Machine Learning in Statistical Machine Translation

Phil Blunsom Philipp Koehn

26 November 2008

Machine Translation

• Task: make sense of foreign text like

非出

木册子爲家長們提供實際和有川的關于時品 的信息,包括如何減少使用非法毒品的危險. 它有助於您和您的家人討論有關毒品的問題. 這本小册子的主要內容已錄在磁帶上,如果您 想索取一盒免費的磁帶(中文), 請在下面的

- Al-hard: ultimately reasoning and world knowledge required
- Statistical machine translation: Learn how to translate from data

Prediction Problem

• Given an input sentence, we have to predict an output translation

Ich gehe ja nicht zum Haus.

 \downarrow

I do not go to the house.

• Since the set of possible output sentences is too large, we need to construct the translation according to some decomposition of the translation process

Original statistical machine translation models (1990s): break down translation to the word level

Phrase-Based Model

Current state of the art: map larger chunks of words (huge mapping tables)

Tree-Based Model

One way forward: generate translation with syntactic structure

Structured Prediction

- A prediction problem
 - given an input
 - predict an output
 - many example (input, output) pairs available
- But: space of possible outputs too large
 - prediction has to be broken down into steps
 - decomposition of the problem is a hidden variable
 - search space too large to explore exhaustively
- Additional trouble
 - there is not a *single* right translation, many are possible
 - evaluation of machine translation unclear

Learning Problem: Word Alignment

 For many models, an essential first step is establishing the word alignment in the training data

- Very little labeled data available
 - \rightarrow typically treated as unsupervised learning problem

Learning Problem: Model Parameters

- The output translation from an input sentence is derived over several steps
 - segmentation of the input
 - word and phrase translation
 - reordering
- Each of the steps is modeled by probability distributions or features
- How do we learn the parameters for these models?

Heuristic Generative Model

- The decomposition of the translation process breaks down into steps
- Each step is modeled with a probability distribution
- Phrase translation probability distributions are estimated by maximum likelihood estimation:

$$p(\text{house}|\text{Haus}) = \frac{\text{count}(\text{house},\text{Haus})}{\text{count}(\text{Haus})}$$

- This is a biased ML estimator, we'd like to replace it:
 - Bayesian approach [Blunsom, Cohn and Osborne, 2008]

10 informatics

Discriminatively Combining Local Models

• Sentence translation is a combination of several component models

 $p_{LM} \times p_{TM} \times p_D$

• These may be weighted

$$p_{LM}^{\lambda_{LM}} \times p_{TM}^{\lambda_{TM}} \times p_D^{\lambda_D}$$

• Many components p_i with weights λ_i

$$\prod_{i} p_i^{\lambda_i} = \exp\sum_{i} \lambda_i \log(p_i)$$

• Optimizing the weights λ_i to directly optimize translation performance

Global Discriminative Model

- Where we are now: a unsatisfying mix of local models and global models
- Grand goal: train all parameters discriminatively to optimize translation
- Note:
 - hidden derivation
 - millions of sentence pairs
 - millions of features
 - \rightarrow heavy computational problem
- Ongoing work
 - Perceptron, MIRA [Arun and Koehn, 2007]
 - probabilistic model [Blunsom and Osborne, 2008]

Deluge of Data

- Parallel texts: 100s millions of words
 - \rightarrow translation models take up giga-bytes on disk
- Monolingual texts: trillions of words
 - $\rightarrow\,$ much more than we can currently handle
- Need for efficient data structures and training methods
 - suffix arrays for on-the-fly translation model [Lopez et al., 2008]
 - randomized language models [Talbot and Osborne, 2008]

13 informatics

Related Task: Tools for Translators

<< [4] Hamburg - Sechs Stunden sprachen sie miteinander. >>

Hamburg -						
enter six						
Hamburg	-	Sechs	Stunden	sprachen	sie	miteinander .
Hamburg	-	six	hours	it	with each other .	
		Six	hours,	it would	be .	
		six,	hours of	it would	to each other .	
		then	few hours	they were spe	eaking	together .
		6	a few hours	spoke		with each other
		six members	working hours	you spoke		with
		six governments	hours ago	were		they
		concurred	time	have		they are
		all concurred	hour	there were	it	each other
		six leaders	hours in	talked	they	work with each other .

Learning task: predicting the next user input

Machine Translaton at Edinburgh

- People
 - 2 faculty: Philipp Koehn and Miles Osborne
 - 3 postdocs, 1 research programmer, 7 PhD students
- Funding
 - European projects: EuroMatrix, EuroMatrixPlus
 - DARPA project: GALE
 - EPSRC project: Demeter
 - Industry: Google, Systran
- Resources for the community
 - our open source Moses decoder is standard benchmark for MT community
 - we organize MT evaluation campaigns, open source conventions, workshops
- Online demo: http://demo.statmt.org/webtrans/