
META-LEVEL INFERENCE

AND

VERIFICATIONPROGRAM

Leon Sterling & Alan Bundy

168

D.A.I. RESEARCH PAPER NO.

Submitted to 6th Conference on Automated Deducation

December 

1981



1

META-LEVEL INFERENCE AND PROGRAM VERIFICATION

by
Leon Sterling

and
Alan Bundy

Abstract

In [Bundy and Sterling 81] we described how meta-level inference was useful
for controlling search and deriving control information in the domain ofalgebra. 

Similar "techniques are applicable to the verification of logicprograms. 
A developing meta-language is described, and an explicit proof plan

using this language is given. A program, IMPRESS, is outlined which executes
this plan.

1. Introduction
It is well-known that logic programs have a dual interpretation -a

procedural one and a semantic one (see for example [Kowalski 79]). Program
statements can be interpreted both as commands to be executed under some
control regime and as first-order predicate calculus clauses.

Consider the following 'code' for appending two lists.*

append([],Y,Y) ~
append([HIX],Y,[HIZ]) ~ append(X,Y,Z)

where [] denotes the nil list, and [HIT] the constructor function cons(H,T).

The naive semantic interpretation of this 'code' is that two theorems about
'append' are true," namely append([],Y,Y) is true for all Y, and for all X,Y,Z
if append(X,Y,Z) is true then a~}:end([H:X],Y,[H:Z]) is true. More powerful
things can be said moreover. Cl~Tk [Clark 79] shows how applying a fixpoint
interpretation to the above logic program for append leads to the theorem in
first-order predicate calculus

append(X,Y,Z) ~ (X=[] & Y=Z) v
~ H,X1,Z1 (X=[H:X1] & Z=[H:Z1] & append(X1,Y,Z1».

Using the fact that the two cases above are essentially disjoint, he further
breaks this down into two theorems. The 'nil' case is

append([],Y,Z) ~ Y=Z .

We shall be making implicit use of this sort of inference throughout the paper

To give a pro.cedural interpretation one needs to distinguish between input
and output variables, i.e. decide what use will be made of the program. The
most common use of the append program is when X and Yare input variables, both
lists, and one wants to compute Z, the result of appending X and Y. This is a
determinate program. .On the other hand, one could use Z as the input variable,
a list, and compute nondeterministically ways of partitioning it into twolists, 

X and Y.

*Throughout the paper we will use the notation conventions of DEC-10 prolog
[Pereira et al 79], one implementation of some of the ideas of logicprogramming. 

In particular, variables begin with upper-case letters and
constants begin with lower-case letters.



2

Given a specific use of a program one can analyse its properties. In [Clark
79] three properties of logic programs are given special attention -namely,
correctness, termination, and total correctness. We will conqentrate mainly on
the first property, correctness, though the techniques to be described seem to
have applications to the other properties. If P(X,Y) is a program, where X is a
vector of input variables and Y is a vector of output variables then a
correctness property of P is a theorem of the form:

I(X) & P(X,Y) ~ O(X,Y)

where I(X) is an input condition and O(X,Y) is an output condition.

Program verification is basically proving program correctness properties.For 
example, with the append example above and the use for computing the resultof 

appending two lists, one might like to verify that if you start off with twolists, 
you end up with a list.

As a theorem this is

list(X) & list(Y) & append(X.Y.Z) ~ list(Z)

This can be reexpressed in Prolog form as

list(Z) ~ list(X) & list(Y) & append(X,Y,Z).

We have built a program which can prove the above theorem. The program,
IMPRESS, was originally designed for proving properties of an equation solving
program written in Prolog [Bundy and Sterling 81]. IMPRESS, written in DEC-10
Prolog, takes advantage of the desirable features of logic programming. A
range 'of verification proofs have been made.

An important aspect of building IMPRESS- is
meta-language of concepts about proofs and proof plans.
described throughout the paper.

developing a suitable
These concepts will be

In the next section we give an example verification. Then the meta-level
concepts are discussed in some detail. A brief comparison to other work in
this area follows, and the final section gives co~clusions and points to future
directions of the research.

2. An Example Verification
As an example of a verification which illustrates the language we are

evolving, consider the length property of append. That is, if you append two
lists together, the length of the resultant list is the sum of the lengths of
the two lists. In verification term~ this could be expressed as

append(X,Y,Z) ~ [length(X,N) & length(Y,M) ~ length(Z,N+M) }.

In our terms, this would mean proving the theorem

length(Z,N+M) 

~ length(X,N),length(Y,M),append(X,Y,Z).

This is proved by induction on the variable list X. This can be viewed as an
induction schema of append, or as an induction schema on length. We will take
the former view.

Before describing the proof, let us write down the program/axioms for length
and append.

length([J,O).
length([HITJ,N+1) ~ length(T,N)

append([],X,X).



3

append([H:X],Y,[H!Z]) 

~ append(X,Y,Z).

The structure of the programs for length and append are essentially identical.
Both consist of two clauses, the base clause and the step clause. The step
clause has a simple structure, j~st a recursive call to "itself. This recursive
call we call the recursant. In general this structure will not be so simple.
In [Bundy and Sterling 81] we describe a proof of the correctness of isolation,
a method for solving equations. There the step clause has the form

isolate([N!Tail],Y,Z) ~ isolax(N,Y,Y1) & isolate(Tail,Y1,Z).

In this case we distinguished between the isolate term, which we called the
recursant, and the isolax term which' we called the performant. These
distinctions were important in guiding the correctness proof. In this paper we
will restrict the proofs to programs whose step clauses only have a recursant.
(This can be regarded as a clause with a nil performant).

An induction proof has two parts, the base case and the step case. The
appropriate instantiation for the base case when proving a theorem about lists
is the nil list, []. The instantiation for the step case is
[Head:Tail], cons(Head,Tail). Taking the base case first, the theorem to be
proved is

length(Z,N+M) ~ length([],N) & length(Y,M) & append([],Y,Z).

This theorem is negated and skolemized in order to be proved. Using the
implicit information from the fixpoint semantics, N is instantiated to 0
because of the theorem length([],N) ~ N=O and Z is unified with Y because
of the theorem append([],Y,Z) ~ Y=Z. This leaves the theorem to be proved
as

length(Y.M) ~ length(Y.t1).

which is trivially established.

The step case is more interesting. Here an induction hypothesis is asserted
as a theorem, and critically used in the proof. The form of the induction
hypothesis can be written down immediately. In this example the induction
hypothesis is

length(Z,N+M) ~ length(X,N) & length(Y,M) & append(X,Y,Z).

The theorem to be proved is then

length(Z1,N1+M) ~ length([HIX],N1) & length(Y,M) & append([HIX],Y,Z1).

It should be noted here that the values of X,N,Y,M are shared in the two
theorems above. There"are several ways of doing this. In practice in IMPRESS
we are careful to skolemize both the asserted theorem and the theorem to be
proved in compatible ways.

When skolemizing the theorem to be proved we use the theorems,length(..[HIX],N+1) 
~ length(X,I~) and append([HIX],Y,[H!Z]) ~ append(X,Y,Z)

to replace N1 by N+1 and Z1 by [H:Z]. The theorem to be proved becomes

length([hlz],n+m+1)
-E- length([h:x],n+1) & length(y,m) & append([hlx],y,[h!z]).

The proof is as follows:

The three propositions in the body of the clause are asserted into
the database. namely

length([h:x].n+1) ~



1l

length{y,rn) ~
append{[hlx],y,[hlz]) ~

against

2. 

Resolve append{[h:x],y,[hlz]) ~
append(X,Y,Z) ~ append([HIX},Y,[HIZ]) to get

append(x,y,z) ~

linear

the
search

goal
with goal

against

3. The proof now proceeds backwards by
~ length([hlz],n+m+1). Resolve

length([HIX],N+1) ~ length(X,N) to give

~ length(z,n+m).

4. Resolve this against the induction hypothesis to give

~ length(x,n) & length(y,m) & append(x,y,.z).

5. Use the assertion length(y,m) ~

proposition, leaving

~ length(x,n) & append(x,y,z).

to theremove central

6. Use the theorem length(X,N) ~ length([H:X],N+1) and the assertion
length([hlx],n+1) ~ to leave as the goal

<:- append(x,y,z).

7 .Resolving this against append(x,y,z) produces the empty clause and
.hence a proof of the theorem.

3. 

Meta-level Concepts
The inductive proofs of many other correctness theorems appear to follow the

same basic plan as the proof above. Let us try to identify the meta-level
concepts involved. We restate the theorem for convenience.

length(Z,N+~1) ~ length(X,N) & length(Y,M) & append(X,Y,Z). (i)

This fits the schema for a correctness property with program hypothesis,

append(X,Y,Z) , input condition, length(X,N) & length(Y,~1), and output
condition, length(Z,N+M).

We choose an induction scheme and induction variable by analogy with the
recursion scheme and recursion variable of the program hypothesis. The
predicate append is defined by primitive recursion on the structure of itsargument, 

which is a list. Thus to prove the theorem we use the induction
scheme

Yx Q(X) ~ Q([]) & Vx VH {Q([HIX] <:- Q(X))}

where Q is the conjecture (i) and X is the first argument of append

Using this induction scheme will generate two subgoals: Q([]). which we call
the base case; and Q([H:X]) ~ Q(X). which we call the step case.

Note that, in this example, had length(X,N) been chosen as the program
hypothesis we would have ended up with an identical induction scheme and base
and step subgoals.

A specific proof plan can thus be spelt out.

Locate the program hypothesis of the conjecture,



5

-Choose an appropriate induction scheme and induction variable by
analogy with the recursion scheme and recursion variable of the
program hypothesis.

Prove the base case after the appropriate instantiation

Prov~ the step case after the appropriate instantiation

In [Bundy and Sterling 81] we outlined a proof plan for the step case, which
we repeat here. Note that, since the definition of the program hypothesis has
an empty performant, the application of this proof plan is necessarilysimplified. 

Bracketed comments refer to the proof of the last section.

(a)Assert the induction hypothesis and the step versions of the input
condition and the program hypothesis as temporary axioms. (step 1)

(b)Unfold the
recursant.

step r
(step 2)

hypothesis into itsprogram performant and

{c)Proceed to prove the step version of the output condition.

«;i)Fold the step output condition into its performant and recursant.
(step 3)

from(e)Establish the step output condition performant
hypothesis performant. (not needed in this proof)

the program

(f)Apply the induction
recursant. (step 4)

hypothesis to the step output condition

(g)Establish the induction:
corresponding step input
performant. (steps 5 and 6)

hypothesis

conditions
input
and

conditionsthe 
program

from the
hypothesis

(h)Establish the induction hypothesis program hypothesis from the
program hypothesis recursant. (step 7)

In our example steRs 5 and 7, where step as.,sertions were used to establish
subgoals, were single resolutions, and step b required two resolutions. In
general, these steps can be arbitrarily complex, but a large measure of search
guidance is provided by specifying those axioms which are and those which are
not involved in the search. Currently, IMPRESS does not get involved in this
search, but uses the proof plan to print out a lemma to be proved.

4. Related work
The Edinburgh LCF project [Gordon et a1 79] built a computer system for

doing formal proofs interactively. The environment provided various primitive
steps which the user combined together to generate a proof. The emphasis was
to provide a flexible tool for investigation of proofs.

IMPRESS, on the other hand, has no such interactive facility. Development
is concentrated on generating proofs automatically, according to explicit proofplans. 

The proofs exhibited using LCF are goals for IMPRESS to prove.

Other important proof strategies are contained in work on programtransformations. 
Darlington [D~rlington 81J gives a meta-language vocabulary

for discussing such transformations. His basic manoeuvres, for example
fold/unfold, have been incorporated into our proof plan. His program has no a
priori representation of proof plans to apply to conjectures, at the level of



6

the IMPRESS plan above

We have also built on the work of Boyer and Moore [Boyer & Moore 79]. The
selection of a suitable induction scheme and variable by analogy to the
recusion scheme and variable, is an alternative formulation of their techniqueof 

chosing an induction scheme and variable after the 'breakdown of symbolic
evaluation.* Much of the knowledge of the Boyer/Moore program, however, is
embedded implicitly in code. For example, much implicit inference is done when
type checking at an early stage of a proof. Our emphasis is more in developing
a language to describe proofs. Using this language we are able to express
heuristics about how to undertake a proof. These heuristics are then converted
into explicit proof plans, such as the one described above.

5. Future Directions and Conclusions
As suggested above, our aim is to be able to prove a wide range of theorems

using meta-level inference to guide the search. There are many directions in
which to proceed. For example, to extend the logic program proofs to
termination and total correctness. Also, to translate the experiences of other
program manipulation systems into a form suitable for IMPRESS to use. This has
already been done, to some extent, in the case of Darlington and Boyer and
Moore's systems.

In this paper, we have outlined the current state of our ideas. An example
program verification proof is described that our program, IMPRESS, is capableof. 

It should be emphasised that this schema seems to cover a wide number of'proofs. 
Logic programming seems an excellent domain in which to continue this

resea}"ch.

REFERENCES

[Boyer & Moore 79]
Boyer, R.S. and Moore, J.S.
~ monograph series. : ! Computational~.
Academic Press, 1979.

[Bundy and Sterling 81]
Bundy, A. and Sterling L.S.
Meta-level Inference in Algebra.
ReSea~aper 164, Dept. of Artificial Intelligence, Edinburgh,

September, 1981.
Presented at the workshop on logic programming for intelligent

systems, Los Angeles, 1981.
[Clark 79]

Clark. 

K.L.fr~d_~~e- 
~ ~ ~ ~omputational Formalism.

Report 79/59. Department of Computing. Imperial College. London.
December. 1979.

[Darlington 81J
Darlington J.
An Experimental Program Transformation and Synthesis System
Artificial Intelligence 16(3):1-46, August, 1981.

*We have built a toy Boyer/Moore program in Prolog and used the experience
gained when building IMPRESS.



7

[Gordon et al 79]
Gordon M.J., Milner A.J., and Wadsworth C.P.
Lecture Notes.!Eo Computer Science. Volume 78:

mechanised ~ E!. computation.
Springer Verlag, 1979.

Edinburgh ~ -!

[Kowalski 79]
Robert Kowalski.
~ !.!:!!:- Problem Solving.
North Holland, 1979.

[Pereira et al 79]
Pereira, L.M., Pereira, F.C.N. and Warren, D.H.D.
~~' ~ guide ~ DECsystem-l.Q PROLOG.
Occasional Paper 15, Dept. of Artificial Intelligence,

Edinburgh, 1979.


