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Abstract

This note rectifies the results presented in section 6 of the publication “Multi-task
Gaussian Process Prediction” [1] regarding the compiler and school applications.

1 Introduction

In [1], the method “Multi-task Gaussian Process Prediction” is proposed as a technique for exploiting
transference across different machine learning tasks. This technique is evaluated on two different
applications: a) the compiler data and b) the school data (see section 6 of the original paper). This
note provides a correction of the results on these applications.

2 New Results

Here we present the updated results for the compiler and school data. Although on average across
all tasks the benefits of multi-task Gaussian process for the compiler application seem to have di-
minished, this method either improves on or provides the same performance as the “no transfer”
method on most tasks. The superior performance of this method over the “no transfer” case still
holds on the school data. Furthermore, multi-task GP has been proved successful for applications
where the assumed covariance decomposition occurs naturally. For example, recently Chai et al. [2]
have applied Multi-task Gaussian processes to the problem of learning robot inverse dynamics and
have shown clear advantages of this method over the “no transfer” scenario.

2.1 Compiler Data

We have come to realize that the results presented for the compiler application in [1, Figure 1] were
not all based on the same partitioning of the training and test data. The MAEs (mean absolute
errors) of the “no transfer” and “transfer parametric” (dotted and dashed lines of [1, Figure 1])
methods were taken from the previously published results of [3, Figure 3]. In contrast, the MAEs
for “transfer free-form” were obtained with a different partition. Consequently, it is difficult to
determine if the difference in performance of the methods is due to the different training partitions
used or due to the methods themselves.

Figure 1 shows the new results when the “no transfer” and “transfer free-form” methods use the
same data partitioning, which is a block-design, i.e. where the input locations are the same across all
tasks, with the input locations (for each replication) drawn at random. This is the same partitioning
used in [1, Figure 1] for the “transfer free-form” technique, so the dotted line corresponding to
the “no transfer” scenario is the only one that has changed. Note that, by definition, the “transfer
parametric” method uses a different partitioning, as the samples selected are based on the canonical
responses (see [3] for details). However, a paired evaluation of this method with respect to the “no
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Figure 1: Panels (a), (b) and (c) show the average mean absolute error on the compiler data as a
function of the number of training points for the sample tasks presented in [1]. no transfer stands
for the use of a single GP for each task separately; transfer parametric is the use of a GP with a joint
parametric (SE) covariance function as in [3]; and transfer free-form is multi-task GP with a “free
form” covariance matrix over tasks. The error bars show ± two standard errors taken over the 10
replications. Panel (d) shows the average MAE over all 11 tasks, and the error bars show the average
of the two standard errors over all 11 tasks. Note that the plots have been slightly offset horizontally
so that the error bars can be easily distinguished.

transfer” scenario is presented in [3] by also showing the performance of the “no transfer” method
when using only the canonical responses. For consistency with the results presented in [1, Figure
1], Figure 1 also shows the performance of the “transfer parametric” method.

We see in Figure 1 that (as in [1, Figure 1]) for sample task 3 the “transfer free-form” method
degrades performance, although all the methods perform similarly. Additionally, (unlike [1, Figure
1]) for sample task 1 and sample task 2 “transfer free-from” does not perform significantly better
than “no transfer”. On average over all 11 tasks, there is only a very small difference between these
two methods. However, by examining the results on the remaining benchmarks in Figure 2, we see
that, in general, the “transfer free-form” method either improves or provides the same performance
than the “no transfer” method.

Results on a Non-block Design

As shown in [1, sec 2.3], a cancellation of inter-task transfer occurs when having noiseless obser-
vations and a full-block design. Hence, we may expect better benefits from multi-task GP by using
a non-block design. Figure 3 shows the standardised mean absolute error (SMAE) for a non-block
training sample design of the compiler data across 30 replications, where we have standardised the
mean absolute error by the MAE obtained with the the simple median predictor of the test data.
We see that “transfer free-form” clearly outperforms “no transfer” on four benchmarks (iir, latnrm,
lpc and spectral estimation) and, on average across all tasks multi-task Gaussian process prediction
outperforms the single task (no transfer) scenario (see bottom right plot in Figure 3).
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Figure 2: The average mean absolute error on the compiler data as a function of the number of
training points for the remaining tasks. no transfer stands for the use of a single GP for each task
separately; transfer parametric is the use of a GP with a joint parametric (SE) covariance function
as in [3]; and transfer free-form is multi-task GP with a “free form” covariance matrix over tasks.
The error bars show ± two standard errors taken over the 10 replications. Note that the plots have
been slightly offset horizontally so that the error bars can be easily distinguished.

2.2 School Data

We have recently found that in our setup for the school data we used a single mean across all tasks
for pre-processing of the target values (exam scores). This has a significant impact on the final
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Figure 3: The average standardised mean absolute error (SMAE) when using a non-block design
on the compiler data as a function of the number of training points. no transfer stands for the
use of a single GP for each task separately and transfer free-form is multi-task GP with a “free
form” covariance matrix over tasks. The error bars show ± two standard errors taken over the 30
replications. Note that the plots have been slightly offset horizontally so that the error bars can be
easily distinguished.

results, and using task-specific means leads to an increase in performance. The updated results are
given in Table 1. Here we see that multi-task GP consistently outperforms the “no transfer” method

no transfer parametric rank 1 rank 2 rank 3 rank 5

31.12 (1.33) 35.83 (1.09) 34.95 (0.95) 36.16 (0.99) 35.54 (1.08) 33.44 (1.32)

Table 1: Percentage variance explained on the school dataset for various situations. The figures in
brackets are standard deviations obtained from the ten replications.

and therefore, for this particular application, there is benefit from transfer across the different tasks.

3 Conclusion

Although it is unfortunate that the results presented in [1] have changed significantly, we have shown
that multi-task GP provides equal or better performance than the “no transfer” method for most tasks
on the compiler application and that it consistently outperforms the single-task learning scenario on



the school data. Finally, multi-task GP has also been shown to have a significant and positive impact
in applications where the assumed covariance decomposition occurs naturally [2].
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