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Motivation

I Examples of multi-task learning
I Co-occurrence of ores (geostats)
I Object recognition for multiple object classes
I Personalization (personalizing spam filters, speaker

adaptation in speech recognition)
I Compiler optimization of many computer programs
I Robot inverse dynamics (multiple loads)

I Gain strength by sharing information across tasks
I More general questions: meta-learning, learning about

learning
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Outline

1. Gaussian process prediction
2. Co-kriging
3. Intrinsic Correlation Model
4. Multi-task learning:

I A. MTL as Hierarchical Modelling
I B. MTL as Input-space Transformation
I C. MTL as Shared Feature Extraction

5. Theory for the Intrinsic Correlation Model
6. Multi-task learning in Robot Inverse Dynamics
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1. What is a Gaussian process?

I A Gaussian process (GP) is a generalization of a
multivariate Gaussian distribution to infinitely many
variables

I Informally: infinitely long vector ' function
I Definition: a Gaussian process is a collection of random

variables, any finite number of which have (consistent)
Gaussian distributions

I A Gaussian distribution is fully specified by a mean vector
µ and covariance matrix Σ

f ∼ N (µ,Σ)

I A Gaussian process is fully specified by a mean function
m(x) and a covariance function k(x, x′)

f (x) ∼ GP(m(x), k(x, x′))
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The Marginalization Property

I Thinking of a GP as an infinitely long vector may seem
impractical. Fortunately we are saved by the
marginalization property

I So generally we need only consider the n locations where
data is observed, and the test point x∗, the remainder are
marginalized out
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Drawing Random Functions from a Gaussian Process

Example one-dimensional Gaussian process

f (x) ∼ GP(m(x) = 0, k(x, x′) = exp(−1
2
(x − x ′)2))

To get an indication of what this distribution over functions looks
like, focus on a finite subset of x-values,
f = (f (x1), f (x2), . . . , f (xn))

T , for which

f ∼ N (0,Σ)

where Σij = k(xi , xj)
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From Prior to Posterior
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Predictive distribution

p(y∗|x∗, X , y , M) = N (kT (x∗, X )[K + σ2
nI]−1y,

k(x∗, x∗) + σ2
n − kT (x∗, X )[K + σ2

nI]−1k(x∗, X ))
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Marginal Likelihood

log p(y|X , M) = −1
2

yT K−1
y y− 1

2
log |Ky | −

n
2

log(2π)

where Ky = K + σ2
nI.

I This can be used to adjust the free parameters
(hyperparameters) of a kernel.

I There can be multiple local optima of the marginal
likelihood, corresponding to different interpretations of the
data
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2. Co-kriging

Consider M tasks, and N distinct inputs x1, . . . , xN :
I fi` is the response for the `th task on the i th input xi

I Gaussian process with covariance function

k(x, `; x′, m) = 〈f`(x)fm(x′)〉

I Goal: Given noisy observations y of f make predictions of
unobserved values f∗ at locations X∗

I Solution Use the usual GP prediction equations
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Some questions

I What kinds of (cross)-covariance structures match different
ideas of multi-task learning?

I Are there multi-task relationships that don’t fit well with
co-kriging?
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3. Intrinsic Correlation Model (ICM)

〈f`(x)fm(x′)〉 = K f
`mkx(x, x′) yi` ∼ N (f`(xi), σ

2
` ),

I K f : PSD matrix that specifies the inter-task similarities
(could depend parametrically on task descriptors if these
are available)

I kx : Covariance function over inputs
I σ2

` : Noise variance for the `th task.

I Linear Model of Coregionalization is a sum of ICMs
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ICM as a linear combination of indepenent GPs

I Independent GP priors over the functions zj(x) ⇒
multi-task GP prior over fm(x)s

〈f`(x)fm(x′)〉 = K f
`mkx(x, x′)

I K f ∈ RM×M is a task (or context) similarity matrix with
K f

`m = (ρm)T ρ`

z1 z2 zM

· · · · · ·

fm

m = 1 . . . M 
ρm

1
ρm

2
...

ρm
M
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I Some problems conform nicely to the ICM setup, e.g. robot
inverse dynamics (Chai, Williams, Klanke, Vijayakumar
2009; see later)

I Semiparametric latent factor model (SLFM) of Teh et al
(2005) has P latent processes each with its own
covariance function. Noiseless outputs are obtained by
linear mixing of these latent functions
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4 A. Multi-task Learning as Hierarchical Modelling

e.g. Baxter (JAIR, 2000), Goldstein (2003)
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I Prior on θ may be generic (e.g. isotropic Gaussian) or
more structured

I Mixture model on θ → task clustering
I Task clustering can be implemented in the ICM model

using a block diagonal K f , where each block is a cluster
I Manifold model for θ, e.g. linear subspace ⇒ low-rank

structure of K f (e.g. linear regression with correlated
priors)

I Combination of the above ideas → a mixture of linear
subspaces

I If task descriptors are available then can have
K f

`m = k f (t`, tm)

I Regularization framework: Evgeniou et al (JMLR, 2005),
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GP view

Integrate out θ
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4 B. MTL as Input-space Transformation

I Ben-David and Schuller (COLT, 2003), f2(x) is related to
f1(x) by a X -space transformation f : X → X

I Suppose f2(x) is related to f1(x) by a shift a in x-space
I Then

〈f1(x)f2(x′)〉 = 〈f1(x)f1(x′ − a)〉 = k1(x, x′ − a)
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I More generally can consider convolutions, e.g.

fi(x) =

∫
hi(x− x′)g(x′)dx′

to generate dependent f ’s (e.g. Ver Hoef and Barry, 1998;
Higdon, 2002; Boyle and Frean, 2005). δ(x− a) is a
special case

I Alvarez and Lawrence (2009) generalize this to allow a
linear combination of several latent processes

fi(x) =
R∑

r=1

∫
hir (x− x′)gr (x′)dx′

I ICM and SPFM are special cases using the δ() kernel
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4 C. Shared Feature Extraction

I Intuition: multiple tasks
can depend on the same
extracted features; all
tasks can be used to help
learn these features

I If data is scarce for each
task this should help
learn the features

I Bakker and Heskes
(2003) – neural network
setup

.  .  .

.  .  .

.  .  .

hidden layer 1

hidden layer 2

output layer

input layer (x)
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I Minka and Picard (1999): assume that the multiple tasks
are independent GPs but with shared hyperparameters

I Yu, Tresp and Schawaighofer (2005) extend this so that all
tasks share the same kernel hyperparameter, but can have
different kernels

I Could also have inter-task correlations
I Interesting case if different tasks have different x-spaces;

convert from each task-dependent x-space to same
feature space?
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5. Some Theory for the ICM

Kian Ming A. Chai, NIPS 2009
I Primary task T and secondary task S

I Correlation ρ between the tasks
I Proportion πS of the total data belongs to secondary task S

I For GPs and squared loss, we can compute analytically
the generalizaton error εT (ρ, XT , XS) given p(x)

I Average this over XT , XS to get ε
avg
T (ρ, πS, n), the learning

curve for primary task T given a total of n observations for
both tasks.

I
¯
ε
avg
T is the lower bound on ε

avg
T .

I Theory bounds benefit of multi-task learning in terms of

¯
ε
avg
T .
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Theory: Result on lower bound

Average
generalization

error
for T

n

¯
ε
avg
T (ρ, πS, n), multi-task

¯
ε
avg
T (0, πS, n), single-task

¯
ε
avg
T (ρ, πS, n) ≥ (1− ρ2πS)

¯
ε
avg
T (0, πS, n)

I Bound has been demonstrated on 1-d problems, and on
the input distribution corresponding to the SARCOS robot
arm data
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Discussion

I 3 types of multi-task learning setup
I ICM and convolutional cross-covariance functions, shared

feature extraction
I Are there multi-task relationships that don’t fit well with a

co-kriging framework?
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Multi-task Learning in Robot Inverse Dynamics

I Joint variables q.
I Apply τi to joint i to trace a trajectory.
I Inverse dynamics — predict τi(q, q̇, q̈).

q1

q2

link 1

link 2

link 0 base

end effector
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Inverse Dynamics
Characteristics of τ

I Torques are non-linear functions of x def
= (q, q̇, q̈).

I (One) idealized rigid body control:

τi(x) = bT
i (q)q̈ + q̇THi(q)q̇︸ ︷︷ ︸

kinetic

+

potential︷ ︸︸ ︷
gi(q) + f v

i q̇i + f c
i sgn(q̇i)︸ ︷︷ ︸

viscous and Coulomb frictions

,

I Physics-based modelling can be hard due to factors like
unknown parameters, friction and contact forces, joint
elasticity, making analytical predictions unfeasible

I This is particularly true for compliant, lightweight humanoid
robots
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Inverse Dynamics
Characteristics of τ

I Functions change with the loads handled at the end
effector

I Loads have different mass, shapes, sizes.
I Bad news (1): Need a different inverse dynamics model for

different loads.
I Bad news (2): Different loads may go through different

trajectory in data collection phase and may explore
different portions of the x-space.
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I Good news: the changes enter through changes in the
dynamic parameters of the last link

I Good news: changes are linear wrt the dynamic
parameters

τm
i (x) = yT

i (x)πm

where πm ∈ R11 (e.g. Petkos and Vijayakumar,2007)
I Reparameterization:

τm
i (x) = yT

i (x)πm = yT
i (x)A−1

i Aiπ
m = zT

i (x)ρm
i

where Ai is a non-singular 11× 11 matrix
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GP prior for Inverse Dynamics for multiple loads

I Independent GP priors over the functions zij(x) ⇒
multi-task GP prior over τm

i s〈
τ `

i (x)τm
i (x′)

〉
= (K ρ

i )`mkx
i (x, x′)

I K ρ
i ∈ RM×M is a task (or context) similarity matrix with

(K ρ
i )`m = (ρm

i )T ρ`
i

zi,2 zi,szi,1

· · ·· · ·

i = 1 . . . J

τm
i

· · ·

m = 1 . . . M
ρm

i,1
ρm

i,2
· · ·
ρm

i,s
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GP prior for k(x, x′)

k(x, x′) = bias + [linear with ARD](x, x′)
+ [squared exponential with ARD](x, x′)

+ [linear (with ARD)](sgn(q̇), sgn(q̇′))

I Domain knowledge relates to last term (Coulomb friction)
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Data

I Puma 560 robot arm manipulator: 6 degrees of freedom
I Realistic simulator (Corke, 1996), including viscous and

asymmetric-Coulomb frictions.
I 4 paths × 4 speeds = 16 different trajectories:
I Speeds: 5s, 10s, 15s and 20s completion times.
I 15 loads (contexts): 0.2kg . . . 3.0kg, various shapes and

sizes.
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Joint 3
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Data

Training data

I 1 reference trajectory common to handling of all loads.
I 14 unique training trajectories, one for each context (load)
I 1 trajectory has no data for any context; thus this is always

novel

Test data
I Interpolation data sets for testing on reference trajectory

and the unique trajectory for each load.
I Extrapolation data sets for testing on all trajectories.
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Methods

sGP Single task GPs GPs trained separately for
each load

iGP Independent GP GPs trained independently for
each load but tying parame-
ters across loads

pGP pooled GP one single GP trained by
pooling data across loads

mGP multi-task GP with BIC sharing latent functions
across loads, selecting
similarity matrix using BIC

I For mGP, the rank of K f is determined using BIC criterion
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Results
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Conclusions and Discussion

I GP formulation of MTL with factorization kx(x, x′) and K f ,
and encoding of task similarity

I This model fits exactly for multi-context inverse dynamics
I Results show that MTL can be effective
I This is one model for MTL, but what about others, e.g. cov

functions that don’t factorize?
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