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Abstract

Carreira-Perpiñán and Williams (2003) conjectured that a homoscedastic Gaussian mixture of M compo-
nents in d > 1 dimensions has at most M modes. Prof. J. J. Duistermaat (personal communication, 2003)
provided the counterexample of a 3–component mixture in d = 2 where the Gaussians are located at the
vertices of an equilateral triangle; for a certain range of variances modes are present near to the vertices and
also at the centre of the triangle. In this paper we illustrate the nature of the counterexample and compute
the range of variances for which there are more than 3 maxima. We also extend the construction to the regular
simplex with M vertices and show that for M > 2 there is always a range of variances for which M +1 modes
are present.

1 Introduction

The Gaussian kernel is used in a number of fields. For example, Gaussian mixtures (GMs) are a flexible density
model in statistics and machine learning, allowing the representation of complex, multimodal density functions
in several dimensions. In scale space theory (Lindeberg, 1994), convolution of a signal with a Gaussian kernel at
different scales is a convenient way to obtain blurred versions of an signal, whose maxima can be used to locate
meaningful objects. It is known that blurring a 1D function with the Gaussian kernel cannot create new modes
as the scale increases, and that the Gaussian is the only kernel with this property, see e.g. Koenderink (1984),
Babaud et al. (1986), Yuille and Poggio (1986). However, in 2D or higher the Gaussian kernel can also create
modes. Lifshitz and Pizer (1990) gave an example of this where two “mountains”, one slightly higher than the
other, are connected by a narrow ridge. For zero blurring there is only one mode, but as the amount of blurring
is increased the lower mountain also becomes a mode.

A related question, originally considered by Carreira-Perpiñán (1999), is this: can a GM with M components
have more than M modes? Noting that convolving a delta mixture with a Gaussian kernel gives a GM and
using the earlier scale-space theory result, Carreira-Perpiñán and Williams (2003) proved that in 1D any GM
(possibly with different variances) has at most M modes. Since the creation of modes in 2D is a rare event,
they conjectured that a GM with M isotropic components in d > 1 dimensions could not have more than M
modes. J. J. Duistermaat (personal communication, 2003) provided a counterexample for this conjecture which
we describe in section 2. It is particularly interesting as (i) it shows that mode creation can occur when the
original function (before convolution) is a finite number of delta functions and (ii) as opposed to Lifshitz and
Pizer’s construction it is an analytic example that can be fully analysed with the usual tools of calculus.

Below we consider a homoscedastic GM with M isotropic components in d > 1 dimensions, of the form:

p(t) =

M
∑

m=1

1

M(2πσ2)d/2
e−

1
2‖ t−µm

σ ‖2 (1)

for scale σ > 0 and centroids µ1, . . . ,µM ∈ Rd. For σ → 0, p(t) has M modes (near the centroids) while for

σ → ∞, p(t) has 1 mode near the centre of mass 1
M

∑M
m=1 µm. We seek values of σ for which more than M

modes exist.
The structure of the remainder of the paper is as follows. In section 2 we illustrate Duistermaat’s counterex-

ample, and in section 3 we provide a analysis of general case of the regular simplex with M vertices, with a
Gaussian at each vertex.
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2 Duistermaat’s counterexample

Duistermaat’s counterexample consists of a 2D Gaussian mixture withM = 3 isotropic components in the vertices

of an equilateral triangle1. We take the centroids at (1, 0), (− 1
2 ,

√
3

2 ) and (− 1
2 ,−

√
3

2 ). For a narrow interval of

scales σ1 < σ < σ3 (where σ1 =
√

2
2 ' 0.7071 and σ3 ' 0.7391) there are 4 modes, one at the triangle centre and 3

near the centroids (see Figure 1). The central mode is difficult to discern because the density is very flat around
it. As σ increases through σ1 from below, the three saddle points shown in the top plot of the right column of
Figure 1 merge with the local minimum at the centre and turn into a local maximum. As σ increases further to
σ3, the three saddle points illustrated in the middle row of Figure 1 merge with the central local maximum and
the three original maxima disappear.

Rather than analysing the specific counterexample, we analyse the more general case of a M -vertex simplex
Gaussian mixture; Duistermaat’s counterexample corresponds to M = 3.

3 A M-vertex simplex Gaussian mixture

We first describe the construction of a regular simplex and then analyse the corresponding Gaussian mixture.
Consider the M -dimensional space RM , and set D = M − 1. For m = 1, . . . ,M let the mth centroid be

µm =
√

(D + 1)/D em, where em is the unit vector along the mth direction. Then the centre of the simplex is

at c = 1/
√

D(D + 1) (where 1 is the vector of ones) and ‖µm − c‖ = 1, so the simplex has unit circumradius.
The scale value σ is then relative to the circumradius. Notice that all of the centroids and c obey the equation
1T t =

√

(D + 1)/D. For example for M = 3 we obtain the equilateral triangle lying in the plane 1T t =
√

3/2.

As all the vertices and the centre of the simplex lie in the hyperplane 1T t =
√

(D + 1)/D, the M -vertex
simplex can be embedded in RM−1. Note that the density falls off as a Gaussian along the 1 direction. One
consequence of this is that when the centre of the M -vertex simplex is a minimum in M − 1 dimensions it will be
a saddle point in M dimensions. For example, for the triangle (M = 3), in 2D we get a minimum at the centre for
σ < σ1, as shown in Figure 1. However, considering the triangle embedded in 3D with 3D Gaussians we obtain a
saddle point at the centre. If we use the above construction in d > M dimensions then the density will also have
a Gaussian decay on the additional dimensions.

Given the simplex defined above in M = D + 1 dimensions, we locate a Gaussian at each vertex to obtain

p(t) = K

M
∑

m=1

e−
1
2‖ t−µm

σ ‖2 K =
1

M(2πσ2)M/2
. (2)

Then one can compute the gradient and Hessian at the simplex centre (see appendix A):

g(c) = 0 (3)

H(c) = β
(

(D + 1)(1−Dσ2)I− 11T
)

(4)

for D ≥ 1, where β = Ke−
1

2σ2 /Dσ4. The Hessian has eigenvalues −β(D+1)Dσ2 associated with the eigenvector
1 (multiplicity 1) and β(D + 1)(1−Dσ2) associated with the degenerate eigenvector space 1⊥ (multiplicity D).
Thus the centre is always a critical point, in particular a saddle, catastrophe and maximum if σ2 < 1

D , σ2 = 1
D

and σ2 > 1
D , respectively.

Now let us consider the points inside the simplex. All the critical points of p are here, since the simplex is the
convex hull of the centroids, which contains all the GM critical points (Carreira-Perpiñán and Williams, 2003).
By symmetry we need only consider points along the axis through µ1 and c. Further, we are only interested
in points between µ1 and c (which is where the mode coming from the µ1 centroid lies). Thus, we reduce the
problem to a one-dimensional one by transforming t = (1−x)c+xµ1 for x ∈ [0, 1]. Now x indicates the distance
relative to the distance between the simplex centre and vertex. Simplifying eq. (2) we obtain

p(x) = Ke−
1
2 (

x−1
σ )

2
(

1 +De−(
D+1
D ) x

σ2

)

p′(x) = −K

σ2
e−

1
2 (

x−1
σ )

2
(

x− 1 + (1 +Dx)e−(
D+1
D ) x

σ2

)

p′′(x) = −K

σ4
e−

1
2 (

x−1
σ )

2
(

σ2 − (x− 1)2 + e−(
D+1
D ) x

σ2

(

Dσ2 − (1 +Dx)

(

x+
1

D

)))

.

1A related construction (though not for GMs) appeared in Duistermaat (1984, pp. 96–97).

2



σ0 = 0.3 → ←

←

σ1 =
√
2/2

σ2 = 0.73 →

←

←

σ3 = 0.739135

σ4 = 1

Figure 1: Duistermaat’s counterexample: a GM in D = 2 dimensions with M = 3 homoscedastic components
centred at the vertices of an equilateral triangle, for interesting values of the scale σ. We take the GM centroids

at (1, 0), (− 1
2 ,

√
3

2 ) and (− 1
2 ,−

√
3

2 ). Left : contour plot of the square x1, x2 ∈ [−1, 1]. The GM has 4 modes
(marked +) for scales σ ∈ (σ1, σ3). Note that the spacing between the coutours is reduced near to the origin since
the density is almost flat there. Middle: contour plot of the square x1, x2 ∈ [−0.1, 0.1] to zoom into the origin.

The origin is a catastrophe for σ = σ1 =
√

2
2 ; it passes from being a minimum for σ < σ1 to being a maximum

for σ > σ1. Right : schematic evolution of the critical points (maxima •, minima ◦, saddles ×, catastrophes ∗).
The arrows indicate the direction of movement of the saddles with increasing σ (the maxima from the centroids
always move towards the origin).
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We are interested in the critical points of p(x) (and so of p(t)) as a function of the scale parameter σ > 0 and the
dimension D. The critical points occur for p′(x) = 0 and so must be solutions of the following implicit equation:

F (x, σ,D) = x− 1− e−(
D+1
D ) x

σ2

1 +De−(
D+1
D ) x

σ2

= 0. (5)

As a function of x ≥ 0, the second term in F (x, σ,D) is convex in (0, Dσ
2

D+1 logD) and concave otherwise.

Consider the point x = 0 (the simplex centre). This verifies p′(0) = 0 and p′′(0) ∝
(

1
D − σ2

)

. Thus, it is always
a critical point, in particular a saddle, catastrophe and maximum if σ2 < 1

D , σ2 = 1
D and σ2 > 1

D , respectively
(paralleling the earlier result for the Hessian). Call σ1 = 1√

D
the scale value for the first catastrophe.

Since F is continuously differentiable with respect to x and σ and ∂F/∂σ 6= 0 for σ > 0 and x > 0, eq. (5)
locally defines a curve σ = σ(x) by the implicit function theorem. Likewise, if ∂F/∂x 6= 0 we have locally a curve
x = x(σ); for each critical point we have one such curve, which gives its scale-space trajectory. When ∂F/∂x = 0
at a catastrophe point, the curves change topology (e.g. the critical points merge).

For D = 1 (M = 2 components) equation (5) becomes x = tanh (x/σ2) which has at most one solution
in (0, 1); see Figure 2 (left). This corresponds to a catastrophe at σ = 1 where two maxima coming from the
centroids annihilate with the minimum at the centre to create a maximum at the centre. Thus, in this case the
number of modes is always at most 2, in agreement with earlier results.

For D > 1 the equation (5) can have at most two solutions in (0, 1), one a maximum coming from the µ1

centroid and the other one a minimum2, while the centre is a maximum. This corresponds to the appearance of
an extra, (M + 1)th mode at the centre. The sequence of events with 0 < σ0 < σ1 < σ2 < σ3 < σ4 is as follows:

σ critical points in (0, 1)
σ0 minimum at x = 0, maximum near x = 1
σ1 = 1√

D
catastrophe at x = 0 (minimum at x = 0 merges with saddle coming from x < 0), maximum
at x < 1

σ2 maximum at x = 0, saddle, maximum at x < 1
σ3 maximum at x = 0, catastrophe at x = x∗ (saddle annihilates with maximum at x < 1)
σ4 maximum at x = 0.

Here, σ1 and σ3 are determined byD, while σ0, σ2 and σ4 are any value in (0, σ1), (σ1, σ3) and (σ3,∞), respectively.
Figure 2 (right) shows the F (x, σ,D) curves for σ0, . . . , σ4, for D = 4. Figure 3 shows the corresponding

density functions p(x) (along the centre-vertex axis); the inset reveals for σ2 the presence of a maximum at x = 0
and another at x < 1. Figure 4 shows the motion of the critical points in scale space for D = 4. Figure 1(right)
shows the evolution of all critical points (not just along the centre-vertex axis) for D = 2.

Let us now compute the value σ3 for the second catastrophe, for fixed D. For σ > σ3 there is only one critical
point (at the origin), i.e., the curve F (x, σ,D) does not intersect the x-axis for x > 0. Hence, σ3 corresponds to
the largest σ for which F (x, σ,D) = 0 for x > 0; let the intersection of F with the x-axis be at x∗. Solving for
σ2 in eq. (5), differentiating with respect to x and equating to zero we obtain an equation for σ2

3 and another for
x∗ ((8)–(9) below). An alternative way is to require F (x∗, σ3, D) = 0 (eq. (5)) and ∂F/∂x|x=x∗,σ=σ3

= 0 (when
the condition for the implicit function theorem fails, at the catastrophe) to hold simultaneously. At x∗ we have
(from (5))

x∗ =
1− e−γx

∗

1 +De−γx∗
(6)

where γ = (D + 1)/Dσ2
3 . This can be rearranged to give e−γx

∗

= (1 − x∗)/(1 +Dx∗). Differentiating F wrt x
and using (6) we obtain

1− γe−γx
∗

1 +De−γx∗
− Dγx∗e−γx

∗

1 +De−γx∗
= 0. (7)

Substituting for e−γx
∗

from above we obtain after some manipulation

σ2
3 = (1− x∗)(1 +Dx∗)/D. (8)

By taking logs of e−γx
∗

= (1− x∗)/(1 +Dx∗) and using (8) we finally obtain the self-consistent equation

log
1 +Dx∗

1− x∗
=

(D + 1)x∗

(1− x∗)(1 +Dx∗)
. (9)

2This critical point is a minimum along the x-axis but is a saddle point in D dimensions.
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Figure 2: Evolution of the curve F (x, σ,D) from eq. (5) for fixed dimension D as a function of σ, for 5 representa-
tive values of σ, σ0 < σ1 < σ2 < σ3 < σ4, where σ1 and σ3 are the first and second catastrophes, respectively. Left :
for D = 1 (M = 2 components), the curve F (x, σ,D) intersects the x axis at most once in (0, 1), so σ1 = σ2 = σ3

and there are only 3 curves. Right : for D > 1, F (x, σ,D) intersects the x axis twice in (0, 1) for σ ∈ (σ1, σ3).
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The curves correspond to the same σ values as in fig. 2 (right).
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Figure 4: Evolution of the critical points for the segment x ∈ [0, 1] for D = 4 for σ ≥ σ1 = 1
2 . There are three

critical points: a maximum at the origin x = 0 (red vertical line); a saddle travelling rightwards from the origin
(blue curve); and a maximum travelling leftwards from near the centroid at x = 1 (red curve). The latter two
annihilate at the second catastrophe σ3 ≈ 0.592183 at x∗ ≈ 0.574862. The function F (x, σ,D) = 0 on these
critical point curves.

Numerically, x∗ can be obtained by the following fixed-point iterative scheme with initial value x = 1
2 :

x← 1− (D + 1)x

(1 +Dx) log 1+Dx
1−x

.

Figure 5 shows the dependence on the dimension D of the interval

∆σ = σ3 − σ1 =

√

(1− x∗)(1 +Dx∗)

D
− 1√

D
(10)

where the extra mode at the origin exists. This interval is zero for D = 1, peaks at about 0.2833 for D = 698,
and decays thereafter. Although σ1 and σ3 decrease monotonically with D, they do so at different rates, hence
the maximum for ∆σ(D).

3.1 The M = 3 case: the equilateral triangle

The equilateral triangle is also a counterexample in any dimension d > 2. This is because p(t) becomes the
product of two terms p(t1, t2)p(t3, . . . , td) (where we take the basic triangle construction to lie in 2D). p(t1, t2)
is the mixture of 3 Gaussians in 2D we have analysed above, while p(t3, . . . , td) is a N (0, σ2I) density on the
remaining dimensions. Thus, the centre remains a critical point and the Hessian at the centre is block diagonal.
There is a t1, t2 block, and the remaining block equals a negative constant times the identity. Hence, if the 2D
Hessian is negative definite, the origin is a maximum; otherwise it is a saddle. Finally, the density value p(x)
along the centre-vertex axis is proportional to the 2D case. Thus, the critical intervals for σ are still given by
the 2D case. In summary, everything remains as in the 2D case, except that for σ <

√
2/2 the origin is not a

minimum but a saddle.

4 Discussion

Adding a very small amount of noise to the centroids, mixing proportions or covariances in the triangle construc-
tion still preserves the appearance of a fourth mode at the centre. However, adding a larger (but still very small)
amount of noise prevents it. Thus, the mode creation at the origin is generic but fragile.

The simplex construction creates M + 1 modes from M Gaussians. It is interesting to ask if it is possible
to get a greater productivity. For example we can consider a triangular lattice, with Gaussians at every vertex.
In fact in this case numerical experiments show that the phenomenon disappears and we do not get additional
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modes. However, after being told of the simplex construction David MacKay constructed a “Kekule lattice”3 and
has shown that asymptotically this has 5/3 times as many modes as Gaussians as the size of the lattice goes to
infinity, see http://www.inference.phy.cam.ac.uk/mackay/gaussians/.
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A Gradient and Hessian of a Gaussian mixture

For a Gaussian mixture density

p(t) =
M
∑

m=1

πm |2πΣm|−
1
2 e−

1
2
(t−µm)TΣ−1

m (t−µm) t ∈ RD

the gradient g(t) and Hessian H(t) are as follows:

g(t) =

M
∑

m=1

p(t,m)Σ−1
m (µm − t),

H(t) =

M
∑

m=1

p(t,m)Σ−1
m

(

(µm − t)(µm − t)T −Σm

)

Σ−1
m .

References

J. Babaud, A. P. Witkin, M. Baudin, and R. O. Duda. Uniqueness of the Gaussian kernel for scale-space filtering.
IEEE Trans. on Pattern Anal. and Machine Intel., 8(1):26–33, Jan. 1986.
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