Hierarchical Object Recognition

Chris Williams

Institute for Adaptive and Neural Computation School of Informatics, University of Edinburgh, UK

September 2006

・ロト ・聞ト ・ヨト ・ヨト

ANC

Chris Williams Hierarchical Object Recognition

Object Recognition as Image Parsing

Is a nose an object? Is a head one? Is it still one if it is attached to a body? What about a man on horseback? Marr, 1982, p 270

- Metaphor (?) of image interpretation as parsing
- Recursive grouping of lower level features into parts
- Structural pattern recognition
- But current methods (constellation model, templates of features) are "flat"; should we be worried about this?

(日) (同) (三) (三)

Some references

- Marr and Nishihara (1978)
- Biederman (1985): Recognition by Components
- Bienenstock, Geman and Potter (1997): Compositionality, MDL priors and object recognition
- Williams and Adams (1999): Dynamic Trees
- Hinton, Ghahramani and Teh (2000): Credibility nets
- S-C Zhu et al (ICCV 2003, ICCV 2005)
- Bouchard and Triggs (CVPR, 2005)
- Jin and S. Geman (CVPR, 2006)
- Fidler, Berginc, Leonadis (CVPR, 2006)

イロト 人間ト イヨト イヨト

Two Computational Approaches

- Tree-like generative models
- Bottom-up grouping of features

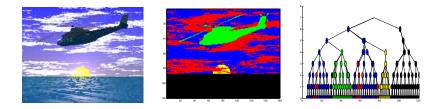
・ロト ・回ト ・ 回ト ・

ANC

Chris Williams Hierarchical Object Recognition

Dynamic Trees

Storkey and Williams, PAMI 2003. Inference using structured mean field methods



◆□▶ ◆□▶ ◆三▶ ◆三▶ ●□ ● ●

ANC

Chris Williams

$P(Y, X, R', Z|R^{L}) = P(Z)P(X|Z)P(R'|R^{L}, Z)P(Y|X)$

where

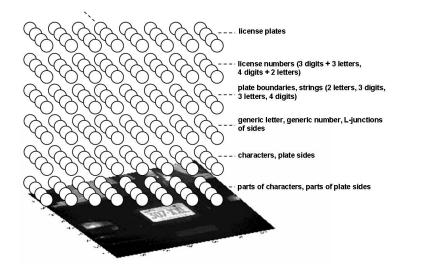
- Z denotes the tree structure
- X denotes the labels of the nodes in the tree
- R' denotes the positions of the non-terminal nodes
- R^L denotes the positions of the terminal nodes
- Y denotes the image data

(日) (四) (E) (E) (E) (E)

Context and Hierarchy in a Probabilistic Image Model Similar to Dynamic Trees, but

- Dense fields of "bricks" which have sparse activation
- Use of a "compositional distribution" to overcome the limitations of the Markov backbone
- Productions of bricks at one level give rise to relative positions and types of bricks at lower levels, e.g. characters → parts (of characters or plate sides)
- Note that parts of characters are used in many different character types

・ロン ・四と ・ヨン



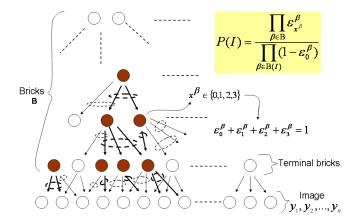
イロト イ理ト イヨト イヨト

-2

ANC

lin and Coman 2006

Chris Williams



Markov backbone

Jin and Geman, 2006

ANC

Chris Williams

Jin and Geman, 2006

◆□▶ ◆■▶ ◆国▶ ◆国▶ ◆□▶

Chris Williams Hierarchical Object Recognition ANC

Jin and Geman, 2006. A typical parse with its top 25 objects: the licence plate, followed by L-junctions, lines, and

・ロト ・ 日 ト ・ ヨ ト ・ ヨ ト

-큰

ANC

false positive characters

Chris Williams

Bottom-up strategies

- In Jin and Geman (2006), a greedy bottom-up pass is used to initialize the search strategy
- This involves testing each brick in each possible state in a given level, given possible states activated in the level below
- Note that in their system the relationships were hand coded
- Fidler et al (2006) suggest a bottom up method for *learning* to group features from a lower level, looking at what, orientation and where information (Barlow's suspicious coincidences)
- See also Sivic and Zisserman (CVPR, 2004) for discovering configurations of visual words

イロト イポト イヨト イヨト

Pros and Cons of Hierarchical Strategies

Pros

- Neat recursive strategy, appealing on aesthetic grounds
- $\bullet\,$ Re-use of parts when dealing with multiple classes $\Rightarrow\,$ efficiency
- Computational efficiency; break down the matching problem into subtasks (divide and conquer)
- Utility of deep nets, e.g. for modelling digits

Cons

- "Tower of jelly" problem of deep networks
- Lack of a probabilistic drive for parts unless there is more between-parts variability than within-parts
- Hierarchy is more complex, don't add it unless it is needed
- Is there any psychological or biological evidence for multiple layers?