
EX~LDITING THE PROPERTIES OF FUNCTIONS

TO CONTROL SEARCH

by

Alan Bundy

D.A.I.

Research Report No. 45

October,

1977

Contents

Section ~
1. Introduction

2.

Existence and Uniqueness

3.

A Decision Procedure 2

4. Constrained Forward Inference 4

5. An Embarrassment of Terms 6

6.

Term Creation in Equation Extraction 8

7. Using Uniqueness to Prune Search 10

8. The Inference Mechanism 11

9. Some Compromises 13

10.

The Unique Name Assumption 14

11.

A Positive Use of Uniqueness 1.5

12.

Conclusion 16

13. References 16

Acknowledgements 17

Exploiting the Properties of Functions to Control Search

1.

Introduction

Several people in Artificial Intelligence have taken advantage of the

fact that functions can be replaced by relations i.e. all expressions of

the form

f(xl,...,xn) = Y

can be replaced by

P:(x l ' 'x ,y)
f n

Our first experience of this technique was in the work of Wos and Robinson

1965, where the group function + was replaced by a relation P i.e. x+y=z

was written P(x,y,z). However, examples can be found allover the literat,ure

both explicit and implicit e.g. in Gelernter 1963, Bundy 1973, in STRIPS (see

Fikes and Nilsson 1971), and in many uses of semantic nets. We understand

from Jerry Schwarz that it goes way back to the thirties in mathematical logic

Since this technique is so widespread, two questions arise

(a) Is anything to be gaine9 by it?

(b) Is there a price to be paid?

This paper addresses itself to answering these questions.

2. Exis!:ence and Uniqueness

We can start our investigation by asking "in what way do functions differ

from relations". The answer in predicate calculus is quite simple. Functions

carry with them two extra properties, namely:

(a) The existence of their value is guaranteed

(b) The uniqueness of their value is implied

Thus if I choose to represent the motherhood concept with a function, mumof(x),

then I ensure that every individual has one and only one mother. e.g. If John

is an inqividual then the existence of another individual who is his mother is

guaranteed because mumof(John) is if. term and Tarskian semantics deIl1ands that

this term denote some individual. It is not possible to assert that John has

two different mothers using only this notation.

If on the other hand I represent motherhood with a relation, Mother(x,y),

then I get no such guarantees. It is quite possible that there is no in-

dividual a for:which

Mother (John ,a) is true

On the other hand we could easily
[.e.g. Mother (John ,Mary) "..-

Mother(John,Sue)... where Mary ~ Sue

that John has several. mothers

2

Notice that this would be the correct situation for a concept like LOVES.

It is quite in order for

LOVES (John,Mary)

and LOVES (John,Sue) to both be true; and there is no reason why John

should love anybody.

If we have both the relation Mother and the function mumof in our

system then we will have to relate them by some suitable axiom like

Mother(x,y) ++ mumof(x) = y (i)

In this theory the existence and uniqueness of John's mother can be quickly

proved.

existence

mumof(John) = mumof(John)

Mother(John,mumof(John»

3y Mgther(John,y)

by reflexive law of equality

by (i) and modus ponens

by 3 introduction

assumption

uniqueness

Mother (John,x) & Mother(John,y)

mumof(John)=x & mumof(John)=y

x = y

by (i) and modus ponens

by transitively of equality

Mother (John,x) & Mother (John,y) +x = y by conditional proof

So just having the mumof function ensures that every individual has one and

only one mother.

On the face of it then, it would seem that some concepts, like mother-

hood, are better represented as functions and some, like love, are better

represented as relations. If the wrong choice of representation is made

then either some vital information will be lost (e.g. everyone has a mother)

or something untrue will be asserted (e.g. everyone has a lover).

3.

A Decision Procedure

So if a function is replaced by a relation something is lost. How im-

portant is this loss? Is anything gained in return? A partial answer to

these questions can be found by considering the logical properties of a

theory containing no functions.

We will show that a theory containing no functions is decidable, i.e.

there is a procedure for deciding whether a formula is a theorem or not and

this procedure is guaranteed to terminate. This result was first pointed

out to me by Bob Kowalski. For theories containing functions it can be

3

shown that no such decision procedure exists. In this proof and for the

rest of this paper the notions of functions and constants will be considered

disjoint i.e. constants are not o-ary functions, functions are n-ary for

1.

The existence of this decision procedure establishes two things.

Firstly, we cannot, in general, expect to do without functions. Secondly,

on those occasions when we can manage without functions, it is best to do so

as pleasant consequences follow from our abstinence.

We will investigate the decision procedure using the terminology of

resolution theorem proving, because the investigative tools are better de-

veloped there. However, similar results could be established for other

inference systems e.g. PLANNER type languages or semantic net inferencers.

In resolution theorem proving the theorems are proved by putting the

axioms of the theory and the negation of the candidate theorem in clausalform.

The resulting set of clauses S is fed to a theorem prover which

tries to show that the set S is unsatisfiable. The theorem follows from

the axioms if and only if S is unsatisfiable. It is this set S which we

will require not to contain functions (except constants). This means that

the original axioms and candidate theorem must not only be function free,

but they must also be free of certain quantifier configurations, namely

those that would give rise to functions under skolemization. The condition

is that:

(a)

in the axioms, existential quantifiers must not be preceded

by universal quantifiers (when the axioms are closed)e.g.

Vx3y P{x,y) is not allowed as it skolemizes to P{x,f{x»

(b) in the candidate theorem, universal quantifiers must not be

preceded by existence quantifiers

e.g. 3x Vy P(x,y) is not allowed as, when negated, it

skolemizes to 7P(x,f(x))
.i

We will show that if S contains no 'function there is a decision procedure

which decides whether S is unsatisfiable. We will make use of Herbrand's

theorem (see Kowalski and Hayes 1971) which states that:

"A set of clauses S is unsatisfiable iff there exists Go finite con-

tradictory set S' of ground instances of; clauses in S."

A;o ground instance of a clause C is some substitution in~tance (CO" say)
.'of C, which contains no variable. ' The ground terms which replace the

variables in Care fbrmed only from functions and constants mentioned in

the original set of clauses. If there are no functions or constants in S,

4

then a new constant (a say) is invented and used to replace all variables.

If the clauses contain no functions (apart from constants) then there

are only a finite number of ground instances of clauses in S. Thus we can

enumerate all the contradictory sets S' and examine them for contradictions

in turn. This examination for contradiction can be done by standard truth

table methods and is guaranteed to terminate.

To see that there are only a finite number of ground instances of each

clause C, we need to consider the possible substitution, a, that can be

applied to C. Since Ca must contain no variables, a must replace each

variable with some ground term. If functions were available there would

be an infinite collection of such terms

e.g. a, f(a), f(f(a», f('f(f(a»),... .etc where a is a constant and f a
function

Without functions, however, there are only the constants to serve as groundterms.

So there are only a finite number of essentially different sub-

stitutions, cr, which will yield ground terms and thus only a finite number

of ground instances.

So the decision algorithm is:

(i) For each clause C in S form all the ground instances Ccr by re-

placing variables by constants in all possible ways..

(ii) Form all finite sets S' of ground instances.

(iii) Test each set S' for contradiction until either a contradiction

set is found (terminate ~ith success) or all sets are exhausted

(terminate with fail.ure).

4.

Constrained Forward Inference--

Of course this decision procedure is not particularly efficient and we

might hope to do better. Plotkin has shown that we can get a very efficient

algorithm if all the clauses are Horn clauses (see Welham 1976, App 3). A

simple forward inferencing algorithm can be used which grows a search space

polynomial in the original number of constants.

Plotkin's algorithm (which is basically just unit resolution) is:

Let Horn clauses be represented as

5

(i) Set DB to nilo

If there is a clause of form(ii

match literals in DB with substitution

Ai & ..& A -+
n

for which A .., A-1 ' n

a then quit with success.iii)

If there is a clause of form

Al & ..& An + B

for which Al ' .., An match literals in DB with substitution

0 and if Bo is not an instance of something already in DB then

add Bo to DB and go to (ii).

(iv) quit with failure.

This algorithm is guaranteed to quite with success if the original set of

clauses is unsatisfiabLe. The reason is that we cannot go on adding to

DB indefinitely, because there are only a limited number of different

literals to add. On the other hand, the algorithm is known to be complete

So we cannot continue to execute Step (iii) for ever but must quit at (ii)

or

(iii:

Furthermore, the length. of DB and therefore the number of iterations

round the loop can never exceed
Jr..M.N

where M is the number of relation symbols

k is the maximum ari ty of any relation symbol

and N is the number of constants

The algorithm can be modified to act as a proof finder rather than

refutation finder. The original set of clauses could consist of the

axioms of a theory,plus the hypothesis of the theorem and we can testJat

each stage to see whether the concLusion of the theorem is true in DB.

Plotkin's algorithm has been used in spirit (al.beit unconsciously)

by a number of successful theorem provers, cf for instance Nevins 1974,

Bundy 1973 and Ballentyne and Bennett 1973. These theorem provers made

forward inferences from the hypothesis of the candidate theorem while

keeping a lookout to see whether the conclusion of the candidate theorem

was proved. Because forward inference is in general explosive these

theorem provers employed various constraints on the inferences which

could be made. These took the form of limits on the terms which could

be introduced by an ~nference and corresponded to a ban on the use of

functions to make new terms from old. Thus, even though the formulae

contained functions, these were not used in an essentiallv "function-like"

6

way and could have been replaced by relations without effecting the infer-

encing being done. For instance, in Nevins geometry program no new points

could be introduced, except those mentioned in the original statement of

the problem. There are only a finite number of configurations (triangles,

parallel lines, etc.) between a finite number of points and these can all

be represented by a set of relations between them. Functions are only

indispensable for creating new points, e.g. as the intersection between

non-parallel lines.

The surprising thing about the theorem provers of Nevins, Bundy and

Ballentyne and Bennett is not that they were relatively fast and guaranteed

to terminate. This much could be expected from the previous arguments

about Plotkin's algorithm. The surprising thing is that they proved inter-

esting theorems. Many simple theorems can be proved by this technique,i.e.

without an essential use of functions.

5.

An Embarrassment of Terms

We have seen the connection between functions and existenceo A

function guarantees its value will exist (section 2). An eXistentially

quantified variable becomes a function on skolemization (section 3)e.g.

Vx 3y P(x,y) skolemizes to P(x, f(x))

In fact in clausal fonn one of the main uses of functions is to create new

tenns and thus introduce new entities into the argument. For instance,

the function mumof(x) can be used to introduce an infinite string of new

mothers (stretching back beyond Eve). Consider the fonnula

Human (x) -+- Human (mumo-f(x)) (ii)

loosely translated as "every human has a human mother". Used in forward

inference mode and given the assertion

Human (John)

(ii) will deduce the assertions

Human(mumof(JOhn))

Human(mumof(mumof(John»)

Human(mumof(mumof(mumof(John)))

etc

in rapid succession.

Clearly this is an embarrassment and needs controlling. The theorem

provers discussed in section 4 control this explosion of new terms in an

over-harsh way, by not allowing the creation of terms not already mentioned

7

in the statement of the candidate theorem. Tb~s, they would not deduce

Human (mumof (John» from Human (John) unless mumof(John) appeared in the

candidate theorem.

Unfortunately some theorems require the creation of new terms in theirproof.

What is needed is a compromise between the extremes of creating

all possible new terms and creating none 0 The traditional resolution

theorem proving technique for achieving this compromise Was to impose an

arbitrary function nesting bound. Thus, if the bound were 7, say, then

terms up to

mumof(mumof(mumof(mumof(mumof(mumof(mumof(John)))))))

would be allowed, but longer terms would not. Clearly this is crude and

unacceptable except as a short term solution. What is needed is t.o bring

the creation of new "terms under program ,control, so th"at the decision

whether or not to create" a term can'be the subject of a complex decision

making processo

As a first step towards providing such a facility, note that the

explosive properties of fo:r:mula (ii) disappear i£ mumof is replaced by the

relation Mothero On translation (ii) becomes

Human (x) & Mother (x,y) ,+- Human(y) (iii)

Now (iii) cannot be used in fo:rwardsmode to deduce Human(y) unless ,both

Human (x) and Mother(x,y) are satisfied and Mother (x,y) will not be satisfied

unless the mother of x is already known. To recapture the explosive properties

of (ill) we would have to ensure somehow that Mother(x,y) was always satisfiable,

a suitable y being created. The obvious way to do this would be t.o have an

assertion of the form

Mother(x,mumof(x» (iv)

which Mother(x,y) could match.

To achieve our compromise (i.v) needs to be tempered with 'control advice

about when the creation of the new term is to be allowed.

e.g. Allowed(Inumof(x)) -+- Mother(x~mumof(x»)- (v)

Now (v) can be used backwards to satisfy Mother(xiY) irthe test Allowed(mumof(x)

is passed.

What information might "Al1.owed(x) " use, to decide whether creation of

term "x" is to be allowed? "ALlowed" might, for instance, 'investigate the

current state of the proof or the form of "x!' 0 In order- to imitate the old

function nesting bound, "Allowed"couldbe defined to count the degree of

nesting in "x" and fail if this exceeded some threshold. Of course, in this

case "Allowed" is really-investigating the syntax of x, rather than its meaning,

8

so to be strictly kosher "x" should be surro1:1nded by Quine corner

quotes, i.e. Allowed(rx')o

In the sections whic.h fol1.ow we w~11 be describing a program written

in a "predicate calculus" like programming language.q PROLOG (Warren 1977).

In PROLOG it is possible to write predicates which investigate the syntax

of their arguments as well as re-direct the search and other strictly

non-kosher thingso We will use the same notation for our program as we

have used for predicate calculus formula so far, except that odd, non-

predicate calculus things will start appear.in.g in the clauses 0 We will

try to explain these as t.hey occur.

6. Term Creation in Equation Extraction-

In our mechanics project (Bundy et al. 19'76) we were faced with just

this need for controlled term creation in the process of equation extraction.

Forming a particular equation often necessitates the formation of new inter~

mediate unknowns, in addition to those already given in the statement of theproblem.

Allcthese unknowns are represented,in.the program as constants.

So the decision to be taken i.s whether this particular equation is wanted

badly enough to justify the introduction of a new constant.

Our solution to this problem is as follows. At any stage in the

process we have a list of sought unknowns and a list of givens. An unknown

is taken from its list and a short list of candidate ~quations is formed on

the basis of what kind of unknown we are trying to solve for and what situ-

ation it is defined in. We try first to find a candidate equation which

will solve for the sought unknown without introducing any new intermediateunknowns.

Only if this fails will intennediate unknowns be created.

This is implemented by having our equivalent of the "Allowed" function

access a global flag. This flag. is turned off during the first pass when

intermediate unknowns are not being tolerated, is switched on for a

second pass when intermediate unknowns have been shown to be necessary and

is switched off again when a suitable equation has been formed.

The equation forming mechanism consistsi of. a series of inference rules

representing physical .formulae, i.e. the formula for the constant'. acceleration

formula v == u+at is

9

Constaecel (0bj ect, p~riod) & ..;;'~:- ij ..,"-

CC (Accel (object,a ,dir,period)"}.&

CC (Direction(period,t» & ~i"~

CC(Initial(period,begin»)"& CC(Vel{object,u,dir,begin»

CC.{F.1.nal(period,end)) & CC (Vel (object, v ,dir,e~nd»

-+- Isformula(v.=u+a.t,constaccel"",l,period-object)

This is called in backwards reasoning mode -(as are ~ll clauses in PROLOG)

with the name of the formula, constaccel-l., and the situation, period-

object, both bound,but with a'variahle'for the equation. The satisfaction

of each of the conditions, e.g. ce(Accel(object,a,diT,period» fills in the
-J, ;)(.

details of the equation~"!:

The "CC(1"p1i.~di~ate is ~ s~eciq.l.kindof call which serves the

role of "Allowed(x)". "CC" stands for "creative call". It calls its
, "' I

argument in the normal way Q but if this should£ail and the global flag is

on then appropriate new constants will be created.. Thus,

CC (Initial (p~riod,begin)..) .' ",

can create a new moment, b,egin, the i~itial moment of period and

CC (Vel (obje<;t,u..,Qir ,begin) >.
:,: '" :"\?C-

can create a new velocitY6 u, in a new direction dir. Note that "CO" is
'i ;

used to create both new intermediate unknowns, like u, and other constants,

like begin.

Sometimes we do not want a new c~nstant to be created under any cir-

cumstances, ,so the "CC" will be o~tted. For instance, one of the ways
! ,

that constaccel (oQject,~rio,~.>::;~.an work is to find the acce.l of object in

period and see if this is in~rt~rt. There is no point in creating a new

intermediate unknown for the accele~~tion as we will know nothing about it,

~ncluding whether it is invarient. So the inference rule inco~orating

this knowledge is

NCC (Acc~l(object,a,dir ,peri?d»:~ I~va:z"ient (a)

+ Constaccel (objec~t'"cPeri'?r?J .;

The NCC(...) predicate round Accel(.o.) behaves in a similar way to

CC(...) except that it does not'fillpw the creation of new constantso It

is more fully explained in section 8.
, j

Probably we will event.ually ~ave to think about more sophisticated

controls over creation then thes!O Bu~ f.t least the provision of the

creative ca:}.l mechanism has enab~d us to think clearly about the possibil-
c,

ity of such controls.

10

7. Using Uniqueness to Prune Search

The uniqueness property of functions is not a potential source of

explosion like the existence property. Rather it is an untapped source

of control. Normally it is embodied implicitly in the equality axioms

and not brought into play when needed (compare uniqueness proof in

section 2). We will suggest extracting it from the equality axioms and

incorporating it in the inference mechanism, where it can be brought

fully into play.

Consider the following situation from the roller coaster world

described in Bundy 1977.
(' path

ca

Block is known to be at point a of path at moment begin. This is

described by

At (block,a,begin)

Suppose the program at some stage tries to prove (and it will) that the

block is at a point b at moment begin, i.e. tries to prove At(block,b,begin).

Now we know this is silly, but the program doesn't and will try endlessly

to prove the unprovable. What is needed is a trap to catch silly calls

like this and reject them outright.

The situation is a general. one. For instance, we would also like to

reject an attempt to prove Imitial(period,end) if we already know

Initial (period,begin) and an attempt to prove Mother(John,Sue) if we al-

ready know Mother(John,Mary). The generalization is realized by noticing

that At, Initial and Mother are all functions:

At from object X lines to points

Initial from periods to moments

Mother from animals to females

The inference mechanism must now be made to keep a look out for functions

with all their arguments bound and see if contradictory information is

already known.

The trap will not be appropriate for relations, e.g. it is quite al-

right to try to prove Loves(John,Sue) even though we already knowLoves(John,Mary).

Nor will it be appropriate if some of the functions

arguments are unbound, e.g. if x is a variable it is quite alright to try

to prove At(block,b,x) even though we know At(block,a,begin) since x will

turn out to be some different time.

11

The uniqueness property can be used in at least one other place,

namely to prevent backup when a function has been calculated. Consider

the situation:

At (block,x,begin) & Suppose At(Block,x,begin) is called and x is bound to a, but later pro~

cessing of fails. Should processing backup and recalculate

At(block,x,begin)? Any other answer is bound to be equivalent and lead

to a similar failure of , since all prope:l:'ties of the new answer can

be shown to be properties of the original answer. So backtracking can

be killed in this case. Backtracking would be in order if the situation

was

Loves (John,x) &

or

At (block ,a,y) & since recalculation in these cases could lead to a genuinely different

answer,8.

The Inference Mechanism

The considerations of sections 6 and 7 have ied us to design an

inference mechanism for the mechanics project, incorporating controiied

creation of new constants and exploitation of uniqueness information.

Because of the provision of control primatives it proved possible to build

the inference mechanism in PROLOG so that the existing simple depth first

search was modified.

The inference mechanism we have built is certainly more widely ap-

plicable than the mechanics domain, since it- relies- on,ly on general dis-

tinctions, e.g. function/relation rather than on special properties ofmechanics.

At the moment it is rather closely tied to depth first

search, but this does not appear to be a crucial link and we hope to make

it independent of the search strategy eventuallyo

In the new inference system there are no longer any functions, except

in a few special cases i.e. in algebraic expressions and for representingsets.

Functions are dispensed with because the extra properties they

bring are incorporated in the inference mechanism. Instead, there arepredicates,

variables and constants. Predicates are marked to show

whether they have the function properties or not, eogo At(.object,point,time)

is a function from object X times to points, whereas Constvel(object,time)

is relation between objects and times. In future we will use the termin-

ology function/relation to describe this distinctiono

12

A goal G is set up by calling the procedure CC(G) for creative call

or NCC(G) for non-creative call. The difference is that whereas the CC

call may ultimately result in the creation of a new constant the NCC call

will not. The goal G is then analysed along two further dimensions tosee:

whether it is ground or general and whether it is a function or

relation call 0 Grounm mean~,the goal is variable free, general means it

contains variableso A function call means not only that the predicate

has the function properties, but that its function arguments are bound

e.go At(Block,x,begin) is a function call

but At(Block,a,y) is a relation call

and Constvel(Block,periodl) is also a relation call

At this stage ground, function calls are checked to see if they contradict

information which is already known, e.g. At (Block,b,begin) is rejected if

At (Block,a,begin) is already knowno

A~ attempt is then made to prove G (which may call the whole process

recursively on subgoals). The goal may be satisfied by simple database

look-up or by inference or it may fail. Different things then happen

according to how the inference has been classified. There are 24 differ-

ent classifications (i.e. 2x2x2x3), but generaliz'ations enable us (and

the program) to describe the different treatments succinctly.

Function calls and ground relation calls have further backtracking

stopped, since further calls could only produce equivalent answers..Creative,

general function calls which have failed,cause new constants

to be created to fill their function value slots,provided a global flag

is on,allowing new creations. Goals which have generated inferences are

recorded in the database (either as successes or failures) so that these

inferences will be short circuited if the same goals are ever called again

The replacement of explicit function notation by the special marking

of predicates was motivated by design considerations in building the abovemechanism.

However, it brings with it a number of incidental repr~sent-

ational advantages which we list below.

(i) A relation can be a function in more than one sense, eog.

Timesys(period,initial,find)

a relation between a period and its initial and final moments can be a

function from: its 1st argument to its 2nd, its 1st argument tp its 3rd

and its 2nd and 3rd argument to its 1st.

13

(ii) The inferencemechanismcoul.d easily be modified to allow a predicate

to have only some of the function properties.

e.g, uniqueness without existence,like the Godfather relationship

existence without uniqueness,like the ancestor relationship

existence with a modified uniqueness allowing a definite number

of values, like the parent relationship

These concepts are messy to represent in conventional predicate cal-

culus. We may be forced to make these modifications to deal with the

motion predicates which describes motion of an object on a path during a

period of time. Given the object and the time period the path is uniquely

determined. However, it is not guaranteed to exist, since the object may

not be in mot.ion. Extending the notion of motion to include the degener-

ate case of stationary objects would create its own problems. At the

moment motion is treated as a special case, but the discovery of similar

predicates could motivate the proposed modifications.

9.

Some Compromises

SILLY is the PROLOG predicate used to trap contradictory calls using the

uniqueness property.of functions, e.g. If At(block,a,begin) is known then

SILLY(At(block,b,begin» will succeed and the goal At(block,b,begin) will

fail. In this section we will discuss some compromises used to implement

SILLY and the consequences of them.

SILLY works by investigating the goal it is given and separating the

function arguments from the function value. The function arguments of

At (Block,b,begin) are Block and begin, and the function value is b. A

variable is then substituted for the function value and SILLY looks in the

database to see if it has a. different value stored, e.g. At (Block,x,begin)

is used as a pattern to search the database, which binds x to a. The

previously stored value is then compared to the new one to see if they are

different, e.g. a is compared to b.

The compromises in this procedure are:

(i) Only database look-up is used to find contradictory values, instead

of arbitrary inferencing.

(ii) The difference check only looks to see if the constants are spelt

different:ly, rather than denoting d.ifferent entities.

Either of these could be easily replaced. Dqtabase lookup by some

limited inference call,or even by a co-routine working in harness wit~

the attempt to prove the original goal. Different spelling by some other

14

cheap method of proving thi.ngs dif£e:rrent,.oragain. a co-routine.

Since database lookup is abit.-lapse in spotting cont:r'adictory calls

it may let something pass whichshoul.d have been stamped on" On the other

hand, differentspell:ing.is overkeen and may stamp on something which should

have been passed. NeLtherof'these is. fatal. to the inference system in

that soundness",wilLba preserved in either case"

10.

The U!:!ique Name ~ssllP1Ption

The assumptions behind the different .spelling procedure could do with

further exploration. Basically it is founded on the belief that two things

are different if they have different names -the uni~ue name assumption.

In a conventional predicate calculus system this would be far more

dangerous than it is here. With the normal proliferat.ion of terms it is

quite easy to give the same thing two names. Consider the situation of

two consecutive periods of time sharing a common moment

shared mc,men t

This shared moment might be described as initia.l(period2) and final(periodl).

Examinat.ion of the inference mechanism described in section 8 will show

that we are very conservative about the provision of new nameso A new name

is only created after every attempt. has been made to show that a sui table one

does not already existo Suppose that "bliss" was the name of the shared

moment and that

Initial (period2,bliss)

was already known. A request for

CC{Final(periodl,. x»

would start by trying to satisfy

Fin~l(periodl, .x)which,

by a process of inference would succeed binding x to bliss. Creat.ion

of a new name for x would now be preventedo

Unfortunately, this mechanism is not. fool-proofo Imagine a situation in

which new information was being fed to the program as problem solving was

taking place. Suppose that the program did not yet know that periodl and

period2 were consecutive. Then the above attempt to satisfy Final (period, x)

would fail and a new name, eog. momentl would be created" If at a later

stage the information that, periodl and period2 were consecutive were input

then the program would have two names, momentl and bliss, for the same moment.

15

This situation has not yet arisen in the mechanics project because

all information about a problem is input at the beginning before problem

solving takes place and all our problem solving is done by backwards in-ference.

When the natural language understanding and equation extraction

sections of our project are properly integrated it will become a problem,

so we propose to adopt the following situation. Each object will belong

to an equivalence class, organised as a tree, with the root as distinguished

member.e.g.

moment 3

./
moment2,/

moment4

~iSS
class 1 class. 2

momentl

ImomentS

We hope that these equivalence classes will normally contain only oneelement.

When new information is input this will cause a process of

forwards inference. For instance, when periodl and period2 are asserted

to be consecutive, the process of forward inference would establish that

bliss and momentl name the same moment. This would cause the two equiv-

alence classes to be joined, by pointing the root of one to the other.

e.g.
momentl

J"lIJOIWC'n mOfent3

moment4 moment2~~~ ~..~.--~.~--~ t

bliss

momentS

.--~..4~~""""'-
new class

A new difference check would be written to return true iff x and y

belong to di£ferent equivalence cJ"asses.

11. A positive use of Uniqueness-
Both the uses we have made so far of the uniqueness property have been

negative, i.e. pruning the search space of fruitless paths. But it is also

possible to use uniqueness positively, to help prove something, albeit a

negative fact. For instance, if we know:

At(Block,a,begin)

then we also know

Not(At(Block,b,begin)) since a ~ b.

This information is probably best incorporated not in the inference mechanism,

but as a rule about Not. i. e. If G is ground, and SILLY (G) (in the sense of

section 9) then Not(G) is true. For instance, an attempt to prove

16

Not (At (Block,b,begin»" will cali SILLY(at(Block,b,begin) which will succeed.

As currently defined SILLY will be over enthusiastic so Not will sometimes

succeed when it should not (see sections 9,10).

This aspect of the new logic is not yet implemented. The reason is

that the whol.e question of negation is a tricky one which needs a majorrethink.

12.

.Conclusion

We have examined the properties of functions and seen that while they

are a cause of the combinatorial explosion they cannot be dispensed with.

We have explored a way of bringing this aspect of the combinatorial ex-

plosion under control by allowing limited creation of new terms. We have

also shown how the uniqueness property of functions can be used to prunesearch.

The inco~oration of these control techniques into the inference

mechanism has given rise to a new inference mechanism, which we hope will

be the first step in the design of a computational. logic, especially de-

signed to facilitat.e inference by computer.

Why do we call our logic "computational"? Because the incorporation

of search information in the inference mechanism only makes sense if you~

an inference mechanism. That is, if you are designing a procedure

for making inferences rather than a (static) logical system. In a con~

ventional logical system (e.g. predicate calculus, lambda calculus) .there

is no sense of compulsion or advice. The rules of inference merely give

you a range of options to take. It is not in the spirit of such a system

to specify which options are to be taken first, which taken as a last resort

and which not taken at all. Our computational logic has been designed to

give such specifications.

13.

.References

Ballentyne,

M. and Bennett, W. 1973. "Graphing Methods for Topological

Proofs", Math. Dept. Memo ATP7, Austin, Texas.Bundy,

A. 1973. "Doing Arithmetic with Diagrams", Procs. of IJCAI-73,

ppl30-l38, ed. Nilsson, N., Stanford, California.

Bundy, A., Luger, G., Stone, M. and We1.h~, R. 1976. "MECHO: Year One",

Procs. of 2nd AISB Conf., pp94-103, ed. Brady, M., Edinburgh.

Bundy, A. 1977. "Will it reach the top? Prediction in the Mechanics

World", DAI Research Report No. 31.

17

Gelernter, H. 1963. "Realization of a Geometry Theorem Proving Machine",

Computers and Thought, pp134-152 , eds. Feigenbaum and Feldman,

McGraw Hill.

Kowalski, R. and Hayes, P. 1971. "Lecture Notes on Automatic Theorem

Proving", DCL Memo 40, Edinburgh.

Nevins, A. 1974. "Plane GeometrY':I'be;orero Proving using Forward Chaining",

MIT AI Memo No. 303.

Fikes, R.E. and Nilsson, N.J. 1971. "STRIPS: A New Approach to the

Application of Theorem Proving to Problem Solving", Artificial In-

telligence, Vol.2, Nos.3/4, pp189-208

Warren, D." 1977. ~"Implementing PROLOG -compiling predicate logic

programs", Vol. 1 & 2, DAI Research Reports Nos. 39 & 40, Edinburgh.

Welham, R., 1976. "Geometry Problem Solving", DAI Research Report Noo 14,

Edinburgh.

Wos, L., Robinson, G. and Carson.' D.F., 1965. "Automatic Generation of

Proofs in the Language of Mathematics", IFIP Congress 65 Proceedings,

Vol. II, pp35-326, Spartan Books, Washington D.C.

Acknowledgements
My thanks are due to: Jerry Schwarz for valuable comments on. an

earlier draft; Bob Kowalski, Gordon Plotkin and numerous others for.many

conversations over several years; the SRC for supporting the research

and Peggy for keeping typing.

