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Ni eu,ai netwoiks have been successful at phoneme dis-
crim jnatíon t ks, but many researchers currentty feel

_ i t

 '

 k b d t d. . . ' t
 th,i the bnt way to deal with longer duration events

?l eUi, ne WOI S Can e U5e O IsCilm l?a e ;s to use a neur,j net,vork   a fiont end to a hjdden
be,tw?,en   erY sim i1ar Phonemes and tì eY ci n m,,,o, modej jhe d, m,,ii i k orm,iib;,g modei,h
andle the vcariabitit,v in time or occurrence io d,,, a,,o iempor,i d ,siort ,o,s  ,s ibe, h died bb
 v using a time-delaY  chitecture folto ved tbe b.,dde, m k,, ,e,og,, ,ei ,,h, ,b emi, e,,iy co,,;d

Y
_

by a tempor,l inteoyration ( ano , Hinton and e,s ,jj poss,hV,ibel, l99O). So far, however, neural net- lble mat '''
woiks have been je  successfui at handijn,  Despite their 'powerful matching and learning proc 
longer dur,tion events that require some- dw es, HM M 's have a serious dr,wback.  They implic-
thing equiv ent to ''time warping'' in order itly  sume that the ensemble of input strings is gen-
to match stored knowledge to the data. hVe erated by a stochastic  nitpstate autom aton ,nd th.is
prn ent a tv  pe of mean  eld network (MFN) strongly límits tbe typn of structure that they can
with tied weights that is c,pable of appEox- eMciently represent. Suppose, for   ample, that 2D
im ating the recognizer for , hidden m arkov independent binary constr,ints operate between the
model (HM   I). In the process of ttling to a  rst and second halfoE , string and tb,t   a r ult of
stable state, the hIFNL  nds a bfend oE likely ajl these sep ate constraints the mutu  infoEmation
tvays of generating tbe input string o iven its between the two halvn is 20 bits.l To model tbese
internai modei of the probabilities of tr,nsi- 20 constr nis, 8 hidden markov gener,tor would need
tions between bidden states and ihe piobabil- ai je t 220 hidden states because the only w,y that
ities oE input symbols given a hidden st,te. the  rst ha1f of a strin,  can constrain the second haif
This blend is a heuristic approximation to is via the hidden state oE the gener,tor as it  nishes
the full set of path probabìlitin that is ìm- gener,ting the  rst half.
plicitlv represented by an RM M recogni,er.   b.dd   t 2 o h.dd t t ,  
i
em
he
,,
ié ,;,g  go,;tbm Eoi tbe MFN ;s ie, ?, l en ?a, OV geneia Oi, l en S a eS lM'

.e,t th  Eo, a, RhiM r ih ,m s., plies 2QO bidden nodes. In a Qeural net that wes dib
.
 O

bi
 e

E
 s

. e  .e' tributed representations, 2aO hidden state vectors onlyOtVeVef, the hIFN lS CaPa e O Uslng l  ,equ, ,es 2o b,tnaryb, dde, un,tts so ;rtbe muiu,i ;,(oi.t 
ributed representations or tbe hidden state, ;. b t tb   i d ' d h ir r ,ch sti.a,d ch;, c,, m,ke ;t e,po,e,i;,iiy moie em  ?a lOn e ?een e IS a? 5'CÔ   ̂ O ' t?0'
. t th H hi 'h d ii.  i. is o enuineiy çomponential, , neural network can be
Clen an an   l 'V en ?O e l?g ,S. ''̂g ̂ expoQeni;,ijy m oie e c;ent ;n representing
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p
roduced by a , enerator that iiself has com- .onent;,i si,tes we y;e, th;s iype or MFN Stialntst In emeCt, tbe OnIY ?aY that a R

' . r j deal witb a set of independent constraints   to use
" , WaY Or 'llO?l̂ g mO " POWe' U 'eP "' the ç,o, produc; or tbe  M M ts tb,t ,vouid be needed
s

p
entations  vithout abaDdonin,d the autom,tic ; h i .   i i . t.
,

i
r,m

d
eie,

i
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 t;m,i;on p,oced,re, ih,; have tO CaP Ure e  COnS Caln SeP,ra e Y, SO l IS U?,ble tO
.yeiy s,.mpie modeis i,.ke HMM, ,s t,ke advantage ofthe Fact th,t the constTaint structure
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 compíex AI representations on � lAs , c,nRete e, ple

, we m;,,ht suppose th,t the  rst
re  t kS  h r or , sentence ;s singuI  or ply, , N tive or passivep t or present tense,  bstr ct or concrete, etc. etc. and!

th t the second half Uagrees" with the  rst h f  onoo all
tha e diR ensions.



can he factorized. TH E LEA RN m C pRO CED U R E pOR
ouE  ;m ;s to devetop a neura1 net q ork alternat;  e co T H E M EA iN FIELD M O D U LES
HlhI ihl 's that can take advantage oF constEaints qvhjçh
cj n be Eactorized by usinom separate hidden units to  'e  sume famitiarity   jtlf mean neld net vork   ,nd
enrorce separ8te constraints. To achieve this K e have just giye a brief overview here. Hop eld ( 19Ŷ4) or Hin-
been forced to us  a matching procedure that is onl

,v a ton (l9S9) give more detailed descriptions. ihIean  etdh
eUristic app Eo  im ation to the recognition procedure net vorks use reI-valued analog uni  with a logistic
used in an HM mi  I, and a learninm

, procedure that is con- actiyatjon functíon that can be yieqved   a determin.
siderable slower than the HhlhE learning procedure foE jstjc appro jm ation to the stoch tic binary units used
a tOm parabIY si2ed netqvork. Eventualty, we hope to in Bolt mann maçhines. hlean  eld net vorks use a
show that tllese disadvantages are more than omset by parallel updatjng algorjtt m to settfe to a locat min.
the ability of the neural netw ork to use a sm ll repre- imum of the mean- eld free energv

  (Hop eld, 1984).
sentation that captures the componential structure of The mean  eld equivalent oF simulated anneIing is to
the constraints em ciently. In this paper, however, we inçre e the gain of ea  unit   the netqrork settfes.
only shoqv that the neural net vork c n use distributed W ith low g8ins, the net vork will tv, picatly settle to a
repfeSeniations to cap ture the componentìal structure state in whi  the units have intermediate ac ti yj ty tev-
and can generalize at least as well as 8 comparablv ets and, using an independence  um ptjon, this state
sized HhIM . - can be viewed   representing a high entrop

,v blend of
m any possible binary states. In the model we describe
each su  binary state in the blend represents a possi-'

ble way of aIí,nning the model of a qvord, stoEed in the
tied weiomhts,    ith the input data.

PREVIOUS APPROACH ES USIN C The ;nput)output tearn;n
om Eute For MFy,s (petN EUR AL NETS and Anderson, 198T) is based on an appro  ime

a

r
t
S
i
 O
o

n
n

of the Bolt mann machine learning procedure (kck-
ley, Hínton and Sejnowski, 1985). The replacement
of stochastic binary units by deterministic re  values

 ridle's alpha-net (Bridle. 1989) is a translation of a units permits mu  faster le ning. Below we present a
Hh  IhI into a recurrent neural net fiamework. He shows di Rerent learning rule for use when the t k   tbe çl -
how to implement the forward p  cIculations of a s; cation of temporally distorted strings (which  ght
XMM-based recogniser (usíng ''sigma-pi'' units with a correspond to vector-quantised tim slices of spee 
tinear output3 and he presents a gradìent-bæ d back- data)  to one of N possible Uword'' models (qvord is
p

A

tOp

g

agation training method.   in quotes as the entity may actually be a phoneme or
.dle po. h , MM some other unit - word is used for convenience only).lntS OU t

, t iS im plementatlOn OE a H
in
S

 a n
rl

eural network points the  y forw d to other Ea  word h  its own mean- eld modute which com-
methods of constructing and training networ  whiçh putes a score indicating how likely it was that that
oRer more oneneral non-linear structures going beyond model could have generated the particular string pre-
HMM methods. Watrous (Watrous et  l., 1990) and sented. Each module h  weìo ht constraints as shown
 uhn (Kuhn ef  l.. 1989) have investigated training in Fig. l tbat permit dynamic time warping in a sim-
recurrent networks for some problems in spee  recog- ilar manner to HMMs. Then the word is cl si ed

' nition such as phoneme d cri nation, using the ba -   belonging to the model that pEoduc  the bighest
Propagation learning rule. Otben 5ucb as W íllia  score. The score q;(y) for module i when pr ented
and Zipser (1988) and Cleeremans ef  l. (1989) have with string y is
looked at tasks wbich involve le nìng  nite state au-
tomata  vith recurrent nets, but from the vìewpo;nt or q, ( ) -- i F (Y) (l)
predicting the ne,Kt symbot given left conte, t. How-
ever, to date the ;,,u  or iLt;m e_warp;ng,, have not where Fm represents the free eneromy of the module at
been directty addr ed by th;s woEk. a Minimum of free eneromY. This minimum is attained

by performinom the mean  eld equivIent oE simulated
These recurrent nets allow a  rampby-rrame'' pN   nea ;ng Erom a h;gh temper,tu,e to r -

_  I
cessing of the incoming data. An alternatjye to this js
to iLspat;al; e,, t;me by 1,y;ng out the data ;, an ;n_ Witb activities of the units in the range  O, l

'

 , a mean
put bu er _ the method used ;n th;s p,per. Tb  b   e1d module has free enero y
a number of disadvantages, but does mean that all of
the input data is readily available, where  ;n recur- F -- --

2
1   p, p, w, , +T  ,  lnp, +(l-p, ) In(l -p, )I

rent nets the informatíon on the important propertjes ;,  t; , 
of the inPut must be e.Ktracted and stored in the states (2)
Of the hidden Units, qvhere p,  is the activation oE the unit i. At a minjmum
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Figure l . Part oE a lM FN showing some of the w, eight constr nts (not aIl iveights to the symbol units are shown)

of F the activities obey where 6, m is the KroQecker delta.

l   ) (n) This g,adient can then be used by steepest ascent tech-P' i '(-r  PiW'i ' n;ques oc more soph:st:cated i:nese  /con;ugate
.
 ) gradient methods to m imize B . Th  le ing pr 

vhere  (x) is the lo, istic functìon  (x) -_ �,+ _,. cedure has the navour of a rule that m mi   ??e
mutual inEorm ation bem een tbe input vectors and the

At tbe minimUm, tbe deriVatiVe Or Fm ?ith reSPect to cl i cation.   it m  mìzes the r;(y3's whicb take
a particular weight at T -- l is given by ( inton, 1989) ;nto aççouni the sco,es of the otber modules, rather  

aF  tb  just m Ki zing the score of the correct class. In
-a "M = - < p, p  >" (4) fact, if the q, (y)'s represent the probability of mod-
Wi  ule i producing si,jng y, then tbe 8lgorithm exactly

whe,e < >m ;nd;cates ihat we are cons;der;ng moduIe m mi eS the MUtU  information.
m . The learning  le for ea  module is bg d on iQ-
creasing the norm ized score for th$e occasions when T

sE
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s
ED    TH E

tbe module is the correct generator of the string, and
decreasing it othervise. De ne the normali ed score
to be

q;(y)   ( ) To test the leaEning al,morithm shoivn above, hvo word
'i(Y) i � N   (yj ' '  models were set up using  M  Ms  th componential

i=l i
 . structure.  MMs were used because it is easy to gener-

Then the objective function to be m Kimized bv, the aie  d iest data with g Ml hls, and because tbe Baum.
trainìng iS .  Vel  training aIgorithm (Baum et  l., 19íO)   opti-

B -_   ln r, (y) (6) mal   a disc min n1 trainiQg procedure for data gen-
 ,,,mp(,, .   erated by  hIms (Brown, 198T). This means that we

whe,e ,   ,,dex  ihe c
 Y
o,,e,t word çl s D, nere,,, ,,, ,g can Eairly compare le8rn g by  MMs and the neural

w;th , pe,t io we, ghi w , , modujém ive gec networ s.i   I
ag Good datasets ror discriminant tasks must h  e sim-

--    < p, p   ̂ f6, m - rmI (í) ilar zero ordec statistics (symbol frequencies3. other-Ŵ;   ( wise ,ood disc,imination can be açbieved by Hh, E Ist, OmP ,   o



�  ewith just one unit which simpl v decec.t.   the sy7nhol Fint ordeE hIarkov models gave 28 errors on the testfrequencies, even thou,mh the ,meneratin,n Hh; IhIs I ad data. Nine sc,t.e Hh. Ihi Is trained bv. tl,e B um-h 'elchmany more states. The data tve used :  as gener, ted algorithm gave an average of 18.25 errors and si,K-stateby the ''cros product'' of Wvo three state NhIMs. The HhlW: s g,ve an average of 64.68 errors with a standardstate transìtion diagram Eor the three state Hh lhIs is deviation of 8.íO on L6 runs, vith a best performi ncesho vn in Fig. 2 of 52 errors. 'REsuLTs AND DISCUSSIoM2 n si.NetwOrkS Wi th Si x Un i ts in eaCh hi d detraìned on the task. Two sligbtly dimerent alCrechwiteetc-
  tures    eEe tríed. In one, tbe hjdden units were parti-

tioned into two fully connected groups oE three units
ea , and the symbol u,its were fully connected to aEl
unjts. In the other, there w  no such split, all sjK

1 . 3 hidden units being fullv, connected. The tr níng tv 
carried out vìth a conjugat o radient with restarts at-

1
 , orithm , stoppino  when the number oF errors on the

cros validation set began to increase.

s t te tr nsition The resujts of the simulations were 29 and 41 errors on
  the test data for two runs qvith the split weight  , and

di gr  31 erEors ror , run wi¬h ful1y conneçt  weights. These
are signi c tly better tb  the results of the ij state
HM  Ms, indicating that componential structure is bp

Figure 2 . State transition diagram for the three state ;ng d;sçoveied by the networbs.  Eiher p,oof of this
NMMS w  found by analysing the unit activitin. In some of

the split networks ea   oup of t ee u,its was found
One three state  MM called the ABC model produced ¬o develop a djstribuied çoding of one of the çomp 
symbols ''a'' , b̂" and Uc'' vith high probability in neni generators' state. por tbe network without a split,
states l , 2 and 3 respectively. The ACB model pr  the açijyjtj  of tbe hjdde, units show Mat the state
duced ''a'' , ''c'' and ''b'' in states l , 2 and 3 respectively. of one of the çomponen  ig represented by the activ-
The probability of producino  the correct symbol was ;ti  of  1 sjx unjts, the other generator's state beinoD
O.94, and the p Eobabilìty of producing the other sym- indic8ied by sm 1 modulations in tbese activiti .
bols was O.03 . The transitio, from the start state to
e,  or the ge,erat;,g st,i  w  equ;probabje so that It iS batd for tbe hlFY le n g rUle tO COmPete
st,;,gs ge,ei,ted ,eie equ,jjy j, bejy to beg, , w, th Lca  with tbe Bau -hVelcb algorithm when learning to di 
cEb,i oi Kçii. ' criminate d8ta generated by non-componential  M hIs.

This is partly becau  the MFM lear ng rule   a step
To make componential data, one dataset was produced si e dependent method of gi8dient  çent, rather than
from tbe cro -product of two ABC models,  d the a re. t;m t;on algorithm .

other dataset  vas produced from t vo ACB generators.
The symbojs output by the çross_p Eoduct  m M s we W itb seqUenC  gener8ted by tWO tbtee-?tate  M hls,

,

c

e

o

j,ted to ihe iwo çompo,e,i HM h, is by the roijo,;,g the potential bene ts oEMPYs are small because 3+3
de is not mu  smaller tb  3 x 3. We  e working on

further simulations  itb data generated by pairs of
fouE-s t,ie  M hls , whi  shoujd show the advantao p_s

onen  output  . a a a b b bc c c . or the hIFys mo,e cjear1y. It ;, ajso po ;bje to de_
o en2 output : a b C a b C a b C ,. s;gn sto  t;c ,etwoEbs w;¬b ar ;ieciur  s;m;lar co

that of Fig. l that will produce data which cannot be
COmbined OUtPUt : l 2  3 4   6 7 8 9 ge,era¬ed by gM M s of pojynom ially Eelated si e.
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The symbol frequencies for each of the nine symbols
were similar between the data generated by the tvo Thanks go to Tony Plate foE belp witb tbe Xerion con-
cros product o enerators. Datasets of 1000 e xampln nectíonist simulator, and to Radford Meal for bis ah, lhj l
or strings si,x sv_ mbofs long onenerated by each cro - progra . Steve Nowl , Evan Steeg, Tony Plate and
product HhlM were used   a training set, with t t Prof. Evangelos Milios pro ded help l comments on
and cross-valida;ion sets also oE 100O exampln each. the M .Sc thesis version of this worb.
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