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Agents & Multiagent Systems

» Common misconception (often reinforced by agents people):
agents research is about making smart programs (that would be
all of Informatics .. .)

» Agents research is concerned with the coordination of intelligent
capabilities in a single (single-agent) or several distributed
(multiagent) systems

» When strictly collaborative, similar to very loosely coupled
distributed systems; when not, distinct from other CS/Al
technologies
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Introduction

Multiagent learning

» Multiagent learning = learning in the presence of others (i.e. from,
with, or about others)

» Parts of the area closely related to distributed learning,
multi-strategy learning, transfer learning, mixed-initiative learning
» Work in my group in two areas:
» Collaborative learning (working together to improve local learning)
» Strategic learning (learning to act optimally when outcomes depend
on others)
> opponent modelling
> communication in learning
» Some examples follow (joint work with Belesiotis, Collins, Figari,
Fischer, Mhatre, Nickles, Pechoucek, Rafael, Sferopoulos, Tozicka,
Weiss, Whitaker, Wolf)
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» MALEF: A generic multiagent learning framework that allows

autonomous decision making in all stages of individual learning
hypothesis
he 1
hy

» Assuming two interacting learners, we obtain a matrix of potential
interactions

» Based on generic learning agent model:

» Enables agents to make autonomous decisions about how to
integrate information received from others

» Particularly interested in hypothesis merging in domains where
data exchange is not possible/desirable

» Applied to vessel surveillance and distributed brain tumor diagnosis
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Strategic multiagent learning

» Normally studied within framework of multiagent reinforcement
learning (MARL):

> every environment state is a multi-player game (in the
game-theoretic sense) that determines agent rewards

» stationary probability distribution governs transitions between these
games (depending on all players’ joint actions)

» Challenge: from a learner’s perspective opponents could be
learners, too (non-stationary environment)

» Rational learners won't change behaviour in arbitrary ways
» We can do better than in completely unstructured environments

» Hard to achieve balance between learning and teaching; also,
learning always has to be done online
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» Assume two-player interactions in repeated games in very large
agent societies

» Unlikely that each of them has a different strategy, and pointless
to wait until we have played with everyone

» Group agents together by looking for similar behaviour (every
opponent model is a finite-state machine)

» Main result: opponent classification boosts learning speed and
improves average rewards when playing with unknown opponents

» Later expanded this to a two-player soccer playing domain using
Bayesian models rather than FSMs
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Opponent modelling with temporarily stable strategies

» Similar situation as above, but rather than picking a strategy
assume opponent occasionally switches between different strategies

» This can be used to model learning opponents to a certain extent
(their strategies are stable iff they currently have a hypothesis
about us)

» Easy to learn optimal best response strategies toward stable
strategies, challenge: how to detect (and make best possible use
of) transition phases

» Ongoing work, will use hierarchical reinforcement learning methods
and “machine games” studied in game theory
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Nested honesty modelling in repeated games

» Imagine an opponent is being cooperative in situations where
there is a temptation to deceive

» This may be due to them assign some value to the “shadow of the
future” (avoid appearing deceitful to escape future punishment)

» Appled nested Bayesian modelling (“I think that you think that |
think ...") to estimate such honesty values

» Estimation process biased by rationality considerations about the
other player's behaviour in the game (in the honesty-modified
game they should behave rationally)
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Advice-taking in MARL

» Assume a third party that provides agents with some
(reward-irrelevant) information about how they should play with
each other

» This information source might be unreliable (deliberately or due to
lack of knowledge of the interaction problem)

» Developed algorithm that can take such advice into account in a
robust way

» Based on heuristic that constantly monitors whether advice is
useful and whether other agents are following advice, too
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Communication in MARL

» Assume communication actions are available in MARL domains
(very low cost, no immediate impact on reward)

» Can agents learn to use these signals to improve their coordination
abilities?

» Ongoing work: currently able to show that listening or speaking
can be learnt when the respective other functionality is in place,
but hard to learn both at the same time

» In the future we want to extend this to non-cooperative domains
to investigate deception in communication
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Learning of dialogue strategies

» Assume a set of (temporally extended) dialogue strategies is given,
how to learn when to use which one of them?

» Orthogonal to previous cases: learning about communication
rather than communication to improve learning performance

» Developed mechanism for induction of dialogue patterns (hybrid
symbolic-numerical methods)

» Applied hierarchical reinforcement learning for dialogue strategy
selection

» Evaluated in domain of strategic linkage between web sites
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> increasing learner autonomy in distributed learning systems

» methods for cautious/strategic information sharing among learners
» Strategic multiagent learning: mainly interested in

> trying to tackle the fundamental problem of non-stationarity by

developing appropriate heuristics (e.g. stereotyping, switching,
appropriate state abstractions)

» learning how to communicate better, and communicating to learn

better (closely related to my other interest which is agent
communication)

» Any questions?
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