Reinforcement Learning for Robotic and Software Agents

Gillian Hayes, gmh@inf

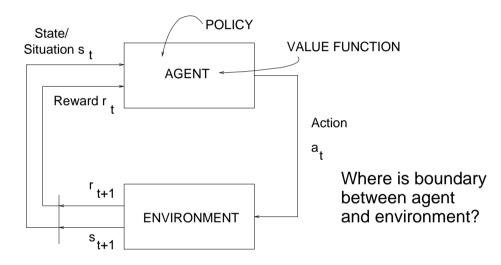
15th October 2008

Reinforcement Learning for Robotic and Software Agents

Current work with:

Jay Bradley Mark Harrison Matthew Whitaker Matthijs Snel Michael Rovatsos Tom Larkworthy

Reinforcement Learning Reminder



Transition Probability $P_{ss'}^a$: probability of ending up in state s' given that you start in state s and choose action a.

Reward function: if action a chosen in state s and subsequent state reached is s' the expected reward is:

$$R^{a}_{ss'} = E\{r_{t+1} \mid s_t = s, a_t = a, s_{t+1} = s'\}$$

Learn to act so as to maximise the expected discounted future reward.

We need to **define the reward function** to approximate our expectation of what actions/states will be good.

Markov Decision Process

Topics

- Multi-agent RL with communication
- Perceptual actions in perceptual aliasing
- Game-agent group behaviour: matching the reward function and group structure
- Interactions between (reinforcement) learning and evolution
- Reconfigurable robots
- Feature extraction from EEGs

Multi-agent RL with communication

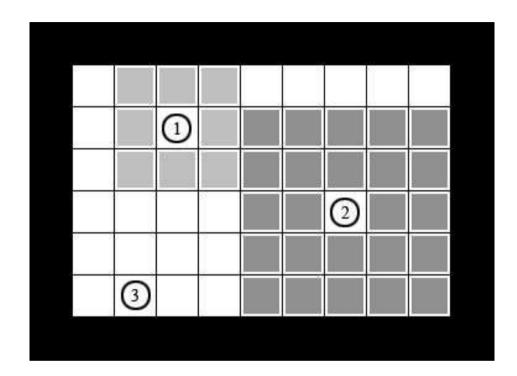
Two agents must move towards each other, goal achieved when adjacent. Movement actions and shout actions. State: observations of squares around agent (grid world). SARSA(λ), true multi-agent RL, **perceptual aliasing**.

Learner shouts, 'homing' agent moves towards it. Optimal policy is for learner to shout all the time.

But actually get **policy segmentation**: if agents are within visual field, move towards other agent, else shout.

Can solve multi-agent perceptually aliased task with communication and without memory.

Communicate actions, Q-tables, states – categorise agents on basis of behaviour; deception?



Gillian Hayes, gmh@inf Reinforcement Learning for Robotic and Software Agents 15th October 2008

Perceptual actions in perceptual aliasing

Perceptual aliasing: many states have same state vector, optimal action varies. Need memory to learn optimal policy.

Or use **perceptual actions**, a type of active perception. Instead of moving, look further away from current position. E.g. augment 8-D state vector of squares around current position with the three squares to the northeast – 11-D state vector.

Don't need to search the whole of the 11-D space, just those parts of the space corresponding to aliased 8-D states.

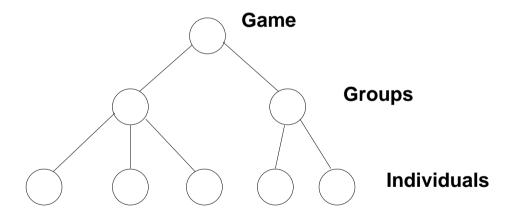
Solves problem for small increase in search, no memory needed.

Not guaranteed to converge: if the perceptual states and their corresponding movement states are both aliased at the same time. So pick another set of perceptual states.

Game-agent group behaviour: matching the reward function and group structure

Game agent, e.g. capture the flag. Chooses actions to suit self and the group **and the other – human – player**.

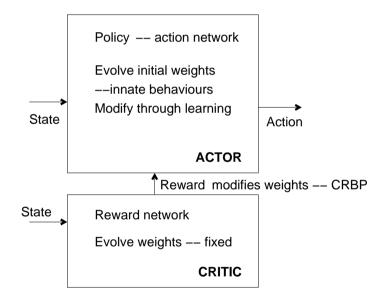
Aim: get a balanced game – more fun for beginner and improver players Stucture the reward function to match the group structure



of informatics

Interactions between (reinforcement) learning and evolution

Where does the reward function come from?



CRBP = complementary reinforcement back propagation (a learning method)

Environment: $P_{ss'}^a$ and $R_{ss'}^a$. Make $P_{ss'}^a$ a "natural" consequence of environment,

Gillian Hayes, gmh@inf Reinforcement Learning for Robotic and Software Agents 15th October 2008

e.g. state = hungry, action = eat food, next state = less hungry - hunger **drive** is satiated. Actions have real consequences for agent - survives or dies.

Why should one action *a priori* be preferred over another?

Evolve the reward function: reward functions that assign the right valency to actions will allow their agents to survive.

Reconfigurable robots

- Make robots out of small actuated units e.g. rod and spring, blocks and magnets
- Shape is configurable
- Problems: planning how to get from one configuration to another, localisation of units given that the joints are bendy and gravity acts
- Passing through narrow spaces, passing tools around the robot

Feature extraction from EEGs

- Neurofeedback training someone to control their own EEG
- EEG: measure voltage on scalp, frequency range from about 0 to 40Hz
- Train individual to produce more/less of some frequency ranges at various sites on the scalp, e.g. less 4-8Hz, more 15-18Hz, less > 22Hz in pre-frontal cortex → less zoning out, more focussing, less ruminating
- Correlates of brain processes
- Can one detect changes in the EEG that correspond to semi-subjective changes

 e.g. alertness