliar piece of music.

3 The Reactive Accompanist

This section consists of a brief description of the functional objectives for the Ac-
companist, a brief review of related work, an overview of the decomposition used for
approaching the task, and a description of the individual behaviours that compose
the system. It concludes with a thorough discussion of subsumption architecture as
it was used in this designing system.

3.1 The Task

The goal of this program is to derive chord structure from a melody in real time1.
This mimics the ability of skilled musicians to accompany unfamiliar melodies on
chord instruments, such as the piano or the guitar. The input melodies are played
live on traditional instruments, and the processing is totally reactive, with no tran-
scription of the melody nor rules of harmonisation applied.

3.2 Comparisons with Similar Work

There have been many applications of AI to the areas of musical transcription (e.g.
[Longuet-Higgins, 1987]), or to tracking live musicians while following a score (e.g.
[Matsushima et al., 1985],[Dannenberg and Mukaino, 1988]). These systems follow
traditional, knowledge-based programming methodologies.

There have also been a large number of researchers applying straight connection-
ist tools to musical cognition (e.g. [Desain and Honing, 1992], or [Todd and Loy, 1991]
for an overview). These projects tend to concentrate on deriving one aspect of the
music, and to do it outside of real time.

The musical AI work most closely related to the Accompanist is Tom Machover’s
Hyperinstruments[Machover, 1992] and Robert Rowe’s Cypher[Rowe, 1992]. Both
of these systems consist of two parts, one for interpreting input music, the other for
playing either original or scored music along with it in real time. These projects
use a Minskyesque behaviour-based approach in their listening halves which appar-
ently works quite successfully. Unfortunately, it is difficult to compare either the
performance or the ease of development of these systems with our own in order to
demonstrate the effects of the subsumption strategy.

There do not seem to be any applications of subsumption architecture to mu-
sic, nor to any other area outside of robotics at this point. One project that is
closely related is Agre and Chapman’s Pengi[Agre and Chapman, 1988] — a re-
active video-game playing robot. In their paper, “What are Plans For?,” they
emphasise that the utility of plans is not as procedures to follow, but as methods
of communication, either within an agent or between agents. Actual activity is
based on reactive, opportunistic behaviours. Although their implementation was
not strictly subsumption architecture, it was heavily influenced by Brooks’ work.

Some researchers believe that strict subsumption architecture can only be used
for tasks that would be reflexive in humans, while traditional symbolic program-
ming is necessary for the higher cognitive functions[Arkin, 1990]. It may be that
such opinions over-emphasise the use of symbolic processing in human intelligent

1Further details of implementation, results, and comparisons with human subjects are available
in [Bryson, 1992]

4



behaviour[Kirsh, 1991]. For further information on related theories of human be-
haviour and cognition, see “The Society of Mind”[Minsky, 1985], “Consciousness
Explained”[Dennett, 1991], and “Intelligence without Reason”[Brooks, 1991a].

3.3 Project Description

3.3.1 Organisation

A subsumption architecture program is considered to be organised in terms of layers.
These layers consist of one or more modules or units of behaviour. In designing the
system, the task is first broken into layers, then the layers implemented one at a
time, starting with the most basic and working up. At any point of development,
only the modules for the current layer are being designed and tested.

In our implementation, we chose to make Pitch recognition the most basic level
of competence. The next layer is Chord recognition, which transforms the output
from pitches into chords. The following level is Time recognition. Although the
basic competence of this level is to recognise the beats, the output of the program
at this level is not just rhythmic information, but the modified output of the chord
layer. Now instead of a single chord, it outputs chords in a timed sequence.

SONG
STRUCTURE

TIME
CHORD
PITCH

Figure 1: Basic Layers of a Complete Machine.
Bold face script indicates implementation.

Should this project be continued, the next layer would try to recognise Structure
in the piece. That is, it would bias chord choice towards recurring patterns2. The
final level of competence would be Song recognition, whereby the program would
learn to recognise song types. This would subsume Structure in its ability to an-
ticipate the number of times a pattern would repeat, and what the next pattern is
likely to be.

3.4 The Individual Behaviours

The system as it now stands consists of six independent modules, each of which
embodies a behaviour or “competence”. For a diagram of the interaction of the
implemented modules and the anticipated layers, see figure 3.4. The purpose of
this section is to illustrate to some extent the way the behaviours interact, and also
the diversity of the strategies that are used in the actual workings of the components.
The modules are listed in the order they were developed and implemented.

1. Note: derives pitch class from the auditory input. This module consists
primarily of a competitive neural network[Hertz et al., 1991]. This network
transforms the input melody3 into a weighted array representing the results
of all the output units. The output units of the net correspond to the pitch

2Rhythmic pattern bias is already implemented in the Time layer by the timed module.
3Microphone input run through the sound board of a SUN SPARCstation, converted by csound’s

pvanal utility[Vercoe, 1991]into frequency/gain pairs per incremental time frame using Fast Fourier
Transformations.

5



Thresh

Note Chord

Change

Beat

Timed

Chord

Structure

Song

Line read

Line affected

Figure 2: The Interactions of the Components of the Reactive Accompanist.
The rectangles represent layers, the circles modules.

6



classes the net has been trained on (currently but not necessarily the tradi-
tional 12 tone western scale).

2. Chord: identifies a chord from an input of pitch class information. It uses
a hybrid associative and competitive neural net, the weights of which are
determined by predefined chord types. The inputs are of the type output
by the note module, and the output is a similar weighted array of potential
chord types.

3. Thresh: finds the threshold in time for a new note. This is a simple finite
state machine reacting to the output of note and outputs a True/False value.

4. Beat: finds the most likely times for an occurrence of a thresh event. It is a
single layer neural network which takes as input boolean information like that
of the thresh module. It creates an array of time intervals between positive
signals, with associated weights for how often they occur The existing weights
decay over time, so that time changes are tracked. The output is the weights
and indices of the net.

5. Change: uses rhythmic information and chord to find likely locations for
chord changes. If chord is run without interference, it soon stabilises to
reporting the key for the melody. The change module modifies the inputs
for multiple incarnations of chord representing the possibility that chords
have changed at various time events. Change’s output is the output of the
chord module that seems most strengthened by the current trend in the
melody.

6. Timed: uses information from beat and thresh to anticipate the next rhyth-
mic event. It consists of a finite state machine. Timed uses the beat infor-
mation in order to build and maintain a guess at what the dominating time
intervals are, and the thresh input to try to determine when these events
occur. Its output is a boolean stream similar to the output of thresh, but the
True values represent the actual anticipated beats rather than the detection
of a random note threshold. The output of change is improved when timed
subsumes thresh as its source of rhythmic information.

Notice that none of these modules actually produces sound, rather their output
is a simple transformation of their input. An executable program called noise was
constructed which translated the output of the change module into a soundfile.
This output can be either the real time output of change, or the final chord
determined by change at the reaching of a new beat threshold, retroactively applied
across the entire previous beat. This latter information is not real time, but it is
the information that would be observed by higher level pattern seeking programs,
and is also most useful to humans evaluating the program.

3.4.1 Results

This program was evaluated in two ways — by comparing its output to the chords
derived for the same input by several musicians, and by having musicians judge
whether the chord structure of the piece “sounds reasonable”. These evaluations are
of necessity qualitative and subjective, for one thing even the strict harmonisation
rules of music theory are nondeterministic. However, within the domain of the
melodic input (Celtic folk music), certain chord conventions are well standardised,
and the musicians used could be considered fairly expert in recognising them.

The Reactive Accompanist tends to use the correct chords slightly more than
half the time, and to change chords away from the dominant at the same points that

7



human musicians do. “Incorrect” chords are seldom totally dissonant, but rather
are unexpected because they fail to fit into a pattern. This problem is a consequence
of the fact that the program is only informed with respect to the notes currently
played and the notes in the previous chord, and would be corrected by the higher
levels of Structure and Song. Extra cues, such as polyphonic input, also help with
this problem.

The program has difficulty with some instrumentations, apparently because they
are too different from the instrument used to train the neural net in the note
module. The trained instrument, the mandolin, and the penny whistle are the best.
Performance degrades over the Scottish small pipes and the recorder, and is useless
for the human voice. Also, slow moving songs with few notes per beat often do
not provide sufficient cues for accurate chord choice. However, given favourable
input, each of the modules performs its task, though not with complete reliability
or “correctness”, to a sufficient standard that a) musicians consider its output to
be reasonable and intelligent and b) that the modules above it can use its output
to operate to the same standard.

3.5 Subsumption Architecture and Development

The development of this system took place within the framework of several criteria
for subsumption architecture derived from [Brooks, 1991b]. Below are the sum-
maries of these criteria as we derived them from Brooks’ paper. These were used
as guidelines for this project. After each summary is a description of the extent to
which the project conformed to this goal, and then an analysis of how this factor
affected the actual project.

3.5.1 Components

A layer should be a fixed topology network of finite state machines possibly
augmented with a few registers (for data storage) and timers. It should be data
driven, with no global data and no dynamic communication. “Data driven”
means that the system is reactive. Activity by a competence is a consequence
of events or opportunities in the environment, not of instructions from another
competence. “No dynamic communication” means that layers do not engage
in two way communication — when a message is sent, there is no indication
whether it has been received.

The modules of this project are fairly well “augmented finite state machines”
as specified, although their data objects are more complex than “a few registers”
would imply. On a functional level, however, even the most complex of these objects
is essentially a two dimensional array of floating point numbers. The modules are
all data driven - their internal states are only affected by their input. And there
is no global data — data objects are all associated with modules and can only be
altered by their own module.

Conformity to this set of criteria results in a program constructed of simple,
self-contained, independent, reactive units. It helps ensure robustness in the pro-
gram, in that if one unit malfunctions, the others will carry on, though the overall
performance will be degraded. This was evident in the performance of the accom-
panist. For example, when interpreting the Scottish small pipes, the notes from the
continuous underlying drone pipes confused the thresh module to the point that
rhythmic events were almost unreported. The program simply plays along with the
drone until towards the end of the piece, when it has enough rhythm information
that it catches a few of the chord changes human guitarists made in accompaniment.

8



3.5.2 Interaction

Layers may only interact with other (lower) layers via their input and output
wires. A higher layer may suppress the input of a lower layer, and it may
inhibit the output. “Suppression” of the input may include replacing it, but
output may not be altered, only left unaffected or discarded.

Although, wires are not involved here, this principle was carefully followed in
concept. It might appear that the change module has more influence over chord
than this principle would dictate, because change can cause multiple instantiations
of chord to be created. This is a slight modification of subsumption architecture,
(and not something likely to occur in a robot). However, once the module is created
it has no special dependencies or status; it is never stopped or restarted or in any
other way treated like a called function.

This principle is one of the strengths of subsumption architecture as a develop-
ment tool. Thinking of previously developed modules only in terms of fixed input
and output makes it much clearer how they should be interfaced with. Thinking
of a current module in terms of the input and output that higher modules will be
able to see helps clarify both the requirements of the module, and whether in fact
the module should be reclassified into smaller or larger competences. At the outset
of the project, we anticipated that creating a strict hierarchy for a music system
would be difficult. In fact, this never became an issue, though this may be a feature
of our particular decomposition.

3.5.3 Test Environments

There should be no simplified test environments. Subsumption applications
should cope for themselves with all the noise of inaccurate sensors and all the
unpredictability of the real world. If the input becomes increasingly further
from the ideal, the performance of the agent should gradually degrade, rather
than completely failing.

For our project we conformed to this principle completely. The project was run
on live input from acoustic instruments recorded through the SUN soundtool utility.
The Accompanist has to cope with all the errors of time, note, and intonation and
also microphone distortion. Even when these factors caused considerable garbling
of the information, so that a human might be able not recognise the accompanist’s
conception of the melody, the actual output of the program is only partly degraded.
There are, however, some inputs, for example human singing, which the program
can not comprehend at all.

The benefit this has on the development process is that once a module works at
all, it “really” works. There is no question of how performance will change or what
exceptions will be met when the program is exposed to the real world. However,
the combination of imperfect data and expecting some performance degradation as
a consequence made the issue of fine tuning a module’s performance difficult, as it
made it was unclear when an optimal level had been reached. (See the next section.)

3.5.4 Independence in Engineering

Each layer should be engineered separately, then tested and debugged until
flawless before proceeding. Debugging a multilayer system is difficult; this
approach should reduce the potential problem sources to being either in the
current layer or the interface between the current layer and the previous one.

The approach used for this project was to implement the modules as separate
classes in an object-oriented language (C++). Each module was developed, imple-

9



mented, and tested in its own executable program. There were some changes made
to lower levels after development had moved on to higher levels, but these mostly
took the form of parameter adjustments. Fine tuning of a layer was found to be
difficult without the layers that would be utilising its output. (See previous section
on No Test Environments.)

This incremental, bottom-up approach is useful for ensuring the workability of
the program design and simplifying the debugging process. It also makes the pro-
gram less likely to be over-informed, as one can determine the earliest point at
which a level is functional, although of course extraneous modules could already be
present. Altering lower levels is not so much of an issue in a software project, be-
cause the executables associated with those modules can be recompiled and retested
incrementally again, unlike on a robot where regression is more difficult. Therefore
violating this part of this principle did not actually have the negative effects on
debugging it would have in robotics.

3.5.5 Representation

In [Brooks, 1991b], Brooks not only advocates against central representation,
but says there should be no variables instantiated, no rules matched, and no
choices made on any level.

The issue of “no representation” has been controversial. For example, in the
Accompanist, aren’t the chords a symbol system? However, from the three criteria
above, it should be clear that the issue here is no representation of knowledge from
the perspective of the program, that is, no symbolic processing. For example, in
[Brooks, 1991a] he discusses a navigation module that builds a structure that from
the external perspective is essentially a map, but since it is this structure itself that
builds, maintains, and causes the robot to follow the learned trajectories, all as
a consequence of the reactive behaviour of the network, this does not violate his
representational principles.

This project generally followed this principle well, and should fully follow it in
the final version. One violation was made in the implementation of timed, whereby
the module looked for only one time segment, the one that represented the beat.
This could easily be considered variable instantiation, and did in fact result in a
loss of robustness, since this module is particularly easy to fool when melodic input
has exceptional speeds. This was a hack partly necessitated by the need to cap
the project without the higher levels. Our intention on continuing the project is
to have multiple possible times and associated chord changes as the output of the
Time level, just as multiple notes and chords are the outputs of the Pitch and Chord
levels. The next level will weight the possibilities with respect to their repeatability
in a form of pattern matching. We intend to implement this also in terms of non-
symbolic structures, using strategies much like those used in the navigating robots
described in [Matarić, 1990] and [Smart, 1992].

4 Subsumption Architecture and
Software Design

4.1 Lessons Derived from the Accompanist Experiment

The significance of the success of the Reactive Accompanist is that we have produced
a system that emulates what is normally considered a higher cognitive function in
humans in a totally reactive framework. But our primary aim project was to explore
the use of subsumption architecture within a software development context. This

10



section describes the successes and drawbacks of the approach, and modifications
we made to it.

We had entered this project expecting to run into difficulty with subsumption
architecture in two ways. First, that the nature of music might be too interdepen-
dent for an approach that is so strictly hierarchical, and second that traditional
knowledge-based techniques would be needed at some level, presumably when pat-
tern recognition became an issue. As explained in section 3.5, both of these concerns
proved unjustified. Notice that our conclusion with regard to the lack of necessity
for a symbolic hybrid is based only partly on the Accompanist, which at this point
has only rhythmic pattern capabilities, but also on a review of other subsumption
projects.

The largest problem we did encounter with the project was solid evaluations of
the performance of the individual modules, given that they were tested on real-
world data. An “ideal” result was consequently both difficult to predict and not
expected to occur. This resulted in multi-module parameter tweaking when higher
levels showed weaknesses in the system. Also, the methods of decomposition of the
problem into levels and modules is still nebulous. In general, our difficulties were
not with the hierarchical order, but with the definitions of the units.

Our general practice for decomposition was to err in the direction of making the
units too large, and then redivide the elements if necessary. For modular decompo-
sition the rule was, if a module is becoming more complex than the requirements
of subsumption architecture indicate, the task it addresses needs to be broken into
more modules. For levels, the guideline concerning incremental development seems
best applied in reverse — modules that belong in the same level will probably need
to be tested and developed together.

4.2 The Nature of Tasks Suited to this Approach

Subsumption architecture was developed as part of an effort to replicate an-
imal intelligence[Brooks, 1989]. We, as animals, are constantly evaluating
and manipulating extremely complex environments with only simple high-level
goals[Agre and Chapman, 1988]. A subsumption-based machine achieves this by
having multiple simple behaviours operating in parallel. Low level behaviours con-
stantly sense and react to the environment, while higher level modules pursue the
primary goals. All behaviours are constantly receptive to the inputs that trigger
their actions, making it possible for the machine to pursue multiple goals simulta-
neously and opportunistically.[Brooks, 1991b]

Considering these attributes, we can make a list of some of the characteristics
systems that could best be approached using subsumption architecture might have:

• the system is required to operate in real time,

• it needs to pursue multiple goals simultaneously,

• it exploits a parallel architecture,

• it needs to be aware of real time events external to it,

• it needs to process sensor data,

• there are conditions involving details not important to the system’s central
goals that need to be met and maintained in order for those goals to be
pursued.

11



4.3 Suggested Applications

This list is included as examples of some of the areas we believe could be approached
and possibly advanced by application of a behaviour-based system through a sub-
sumption architecture design. Obviously, the potential for further research is ex-
tensive.

• Monitoring systems. This includes industrial, financial, and medical applica-
tions. Medical monitoring devices are actually duplicating the exact kind of
reflexive biological behaviours that subsumption architecture robots model so
well. This functionality can be extrapolated into other procedurally related
areas.

• Computer Operating Systems. It is not much more of an abstraction to move
from a monitoring system to a scheduler. The only difference here is that the
environment with which the agent will be interacting is entirely contained in
the computer. This would be particularly interesting in a multi-cpu system,
where the parallel nature of subsumption architecture could be more fully
exploited.

• Face recognition This is actually similar to the task of the reactive accompanist
— interpreting perceptual information in a way similar to the way humans do.
An advantage in this case is that extensive developmental psychology research
has been done on the way infants learn to recognise faces, and this work can
be used to order the implementation of levels of competence.

• Oral Communication It was the similarities between the difficulties experi-
enced in natural language research and classical robotics research that pro-
vided the original impetus for the reactive accompanist project. As with face
recognition, research in language development could provide significant cues
for the proper behaviour-based approach. One could build small projects like
the Accompanist to explore specific subproblems such as deriving emotional
content from inflection. Semantics is particularly closely linked to subsump-
tion architecture in its need for grounding and minimally informed higher
levels.

5 Summary

Behaviour-based systems developed under subsumption architecture can be used to
address many problems that are currently met only with traditional, knowledge-
based systems. The advantages of systems designed under this approach is that
they are able to work effectively with real-world data, and at the same time the
complexities of the real world are handled by low-level competences, which allows
the higher, goal-pursuing levels to be kept simple and efficient. We have created
such a system ourselves, and have shown it is possible to transfer the techniques
of subsumption architecture into a new and fertile domain. We look forward to
seeing both new applications and new methodologies developed within the reactive,
behaviour-based paradigm.

6 Acknowledgements

We would like to thank the following individuals for their assistance with this paper:
Gill Kendon, Phil Kime, and Ashley Walker. Special thanks to William Smart who
also contributed background research and his expertise in subsumption architecture.

12



I [Joanna] would like to thank the many people besides the above who helped
the MSc project which resulted in the Reactive Accompanist; especially Ian Porter,
Sheila Tuli, and David Willshaw, and above all my supervisors Alan and Geraint.

References

[Agre and Chapman, 1988] Agre, P. E. and Chapman, D. (1988). What are plans
for? AI memo 1050, MIT, Cambridge, MA.

[Arkin, 1990] Arkin, R. (1990). Integrating behavioral, perceptual and world knowl-
edge in reactive navigation. Robotics and Automation, 6(1):105–122.

[Brooks, 1975] Brooks, Jr., F. P. (1975). The Mythical Man-month: Essays on
Software Engineering. Addison-Wesley, Reading, MA.

[Brooks, 1989] Brooks, R. A. (1989). A robot that walks : Emergent behaviors
from a carefully evolved network. A.I. Memo 1091, MIT, Cambridge, MA.

[Brooks, 1991a] Brooks, R. A. (1991a). Intelligence without reason. A.I. Memo
1293, MIT, Cambridge, MA.

[Brooks, 1991b] Brooks, R. A. (1991b). Intelligence without representation. Artifi-
cial Intelligence, 47:139–159.

[Bryson, 1992] Bryson, J. J. (1992). The subsumption strategy development of a
music modelling system. Master’s thesis, University of Edinburgh. Department
of Artificial Intelligence.

[Chater, 1992] Chater, N. (1992). Neural networks: Motivation from psychology.
Lecture notes from the Neural Networks MSc module, Department of Cognitive
Science.

[Dannenberg and Mukaino, 1988] Dannenberg, R. and Mukaino, H. (1988). New
techniques for enhanced quality of computer accompaniment. In Proceedings of
the ICMC, pages 241–249.

[Dennett, 1991] Dennett, D. C. (1991). Consciousness Explained. Allan Lane, The
Penguin Press, London, UK.

[Desain and Honing, 1992] Desain, P. and Honing, H. (1992). Music, Mind and Ma-
chine: Studies in Computer Music, Music Cognition, and Artificial Intelligence.
Thesis Publishers, Amsterdam.

[Hertz et al., 1991] Hertz, J., Krogh, A., and Palmer, R. G. (1991). Introduction to
the Theory of Neural Computation. Addison-Wesley, Redwood City, CA.

[Kirsh, 1991] Kirsh, D. (1991). Today the earwig, tomorrow man? Artificial Intel-
ligence, 47:161–184.

[Longuet-Higgins, 1987] Longuet-Higgins, H. C. (1987). The perception of music.
In Boden, M., editor, Mental Processes : Studies in Cognitive Science, chapter 13,
pages 169–187. MIT Press, Cambridge, MA.

[Machover, 1992] Machover, T. (1992). Hyperinstruments : A progress report 1987-
1991. Media lab document, MIT, Cambridge, MA.

[Maes, 1990] Maes, P., editor (1990). Designing Autonomous Agents : Theory and
Practice from Biology to Engineering and back. MIT Press, Cambridge, MA.

13



[Malcolm et al., 1989] Malcolm, C., Smithers, T., and Hallam, J. (1989). An emerg-
ing paradigm in robot architecture. In Proceedings of the International Conference
on Intelligent Autonomous Systems (IAS), volume 2, pages 545–564, Amsterdam.
Elsevier.

[Matarić, 1990] Matarić, M. J. (1990). A distributed model for mobile robot
environment-learning and navigation. Technical Report 1228, Massachusetts In-
stitute of TechnologyArtificial Intelligence Lab, Cambridge, Massachusetts.

[Matsushima et al., 1985] Matsushima, T., Harada, T., Sonomoto, I., Kanamori,
K., Uesugi, A., Nimura, Y., Hashimoto, S., and Ohteru, S. (1985). Automated
recognition system for musical score – the vision system of WABOT-2. Bulletin
of Science and Engineering Research Laboratory, 112:25–52.

[Minsky, 1985] Minsky, M. (1985). The Society of Mind. Simon and Schuster Inc.,
New York, NY.

[Ratcliff, 1987] Ratcliff, B. (1987). Software Engineering: Principles and Methods.
Blackwell Scientific Publications, Oxford, UK.

[Rosenblatt, 1958] Rosenblatt, F. (1958). The perceptron: A probabilistic model
for information storage and organisation in the brain. Psychological Review,
65:386–408.

[Rowe, 1992] Rowe, R. (1992). Machine listening and composing with cypher. The
Computer Music Journal, 16(1).

[Smart, 1992] Smart, W. D. (1992). Location recognition wih neural networks in a
mobile robot. Master’s thesis, University of Edinburgh. Department of Artificial
Intelligence.

[Todd and Loy, 1991] Todd, P. M. and Loy, D. G., editors (1991). Music and Con-
nectionism. MIT Press, Cambridge, MA. Based on two special issues of the
Computer Music Journal.

[Vercoe, 1991] Vercoe, B. (1991). The Csound Reference Manual. Cambridge, MA.

14


