Hidden Markov Model-based speech synthesis

Junichi Yamagishi, Korin Richmond, Simon King and many others Centre for Speech Technology Research University of Edinburgh, UK

www.cstr.ed.ac.uk

- I did not invent HMM-based speech synthesis!
- Core idea: Tokuda (Nagoya Institute of Technology, Japan)
- Developments: many other people
- Speaker adaptation: Junichi Yamagishi (Edinburgh) and colleagues

Background

Speech synthesis mini-tutorial

- Text to speech
 - *input:* text
 - *output:* a waveform that can be listened to

- Two main components
 - *front end:* analyses text and converts to <u>linguistic specification</u>
 - waveform generation: converts linguistic specification to speech

Speech synthesis mini-tutorial

- Text to speech
 - *input:* text
 - *output:* a waveform that can be listened to

- Two main components
 - front end:
 analyses text and converts to linguistic specification

• waveform generation: converts linguistic specification to speech

"the cat sat"

"the cat sat" DET NN VB

"the cat sat" DET NN VB ((the cat) sat)

sil dh ax k ae t s ae t sil "the cat sat" DET NN VB ((the cat) sat)

Full context models used in synthesis

aa^b-l+ax=s@1_3/A:1_1_3/B:0-0-3@2-1&3-3#2-2\$2-3!1-....

Full context models used in synthesis

aa^b-l+ax=s@1_3/A:1_1_3/B:0-0-3@2-1&3-3#2-2\$2-3!1-....

phonetic

Full context models used in synthesis

aa^b-l+ax=s@1_3/A:1_1_3/B:0-0-3@2-1&3-3#2-2\$2-3!1-

phonetic

prosodic

pau^pau-pau+ao=th@x_x/A:0_0_0/B:x-x-x@x-x&x-x#x-x\$.... pau^pau-ao+th=er@1_2/A:0_0_0/B:1-1-2@1-2&1-7#1-4\$.... pau^ao-th+er=ah@2_1/A:0_0_0/B:1-1-2@1-2&1-7#1-4\$.... ao^th-er+ah=v@1_1/A:1_1_2/B:0-0-1@2-1&2-6#1-4\$.... th^er-ah+v=dh@1_2/A:0_0_1/B:1-0-2@1-1&3-5#1-3\$.... er^ah-v+dh=ax@2_1/A:0_0_1/B:1-0-2@1-1&3-5#1-3\$.... ah^v-dh+ax=d@1_2/A:1_0_2/B:0-0-2@1-1&4-4#2-3\$.... v^dh-ax+d=ey@2_1/A:1_0_2/B:0-0-2@1-1&4-4#2-3\$....

"Author of the ..."

From linguistic specification to speech

- Two possible methods
 - Concatenate small pieces of pre-recorded speech
 - Generate speech from a model

From linguistic specification to speech

- Two possible methods
 - Concatenate small pieces of pre-recorded speech

• Generate speech from a model

HMM mini-tutorial

- HMMs are models of sequences
 - speech signals
 - gene sequences
 - etc

HMMs

- a HMM consists of
 - sequence model: a weighted finite state network of states and transitions
 - observation model: multivariate Gaussian distribution in each state
- can generate from the model
- can also use for pattern recognition (e.g., automatic speech recognition)

HMMs are generative models

HMMs are generative models

HMMs are generative models

HMM-based speech synthesis mini-tutorial

- HMMs are used to generate sequences of speech (in a parameterised form)
- From the **parameterised form**, we can generate a waveform

- The **parameterised form** contains sufficient information to generate speech:
 - spectral envelope
 - fundamental frequency (F0) sometimes called 'pitch'
 - aperiodic (noise-like) components (e.g. for sounds like 'sh' and 'f')

- Using an HMM to generate speech parameters
 - because of the Markov assumption, the most likely output is the sequence of the *means* of the Gaussians in the states visited
 - this is piecewise constant, and ignores important dynamic properties of speech
- Trajectory HMM algorithm (Tokuda and colleagues)
 - solves this problem, by correctly using statistics of the dynamic properties during the generation process

Generation

- Generate the most likely observation sequence from the HMM
 - but take the statistics of not only the static coefficients, but also the delta and delta-delta too
 - Maximum Likelihood Parameter Generation Algorithm

speech parameter

Constructing the HMM

- Linguistic specification (from the front end) is a sequence of phonemes, annotated with contextual information
- There is one 5-state HMM for each phoneme, in every required context
- To synthesise a given sentence,
 - use front end to predict the linguistic specification
 - concatenate the corresponding HMMs
 - generate from the HMM

Constructing the HMM

- Linguistic specification (from the front end) is a sequence of phonemes, annotated with contextual information
- There is one 5-state HMM for each phoneme, in every required context
- To synthesise a given sentence,
 - use front end to predict the linguistic spread of the original to original the corresponding History of the original to original the corresponding History of the original terms of terms
 - generate from the HMM

pau^pau-pau+ao=th@x_x/A:0_0_0/B:x-x-x@x-x&x-x#x-x\$.... pau^pau-ao+th=er@1_2/A:0_0_0/B:1-1-2@1-2&1-7#1-4\$.... pau^ao-th+er=ah@2_1/A:0_0_0/B:1-1-2@1-2&1-7#1-4\$.... ao^th-er+ah=v@1_1/A:1_1_2/B:0-0-1@2-1&2-6#1-4\$.... th^er-ah+v=dh@1_2/A:0_0_1/B:1-0-2@1-1&3-5#1-3\$.... er^ah-v+dh=ax@2_1/A:0_0_1/B:1-0-2@1-1&3-5#1-3\$.... ah^v-dh+ax=d@1_2/A:1_0_2/B:0-0-2@1-1&4-4#2-3\$.... v^dh-ax+d=ey@2_1/A:1_0_2/B:0-0-2@1-1&4-4#2-3\$....

"Author of the ..."

HMM-based speech synthesis

- Differences from automatic speech recognition include
 - Synthesis uses a much richer model set, with a lot more context
 - For speech recognition: triphone models
 - For speech synthesis: "full context" models
 - "Full context" = both phonetic and prosodic factors
 - Observation vector for HMMs contains the necessary parameters to generate speech, such as spectral envelope + F0 + multi-band noise amplitudes

Sparsity

- In practically all speech or language applications, sparsity is a problem
- Distribution of classes is usually long-tailed (Zipf-like)
- We also 'create' even more sparsity by using context-dependent models
 - thus, most models have *no training data at all*
- Common solution is to merge classes or contexts
 - i.e., use the same model for several classes or contexts
 - for HMMs, we call this 'parameter tying'

Decision-tree-based clustering

Context Dependent HMMs

Model parameter estimation from 'labelled' data

- Actually, we only have word labels for the training data
- Convert these to full linguistic specification using the front end of our text-tospeech system (text processing, pronunciation, prosody)
 - these labels will not exactly match the speech signal (we do a few tricks to try to make the match closer, but it's never perfect)
- We still only know the model sequence, but no information about the state alignment
- So, we use EM (we could call this 'semi-supervised' learning)

Model adaptation

- Training the models needs 1000+ sentences of data from one speaker
- What if we have insufficient data for this target speaker?
- Adaptation:
 - Train the model on lots of data from other speakers
 - Adapt the trained model's parameters using a small amount of target speaker data
 - estimate linear transforms to maximise the likelihood (MLLR)
 - also in combination with MAP

Effective Multilingual Interaction

in Mobile Environments

Training, adaptation, synthesis

Average voice model

Effective Multilingual Interaction

in Mobile Environments

Training, adaptation, synthesis

Average voice model

Transforms

Evaluation

- Objective measures that compare synthetic speech with a natural example (e.g., spectral distortion) have their uses, but don't necessarily correlate with human perception
 - main problem: there is more than one 'correct answer' in speech synthesis
 - a single natural example does not capture this
- So, we mainly rely on playing examples to listeners
 - opinion scores for quality & naturalness, typically on 5 point scales
 - objective measures of intelligibility (type-in tests)

Effective Multilingual Interaction in Mobile Environments

> 198 199 198 199

Intelligibility (WER), English

Effective Multilingual Interaction in Mobile Environments

Intelligibility (WER), English

Effective Multilingual Interaction in Mobile Environments

Intelligibility (WER), English

Intelligibility (WER), English

Recent extensions

Articulatory-controllable HMM-based speech synthesis

- can manipulate articulator positions explicitly
- ability to synthesise new phonemes, not seen in training data
- requires parallel articulatory+acoustic corpus, which we have in CSTR

Articulatory-controllable HMM-based speech synthesis

Tongue height (cm)

+1.5		
+1.0		
+0.5		
default		
-0.5		
-1.0		
-1.5		

Articulatory-controllable HMM-based speech synthesis

Tongue height (cm)

+1.5	\bigcirc	
+1.0		
+0.5		
default	set	
-0.5		
-1.0		
-1.5		

Dirichlet process HMMs

- Fixed number of states may not be optimal
- Cross-validation, information criteria (AIC, BIC, or MDL) or variational Bayes can be used for determining the number of states
- Or use Dirichlet process (HDP-HMM or infinite HMM)

Summary

- HMM-based speech synthesis has many opportunities for using machine learning:
 - learning the model from data
 - parameters (alternatives to maximum likelihood such as minimum generation error)
 - model complexity (context clustering, number of mixture components, number of states, ...)
 - semi-supervised and unsupervised learning (labels for data are unreliable or missing)
 - adapting the model, given limited new data
 - generation algorithms