Speech-driven Facial Animation

- how to learn a stream-to-stream mapping? -

Hiroshi Shimodaira (ICCS, CSTR) Junichi Yamagishi, Gregor Hofer, Michael Berger

Speech-driven facial animation?

It's a computer animated talking face: "talking head"

Applications

Film industries

(a good animator can produce 4 \sim 5 frames of high quality speech animation per day)

Computer games

- Agent-based system (spoken dialogue systems)
- Education (pronunciation training), psychotherapy
- Simulator for scientific research

Examples of facial animation

Current automatic facial animation systems:

- Lip motion synthesis synchronised with speech (Lip-sync)
 - SyncFace (J. Beskow, KTH, 2004)
- Lip-sync + facial expression (rule-based)
 - Greta (C. Pelachaud, Université de Paris 8, 2003)

There is still far to go to achieve something like this:

- High quality motion capture (appearance-based)
 - Meet Emily (Image Metrics Inc., 2008)

What we want to do?

- Synthesise realistic head and facial motions from given speech without using semantics.
 - trainable on real data
 - adaptable to new speakers / styles
 - able to generate stochastic motions

Problem formulation

Define the problem as a probabilistic optimisation problem:

$$\boldsymbol{O}^{M^*} = \arg \max_{\boldsymbol{O}^M} P(\boldsymbol{O}^M | \boldsymbol{O}^S)$$

 $O^{S} = o_{1}^{S}, o_{2}^{S}, \dots, o_{L^{S}}^{S}$ sequence of speech features $O^{M} = o_{1}^{M}, o_{2}^{M}, \dots, o_{L^{M}}^{M}$ sequence of motion features

It's not a point-to-point mapping, but a stream-to-stream mapping of real-valued vectors, in which context should be taken into account.

Input \Output	Discrete	Continuous
Discrete	machine translation	text-to-speech
Continuous	speech recognition	(this problem)

- Difficulty
 - The mapping seems to be complex, non-linear, context dependent.
 - Different POIs have different dependencies and different levels of synchrony on/with speech.
 - It's not clear what acoustic/language features and model unit should be used to predict motions of POI.

POI	dependency on speech	literature
mouth & jaw	high	many
head	moderate?	several
eye (gaze, blink)	weak?	very few
eyebrow	weak?	very few

Our approach

- Employ generative models of reasonably small unit.
- Use human readable model unit
- Use models capable of handling different levels of synchrony between the two streams.

Assuming we give a label sequence to each stream:

 $\boldsymbol{u}^M = u_1^M, u_2^M, \dots$ motion label seq. $\boldsymbol{u}^S = u_1^S, u_2^S, \dots$ speech label seq.

$$O^{M^*} = \arg \max_{O^M} P(O^M | O^S)$$

= $\arg \max_{O^M} \sum_{u^M} \sum_{u^S} P(O^M, u^M, u^S | O^S)$
= $\arg \max_{O^M} \sum_{u^M} \sum_{u^S} P(O^M | u^M, u^S, O^S) P(u^M | u^S, O^S) P(u^S | O^S)$

Our approach(cont. 2)

Assuming some conditional independencies between variables,

Our approach(cont. 3)

Using model level synchrony as a constraint, we could assume a common unit $\{u\}$.

$$O^{M^*} \approx \arg \max_{O^M} \sum_{u} P(O^M | u) P(u | O^S)$$

$$\approx \arg \max_{O^M} P(O^M | u^*)$$

$$u^* = \arg \max_{u} P(u | O^S)$$

$$\int_{u^*} Q^{s_{t-1}} q^{s_{t-1}} q^{s_{t+1}} q^{s_{t+1$$

Training & synthesis

Training

Train HMMs with a complete data set (two streams with labels)

Synthesis

- **1. Decode a given speech into a unit sequence [recognition]**
- 2. Generate a motion sequence from the unit sequence [synthesis] (trajectory HMMs)

Model unit for head motion synthesis

Possible units

Domain	Feature	unit
speech	text	phoneme/syllable
	acoustic	word
		phrase
head motion	direction	manual
	(angles)	clustering

Selected unit: 4 types of head motions

postural shift	:	the head shifts axis of movement
shake & nod	:	lateral movement around one axis
pause	:	no movement / rest position
default	:	non-distinctive movement
		or slow movement

Video clip of a current system

Speech-driven animation of

- mouth motion (lip-sync)
- head motion
- eyebrow motion

Conclusions

- Record more training data of good quality/resolution
- Investigate more complex models

$$\boldsymbol{O}^{M^*} = \arg \max_{\boldsymbol{O}^M} \sum_{\boldsymbol{u}^M} P(\boldsymbol{O}^M | \boldsymbol{u}^M) \sum_{\boldsymbol{u}^S} P(\boldsymbol{u}^M | \boldsymbol{u}^S) P(\boldsymbol{u}^S | \boldsymbol{O}^S)$$

but how to implement this?

- integrate with physical models
- Synthesise motions of other POIs, e.g. eye blink/gaze
- Evaluate synthesised animation