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Note

• I did not invent HMM-based speech synthesis!

• Core idea: Tokuda (Nagoya Institute of Technology, Japan)

• Developments: many other people

• Speaker adaptation: Junichi Yamagishi (Edinburgh) and colleagues



Background



Speech synthesis mini-tutorial

• Text to speech

• input:     text

• output:   a waveform that can be listened to

• Two main components

• front end:                    analyses text and converts to linguistic specification

• waveform generation: converts linguistic specification to speech
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From words to linguistic specification

sil^dh-ax+k=ae, "phrase initial", "unstressed syllable", ...

sil dh ax k ae t s ae t sil

((the cat) sat)

DET NN VB

phrase finalphrase initial
pitch accent

"the cat sat"



Full context models used in synthesis

aa^b-l+ax=s@1_3/A:1_1_3/B:0-0-3@2-1&3-3#2-2$2-3!1- .....
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Full context models used in synthesis

aa^b-l+ax=s@1_3/A:1_1_3/B:0-0-3@2-1&3-3#2-2$2-3!1- .....

prosodic



Example linguistic specification

pau^pau-pau+ao=th@x_x/A:0_0_0/B:x-x-x@x-x&x-x#x-x$.....
pau^pau-ao+th=er@1_2/A:0_0_0/B:1-1-2@1-2&1-7#1-4$.....
pau^ao-th+er=ah@2_1/A:0_0_0/B:1-1-2@1-2&1-7#1-4$.....
ao^th-er+ah=v@1_1/A:1_1_2/B:0-0-1@2-1&2-6#1-4$.....
th^er-ah+v=dh@1_2/A:0_0_1/B:1-0-2@1-1&3-5#1-3$.....
er^ah-v+dh=ax@2_1/A:0_0_1/B:1-0-2@1-1&3-5#1-3$.....
ah^v-dh+ax=d@1_2/A:1_0_2/B:0-0-2@1-1&4-4#2-3$.....
v^dh-ax+d=ey@2_1/A:1_0_2/B:0-0-2@1-1&4-4#2-3$.....

“Author of the ...”



From linguistic specification to speech

• Two possible methods

• Concatenate small pieces of pre-recorded speech

• Generate speech from a model
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HMM mini-tutorial

• HMMs are models of sequences

• speech signals

• gene sequences

• etc



HMMs

• a HMM consists of

• sequence model: a weighted finite state network of states and transitions

• observation model: multivariate Gaussian distribution in each state

• can generate from the model

• can also use for pattern recognition (e.g., automatic speech recognition)



HMMs are generative models



HMMs are generative models



HMMs are generative models



HMM-based speech synthesis mini-tutorial

• HMMs are used to generate sequences of speech (in a parameterised form)

• From the parameterised form, we can generate a waveform

• The parameterised form contains sufficient information to generate speech:

• spectral envelope

• fundamental frequency (F0) - sometimes called ‘pitch’

• aperiodic (noise-like) components (e.g. for sounds like ‘sh’ and ‘f’)



Trajectory HMMs

• Using an HMM to generate speech parameters

• because of the Markov assumption, the most likely output is the sequence 
of the means of the Gaussians in the states visited

• this is piecewise constant, and ignores important dynamic properties of 
speech

• Trajectory HMM algorithm (Tokuda and colleagues)

• solves this problem, by correctly using statistics of the dynamic properties 
during the generation process



Generation

• Generate the most likely observation sequence from the HMM

• but take the statistics of not only the static coefficients, but also the delta 
and delta-delta too

• Maximum Likelihood Parameter Generation Algorithm



Trajectory HMMs
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Constructing the HMM

• Linguistic specification (from the front end) is a sequence of phonemes, 
annotated with contextual information

• There is one 5-state HMM for each phoneme, in every required context

• To synthesise a given sentence, 

• use front end to predict the linguistic specification

• concatenate the corresponding HMMs

• generate from the HMM
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Example linguistic specification
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“Author of the ...”



HMM-based speech synthesis

• Differences from automatic speech recognition include

• Synthesis uses a much richer model set, with a lot more context

• For speech recognition: triphone models

• For speech synthesis: “full context” models

• “Full context” = both phonetic and prosodic factors

• Observation vector for HMMs contains the necessary parameters to 
generate speech, such as spectral envelope + F0 + multi-band noise 
amplitudes



Sparsity

• In practically all speech or language applications, sparsity is a problem

• Distribution of classes is usually long-tailed (Zipf-like)

• We also ‘create’ even more sparsity by using context-dependent models

• thus, most models have no training data at all

• Common solution is to merge classes or contexts

• i.e., use the same model for several classes or contexts

• for HMMs, we call this ‘parameter tying’



Decision-tree-based clustering

Clustering

Context Dependent HMMs

Yes No

NoYes

Voiced?

Vowel?
Description length for

State occupancy probability for node    

Covariance matrix for node

Dimension

20



Model parameter estimation from ‘labelled’ data

• Actually, we only have word labels for the training data

• Convert these to full linguistic specification using the front end of our text-to-
speech system (text processing, pronunciation, prosody)

• these labels will not exactly match the speech signal (we do a few tricks to 
try to make the match closer, but it’s never perfect)

• We still only know the model sequence, but no information about the state 
alignment

• So, we use EM (we could call this ‘semi-supervised’ learning)



Model adaptation

• Training the models needs 1000+ sentences of data from one speaker

• What if we have insufficient data for this target speaker?

• Adaptation:

• Train the model on lots of data from other speakers

• Adapt the trained model’s parameters using a small amount of target 
speaker data

• estimate linear transforms to maximise the likelihood (MLLR)

• also in combination with MAP



Training, adaptation, synthesis
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Evaluation

• Objective measures that compare synthetic speech with a natural example 
(e.g., spectral distortion) have their uses, but don’t necessarily correlate with 
human perception

• main problem: there is more than one ‘correct answer’ in speech synthesis

• a single natural example does not capture this

• So, we mainly rely on playing examples to listeners

• opinion scores for quality & naturalness, typically on 5 point scales

• objective measures of intelligibility (type-in tests)
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Recent extensions



Articulatory-controllable HMM-based  speech 
synthesis

• can manipulate articulator positions explicitly

• ability to synthesise new phonemes, not seen in training data

• requires parallel articulatory+acoustic corpus, which we have in CSTR
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Dirichlet process HMMs
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• Fixed number of states may not be optimal

• Cross-validation, information criteria (AIC, BIC, or MDL) or variational Bayes 
can be used for determining the number of states 

• Or use Dirichlet process (HDP-HMM or infinite HMM)



Summary

• HMM-based speech synthesis has many opportunities for using machine 
learning:

• learning the model from data

• parameters (alternatives to maximum likelihood such as minimum 
generation error)

• model complexity (context clustering, number of mixture 
components, number of states, ...)

• semi-supervised and unsupervised learning (labels for data are 
unreliable or missing)

• adapting the model, given limited new data

• generation algorithms


