
COMMENTARY ON:

SOLVING SYMBOLIC EQUATIONS WITH PRESS

**

Richard Fatemen
Alan Bundy
Richard O'Keefe
Leon Sterling

OAI RESEARCH PAPER NO. 357

Paper submitted to SIGSAM Bulletin 1988

Dr Richard Fateman, Dept of Electrical Engineering & Computer Science
University of California, Berkeley, CA 94720

Dr Richard O'Keefe, Quintas Computer Systems Inc
1310 Villa Street, Mountain View, CA 94041-1126

Dr Leon Sterling, Dept of Computer Engineering & Science
Crawford Hall, Case Western Reserve, Cleveland, Ohio 44106

Copyright (c) R Fateman, A Bundy, R O'Keefe & L Sterling, 1988

Commentary on:
Solving Symbolic Equations with PRESS

Richard Fateman, Alan Bundy, Richard O'Keefe
and Leon Sterling

Abstract
This commentary arose from a review by Richard Fateman of a paper on p~s, ISterling et a.l 82].
and the subsequent responses from the authorB of that paper.

Review by Fa ternan1
The paper .Solving Symbolic Equations with PRESS', by Sterling, Bundy, Byrd, O'Keefe and
Silver [Sterling et al 82], describes a program PRFBS (PROLOG Equation Solving System) which
solves some symbolic, transcendental, non-differential equations. The problem of solving such
equations is divided into two levels, a meta-level which is intended as a research vehicle for ex-
ploring search strategies in mathematical reasoning and a set of equation-"olving module" used
initially for the MECHO [Bundy et al79J system (a project which aims to solve high-school me-

chanics problems stated in English.)
The authors suggest that .the techniques used may have something to offer the field of symbolic

and algebraic manipulation". We review this paper from this perspective. Previous reports of
work on P~S have appeared generally in AI publications, (IJCAI6, IJCAI17 and AI 16(2)), but
it appears that this work has not previously been reviewed from any mathematical perspective.

1.1 What problems does PRESS solve?
The equations that p~S has been trained to solve are taken from various British A-level ex-
aminations. That is, the equations are limited to single-variable problems which are amenable
to tricks taught to high-school students. They appear to generally involve applying identities
to simplify the problem before it can be solved. Most problems rely on coincidences (such as
terms dropping out), rather than on any strong methods, most of which would not be known by

high-school students.
I would guess that the objective of the A-level exam questions is to see if the student knows a

sufficient collection of identities, and has the ability to search for the clever twist that solves the

problem.
For this task, largely heuristic methods are perhaps appropriate. Of the 80 single-variable

equations in their sample, the authors are pleased to point out that it can solve 62.

Nowhere is the class of expressions acceptable to the program indicated. It appears to allow in-
tegers, ordinary arithmetic, only one variable, x, logarithms, trigonometric functions, square-root,
and hyperbolic functions. It appears to exclude complex numbers, although they can obviously
be constructed. Division appears in no example, but negative exponents allow us to construct

division.

1.2 The equation-solving modules

Let us talk about the lower level methods first.
Six "major methods" are implemented.

1

Some of the methods are obvious, and would be included in any program, heuristic or not, to
solve an equation with a single occurrence of an unknown. Some are simplified cases that could
be solved by algorithms, but are not. Others methods do not always work, since they produce
extraneous solutions or ignore some solutions. These methods are not described exactly in the

paper.
Three of the methods, l..olation, Attraction, and Collection attempt to move a (single occur-

rence) of an unknown to one side of an equation. If the unknown occurs in more than one place,
heuristics are used to try to merge these occurrences.

Poly..olve attempts to solve polynomial equations. The ones it solves are th~e likely to occur in
.cooked- problems for high-school students: quadratics, or polynomials with small-integer ler~,
or minor transformations on them. Any equation of degree 3 or more, or requiring factoring,
or involving extra symbolic parameters, or (1 suspect) division or gcd for simplification, will not
work.

Homogenization is an attempt to find an appropriate substitution to explicitly recognize the
relationship of apparently unrelated terms (like exp(z) and ezp(3x)).

Function Swapping is essentially a heuristic attempt to apply known inverses to both sides of
an equation.

None of these methods break new ground, by comparison to existing algebraic manipulation
systems. p~s must rely on some other ideas if it is to be more than an implementation of weak
heuristics.

1.3 Meta-level solving

The meta-level is basically another level of heuristics. I found it curious that some of these

heuristics are quite specific (e.g. one that looks for an arithmetic progression of cosines), and

others are quite vague. The notion is that local or syntactic clues should direct the search for a

method to invert an equation. This is hardly novel; even so, it is not clear that it is a good idea.

If the only alternative were to state the axioms of arithmetic and the "rules for algebraic

manipulation" (whatever they may be -and it is not clear what they are!), and search for

a solution, this local clue approach would be a better choice. This backwards search would

presumably be doomed by combinatorial explosion. This is, however, a straw man.

I doubt that any of the methods used by the algebraic manipulation systems MACSYMA,

REDUCE, MuMATH, SCRATCHPAD, SMP, or MAPLE include directly accessing axioms of arith-

metic. Mostly, they use data-driven algorithms. By contrast, PR.F$S seem to use the weakest

heuristics that can provide the right answer sometimes.

What kinds of local clues have the authors elevated to meta-level concepts? It appears they

are ideas such as

Is there more than one occurrence of the unknown?

.How close, measured syntactically, are terms in which the unknown occurs?

.Is the problem a polynomial equation?

I am unimpressed by this meta-level It does not seem like a useful subdivision of responsi-
bility. For example, if one had a complete polynomial equation solver, a procedure to recognize
a polynomial could be attached or put into a separate "levelB It should not rely on local clues or
heuristics. For example, (x2-1)/(x+ 1) = 0 is a polynomial equation, as is x+sin2(x)+coS2(x) = 1
Other solving procedures cannot easily recognize the class of problems for which they succeed,
without, in effect, applying the algorithm and reaching (in finite time, one hopes), a dead end. A
meta-level would not be useful in such a case.

1.4 Should we be impressed by PRESS?-

Moat mathematicians do not need help to solve this artificial class of high-school algebra probleffi8.
In any case, it appears that P~S does not find all solutions, nor does it distinguish between
actual solutions and extraneous ones.

It would help if the paper actually stated the form of the solutions which the computer obtains
for the sample problems. There is some evidence that the program produces forms that are not
particularly useful. The discussion below even suggests that in some cases that the authors do
not know (all) the solutions to some of the examples!

Furthermore, it seems quite unlikely that a "solution vetting [checking] procedure" to eliminate
extraneous roots would be feasible with the heuristic methods used by P~S. Some of the
problems are computationally undecidable, for example. Others can be solved, but only by much
more powerful canonical simplification programs than apparently exist in PRESS.

Since some of the criticisms we have leveled at PRESS may seem rather harsh, we supply some
specifics:

Equation 2 is cos(x) + cos(3x) + cos(5 .x) = o.
The authors advocate solving this by a trick that works for "cosine terms in arithmetic pro-

gression", a meta-level concept.
Notice that C08(X) + cos(5x) = 2 cos(3x) cos(2x), so we can rewrite the problem as cos(3x)(1 +

2 cos(2x)) = O. "The cos(3x) can then be factored out, and the other factor produces the other
root after a simple application of Isolation."

The program presumably produces x = arccos(O)/3 or perhaps 11"/6, and x = arccos(-1/2)/2,
or 'K /3.

A reasonable requirement on an equation solver is that it be able to indicate how many
solutions there are, and provide a representation for them. It seems doubtful that P~S responds
that there are an infinite number of positive and negative solutions at various multiples of 11". H
the program were to return the answer as expressions in arccos, it would appear that there were
but 2 answers. There is no indication how PRESS deals with sets of answers.

Incidentally, the program seems to deal in degrees, rather than radian measure, for angles.

Equation 6 is log(x -1) + log (x + 1) = 3.
The solution is alleged to be x = :f:R+1. This was obtained by claiming that log (x -1) +

log(x+ 1) = log(x2 -1), which is not always true. For example, when x = -Vim, the left-hand
side is 3 + 2'Ki. I speculate that the equation was written with absolute-values inside the logs but
PRESS could not handle this complication.

Equation 7 is exp(3x) -4exp(x) + 3exp(-x) = O.
The solutions are alleged to be x = log(vI3) and x = O. The additional solutions, log (-1) and

log (-vI3) are apparently also produced by P~S, but it is suggested that a future implementation
would reject these. In fact, if log (-1) = i'K, there is nothing wrong with either of the rejected
answers. There are an infinite number of other solutions for other values of log (-1).

I am sure that there are numerous other traps into which p~s will fall.

1.5 How does PRESS compare to existing algebraic manipulation
programs?

It would appear that PRESS and equation-solving programs in MACSYMA, REDUCE, Mu-MATH,
MAPLE, etc., can solve many of the same equations. Having tried some of the examples in the
paper with MACSYMA, it seems that the 801 ve program itself does not have the capability to
handle these problems "cold". However, a preliminary transformation by another simplification

3

program (e.g. logcontract, trigexpand, exponentia1ize, rataub8t), brings the problem into
a solvable form. Thus a front-end which would heuristically call one or more of these algorithmic
simplifiers and then call 801 ve might be used to construct a poly-algorithm which would out-score
PRESS on a set of symbolic equation problems. Whether this would be mathematically interesting
would be a separate question. Some of the simplifiers, if applied to random large expressions,
could be expensive. For school exam problems this would not be of much concern since they tend
to be small and, in some perverse sense, "simple' if you see the trick.

Can P~S combine the merits of searching/matching with mathematical methods? Probably
by discarding most of PR~S and adding some additional heuristics to any of the well-known
systems: but generally at the risk of introducing extraneous roots (difficult to check), or possibly

missing roots.

There is considerable literature on solving equations by computer, none of it referenced. (See,
for example, the rather old paper by Martin and Fateman on MACSYMA !Martin &; Fateman 711
or more recent material in the bibliographies in !Buchberger et al 831.)

1.6 Conclusion
This paper describes a well-publicized "artificial intelligence" project, PRF$S, from a distinguished
research institution.

The program, viewed as a procedure for solving mathematical problems, has substantial design
flaws proceeding from its basic premise that heuristics and search are primary (or even the only)
methods for solving equations.

PRESS appears to not represent an advance in the state of the art in symbolic mathematics.
In major respects it seems to be less powerful than programs over 15 years old. Rather, it is an
attempt to solve, using weak methods, a set of canned problems unrepresentative of mathematical
problems outside the reahn of simple school exams.

Although the paper is easy to follow, I would have found it useful if the authors had given
concrete results of the output from PRESS (and perhaps other systems) on their examples, and
com pared their methods with others in the literature (computer and mathematics). However,
correcting such problems would only strengthen the superficial plausibility, and not correct the
real weakness, which is that the PRESS program starts from a flawed premise.

Bundy's Reply to Fateman2

Fateman's review raises a number of important points, many of which I agree with, and others I
would like to reply to.

2.1 Grounds for Assessing PRESS

Overall, I feel he judges our work on the wrong grounds. Let me say why by explaining the
background to the project. Our principle interest was in automatic theorem proving and, in
particular, in guiding the search for a proof through a space of rule firings. We thought the
use of numeric scores in A * type search strategies rather crude and tried to look for alternative
techniques. The choice of equation solving for a domain was because:

(a) here was a domain in which there was a massive amount of search when viewed as a resolution-

type problem,

(b) however humans seemed to do pretty well, and

4

(c) there was no decision algorithm that they might be using (since the domain is undecidable -

see Richardson's results [Richardson 68]).

So we had an existence proof for some guidance techniques. p~S embodied an interesting
new guidance technique, and it is on this that it principally has been and should be judged. It
has never been presented, by me, as a useful (MACSYMA-like) equation solving package, and
whenever anyone has requested to use it on those grounds I have put them right. (So why did
we say -the techniques used may have something to offer the field of symbolic and algebraic
manipulation-? Well I regret that particular form of words because I now see it is ambiguous.
There is -something to offer" which I will discuss below, but it is not the precise equation solving
methods of P~S except, maybe, in a few special cases.)

2.2 Reply to Criticisms

In summary, I take Fateman's criticism to be:

1. (c) above may be true for the whole class of symbolic equations, but probably not for the
class PRESS can actually deal with (if only we would say precisely what that was).

2. Decision algorithms exist for that class which are stronger than PRESS's methods.

3.

PR&gS's 'solutions' are sometimes incorrect.

It is difficult to counter 1 because the nature of PRFBS makes it hard to specify the class of
equations that it deals with. PRFBS is probably a terminating algorithm. Certainly each method
is individually, but there is no guarantee that the application of methods will terminate. Thus
PRFBS is probably a decision algorithm for whatever class it deals with. (Note, by the way that
PRFBS is not restricted to single equations in one unknown as Fateman claims in section 1.1).

On 2, Fateman states "None of these methods break new ground, by comparision to existing
algebraic manipulation systems., but he gives no evidence for this claim. I accept his claim in
the case of Isolation and Polysolve, but would like some pointers into the literature in the case of
the other methods, which don't seem anything like the conventional methods I know of. In fact, I
understood from Bernard Silver that Fateman and he found an example that PRFBS could handle
and that MACSYMA (for instance) could not. However, it would not surprise me if Fateman were
right. It was never our intention to provide a state-of-the-art equation solver, but merely to find
some interesting examples of the kind of reasoning which might take place during the guidance of
problem solving. The discovery of new methods during this exercise would be entirely fortuitous.

On 3, I am prepared to admit there may be errors in PRFBS, but the two examples Fateman
quotes in section 1.4 are not errors. We took a decision to adopt the usual high-school, equation-
solving procedure of deriving consequences from the original equation until a formula of the right
syntactic form to be a solution is derived. This formula is guaranteed to include all solutions,
but may also include non-solutions if any derivation step was non-reversible. These must then be
weeded out by checking, but I'm afraid we never got round to implementing checking because it
was not central to our investigation of search control. In the log example there are 2 non-reversible

steps:
loge(x -1) + loge(x + 1) => loge (X + l)(x -1)

and
X2 = e3 + 1 => x = ::!:y';~

Note that in the directions indicated the inferences are ok, e.g. if x + 1 and x -1 are positive
then (x + 1){x -1) is.

5

We a18o took a decision to limit ourselves to real valued solutions (although this was a more
arbitrary decision). That i8 why loge (-1) etc should have been rejected by the missing checking
step in Fateman's second example.

In general, the meta-level inference architecture lends itself well to spotting errors, because of
its separation of factual and control information. Decision algorithms typically interwine these
making checking difficult. This does not mean we spotted them all

2.3 Contribution of PRESS

SO what has P~S got to offer conventional systems? I see two potential applications:

1. Meta-level inference may be a useful technique for controlling the application of conventional
methods and/or for explaining their application to users.

2. Some of the P~S methods may extend conventional methods or may provide more efficient
alternatives in some circumstances.

As Fateman notes in section 1.4, MACSYMA's solve routine is limited in its abilities to solve
equations 'cold'. This was my experience too. It seems to consist of Isolation plus some powerful,
but special-purpose polynomial methods. However, its abilities can be increased by preliminary
transformation using a simplification method. This will involve some planning. My idea under
1 above, is that each MACSYMA method carry a meta-level description of its preconditions and
effects that could be used by a PR~S-like system to plan a solution strategy. This strategy could
also be the basis of an explanation to the user, e.g. .You wanted to solve (x2 -1)/(x+ 1) = 0 but
this contains 2 occurrences of x and is not a polynomial so I could not do it directly. However,
it is a rational function, which I transformed to a polynomial x-I = 0 using Ratsimp and then
solved to give x = 1.8 (Note: PRESS does not give explanations in English, but a formal version
of the above.)

My idea under 2 is that some of the P~S methods might help fill in the gaps in existing
MACSYMA methods and cope with unusual situations like x + sin2(x) + cos2(x) = O. This is
neither a polynomial nor a trigonometric equation (although it can be reduced to a polynomial
of course). Conventional methods are likely to be stumped (if not on this one exactly, I am sure
there are others). However, Collection can be applied to this to remove 2 occurrences of x and
produce x = O.

As for efficiency, I have no concrete examples, but I know that decision algorithms can be very
inefficient and that heuristic methods can be an efficient alternative in particular circumstances.
For instance, I understand that some of the original SIN integration techniques were left in MAC-
SYMA despite the Risch-Norman algorithm. I also have had personal communications from Joel
Moses and John Campbell about the potential value of this in equation solving.

O'Keefe's Reply to Fateman3

Fateman says "nowhere is the class of expressions acceptable to the program indicated." This is
ambiguous. It could mean

.What is the syntax which the program can read?

The answer in some sense is "any PROLOG term".

.What is the class of forms which the program will not only read but accept responsibility
for solving, and acknowledge failure as its fault, rather than blaming the user for submitting
an ill-posed problem?

This is, I think, what Fateman wanted.

6

.What is the class of equations which the program can actually solve?

This is the really interesting question, but I doubt whether it can be answered.

In fact, from our point of view, the third reading jan't terribly interesting. We could have pro-
grammed up some of the polynomial factorisation methods that are in the literature, beefing up
.polysolve-. But there is no general method for polynomials of degree> 3, so this would just
be strengthening a heuristic, and the question of interest for us was .when it is a good idea to
try poly-solve and what does its success guarantee us-. Similarly, adding a few more axioms to
attraction might have helped us solve a few more equations, but wouldn't have told us anything
more about attraction as a method.

Our failure to answer the second reading is a fault. We should have indicated that P~S
could to some extent handle inequalities and simultaneous equations. We should also have said
what the output looked like. Fateman slams P~S hard when he says. A reasonable requirement
on an equation solver is that it be able to indicate how many solutions there are, and provide a
representation for them. It seems doubtful that P~S responds that there are an infinite number
of positive and negative solutions at various multiples of 'If.8 But of course P~S dot" indicate
and represent such solution sets, even solution sets with several index variables.

Fateman's claims about what a heuristic front-end to MACSYMA might be able to do remain
(a) just claims and (b) support for the PR~S approach.

There are two very important things about P~S which Fateman doesn't mention at all
First, he appears to be under the impression that Isolation, Collection, Attraction, and so on

are an utterly unrelated set of separate heuristics and that their application is .blind8. I regard it
as one of the interesting things about PRESS that this is not true. For example, we tried isolation
before collection, but it would have made no difference if we had tried collection before isolation,
because the two can never be applicable to the same equation. Poly..solve is anomalous, because
it might act as isolation, collection, or even act when one might have expected only attraction to
work. I find it inconceivable that Bernard Silver's work on LP [Silver 85] could have started from
anything in MACSYMA. It is not without significance that Leon Sterling has a version of P~S
in Flat Concurrent PROLOG [Sterling 86], a system with no provision for backtracking at all..

Second, Homogenisation is a genuinely hard task. I suspect that Bernard's methods will not
scale well, but I was in the habit of reading SigSam bulletin and anything I could find on Computer
Algebra, and I never came across anything which approached Homogenisation. I could well be
mistaken about that. Fateman says "Non~ of these methods break new ground-. With respect
to Homogenisation, it would become him to supply references to back up this rather startling
claim. My impression is that people in the computer algebra field found very early on that it was
hard and switched to problems and algorithms which don't need change of variable, or where the
change of variable is built into the algorithm and requires no search.

Fateman's Reply to O'Keefe4

Beginning from the top, I think that what I had in mind about classification was that it is generally
considered appropriate for the author(s) of a program to have a specification for their program,
or at least a stated goal. It would be nice to know the answers to all of the questions, including,
in the first category, does PRESS know a set of names by which one can ask about hyperbolic
functions and their inverses? (e.g. acosh or arccosh?) Can it solve equations which involve
indeterminates other than the one being solved for?

In the second category, It seems that O'Keefe agrees with my criticism, namely that regardless
of what PRESS' authors would have learned by changing the program, it would nevertheless be
nice to know that PRESS can (or as it happens, cannot) solve some polynomial equations according
to whether they are linear, quadratic, or by substitution can be made linear or quadratic in xn for

7

some n. Solutions expressed by indexed sets was a feature ~f P~S which was not mentioned in
the article under review. If some sample answers had been supplied, it would have been evident.
Even so, the COB problem results in two such indexed sets, when one index would suffice.

In the third category, since Bundy believes P~S always terminates, it appears that the class
of expressions solvable is fully determined logically by merely running the program. Thus the
answer, when O'Keefe doubts it can be answered, is in some sense trivial

I believe that the ingredients in P~S could be added to a system like that in MACSYMA,
if it were deemed cost-effective (That is, able to solve more problems without hobbling the com-
mon cases with costly unnecessary transformations, and introducing wrong answers sometimes.).
As such it would be a relatively minor modification of MACSYMA. I think it would be a rela-
tively major modification of P~S to include general algorithms for cubic and quartic equations,
polynomial factorization, solving algebraic systems, etc.

I doubt that I understand the relationship, in PRESS, of the various methods. I think that
it is fairly simple, in MACSYMA. There is a logical progression of classification tests. When one
succeeds, it reduces the problem and either produces an answer, calls the solve program again on
any incompletely reduced equation(s) , or declares that it can't be done using any of the built-
in methods. The fact that PRF$S can be written in a PROLOG lacking back-tracking is not
surprising, because backtracking didn't seem to be a required strategy for Solve.

While no proof has been attempted to show that the existing processing steps in the MACSYMA
solve program terminate, they are all fairly obviously moving toward the goal of producing an
equation with a single variable, unencumbered, on one side of the equation.

It would not be difficult to change the solve program so that it stores all incompletely reduced
equations on a list, and before "giving up" I attempts to crack these equations by applications of
any or all of the dozen or so additional tricks not used (e.g. converting trig forms to complex
exponentials). The problem is, these transformations can be very expensive. Control mechanism
like "try this function for ten CPU seconds only" have never been very appealing. Perhaps when
we are encouraged to gamble with computer time (as parallel processors become more common),
this will change.

I do not understand the comment concerning LP and MACSYMA. MACSYMA is written in
LISP. If it is inconceivable that LISP could be used for LP, then it must be remarkable.

Homogenization, if I understand it fully, was used by the radcan program described and illus-
trated in the Martin and Fateman paper [Martin & Fateman 71], as well as my PhD dissertation
[Fateman 72al and also, my paper [Fateman 72bl discusses this.

The idea of forming a minimal algebraic, exponential, or logarithmic basis or "set of kernels"
is essential for simplification or other operations including Risch integration. Because of its
fundamental nature, it is not surprising that it was found to be useful in PRF$S.

However, examination of earlier work in the area would show that this process has not been
neglected, nor have most people avoided it.l

Other references including papers by B. F. Caviness [Caviness 67] and W. S. Brown [Brown 691
on simplification may be found in the Computer Algebra monograph edited by B. Buchberger.

Sterling's Comments about PRESS5

First, a rather obvious comment. Several people have contributed to the current state of PRESS.
Each of us have had, and do have, slightly different views about P~S' significance. So there
can be seeming contradictions in comments. An outside reviewer needs to consider the different
viewpoints of the authors of P~S in assessing what the program has accomplished.

11 recall one implementation of integration in which the user had to provide the set of kernels, but this was an
exception. It post-dated the implementation of the Risch algorithm in MACSYMA (c. 1971).

8

There are three issues discussed in the exchanges which I want to comment on.

(a) What exactly does p~s do?

(b) Does p~S have anything to offer the symbolic algebra community, and if so, what?

(c) How easy would it be to embed p~S in MACSYMA, and vice versa?

5.1

What exactly does PRESS do?

The version of P~S described in the paper was primarily built to model ~he behavior of A-level
students solving actual equations which appeared in A-level exams. Consequently, no attempt
was made to embed equation solving knowledge beyond the scope of A-level students, such as a
general solution to a cubic or quartic equation, even though adding such a general solution would
be trivial Furthermore, little effort was devoted to expressing answers in simplest form, a not so
trivial extension.

A common question asked when presenting talks about P~S was 'What is the class of
equations that PR&gS solves?' Since no-one asks what is the class of equations that an A-level
student solves, we had not studied this problem.

Before presenting our work to the symbolic algebra community, we probably should have done
more research on this question, or at least done a complete search of the literature.

I do not believe, however, that there is an easy characterization of the class of equations
actually solved by P~S, nor do I believe that the question is especially useful The algorithm
or procedure used to match an expression to the left-hand side of a rewrite rule illustrates the
difficulty. The initial version relied on PROLOG's backtracking and was combinatorially explosive
with a large expression. I believe, though there is no concrete evidence, that an expression with
many addends and multiplicands would have caused stack overflow. The revised version, which
dramatically improved the running time, was ad-hoc. The methods themselves clearly terminate,
it is the symbolic manipulation such as done by the pattern matcher or expression tidier that
causes problems.

However, the behavior of other symbolic algebra systems is not clear-cut. I heard a paper at a
EUROSAM conference on hacks to make a computer algebra program, in this case REDUCE, work
more efficiently. The hacks made the difference between whether the problem was successfully
solved or not. Does anyone characterize what equations MACSYMA actually solves? What is the
limit on numbers of variables etc?

My experience with symbolic integration, reported in ISterling 83] shows that the exact utility
of computer algebra systems is not easily understood.

5.2 Does PRESS have anything to offer the symbolic algebra commu-
nity, and if so, what?

My opinion of what PRESS contributes to the computer algebra community is insight on the value
of heuristics for building programs. It is not clear that a program embodying a general algorithm is
always preferable to a heuristic problem solver. Experience with programs for symbolic integration
in practice may tell the same story. There is value in a heuristic program which is easy to build.

How easy would it be to embed PRESS in MACSYMA, or vice
versa?

The discussion addressing the issue of whether PR~S can be embedded in MACSYMA and vice
versa, alluded to the LISP v PROLOG debate. I have no doubt that PRESS could now be written
in LISP fairly easily. What is also true, however, is that there was immense benefit by writing

9

PRESS cleanly and logically, which is a direct consequence of good PROLOG programming style.
This led directly to the learning program, LP, and the translation of P~S to parallel logic
programming languages, as mentioned by Richard O'Keefe. Whether P~S would have been
rewritten logically if initially written in LISP is unclear to me.

Many of MACSYMA's methods could be trivially added to P~S, for example more sophis-
ticated polynomial equation solving. What would be harder to add is MACSYMA's robustness,
which is an unfair comparison since P~S was not designed to be robust. One problem is in-
termediate expression swell, but that is a problem for general computer algebra systems -again
note the SIGSAM article.

I don't have enough knowledge to know how to add PRESS methods to MACSYMA -it did
not seem obvious to me as a naive user. But an expert in using MACSYMA should decide.

References

W.S. Brown. Rational exponential expressions and a conjecture concerning
'If and e. Am Math. Mon., 76:28-34, 1969.

[Brown 69]

IBuchberger et a183j B. Buchberger, G.E. Collins, R. Loos, and R. Albrecht. Computer Algebra.
Computing Supplement ,4, Springer-Verlag, NY, 1983. 2nd Edition.

IBundy et al79j A. Bundy, L. Byrd, G. Luger, C. Mellish, R. Milne, and M. Pahner. Solving
mechanics problems using meta-level inference. In B.G. Buchanan, editor,
Proceedings of IJCAI-79, pages 1017-1027, International Joint Conference
on Artificial Intelligence, 1979. Reprinted in 'Expert Systems in the micro-
electronic age' ed. Michie, D., pp. 50-64, Edinburgh University Press, 1979.
Also available from Edinburgh as DAI Research Paper No. 112.

[Caviness 67] B.F. Caviness. On Canonical Forms and Simplification. Unpublished PhD
thesis, Carnegie-Mellon University, 1967. Also in Journal ACM Vol 17, No
2 (1970) pp385-396.

[Fateman 72a] R.J. Fateman. Essays in Algebraic Simplification. Unpublished PhD thesis,
MIT, April 1972. also available as MAC TR-95.

[Fateman 72b] R.J Fateman. Rationally simplifying non-rational expressions. SIGSAM
Bulletin, (23):8-9, July 1972.

[Martin & Fateman 71] W.A. Martin and R.J. Fateman. The macsyma system. In S.R. Petrick,
editor, Proc. of the end Symposium on Symbolic and Algebraic Manipula-
tion, pages 59-75, ACM, 1971.

D. Richardson. Some undecidable problems involving elementary functions
of a real variable. Symbolic Logic, 33(4):514-520, December 1968.

IRichardson 68]

B. Silver. Meta-level inference: Representing and Learning Control Infor-
mation in Artificial Intelligence. North Holland, 1985. Revised version of
the author's PhD thesis, DAI 1984.

[Silver 85]

L. Sterling. Of integration by man and machine. SIGSAM Bulletin,
(17):21-24, 1983.

L. Sterling. Pressing for parallelism: a prolog program made concurrent.
Journal of Logic Programming, 3(1):75-92, April 1986.

[Sterling 831

[Sterling 86]

10

~r
t-
o;
rr,

L. Sterling, A. Bundy, L. Byrd, R. O'Keefe, and B. Silver. Solving symbolic
equations with preBB. In J. Cahnet, editor, Computer Algebra, Lecture Note,
in Computer Science No. 144., pages 109-116, Springer Verlag, 1982. Also
available from Edinburgh as Research Paper 171.

ISterling et ai 821

11

