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Sparsity: formal definition

A vector x is K-sparse, if only K of its elements are non-zero.

In the real world “exact” sparseness is 
uncommon, however, many signals are 
“approximately” K-sparse. That is, there 
is a K-sparse vector xK,  such that the 
error k x − x Kk2     is small.
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Why Sparsity?
Why does sparsity make for a good transform?
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Good representations are efficient - Sparse!
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Efficient transform domain representations imply that our signals of 
interest live in a very small set.

Signals of interest

Sparse signal modelL2 ball (not sparse)
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Sparse signal models can be used to help solve various ill-posed linear 
inverse problems:

Sparsity and ill-posed inverse problems

Missing Data RecoveryImage De-blurring
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Sparse Representations and Generalized Sampling:
compressed sensing
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Compressed sensing
Traditionally when compressing a signal we take lots of samples move to 
a transform domain and then throw most of the coefficients away!

Why can’t we just sample signals at the “Information Rate”?

E. Candès, J. Romberg, and T. Tao, “Robust Uncertainty principles: Exact 
signal reconstruction from highly incomplete frequency information,”
IEEE Trans. Information Theory, 2006

D. Donoho, “Compressed sensing,” IEEE Trans. Information 
Theory, 2006 

This is the philosophy of Compressed Sensing…



Page 8 of  14

Compressed Sensing… M.E. Davies

Signal space ~ RN

Set of signals 
of interest

Observation space ~ RM

M<<N

Linear 
projection 
(observation)

Nonlinear 
Approximation 
(reconstruction)

Compressed sensing

Compressed Sensing uses 
nonlinear reconstruction to 
invert the linear projection 
operator
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Compressed sensing
Compressed Sensing Challenges:

• Question 1: In which domain is the signal sparse (if at all)?
Many natural signals are sparse in some time-frequency or space 
scale representation

• Question 2: How should we take good measurements?
Current theory suggests that a random element in the sampling 
process is important

• Question 3: How many measurements do we need?
Compressed sensing theory provides strong bounds on this as a 
function of the sparsity

• Question 4: How can we reconstruct the original signal from the 
measurements?

Compressed sensing concentrates of algorithmic solutions with 
provable performance and provably good complexity
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Compressed sensing principle
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MRI acquisition

Logan-Shepp phantom We sample in this domain

Spatial Fourier 
Transform

Haar Wavelet Transform

Logan-Shepp phantom Sparse in this domain

Haar Wavelet 
Transform

Logan-Shepp phantom

Sub-sampled Fourier 
Transform

≈ 7 x down sampled 
(no longer invertible)

…but we wish to sample here

Compressed Sensing ideas can be applied to reduced 
sampling in Magnetic Resonance Imaging:

• MRI samples lines of spatial frequency

• Each line takes time & heats up the patient!

The Logan-Shepp phantom image illustrates this:
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However what we really want to tackle problems like this…

original
Linear reconstruction 
(5x under-sampled)

Nonlinear reconstruction 
(5x under-sampled)

Rapid dynamic MRI acquisition in practice

(data courtesy of Ian Marshall & Terry Tao, SFC Brain Imaging Centre)
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Synthetic Aperture Radar
Compressed Sensing ideas can also be applied to reduced sampling in 
Synthetic Aperture Radar: Samples lines from spatial Fourier transform. Sub-
sampling lines allows adaptive antennas to  multi-task (interrupted SAR)
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Potential applications…

Compressed Sensing provides a new way of thinking about signal 
acquisition. Potential applications areas include:

• Medical imaging

• Distributed sensing 

• Seismic imaging

• Remote sensing (e.g. Synthetic Aperture Radar)

• Acoustic array processing (source separation)

• High rate analogue-to-digital conversion 
(DARPA A2I research program)

• The single pixel camera (novel Terahertz imaging)
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