EXPLOITING THE PROPERTIES OF FUNCTIONS
TO CONTROL SEARCH

by

Alan Bundy

D.A.I. Research Report No. 45

October, 1977

EXPLOITING THE PROFERTIES OF FUNCTIONS TC CONTROL SEARCH

Alan Bundy

abstract

In the first half (secticns 1-5) of the paper we examine the tradeoff
between representing knowledge using functions and using relations. The
properties of functions turm cut to be indispensable, but to be a major
contribution to the combinatorial explosion. In the second half (sections
€-12) an examination of thess properties suggests incorporating them in the
inference mechanism, whers they can be used to great advantage in controlling
search and reducing the combinatorial explosicon This incorporation is
seen as the first step in the design of a computstional legic attuned to
the demands of automatic reascning.

The purpose of the first half is introductory and may be ocmitted by

those steeped in the traditicns of Resoluticon theorem proving.

Contents

Section Page
1. Introduction

2. Existence and Uniqueness

3. A Decision Procedure 2
4. Constrained Forward Inference 4
5. An Embarrassment of Terms 6
6. Term Creation in Egquation Extraction 8
7. Using Uniqueness to Prune Search 10
8. The Inference Mechanism 11
9. Some Compromises 13
10. The Unique Name Assumption 14
1l. A Positive Use of Uniqueness 15
12. Conclusion 16
13. References 16

Acknowledgements 17

Exploiting the Properties of Functions to Control Search

Introduction

Several people in Artificial Intelligence have taken advantage cf the
fact that functions can be replaced by relations i.e. all expressions of
the form

f(xl,...,xn) =y
can be replaced by

Pf (Xl, R ,XnIY)

Our first experience of this technique was in the work of Wos and Robinson
1965, where the group function + was replaced by a relation P i.e. x+y=z
was written P(x,y.,2). However, examples can be found all over the literature
both explicit and implicit e.g. in Gelernter 1963, Bundy 1973, in STRIPS (see
Fikes and Nilsson 1971), and in many uses of semantic nets. We understand
from Jerry Schwarz that it goes way back to the thirties in mathematical logic

Since this technique is so widespread, two questions arise

(a) Is anything to be gained by it?

(b) Is there a price to be paid?

This paper addresses itself to answering these questions.

2. Existence and Uniqueness

We can start our investigation by asking "in what way do functions differ
from relations". The answer in predicate calculus is quite simple. Functions
carry with them two extra properties, namely:

(a) The existence of their value is guaranteed

(b) The uniqueness of their value is implied
Thus if I choose to represent the motherhood concept with a functicn, numof (x)},
then I ensure that every individual has one and only one mother, e.g. If John
is an individual then the existence of another individual who is his mother is
guaranteed because mumof (John) is & term and Tarskian semantics deﬂandsvthat
this term denote some individual. It is not possible to assert that John has
two different mothers using only this notation.

If on the other hand I represent motherhood with a relation, Mother(x,y),
then I get no such guarantees. It is quite possible that there is no in-
dividual a for which

Mother (John,a) is true 3¢?#
On the other hand we could easily agﬁert that John has several mothers
e.g. Mother(John,Mary) ‘ . mmrm—

Mother (John,Sue) ... where Mary # Sue

Notice that this would be the correct situation for a concept like LOVES.
It is quite in order for
LOVES (John ,Mary)
and LOVES (John,Sue) to both be trué; and there is no reason why John
should love anybody.
If we have both the relation Mother and the function mumof in our
system then we will have to relate them by some suitable axiom like
Mother(x,y) <> mumof(x) =y (i)
In this theory the existence and uﬁiqueness of John's mother can be quickly
proved.
existence
mumof (John} = mumof (John) by reflexive law of equality
Mother (John ,mumo £ (John)) by (i) and modus ponens
dy Mother (John,y) by 3 introduction

unigqueness .
in,y) assumption
=y by (i) and modus ponens

by transitively of equality

Mother(John,x) & Mother (John,y) >X = y by conditional proof

So just having the mumof function egsures that every individual has one and
only one mother.

On the face of it then, it would seem that some concepts, like mother-
hood, are better represented as functions and some, like love, are better
represented as relations. If the wrong choice of representation is made
then either some vital information will be lost (e.g. everyone has a mother)

or something untrue will be asserted (e.g. everyone has a lover).

3. A Decision Procedure

So if a function is replaced by a relation something is lost. How im-
portant is this loss? Is anything gained in return? A partial answer to
these questions can be found by considering the logical properties of a
theory containing no functions.

We will show that a theory containing no functions is decidable, i.e.
there is a procedure for deciding whether a formula is a theorem or not and
this procedure is guaranteed to terminate. This result was first pointed

out to me by Bob Kowalski. For theories containing functions it can be

shown that no such decision procedure exists. In this proof and for the
rest of this paper the notions of functions and constants will be considered
disjoint i.e. constants are not o-ary functions, functions are n-ary for

1.

The existence of this decision procedure establishes two things.
Firstly, we cannot, in general, expect to do without functions. Secondly,
on those occasions when we can manage without functions, it is best to do so
as pleasant conseguences follow from our abstinence.

We will investigate the decision procedure using the terminology of
resolution theorem proving, because the investigative tools are better de-
veloped there. However, similar results could be established for other
inference systems e.g. PLANNER type languages or semantic net inferencers.

In resolution theorem proving the theorems are proved by putting the
axioms of the theory and the negation of the candidate theorem in clausal. . .
form. The resulting set of clauses S is fed to a theorem prover which
tries to show that the set S is unsatisfiable. The theorem follows from
the axioms if and only if S is unsatisfiable. It is this set S which we
will require not to contain functions (except constants). This means that
the original axioms and candidate theorem must not only be function free,
but they must also be free of certain quantifier configurations, namely

those that would give rise to functions under skolemization. The condition

is that:
(a) in the axioms, existential quantifiers must not be preceded
by universal quantifiers (when the axioms are closed)
e.g. vxly P(x,y) is not allowed as it skolemizes to P(x,f(x))
(b) in the candidate theorem, universal quantifiers must not be

preceded by existence quantifiers
e.g. Ix Vy P(x,y) is not allowed as, when negated, it
skolemizes to 7P(x,f(x)%
We will show that if S contains no‘function there is a decision procedure
which decides whether S is unsatisfiable. We will make use of Herbrand's
theorem (see Kowalski and Hayes 1971) which states that:
"A set of clauses S is unsatisfiable iff there exists a finite con-
tradictory set S' of ground instances of clauses in S."
Ao . ground instance of a clause C is some substitution instance (Co say)
of C, which contains no variable. ;,The ground terms which replace the
variables in C are formed only from functions and constants mentioned in

the original set of clauses. If there are no functions or constants in S,

then a new constant (a say) is invented and used to replace all variables.

If the clauses-contain no functions (apart from constants) then there
are only a finite number of ground instances of clauses in S. Thus we can
enumerate all the contradictory sets S' and examine them for contradictions
in turn. This examination for contradiction can be done by standard truth
table methods and is guaranteed to terminate.

To see that there are only a finite number of ground instances of each
clause C, we need to consider the possible substitution, o, that can be
applied to C. Since Co must contain no variables, ¢ must replace each
variable with some ground term. If functions were available there would
be an infinite collection of such terms

e.g. a, f(a), £(f(a)), £(£(f(a))),....etc where a is a constant and f a
function

Without functions, however, there are only the constants to serve as ground
terms. So there are only a finite number of essentially different sub-
stitutions, o, which will yield ground terms and thus only a finite number
of ground instances. '
So the decision algorithm is:
(1) For each clause C in S form all the ground instances Co by re-
placing variables by constants in all possible ways.
(ii) Form all finite sets S' of ground instances.
(iii) Test each set S' for contradiction until either a contradiction
set is found (terminate with success) or all sets are exhausted

(terminate with failure).

4. Constrained Forward Inference

Of course this decision procedure is not particularly efficient and we
might hope to do better. ' Plotkin has shown that we can get‘a very efficient
algorithm if all the clauses are Horn clauses (see Welham 1976, App 3). A
simple forward inferencing algorithm can be used which grows a search space
polynomial in the original number of constants.

Plotkin's algorithm (which is basically just unit resolution) is:

Let Horn clauses be represented as

A& . B"A -+ B

1 n

A, & .. &A >

where Hl and B are positive literals and n £ o

(i) Set DB to nil.
(ii If there is a clause of form
A & ,. &A >
1 n
Frv whinh Al ' Bn m=at+~h J]jterals in DB with substitution
¢ then quit with success.
iii) If there is a clause of form
+
Al&”&An B
for which A, , .. , An match literals in DB with substitution

o and if Bolis not an instance of. something already in DB then
add Bo to DB and go to (ii).

(iv) quit with failure.
This algorithm is guaranteed to quite with success if the original set of
clauses is unsatisfiable. The reason is that we cannot go on adding to
DB indefinitely, because there are only a limited number of different
literals to add. On the other hand, the algorithm is known to be complete
So we cannot continue to execute Step (iii) for ever but must quit at (ii)
or (iii,

Furthermore, the length.of DB and therefore the number of iterationsg
round the loop can never exceed

MONk

where M is the number of relation symbols

k is the maximum arity of any relation symbcl
and N is the number of constants

The algorithm can be modified to act as a proof finder rather than
refutation finder. The original set of clauses could consist of the
axioms of a theory,plus the hypothesis of the theorem and we can test:rat
each stage to see whether the conclusion of the theorem is true in DB.

Plotkin's algorithm has been used in spirit (albeit unconsciously)
by a number of successful theorem provers, cf for instance Nevins 1974,
Bundy 1973 and Ballentyne and Bennett 1973, These theorem provers made
forward inferences from the hypothesis of the candidate theorem while
keeping a lookout to see whether the conclusion of the candidate theorem
was proved. Because forward inference is in general explosive these
theorem provers employed various constraints on the inferences which
could be made. These took the form of limits on the terms which could
be introduced by an inference and corresponded to a ban on the use of
functions to make new terms from cld. Thus, even though the formulae

contained functions, these were not used in an essentiallv "function-like"

way and could have been replaced by relations without effecting the infer-
encing being done. For instance, in Nevins gebmetry program no new points
could be introduced, except those menticned in the original statement of
the problem. There are only a finite number of configurations (triangles,
parallel lines, etc.) between a finite number of points and these can all
be represented by a set of relations. between them. Functions are only
indispensable for creating new points, e,g. as the intersecticn between
non-parallel lines.

The surprising thing about. the theorem provers of Nevins, Bundy and
Ballentyne and Bennett is not that. they Qere relatively fast and guaranteed
to terminate. ' This much could be expected from the previcus arguments
about Plotkin's algorithm, The surprising thing is that they proved inter-
esting theorems. Many simple theorems can be proved by this technique,

i.e. without an essential use of functions.

5. An Embarrassment of Terms

We have seen the connection between functions and existence. A
function guarantees its value will exist (section 2). An ‘existentially
quantified variable becomes a function on skolemization (section 3)

e.g. ¥x 1y P(x,y) skolemizes to P(x, f(x))

In fact in clausal form one of the main uses of functions is to create new
terms and thus introduce new entities into the argument.. For instance,
the function mumof (x) can be used. to introduce an infinite string of new
mothers (stretching back beyond: Eve). Consider the formula

Human (x) -* Human (mumof (x)) (ii)
loosely translated as "every human has a human mother". Used in forward
inference mode and given the assertion

Human (John) |
(ii) will deduce the assertions

Human (mumof (John))

Human (mumof (mumof (John)))

Human (mumof (mumof (mumof (John))))

etc.
in rapid succession.
Clearly this is an embarrassment. and needs controlling. The theorem
provers discussed in section 4 control this explosion of new terms in an

over-harsh way, by not allowing the creation of terms not already menticned

in the statement of the candidate thecrem. Thus, they would not deduce
Human (mumof (John)) from Human(John)>unless mumof (John) appeared in the
candidate theorem.

Unfortunately some theorems,require the:creaticn of new terms in their
proof. What is needed is a compromise between the extremes of creating
all possible new terms and creating nene. ' The traditional resolution
theorem proving technique for achieving this comprcmise was to impose an
arbitrary function nesting bound. Thus, if the bound were 7, say, then
terms up to

mumo £ (mumof (mumof (mumof (mumo £ (mumc £ (mumo£.(John).))))))
would be allowed, but longer terms would not. Clearly this is .crude and
unacceptable except as a short term solution. What is needed is to bring
the creation of new terms under program.control, so that the decisicn
whether or not to create a term can be the subject of a complex decision
making process.

As a first step towa;ds providing such a facility, note that the.
explosive properties of formula (ii) disappear‘if mumof is replaced by the
relation Mother. on translation (ii).becomes

Human (x) & Mother(x,y) > Human (y) (iii)

Now (iii) cannot be used in forwards mode to deduce Human(y) unless both

Human (x) and Mother(x,y) are satisfied'and.Mother(x,y) will not be satisfied
unless the mother of x is already known. To recapture the explosive properties
of (iii) we would have'tobénsure‘somehow that Mother(x,y) was always satisfiable,
a suitable y being created. The cbvicus way to do this would be to have an
assertion of the form

Mother (x,mumof (x)) {iv)
which Mother(x,y) could match.

To achieve our compromise. (iv) needs to be tempered with contxnl advice
about when the creation of the new term is to be allowed.

e.g. Allowed (mumof (x)) > Mother(x,mumof(x))v->v (v)
Now (v) can be used backwards to satisfy Mother(x;y);if“the test Allowed (mumof (x)
is passed.

What information might "Allowed(x)" .use, to decide whether creaticn of
term "x" is to be allowed? "Allowed" might, for instance, ‘investigate the
current state of: the proof or the. form of "x". In order. to imitate the old
function nesting bound, "Allowed" could be defined to count the degree of
nesting in "x" and fail if this exceeded scme threshold. Of course, in this

case "Allowed" is really-investigating the syhtax of x, rather than its meaning,

so to be strictly kosher "x" should be surrocunded by Quine corner
quotes, i.e. Allowed('x').

In the sections which follow we will be describing a program written
in a "predicate calculus" like programming language, PROLOG (Warren 1977).
In PROLOG it is possible to write predicates which investigate the syntax
of their arguments as well as re-direct the search and other strictly
non-kosher things. We will use the same notation for our program as we
have used for predicate calculus formula so far, except that odd, non-
predicate calculus things will start appearing in the clauses. We will

try to explain these as they occur.

6. Term Creation in Equation Extraction

In our mechanics project (Bundy et al 1976) we were faced with just
this need for controlled term creation in the process of equation extraction.
Forming a particular equation often necessitates the formation of new inters
mediate unknowns, in addition to those already given'in the statement of the
problem. All-these unknowns are represented.in .the program as constants.
So the decision to be taken is whether this particular equation is wanted
badly enough févjustify the introduction of a new constant.

Our solution to this problem is as follows. At any stage in the
process we have a list of sought unknowns and a list of givens. An unknown
is taken from its list and a short list of candidate equations is formed on
the basis of what kind of unknown we are trying to solve for and what situ-
ation it is defined in. We try first to find a candidate equation which
will solve for the sought unknown without introducing any new intermediate
unknowns. Only if this fails will: intermediate unknowns be created.

This is implemented by having our equivalent of the "Allowed" function .
access a global flag. This flag. is turned off during the first pass when
intermediate unknowns are not being tolerated, is switched on for a
second pass when intermediate unknowns have been shown to be necessary and
is switched off again when a suitable equation has been formed.

The equation forming mechanism consists:of.a series of inference rules
representing physical formulae, i.e. the formula for the constant acceleration

formula v = ut+at is

Constaccel (object,period). & 35 G

€ (Accel (object ;2,dixr,perind)) &

CC (Direction (period,t)) & S

Ce(Initial(period,begin)) & CC(Vel{cbject,u,dir,begin))

CC{Final({period,end)) & CC (Vel(object, v ,dir,end))

-> Isformula(v.=u+a;t,constaccelel,peficd—object)

This is called in backwards reascning mode {as ere all clauses in PROLOG)
with the name of the formula, constaccel-1l, and the situation, period-
object, both bound,but with a.variable for the equation., The satisfaction
of each of the conditions, e.g. CC(Acecel(object,a,dir,period)) fills in the
details of the equatiencu;

The "CC(....)"- pnedlcate 1s & special kind. of call which serves the
role.of‘"Allowed(32"o "CC" stands for "creative call”. It calls its
argument in the notmal way .. but if,tnie‘should feil and the global flag is
on then appropriate new. constants will be. created. Thus,

CC(Inltlal(perlod begln))
can create a new moment, begin, the 1n1t1al moment of period and

CC(Vel(object,u,dlr begln)) L
can create a new veloc1ty, a, ln a new dlrectlon dir. Note that "CC" is
used to create both new intermediate unknowns, like u, and other constants,
like begin.

Sometimes we do not wantna new constant to be created under any cir-
cumstances, so the "CC" will(?e ominted. Fbruinstance, one of the ways
that constaccel(object,peried)”gan work .is to find the accel of object in
period and see if thiS'is inne;#ento There is no point in creating a new
intermediate unknown for'the”aceele;gtion as we will know nothing about it,
including whether it is invarient." So the inference rule incorporating
this knowledge is .

NCC(Accel(object,a?dir,peried))rg Invarient(a)

+.Consﬁaqpel(ijec;ﬂperiggz?

The NCC(...) predicate round Accel(...) behaves in a similar way to
CC(...) except that it does_not,pllgw the creation of new constants. It
is more fully ekplained in section 8.

Probably we w;ll eventually have to think about more scphisticated
controls over creatlon then thesee But ap least the provision of the
creative call mecnanlsm has enab;ed’us Fo’think'clearly about the possibil-~

ity of such controls.

10

7. Using Uniqueness to Prune Search

The uniqueness property of functions is not a potential source of
explosion like the existence property. Rather it is an untapped source
of control. Normally it is embodied implicitly in the equality axioms
and not brought into play when needed (compare uniqueness proof in
section 2). We will suggest extracting it from the equality axioms and
incorporating it in the inference mechanism, where it can be brought
fully into play.

Consider the following situation from the roller coaster world

described in Bundy 1977.

—— 1.

a ‘__—‘—/’//’// c
5
Block is known to be at point a of path at moment begin. This is

described by

At (block,a,begin)
Suppose the program at some stage tries to prove (and it will) that the
block is at a point b at moment begin, i.e. tries to prove At(block,b,begin).
Now we know this is silly, but the program doesn't and will try endlessly
to prove the unprovable. What is needed is a trap to catch silly calls
like this and reject them outright.

The situation is a general one. For instance, we would also like to
reject an attempt to prove Initial (period,end) if we already know
Initial (period,begin) and an attempt to prove Mother (John,Sue) if we al-
ready know Mbther(John,Mary). The generalization is realized by noticing
that At, Initial and Mother are all functions:

At from object X lines to points

Initial from periods to moments

Mother from animals to females
The inference mechanism must now be made to keep a look out for functions
with all their arguments bound and see if contradictory information is
already known.

The trap will not be appropriate for relations, e.g. it is quite al-
right to try to prove Loves(John,Sue) even though we already know
Loves (John,Mary) . Nor will it be appropriate if some of the functions
arguments are unbound, e.g. if x is a variable it is quite alright to try
to prove At(block,b,x) even though we know At(block,a,begin) since x will

turn out to be some different time.

11

The uniqueness property can be used in at least one other place,
namely to prevent backup when a function has been calculated. Consider
the situation:

At (block,x,begin) &

Suppose At (Block,x,begin) is called and x is bound to a, but later pro-
cessing of fails. Should processing backup and recalculate

At (block,x,begin)? Any other answer is bound to be equivalent and lead
to a similar failure of, since all properties of the new answer can
be shown to be properties of the original answer. So backtracking can
be killed in this case. Backtracking would be in order if the situation
was

Loves (John,x) &
or

At (block,a,y) &
since recalculation in these cases could lead to a genuinely different

answer.

8. The Inference Mechanism

The considerations of sections 6 and 7 have led us to design an
inference mechanism for the mechanics project, incorporating controlled
creation of new constants and exploitation of uniqueness information.
Because of the provision of control primatives it proved possible to build
the inference mechanism in PROLOG so that the existing simple depth first
search was modified.

The inference mechanism we have built is certainly more widely ap-
plicable than the mechanics domain, since it“relieS"cniy on general dis-
tinctions, e.g. function/relation rather than on special properties of
mechanics. At the moment it is rather closely tied to depth first
search, but this does not appear to be a crucial link and we hope to make
it independent of the search strategy eventually.

In the new inference system there. are no longer any functions, except
in a few special cases i.e. in algebraic expressions and for representing
sets. Functions are dispensed with because the extra properties they
bring are incorporated in the inference mechanism. Instead, there are
predicates, variables and constants. Predicates are marked to show
whether they have the function properties or not, e.g. At (object,point,time)
is a function from object X times to points, whereas Constvel {object,time)
is relation between objects and times. In future we will use the termin-

ology function/relation to describe this distinction.

12

A goal G is set up by calling the procedure CC(G) for creative call.
or NCC(G) for non-creative call. The difference is that whereas the CC
call may ultimately result in the creation of a new constant the NCC call
will not. The goal G is then analysed along two further dimensions to
see: whether it is ground or general and whether it is é function or
relation call. Ground means:the goal is variable free, general means it
contains variables. A function call means not only that the predicate
has the function properties, but. that its function arguments are bound
e.g. At(Block,x,begin) is a function call
but At(Block,a,y) is a relation call
and Constvel (Block,periodl) is also a relation call
At this stage ground, function calls are checked to see if they contradict
information which is already known, e.g. At(Block,b,begin) is rejected if
At (Block,a,begin) is already known.

An attempt is then made to prove G (which may call the whcle process
recursively on subgoals); The goal may-be satisfied by simple database
look-up or by inference or it may fail. Different things then happen
according to how the inference has been classified. There are 24 differ-
ent classifications (i.e. 2x2x2x3), but generalizations enable us {and
the program) to describe the different tréatments succinctly.

Function calls and ground relation calls have further backtracking
stopped, since further calls cduld only produce egquivalent answers.
Creative, general function calls which have failed,cause new constants
to be created to fill their function value slots provided a global flag
is on,allowing new creations. Goals which have generated inferences are
recorded in the database (either as successes or failures) so that these
inferences will be short circuited if the same goals are ever called again

The replacement of explicit function notation by the special marking
of predicates was motivated by design considerations in building the above
mechanism. However, it brings with it a number of incidental represent-
ational advantages which we list below.

(i) A relation can be a function in more than one sense, e.g.

Timesys (period,initial,find)

a relation between a period and its initial and final moments can be a
function from:its 1lst argument to its 2ndj its lst argument to- its 3rd

and its 2nd and 3rd argument to its lst.

13

(ii) The inference mechanism could easily be mcdified to allow a predicate
to have only some of the function properties.
e.g. uniqueness without existence,like the Godfather relationship

existence without uniqueness, like the ancestor relationship

existence with a modified uniqueness allowing a definite number

of values, like the parent rélationship

These concepts are messy to represent in conventional predicate cal-
culus. We may be forced tc make these modifications to deal with the
motion predicates which describes motion cf an cbject on a path during a
period of time. Given the object and the time period the path is uniquely
determined. However,lit'is not guaranteed to exist, since the object may
not be in motion. Extehding the notion of motion to include the degener-
ate case of stationary objects would create its own problems. At the
moment motion is treated as a special case, but the discovery of similar

predicates could motivate the proposed modifications.

9. Some Compromises

SILLY is the PROLOG predicate used to trap contradictory calls using the
uniqueness property of functions, e.g. If At(block,a,begin) is known then
SILLY (At (block,b,begin)) will succeed and the goal At(block,b,begin) will
fail. In this secticn we will discuss scme compromises used to implement
SILLY and the consequences of them.

‘ SILLY works by investigating the goal it is given and separating the
function arguments from the function value. The function arguments of

At (Block,b,begin) -are Block and begin, and the function value is b, A
variable is then substituted for the function value and SILLY looks in the
database to see if it has a different value stored, e.g. At(Block,x,begin)
is used as a pattern to search the database, which binds x to a. The
previously stored value is then‘dompared tc the new one to see if they are
different, e.g. a is compared to b.

The compromises in this procedure are:

(i) Only database look-up is used to fiha cbntradictory values, instead
of arbitrary inferencing.

(ii) The difference check only looks to see if the constants are spelt
differently, rather than dencting different entities.

Either of these could be easily replaced. Database lookup by some
limited inference call,or even by a co-routine working in harness with

the attempt to prove the original goal. Different spelling by some other

14

cheap method of preving things different,or again..a co-routine.

Since database lockup is a bit.lapse in spctting contradictory calls
it may let something pass which.should have been stamped cn. On the other
hand, different.spelling.is\overkeen and may stamp on scmething which should
have been passed. Neither of:these is. fatal. to the inference system in

that soundness.will. be preserved in either case.

10. The Unique Name Assumption

The assumptions behind the different spelling procedure could do with

further exploration. Basically it is founded on the belief that .two things

are different if they have different names -~ the unique name assumption.
In a conventional predicate calculus system this would be far more

dangercus than it is here. With the normal proliferation of terms it is

quite easy to give the same thing twc names. Consider the situation of

two consecutive periods of time sharing a common moment

period 2

shared moment
This shared moment might be described as initial(period2) and final (periodl).

Examination of the inference mechanism described in section 8 will show
that we are very conservative about the provision of new names. A new name
is only created after every attempt has been made to show that a suitable one
does not already exist. Suppose that "bliss" was the name of the shared
moment. and that

Initial (period2,bliss)
was already known, - A regquest. for

GC{Final(periodl, x))
would start by trying to satisfy

Final{periodl, x)
which, by a process of inference would succeed binding x to bliss. Creation
of a new name for x would now be prevented.

Unfortunately, this mechanism is not fool-procf., Imagine a. situation in
which new information was being fed tc the prcgram as problem solving was
taking place. Suppose that the program did not yet know that periodl and
period2 were censecutive. Then the above attempt to satisfy Final (period, x)
would fail and a new name, e.g. momentl wculd be created. If at a later
stage the information that periodl and period2 were consecutive were input

then the program would have two names, momentl and bliss, for the same moment.

15

This situation has not yet arisen in the mechanics project because
all information about a problem is input at the beginning before problem
solving takes place and all our problem solving is done by backwards in-
ference. When the natural language understanding and equation extraction
sections of our project are properly integrated it will become a problem,
SO we propose to adopt the following situation. Each object will belong
to an equivalence‘class, organised as a tree, with the root as distinguished

member. e.g.

moment3
moment4 moment2 momentl
class 1 \ / Class. 2 /
bliss moment5

We hope that these equivalence classes will normally contain only one
element. When new information is input this will cause a process of
forwards inference. For instance, when periodl and period2 are asserted
to be consecutive, the process of forward inference would establish that
bliss and momentl name the same moment. This would cause the two equiv-

alence classes to be joined, by pointing the root of one to the other.

e.qg.
g moment3 momentl
11001%) f .
moment4 moment2 moment5
bliss new class

A new difference check would be written to return true iff x and y

belong to different equivalence classes.

11. A positive use of Uniqueness

Both the uses we have made so far of the uniqueness property have been
negative, i.e. pruning the search space of fruitless paths. But it is also
possible to use uniqueness positively, to help prove something, albeit a
negative fact. For instance, if we know:

At (Block,a,begin)
then we also know

Not (At (Block,b,begin)) since a # b.

This information is probably best incorporated not in the inference mechanism,
but as a rule about Not. i.e. If G is ground and SILLY(G) (in the sense of

section 9) then Not(G) is true. For instance, an attempt to prove

16

Not (At (Block,b,begin)). will call SILLY(at(Block,b,begin) which will succeed.
As currently defined SILLY will be over enthusiastic so Not will sometimes
succeed when it should not (see sections 9,10).

This aspect of the new logic is not yet implemented. The reason is
that the whole question of negation is a tricky one which needs a major
rethink.

Conclusion

We have examined the properties of functions and seen that while they
are a cause of the combinatorial explosion they cannot be dispensed with.
We have explored a way of bringing this aspect of the combinatorial ex-
plosion under control by allowing limited creation of new terms. We have
also shown how the uniqueness property of functions can be used to prune
search, The incorporation of these control.techniques into the inference
mechanism has given rise to a new inference mechanism, which we hope will
be the first step in the design of a computational logic, especially de-
signed to facilitate inference by computer.

Why do we call our logic "computational”? Because the incorporation

of search information in the inference mechanism only makes sense if you

have an inference mechanism. That is, if you are designing a procedure
for making inferences rather than a (static) logical system. In a con-

ventional logical system (e.g. predicate calculus, lambda calculus) there

is no sense of compulsion or advice. The rules of inference merely give
you a range of options to take.. It is not in the spirit of such a system
to specify which options are to be. taken first, which taken as a .last resort
and which not taken at all. Our computational logic has been designed to

give such specifications,

References

Ballentyne, M. and Bennett, W. 1973. "Graphing Methods for Topological
Proofs", Math.Dept. Memo ATP7, Austin, Texas.

Bundy, A. 1973. "Doing Arithmetic with Diagrams", Procs. of IJCAI-73,
pPpl30-138, ed. Nilsson, N., Stanford, California.

Bundy, A., Luger, G., Stone, M. and Welham, R. 1976. "MECHO: Year One",
Procs. of 2nd AISB Conf., pp94-103, ed. Brady, M., Edinburgh.
Bundy, A. 1977. "Will it reach the top? Prediction in the Mechanics

World", DAI Research Report No. 31.

17

Gelernter, H. 1963. "Realization of a Geometry Theorem Proving Machine",
Computers and Thought, ppl34-152, eds. Feigenbaum and Feldman,
McGraw Hill.

Kowalski, R. and Hayes, P. 1971. "Lecture Notes on Automatic Theorem
Proving", DCL Memo 40, Edinburgh. -

Nevins, A. 1974. "Plane Geometry Theorem Proving using Forward Chaining",
MIT AI Memo No. 303.

Fikes, R.E. and Nilsson, N.J. 1971. "STRIPS: A New Approach to the
Application of Theorem Proving to Problem Solving", Artificial In-
telligence, Vol.2, Nos.3/4, ppl89-208

Warren, D., 1977. @“Implementing PROLOG - compiling predicate logic
programs", Vol. 1 & 2, DAI Research Reports Nos. 39 & 40, Edinburgh.

Welham, R., 1976. "Geometry Problem Solving", DAI Research Report No. 14,
Edinburgh.
Wos, L., Robinson, -G. and Carson, D.F., 1965. "Automatic Generation of

Proofs in the Language of Mathematics", IFIP Congress 65 Proceedings,

Vol.II, pp35-326, Spartan Books, Washington D.C.

Acknowledgements

My thanks are due to: Jerry Schwarz for valuable comments .on.an
earlier draft; Bob Kowalski, Gordon Plotkin and numerous others for. many
conversations over several years; the SRC for supporting the research

and Peggy for keeping typing.

