CABS:. A Case-Based and Graphical Requirements
Capture, Formalisation and Verification System.

Peter J. Funk

Ph.D.

University of Edinburgh
March 1998

Abstract

The use of formal specifications based on varieties of mathematical logic is becoming
common in the process of designing and implementing safety critical systems and practices
for hardware design. Formal methods are usually intended to include in the specification, all
the important details of the final system in the specification, with the aim of proving that the
specification possesses certain properties and lacks other unwanted properties. In large,
complex systems, this task requires sophisticated theorem proving, which can be difficult and
complicated. Telecommunications systems are large and complex, making detailed formal
specification impractical given current technology. However, formal “sketches’ of the
behaviours the services provide can be produced, and these can be very helpful in locating
which service might be relevant to a given problem.

This thesis describes CABS, a case-based approach that uses coarse-grained graphical
requirements specification sketches, to outline the basic behaviour of the system's functional
modules (called services), thereby allowing us to identify, re-use and adapt requirements
(from cases stored in a library), to construct new cases. The matching algorithm identifies
similar behaviour between the input examples and the cases stored in the case library. By
using cases that have already been tested, integrated and implemented, less effort is needed to
produce requirements specifications on a large scale. Using a hypothetical
telecommunications system as an example, it will be shown that a comparatively simple logic
can be used to capture coarse-grained behaviour and how a case-based approach benefits from
this. The input from the examples is used both to identify the cases whose behaviour corre-
sponds most closely to the designer's intentions, and also in the process of adapting, validating

and, finally, verifying the proposed solution against the examples.

Contents

1. INTRODUCTION.....citttiteertueirtieetieesisess s ssese s sesss s sessessssesssstssssessssssesassessssessssssssssssssssssssssssssesssseens 1
11 FUNCTIONAL REQUIREMENTS PROBLEMS AND BENEFITS.....cciniriierensinesineesineisesessesssensssessssenes 2
111 Previous Experience and Domain Related Problems...........occeennncnncnencneneeneeeneeeens 4
12 CAPTURING AND FORMALISING REQUIREMENTScuriterenterenseneesesessnsessssssessesesssssssessssessssssssssseens 6
121 Identifying Smilar BENAVIOU ...ttt 7
13 A SCENARIO SHOWING HOW CABSMAY BE USED.....c.vvueerereereseernsnessssessssessssessssssssssssssssessssssssssns 8
1.3.1 FromService ldeato Formalised REQUIFEMENLS........ccccvvieeeirirerssieesese st sssese s sssens 8
14 STRUCTURE OF THESIS....ccctturetereureressereaessseessssssssesssessssessssessssssssssssssssssssssssssssssssssesssssssssssssssnsssssssns 11
2. BACKGROUND.cooitiiterticirtieesti ettt s e tb bbb bbbttt 13
21 REQUIREMENTS ENGINEERING.......ccruttreuteressereaseressssseeassssessssessssessssesessesssssssssssesssssssssssssssssesssessssssnees 13
22 FORMAL IMETHODS.....cttiuetrereeseesessssessssessesessssssssssssssssssssssssssssssssssssssesssssssssssssssssssssssssssessnsesnsesnnsesnnes 15
2.2.1 Issuesof Formal Methods and their Relation to this Research...........ccooovvenccncnicenienen. 18
23 TELECOMMUNICATIONS AND FORMAL REQUIREMENTS......cotutereurereereseresesensesessssssssssessessnsssenes 2
231 Specificationsin TeleCOMMUNICALIONS.........coveeireiererireee e 27
24 GRAPHICAL NOTATIONS....cturiuttreucirtssireas ettt st bbb sessbsese bbb s s ssssssensens 28
O = (0= OO 31
25 CASE-BASED REASONING......cortutereutiteeinteesssiesess et et sseses s sstssessssessssssssssssssssessssessssssssssssssssssssssens A
3. INTRODUCTION TO CABS ...ttt s e bbbt 37
31 OUTLINE OF THE CABS SYSTEM ..oiitieireeeseeeseseessesessssessssesstsessssessssssssssssssssssssssessssssssssssssssessssesns 33
4. GRAPHICAL INPUT EXAMPLESEXEMPLIFYING BEHAVIOUR........coovtoirieintieiniieineieesiseeienas 43
41 A U NODE ..ttt s R bR R R £ AR ARt b bbb s bt 49
411 Creating NOUES........couiirieerieeetrie ettt bbbt 50

\ CONTENTS

T B T 1 K= o g N0 ST 50
42 A\ LINK ettt bbb bR bbbt 53
421 Defining or REfINING LINKS. ..o sssesssseees 55
43 THE USE OF GRAPHICAL INPUT EXAMPLES IN CABS.......ooiiiirieireieireieineiseseisesee e ssiessssenaas 58
5. CASE LIBRARY ...ttt sttt bbbt bbb bbbttt 60
51 TERMS e eeereesesesessesessesessesess st ssse st sssseses e st e e s e s ee e s eeseseessseeseseese s aesesansesnsessnsaesnssesnsansesnsesnnsesnnsesnns 62
511 Sgnificance Of TEIMINAIMES.......cccoierreeeeresssis st ssesssste s ssssssssssssssessssesssssssssssssssssenses 66
5.1.2 Instances, Arguments and SOITS........cooovcceiirieeinereiee sttt sssesssssesesssnes 67
5.1.3 CONSIFAINS ON TEIMS....cucueireiirrererireeeeeresesessesesessssesesessssssssesssssessesssssssssssssssssssssssessssssssssesssnssessssenses 69
514 Response Terms (Externally ViSIDI€) ..ot 71
515 Stimulus Terms (EXternal INPUL).......cccureieinireseseee e esssseens 71
516 ASateisa Set Of SALEMENES. ..ot 72
5.2 TRANSITION RULES......otuitrtueirtteietsisstseetsess et seess e eessbsessbsess s sesessesssssssssssssssssssssssesssessssasas 72
521 Recursive Behaviour in REQUIFEMENES.........ccoiiiremirecneeeeieer e eesssens 75
5211 Example of EXpanded RECUISIONcc.coviuiieieiieicisee ettt st sa e st s resnenas 76
5212 EXEENNEl RECUISION. ...ttt ettt st e et e e et st e e eaese et ebeneenese et eneseenas 77
5.2.2 Parallel Transition Rulesand Order INAEPENTENCE...........occveueererrenerrenerreneereesseeesee s 79
53 STRUCTURING FUNCTIONALITY IN CASES.....ooiurieiriuireieireisessisessisessisess s ssssssssssssssssssesssssssssssesns 79
B.3 1 CASE REIALIONS......cieierieeite sttt et bbbttt 84
54 SYSTEM REQUIREMENTS (SETS OF CASES) ...evueiiucieeeireieeneieesisessisess s tssss s ssssssssssssssssssssssssnsseens 84
54.1 Different Application DOMAINS.......ccooviiciiiesise et s s ses e aes 86
5.4.2 Priority for Transition RUIESIN SYStEMS..........cccrieeneeeneereerses e eesssens 87
55 GRAPHICAL INPUT EXAMPLES......contuiuntteirtteeetsestsessisess st sessbssss s sssssssssssssesns 89
56 STORING AND RE-USING TEST CASES.......otueuetreeirenseresseressesessesssessssesssssssssssssesssssssssssssssssssssssssssssssns 89
6. MATCHING AND IDENTIFICATION OF SIMILAR BEHAVIOURcovverrerrrereeireeereseesesseseenes 90
6.1 DEFINING SIMILAR BEHAVIOUR......tutituretirentinessiseasiseas s ssessssessess sttt et sssssssssssases A
6.2 USING PARTS AND SETS TO ANALYSE SIMILARITY wettiririaeerensereseeseesesssessesessssessssssssssssssssssssssennes 97
6.3 TRANSLATING COMPARISONS TO VALUES......ccrtiureucerieeertieessiessisessisesessssessessssssssssssssssssssssssssssassns 100
6.4 FEATURES FOR M EASURING CLOSENESS OF BEHAVIOURccuriuiienireeneneisesesessisessissas s ssssesnees 102
6.5 OVERALL SCORE FOR MATCHING.....uctreuetreeeeressesesnesssnessssessesessesssssssssssssesssssssssssssssssssssssssssssssssssssnns 110
6.5.1 Scoring a Match Between Link/Transition RUIE.........c.cocvevnirenenese s sesessesesesseens 110

6.5.2 SCOrNG @ MatChiNG CaASE.......cccceieereeeieisecie sttt bbb s st taes 116

CONTENTS VII

6.6 PRESENTATION OF MATCHING RESUL TS ..cueuurteeureresseressesessesssssssssessssesssssssssssssssssssssessssessssssnssssnsens 118
7. THEREQUIREMENTSDESIGN PROCESSIN CABS.......cocosirmnenrenstnsisseseessessssssesssssssssssssssssssns 121
71 IDEA FOR NEW BEHAVIOUR......ciuiurerieeereieessesessesessisesstsessssessssessssssssssssesssssssssssssssssssssssssssssssssssssssens 125

7.1.1 Revising an [deafor BENAVIOUccccevircrrnensecereseses st sssssssessssssesssssssssnens 125
72 DEFINING ONTOLOGY ..ovuirerresressesssssssssssssssesssssssssssssssssssssssssessesssssssssssssssssssssssessesssssssssssssasssssesens 126
73 EXPRESSING AN IDEA WITH INPUT EXAMPLES......ccocvieirerereerereeressesessesessesessssssssssssssssssssssssssensens 127

7.3.1 Refining INPUL EXAMPIES......oceceeeeresreriee sttt ss sttt sssssessens 127

74 MATCHING INPUT EXAMPLES AGAINST THE CASE LIBRARY AND SELECTING A SOLUTION127

741 Preparefor MatCh Or RE-MALCHccciirercrceree e 127
7.4.2 Selecting a PropoSed SOIULION.......cceiicieiiicceisees ettt sssesesens 129
7.43 Adapting @ ClOSE MAICH.........coi e e 129
744 GeNErating @ NEW CaSE.......cccverurereeerirereeisesissssesesessssssssessssssssessssssssssssssessssssssesssssssssssssssssessssens 130
75 VALIDATING A PROPOSED SOLUTION w.ccuriuririeiessesesesssssesssssssssssssssssssssssssssssssessesssssssssssssssssssssses 131
751 REVISING @ SOIULTON......ceiiiieirieeiiee ettt s 134
76 AUTOMATIC AND INTERACTIVE VERIFICATION OF RESULTS....vniurieeeneenereesressesessessesessessesnees 135
7.6.1 Generating Test Cases from INput EXAMPIES..........cccceveeurietnineiseneseiee st sesssssesesens 136
7.6.2 Verifying a Test Case Against Formalised Requirements...........ccveneeernernneenesernesceneseeneeenns 137
7.7 REVISING AND REFINING THE SOLUTIONovuuiirererieiesesnesesessssssssssssessssssssssssssssssssssssssssssssssssssens 140
8. EVALUATION OF CABS......cooiritirereireee ettt ssstsessssessssessssssesssssesssssssssessssssssessssssssssssssssssssssssssssssssns 141
81 ISSUES TO EVALUATE IN CASE-BASED RETRIEVAL w.ccerienieieiieisisisseseesessessesssse s ssssssssssssseseens 142
82 EVALUATION OF RETRIEVAL AND SOLUTION ASSESSMENTucvuriiieceesnssnessessssssesssssssssssssens 145
83 SELECTION OF INPUT EXAMPLES AND TARGET CASES.....ccvitninintineiniinesseeesesse e isssssissssessesseens 147
84 EVALUATION OF THE MATCHING ALGORITHM w..cotuiuieieereiisesessessssessesssssessssssssssssssssssssssssens 150
8.4.1 Over-Diffuse Identification Of SOIULTON ... 153
8.4.2 Conclusions for MatCh EVAlUBLION...........covrerrerreerressesisisesesssesesessse s ssesessssssesessssssesens 155
85 EVALUATION OF AUTOMATIC VERIFICATION w.ctuieierieneeesessessssssessssssssssssssssssssssssssssssssssssssens 157
85.1 Reducing the Need for REfiNEMENT ..o 160
8.5.2 ConcluSiONS fOr VErifiCatiON.........ccreeeureurirerrieiriereeseieesieesi e es s 161
86 SUMMARY OF EVALUATION RESULTS ..ciueieisessensesssesssssesssssssssssssssssssssessessessesssssssssssssssssssessessens 162
8.7 COMPUTATIONAL TIME FOR THE MATCH .ovucirieeireeeseeressesesesesseseseessssesssessssessssessssssssssssssssnensens 162

9. FURTHER WORK AND EXTENSIONS.coonirinissn s ssssssssens 165

VIl CONTENTS

9.1 USING ICONSFOR TERMS AND SITUATIONS.....cuvueirerereesersssessssessssessssessssssssssssssssesssssssssssssssnssssssens 165
9.2 MAPPING SPECIFICATION AGAINST DESIGN OBJECTS.....covumurerreeesereesssssssesssssssssssssssssssssssssssees 167
9.3 USING CABSFOR OTHER APPLICATION DOMAINS......coiteiriererrereeereserensesessssssessssssssssessssesssensens 168

9.3.1 Object Oriented System SPECIHiCALIONS.........cccverrererrerre e ens 168
94 SIMULATION WITH CONNECTED TELEPHONES.....cccvteireeerntseesstssisstssessssssssssssssssssssssssssssssssessesens 169
95 ADDING A THEOREM PROVER TO CABS.......ooi ettt ssesssssssssssssssssesssssssssssssnns 169
9.6 ANALYSING INTERACTION BETWEEN MODULES.......cocvurereeeeeneesetsetseesesssssesessesssssssssssssssssssssens 170
9.7 GENERATING CODE FROM STATE-BASED REQUIREMENTS.....cuviiiinienrinsinssesesssssssssssssssssssssssens 171
9.8 RE-USE OF SYSTEM DEVELOPMENT PROCESSES.....c.veurerereressssesessssssssssessssssssssssssssssssssssssessssesees 171
99 RE-USE OF SDL...ouctiiiteieeeseesessessessssssssssssssssssssssssssssssessssssssssessessessssssssssssssssssssssssessessessssnsssssssssssssnnes 172
10. SUMMARY AND CONCLUSIONS........coriririreerereerereesessesessesessessss s ssssessssssssssssssssssssssssssssssseens 173
101 SUMMARY OF WORKciuriiritieierisniseeseessssssssss st sssssssessesesssssessssss s sssssssesssssesssssessessssassssasssssssssens 174
102 LIMITATIONS oottt st tsstsstsesessee e st s sttt bbb e 176
103 FUTURE WORK ..uittetreesieesessesessesessessssssssesssseessssesssssssssssssssssssssesssssssssssssssssssssssssssssssesnsesssessnssssssssnssns 176
11. BIBLIOGRAPHY ...ttt setsetsessese s sss sttt st sesessesssssessssssssssssssssssssssessessessesssssssnsans 177
APPENDIX A, LOGICAL FORMALISM......coviriiriiniinenisinsissessssssssssssssssssessssssssssssssssssssssssessessessessssssssssnes 193
APPENDIX B, GLOSSARYcootiieirierireerissesessesesssssssessssssssesssessssesssesssesas 205
APPENDIX C, CASE LIBRARY USED FOR EVALUATIONocvirireeeinisisensesseseesessssssssssessesssssesssees 209
APPENDIX D, INPUT EXAMPLESUSED FOR EVALUATIONcovieirieieirsessesssssssssssssssessessssssseees 245
APPENDIX E, PUBLISHED PAPER L......coioerieisieerseersseessesesesessssessssesssssssssssssssssssssssssssssssssssssssesssesnssesnns 273
APPENDIX F, PUBLISHED PAPER 2........cccotntnieniiniineseinesessessssssssssssssssssessesssssssssssssssssssssssssessessessssssssssees 293

APPENDIX G, PUBLISHED PAPER 3.t 303

CONTENTS IX

List of Figures

FIGURE 1.1: FROM AN IDEA VIA FORMALISED REQUIREMENTS SKETCHES TO A FULL SPECIFICATION..9
FIGURE 2.1: INPUT EXAMPLE IN CABS AND PETRI NET EXAMPLEcoommreeeessnnnsssssssssssssssssssssssssssnnns 33
FIGURE 2.2: GENERAL ARCHITECTURE OF A CASE-BASED REASONING SYST EM. ADAPTED FROM
[AAMODT, PLAZA Q]...ooreeveeesseeeessesssessesssssssssssssssssssssssssssssssssesss 35
FIGURE 3.1: OUTLINE OF THE CABS APPROACH ...cumrvvvvtmmmnssanns 40

FIGURE 4.1: A GRAPHICAL INPUT EXAMPLE EXEMPLIFYING A BASIC BEHAVIOUR FOR THE SERVICE

170 O O Y 45
FIGURE 4.2: TEXTUAL REPRESENTATION OF INPUT EXAMPLE ..ottt sseessesesessssssssessens 47
FIGURE 4.3: SELECT NODE NAME FOR INPUT EXAMPLE ..ottt sssssens 50
FIGURE 4.4: EXAMPLE OF A DETAILED NODE DESCRIPTION IN CABS.......ccooierrereeerseseeneneneeens 52
FIGURE 4.5: SELECT STIMULUS NAME FOR NEW LINK FOR INPUT EXAMPLE.......cscsttueurireneneerereenerrereneens 4
FIGURE 4.6: AN EXAMPLE OF A DETAILED TRANSITION LINK DESCRIPTION IN CABS.......cccoeviirnne. 57
FIGURE 5.1: OVERVIEW OF CASE LIBRARYcttuetieririeeressesiassessesssssssesssssessssesssessssssssessssssssessssssssssssssssssssssesens 62
FIGURE 5.2: AN EXAMPLE OF A TERM DEFINITION IN THE CABS SYSTEMcccoiiiireeereeeseeesienns 66
FIGURE 5.3: RELATION TYPE BETWEEN ARGUMENTSIN A TERM WITH TWO ARGUMENTS.....cccccuune. 70
FIGURE 5.4: MODEL OF THE DYNAMIC BEHAVIOUR OF TELECOMMUNICATIONS NETWORK........ccouune.. 73
FIGURE 5.5: TRANSITION RULE EXAMPLE IN CABS. ... 74
FIGURE 5.6: EXTERNAL RECURSIONcciuteerrmeaesesnesesssersssessssssssessssssssesssssessssesssesssssssessssssssessssessssssssssssssssesens 78
FIGURE 5.7: THE CASE WINDOW IN CABS ...ttt 82
FIGURE 5.8: SYSTEM WINDOW IN CABS ...t 86
FIGURE 5.9: PRIORITY WINDOW IN CABS ...ttt 88
FIGURE 6.1: SELECTING INPUT EXAMPLES TO MATCH...c.ctitireeirieeeiriee e 91
FIGURE 6.2: OUTLINE OF MATCHING ALGORITHM ...cutututitirurtiriesereseeesessssissssssssssssssssssssssssssssssesssssssssssssssssens 92
FIGURE 6.3: POSSIBLE COMPARISONS BETWEEN PARTS IN LINK AND TRANSITION RULE......cccceoeurenenee 100

FIGURE 6.4: EXAMPLES OF DIFFERENT MATCHES WHEN COMPARING PARTS (SETS ..ovuveeeurereresinirenenas 102

X CONTENTS

FIGURE 6.5: FLOW DIAGRAM FOR LINK/TRANSITION RULE MATCH wovuveeireererereeeseeesesessesesesessssesessssensnens 112
FIGURE 6.6: PARAMETERS FOR TRANSI TION RULE MATCH ...couittueiriretieietseesieesesas s sseesssessesssssessens 114
FIGURE 6.7: A MATCH OF A CASE AND AN INPUT EXAMPLE ...cciirirerirererisiresesesese s sesesesesesesesesesesssesees 116
FIGURE 6.8: PARAMETERS FOR CASE MATCH.....ctuiriiriiiererseesssessesssessssesssssssesessssssessssssssesssssessssssssssesassessens 118
FIGURE 6.9: PRESENTATION OF RESULT FROM MATCHortuiurireiueieereeisieesesessesssesassessesessssssesssssssessassessens 120
FIGURE 7.1: OVERALL PROCESS FROM IDEA OF BEHAVIOUR TO FORMALISED SOLUTION.....ccverererererenes 124
FIGURE 7.2: EXAMPLE OF SIMULATION WINDOW IN CABS. ... 133
FIGURE 7.3: EXAMPLE OF VERIFICATION WINDOW IN CABS......coorrerrresesesese s 139
FIGURE 8.1: A VERIFICATION VIEW OF CABS. ...ttt 146
FIGURE 8.2: INPUT EXAMPLE BASIC_EXAMPLE_ ..ottt sesens 148
FIGURE 8.3: MATCH RESULT FOR INPUT EXAMPLE A_CALL_REMINDER_EXAMPLE........ccscsrurererererererenes 150
FIGURE 8.4: MATCHING TIME MEASUREMENTS 32 CASES 225 TRANSITION RULES......ccovneerrereneeerenen: 164

FIGURE 9.1: IDEA OF GRAPHICAL REPRESENTATION OF TERMSNODESLINKS.....ccceniueureerererrereeresereneens 166

CONTENTS Xl

List of Tables

TABLE 8.1: THE FIVE MAIN ISSUES TO BE EVALUATEDcutututuiririeieieieieieisisis et ss bbb sesesenas 143
TABLE 8.2: INPUT EXAMPLES AND TARGET CASES.....ccttimterrmretasrersssesssessesesssssesessssssssessssssssesssssssessassessens 149
TABLE 8.3: MATCH RESULT FOR INPUT EXAMPLES.....ccitrtiururirtuceetreseeistsesesss e isssesessssssessssssssessssssseens 152

TABLE 8.4: GENERATED TEST CASES AND THEIR SUCCESS RATE ...ucutuiueuririerereieieieieisiesessiesesenssesesesssssesenas 160

Chapter:

1. | ntroduction

Requirements play an important role throughout system development and the lack of
validated, verified and easily accessible requirements has been suggested to be one of the
main areas of focus in requirements engineering [Bubenko 95]. State-based modelling is one
of the ways used in practice to tackle this. A conventional use for state-based modelling in
telecommunications services is in describing the precise behaviour of those services.
Unfortunately this form of detailled modelling is prohibitively expensive for redigticaly sized
problems. This thesis describes a different role for state based models - not as precise
behavioura descriptions but as "sketches' of key features required by a client. These
features are used by a case-based reasoning (CBR) system to suggest existing services
which might be adapted to the clients' needs.

The core of the thesisisin the CBR matching system but, in order to provide this, we need to
solve a set of subsidiary problems: how to describe required behaviours at an appropriate
level of detall (just sufficient to discriminate cases); how to refine the input examplesif (asis
likely) the first draft of thisisn't sufficient; how to test if the required behaviour is included in
the proposed and selected solution (by smulation and automated verification identifying

where the behaviour differs).

2 CHAPTER 1. INTRODUCTION

1.1 Functional Requirements, Problems and Benefits

The application domain that has been chosen is telecommunications services and, in
particular, telephone services. Telephone services are a hon-trivial domain where hundreds of
different services and variants of services have been implemented in telecommunications
switches and where the number of services and demand for new servicesisincreasing. Most
big telecommunications companies have tried to apply forma methods to the specification of
telecommunications services, due to the stringent requirements for reiability in telephone
networks and, in particular, the demand that no additional functiondity should affect the basic
functionality, such as caling an emergency service. The application domain is in fact so
complex and large, that formal requirements specifications have not been applied in practice.
In the 1970s, research started in earnest on formally specifying systems and, by the late
seventies and early eighties, industry assumed that research progress was sufficient to bring
the knowledge and research results into practical use [Hsia, Davis, Kung, 93]. A number of
large scale projects were initiated to introduce formal requirements specifications. In most
areas, forma methods did not deliver on their early promise [Zave 91]; a number of

explanations for this are given in [Hall 90].

The size of the application domain (functional requirements of telephone services) used for
reference in this research, is large enough to be non-trivial and to confront a number of issues
arising from a full scale application. Seventeen behavioura outlines of telecommunications
services (the behaviour seen from the point of view of a phone user without describing any of
the complex behaviour occurring in the telecommunications network) have been formalised
and used in evaluation. Each service contains a number of transition rules', representing the
behaviour of the service, and a number of term definitions connecting the specification of the

system to its environment.

! Transition rules and term definitionswill be explained in Chapter 5.

CHAPTER 1. INTRODUCTION 3

Mainstream requirements capture tools in telecommunications are informa and methodology
centred and do not require any particular notations of formalisms (Ericssons? PROPS method
for example). In the state of the art requirements capturing tool Rational Rose use-cases are
used to capture an initial sketch of the behavioural requirements. Rational Rose will be
introduced at Ericsson to be used as their main requirements capturing tool. Use-cases
capture examples of behaviour. Different notations can be used in the method depending on
the gpplication domain and user preferences. For example the unified modelling language,
UML, is recommended for satic modelling of objects and their relations. Informa
requirements in telecommunications have in a number of cases been shown to be expensive
(for an unconfirmed example se Section 2.3.1), leading to legal problems over the exact
meaning of the informal requirements once a functionality is delivered that does not meet the
customers expectations. Informal requirements have aso led to misunderstandings in the
design and implementation, causng serious problems, faults and down time in
telecommunications systems (an example of this is given in Chapter 2). It has been claimed
that poor quality ftware is costing UK industry £2000 million every year, and that many

failures have their roots in informal requirements and specifications [Schofield 92] .

These problems are the main reasons for the interest in forma methods from major
telecommunications companies. Forma specifications based on varieties of mathematical
logic are being used more frequently in the design of safety critical systems. Formal methods
are usudly intended to include all important details of the final system in the specification,
with the am of proving that it possesses certain properties and does not exhibit other
unwanted properties. Fully formalised requirements are today mostly used for well isolated
problems where the number of states are less than a few thousand, for example used in
protocol specifications. It is believed that a wider use of forma methods would reduce

problems caused by textual requirements and formal specifications are successfully used for

2 Ericsson is one of the largest communications supplier for network operators, service providers,

enterprises and customers and employees more than 100,000 peoplein 140 countries.

4 CHAPTER 1. INTRODUCTION

many different tasks, but limitations in tools and graphical notations limit their use today
[Jensen 97]. Telecommunications services in general include hundreds of thousands of states
and have been resistant to such rigorous methods. Isolated parts of the behaviour of services
have been formalised but even here the number of states has been exceeding the limit of
performance of avalable tools [Capdlmann, Christensen, Herzog 98]. Magor
telecommunications companies started investigating forma methods thoroughly in the eighties
([Zave 91], [Funk, Reichman 90] [Kdly, Nonnenman 91]) but none use forma methods
routingly in service and feature requirements. In large, complex systems, this task requires
sophisticated theorem proving, which can be difficult and complicated. Telecommunications
systems are large and complex, making their detailed forma specification impractica with
current technology. Sometimes, the formalism or combination of formalisms is so complex
that even experts in forma methods find it difficult formally to represent some aspects of the
system to be specified [Mataga, Zave 93]. Some researchers doubt that existing methods will

scale up to such complex systems [Heimdahl, Leveson 95].

1.1.1 Previous Experience and Domain Related Problems

In 1985 Ericsson Research & Development started to explore forma methods in detail. In
autumn 1985 | was employed in an industrial project at Ericsson at the department of
computer science involved with the task of bringing formal specification into use in industry
for the specification of computer based systems. During the following six years, we
collaborated with the University of Stockholm, the University of Uppsala, Stanford University
and the Swedish Institute of Computer Science (SICS), amongst others. The main task was
to develop a formal notation and implement a prototype to explore the use of forma methods

in industrial applications such as telephone service requirements. A large coarse grained

CHAPTER 1. INTRODUCTION 5

formal specification of sixteen telephone services® was made [Funk, Raichman, 90] where
the main behavioura requirements of the services where captured. Most effort was put into
exploring and choosing a suitable forma notation expressive enough to capture these
requirements but not more expressive than necessary, to enable simulation and analysis of the
requirements. The chosen logical notation for this research is based on the results used in the
formal methods project at Ericsson (see Appendix A and [Funk 93]). The logical notation
was expressive enough to be used in formalising coarse grained telecommunications service
specifications on a high abstraction® level but, for different reasons (lack of resources being

one), we had not addressed sufficiently:

Re-use and modification of previoudy specified services or parts of services. The most
frequent dtuation in the doman of telecommunications service specifications is the

specification of services similar to previous ones.

The issue of iteratively refining and incrementaly extending requirements that originaly

where sketchy, incomplete and contained errors.

End users with background in systems design and programming did not accept the idea of
using the forma notation to specify services at Ericsson. Their interest in forma methods
was high until they where confronted with logical axioms. Even showing dides with logica or

mathematical notations drastically reduced any interest earlier shown.

3Atel ephone service (such asdivert cals) in Europeis called afeaturein the United States. Serviceis
used here and the word feature always refers to features in case-based reasoning (as described in

Chapter 6).

4 At the beginning we had hoped to define a formal notation expressive enough to capture the
complete detailed behaviour of telecommunications services (concurrently occurring events,
parallelisms, timing constraints, nondeterminism, etc.), but realised that this had to be abandoned if

we at the same time wanted to have access to simulation and powerful analysis methods.

6 CHAPTER 1. INTRODUCTION

These factors contributed to the cancellation of the project in 1992 (started in 1985, about 40
man years where invested). A related project implementing a full scale theorem prover for
service requirements specifications with a graphica interface [Ridley, HO0k, Engstedt,
Lapins, Lindroos 97], darted in 1993 and was successfully completed technicaly but
cancelled in 1997. The logica notation and the theorem prover was implemented in C++ and
Erlang® and proved to be sufficient for full scale use for service specifications. A graphical
notation was introduced in parale with the textua notation (the notation is based on decision
trees and bears no similarities to the one used in this research) and required knowledge in
logic and forma methods which turned out to be more than any users were prepared to
accept. Also, the problem of re-use and refinement of service sketches was not further
explored (and was not a defined part of this project). Ericsson is at the moment not actively

involved with formal methods for requirements specifications of telecommunications services.

1.2 Capturing and Formalising Requirements

In this research, some of the main features of traditional “strong” use of forma methods are
sacrificed in the requirements capture process. we do not require the specification to be
correct and complete from the start. In many application domains, including the
telecommunications domain, origina requirements are often sketchy ideas and it is not aways
justified to force the user to give complete and correct requirements from the start [Cybul ki
96]. Requirements capture is seen as an iterative refinement process of some initia
requirements that are incomplete (lacking details, missing behaviour for different Situations
such as odd and unusud situations) and may contain flaws (reflecting a naive or an unclear

idea of the functionality that needs refinement).

> Erlang is a concurrent functional programming language developed at Ericsson and widely spread
both for prototype programming, complex system implementations and in education and for research

at universities.

CHAPTER 1. INTRODUCTION 7

This approach to forma methods has a number of advantages such as. the rapid creation of
an outline of the new behaviour which is used for identifying smilar behaviour, then smulated
and refined until the formalised behaviour reflects a required functiondlity. This approach is
consistent with what has been called a lightweight approach to formal methods [Hesketh,
Robertson, Fuchs, Bundy 95], where the formal notation has been chosen to be as smple as
possible and just expressive enough to outline the main behaviour requirecf. The smplicity of
the logical notation enables automated manipulation, trandation and comparison between
behavioura requirements specifications and formalised input examples. This enables re-use if
the requirements of services, previoudy specified and subsequently implemented, are stored

inacaselibrary.

1.2.1 Identifying Similar Behaviour

The main focus for this research is on identifying smilar behaviour to enable re-use of
previoudy specified requirements or parts of requirements. In addition to re-use, iterative
refinement, enabling the user to sketch out the required behaviour without giving all the details
from the dart is included, in contrast with the common approach within forma methods

where the user is expected to produce complete and correct requirements from the

beginning. The aims of this prototype implementation” are mainly:

To provide a plaform where the identification of similar behaviour can be evauated

(evaluated in Chapter 8).

® The notation is purposely not expressive enough to represent the full complexity of

telecommunications requirements specifications, such as concurrence, internal communication, etc.

" The system has been implemented in L PA -Prolog (M acintosh/Windows) and the non-graphical parts

are also compatible with SICSTUS-Prolog.

8 CHAPTER 1. INTRODUCTION

To put the matching and re-use in context of case-based reasoning where an initial sketch of
some wanted behaviour is used for identification of smilar behaviour that may be re-used

(evaluated in Chapter 8), refined, validated and verified.

1.3 A Scenario Showing how CABS may be Used

To give a framework for understanding CABS (Case Based Requirements Specification
System) and to put the different chapters in context, | will give a brief example of how
someone might use a full implementation of CABS (including some of the extensions
proposed in Chapter 9). | will not dwell in this description on what has been implemented and
what is left for further work. By reading the rest of the thesis, it will be clear what has been
explored in depth and implemented in this research and what has been left for further
improvements. Figure 1.1 gives an overview of how an idea can be taken to a full
specification (se Section 1.3.1). At present, the first formal level used in telecommunications
requirements is mostly SDL (a programming language with graphical and textua parts often
used for telecommunications applications, see Section 2.4), and earlier steps are informal
[Eberlein, HAlsdll, 96a]. CABS acknowledges the need for a tool where the behaviour of a
new service can be sketched at an early stage (although this is only one aspect of the
requirements). The customer and service designer can, after providing some behavioura
examples of the required behaviour, explore the new service by smulation. This is a form of
high-level prototyping. CABS is dso able to identify similar behaviour in previoudy specified

services and suggest these as solutions, to be re-used in whole or in part.
131 From Service | dea to Formalised Requirements

Let’'s assume that a service provider comes up with the idea that a new telecommunications
service is needed to increase their income and to attract new customers. The cloud at the top
in Figure 1.1 illustrates such a vague idea of some new functionality. The more focused idea
might then be to provide phone users with an emergency service, i.e. if something happens, a
specific emergency number is automatically dialed. The details have not yet been worked

out, but the board meeting assigns a task to one d the telecommunications service saes

CHAPTER 1. INTRODUCTION 9

employees which is to produce a proposa on the functionality, and to acquire an estimate of

how much it would cost to order the functionality from a telecommunications company.

: : | dea
Sketching & Rapid
Prototyping Envi ronmegt> O

o ©

o
A sketching, concretising
- _ ' aided by re-use, smulation
YNTF E= and verificaion
* NS
| T |
Customer and service designer v

Service Requiremrents

Formalised using a
lightwe ght approach,
vdidated and verified.

Traditional Requirements

Engineering and Design Environment H
Use- Cases) l
SDL refinement,
integration,
_ . expanson
el \TTCN
Requirements engineer & &3

Fully detailed, formrdised
functional requirements
with interactions and some
design decisions

Figure 1.1: From an idea via formalised requirements sketches to afull specification.

The sales employee makes a mental picture of how the new service would work from a
phone user’s point of view. Traditionaly, a large text document containing requirements of
the new teecommunications service, interwoven with descriptions of functiondity,
restrictions, limitations, implementation details etc. would be produced. Once the service is

ordered and delivered hdf a year later, it is hoped that it meets the customers needs and the

10 CHAPTER 1. INTRODUCTION

informal requirements. If not, the company may face legal proceedings on the meaning of the

requirements specification documents.

If she was using CABS, the service designer would make a number of sketches of the
behaviour of the new functiondlity (as seen from the telephone user’s point of view) in the
graphica editor illustrated in the top left picture in Figure 1.1. The service designer would first
sketch some examples of the most common use of the service. The most frequent behaviour
may be: if atelephone user has an emergency service set up and he lifts the phone but is not
ableto dia a number (for example a diabetic in distress, unable to dia atelephone number but
able to lift the receiver), a previously selected number will be dialled after a short delay (to
make sure it is not a normal call). The receiver of the call would need to have the existing
telephone service Callers Display to see who is calling, and can then decide what action to
take For example, he might send an ambulance/doctor/nurse or call the neighbours to check
the situation). The service designer may aso decide to provide examples of the expected

behaviour if the called number isbusy or if there is no answer.

Once these examples have been given as behavioural example sketches, the sales employee
asks the system to propose a solution. A matching algorithm searches a case library where al
previoudy formalised and implemented telephone services are stored, and identifies a number
of services that exhibit similar behaviour. The user inspects them, reads some brief textua
descriptions of them and may explore some of them in grester depth by smulating their
behaviour with the simulator provided®. The system also points out where differences exist

between the sketches of the behaviour and the formalised behaviour.

The service designer may decide on one proposa that is close in behaviour and already

implemented by another company having alarge number of residential care homes, where the

8 Simulating their behaviour involves initialising a number of phones and setting up the different
services for the different phones. The user lifts the receiver with a mouse click on the computer

screen and tests out the behaviour asif real telephones were involved.

CHAPTER 1. INTRODUCTION 11

individua guests live in their own apartments but have a reception with a nurse and part-time
medical doctor. The service has been in use for 6 months, and after 3 months of use, the
customer ordered an etension of the service since the staff quickly found out that they
needed three aternative choices of numbers (reception, nurse, doctor). When exploring the
service further (using the simulator) she finds that the emergency numbers can only be
changed by the receptionist. After considering the customers that her company intends to
target, she decides to add the possibility for the telephone user to change the emergency
number list themselves. She gives some examples of this behaviour and makes a selective
match using only these input examples, and finds that the service divert call has a set-up
functionality that fits the needs well and which only needs minor adaptation of the behaviour.
The sadles employee calls the technical service support at the telecommunications company
they use and aso transfers the input examples and selected solutions (middle square box in
the Figure 1.1). A requirements engineer receives the formalised requirements, simulates and
verifies them together with all other services the customer has to identify interaction and also
uses traditional methods to look at how a design of the functiondity can be made together
with an estimate of the cost. One hour later, the customers sales person gets a proposal back
which contains a service which includes the desired behaviour and where al the functional
behaviour has been formalised (bottom sguare box in the Figure 1.1, al packaged into a
smulation environment easy to use for the customers saes person). The sales person
validates and verifies the service and, at the next board meeting, she demonstrates the
functionaity of the new service by smulating it on her PC with connection to a number of
telephones. The decision is then made to go ahead and order the service which is delivered

by re-using parts of the implementation from the similar services.

1.4 Structure of Thess

Chapter 2 gives a brief background in requirements engineering, formal methods, case-based
reasoning and graphical notations, with references to related and relevant literature/research.

In Chapter 3, a brief overview and introduction to the problems directly addressed in this

12 CHAPTER 1. INTRODUCTION

research are given. Chapter 4 shows the graphical input examples and defines the syntax and
the detailed information that may be added. The case library and everything stored in it is
explained in Chapter 5. Definitions of equal and similar behaviour and how these can be
trandated into a set of features used to identify cases in the case library that have similar
behaviour is explained in Chapter 6. In Chapter 7, the design process from an informal idea of
anew behaviour to validated and verified forma requirements is explored. Chapter 8 contains
an evaluation where the ability to identify similar cases is explored, along with ways in which
a solution can e partially evauated against the input examples. Further work and ideas of
improvements are given in Chapter 9. Chapter 10 gives a summary and the conclusions of the
research. Appendix A defines the logica notation used by CABS as interna representation.
Appendix B contains a glossary of a number of telecommunications terms. Appendix C
contains all the formalised telephone services stored in the case library and used for
evauation. Appendix D contains al the input examples used for evauation in Chapter 8.

Appendices E, F and G are reviewed papers, published during the research.

Chapter:

2. Background

This chapter describes interesting areas related to this research project:

Requirements engineering.

Forma methods, their benefits and limitations.

Examples of forma methods in telecommunications.

Visua notations for state based systems, both telecommunications oriented and
generic notations (SDL, MSC, PTNs, Petri nets, etc.).

Case-Based Reasoning applied to specification and design tasks.

A brief background from the perspective of this research is given for these areas and some

references are given to enable the reader to investigate them in greater detail.
2.1 Requirements Engineering

In system development, a major task is to establish in detail what the system is supposed to
do. Requirements engineering is concerned with capturing, analysing and defining precisely
the tasks the system should perform. This includes formalisation, re-use and evaluation of the
system and its requirements. ldentifying the requirements is an essential element of system
development. Faults/misunderstandings at this level are often very difficult and costly to
correct at later stages. Many faults in systems are traced back to requirements capture and

specification stages, and are believed to cause a large proportion of industria costs for poor

13

14 CHAPTER 2. BACKGROUND

software (estimated by the UK Department of Trade & Industry to be above £2000 million
per year) [Schofield 92]. In addition to this, many systems tackle wicked problems
[Sommerville 96] where the true nature of the problem first emerges when they are solved
during development. Telephone services may be classified as wicked problems. Even if their
coarse grain characteristic behaviour is simple, interaction and unusua Stuations can be
difficult to identify and predict, and are often first identified when implemented. Prototyping
may be useful in identifying and solving wicked problems, since these difficulties may be
encountered in a prototype and can be solved before a full implementation is made. If
prototype development by programming is impractica, too costly, or not feasible for other
reasons, smulation of behavioura requirements may be considered (this approach is used in
CABS). Smulation and prototyping provide new knowledge, as Herbert Simon eegantly
expresses it: Firstly, “even if we have the correct premises, it may be very difficult to
discover what they imply” and secondly, “All correct reasoning is a grand system of
tautologies, but only God can make direct use of that fact. The rest of us must

painstakingly and fallibly tease out the consequences of our assumptions.” [Smon 81,

page 19].

A requirements specification should be open to different implementations as long as the
implementation reflects fully the required behaviour, and excludes al unwanted behaviour.
Implementation of telephone services has been achieved on a variety of systems (mechanical,
electronic and digita), in different programming languages and programming paradigms

(centralised, distributed, concurrent).

A lot of research effort is focused on re-use, and it is assumed that the full potentia of re-use
in system development is far from fully exploited. Re-use by categorisation is one of the main
research activities in requirements engineering [Maiden, Mistry, Sutcliffe, 95] and

categorisation is essentid to the identification of relevant parts for re-use.

In program development, re-use is performed by identifying and using program components
or objects from a software library. The amount of code re-used is dependent firstly on the

classification and description of the parts so that they can be identified when needed, and

CHAPTER 2. BACKGROUND 15

secondly on how wel re-use is incorporated into the system development process.
Automated identification and re-use of software that has not been classfied manualy is
difficult. Most program code is context dependent (the interpretation of a program statement
is dependent on the previous and following statements) and alows a lot of freedom to
construct a program in a personal style, making automated identification and re-use difficult
(athough there is ongoing research in this area). Behavioural requirements are sometimes
less complex than code because not al the details are included in the requirements. If a
formal method redtricts the possible ways in which a behaviour solving a particular problem
can be described, comparison between different requirements is facilitated, and automated

identification of parts that may be relevant for re-use will benefit.

2.2 Formal Methods

Since the 1960s, forma methods have been of growing interest, and have been targeted with
increasing research effort. Formal methods are often regarded as a scientific approach to
software development [Hall 90]. Forma methods allow precise specification of some aspects
of a system; informal specifications are often imprecise, incomplete and ambiguous. A wide
variety of forma representations are available which are suited to different tasks in
requirements specification and the system development process [Barroca, McDermid, 92].
However, forma notations are not suitable for everything in the requirements and design
process, and it is important to carefully select those parts for which they are used [Bowen,
Hinchey, 95]. One of the main principles applied when choosing formal representations for
requirements engineering is that “aforma representation should be as smple as possible, but
no smpler.” [Zave, Jackson, 97, page 106]. Technologica advances and increased
expressiveness in formal representations are important in order to tackle new and demanding
application domains. However, a forma representation with the ability to capture everything
would be complicated. Thus, expressiveness has a price in terms of automated reasoning
capabilities, executability, proof of consstency, level of mathematica skill needed to

understand and use a formalism, etc. Carefully choosing a simple but sufficiently expressive

16 CHAPTER 2. BACKGROUND

forma notation [Wing 90] is an important task when using forma notations, and limiting
expressveness is a mgor gpproach to taming the combinatoria explosion in production
systems [Acharya 94]. Sometimes in formal methods, more research effort has been directed
towards expressive formalisms that are generic and capture as many aspects and details
(such as timing constraints, indeterminism, probabilities, concurrency, etc.) of the system as
possible [Johnson, Benner, Harris, Sanders, 93], than into embedding the formaisms in some
system development method which facilitates requirements capture and aids the transfer of

requirements into aformal notation.

Since the 1980s, forma methods have been used in industry for safety critical applications
(avionics, railway signaling systems, power plant control systems, medical electronics, VLS
design), and are often gpplied by highly skilled mathematicians/logicians using semi-automated
theorem provers. Outside these areas, the use of formal methods is less common. Even o, a
number of successful individua projects have been reported [Cleland, MacKenzie, 1995].
There is an increasing demand for the use of forma methods in safety-critica systems, for
example the UK Ministry of Defence (MoD) strongly recommends formal notations, analysis
of congstency and completeness in specifications of safety-critica components and software
[Bowen, Hinchey, 95]. The interest in and demand for formal methods for security-sensitive
gpplications such as telecommunications, traffic signaling systems, share dedling systems,
banking and finances, is increasing. It is believed that making the use of forma methods
easier for non-mathematicians would enable a wider use of forma methods in security-
critical/sengitive applications. One factor holding back a wider use of forma methods is
“maths scare” amongst designers and programmers [Hall 90]. Furthermore, greater care in
identifying which forma methods are suitable for which problem is needed, as the use of an

unsuitable formal notation may cause a project to experience difficulties or evenfail.

The main issue of this research is to show that it is possible to identify similar behaviour to
enable requirements capture and re-use in a case-based reasoning system. Some related
issues have been briefly explored and addressed to enable exploration and validation of the

main focus of this research, which is the identification and re-use of smilar behaviour:

CHAPTER 2. BACKGROUND 17

Help users to give more accurate requirements.

Addressed in CABS: Sketching input examples exemplifying the behaviour of some required
functionality that are used to identify similar behaviours enables the user to re-use previoudy
formalised and implemented specifications. They can be smulated and verified using a case-
based reasoning approach which is hoped to aid the user in identifying problems at an early
stage compared with traditional approaches where the first formalised leve is program code.
Problems with service specifications were identified during evaluation that had not been
identified before matching, formalisation, vaidation and verification of the behaviour which at

|east shows that these tools under some circumstances are of benefit.

Reduce errorsin the fina requirements and system implementation.

Addressed in CABS: By re-using a proposed solution from the case library, errors will be
reduced since the re-used service has already been integrated with other services and

implemented.

Identify and re-use previously specified behaviours that have already been implemented.

Addressed in CABS: The case-based matching is able to idertify similar cases in the case
library that can be re-used in whole or in part as shown in Chapter 8. Identification and

matching is the main focus of this research.

Smplify the task (for non logicians) of cresting and modifying formal requirements

specifications.

Addressed in CABS: Graphical input sketches combined with trangition rules are believed to
be more readily accepted than the direct use of a formal logic. Also, an iterative refinement
process is proposed and supported by CABS. To confirm this hypothesis, an evaluation with

potential usersis needed, but this is outside the scope of this research.

18 CHAPTER 2. BACKGROUND

Issues relevant to the task of bringing forma methods to industrial use are explored more in
depth in the following section (Section 2.2.1). If the readers main interest is the identification

and matching similar behaviour reading this section can be omitted.

2.2.1 Issuesof Formal Methods and their Relation to this Resear ch

The following are some claims, opinions and critiques about the use of forma methods which
are relevant to the application domain of CABS. Not dl of the seven issues are within the
scope of this research but some of them have been addressed to enable evaluation of
CABS's main issues and others are briefly discussed with some ideas or references to
potential solutions. Selected solution: is a brief description of CABS's specific way of

addressing them (independent of whether they are a main issue for this research):

It is commonly believed that formal methods are difficult to scale up since expressive
formalisms are often not executable and are only seen as a way of describing requirements

more precisely than with natural language [Hall 90].

Proposed approach: Choosing a ample logic which is sufficient to formalise the initia
requirements, but not necessarily able to capture the full and final behaviour, alows us to
specify some basic behavioural requirements for the application domain of
telecommunications services and to handle these effectively by smulation of the initia

behaviour, re-use, verification and validation.

Selected solution: A smple logic tailored to this particular gpplication domain has been
shown to enable re-use by case-based reasoning, smulation and limited verification. Also,
trandation to and from redtricted natural language has been applied for similar notations
[Dalianis 95].

Resistance from non-mathematicians and non-logicians to the use of formal methods [Zave,

Jackson, 96].

CHAPTER 2. BACKGROUND 19

Proposed approach: Bearing in mind the rgjection of forma methods by designers and
programmers at Ericsson it is hoped that by using graphica notation smilar to informa or
semi-forma notations already used in the application domain, the acceptance of forma
methods will be eased. Textual rules are used in the domain of telecommunications, transition
rules bear similarities to these textua rules and transition rules can be trandated to and from

restricted natural language [Dalianis 95].

Selected solution: A graphical notation is chosen lut no effort has been taken to make the
notation similar to existing notation since this is beyond the scope of this research and such a
notion should be developed in close co-operation with the final users to warrant for an
acceptance. The user is not directly confronted with the logical notation used internaly. A

textual representation of trangition rules has not been implemented.

Formal specifications are difficult to re-use [Hall 90].

Proposed approach: By using a case-based reasoning approach and a restricted logica
notation, it should be possible to identify parts from a case library that may be re-used.
Identification of cases that are Ssmilar to the behaviour exemplified in the input examples will
enable re-use if the same or a similar case exists in the case library. Also, re-use of individua

trangition rules may be possible, if the transition rules are context independent.

Selected solution: Matching input cases against a case library enables the identification of
similar behaviour (CABS uses an uncomplicated matching algorithm described in Chapter 6)
and evaluated in Chapter 8. Results are encouraging and the matching is able to identify the
most similar case to sets of input examples. If no matching case exists in the case library, the
matching is able to identify similar trangition rules that may be re-used. The features used for
identifying similar behaviour may need fine-tuning but they have proved to be fairly robust

with the case library used for the evaluation

Forma methods are often said to be unsupported by tools which alow the user to iteratively

refine and clarify the requirements [Bowen, Hinchey, 96].

20 CHAPTER 2. BACKGROUND

Proposed approach: Design and use an approach based on an iterative refinement process
where an initia idea of some new behaviour can be refined and modified iteratively until it

captures the intended behaviour.

Selected solution: The CABS approach includes a refinement methodology supported by the
implementation (see Figure 7.1, page 124). The process was used in the evaluation and no
obstacles were encountered. Even if no matching case is available, the input examples can be
used to generate a set of transition rules used as an initia proposa for the new service (see
Figure 7.1). During the evaluation (Chapter 8), a few unexpected problems were identified
both in the input examples and in the case library, which shows the value of using test cases

generated from input examples.

Formal specifications are often regarded as difficult to modify [Gotel, Finkelstein, 94].

Proposed approach: 1) Structuring the telecommunications services as cases (sets of
trangtion rules), 2) keeping links to the origina input examples, test cases, full specification,
etc. (enabling traceability of requirements, from where they originate and where they have
been used) and 3) providing a smulator and automated verification so that modifications can

be explored in depth.

Selected solution: CABS's approach is to: 1) structure cases as sets of transition rules, 2)
store al origind input examples, informal comments and test, 3) simulate and verify cases
separately or together with other services. When the behaviour of a service needs
modification, the input examples aid the understanding and modification process. Test cases

identify precisely where the behaviour has been changed.

Formal methods are accused of being difficult to combine and integrate with current system

development methods [Bowen, Hinchey, 96].

Proposed approach: By using a forma notation that can be trandated into graphs, state

machines and natura language, and used for smulation (in the same way as prototypes) and

CHAPTER 2. BACKGROUND 21

to generate test cases, CABS exhibits desirable features that may integrate into many

systems development methods.

Selected solution: CABS focuses on re-use and requirements capturing - a process that is
currently hardly supported at al. Nothing in CABS contradicts traditiona system development
methods and a system which aids system development would benefit from the functiondity
exemplified by CABS. It may even be possible to trandate the output from CABS into the
representations used in telecommunications (SDL, Use-Cases, MSCs, etc.) but this has to be
investigated. Since the formal notation captures state machines, trandation to state based

formaismsis possble.

Executable forma methods are often regarded as computationally inefficient.

Proposed approach: This is often true for advanced formalisms handling indeterminism and
where the application domain is complex. A restricted logic is proposed for CABS which
doesn't a@m to capture al the behaviour of the system (only the initid behavioura
requirements, leaving out unusual behaviour, error cases, etc.), gives sufficiently fast

response times for both simulation and theorem+-proving.

Selected solution: The CABS system isimplemented in PROLOG with acceptable response
time on a desktop computer (response times are below a second for smulation and stepwise
verification). Matching times are acceptable even if the case library is considerably larger

(see Chapter 8 for details).

Requirements capture is often seen as the main bottleneck in system devel opment [Bubenko
95]. Using a rigorous formal notation in a lightweight forma approach to capture the initial
behavioura requirements is shown to have some powerful and desirable features, such as

enabling the identification and re-use of previoudy specified behaviour.

2 CHAPTER 2. BACKGROUND

2.3 Telecommunications and Formal Requirements

Telecommunications have, until recently, been mainly technology driven (limits have been set
by technical condraints), and less application driven. This has changed rapidly due o the
computerisation of telecommunications, which has started replacing technica limits by limits
of imagination and innovation. This revolution will change the demands and judgements of
telecommunications services. Increasing demands for innovative and creative services with
high levels of usefulness, user-friendliness and functionality are emerging, as they are no
longer o tightly limited by the difficulties of implementation in hardware and software.
Bandwidth is still a limited resource, but the bandwidth available now (and in the near future)
is far from fully utilised. One scenario of the future is that bandwidth will be supplied in the
same way as petrol/gas/electricity (Norway and Sweden alow customers to change their
electricity supplier), and the user will make short term agreements with the supplier offering
the best deal on bandwidth. Under this kind of price competition, telecommunications vendors
or independent service providers will have to provide services adding vaue to bandwidth
supply, such as more sophisticated telephone services (traditionaly call waiting, multi-party
cals, re-cdl, cdl diverson, levels of availability/privacy, charge advice, banking and aso,
increesingly, services based aound the integration of mobile phoneshome
phones/computers/video/music, etc.). Changing supplier means, in most circumstances, a
changed set of services. Services will be the supplier's best assets in such a scenario, and
patenting services may be more rdevant than patenting hardware. This puts
telecommunications services at the forefront of the basic functionaity (a basic telephone call)
and providers who cannot provide competitive services to their customers in a short time will
see their market share decrease rapidly. Those suppliers who are able to offer servicesin
which the users are interested, will attract more customers. Parts used to design and
implement services have been standardised and formalised such as service independent
building blocks (SIB’s, [ITU Q1203], for formdisatiion see [Nystrom, Jonsson 96]), but
telecommunications services themselves cannot be standardised without stifling competition

between operators for customers.

CHAPTER 2. BACKGROUND 23

Telecommunications services can be classified as security-critical (hence forma methods are
of interest and relevance). It is not acceptable that an additiona telephone service should
inflict problems on basic functionality such as an emergency call, or cause problems for other
telephone users, (situations which have in fact occurred in the past®). Formal specifications
have been explored as ways of identifying and reducing such problems in the system
development process but are not routinely used. Pamela Zave at AT&T Bell Laboratories
has been active in this area since the late 1970s. PAISLey is an executable specification
language developed by Zave and her research team at Bell Laboratories over 8 years (from
1979 onwards) [Zave 91]. Her research is now aimed more at muliparadigmal approaches to
requirements specifications, where the underlying notation is based on a smple logic [Zave,
Jackson, 97]. There are some similarities to CABS's forma notation; for example, neither

system alows internal events, in order to keep the formalism and semantics smple and only

alow specification of the system’s externaly observable behaviour'®). Using logic as the

% call diversion was one of the earliest tel ephone services provided. The specification and
implementation allowed redirection over many steps. Unfortunately, it also alowed redirection to the
original number. When a user diverted calls to their holiday home and then diverted calls back from
there to their main home, the signalling bandwidth between the two telecommunications switches
was, after awhile, used up by phone calls diverted back and forth between them in an infinite loop.
Worse still, arestart of the telecommunications switch left the diverted number unchanged, causing
the same problem all over again. This might have been prevented with formalised requirements,
which had been validated and verified (in CABS, such loops cannot be specified and the number of

steps that a telephone call can be diverted has to be specified explicitly).

10 By only specifying the system’s interaction with its environment and not the system’s inner
workings, the specification is kept implementation independent (a black box approach since nothing
of theinner working of the system is exposed). The inner working of the system isleft for design and

implementation where hardware and software architecture can be chosen to meet other non-

24 CHAPTER 2. BACKGROUND

underlying formaism shifts the focus from the development of a language suitable for a
particular application domain to the sdection of a suitable subset of logic, which is as

restricted as possible, but expressive enough to capture the desired features of the domain.

A different approach to service specification (compared with the PAISLey approach) is the
WATSON system [Kelly, Nonnenmann, 92] aso developed at AT&T. WATSON takes
informal textual examples of telephone services (a graphica notation is aso mentioned, but
not illustrated), and trandates them semi-automatically to alogica notation (smilar to the one
used in CABS). After the natura language scenarios have been given (WATSON was able
to handle scenarios of the size of four sentences (50 words), in 1992), the system tries to
identify incomplete parts and problems in the informal description and asks the user yesno
questions (WATSON uses an “off the shelf” theorem prover and domain knowledge mainly
encoded in Lisp). WATSON produces control flow skeletons together with attached code for
some parts. Control skeletons can then be smulated. Such an approach requires large
amounts of knowledge (encoded, stored and kept updated in WATSON) of requirements
specification, design, implementation and application domain knowledge, to be able to produce
control flow skeletons with attached code from short textual descriptions (such as hardware,
network protocols, expected end user etiquette, style of skeleton design, etc.). Capturing a
large application domain knowledge base and keeping it up to date is recognised as a problem
in the WATSON project. This is a large task even for a narrow application domain (which

can be partly bypassed if case-based reasoning can be applied, as discussed in Section 2.5).

A Requirements Assistant for Telecommunications Services tool (RATS) was developed
during a PhD project at the University of Wales [Eberlein 97]. RATS enables the user to give
information in a structured and layered approach, mostly as informal text but also with links to

libraries and in other notations. A high leve of tractability is maintained by keeping references

functional requirements (price, size, security, power consumption, distribution, modularity,

technology, etc.)

CHAPTER 2. BACKGROUND 25

and links between dl information objects. The system uses application domain rules to keep
track of what information is still missing, guiding the user and ensuring that al the necessary
information is given (218 user defined rules and 33 congtraints are currently used). RATS can
ask questions such as “How do you intend to achieve the goal ‘authentication very
important’ ?”. Once the user has linked al information with a traditionally produced SDL
diagram (production of diagrams is aided by the structured requirements), RATS task is
completed. Compared with using large textual requirements documents (which is the current
practice), the structured approach in RATS has some obvious advantages such as tractability
and maintainability (for a comprehensive analysis of the tractability problem see [Gotd,
Finkelstein, 94]).

A forma specification project at ERICSSON Telecommunications (research phase 1985
1991, implementation phase 1992-1997) was centred more around temporal logic [Echarti,
StAmarck, 88] and theorem proving than PAISLey and WATSON (the logic used is similar
to the one used in WATSON). The functiona behaviour of telecommunications services is
expressed in alogical notation (a graphical notation based on atree structure is also added in
paralel with some logica expressions); generic application domain knowledge (a conceptual
model) is given in a graphica notation (directly trandated to logica axioms). Simulation
enables vaidation of services, and theorem proving is used to prove consistency
(inconsistencies between application domain knowledge and services can be identified). Test
suites used in telecommunications for testing implementations can be produced semi-
automatically from event traces generated by the theorem prover (all possible behaviours up
to a certain length may be generated from the specification) [Ridley 94] [Ahtianen, Chatras,
Hornbeck, Kesti, 94]. Event traces share similarities with Node Usage Cases, used in
telecommunications to guide design and implementation [Ask 94]. The notation used in CABS
is based on the notation used in the research project at Ericsson (the logic has been smplified

and restricted; see Appendix A).

There are three desirable features for service development:

26 CHAPTER 2. BACKGROUND
A prototype/smulation of the new behaviour is needed to explore new services.

Formalisation of the functional requirements, to ensure stable properties and safe integration

with other functiondity.

Ability to re-use, in order to optimise implementation of new services by re-using previoudy

specified and implemented services.

If formalised requirements can be used as a prototype, the new functionality can be explored
on its own as well as with other services and both 1) and 2) are covered. If the formalised
requirements can be created by identifying and re-using smilar services, then 3) will be
solved. Current research explores this approach using a narrower focus than WATSON
(CABS does not aim at code production) to capture, refine, re-use and produce requirements
in the domain of reactive systems, and to enable smulation of the new requirements. CABS
shares one main ambition with WATSON, in Kelly and Nonnenmann’s own words. “helping
ordinary people (that is conventionally trained telephone engineers) achieve
extraordinary results (mathematically precise specifications)”. If the mathematically
precise notation can be hidden or encapsulated, it may be possible to relax the limitation to
conventionally trained telephone engineers with the ambition that telephone users, sales
personnel, etc. should be able to specify their requirements themsalves, if their am isto
capture only the characteristic requirements (not necessarily consistent and complete, i.e.
including all exceptions, odd cases, resolved interactions). Extending, refining and integrating
the new behaviour with other telecommunications services would need more experienced
requirements designers. The CABS approach takes coarse grained graphical input examples

exemplifying the desired behaviour, identifies similar services and parts of services that may

1 Reactive systems have a direct relation between stimulus and response (input/output) and need
external stimuli to produce aresponse. An example of atrivial reactive systemisalight switch having

two states (on/off), with the stimulus being: switching it on or off.

CHAPTER 2. BACKGROUND 27

be re-used, and enables validation (smulation of the behaviour) and limited verification of
requirements. Thisis aworthy task in itself, and if this can be accomplished and accepted by
industry for the specification of reactive systems, the benefits may, for some application
domains, be sufficient to make it worthwhile incorporating forma requirements into the
system design process. Vdidation by smulation and verification may be regarded as

prototyping combined with the capability to analyse the behaviour in depth.

231 Specificationsin Telecommunications

Customers (public and private telecommunications suppliers, service vendors, ingtitutions,
universities or even private customers), order specific telephone services which they hope
will meet their needs. One difficulty is that precise informa requirements are difficult to
produce and require a high level of <Kkill. It is easy to find examples where misinterpreted
informal requirements have caused serious problems'. Formal specification aims to provide
precise and exact descriptions, independent of stakeholders (customers, engineers,
programmers, sales personnel, trandators, managers, etc.). Different abstraction levels (with
more, or less detail shown) and views (wether only issues relevant for a particular
perspective are shown) of the requirements may be useful for different stakeholders [Pohl
oM.

2 one story (not officially confirmed) goes that the service three party call wasinformally specifiedin
such away that it was able to reach a situation where four parties were able to speak with each other.
When the three party call service was delivered, the customer insisted on having the four party
situation. This could only be implemented by redesigning the hardware, because the exchange only
had digital mixers capable of mixing three speech connections. Finally, a solution was found: a trunk
line (a connection to another telephone exchange) looping back to the same station, treating the
incoming (two party) call as one external caller and able to connect the incoming call with the two
other parties. This is an expensive solution, but must, in this case, have been estimated to be less

costly than breach of the contract.

28 CHAPTER 2. BACKGROUND

Naming something often gives us a false sense of understanding it. It is often surprisng how
differently words are defined by different domain experts, definitions which sometimes even
contradict each other. In telecommunications, the expression “User A isin speech connection

with user B” has been defined in the following ways by different persons:
A can hear any sound generated by B.
A can hear B and B can hear A simultaneoudly.

Either A hears B or B hears A.

None of the three definitions is incorrect. However, spesking about “ being in speech
connection” or “being connected” without agreeing on a definition will cause problems

during specification or, worse, during design, implementation or product verification.

2.4 Graphical Notations

There are two main types of symbolic representations which both use symbolic expressions:
sentential representation (natura language descriptions) and diagrammatic/graphical
representations. The latter can explicitly capture ppologica and geometrica relationships
which can only be captured indirectly in atextua representation [Larkin, Simon, 1987]. There
is a growing interest in, and promising results from, the use of graphical formaisms for
knowledge dicitation, specification and programming (see for example [Hirakawa, Monden,
Yoshimoto, Tanaka, Ichikawa, 86], and [Addis, Gooding, Townsend, 93)). It is obvious that
the trend in interaction/communication involving computers is becoming more graphica
oriented (icons, windows, pictures, animation). For many tasks, graphical notations are
claimed to be more readable than textua language [Mataga, Zave, 94]. For the creative and
exploratory phases of forming new knowledge, visualisation is often essential and the use of
diagrams dso aids knowledge €licitation and co-operation between those involved [Addis,

Gooding, Townsend, 93]. In formal methods, advanced specification languages have been

CHAPTER 2. BACKGROUND 29

developed which tackle a wide variety of application domains, but the human aspects of the
use of these notations (making them easy to use and understand) have been Sower
[Robertson 96]. When new formal notations are created, diagrams are often used (see for
example [Allen 83], [Kowalski, Sergot, 86]), but the find notations are mostly pure linguistic
representations. The role of diagramsis rarely recognised and is, therefore, underestimated in

the communication and conceptualisation process [Addis 94].

Recently, more research effort has been focused on giving informa or semi-formal graphica
notations clear syntax and semantics, and developing new notations to enable the graphical
expression of conceptua models, requirements, dynamic behaviour and programs. Earlier
approaches using conventiona state machines or state-diagrams encountered difficulties
when gpplied to system design, due to the exponential explosion in the number of states
[Harel 87], and were clamed to be hard to read, modify and refine and not suitable for
complex specifications [Martin, McClure, 85]. Different approaches to overcome these
problems have been explored and graphica languages (often combined with a textua

language) are common in system development today; for example:

SDL (Specification and Description Language, standardised by the International
Telecommunications Union, [ITU-Z100]). The SDL language contains both a graphica and
textua part. The graphical part is similar to flow charts. The graphical parts together with the
textual part of the language enable the user to describe the functionality in such great detail
that executable code can be generated directly. Some formalisation efforts have been
undertaken, see for example [Leue 95]. With minor aterations in the semantics, a subset of
SDL can be trandated to Petri nets which has been used for protocol verification at Siemens

Telecommunication, Germany [Regensburger, Barnard 98].

Statecharts [Harel et. a. 90]. A graphical notation designed to make it easier to design and
implement real time systems. Similar to SDL, it has a graphical part and a textual part and

detailed descriptions can be created and used to generate executable code.

30 CHAPTER 2. BACKGROUND

Process Transition Networks (PTNs) [Maec 92], [Sandewall 90]. PTNs can be trandated to
temporal logic and to a subset of Petri nets. The notation aids conceptualisation and
knowledge acquisition and its smplicity makes it easy to use for domains in which the

expressiveness is sufficient.

Use-Cases [Jacobson, Christerson, Jonsson, Overgaard, 93]. Not a notation in itself, but
which allows different notations or even text documents describing specific examples of how
the system to be designed will behave. Formalisation and graphica syntax is under
development [Regndll, Kimbler, Wesdén, 95].

MSC (Message Sequence Charts describing signaling between objects in a distributed
system). A widely used graphical trace language for communicating entities. MSCs may aso

be used for requirements specifications with a set of suitable tools [Ben-Abdallah, Leue 96].

Petri Net notations [Jensen 97] are a graphical notation enabling behaviourd anaysis and
model checking. The notations are often regarded as complicated for non logicians and thisis
sometimes overcome by trandating to Petri nets from specialist languages. For example some
parts of SDL (with dightly atered semantics) can be trandated to Petri nets in order to
enable model checking [Grahimann 98]. Since Petri nets are emerging as a common formal
notation into which other notations more close to notations used in different gpplication

domains can be trandated, Petri nets are described in more depth in Section 2.4.1

These languages are all more expressive than is required for the approach taken in CABS,

and include different types of concurrency which is often useful or essentia when designing a
complex system. In most larger systems, such as telecommunications, the full functiondity is
difficult to describe with a state transition notation as the number of states will by far exceed
the number of states that can be practically handled in available notations. Even so, examples,
scenarios and sketches of behaviour for different aspects of a system’s functionality can be
expressed with state-flavoured style, which is often done informally to complement textua

descriptions. An important aspect of CABS isthat the graphica notation used is not intended

to be a traditional state-based notation capturing a finite state machine: a diagram in the

CHAPTER 2. BACKGROUND 31

notation used may represent a large set of state machines enabling the user to sketch a
behaviour, ignoring details and avoiding confrontation with the so caled state explosion. The
notation used in CABS captures the initia (design independent) sketches of behavioura
requirements before design decisions have been taken™ (the graphical notation for CABS is
described in Chapter 4). Little consideration and time has been spent on what graphical

formalism is most appropriate for the gpplication domain, bearing in mind that the main
research contribution is the identification of similar kehaviour. Graphical representation may
provide greater benefit if it has been adapted to the application domain and to a specific set of

users [Robertson 96], but to do so is beyond the scope of this research.

241 Petri nets

Petri nets are used as a powerful agebraic graphical notation for communicating automata
and are expressive enough to capture systems where concurrent events occur. This is
beyond the ability of the chosen notation for CABS but both Petri nets and input examples
are state (in CABS a node denotes al states the which the given restriction hold) and
transition oriented. Petri nets developed by C. A. Petri in the sixties were the first genera
theory for discrete parallel systems. Petri nets have proven to be well suited to describe
concurrency. A wide variety of Petri Net notations exist which either extend the
expressiveness to new classes of problems or make them easier to use. Examples of
extensions are high-level Petri nets, timed Petri nets, stochastic Petri nets and Coloured Petri

(CPN) nets [Jensen 97]. Petri nets have always had a precise forma definition which

13 Design decisions are, for example, dividing the system into communicating entities, internal
concurrency, communication mechanisms, etc. An example of how deeply design decisions are
included in these formalisms would be to use, for example, MSC diagrams with signalling switchesto
specify atelecommunications service, and implement the functionality using the internet, instead of a
network of signaling telecommunications switches (most of the “specification” would be

irrelevant”).

32 CHAPTER 2. BACKGROUND

enables the use of powerful analysis tools (e.g. SPIN [Holzmann, Peled 94]) that can be used
to prove different properties of Petri nets. Also, there is n on-going effort to standardise Petri

nets.

Lately, Petri nets have emerged as a common notation for different graphical notations
adapted to specific application domains. These notations are trandated into Petri Boxes, a
specia kind of low level Petri nets enabling a wide veriety of verification techniques such as
model checking, verification and application of reduction agorithms [Grahlmann 98]. Both
SDL and MSCs have been trandated into Petri nets in order to use verification tools

developed for Petri nets.

Petri nets look smilar to input examples in CABS as shown in Figure 2.1 below (alow-leve
Place/Trangition Net) where the right example is a Petri net and the left example is an input
example for CABS as described in Chapter 4. The Petri net has been designed to visualy
look as similar as possible to the input example for CABS, it has not been explored whether
the two examples are semanticaly equa. Even though the examples look similar, the
terminology and way of thinking is different. Petri nets are built with places, input transitions,
output transitions, input arcs, output arcs and tokens [Jensen 92]. Places can hold one or
more tokens (in the example, there are two telephone tokens), arcs have the capacity to hold
1 or more tokens (the default being one), trangitions have no capacity (cannot hold a token).
A trangition is enabled if the places with arcs leading to the transition have a number of
tokens greater than or equa to the capacity of the arc (default capacity being one). During
execution of a Petri net, the tokens will move around in the net and the number of tokens may
vary. When using a Petri net, terms such as synchronisation, concurrency and merging are
difficult to avoid. The Petri net example in Figure 2.1 contains the primitive constructions:
synchronisation (e.g. the processes “ring tone & and “ring signa b” are synchronised by
gtarting the transition “dialing idle b”), concurrency (e.g. “ring tone & and “ring signa b” are
two concurrent processes started by the transition “dialling idle b”) and merging which are
not used in CABS when sketching the behaviour of telephone services. In high level Petri

nets, a token can contain complex data and may describe the entire state of the process or

CHAPTER 2. BACKGROUND 33

data base. For the input example in the notation for CABS, each node has facts that are
expected to be valid, and al states in which these facts are true are denoted by the node. For
more details see Chapter 4, and for details on facts for the nodes in the CABS input example
see Appendix C.3. The additiona facts for nodes in CABS notation may indicate that high
level Petri nets are the closest of these dialects to CABS (tokens in low-level Petri nets
cannot carry any data). On the other hand, high level Petri nets have a larger vocabulary
such as functions (ML is used in CPN), markings, initidlisation expressions, guards and are
able to express process invocation, different types of loops and procedure calls. Kurt Jensen
states. “Making a CPN model is very similar to the construction of a program” [Jensen 92].
This may be very useful when specifying and designing a complex concurrent system but is

much more than CABS needs for initial sketches of required behaviour.

ai_suhscrihers i;j_rna:
hook_on b

idle subsariber

hook_off

ring tone a ring signal b

hook off a

a calling b ain speech with b

Figure 2.1: Input example in CABS and Petri net example

A CHAPTER 2. BACKGROUND

2.5 Case-Based Reasoning

The central concept of case-based reasoning is expressed by Riesbeck and Schank as: “...
the essence of how human reasoning works. People reason from experience. They use their
own experience if they have arelevant one, or they make use of the experience of others...”
[Riesbeck, Schank, 1989, page 7]. Aamodt and Plaza s picture, Figure 2.2, illustrates the main
ideas of case-based reasoning: a problem is given in the top left corner, smilar cases are
retrieved from a case library and the most suitable case is selected and re-used. The most
suitable case may need to be revised to solve the problem. If the solution is approved, the
problem and its solution are stored in the case library. Next time a smilar problem is
encountered, less adaptation of the retrieved case may be needed and the performance will
increase if smilar problems are diten encountered and the features identifying similar cases

are good enough.

CHAPTER 2. BACKGROUND 35

Probler
P |
RETRIEVE 1
R
I
U
S
E
RETAIN
CaseLibrary
REVISE
Confirmed Proposed
Solution Solution

Figure 2.2: Genera architecture of a case-based reasoning system. Adapted from [Aamodt,
Plaza 94].

If arule based system produces a particular solution, or failsto do so, it may not always make
sense to look at individual rules that produced the result [Jackson 90]. Looking at a previous
case that has solved a similar problem may, for some stuations, be easier to understand
because cases provide a context for understanding [Kolodner 93]. A case-based system may
aso adapt to changing demands, for example, if a new type of problem not previoudy
encountered is solved (if no smilar cases are available, a solution to the problem is most likely
to be produced manualy). The solved problem and its solution are stored in the case library

as a new case, with the aim of expanding its competence [Aamodt 93]. The next time the

36 CHAPTER 2. BACKGROUND

system encounters the same or a similar problem, the system will have increased its potentia
to produce a solution. It is more likely that, in a rule based system, the rules would need to be

updated to include this new class of problems.

Case-based reasoning may be suitable for problem areas in which the knowledge of how a
solution is created is poorly understood [Watson 97], e.g. the creation of formal requirements
of telecommunications services from a set of behavioura examples. The WATSON system,
described in Section 2.3, is one of the few research projects taking on the task of formally
capturing knowledge about how telecommunications services are formalised from natural
language in a semi-automatic approach. In technical domains, case-based reasoning has been
gpplied to a variety of application domains such as. architectura design support [Pearce,
God, Kolodner, Zimring, Sentosa, Billington, 92]; qudlitative reasoning in engineering design
[Sycara, Navinchandra, 89], [Nakatani, Tsukiyama, Fukuda, 92], software specification re-
use [Maiden, Sutcliffe, 90], software re-use [Fouqué, Matwine, 93], re-use of mechanica
designs [Mostow, Barley, Weinrich, 89], [Bardasz, Zeid, 92], telecommunications network
management [Brandau, Lemmon, Lafond, 91], fault correction in help desk applications
[Watson 97], building regulations [Yang, Robertson, Leg], fault diagnosis and repair of

software [Hunt 97].

In conclusion, case-based reasoning may be applied to application domains that are not

sufficiently well understood to create a consistent and complete rule-base, on condition that:

problems and their solutions have similarities.

acase library with past problems and their solutionsis available or can be created.

there are good ways for identifying relevant casesin the case library.

solutions can be adapted and re-used for smilar problems.

Chapter:

3. | ntroduction to CABS

In this chapter, an overview is given of the case-based specification approach, and an
introduction to the problems addressed in this work. In application domains like
telecommunications, forma methods are still not used for requirements specification. Even so,
a number of logical formaisms seem to be ready for large scae commercia use in red
applications and have been explored in the domain of telecommunications services (see for
example [Armstrong, Elshiewy, Virding, 86] and [Echarti, StAlmarck, 88]). As explored in the
previous chapter, there are a number of different reasons why forma methods are still rarely

used for requirements specification in industry.

In the CABS methodology, the task of producing a requirements specification is not just
handled as a simple task of transferring the requirements from the user to the chosen
formaism. It is a much more involved intellectual process, and when parts of the
requirements are captured, the user often modifies and changes his requirements, i.e.
requirements change and evolve until the user is satisfied. This iterative refinement processis
often acknowledged in software production and experimental development, but less often
supported by formal methods. Forma methods practitioners sometimes give the impression
that they are expecting the clients to have their requirements all ready, and the main task is to

get them into some formal notation (not necessarily executable).

37

38 CHAPTER 3. INTRODUCTION TO CABS

Using CABS, we view the process of producing formal requirements, in particular,
behavioura regquirements, as more of an experimental development task, where we start with
sketches of required behaviour and use these sketches to rapidly produce something which
can be evauated in a variety of ways (Smulation, automatic verification, smulation involving
end users, etc.). We then refine the sketch, compare them with similar requirements, re-use
parts of smilar requirements, modify the original sketches, dl this in a tightly integrated
environment where no unnecessary demands on order or sequence are put on the
requirements engineer. This will aid the user of CABS to refine and extend the requirements
until she is convinced that the formalised requirements capture what the user/customer

requires.

3.1 Outline of the CABS System

CABS attempts to ease or overcome some of the obstacles encountered when producing
forma requirements specifications for telecommunications services. The approach is based
on the combination of forma methods, case-based reasoning, example based input and the
use of an executable logic. By using this combination, CABS ams to make forma
requirements specifications more acceptable and to bring forma requirements specifications

to practical use for telecommunications services (and similar application domains).

The CABS system is illustrated in Figure 3.1. In the top left-hand corner, the requirements
process starts with a number of graphical input examples provided by the user and produced
with the graphica editor implemented in CABS (see Figure 4.1 for an example input and the
editor). These graphica input examples use nodes and links (explained in Chapter 4) to
sketch the behavioura requirements. When the behaviour of some examples has been drawn,
they can be refined and extended by selecting a node or link to obtain a window where details
can be added.

The matching agorithm (the second box from the top on the left in Figure 3.1), uses the input

examples to identify cases from the case library (top right in Figure 3.1) which capture similar

CHAPTER 3. INTRODUCTION TO CABS 39

behaviour. The cases are previoudy formalised requirements that have been vaidated,
verified and integrated with other cases (as described in Chapter 5). An analysis of the
differences and similarities between links and transition rules is used to identify transtion
rules that are similar (the analysis measures a number of features and is described in Chapter
6). It is aways possible to determine whether the rules capture exactly the same behaviour
(but this is less likely to occur). When a set of similar trangition rules have been identified,
each case is ranked on the basis of its trangition rules and how well they match links in the

input examples.

The user has a number of different options (shown in the third box from the top on the left in
Figure 3.1) to choose from when confronted with the result from the matching. The user may
select one of the proposed previoudy specified services (solid line from the re-use box) that
have been identified as capturing smilar behaviour to the exemplified behaviour. If a close
enough case is not present in the case library, then a new service has to be constructed based
on input examples, matching cases and transition rules. Alternatively, the input examples can
be refined (this choice is shown with the broken line from the re-use box) in order to improve
the match. If there is no suitable match in the case library, the input examples can be used as

a gtarting point to specify a new case (explored in Chapter 7).

When there is a proposed case that the user believes may be an acceptable solution, she can
verify and vaidate the proposed solution (the Revise box in Figure 3.1). From the input
examples, test cases are generated which, if successful, verify that the proposed solution
captures the behaviour exemplified in the input examples. The user can aso smulate the
dynamic behaviour of the proposed solution in order to validate that her intentions are
captured (these smulations may also be added as test cases). A theorem prover analyses the
solution with respect to known domain restrictions (this is not fully implemented in CABS:
smple checks of redtrictions have been implemented, but not fully integrated, in the CABS
prototype). The user may also decide to undertake some adaptation of the proposed solution
in order to make the behaviour conform to the input examples. At any stage, the user may

decide to add more (or refine) input examples and re-do the match in part or in full (the

40 CHAPTER 3. INTRODUCTION TO CABS

broken line from the Revise box in Figure 3.1). When the solution has been vdidated and

I

verified, it is added to the case library.

| Graphical example Case Library

i of required behaviour Transition rules

! grouped <----- :

: R in cases |

: © (Formalised !
¥ e)
o Matching: |

" o| identify andrank 'S
| similar behaviour J |t
e r| | Verify against input | 0
: / . e : r
i R Construct solution Vv Prove properties i €
. © Propose Is Adapt to conform |
Ul Adapt to input |
S Merge ® M Smulae dynamic |
€ Generate behaviour |

! I

: S X |
i* ----- s /'

! _ Solutionnot Confirmed

' Provide more accepted Requirements

' input examples :

Figure 3.1: Outline of the CABS approach

For some application domains, the ultimate goa may be to use the formalised and confirmed
requirements directly as an implementation. This is possible for a very narrow class of
application domains, where the interface to the environment (stimuli/response) of the

requirements specification of the system is expressed on the same abstraction level as the

CHAPTER 3. INTRODUCTION TO CABS 41

final system itself and where the final system has to be implemented on a computer (which is
not the case for telecommunications services where stimuli/response are commonly
expressed on higher abstraction levels). If so, a requirements specification including al the
desired behaviour and excluding al unwanted behaviour might be used as the find
implementation. For the application domain of telecommunications services there are high
demands of efficiency on the final code. The requirements could be seen as the tip of the
iceberg and the final implementation is a highly optimised and integrated system of software
and hardware in a global network of co-operating telecommunications switches. In these
circumstances, the requirements specification is used as input to the design process and for

generating test sequences for verification.

In conclusion, CABS is amed at providing a closdly integrated approach to requirements
design and supporting iterative refinement, re-use and revison to produce formalised,
validated and verified requirements specifications capturing the required behaviour of the

system to be constructed.

&

CHAPTER 3. INTRODUCTION TO CABS

Chapter:

4. Graphical Input Examples
Exemplifying Behaviour

It is common to apply graphica notations to a number of different tasks in specification and
design processes. In telecommunications, graphical notations are widely used, examples d
which are SDL (a graphical Specification and Description Language, standardised by the
International Telecommunications Union [ITU-Z100]), MSC (Message Sequence Charts),
traditiona flow charts, etc. Most notations used in specification have been formalised to a
greater or lesser extent and are mostly used for design reflecting the chosen implementation
structure (MSCs capture signalling between nodes assuming the services are implemented
with communicating entities). CABS uses a graphica notation to capture behaviourd
examples (see Figure 4.1), which outlines different parts of some required behaviour, but
does not aim to compete with the large area of ongoing research on graphical formalisms.
The graphica notation used is only intended to capture some of the externally visible
behaviour (any requirements specification should not put demands on how the behaviour is
implemented internally [Wieringa 96]) and interna signalling or communicating entities can

purposely not be expressed in the formalism.

Graphica formalisms for behaviour can mostly be classified as state based, transition based,

transaction based or any combination of these. The full behaviour of a telecommunications

a4 CHAPTER 4. GRAPHICAL INPUT EXAMPLES EXEMPLIFYING BEHAVIOUR

system contains too many states to be handled graphically (even if there are only a few
telephones involved), without introducing levels of abstraction for states. Therefore, it is
difficult to base telecommunications requirements specifications directly on state transtion
diagrams. state transition based formalisms are mainly used in domains with less then a few
thousand states, preferably less than a few hundred states if they are produced and
maintained by humans. If there is no abstraction of states, the number of different states in
the telecommunications domain will be so large that it will be difficult for a user to handle.
From a computationa point of view, there would be no problems with this application domain
since the specified behaviour for telecommunications services is smply that they should be
finite and deterministic. The purpose of the graphica notation is smply to outline the main
characteristics of the behaviour (and not to describe al possible behaviour) and it therefore
bypasses the need to handle large numbers of states; the graphical notation is a starting point

for the production of forma requirements.

For CABS, a graphical transition based formalism has been chosen. The graphical examples
in the CABS system are used in the initid stage of rapidly putting together a draft
specification, and arriving at an executable specification, so that initid ideas about the
required behaviour and their corresponding examples can be refined and validated. The
graphical input examples are also used together with the information added during the
refinement of the input examples to provide automated assistance in verification. It contains
nodes (ovals) and directed links (arrows) which will be explained in detail in sections 4.1 and
4.2 respectively. Nodes and links are given names (links have their stimulus name in a square
box, where a stimulus is the external event that triggers a transition from one node to another,
if al other conditions are met) and pairs of nodes can be connected by links in any way. A
new node is created by selecting the create node tool (the first tool in the tool list in Figure
4.1) and a new link is created by selecting the create link tool (the second tool in the tool
list). For nodes and links, an additiona window with details about the node or link can be
shown. This window is shown when the details tool (third tool in tool list) is chosen and the

node or link is selected by clicking onit. A node can be moved by choosing the move tool (the

CHAPTER 4. GRAPHICAL INPUT EXAMPLES EXEMPLIFYING BEHAVIOUR 45

fourth tool) and dragging the node to the new position (dl links to/from the node will
automatically be updated). A node can be renamed/replaced and a node or link can be
deleted by sdlecting the corresponding tool (fifth, sixth lespective seventh tool), and then
selecting the node or link (any links to/from a deleted node will automaticaly be deleted). The
graphical representation and editor are designed to be uncomplicated, general and deliberately
unlike other graphical formaisms used in telecommunications since their aim is different and
smilarities may confuse matters. Graphical input examples dso have a non-graphical
representation (with some additiond information about the input example), which can be
examined by the user by sdlecting the information tool (eight tool from the top in Figure 4.1)
which results in the display of a window with details of the input example as shown in Figure
4.2. The ninth tool is used to redraw the window and the last tool matches the input example

against the case library.

lI=———-———— a_basit_edample_| =——D0D0D07——————

all subscribers idle

hook_off a

=
%L

hook_off b
dialling

a calling b

& o= f PP P

Figure 4.1: A graphica input example exemplifying a basic behaviour for the service basic

call

46 CHAPTER 4. GRAPHICAL INPUT EXAMPLES EXEMPLIFYING BEHAVIOUR

The non-graphical window for the input example (Figure 4.2) contains a scrollable list, Links
in example, with al the links in the input example and information of triggering stimulus, start
node and end node. A scrollable list, Nodes in example:, contains dl the nodes in the input
example. These two lists capture dl the information shown graphicaly in Figure 4.1.
Sdlecting a node or link in these lists and then pressing the Show button will show awindow
describing the node or link in detail, as described in Sections 4.1 and 4.2 (thiswindow is also

accessible through the detail tool in Figure 4.1).

Some of the functionality may be dependent of the functionality of some previoudy specified
service. When creating a new input example, the user states the services on which the new
behaviour is obviously dependent: for example, the three way call service is often defined as
an extension of the call waiting service, and if call waiting is not available, three way call
cannot be used on its own. These services are listed under Known behavioural
dependencies: and are called behavioura dependencies to distinguish them from more subtle
dependencies (see Section 5.1) which, in some cases, can be identified automaticaly in
CABS. Structuring services as being dependent on other services is common practice for
telephone services. In CABS, this information is used in the matching process where cases

on which the behaviour is dependent should be included as proposed solutions.

CHAPTER 4. GRAPHICAL INPUT EXAMPLES EXEMPLIFYING BEHAVIOUR a7

Info about input example: a_basic_example
Links in example:

Stimulus: From node: To node:
dialling | dial tone a | & calling b
hook_off | 2 zalling b | in speech
hook_off | all suvbscribers idle| dial tone a
hook_on | 2 zalling b | all subscribers idle
hook_on | dial tone a | all subscribers idle
hook_on | in speech | all subscribers idle

Modes in edample:
all subscribers idle
in speech
a calling b
dial tone a

Behavioural dependencies:
basic_telephony

Input example cateqorised as:
basic behaviour

Edxemplifies interaction with:
no interaction exemplified

Informal description of input example:
Thi= is an example of the basic behaviowr of a phone call.

[Cancel][Show][Eraphic][llpdate] [Iest cases]

Figure 4.2: Textua representation of input example

Informa examples of behaviour given in textua requirements specifications of a
telecommunications service are often categorised in some way for convenience of reference.
We have not investigated which categories are most commonly used, but have implemented a
facility for defining categories. Five different categories have been selected (categories can

be added/removed to suit the gpplication domain): basic behaviour; odd case; error case;

48 CHAPTER 4. GRAPHICAL INPUT EXAMPLES EXEMPLIFYING BEHAVIOUR

unsuccessful behaviour; excluded behaviour. An input example may be classified as
being in more than one category. The user selects the categories when creating a new input
example and the categorisation is shown in the text list field Input example categorised as.
In Figure 4.2, the input example a_ basic_example is categorised as basic behaviour.
Categories may aid the user in the process of structuring behavioura requirements. The
classfication may aso be used to assess whether the user has given sufficient input
examples, or if the system should request more input examples. If an input example
exemplifies excluded behaviour, it should be handled differently in the matching, validation
and verification process. Excluded behaviour (negative examples) has not been fully

implemented in CABS (see the discussion in Chapter 10).

Interaction between behaviours is of central concern in telecommunications and is often
clamed to be the most severe problem in developing and managing telecommunications
systems [Zave 93]™. If the behaviour of a telecommunications service is modified when
some other service is activefinactive, or if it modifies the behaviour of some other service
when it is active/inactive, we say then that the two interact. Interaction between servicesis
not “a problem that can be solved” since it is part of the required behaviour, therefore
decisions on how services interact have to be made before or during implementation. When
the user adds a new input example, she can select what interaction the input example
exemplifies, and the selected services are shown in the text list Exemplifies interaction
with: in Figure 4.2. In input examples, it is more likely that the desired interaction is
exemplified, leaving unwanted interaction to be handled when the full specification is
produced (including al the desired behaviour and excluding all the unwanted behaviour). If
the unwanted behaviour is exemplified as an input example, it is categorised as negated input

examples. A negated input example can be used if there is some specific behaviour that

14 Some interaction between services may be introduced by architectural/implementation choices such
as dividing the system into communicating processes [Cameron, Velthuijsen 93], and is not relevant

on arequirements specification level.

CHAPTER 4. GRAPHICAL INPUT EXAMPLES EXEMPLIFYING BEHAVIOUR 49

should not be alowed (this may be needed in the telecommunications domain when services
interact, but may aso be useful in other situations). Negated input examples are considered a
useful extension, and may, in some situations, further improve matching/verification results,

but are not classified as essential to the approach and have not been implemented in the

prototype.

An informal textual description of the input example together with relevant links can be
provided by the user in the text fidd Informal description of input example. This
information is used for the convenience of the users and for documentation. The Graphic
button shows the window with the graphica representation. The Update button is used to

update any changes (the graphical window is updated dynamically).

4.1 A Node

Each node has a unique name that is a mnemonic name for a situation, such as two telephone

users being in speech connection with each other (the oval in speech in Figure 4.1).

A situation can encompass many different states™, for example the node dial tone a (details
for this node are shown in Figure 4.4) may intuitivdly mean that the user a has a did tone,
which may be true for many different states. In a telecommunications system, there may be
millions of different states where the user a has a dial tone, but most of the differences will

beirrdlevant for any particular example.

15 A state is defined as a unique description of a system’s current status, as used in state based
approaches, where each state is often given a unique number. A finite state machine is an exampl e of

afrequently used state based formalism.

50 CHAPTER 4. GRAPHICAL INPUT EXAMPLES EXEMPLIFYING BEHAVIOUR

4.1.1 Creating Nodes

When the user creates a new input example, the first step is to create some nodes. The user
selects the first tool from the list of tools on the left in Figure 4.1. The user then clicks on the
position in the graphical area where the node is to be placed. A window where the user can
select the node name appears (Figure 4.3). If the user chooses to use a node that has been
specified earlier in some other input example, she clicks on the selected node and presses the
OK button. If in doubt, the Details button can be pressed in order to inspect the selected
node. Ideally there is aways a suitable node to select. If a new node name is given, the
details for this new node can be specified as explained in section 4.1.2 when the Details
button is pressed.

Name of new node:|a hung up

or select an exsisting node:

a calling b

all subscribers idle
L busy

dial tone a

in speech

[Cancel |[Details |

Figure 4.3: Sdlect node name for input example

After the user has pressed the OK button, the node is drawn as a circle with the name in the

graphical area (Figure 4.1).

412 Detailsfor Nodes

When a telecommunications expert talks about a specific situation such as two subscribers

being in speech connection (represented by a node in CABS), the user normally has a

CHAPTER 4. GRAPHICAL INPUT EXAMPLES EXEMPLIFYING BEHAVIOUR 51

comparatively well defined meaning in her mind. Unfortunately, it often happens that different
telecommunications experts do not necessarily have the same meaning in their minds; hence,
a more precise description of a situation is needed. In CABS, a more fine grained definition
of anode is given as a conjunction of terms. Terms are explained in detail in Section 5.1 (the
following example may be sufficient to provide a basic understanding). To add to or modify
the details of a node, the user selects the detail icon in the graphical window (the third icon
on the left in Figure 4.1) and then clicks on the chosen node in the graphical window. This
appears in anode window, as shown in Figure 4.4. If no details have been given for this node,
all fields will be empty. The user can now select the terms (by selecting them from a menu or
by typing them into the field) that are expected to hold for this node, and add them in the
corresponding field. For example, for the node a calling b, the terms calling(a, b) and
ring_tone(a) and ring_signal(b) are expected to hold (terms may also be negated). The
first predicate term, calling(a, b), is arelation between user a and user b, stating that user a
is cdling user b; the second term states that user a has aring tone and the third term states
the fact that user b’s telephone is ringing. A relation term is by definition not externdly
visible and is therefore added in the fiddd Characteristics (not externally visible). The two
terms ring_tone and ring_signal are defined as response terms and are therefore, by
definition, externally visble and added in the field Response (externally visible). In
telecommunications systems, externaly visible effects are so central that response terms
(externally visible terms) are often treated separately, even on a requirements specification

levd.

The same node may be used in different input examples, and the input examplesin which the
node is used will be shown in the li Node is used in input example. If a node has to be
modified, the user must make sure that the change is vaid for dl other input examples using
the same node or, if not, they must choose a different name for the node and define this new

node.

When giving input examples, it is obvious to the user in most cases which node is the start

node and which is the end node (there may be more than one). Intermediate nodes are nodes

52 CHAPTER 4. GRAPHICAL INPUT EXAMPLES EXEMPLIFYING BEHAVIOUR

that are temporarily passed through in order to achieve some required result. The user can
specify whether a node is a start node, an end node, both or neither (if a node is neither a
start node nor an end node, it is an intermediate node). In CABS, this selection is made by
ticking the corresponding box in Figure 4.4. This information is useful in the verification
process and in order to automatically generate test cases which will capture al behaviour
between the start and end nodes (this narrows down the number of test cases considerably
and in fact, in a large system, the number of test cases would be difficult to handle without

thisinformation; for more on this, see Chapter 7).

Mode: a calling b

Responses [externally visible):
ring_signal(b)&
ring_tonela)

Characteristics (not externally visible):

callingl(a, b)

h

Mode is used in input edamples:
a _basic_example_1

[]Start node []End node

Figure 4.4: Example of a detailed node description in CABS

CHAPTER 4. GRAPHICAL INPUT EXAMPLES EXEMPLIFYING BEHAVIOUR 53

As mentioned, the user is expected to give the main characteristics of a node (by choosing
from a list with al terms that have been defined in the case library), excluding facts of less
relevance for the node. In most cases, such a brief description of the main characteristics will
be sufficient, since the input is used primarily for identifying smilar behaviour in the case
library and for the fina verification after the requirements have been formalised. In cases
where there is no good match (a new type of behaviour with no smilar case in the case
library), the input examples are used as a starting point for generating a new case. However,
in these dtuations, the input may need refinement. From this point, whenever we mention
input examples, or graphica input examples, we mean both the diagram itsdlf and the details

given on nodes and links.

If al terms have a natural language phrase declared, the user could choose to use natural
language (NL) phrases instead of terms. For example, if calling(A, B) has the NL phrase A
is calling B, this phrase could be shown in Figure 4.4 in the field Characteristics (not
externally visible). An NL trandation would be useful for users less familiar with formal
notations and if the examples were shown to customers, they may not wish to see brackets at
al. The way in which formulae of terms can be trandated into natural language phrases has
been explored in depth [Dalianis 96]. In CABS, NL phrases have not been implemented but
this is proposed as an extension (adding a prototype implementation of NL phrases would

require little effort).

4.2 A Link

A link in the input example describes a trangtion from one node to another. The main
condition for the trangition to take place is that the stimulus term in the link occurs. A stimulus
in the telecommunications domain may, for example, be an action performed by a phone user,
such as lifting the receiver (hook_off) or dialing a number (dialling) as shown in Figure 4.1.
In the graphical notation it is optiond to show arguments for a link. When looking at the
details for alink, al arguments to a stimulus are shown (for examplein dialling(A,Nr,T), the

first argument is the phone user dialing, the second argument is the number dialed and the

4 CHAPTER 4. GRAPHICAL INPUT EXAMPLES EXEMPLIFYING BEHAVIOUR

third argument is the time this occurred). See Section 4.2.1, Figure 4.6 and Section 5.1 for

more on arguments.

When the user wishes to add a new link between two nodes, she salects the second tool from
the list of tools on the left in Figure 4.1 and then clicks on the node from which the link will
originate. Then, she clicks on the terminating node (a broken line is shown between the
originating node and the cursor until the terminating node is selected). When the terminating
node has been selected, a window for selecting the stimulus term for the link is shown (Figure
4.5). The user can select a stimulus term from the list showing al stimuli terms defined in the
case library. If the item -- New Stimulus -- is selected, the user can add the name of a new
stimulus term. The user may define the stimulus term in detail, as described in Section 5.1
(this should be done before the input examples containing the new term are used in the

matching).

Select stimulus for link:

— New Stimunlus — 4p

checlk _zerv ice

hook off

hook _omn :
Cancel Ty I

Figure 4.5: Sdect stimulus name for new link for input example

When the stimulus term has been selected, the new link will be drawn between the two nodes
and the name of the stimulus term will be shown in a box in the middle of the link. When dll
nodes and links have been put in place in the input example (as shown in Figure 4.1), the input

example gives al stakeholders a graphical sketch of the required behaviour.

CHAPTER 4. GRAPHICAL INPUT EXAMPLES EXEMPLIFYING BEHAVIOUR 55

4.2.1 Defining or Refining Links

A link is identified by its originating node, its terminating node, its stimulus term and the input
example in which it is used. In our examples, the triggering stimulus name is aways used as
the name of the link. We refer to a link by the name of its input example followed by the
originating node name, the triggering stimulus name and the terminating node name and,
therefore, there is no practica need to introduce unique names for links. In some situations, a
link needs some added detailsin order to reflect the user’ sintention for the transition between
the originating and terminating nodes. The details for a link are added in the same way as for
nodes (by sdlecting the detail-tool and clicking on the link in order to get a link window as
shown in Figure 4.6). In the link window, we draw the originating node and terminating node.
The first edit field is the stimulus term, with its arguments extracted automeaticaly from the

definition of the term.

In CABS, the terms of the originating and terminating nodes are put, by default, into the
corresponding scroll edit fields in Figure 4.6 (Conditions from originating node: and
Conclusions from terminating node:) when a new link is created. The user deletes the
condition and conclusion terms that seem to be irrelevant or of low significance, bearing in

mind that the link will be used to identify a matching case in the case library.

Additiond conditions in Figure 4.6 (fidd Additional conditions (qualifications/
instantiation):) are there to alow the user to add some specific conditions not explicitly
given by the originating node. In some cases, additional conditions may be added to
discriminate between two links with the same stimulus term leaving the same node. For
example, if user a lifts the receiver and receives adia tone, she should not currently be called
by some other user (if she lifts the receiver when called by another used she would answer
the incoming cal, this can be exemplified with another link). This additiona condition
~calling(Z,a), not explicitly stated in the field Conditions from originating node, is put in

thefield Additional conditions (qualifications/instantiation).

56 CHAPTER 4. GRAPHICAL INPUT EXAMPLES EXEMPLIFYING BEHAVIOUR

Additiona conclusons in Figure 4.6 (fidld Additional conclusions:) are there to alow the
user to add some specific conclusons not explicitly given by the terminating node (no
additiona conclusions are given in Figure 4.6). Added conclusions may be facts to be carried
forward in time and used at a later stage in the telecommunications service or used by some
other telecommunications service such as Charge Advice. An example of afact needed at a
later stage is which user originated a three way call (the service three way call is
specified such that if the person who originated the call hangs up, the other two connections
are cancelled so that no confusion about who is paying for the call may arise). Thisfact can
be added as an Additional conclusions: three_way call_originator (User) when the three

way cdl isinitiated.

CHAPTER 4. GRAPHICAL INPUT EXAMPLES EXEMPLIFYING BEHAVIOUR 57

d_basic_edample: Init two subscribers-hook_off->dial -
'——''_'_'—__‘_‘——___
CInit two subscribers
~ " Grone >
Triggering stimulus:
hook_offia, T)
Conditions from originating node:
~ring_signal(a) it
B
Additional conditions (qualification/instantiation):
~calling(Z, a) 1]
e
Conclusions from terminating node:
dial_tonel(al i
i
Additional conclusions:
i
3
Match select for link: Select best match b d
{Eancel J {Shuw match} { Select]{Update}

Figure 4.6: An example of a detailed trangtion link description in CABS

The pop up menu Match select for link: and the buttons Show match and Select are first
relevant during and following matching as is explained in Chapter 7. If a link does not
generate any good matches, the user may decide to refine an input case by revising/refining
the links (by adding/removing appropriate terms), which hopefully results in a better match.
Other ways of improving the matching results are explored in Chapter 7. The Update button
confirms any changes made in the edit fields and the previous definition of the link is

replaced.

58 CHAPTER 4. GRAPHICAL INPUT EXAMPLES EXEMPLIFYING BEHAVIOUR

4.3 The Use of Graphical Input Examplesin CABS

Initialy, every case (the required behaviour for a telecommunications service) originates from
a number of graphical input examples. These input examples represent the origina
behavioural requirements for the case even if the case itself captures more behaviour than
exemplified in the input examples (the case may have been refined during validation and
integration). We store the input examples for each case in the case library for a number of

reasons:

Input examples are used to automatically generate test cases and verify that the fina solution
(the formalised requirements) captures the behaviour exemplified in the input examples

(explained in Chapter 7).

Generated test cases are aso used to verify the interaction with other cases (explained in

Chapter 7).

If the behavioura requirements for a case are changed, this change will be made by altering

the graphical input examples.

We may re-use input examples as a darting point when we specify the behavioural

requirements of a new case (input examples can be copied and renamed in CABS).

The input examples may be used for understanding, learning and documentation of the

telecommunications system produced.

In Chapter 5, a detailed description is given of exactly what is stored in the case library, and

how relevant information is defined, updated and shown to the requirements designer.

CHAPTER 4. GRAPHICAL INPUT EXAMPLES EXEMPLIFYING BEHAVIOUR 59

Chapter:

5. CaselLibrary

The case library is a centra part of CABS. It isintended to contain everything that is needed
for the process of formalising the required behaviour (a subset of the tota behaviour of the
sysem when it has been fully implemented) such as initid requirements, informa and
formalised definitions, test cases used for verification and relations between these objects. To
make CABS s interna representation easy to extend and modify, the case library is organised
in an object-oriented fashion where each instance can be uniquely identified and has a
number of attributes and methods assigned to it (for example see [Bose 94]). Figure 5.1
shows an overview of the case library and the relationships between the main parts within it.
The relationships shown as broken lines have not been implemented in the CABS system
(beyond the scope of the research) and are only shown to give the context. All the main
objects in the case library have attributes such as creation and modification dates, informal
description, etc. These organisationa issues and design decisions are al hidden behind the
user interface and the case library will be described as seen through the user interface.

Everything in the case library can be saved and loaded between sessions.

The case library comprises six main sections: case definitions, transition rule definitions, term
definitions, test cases, graphica input examples and system definitions. A system definition
(top left corner of Figure 5.1) is basically a set of cases capturing al the required behaviour

the system is expected to exhibit when it has been implemented, including the more common

CHAPTERS. CASE LIBRARY 61

interactions between these cases. An add-on system is a set of cases that adds some
particular functiondity to a system, for example the system mobile telephony or
ISDN_telephony (Integrated Service Digital Network) adds behaviour to the system
basic_telephony (see glossary in Appendix D). A case (a telecommunications service)
captures the required behaviour of some particular functiondity in a system and is shown in
the centre of Figure 5.1. The behaviour of a case is represented by a set of transition rule
definitions (middle left of Figure 5.1) and definitions of terms (below centre) that are
consdered to bdong to that case. Graphica input examples (top right of Figure 5.1)
exemplify the initid required behaviour of a case and the more common interactions with
other cases. If a case is added or modified, the interaction between this case and the other
cases needs to be analysed and may need to be verified again (see Chapter 7). All test cases
(bottom right of Figure 5.1) that capture the required behaviour extracted from the input
examples, are stored for use in the automated verification process. Once a case and required
behaviour have been designed and implemented (the implementation of a new
telecommunications service may be a combination of software and hardware such as three
party call needing specific hardware connecting three phone lines to each other), the
connection between the transition rule definitions and term definitions should be kept (these
links are shown in Figure 5.1 as dotted lines). These links, shown as dotted lines, are beyond

the scope of this research.

62 CHAPTERS. CASE LIBRARY

Syster Graphical
Definitions Input
\ / Examples
Case
Definitions

Transition Rule Test Ceses

Definitions Tem
AN Definitions

Design and
Implementation
of requirements

Figure 5.1: Overview of case library

In the following sections, we will describe the different parts in the case library, their use and
how they are defined or modified by the user. First, we describe terms, which are one of the
most fundamental parts in CABS, then transition rules, which represent the dynamic
behaviour of cases, then cases (telecommunications services in our application domain),
systems (sets of cases) and, finally, we describe graphical input examples and test cases.
Once al the parts of CABS are explained, Chapter 6 explores how similar behaviour can be
identified by input examples and using them in a metching process, in order to identify cases

that may be re-used in whole or in part.
5.1 Terms

The purpose of terms is to capture a system’s current state. Terms are used both in input

examples and in trangition rules and are an important part of defining an ontology for the

CHAPTERS. CASE LIBRARY 63

domain'®. A precise and clear meaning for each term is crucia to the interpretation and
understanding of a forma specification, although few requirements methods address this
issue effectively [Zave 96]. Also, if aterm isused in an input example, it isimportant that the
term is well understood by the user so that the input examples and the cases in the case
library are built on the same terminology. In CABS, the user is expected to define terms with
care and in detail before the term s used in input examples and in transition rules. Term
definition should be one of the first tasks when approaching a new application domain or a
new class of behaviour that cannot be expressed with existing term definitions. If aterm does
not have a clear meaning, or its meaning is modified during a specification, all previous
specifications are no longer valid and have to be re-validated by the user. For alarge system,
where the specification may have hundreds of cases and thousands of transition rules, this
will be atedious and time consuming task. If aterm’s meaning in CABS is changed for some
reason, al this work has to be repeated. The idea is to give eaborated definitions of the
meaning of terms in order to reduce the risk of introducing problems at an early stage, which
may cause costly corrections later on. Informal discussions with telecommunications experts
have shown that experts sometimes disagree on the meaning of terms they use: large efforts
are put into standardisation of telecommunications terminology both by telecommunications
companies and internationa standardisation organisations, but if terms are properly defined

the first time they are used, some of these efforts may be reduced.

Figure 5.2 shows an example of aterm definition in CABS. The purpose of the current way
of defining terms is not to compete with ongoing research in conceptual modelling (see for
example [Johannesson, Boman, Bubenko, Wangler, 97]). However, Figure 5.2 may provide
an aternative way of presenting some of the information traditionally captured in conceptual
moddling. The examples merely give an illustration of the different pieces of information of

interest for formalisation/validation/verification and exemplifies how this information can be

16 Defining an ontology is beyond the scope of this research, only a few aspects of defining an

ontology are addressed, for more details on ontologies, see for example, [Uschold 95].

64 CHAPTERS. CASE LIBRARY

collected at an early stage of requirements capture. The content of Figure 5.2 will be

explained briefly now and explored in more depth in sections 5.1.1t0 5.1.6.

The firgt field, Term name (with arguments): in Figure 5.2 is the term name and arguments;
in this example divert(Nrl, Nr2) is typed in by the user when defining the new term
(argument names must start with a capital letter and can contain any number of |etters,
numbers and underscores). The next field, Informal description: is an informal description
of the term and arguments. The list Defined term belongs to cases: shows which casesin
the case library the term definition belongs to. The most common stuation is that a term is
only defined in one case. On some occasions, it makes sense to let the same term be defined
in more than one case, for example, if there are two varieties of the same case in the case
library. This occurs in telecommunications since services are often adapted for different
customers and markets (the service three party call for regular customers is different from
three party call for Centrex, see glossary in Appendix D). Terms can be of four typesin
CABS: stimulus terms, response terms, relation terms (more than one argument) and attribute
terms (zero or one arguments). When defining a new term, the user has to select the term
type by selecting the appropriate type in the pop-up menu under Type for term: in Figure 5.2.
The user can also choose a sort for each of the term’s arguments (Figure 5.2), Sort for
argument <position number>. The maximum number of arguments is restricted to five in
the implementation of the interface, which is sufficient for the current examples in the
application domain and should aso be sufficient for the telecommunications domain. The size
of the window is adapted automatically to the number of arguments in the term. For each
term, the type of reation between the arguments can be specified by sdecting the
gppropriate choice in the pop-up menu Relation type: in Figure 5.2. The set of types
available depends on the number of arguments for the term: if there are zero or one
arguments, the selection cannot be made. With the pop up menu Term occurrence: the user
can select whether a term has any restrictions on its occurrence. The options for terms with
one Or more arguments are one, any, zero or one, one or more. Option one would mean

that if the system can reach a state (see section 5.1.6) in which the term exists more than

CHAPTERS. CASE LIBRARY 65

once or not at dl, then there is a conflict between the definition and the trangtion rules
leading to the state. For example, if the terms current_time(1) and current_time(2) are true
a the same time, it is incompatible with this definition. This sort of generic informetion is
often easiest to capture when the user defines a new term and can then be used in a number
of different ways. For example, if new transition rules are generated from links or adapted
from other transition rules, they can be inspected for consistency with the term occurrence

definition. Thisinformation can also be used when verifying a system (see Chapter 7.6).

The button Show where used produces a cross reference list of al transition rules in the
case library and tells the user which cases contain transition rules that use the term in their
condition-part/concluson-part (currently this is not fully implemented but it could be
implemented with a smple search function). The More button gives some additiona
information, such as the times at which a term definition was created and last modified. The
Update button updates any changes of the definition (if the user has the privilege of
modifying term definitions). The Cancel button ignores any changes and leaves the term

definition unchanged.

66 CHAPTERS. CASE LIBRARY

Attribute/relation term: divert

Term name (with arguments):
divert(Nri1, Nr2)
Informal description:

Calls to phone number Nrl are expected to be diverted
to HrZ2 instead (al=zo see divert _on_no_reply and
divert_on_busy).

Defined term belongs to cases:

call diversion

Type for term: | relation b
5ort for argument 1: | telephone_number b
Sort for argument 2: | telephone_number b
Relation type: | 1:1 b
Term occurrence: | none or more b

[Cancel][Shuw where used][More]

Figure 5.2: An example of aterm definition in the CABS system

511 Significance of Term Names

The terms used are in predicate logic (see for example [Luger & Stubblefield 89]) where the
term names bear the main part of the non-instance-specific information. For example, if we
would like to capture the statement that a user a has dialed the number 222 and that the
number 222 has al its cals redirected to the number 333, that there is a user b answering

cals on number 333, and c is not cdling b, we could capture this with the four terms:
dialling(a,222) and redirect(222,333) and

answer_number (b,333) and not calling(c,b)

CHAPTERS. CASE LIBRARY 67

In this example, al the non-instance-specific information is captured in the term name and all
instance-specific information is represented as arguments to the terms. The term names are
relations or attributes that can be given a clear meaning from a phone user’s perspective. The
arguments are phone numbers (222, 333, 444, ...) and phone users (a, b, ¢, ...) which are the

most centrd entities in the telecommunications domain.

In an entity relation model, in contrast, terms are of the form is_a or has_property, and most
of the significance is shifted to the arguments. An example with low significance in term

names and high significance in the arguments would be:

has_property(a,dialling,222) and has_property(222,333) and

has_property(b,answer _number,333) and not has_property(c,calling,b)

In this example most of the significance has been shifted from the term names to the
arguments. Both examples contain the same information when we know the instances and in
most applications, the choice between the two representations may not be of any
significance. But in our approach, it will prove important as will be explained in Chapter 6
(part of the matching is based on term names and is independent of the current domain of
discourse). Term names are central to the matching process and if their significance is low,

thiswill affect the validity of the matching resuilt.

512 Instances, Arguments and Sorts

In behavioura input examples, requirements specifications and smulations, a set of instances
are needed (to be precise, names uniquely identifying the red instances in the domain of
discourse, i.e. dl the telephones and phone numbers). This is not to be confused with the
application domain (such as telecommunications services). Instances can be classified into
sorts; in the gpplication domain of telecommunications, there are sorts such as telephone

numbers, phone users, etc.

68 CHAPTERS. CASE LIBRARY

In CABS, it is an advantage to use terms with few arguments as this often gives the term
name higher significance. In fact, everything that can be expressed using terms with more
than two arguments can be represented using terms with only two arguments; but this may
look odd even if there are advantages in doing so. For example, the facts answer_nr(User,
Nr) & accepts incoming_calls(User) could be represented with one term and three
arguments, user_info(User, Nr, ‘incoming_calls'). If the term user_info(User, Nr, F)
occurs in a node, link or trangition rule, a careful analysis of the arguments will tell us which
information is relevant to the situation. Since our matching agorithm uses term names as its
main guide in identifying relevant matches, the matching result will be more accurate if terms

use fewer arguments (for details on matching see Chapter 6).

From a pragmatic point of view, any non-trivia specification will initialy contain mistakes,

misunderstandings and errors. Sort declarations may be used in a number of different ways to
ad the requirements capture process and, hopefully, to improve the accuracy of the fina

specification. The most common use is to identify any mismatch with sorts and point out
where these occur. The argument against sort declarations and typing is mainly that in
prototype systems and small specifications made by one or a few persons, the gains are not
large enough to justify the additiona workload. In our approach to specification, we
acknowledge both the need for an early prototype of the requirements (i.e. to arrive quickly
at some intermediate result that can be partly validated and verified in order to aid the
refinement and revision process) and the need to produce a validated and verified formal

specification outlining the required behaviour. CABS provides, as an option, the default sort
Not specified when selecting the sort (in Sort for argument <argument number> in Figure
5.2), which has al other defined sorts as a subset. Thiswill alow the user to specify, smulate
and refine the system incrementally and to decide when to declare this information. A new
specification should only be accepted when dl arguments have their sort declared (checking
that all arguments have their sorts defined istrivial to implement, athough not implemented in
the CABS prototype, see for example [Cohn 85]). Furthermore, theorem provers and

simulators can improve their performance by using sort information.

CHAPTERS. CASE LIBRARY 69

513 Condgraintson Terms

There are a number of static constraints that can be declared on terms (static since they are
valid for al states the system can reach). Much research effort has been put into the
moddling of static models: entity relationship modelling is one of the most popular approaches
[Wieringa 96]. A number of different graphica notations are aso used and some are
trandated into logic [Preifet, Engstedt, 93] or into logical programming languages such &
PROLOG [Johaneson 91]. Examples of constraints on terms in the telecommunications

domain are;

A user can have only one other person caling (next caller gets busy tone).

A user can have only one last called number (used when the redial service

is activated).

Only one current time can exist in agiven state.

This information is useful in the verification process for the specified system. A term can
either be a propostiond term, eg. lamp_is on or have arguments, eg.
switched_on(lamp_1). A term can dther be true or false: - switched_on(lamp_1) means
that it is not true that the lamp_1 is switched on. In the following sections, we will explore
how to represent different aspects of terms and their properties (such as the three examples

above) in more Oetail.

Each term is defined according to an approach similar to that used in some entity relationship
approaches (for more details on different approaches see [Wieringa 96]). In the current
implementation of CABS, there is no graphical representation of static constraints for terms.
The four static congtrains defined in CABS are: type of relation for terms; sort of arguments;

relation type between the arguments; term occurrence, as shown in Figure 5.2.

If there are two arguments for aterm, the choicesare 1:1, 1:m(m for many), m:1, m:m(see
examples of the relation types in Figure 5.3). The relation type 1: 1 means that each object in

the set of possible values for the first argument can have only one relation with one object in

70 CHAPTERS. CASE LIBRARY

the set of possible values for the second argument. The relation type m:1 means that each
object in the set of possible values for argument 1 can have only one relation with one object
in the set of possble values for argument 2, and objects in the set of possible values for
argument 2 can have many reations with different objects in the set of possible vaues for
argument 1 (for more on this see, for example, [Davis 90]). This information can be used in
vaious ways in verification and vaidation, or when adapting or generating new transition

rules.

possiblevdues possiblevdues possiblevdues possible values
for argument 1 for argurr ent 2 for argument 1 for argurrent 2

r N

/ \\‘ l//_\\ / \\‘ y N
[O——20" OO
|
Ok |@| 'OZ, /;O'
O
\

/o~ \ \
’(H\

! \
' |
\ 0

NOX OK
\ / \ /
_’,

Im

Figure 5.3: Relation type between arguments in aterm with two arguments.

An example of a gatic congtraint is a binary relation term named answer_number with two
arguments, the first argument being a telephone user, and the second argument being the
telephone number the user answers. The static constraint is that the user can have only one

answer number. Thisisan m:1 relation, i.e. each user has only one answer number and many

CHAPTERS. CASE LIBRARY 71

users can have the same answer number. For example, if it were true that
answer_number (daniel, 3990) and answer_number(daniel, 5555), tha would be in
conflict with the declaration. But the statement answer_number(sandra, 3990)) and

answer_number (andreas, 3990) is not in conflict with the declaration.

In some forma specification approaches, and often in logica systems, redundancy may be
unwelcome, or even purposely avoided and eliminated. In a requirements capture task, which
by nature will often be incomplete, contain errors and require revision and refinement, we
should take every opportunity to collect information which is easly available and easy to

capture, whether to aid the user to clarify her thoughts or for use later in verification.

514 Response Terms (Externally Visible)

Any terms visible from the environment in which the final system will operate are declared as
response terms (for example ring signas, dial tones). This may be anything from an
asynchronous request, to a command given to some external equipment or a message to
another system. What effects the visible term will cause outside the specified system are
beyond the control of the specification (with a straightforward extension of the ssimulator,
communicating systems can be simulated, see Chapter 9). Hence, a clear understanding of
the visible termsiis crucial to ground the system’s behaviour in its environment. In the current
implementation, we provide only a facility for adding some text explaining each term’'s

meaning (which may also contain references or formalisations).

5.1.5 Stimulus Terms (External Input)

Stimuli are the only way for the environment of a system to affect its behaviour (for example
dialling, hook_off, hook on, recall). A stimulus may be ignored by the system, but the
most common response is an internal change of state and, eventualy, an externa reaction in
the form of changed response terms (see transition rules). If time is an important part of a

behaviour, it may be regarded as an externa stimulus.

72 CHAPTERS. CASE LIBRARY

516 A Stateisa Set of Statements

The purpose of terms is to capture a system’s current state. A state comprises a number of
terms representing all statements which are true, with al other statements not stated as true
assumed to be false. CABS is intended for modelling systems in which we can assume a
closed world (specifications of systems to be implemented with computers mostly fal into this
category, real world systems do not). The closed world assumption smplifies the logic and is
the classica decision taken in many logic based languages (such as PROLOG) and
knowledge based systems (such as production systems). Requirements specifications of

systems implemented with computers (such as telecommunications services) mostly fal into
this category (we either know that something is true or false, but do not need to reason about

Situations where we do not know if something is true/false).

5.2 Transtion Rules

When specifying a system in CABS, the only way of causing a change is by a trangition rule.
If a trandtion rule's conditions are met, the system will change into a state where the
conclusions of the trangition rule are true. One of the conditions in atrangition rule has to be a
stimulus term. State changes can only occur in response to an external event and, thereafter,
the system will wait (stay in the same state) until a new stimulus is received. This has the
advantage (and for some domains, the limitation) of redtricting the specification to be
internaly loop free. Depending on the environment of the system, it may ill be possible to

create externa loops outside the scope of the specification (see section 5.2.1 about external

loops).

Stimuli are sequenced in order to smplify the logic: we do not attempt in this high-level
specification to specify what should happen when signals are competing (e.g. if two users call
a third user at exactly the same time); the approach taken is that the decision of how to
resolve such a situation is not necessarily a requirements choice, and can be dealt with in the

design process (for many application domains, including telecommunications, assgning an

CHAPTERS. CASE LIBRARY 73

arbitrary but reproducible order between competing externa signas will be sufficient). Figure
5.4 shows the modd used in CABS. Sequences of stimuli provided by users of telephones are
used to activate appropriate transition rules. As a consequence, a sequence of states is
generated, containing sets of facts that describe the system at each time a stimulus was
received (f represents the frame axiom, which transfers unatered facts from the previous

timet to the current time t+ 1, see Appendix A for more details on the logic used).

Logicd Systerr

i _ Transition Rule 1:
sequencing| stimulus | gimulus at timet+1 &
/ stimuli oonditions at timet

C—3 ® .
rePoNE | mpnclusions at t+1 &

response a t+1

i

Facts at Facts at
timet timet+1

Figure 5.4: Modd of the dynamic behaviour of telecommunications network

An example of atrangition rule window in CABS is shown in Figure 5.5. The Stimulus: field
shows the triggering externa stimulus condition. The Condition: field contains a conjunction
of terms defining al other conditions that have to be met. The Conclusion and responses:
fiedd is a conjunction of al terms that become true as a consequence of this trangition rule, if
the conditions are true. In the Informal description: field, a textua explanation of the rule,
its meaning and references to relevant information are given. In the list Used in cases: dl
cases in the case library that include this transition rule are listed. The user may select a case
in the list and press the Show Case button in order to display the case window, as in Figure

5.7.

74 CHAPTERS. CASE LIBRARY

Transition Rule: normal_dialling

Stimulus:
diallingrda, Hr, T)

Conditions:

dial tone(d)&

answer nri(B, Hri&
“calling(2, Bi&
accepkbs_incoming calls(Hrié&
“hook_off time(E, ¥

Conclusions and responses:
callingid, B
~*dial tone(d)a&
ring kone(d) &
ring signal(B)

Informal Description:

Tser & is dialling a number conmected to a terminal that
accepbs incoming calls, is not called by someons else
and who has not the reciever off the hook. The result is
that & i=s calling on B.

Used in cases; pfst-gg-cunl

Transition rule is included in priority.

{EEII'IEEI] [show case J { More J

Figure 5.5: Trandtion rule example in CABS

The More button gives some additiond information on maintenance etc. Above the buttons,
either the text Transition ruleis not part of any priority or Transition ruleisincluded in
priority is shown (see Section 5.4.2 for information on priority between trangtion rules).
Pressing the OK button saves the modifications and closes the window. Before saving the
changes, a brief anaysis of the changes is made and if in doubt, the user must confirm the

changes (see Chapter 7 for circumstances under which transition rules may be modified).

CHAPTERS. CASE LIBRARY 75

521 Recursive Behaviour in Requirements

How to represent recursive behaviour, as well as the restrictions imposed on recursion by the
formalism and syntax, are of major importance for requirements specifications. The main risk
with recursve behaviour is that loops are specified that may be infinite under some
circumstances and that this is not identified during validation and verification (this would be a
major problem in any safety critical application). One advantage of recursive behaviour is that
some requirements are considered easier to express with recursive behaviour. Before
explaining what type of recursive behaviour is enabled in CABS, an example is given of the

cal diversion service (see glossary in Appendix D) in arecursive situation.

Call diversion may be used for diverting a call for more than one step. Calls to phone number
111 may have been diverted to phone number 222, and calls to 222 may be diverted to phone
number 333. A careless specification of repetitive behaviour may enable specifications that
exhibit unwanted behaviour, which may be difficult to validate and verify (the problem is to
separate loops that aways terminate and loops that under some circumstances may not
terminate). If, for example, phone calls to 222 have been diverted back to 111 in the above
example, some formalisms and ways of specifying the diverted call may cause an infinite loop
(see example in footnote 9, page 23). A full specification (specifying al wanted behaviour
and excluding al unwanted behaviour) should state what happens. an infinite loop is most
likdly not part of the requirements for a telecommunications systems. A regquirements
specification (compared with a full specification) does not include al wanted behaviour and
exclude al unwanted behaviour: it merely outlines the main behaviour and leaves other parts
of the behaviour open for later refinement, in order to produce a full specification (which is

outside the scope of this research).

In CABS, recursive behaviour is restricted to aid validation and verification. There are two

different ways to express recursive behaviour:

Expanded Recursion: If afinite recursive behaviour isto be expressed with transition rules,

this can be represented with a separate transition rule for each recursive step. A recursion in

76 CHAPTERS. CASE LIBRARY

n steps will result in n transition rules. Hence, we cannot create infinite loops and only one
time step passes for the rule triggered (if other rules trigger in pardld, it will ill be one time
step, for more on this see 5.2.2). Thisis expressive enough for telephone services but may be
awkward for some cases, especidly if a user manually edits or adds transition rules capturing
recursive behaviour (a more compressed syntactical notation for recursion may be introduced
and automatically expanded to a set of trangition rules, see Chapter 8). Both vaidation and
verification of expanded recursion is supported in CABS (trangtion rules representing

expanded recursion are, with respect to CABS, no different to other transition rules).

External Recursion: This mode of recursion is optional and may be forbidden if unwanted
for an application domain. If a recursion is caused by a response converted externally
(outside the formally specified system) to a signdl, it is caled an externa recursion (Figure
5.6). Infinite loops can be specified in this way and are outside the control of the formal
notation. The filter process may add restrictions and monitor recursion. One time step passes
for each recursion. This can often be trandated (manually) into expanded recursion. Even if
they can be trandated manually, they are different in nature to each other since in CABS, a
time step will occur for every stimulus and hence each recursion will result in a time step.
This may be an over-specification, especialy if the requirements can be trandated with
expanded recursion (only one time step will pass, independent of the number of recursions).
Validation of externa recursion is supported by CABS, which identifies responses named

stimulus and submits the argument as a stimulus to be simulated, see Section 5.2.1.2.

5.2.1.1 Example of Expanded Recursion

As an example, suppose we accept divert cal in three steps, then we know that if there are
three divert numbers (divert(123,125) & divert(125, 139) & divert(139, 144)) there
would be three trangition rules if we formalise the requirements with expanded recursion. The
firg transition rule would handle diversion in three steps; the second one in two steps, with
the precondition that the last number does not have a divert, and the third in one step, with the

condition that there is no further diversion from that number. Since there is no transition rule

CHAPTERS. CASE LIBRARY 7

handling four diversions, any further diverts would be ignored by the specification (which is
the aim if we limit the maximum number of diverts to threg). Also, if the second divert was a
divert back to 123 (divert(139, 123)) this would be no problem since the effect is that phone
cals to the number 123 end up at 123. This is most likely a profitable situation for a service
provider, since the service provider normally bills each diversion as anorma cal (billed to the
subscriber who activated the diversion). This would result in the subscriber for telephone
number 123 paying for the call between 123 and 125, the subscriber for 125 paying for the
call to 139, and the subscriber for 139 paying for the cal to 123 (atriple payment for a cal).

5.2.1.2 External Recursion

If recursion is specified as an external recursion, a transition rule concludes a specia
response, which is identified by the filtering process, and the argument is returned as a
gimulus (see Figure 5.6). When behaviour is specified with externa recursion, the
specification exploits some known and reliable behaviour. In CABS, this special response
term is named stimulus since its argument is one stimulus to be sent as input to the system.
When the filtering process identifies a response, stimulus(<stimulus term to be sent to
system>), it is converted to a stimulus term and sent to the system. The external filter
process is transparent for all responses directed to the users, and only identifies and filters out

responses from the system that should be sent back as stimulus terms.

With this mechanism, we could specify cdl diverson by having atransition rule identify when
a caler C cals a number N1 for which a diversion is set to number N2, and generate a
response term stimulus(dialling(C, N2, NextTime)) which the filtering process will

trandate to asigna dialling(C, N2, NextTime) and present as an input to the system.

78 CHAPTERS. CASE LIBRARY

Logicd Systenr

Transition Rule 1;

sequencing| stimulus | gimylusat time t+1 &
A gimuli

- conditions at timet
users \ ®
Filter rePONE | condusions at+1 &

process response at t+1

Facts at Facts at
timet timet+1

Figure 5.6: Externa recursion

If number N2 has aso diverted calls to number N1, we would end up with an infinite externa
loop. When dialling(C, N2, NextTime) is received by the system, it would correctly identify
that N2 is diverted to N1 and generate a response term stimulus(dialling(C, N1,
NextTime)): this may continue forever. It is theoreticaly difficult in genera to prove that a
specification containing external recursion is finite. A crude way of reducing the risk to the
most obvious loops would be to add redtrictions in the filter process. For example, one might
only adlow a gimulus with the same arguments (allowing different times) to be sent to the
system a certain number of times within a given time frame. If arestriction is added that the
response stimulus(dialling(C,Nr,T)) is accepted only three times with the same arguments
within ane second, the loop in the example would most likely be eliminated. But since there is
no way in CABS to prove that the use of externa recursion will not cause an infinite loop,
thisway of specifying behavioura requirements should be avoided in cases where rdigbility is
a high priority (or al externa recursion should be trandated to expanded recursion in the
refinement process of the specification). In situations where there are good reasons for using
externa loops to specify some particular behavioural requirements, the part of the

specification that can cause infinite loopsis clearly identifiable.

CHAPTERS. CASE LIBRARY I

522 Parallel Trangtion Rulesand Order Independence

For requirements specification, it is useful to have transition rules that can trigger in pardld if
al their conditions are met, and can aso trigger independently of the order of the transition
rules (transition rules are by default context independent). This can be used to separate the
specifications of more or less unrelated behaviours (for example, separate cal hilling
functionality for a telephone call from the behaviour of how to establish the call) which are
triggered by the same externa stimulus. Context-independent trangition rules give the
advantage of defining the behaviour independently of both loading order and other transition
rules included in the full requirements specification (in many rule based systems, the exact
behaviour of a rule can only be determined if the conflict resolution methods are known, as
well as the loading order: the system may behave completely differently if the rules are
loaded in a different order'’). Transition rules which may trigger in parallel must be checked
carefully to ensure that they do not have conflicting conclusons (this can be done
automatically, see Section 7.6). Parallel transition rules do not affect the expressiveness of
the logic and can be trandated (manually) to a set of non parallel trangition rules with exactly

the same behaviour. Their sole purpose isto aid the separation of requirements.

5.3 Structuring Functionality in Cases

There are a number of different ways to structure functional specifications. The main aim of
any structure isto make it easier for a human to understand, extend or modify a specification.
It is considered to be difficult to structure large systems in predicate logic. If a structure is
required for a formal specification based on predicate logic, it has to be introduced either in
the formal notation itself or on a meta-level. The most common approaches are to modularise

a specification or to divide the specification into a number of communicating objects (not to

7 Since telecommunications systems requirements are composed of hundreds of different services

(cases), it would be amajor task to handle loading order for transition rules.

80 CHAPTERS. CASE LIBRARY

be confused with the objects in the domain of discourse, hence | will call these objects

‘process objects’).

In the chosen telecommunications domain, the functionality is divided into functiona parts'®
caled services, where each service reflects some particular behaviour of the fina
telecommunications system. Services are often classified as either basic services, capturing
some main functiondity, or as services which add functionality to these basic services. In
telephony, the basic functionality is to establish a voice or data connection between two
users. Examples of services adding functiondity are call return, call minder and call
waiting (for more examples see “ Selected services, User guide, BT” and Appendix B). The
basic service in telecommunications is decreasing as part of the total functionality and the
overdl functiondity is getting more complicated. In our example domain of
telecommunications services, we implemented each service as a separate case, which

follows the traditional way of structuring telecommunications services.

Figure 5.7 shows an example of how a case is displayed in the CABS system. In the scroll
list under the text Transition rules (T-rules) in case: alist with dl transition rules belonging
to the case is shown. The user may chose to inspect a particular transition rule by selecting
the appropriate button. This will show the window for the transition rule as shown in Figure
5.5. In the same way, a transition rule can be removed from or added to the case. The
informal description gives a brief description of the casg, its purpose, functiondity and linksto

relevant documentation. In the list Terms defined by case: alist with al terms defined by the

18 In telecommunications, it is aso common to have an object oriented structure at the

design and implementation level (but not at the requirements level) where different parts are handled
and implemented separately (trunk lines, protocols, regional processors, access points, etc.). In
contrast, functional requirements specifications should ideally be as independent as possible of

design and implementation decisions.

CHAPTERS. CASE LIBRARY 81

case is shown. The button Show Term will show the sdected term in the list. This

information is used to determine relationships between cases.

If a case specifies behaviour added to that of a previoudy specified casg, in the sense that a
system does not include the base case, the extension case does not make sense on itsown (in
telecommunications, three party call may be specified as an extenson to call waiting). If a
case specifies some behaviour added to a previoudy specified case, this is shown in the list

<case name> is dependent on cases: in the window.

The button Interaction makes an in-depth analysis of relations and dependencies between
cases (some of the interaction can be determined automatically in CABS, see Chapter 9 for
more details). The user can choose to inspect the input examples on which the case has been
based on by pressing the Input Examples button, or can choose to inspect the test cases used
for the verification of the case by pressing the Test Cases button (if no Test Cases have been
generated automatically from the case, this can be initidised). The More button gives some

additiona information, such as when a case was last modified.

82 CHAPTERS. CASE LIBRARY

Case: basic_call

Transition rules (T-rules) in case:

a_leave call
answer_call

b_leave call

dialling busy_ 1
dialling busy 2
dialling congestion
disconmect_from_calling
disconmect_if time_out_1

[

@

{ Show T-rule J [Flemuue T—rule} { Add T-rule]

Informal description of case:

Capktures the behaviowr of a basic telephone call between
two telephone uwser=s. Includes call to a busy user,
congestion and time outs.

Terms defined by case:

accepts_incoming calls(User) type: relation
answer _nri(User, NHr) type: relation
busy_ tone(User 40 type: response

basic_call is dependent on cases:
basic telephony

[Input EHamples] [Test Cases] [Show Term J

[Eancel][More] [Interaction]

Figure 5.7: The case window in CABS

In a requirements specification, it should be obvious which parts of the specifications are
requirements and which are merely there to aid the human user in handling a large
specification. To represent both the specification and these additiona structures in logic may
complicate the logic used to represent the specification and it may be difficult to extract the
part of the specification relating purely to requirements. With an object oriented approach, the
distinction between specification and supporting structure may be difficult to make, since
dividing a functiondity into a number of communicating objects may be a requirement or just

a decision taken in order to make the specification easier to understand. If a large system

CHAPTERS. CASE LIBRARY 83

with varied functiondlity is divided into large numbers of communicating objects, this may
require extensve communication and large numbers of communication protocols to
understand and handle. If so, this may reduce the benefits from structuring the requirements
into objects, or, in the worst case, lead to a specification which is more complicated than if

specified without a communicating object structure.

In CABS, a case consists of a set of trangition rules. Cases aso contain references and
information aiding human understanding, re-use, modification and evauation. The logica
formalism does not know what a case is and treats al transition rules as one large set of

axioms. The main reasons for this design are:

CABS is @med at people who are not skilled in logic, so it is important to keep the logic as

clear and smple as possible.

To avoid complications in the verification and smulation of specifications.

To keep the distinction clear between what parts of the requirements are requirements and

what parts are an aid to human thought processes.

One of CABS amsisto stretch a smple, executable logic as far as possible and to explore

the benefits and drawbacks of this minimalistic approach in areal gpplication domain.

As mentioned earlier, a case may be specified as being dependent on another case. The
opposite would be that a case is independent of all other cases and doesn't interact with any
other cases (not common in the telecommunications domain). If such an approach can be
taken for an application domain, each case may be viewed as a single process that can be
specified, re-used, validated and verified in CABS. If a doman contains individua
autonomous components exhibiting external communication only, there is no need to consider
interaction and dependencies. Such a domain would be well suited for CABS (or, even better,
a samplified verson of CABS where al parts especialy included to handle interaction and
dependencies are excluded). One current limitation in CABS isthat if the overal behaviour of

the system is determined by a set of communicating cases (communicating with each other

84 CHAPTERS. CASE LIBRARY

by external stimuli), this may be smulated, but not formally \erified in CABS (beyond the

scope of this research).
531 Case Relations

A telecommunications service may be dependent on other services (adding functionality to
them) or interact with another service, i.e. there is a new behaviour when both services arein
the same system. For this reason, requirements have to be carefully validated and verified to

determine where and how cases affect each other and the overall behaviour.

Cases being dependent on each other is a common feature of a system that is structured
according to functionality. A case X may add functiondity to case Y, hence case X is
meaningless if case Y is not included in the constructed system. This information has to be
captured during the initial specification. Also, analysis of where terms are used, and in what
way (as a condition, conclusion, negated, ...), may identify dependencies and relations
between cases, since terms are specified as belonging to a case. How a term is used is
important during analysis. For example, if aterm is used in the condition part of a trangtion
rule, the rule can never be triggered if no other transition rule has the term in its conclusion
part. Some cross-reference tools have been developed in order to analyse the transition rules

and their use of terms (these tools have not been integrated in the current version of CABS).

5.4 System Requirements (Sets of Cases)

The requirements specification of a system specified in CABS is a set of cases whose
behaviour (including the most common interaction between them) has been vaidated and
verified. Systems requirements may include additiona input examples, exemplifying
interaction between different cases in the system. In the telecommunications domain, system
requirements may denote al telephone services supplied to a particular country, service
vendor, loca or global company. Interactions between systems may also have input examples
exemplifying certain interactions. When a case has been modified or a new case is added to

a system, al input examples describing interaction with other cases should be verified again.

CHAPTERS. CASE LIBRARY 85

Also, the system that includes these modified or new cases should have al its interaction with
other systems verified. In CABS, automated verification of sets of test cases is implemented,
assuming that we can select which system or systems to verify, and select which input

examples to verify.

In Figure 5.8, an example of the system window in CABS is shown. Firg, a list of al cases
included in the system is shown. The user may nspect, remove, replace or add cases to a
system. An informal description is given as a textud description of the system, with links to
relevant material. The list Behaviour dependent on systems/cases. contains the names of
systems and cases on which the system is dependent to specify a meaningful behaviour. If
the ligt is empty, then the system specifies a meaningful behaviour on its own. If not, then in
telephony it is most likely a set of add-on services (specidly designed services adding
functiondlity for which phone users are prepared to pay extra, which in turn increase income
for telecommunications service providers). If there are cases in the ligt, then the system is
dependent on any system including these cases. In telecommunications, there may be alarge
number of different systems where only a few cases differ for each system, and so it is
preferable if an add-on system is dependent only on the parts of the system that are the same
for al these different systems. This increases the possibility ¢ re-using the system and

facilitates adaptation and integration.

The ligt Integrated with systems/cases: isalist of systems or cases with which the particular
system has been verified and validated. In telecommunications applications, it is important to
keep track of these, since there are a large number of different systems designed for specific
categories of users, vendors, service providers, etc. If it is a case in the list, then the same
reasoning applies as for the Behaviour dependent on systems/cases: stuation. Also, when
validating and verifying a particular service, CABS needs to know in which context the

service isto be tested (a set of cases/systems).

86 CHAPTERS. CASE LIBRARY

s5ystem: full_functionality_system :

Cases in system:
basic_telephony
basic_call
banking
call back
call barring
call diversion
call return
call waiting
caller display
charge _adwice
emergency_ call

i =

&l

[Show Case }[Hemuue EHSE] ﬁ%dd MeL Ease]

Informal description of system:

Captures both basic telephony and a number of popular
added wvalue services. &4lso some extra services such as
banking and voting are included.

Behaviour dependent on systems/cases:

Integrated with systems/cases:

{EEII'IEEI] {Shuul priurities} [More J | 1] 4

Figure 5.8: System window in CABS

54.1 Different Application Domains

A case library normally contains cases from just one application area, since different parts of
the case library can have only one unique meaning. If a case library captures different, but
related, application domains, where terms may have different meanings, great care has to be
taken to ensure that any reasoning and re-use is not based on terms from the different
gpplication domains having smilar but not equivalent meanings. A requirements capture

process, whether formal or informal, has the main purpose of outlining the requirements as

CHAPTERS. CASE LIBRARY 87

closdly as possible, and if this reasoning process is based on terms not clearly defined, or

even having different meanings, it would complicate matters considerably.

54.2 Priority for Trangtion Rulesin Systems

In some situations, it may be desirable to have context dependent rules on alocd level. Since
every trangition rule has a unique name, we can define local orders between transition rules,
i.e. if trangtion rule divert_call triggers (has al its conditions met) then normal_dialling
should not trigger. Such a request can be specified with transition rules by including all
conditions from divert_call as a negated conjunction in the transition rule normal_dialling.
If there are more than two or three trangtion rules that are exclusive, or overriding each
other, this solution is somewhat tedious as the conditions will get very large. Therefore, we
alow the user to define explicitly a local order between a number of named transition rules
(see Appendix A for more details on logic). Figure 5.9 demonstrates setting the priorities for
trangition rules triggered by stimulus dialling. To inspect or modify a priority, the user first
selects the stimulus to which the priority applies (by selecting the stimulus in the list Priority
for stimulus). The current order shown is the number after Priority order followed by the
total number of priority orders for this stimulus in the brackets. In the next lit, the name of
the trangtion rules (with the name of the case in which they are defined) and their loca

priorities are displayed. For example, trangtion rule 1. divert _call will overide 9.
dialling_busy. If divert_call has its condition met, dl the following trangition rules in the list
cannot trigger. The same transition rule may occur in different orders which enables the user
to specify alattice. If trangition rules are exclusive (they cannot have their conditions met in
the same state), they may be given the same priority rumbers (as is the case for transition
rule dialling_busy queue call_1 and dialling_busy queue_call_2). Protection against
circular priorities should be provided when new priorities are added or existing priorities are

changed (not implemented).

88 CHAPTERS. CASE LIBRARY

Priorities for system: full_functionality_system

Priority for stimulus:

check_service i

dialling

hook_off

hook_on

recall

service_request Ik
Priority order 1 (of 1) for stimulus dialling
Transiton rules: In case:

1. divert_call in call _diversion |4 ;
2. call barred user in call barring

2. mormal dialling in basic _call

4. dialling busy gqueuve_call 1 in gquene_calls

4. dialling busy gqueuve_call 2 in gquene_calls

&. dialling busy gqueuve_next_call in quene_calls

7. dialling busy call wmaiting in call _waiting

2. divert_call to_busy in call diversion
9. dialling bu=y 1 in basic_call

10. dialling busy 2 in basic_call

Lomer number take precedence over greater

[Add priority || Modify || Save |
[Eancel] [Freuiuus][Next]

Figure 5.9: Priority window in CABS

The explicit loca order is purely syntactical and, from a logica point of view, the priority is
expanded into negations in the trangtion rules (explained in Appendix A). This local ader
alows us to make the meaning of the trangition rules independent of the order in which they

are loaded, as discussed in Section 5.2.2.

CHAPTERS. CASE LIBRARY 89

55 Graphical I nput Examples

All previous graphical input examples on which a specification is built are stored in the case
library, including both their graphical layout (created by the user) and the detailed
requirements added to them under refinement. Since the graphical input examples are the
originad source on which the formalised requirements are based, we have to keep them for
further modifications and extensions of the system. In the CABS system, the user can create
new and re-open previoudy created input examples, and modify and save them in ther

graphical form. All information is stored in the case library.

5.6 Storing and Re-using Test Cases

Test cases are generated from input examples and in some cases, revised or added by a user
(user initiated simulations may be stored as test cases; some parts of this are implemented in
CABYS). All the test cases are needed in order to verify a modified system. If changes have
been made to some parts of the system, all test cases that can be theoretically affected by
the change have to be re-tested in order to verify that the required behaviour is still captured

by the requirements specifications.

We adso need to maintain the link to the input examples from which the test cases originaly
stem. This gives us the ability to identify which test cases are till valid or have to be removed
due to changes in the input examples on which they are based. How test cases are used in

the validation and verification task is explained in Section 7.5 and Section 7.6.

Chapter:

6. Matching and Identification of

Similar Behaviour

The purpose of the matching process is to identify cases, or parts of cases, hold in the case
library which have smilar behaviour (as exemplified by the input examples) and which may
be considered for re-use. A computationally fast and uncomplicated matching agorithm
aimed at identifying smilar behaviour is used in CABS. The result of the matching must be
narrow enough to identify candidates for re-use and broad enough not to exclude relevant
cases. The final selection will be carried out by the user, validating and verifying the selected
match with the tools provided in CABS. If the user is not satisfied with the result of the
matching, she may redo the match after refining the input examples or modifying parameters,

thus directing the matching process in order to identify more suitable candidates.

When a user of CABS wishes to make a match, she selects ‘Match...” from the CABS pull
down menu. A dialogue window (Figure 6.1) with dl the input examples on which the match
may be based is shown. The user selects the input examples to be used in the match
(a_basic_example and a_busy example have been sdlected in Figure 6.1). When the OK
button is pressed, the system will try to identify cases in the case library that capture the

same or similar behaviour. The result is shown in Figure 6.9.

CHAPTER 6. MATCHING AND IDENTIFICATION OF SIMILAR BEHAVIOUR 91

Select input examples a_basic_example
for which asimilar a_busy_example
behaviour iz to be a_time_out_call

identified:

Figure 6.1: Selecting input examples to match.

CABS implements a two-step matching process based on comparing sets which results in a
fast and fairly easy to understand matching agorithm. First, transition rules capturing the
same or smilar behaviour (as exemplified in the detailed links from the input example) are
identified, and then cases capturing similar behaviour exemplified in the input examples are
identified. Both individua transition rules and whole cases may be re-used to create a new
requirements specification capturing the exemplified behaviour. In Figure 6.2, the matching

agorithm is outlined in pseudo-code.

92 CHAPTER 6. MATCHING AND IDENTIFICATION OF SIMILAR BEHAVIOUR

For dl links from the input examples, Lp:
For dl trangition rules in the case library, Tm:

Andyse the different features indicating closeness of
behaviour for Ln and T,

Cadlculate the score for the behavioural closeness between
L and Tm (calculation based on the features and

parameters set by user).
For al casesin the caselibrary, C;:
Cadculate an overal score for Cj based on the closeness scores

of the trangition rulesin C;.

Sort transition rules and cases according to their overal
score for closeness of behaviour.

Figure 6.2: Outline of matching algorithm

Requirements specification, & well as re-use of requirements specification, is seen as an
iterative process. parts of the result of the matching can be confirmed by the user before a

partia re-match is carried out, possibly with a different set of matching parameters.

Any matching dgorithm able to identify cases with the same or similar behaviour to the input
examples may be considered for the task. The matching may be semantic or syntactic.
Syntactic matching may be a straightforward keyword based matching or a more elaborate
one, using knowledge about the structure in order to improve the matching result. A syntactic
matching which is sufficiently fast and accurate for the task of identifying similar behaviour
has been chosen for CABS. The matching algorithm used is based on set intersections and

unions.

For some application domains, a computationally faster choice would be a pure keyword

based search, identifying terms occurring in both the detailed links and the transition rules

CHAPTER 6. MATCHING AND IDENTIFICATION OF SIMILAR BEHAVIOUR 93

from the case library. A keyword based search produces good results when there are one or
more unique keywords (terms) that may be identified in the input examples, or by the user, in
order to determine relevant cases and parts of cases. This is true for some of the services
specified in CABS in the telecommunications domain (for example, redirect calls, which
defines and uses the term redirect). Many services in the agpplication doman of
telecommunications do not have easily identifiable unique terms like redirect calls does (pick
up call and voting are examples of services not having any terms defined and if there are
variants of a service in the case library, they will al have the same terms defined), so
keyword matching cannot be used as the only method of identifying cases. Also, similar
services or variants of the same service do not, in most cases, have discriminating terms,
making keyword matching less accurate. If no unique terms are present in the set of terms,
and many cases use the same set of terms, too many matching cases may be identified as
possible candidates. Since telecommunications services requirements are based on a fairly
small set of different terms used by most services (terms such as answer_number, calling,
ring_signal, busy tone, in_speech), straight keyword matching is unlikely to produce
reliable results in this domain. Keyword based matching could complement the agorithm used
in CABS, since keyword matching is even faster, and if there are some specific terms related
directly to the behaviour exemplified in the input, the relevant cases can be identified.
However, keyword matching is not implemented in the current system. The matching used in
CABS has the advantage of capturing features, thus allowing the user to make some
semantic assumptions about a match that may be useful in the selection process or when
modifying matching parameters. For more on optimising matching and different methods on

how to prune a search see for example [Althoff, Auriol, Barletta, Manago 95].

In this chapter, we first explore the terms what “similar behaviour” and “closeness of
behaviour” mean, and establish how to identify and score transition rules capturing behaviour
which is similar to the detailed links. After that, the process of identifying smilar cases is
described (this process is based on the identified trangtion rules capturing a smilar behaviour

to the links).

A CHAPTER 6. MATCHING AND IDENTIFICATION OF SIMILAR BEHAVIOUR

6.1 Defining Similar Behaviour

One of the main issues in case based reasoning systems is the choice of appropriate features
for cases. A case in the case library is only of use if there isaway of identifying when the
case can be re-used in whole or in part. If indexes are badly selected, it will require great
effort or even be impossible to locate relevant cases. If the indexing vocabulary [Kolodner
93] iswel chosen, it will be easy to compare stored cases to the given task, and to determine
if acaseis of interest or not. Hence we need to investigate both the application domain and
the semantics of cases, and to carefully select features to be used in the matching process.
The features used should be fairly easy to understand and to explain to the user, which will
ad in the task of adapting matching parameters to a particular application domain. The
algorithm implementing these features should aso be computationaly fast enough to produce

aresult within an acceptable time.

Before we define the features (see section 6.4) used in the matching algorithm, a number of
expressions are defined. These are used as the basis for feature definitions, which make the
assumptions and compromises necessary to produce acceptable results and achieve a

computationally efficient implementation of the matching algorithm.

In our application domain, it is aways possible to determine if a link*® from the input examples
and a trangition rule from the case library capture exactly the same behaviour. If a transition
rule and a link have exactly the same behaviour, they must have the same conditions
(stimulus and other conditions) and conclusions (responses and other conclusions). It will
therefore be obvious that dl behaviour included in the link isincluded in the transition rule, and

al behaviour excluded by the link is excluded by the transtion rule. In the following

191t we use ‘link’ without a discrimi nator, we mean a detailed link (the expanded graphical link with
extended conditions and conclusions). The term ‘graphical link’ will be used to refer to a graphical

link from the input example.

CHAPTER 6. MATCHING AND IDENTIFICATION OF SIMILAR BEHAVIOUR 95

definitions, we will treat the links as trangition rules, since they are so smilar syntacticaly that
there is no need for a digtinction in the definitions. When trandating the definitions into
features, the difference is of importance and will be reintroduced, since the features capture

some of the semantic aspects of the differences between links and transition rules.

Definition 0, exactly the same behaviour: Two trangtion rules exhibit exactly the same
behaviour if and only if al conditions (stimuli and other conditions) and conclusions

(responses and other conclusions) in the transition rules are equal.

If there is more than one link in the input examples which has the same behaviour as a
particular transition rule, the relevance of this transition rule may be more significant (for
further details on combined links, see Section 6.5). The notation of capturing exactly the
same behaviour is not sufficient in the telecommunications domain since it is very unlikely
that a link and trangition rule have exactly the same conditions and conclusions. The reasons
for this are that a behavioural input example represents a particular example of the behaviour,
but a trandgition rule captures many cases, and aso includes interaction with other
telecommunications services. This usudly results in links having fewer conditions and
conclusions than transition rules. For this reason, we need a more fine grained vocabulary to

be able to reason about closeness of behaviour.

Definition 1, same external triggering condition: Two transtion rules have the same

external triggering condition if and only if their stimulus term conditions are equal.

It may be useful to know whether there is a contradiction between a trangtion rule and alink,
i.e. if they cannot apply to the same states and hence not capture the same behaviour. Thisis

donein definition 2.

Definition 2, under no circumstances capture the same behaviour: Two trangtion
rules can under no circumstances capture the same behaviour if there is a contradiction

between their condition parts or their conclusion parts or both.

It may aso be useful to know whether alink and transition rule apply to the same State.

9% CHAPTER 6. MATCHING AND IDENTIFICATION OF SIMILAR BEHAVIOUR

Definition 3, same originating state: Two transition rules have the same originating

state if and only if dl their conditions are equa (stimulus conditions do not need to be equdl).

If definition 3 is not met, it may be useful to know if there is any state in which the link and
trangition rule have their conditions met. We do not distinguish between a reachable state and
a possible state. The difference between this and definition 3' is that even if there is a State
(aset of terms) under which both transition rules may have their conditions met, there may be
no possible sequence of stimuli that can bring the system into this state. Such an analysis may
be used as an additiona source of information when determining how similar two transition

rules are, but may be computationally expensive for large requirements.

Definition 3, some originating states in common: A transtion rule, T1 has some
originating states in common with another transition rule T, if the conditions of T, are a

subset of T,'s conditions and there is no contradiction between T4 and T,'s digunction.

The relationship between the terminating states may aso be of interest:

Definition 4, cause the same effect: Two trangtion rules cause the same effect if thar

conclusions are equal and they have some originating states in common.

A weak form of definition 4 looks at the question of whether there is any state in which both

the link and the transition rule have their conclusions met.

Definition 4, some terminating states in common: Two transition rules, T4 and Ty, have
some terminating states in common if T1's conclusions are a subset of T,'s conclusions and

they have some originating states in common.

In the application domain of telecommunications services, the externa visible side effects
(response terms) may have a higher significance than other conclusions, hence we introduce

separate definitions (definitions 5 and 5') for externally visible side effects (responses).

CHAPTER 6. MATCHING AND IDENTIFICATION OF SIMILAR BEHAVIOUR 97

Definition 5, same externally visible effects: Two transtion rules have the same
externally visible effects if and only if the response terms in their conclusions are equa and

they have some originating states in common.

Definition 5, some externally visible effects in common: Two transition rules, T; and
T,, have some externally visible effects in common if T4's response terms is a subset of

To'sresponse terms and they have some originating states in common

Because of the fact that links are expected to be part of some particular input example, it is
unlikely that there are input examples and transition rules meeting the definitions fully, hence
we need to define a set of matching features based on the definitions, which alow for some
flexibility. Features should be defined in such a way tha their subsequent use is
computationaly efficient. The result should aso aid us in determining the closeness of

behaviour between an input example and a set of transition rules from the case library. These
definitions have been selected since they can easily be trandated into features which can all

be determined fairly accurately at a low computational cost, using the structure inside

transition rules and comparing sets of terms.

In the next sections, we will explore how these definitions are used to define features which
are useful in the evaluation of behavioura closeness. We will then look at how these festures
can be trandated into values, and how these values are then combined into a single vaue,
which gives a sufficiently accurate estimate of the closeness of the behaviour between links

and trangition rules, or input examples and cases respectively.

6.2 Using Partsand Setsto Analyse Similarity

Before exploring the connection between the definitions, features for estimating closeness
and structura matches between transition rules and links, the syntactic structure used for

comparison is detailed. The trangition rules and the links are each partitioned into seven parts:

98 CHAPTER 6. MATCHING AND IDENTIFICATION OF SIMILAR BEHAVIOUR

Trangtionrule: Stimulus part (extracted from condition part)

Condition part (stimulus and negative conditions excluded)

Negative condition part (stimulus and non negative conditions

excluded)

Conclusion part (response parts and negative conclusions excluded)

Negative conclusion part (response parts and non negative conclusions

excluded)

Response part (extracted from conclusion part)

Negative response part (extracted from conclusion part)

An andysis of arguments for terms is not made at this stage of the matching. Sufficient
assumptions can be made which exclude a large number of transition rules from further
andysis and rate the remaining matches without an in-depth analysis of arguments and
variable bindings (a variable refers to a specific entity in the application domain, such as a
specific phone number or subscriber without naming the entity). The excluson is made
conservatively, since care must be taken not to exclude transition rules that may be good
candidates. Each part is treated as a set with zero or more terms. This can be done safely
because the condition, concluson and response parts are al restricted to conjunctions of
terms. With current restrictions on expressions, digunctive terms (where no brackets are
alowed, and conjunction has priority over digunction), may be alowed to occur in atransition
rule, and any digunctions which occur can be expanded to a set of trangition rules containing

only conjunctive terms.

The partitioning of trangition rules is trivia since terms are typed as stimulus, response,
atribute or relation before they are used in links or trandtion rules. The stimulus part is
restricted to only one non-negated term of the type stimulus, and the stimulus terms are only

dlowed to be used in the stimulus part. The partitioning of terms gives us a basis for

CHAPTER 6. MATCHING AND IDENTIFICATION OF SIMILAR BEHAVIOUR 9

comparison and for drawing some conclusions to be used in the closeness of behaviour rating.
Negated terms in parts are handled separately, so seven features may be compared for each
link/ trangtion rule pair, and six cross comparisons (negated/ non negated parts, see line nc2,
cn2, nc3, cn3, nc4, cnd in Fgure 6.3) may be made. Selected comparisons are used for
defining features. They are trandated into numerical form and used to create an overal
score, which in turn is used in the final rating of the “closeness’ between the transition rule
and link. These comparisons have been chosen because they are computationaly fast to
determine, fairly easy to understand and the fact that they can be used to indicate if alink and
a trangition rule capture similar behaviour. The choice of which of these comparisons to use

as features and their connection to the definitions are explored in the following sections.

Link comparisons Trangtion Rule

1

Simulus Simulus

c2

Conditions Conditi

nc n2
n2
Negated Conditions Negated Conditions
c3
Conclusons Conclus
n3
Negated Conclusions Negated Conclusions
c4

Responses Respon
n n4

100 CHAPTER 6. MATCHING AND IDENTIFICATION OF SIMILAR BEHAVIOUR

Negated Responses Negated Responses

Figure 6.3: Possible comparisons between partsin link and trangition rule

For reasons of computational cost, we do not calculate every comparison for every pair of
link/ trangition rules, since, if some comparisons ae below a threshold set by the user, the
trangition rule is classified as uninteresting and no further evaluation on the transition rule will
be made. These thresholds set by the user should ensure that no relevant matches are
excluded but, if in doubt, the threshold values can aways be set to zero and al matches will
be included whatever the score is. This may take a considerable time for a large case library,
and it is up to the user or system manager to weigh up the advantages of a faster match
against the risk of missing possible matches (see section 6.5.1). Since the comparison is set
based without any computationaly expensive calculations, it is computationaly fast and only
marginally sower than keyword matching since the comparisons al are implemented as a
number of keyword matches (each term in the link/transition rule is used as a keyword for
the corresponding set). Hence, a linear relationship, depending on the number of terms in the
link and the trandtion rule, determines the upper limit of the computationa cost. In
telecommunications specification, the number of terms in transition rules are expected to be
below 35 (in our case library no transition rule has more than 30 terms). In links from input

examples, even fewer terms are expected.

6.3 Trangdating Comparisonsto Values

Before defining the features used to estimate how similar the behaviours of a case and input
examples are (Section 6.4), we will describe how to calculate the values used in these
features. It is not necessary to understand this section in detail to be able to understand the
feature definitions. A comparison (all possible comparisons are shown in Figure 6.3) between

a part from a link and a part from a transition rule is first trandated into an integer triple,

CHAPTER 6. MATCHING AND IDENTIFICATION OF SIMILAR BEHAVIOUR 101

where the first number is the number of terms in the link, the second is the number of terms
in the intersection and the third is the number of terms in the trangtion rule from the case
library. These triples are then used to calculate two coverage percentage values used for

calculating the features.

For each comparison, two values called the intersection coverage percentage are calculated.
The intersection coverage percentage values are called ICL (Intersection Coverage of Link)
and ICT (Intersection Coverage of Trangition rule). The terms in the part of the link and the
transition rule under consideration are both regarded as two sets (L and T respectively) and
theintersection LCT isaset cdled I. The vaue for ICT =100 * number(l) / number(T) and
ICL =100 * number(l) / number(L). The value is given as a percentage value between 0 and
100, appropriately rounded since decimals would not make any significant difference. If L=

or T=@ (arare situation in our application domain) then ICL (respectively ICT) is st to zero.

In Figure 6.4, the five main situations for coverage are shown. In the first case (top left
examplein Figure 6.4) the setsL and T are equal, hence the intersection, |, isaso equd to L
and T ((I=LCT) U (L=T)) b I=L=T). Theintersection covers 100% of the termsin the link,
hence ICL = 100. The intersection fully covers the terms in the transition rule, hence ICT =

100 in this case.

If there are 3termsin T and 2 terms in L and LI T, the intersection | = L and contains 2
terms. The intersection has 2/3 of the terms in T giving an ICT vaue of 67 (67 %) and an

ICL vaue of 100. This corresponds to the top right examplein Figure 6.4.

If thereare 2 termsin L and 3 termsin T and the intersection | contains 1 term, then ICL is
100*1/2 = 50 and ICT = 100*1/3 = 33. This example corresponds to the middle left example

in Figure 6.4.

The middle right example corresponds to the top right example (L and T have their positions
switched, Tl L). The bottom example illustrates when the intersection | between the two sets

isempty (LCT) = @. Both ICT and ICL are assigned the value O for the last Situation.

102 CHAPTER 6. MATCHING AND IDENTIFICATION OF SIMILAR BEHAVIOUR

Full match of Transition rule termscovers
terms link terms element
Intersecting Termsfrom link
terms cover transition rule terms
@ -
Intersection

isthe empty set

SN

Figure 6.4: Examples of different matches when comparing parts (sets)

In the next section, we will define the different features used to measure closeness between
alink and trangition rule, based on the definitions in the previous section and examine how to

trandate the features into numerical values.
6.4 Featuresfor Measuring Closeness of Behaviour

Feature 1, based on definition 1, same externd triggering condition (stimulus).
Can the trangtion rule and link be triggered by the same externa stimulus?

Feature 1 is a straightforward match between the stimulus part of the links and the transition

rules (see Figure 6.3, comparison c1).

CHAPTER 6. MATCHING AND IDENTIFICATION OF SIMILAR BEHAVIOUR 103

If alink and a trangtion rule have the same stimulus as their triggering condition, feature 1
may be used as an indication that it is relevant to anadyse them further for smilarity. For
example, if alink has the triggering stimulus hook_on and a trangition rule has the triggering
gimulus hook_on, it is obvious that the link and trandtion rule will trigger in the same
gtuation if al other conditions and arguments are equal. We can aso ®onclude that a
trangtion rule with the triggering stimulus dialling cannot trigger in the same Situation as the
hook_on link (no paradld stimuli are alowed in the CABS modd of the telecommunications
domain). Since links and trangition rules are restricted to having only one triggering simulus,
the match can either be full (the intersection between the two stimuli sets is equal to the
triggering stimulus in the link and the trangtion rule), or empty (the intersection is the empty
set). Intuitively, we can draw the conclusion that any transition rule not having the same
triggering stimulus as the link cannot capture the same behaviour and that this is sufficient to
exclude the trangition rule from further investigation, thus reducing the search space

considerably (see Figure 6.5 for how the matching in such a case is more efficient).

The difference between definition 1 and feature 1 is that festure 1 matches the stimulus
name but makes no full analysis of the arguments (exemplified below). Feature 1 will give
good results if the term name bears high significance (as described in Chapter 5.1.1). A
successful match for feature 1 would occur when the stimulus dialling(al, 123, 12:00) ina
link is matched with the stimulus in a trangition rule dialling(A, Nr, Time) and where no
variables are bound to some other values throughout the transition rule (see Appendix A for
details on logic). An example in which feature 1 would reduce the score is when
switch_service _on(al, redirect, 123, 12:00) is matched against
switch_service_on(UserA, hotline, Number, Time). The second argument (redirect and
hotline) are not equal. A difference between feature 1 and definition 1 would occur in the
Situation where two variables, or one variable and one constant, are matched and later on in
the condition part of the transtion rule are bound to a specific vaue. For example, if
switch_service_on(al, redirect, 123, 12:00) is matched against

switch_service_on(UserA, Service, Number, Time) and the conditions in the trangtion rule

104 CHAPTER 6. MATCHING AND IDENTIFICATION OF SIMILAR BEHAVIOUR

contains the term equals(Service, hotline), feature 1 would not identify the binding of
variable Service, since at this stage of the match, no analysis of the condition part is made.
The main reason for this is efficiency: a large number of transition rules can be excluded
from further matching at a low computational price, hence the decison was made to not
include further analysis of variable binding at this stage of the matching (see Figure 6.5) in

order to be able to exclude some additiona transition rules.

CABS d 0 dlows the definition of similar stimuli. This facility can be used if there are stimuli
which have different term names, but a similar semantics in the application domain. An
example in the telecommunications domain would be the origination of a call which may be
initiated in two ways, either by dialing a number (dialling stimulus) or by a set_up stimulus
from an ISDN terminal. Thereafter, the matching agorithm will treat them as the same

stimulus for matching purposes.

Featur e 2, based on definition 2, exclusve transition rules;

Is there any contradiction, such that the behaviour in the transition rule cannot include the

behaviour exemplifiedin the link?

The cross comparisons between the non-negated and negated parts of the link and transition
rule (cn2, nc2, cn3, nc3, cnd, nc4 in Fgure 6.3) are most useful in determining if a trangtion
rule is of low or no interest for further investigation. If a contradiction exists between the link
and trangition rule, they cannot capture the same or similar behaviour and we may exclude
the trangtion rule from further investigation. When matching the arguments to terms, there
are situations in which it is difficult to determine if it is a real contradiction or just appears to
be one (eg. whether answer_number(A,B) and not answer_number(C,D) is a
contradiction or not). If unbound variables exist in both negated and non negated formsin the

link or transition rule (see the example at the end of this section) we take the conservative

CHAPTER 6. MATCHING AND IDENTIFICATION OF SIMILAR BEHAVIOUR 105

approach and do not classify this as a negation. With this conservative approach, exclusion of

transition rules that may be appropriate candidates is avoided.

An example of the successful identification of a contradiction between alink and a transition
rule (example of comparison cn2 in Fgure 6.3) is when the condition part of alink has the
term dial_tone(al), the trandtion rule has the condition not dial_tone(UserA) and UserA
has been instantiated to al by matching the stimulus (the only way of binding arguments
during matching). A more difficult example would be if a link has the condition
answer_number(a2, 222) & .. and a trandgtion rule has the conditions
answer_number (UserB, Nrl) & not answer_number(UserC, Nr2) & Inthisstuation,
it is difficult to determine if there is a real contradiction. Since feature 2 does not perform a
full andyss of arguments, feature 2 cannot discriminate between the negated and non-

negated term, and should not be reason enough aone to exclude a transition rule.

After identifying and removing matches with contradictions above the user-set threshold in
Figure 6.6, the numerical vaue of contradictions (the sum of the number of terms in the
intersections for cn2, nc2, cn3, nc3, cnd, nc4in Figure 6.3) is caculated. Since al the other
comparisons have a percentage value between 0 and 100 apart from feature 2, we trandate it
with a linear function to a percentage value where 100% signifies no contradictions and 0%
sgnifies the maximum alowed number of contradictions. If the maximum number of
contradictions is set to 0, then the value for feature 2 is 100% for all transition rules that are
scored. In this casg, it does not make sense to give feature 2 any weight in the fina scoring.

If the maximum number of contradictions is Cy,5x and the number of contradictions is Cynt
and Cigt = Cmax @d Cmax > 0 then the ICL and ICT are set to 100 - 100* Cit/Cmax for

feature 2. The fact that feature 2 is calculated in a different way from the other features may

require a careful selection and tuning of the weight for feature 2 (see Chapter 6.5.1).

Feature 3, based on definition 3', some originating states in common:

106 CHAPTER 6. MATCHING AND IDENTIFICATION OF SIMILAR BEHAVIOUR

Can the trangition rule trigger in the same or smilar situation ?

For feature 3, we can directly apply the result from comparison c2 and n2. If the intersection
of the conditions of the link and trangition rule is empty, it is less likely that a behaviour smilar
to the link is captured by the transition rule. If the intersection captures most of the termsin
the link’s condition part, the behaviour of the link may be captured in the trangtion rule. The
additiona terms in the trangition rule may be additiona interactions and may be used to
exclude specia situations handled by a separate trangition rule in the case. Since interactions
are common in telecommunications services, we expect that there are more terms in the

trangition rule capturing interaction.

In the situation where the condition from the link has terms which are not present in the
condition from the trandtion rule, it may be that the trandtion rule is more genera and
deliberately does not include these terms. A match is often better if most of the terms from
the link are included in the trangition rule. By setting the appropriate parameter values, the
final scoring will rate this as an indication of a possibly good match and use the result to

create an overal score of closeness for the transition rule.

An example of a successful indication of asimilar behaviour using feature 3 is if the condition
part of alink is answer_number(al, 111) & redirect(111, 222) & answer_number (a2,
222) & not calling(Z, a2), and the conditions in a trangition rule are answer_number (A1,
Nrl) & redirect(Nrl, Nr2) & answer_number(A2, Nr2) & not calling(Z, A2) & not
dont_disturb(A2). In this example, the condition part of the link is a subset of the condition
part in the trangition rule, so there exists at least one state in which both condition parts are

true.

An example of a match in which there is a difference in the result between feature 3 and
definition 3 is a link that has its condition part equal to answer_number(al, 111) &
redirect(111, 222) & not dont_disturb(222) and atrangition rule that has its condition part
equa to answer_number(Al, Nrl) & call_back request(Nrl, Al) & not

dont_disturb(Nr1). In this situation, feature 3 identifies that the terms answer _number and

CHAPTER 6. MATCHING AND IDENTIFICATION OF SIMILAR BEHAVIOUR 107

not dont_disturb are present in both condition parts, but that the rest of the condition terms
are different. Feature 3 would give the match some significance but since the not
dont_disturb is actualy two different identities in: answer_number(al, 111) & not
dont_disturb(222) and the same in: answer_number(Al, Nrl) & not dont_disturb(Nr1),
they would not be regarded as equal by definition 2° since Nrl and Nr2 cannot have the
values 111 and 222 at the same time), only one of the terms would count as a match. In some
application domains, feature 3 may be preferred, since definition 3' may exclude interesting

matches.

The numerica results for feature 3 are based on the conditions for the link and transition rule
(stimulus excluded for both). These two sets of terms are trandated into the numeric ICT and

ICL values (in accordance with Section 6.3).

Featur e 4, based on definition 4', some terminating states in common.

Can the transition rule end in the same or asimilar state as the link

If the conclusions from the link and the trangition rule match fully, it would signify that both
are causing the same changes to the states to which they apply (responses not considered).
This is a smilarity that may be worth noticing even if there is not a full match in the
conclusons. In the telecommunications domain, a transition rule may include conclusions
needed for other services, for example, to note the starting time of a cal in order to provide
the charging service with sufficient information. It may aso be the case that the link has

omitted terms in the conclusion which are not obvious to the user making the input examples.

Situations may aso occur when a link includes conclusions that are redundant and are known
to be dready true in the previous situation and, hence, a match, as shown in Figure 6.4,
middle left example, is expected. For example, if a user puts the phone down (hook_on), we
may specify a generic trangtion rule concluding that the user is idle. If this trangtion rule

aways triggers when a hook _on stimulus occurs, other trangition rules can ignore this

108 CHAPTER 6. MATCHING AND IDENTIFICATION OF SIMILAR BEHAVIOUR

conclusion. If accuracy of matches of an application domain specified with paralle®
trangition rules, gives poor results for feature 4, adapting the matching of feature 4 to consider

trangtion rules that may apply in paralel could improve the matching result.

An example of the successful indication of a smilar behaviour by feature 4 is when the
concluson pat of a link is calling(al, a7) and the concluson of a trandtion rule is
calling(Al, A2) & last_call(Al, Nr). In this example, the conclusion part of the link is a
subset of the conclusion part of the trangition rule and, therefore, there exists a state in which

both conclusion parts are true.

An example of a match where there is a difference in the result between feature 4 and
definition 4" is a link that has its concluson part equal to calling(al, a7) & last_call(al,
777), and atrangition rule that has its conclusion part equa to calling(reminder, A2). In this
stuation, feature 4 identifies that the term calling is present in both conclusion parts, but that
the rest of the conclusion terms are different. Feature 4 would give the match some
significance but overlooks the fact that the transition rule could never match the link if the
arguments are those set out for definition 4’ (acal from a“reminder” is a specia case where

the service reminder call initiates a call and where the reminder is not an ordinary user).

The numerical results for feature 4 are based on the comparison between the conclusions for
the link and trangtion rule (c3 and n3 in Figure 6.3). These two sets of terms are trandated

into the numeric ICT and ICL vaues according to Section 6.3.

Feature 5, based on definition 5', some external visible effect in common.

20 Not to be confused with parallel stimuli which are not alowed in order to avoid

indeterminism and added complexity. See Model of the dynamic behaviour of telecommunications

network, Figure 5.4.

CHAPTER 6. MATCHING AND IDENTIFICATION OF SIMILAR BEHAVIOUR 109

Is the externdly visible result (responses) from the link included in or similar to the responses

from the transition rule?

If response terms from the link and the trangition rule fully match, it would mean that both
may result in a state with the same response. In telecommunications services, this is an
important indication that it may be a good match but, on its own, it is often too genera (many
different transition rules have responses such as ring_signal/ ring_tone in their
conclusions). On the other hand, if the response terms do not match, it isless likely that it isa
good match, assuming the user has specified the externaly visible side effects accurately (in
telecommunications services, the side effects aone are rarely affected by interaction with
other services). For example, if alink ends in a Stuation with a ring_signal, trangtion rules
with no ring_signal as a conclusion are probably not good candidates, and transition rules

having ring_signal as a conclusion would be candidates for further analysis.

An example of a successful indication of a smilar behaviour by feature 5 isif the conclusion
part of alink is not ring_tone(al) & not ring_signal(a2) and the conclusionin atrangtion
rule is in_speech(Al, A2) & not ring_tone(Al) & not ring_signal (A2). In this example,
the response part of the link is a subset of the response part of the transition rule so there is
at least one state in which both response parts are true. As with previous features, there is a
risk that feature 5 gives a match too much credit since no in-depth analysis of arguments

OCCurs.

The above example may give too much weight to some transition rules since the link does not
reved if user al has made a hook on (ring_tone and ring_signal have to be cancelled) or
if user @2 has made a hook_off (ring_tone and ring_signal have to be cancelled since a
speech connection has occurred which is a completely different situation and transition rule).
In most cases, the combination of features reduces the risk of such mistakes and in the above
case, feature 1 would have indicated that the stimulus does not match between the link and

the trangition rule, and so the transition rule should not be used in further investigations.

110 CHAPTER 6. MATCHING AND IDENTIFICATION OF SIMILAR BEHAVIOUR

The numerical results for feature 5 are based on the comparison between the conclusions for
the link and trangtion rule (c4 and n4 in Figure 6.3). These two sets of terms are trandlated

into the numeric ICT and ICL values are in accordance with Section 6.3.

6.5 Overall Scorefor Matching

First, we have to produce an overall score for each transition rule that is a candidate for alink
from the input examples. When that is done, we need to produce an overall score for cases
(sets of trangition rules) in the case library. After the best matching transition rules and cases
have been identified, both of these results are shown to the user, who must decide if the
match is good enough, or if the input examples need to be extended or the matching
parameters tuned. First, we describe the process of scoring transition rules and after that, we

describe the scoring of the cases.

In order to make arating of the closeness of transition rules, the results from comparing these
different features and their values are weighted and combined into one vaue (according to
the matching parameters set by the user). This value is then used as a measurement of the
closeness between a link and transition rule. In order to adjust the match parameters for a
domain, these comparisons and their meaning have to be understood. In the following
sections, we explain how an overal score is caculated for a comparison, when transition
rules are excluded from further calculations, and how the ranking of transition rules and cases

is performed.

6.5.1 Scoring a Match Between Link/Transtion Rule

The adgorithm for calculating features, reducing the search space and calculating the fina
score for a match between a link and trangition rule is outlined in Figure 6.5. There are two

types of parameters that can be adjusted in CABS:

Threshold parameters reducing the search space by excluding uninteresting matches.

CHAPTER 6. MATCHING AND IDENTIFICATION OF SIMILAR BEHAVIOUR m

Parameters guiding the overall scoring of a match (capturing information about the validity of

different features and their relationship in the application domain).

Much computational effort can be saved by excluding transition rules from further
calculations: to minimise the calculations, the user set threshold values are checked after each
feature is calculated. If the result is below the user set threshold, the transition rule does not
need further investigation and the next transition rule can be explored (see Figure 6.2). The
main purpose of the threshold for the features is to make the matching faster and to reduce
the search space (with one exception, which is explained further on). Another advantage with
the threshold settings is that some of the application domain knowledge about when a

trangtion rule is uninteresting and can be exempt from further calculation, is captured.

112 CHAPTER 6. MATCHING AND IDENTIFICATION OF SIMILAR BEHAVIOUR

Calaulate feature 1

Summarise
feaure4 and5 No

Summarise feaure-

vaues according to
parameters
N

X
| Store resut of metch |

Match of link/
transition rule

Figure 6.5: Flow diagram for link/transition rule match

The different threshold values have to be selected carefully, so that they do not exclude
relevant matches within a particular case library. If these values are set too high, good
matches may be removed before the final scoring. Once the values have been tuned for a

particular case library (and do not exclude interesting cases), they do not need much

CHAPTER 6. MATCHING AND IDENTIFICATION OF SIMILAR BEHAVIOUR 113

attention. CABS provides a default setting of these parameters, which is initidly set and
tuned for the case library currently used (these default values may need updating if the case
library changes greatly). The experienced user can aso load and save settings of threshold
and parameter profiles. These may be used if the matching agorithm is identifying less

acceptable matches. Less acceptable matches can have three causes:

The input examples do not point out suitable cases well enough. Solution:
- Add/refine input examples.

- Exempt proposed transition rules and cases from a rematch.

Thereis no good match in the case library. Solution:

- A new case may have to be constructed/generated.

Threshold and parameter setting are not well chosen for the case library. Solution:
- Load an dternative set of threshold and parameter values and rematch.

- Modify threshold and matching parameters.

The threshold and parameter settings seem to be farly robust for both the

telecommunications domain and the case library used for evaluation (see Chapter 8).

After dl the features have been caculated, an overall score for each transition rule is
calculated. For this overal score, an overall threshold value can be set; if a trangtion rule
does not meet this threshold it will not be considered as a match to the corresponding link
(see Transition rule threshold in Figure 6.6). If this value is not met, the match will neither
be used for the identification of matching cases (see Section 6.5.2 on parameter and
threshold settings for cases), nor presented to the user as a possible match for a link. For
more detailed settings and optimisation of matching, there are five individua threshold settings
for each of the five features (see Figure 6.6). Only the ICL (Intersection Coverage of Link)
is used for thresholds, since ICL is the most significant value. For feature 2, there is an
additiona value where a maximum number of suspected contradictions is set. This value is

also used in the calculation of feature 2's value, as explained in Section 6.4. Thereisalso a

114 CHAPTER 6. MATCHING AND IDENTIFICATION OF SIMILAR BEHAVIOUR

separate threshold value for the combination of features 4 & 5. The combination of features
4 & 5 is used when acase library may have cases that are of interest if at least one of the
features has good scores (which is the case for some trandgition rules in the
telecommunications domain). These weights should provide sufficient opportunities for tuning

the matching for case libraries for different gpplication domains.

Match parameters for transition rules

—Parameters for optimising matching algorithm

Transition rule threshold:

Stimulus threshold, ICL (feature 1): 100
Contradiction treshold, ICL (feature 2): 100 4 |
Condition threshold, ICL (feature 3): 10

Conclusion threshold, ICL (feature 4);

Feature 4 & 5 threshold:

0
Response threshold, ICL (feature 5): o]

1% Max number of contradictions, also
used in calcvlation of feature 2.

—Parameters quiding calculation of overall score
] Adjust weights relative part size in link

Feature (total sum = 100%): 1 2 3 4 9
Weight for feature: o [0 |[a0 |[35 | |25 |

[More][Help J [Save settings J[Load settings J
L o

Figure 6.6: Parameters for transition rule match

When dll the features have been calculated, we have to calculate an overall score for each
relevant match. Calculation of an overall score is based on domain knowledge that captures
the value of the different features for the application domain. In the telecommunications
domain, stimulus and response terms usualy have higher significance than other conditions
and conclusions, and hence should contribute more towards the final score than other termsin

the conditions and conclusions. In fact, the example setting in Figure 6.6 has the stimulus

CHAPTER 6. MATCHING AND IDENTIFICATION OF SIMILAR BEHAVIOUR 115

threshold set to 100% and transition rules that do not have the same triggering stimulus as the
link are exempt from further matching. Therefore, there is no need for a weighting of feature
1 (see Weight for feature, field 1), as we know that al matches qualifying for an overal

score calculation, have the value 100 for feature 1.

The ICL and ICT value for every feature in a match is used to calculate atotal ICL and ICT
value for the trandtion rule. If al weights are set equally and the weighing is not adjusted
according to the number of terms in the link, the total score for ICL and ICT respectively
would be the sum of al the values for the features divided by the total number of features. In
the generic formula for the calculation of ICL and ICT scores for amatch, TotTerms is the

total number of terms from the link used in the cdculation of the features, Fn(ICL) and
Fn(ICT) are the ICL and ICT scores for the feature n, Wk, is the weight for the feature n
and LFp, is the number of terms of the part in the link on which the calculation is based. The

total score is a pair of vaues, where the ICL value is given the highest significance. When
sorting al matches for a link, the matches with the highest ICL will come first and matches
with the same ICL will be ordered according to their ICT value. f isthe set of features used
for calculating the total score. If afeature weight is set to zero, it is not used in calculating the

total score. x iseither L or T.

Thetota scorefor the ICL or ICT iscaculated as:

SCORE(IC,) = & weighted_score(F(ICx), LFp, TotTerms, WF,,)

The weighted score for afeature is calulated by the formula:

Fn(ICX) * WF, * LF,
weighted_score(F,(ICx), LFp,, TotTerms, Wk,) =

100 * TotTerms

If the check box Adjust weights according to number of terms in link is unmarked, then

LF and TotTerms are both set to the value 1 before the calculations start.

116 CHAPTER 6. MATCHING AND IDENTIFICATION OF SIMILAR BEHAVIOUR

6.5.2 Scoring a Matching Case

After dl transition rules have been scored, the task for the matching agorithm is to identify
cases capturing similar behaviour to the input example. The overal score for each case
depends on the matches between the transition rule in the case and the links in the input
examples. If we look at a particular case, C1, from the case library (see Figure 6.7), some of
the trangition rules (sguares) are matches for links in the input examples, indicated by broken
lines to the matching link. The example in Figure 6.7 has six matches (m1 to m6) between
links from the two input examples, E1 and E2 (the two input examples are indicated by

broken circles around a group of links).

Input Examples

matches

transition rules

Figure 6.7: A match of acase and an input example

If the Always match cases box is selected in Figure 6.8, CABS will identify and rank similar
cases (for some situations only matches of transition rules may be relevant). To score a case,

the matching agorithm counts the matches between dl links and the transition rules in the

CHAPTER 6. MATCHING AND IDENTIFICATION OF SIMILAR BEHAVIOUR 117

case (ml to m6 in Figure 6.7). A case with a greater number of matches is ranked higher
than a case with a lower value. This naive approach seems to be accurate enough (see
evauation in Chapter 8) in most instances of identifying cases of relevance, after adjustment

of some additional parameters guiding the fina ranking has occurred.

If atrangtion rule in the same case is matched by more than one link (an example of thisis
match ml/m2 and m3/m4 in Figure 6.7), we do not know if the trangition rule is capturing
many different trangtions, if the links in the input examples are a repetition of a smilar link
(for ml/m2), or if the application domain alows parallel trangtion rules to occur in the same
case (for m3/md). In our telecommunications service examples, we chose to allow paralé
trangition rules only if they are from different telecommunications services (different cases).
If the application is specified with transition rules of a more genera character (including a
large number of transitions), then different links may be covered by the same trangition rule.
If the applications are specified with more specific transition rules, then the fact that the same
trangition rule is matched by more than one link may just be a less relevant match, and hence
should not be included in the scoring. This choice is shown in Figure 6.8: the second choice If

same transition rule matches more links, count each match is not selected.

A decision aso has to be made as to what to do if there is more than one matched transition
rule in the same case (M5 and m6 Figure 6.7). If the other trangition rule captures a similar
but not exactly the same behaviour, this information may be useful, since it may incresse a
case' s relevance. The relevance for multiple matches can be set by selecting the third choice
Give credit if more than one transition rule in case matches link. Count multiple
matches up to NR in Figure 6.8. An upper limit, NR, on how many matches should be
counted can aso be set, in order to avoid over-scoring cases which have a large number of

very smilar trangition rules (set to three in the example).

A parameter, defining athreshold value for when a transition rule should count as a match for
a case, can also be set by the user (Only count matching transition rule if ICL is above
NRin Figure 6.9). This is a different value than the threshold setting for the total score for

transition rules. A score for a match passing the threshold set for transition rules allows the

118 CHAPTER 6. MATCHING AND IDENTIFICATION OF SIMILAR BEHAVIOUR

rule to be presented as a possible match for alink, but in order to be counted as a match for a
case, the match has to pass this second threshold. If a large number of cases have a high

score, the value may be set higher, to reduce the number of good matching cases.

Match parameters for cases

(<] Match all cases in case library
[]1f same transition rule matches more links, count each match.

(<] Give credit if more than one transition rule in case matches link.
Count multiple matches up to E

Only count matching#ransitiun rule if ICL is above

[Eancel] [Help } [I]Efault settings]
L

o

Figure 6.8: Parameters for case match

6.6 Presentation of Matching Results

When the system has completed the match, the result is presented to the user. Both the best
matching cases and the best matching transition rules are shown. The user is asked to select
a solution that she will use as the proposed solution (or refine the input examples so a better
match may be achieved). Figure 6.9 shows an example of a result from matching two input
examples. a_basic_example and a_busy _example. In the upper left corner under the text
Best matching cases (descending order), ascrollable list with the best matching cases from
the case library is shown. The number in brackets after the name of the matching case tells
the user how many links from the input examples are matched by the case. The user may
inspect a matching case by selecting the case in the list and pressing the button Show Case,
which will result in the system showing the case window as shown n Figure 5.7. The

Exclude Case button will be explained in Chapter 7.

CHAPTER 6. MATCHING AND IDENTIFICATION OF SIMILAR BEHAVIOUR 119

In Figure 6.9, Links and corresponding transition rules show the links from the input
examples identified by their start node, triggering stimulus and end node. In the table
matching transition rule, the proposed/selected transition rule is shown. There are five

different types of prefixes to the transition rules:

P: <transition rule name> - The best matching transition rule in the case library according
to the matching result is shown. If the user wishes to see al the matching rules (sorted in

descending order) this can be viewed in the link window (Figure 4.6).

N: No match is shown when there is no matching transition rule in any case that meets the

set trangition rule threshold set in Figure 6.6.

I: Ignore this link - If the user has labelled a link to not be included in the match. This
choice can be selected when showing the link. The user may set thisif it is obvious that alink
captures behaviour from another case on which the new case is dependent. In
telecommunications, it could be a service based on a basic call and therefore, getting the
proposa basic_call as the first and best proposa may not be useful. By pointing out those
links that are not crucia for the new functiondity, the matching result is narrowed down to

find cases that capture the selected parts of the input examples.

The user can ingpect a link in more detail by sdecting the link in the list and pressing the
button Show Link in Figure 6.9, which results in a link window showing the sdected link in
detail. If there are many links, the user may wish to sort the links after the start node,
stimulus, end node etc. This can be selected by pressing the button Sort list (these sorting

choices are not fully implemented in CABS).

120

CHAPTER 6. MATCHING AND IDENTIFICATION OF SIMILAR BEHAVIOUR

- Match for: a_basic_edample_1 & a_busy_example

Best matching cases (descending order):

basic_call {9}

call waiting {3}
call_diversion {2}
reminder_call (2}
three_may_calling {1}
quene_calls {1}

b

]

[Show Case][Euclude Eﬂse]

charge_adwice {1} piiiiii)
call reminder {1} i F::proposed transition rule:
H: Ho match identified

Links and corresponding transition rules: I: Ignore this link
start node triggering stimulus end node |matching transition rule

all subscribers id| hook_off | dial tone a |F: mormal_hook_off

dial tone a | dialling | a calling b |P: mormal dialling

a calling b | hook_on | a1l subscribers id|F: disconmect_from_callin

a calling b | hook_off | in =speech |F: reminder_accepted

in speech | hook_on | silent b |F: a_leave_call

silent b | hook_on | 211 subscribers id|F: disconmect_tone

dial tone a | hook_on | a1l subscribers id|F: disconmect_tone

dial tone a | dialling | b busy |F: dialling busy 2

b busy | hook_on | a1l subscribers id|F: disconmect_tone

[show Link | [Show Match][Sort |

[Construct Solution]

[Eenerﬂte Test Eases]

Match result is based on input edamples:

a_basic_example_1
a_busy_example

[Heset match] [Hedu mﬂtch] [Simulﬂte][Uerify]

Figure 6.9: Presentation of result from match

If the user does not accept the proposal in Figure 6.9, she can add input examples and redo

the match, which will hopefully result in a solution that can be accepted as a proposed

solution (athough it may need refinement). For this purpose, the button Exclude Case can be

used when there are proposals in the best matching cases list that have been inspected and

are not relevant. Chapter 7 explores how the user selects, revises, validates and verifies the

solution selected in Figure 6.9.

Chapter:

/. The Requirements Design
Processin CABS

In the previous chapters, we looked closdly at the central parts of CABS and explained the
graphica input examples, the case library and the matching process. In this chapter, we put
these parts in the context of requirements design and examine how a requirements designer
may use such a system to produce formalised, vaidated and verified requirements. The
examples are given in the context of the chosen application domain, where the most common
task is to modify and extend a large system (a large number of closely interacting telephone
services) and where the requirements designer is not necessarily an expert a applying
scientific methods in order to produce requirements. CABS aims to simplify the task of
requirements engineering so that a person with some idea about a new or modified behaviour
can outline their ideas, and then refine, validate and verify them. Graphical input sketches,
case-based reasoning and formaisation are tools used in combination to aid this creative
process and are not aims in themselves. Persons performing this task may be service
vendors, sales staff or even end-users of the telephone system (or any combination of these),
who would benefit from being able to express and formalise their behavioural requirements.
For this reason, we have adopted the terms. requirements design and requirements

designer instead of the traditionaly used requirements engineering and requirements

121

122 CHAPTER 7. THE REQUIREMENTS DESIGN PROCESSIN CABS

engineer which, for many people, imply some technically advanced and complicated task.
Design often implies a more creative process, such as outlining and sketching an idea, soisa

better choice of name for the task CABS aims to support and simplify.

Modifying and adding behavioura requirements to a requirements specification mostly
includes refinement cycles. When an idea for a new behaviour has been formalised, vaidated
and verified, alarge number of iteration and refinement steps may have occurred. In CABS,
these cycles are treated as central parts of the process of producing requirements. In Figure
7.1, the whole process from idea to a validated, verified and formaised requirement is
outlined. The process of producing a requirements specification starts with an idea for a new
behaviour (the top of Figure 7.1). In the application domain of telecommunications it is most
likely that the new behaviour is being added to some aready specified behaviour. The first
step is to decide if the new behaviour can be expressed within the existing ontology or if the
ontology has to be extended (see Section 7.2). Once the ontology is approved, the
requirements designer can provide input examples outlining the main behaviour with the
graphical input editor in CABS (third ova from top in Figure 7.1, see Section 7.3). Once the
user has expressed some parts of the new behaviour with input examples, including some
refinements of nodes and links as described in Chapter 4, the matching can start. The
matching will identify candidates from the case library as described in Chapter 6. The user
selects a solution and validates the selected solution. If the user does not accept any of the
solutions proposed by CABS, the user has three choices, i1, i2, i3 (which are dso shown in

Figure 7.1). These are:

il The user believes that there is some fundamental problem with the idea of the
behaviour to be specified. This is a restart and it may be necessary to modify the idea,
ontology and input examples. In Figure 7.1, this Stuation is shown with the arrow pointing to

Revise |dea.

i2 The user decides to refine or add new input examples which may be based on
the assumption that the aurrent input examples do not capture the behaviour to be specified

well enough (Refine Input Examplesin Figure 7.1).

CHAPTER 7. THE REQUIREMENTS DESIGN PROCESSIN CABS 123

i3. The user assumes that the result from the matching can be improved by
adjusting matching parameters and modifying these before a rematch is carried out (Prepare

for Re-match in Figure 7.1).

Once a solution has been selected (based on the matching result) the next task is to validate
the proposed solution with the smulator provided (see Section 7.5). If the validation resultsin
a rgiection of the proposal, the user has the same choices as described when the matching
result is rgected (i1, i2, i3 in Figure 7.1), as well as an additiona choice, i4, of revisng the
solution, which is a more traditional way of modification where the user may edit the

trangtion rules (described in Section 7.5.1).

If the validation is successful, and the user is convinced that the intended behaviour is
captured by the proposed solution, the solution has to be verified. The input examples are
used to generate test sequences (called test cases) of behaviour that should be included in the
formalised solution. These are automatically or semi-automatically verified againgt the
formdised solution. If the case includes al behaviour that is included in the input examples,
the verification against the input examples is successful. If the verification is unsuccessful,
the skilled user may use the feedback from the verification in order to locate the problem and
modify the solution (i4, Revise Solution in Figure 7.1), or iterate back viai3, i2 or i1. The text

to theright in Figure 7.1 is the part (or parts) of CABS aiding the process/step to its left.

124

Revise Idee —

il

CHAPTER 7. THE REQUIREMENTS DESIGN PROCESSIN CABS

| dea of New
Behaviour

Term definition
window and
ca library

Provide Input Graphic input
Examples example editor
Refine Input
Examples

Prepere for Window for match result
Re-match and parameter settings

Proposal not mAgainst

accepted @L ibrary
Window for trandtion

Revise
lution rules and cases
Validation not ﬁdate Simulator and

accepted Solution theorem prover

Define Ontology

Graphic input
example editor

Case-Based
matching

Ted case generator,
interactive amulator
and theorem prover

Verification not K/;rify

acoepted Solution

‘ | | | | I —
Formalised, Validated and Verified Requirements

(including input exampl es, ontology, tes cases, informal
descriptions and some interactions)

4 | |

Figure 7.1: Overal process from idea of behaviour to formalised solution

CHAPTER 7. THE REQUIREMENTS DESIGN PROCESSIN CABS 125

7.1 |dea for New Behaviour

Before starting a new specification, an idea of the behaviour to be added has to be created
(the “cloud” marked Idea for New Behaviour at the top of Figure 7.1, with the cloud
indicating that the idea is a mental product “stored” in the users mind®). Theinitial ideais, by
its nature, dways implicit since it is in the head of a person or a group of people. Often, the
overall goa with an idea is to add some behaviour to an existing implemented behaviour in
order to add vaue to the total behaviour (in telecommunications, thisis called an added value
service). In CABS, the main concern is the process of formaising an idea for a new
behaviour so it can be vaidated and verified before any larger commitments, in time and
money, have been made, and aso provide a bass for decison making, design and

implementation.

711 Revising an Idea for Behaviour

If the requirements designer for some reason decides to rethink the idea of the behaviour
(major changes, for refinements see 7.3), dl steps after the initial 1dea for New Behaviour
in Figure 7.1 have to be performed again. Revising an idea may involve respecification of
ontology and may require mgor changes in input examples. Revising the behaviour at this
stage (within CABS) is not a mgjor disaster because, at this stage, only a small investment in
the new functionaity has taken place (a few hours work). Most likely parts of the previous
formalisation of the idea can be re-used by manudly copying ontology, input examples or

parts of input examples and even parts of the solution that could be re-used by refinement.

%L For more on mental representation both from a philosophical perspective and in the context of

theories of cognition see [Cummins 89].

126 CHAPTER 7. THE REQUIREMENTS DESIGN PROCESSIN CABS

7.2 Defining Ontology

Defining an ontology is a main issue in knowledge acquistion and in enabling re-use of
knowledge. Many requirements specification approaches have neglected ontological issues
(mogt likely due to more pressing problems) but their importance is now widely acknowledged
and research into their use is increasing. The purpose of an ontology is to capture the
conceptudisation of a domain and to define (informa, structured, semi-forma or formal
[Uschold 96]) al relevant concepts and terms. There are three main areas in which an

ontology isuseful:

Communication between al involved parties.
Interaction between systems.

System design and engineering.

For CABS, the first area above is the most relevant: when a specification of a behaviour is
made, it is essential that the entities, attributes and relations used in the specification have a
clear meaning for dl involved parties (customers, requirements designers and end users). The
view taken in CABS is that information which is easy to capture and may be useful at alater
stage (revision / design / implementation), should be captured at the earliest convenient stage.
The definition of an ontology is not the aim and focus of CABS (it isin fact a research topic
in itself), but defining an ontology is still a main part in the process for transforming an idea of
a behaviour to aformalised requirements specification. Therefore, only a ssmple approach has
been implemented in CABS where entities, attributes and relations are defined partly
informally and partly formally. For the teecommunications domain it is often ssble to
identify and use previoudly specified definitions stored in the case library (which have been
vaidated and verified). If not, any addition or modification of the ontology should be carefully
investigated, vaidated and agreed upon by dl involved parties, in order to minimise the risk of

serious problems at a much later stage in the development process [Zave, Jackson, 96].

CHAPTER 7. THE REQUIREMENTS DESIGN PROCESSIN CABS 127

7.3 Expressing an Idea with Input Examples

As described in Chapter 4, the user can give a set of graphical input examples where each
example exemplifies a category (categories such as basic behaviour, odd case, error case,
etc.) or combination of categories of the new behaviour. Once the requirements designer has
an idea for the behaviour, the behaviour is captured using the graphical examples that are
produced with the graphical input example editor. Nodes and links are refined theresfter
using definitions from the case library (the ontology of the domain). Once the requirements
designer has outlined the nain characteristics of the new behaviour with input examples,
which capture the most common behaviour, whilst leaving out less usua behaviour, a match

against the case library can be performed.

731 Refining Input Examples

Refining input examples is done with the graphical input example editor in the same way as
new examples are produced. The user can copy and rename graphical input examples, as
well as add, remove and modify links and nodes until satisfied. Links may aso be excluded
from matching for different reasons (some links may not be part of the new behaviour,

merely putting the new behaviour in the context of previoudy specified behaviour).

7.4 Matching | nput Examples Against the Case Library and

Selecting a Solution

The matching process identifies cases in the case library, capturing smilar behaviour to the
behaviour exemplified in the input examples, as described in Chapter 6. This enables the

requirements designer to identify and select a proposed solution.
7.4.1 Preparefor Match or Re-match

Before the user starts the matching process, he or she has to choose which input examples

are to be used (Figure 6.1). If a match result is not satisfactory and a re-match has to be

128 CHAPTER 7. THE REQUIREMENTS DESIGN PROCESSIN CABS

performed, selecting a dfferent set of the input examples may be the preferred choice in an
effort to improve the result of the matching. Some of the input examples may guide the
matching better than others and there may even be input examples that misguide the
matching (this will be explained further on). Since the find rating of cases is directed by the
number of matching linkstrangtion rules for the cases, it is obvious that if most input
examples direct the matching in one direction, then afew input examples with links pointing to
another case will have less effect on the final ranking. Matching parameters are normally not
changed, but if matching using the method mentioned above (using different sets of input
examples for the match) does not produce acceptable results, the user may consider tuning
the matching parameters® in order to try to achieve a better matching result (Figure 6.6 and
Figure 6.8). In the future, the system may also be involved in the process of improving the
matching result by asking the user for some specific input examples, outlining the behaviour
of parts of the functiondity. This will enable it to confirm or exclude cases from the case
library (an adaptive approach to case-based search [Cdlan, Fawett, Rissland, 91]). This

possibility has not been explored in the current implementation of CABS.

If CABS proposes solutions that are rejected by the requirements designer, these proposed
cases can easily be removed from further re-matches by selecting the proposals and pressing
the Exclude Case button in Figure 6.9. In the same manner, the user may exclude links from
the match if these are judged as being less relevant when searching for a matching case
(these may be links that are known to belong to a case to which the new behaviour is
complementary, but not included in, hence these links may direct the matching in an unwanted
direction). When the user is ready for a re-match, the Redo Match buttonin Figure 6.9 is
selected and a dialogue window is shown where the user can select the input examples on

which the rematch will be based.

22 Note that to tune the matchi ng parameters, knowledge of the matching processis needed.

CHAPTER 7. THE REQUIREMENTS DESIGN PROCESSIN CABS 129

7.4.2 Selecting a Proposed Solution

When confronted with the matching result (as shown in Figure 6.9), the user must select a
solution. The scroll list Best matching cases (descending order) may include a proposa that
the user might decide to explore. The interface enables the user to inspect any of the
proposals in the list by selecting the case and pressing the Show Case button. If the user
accepts a proposal, the proposal has to be vaidated and verified (see sections 7.6). If the
proposed case has been validated and verified, the task is completed and the user has
identified a case that captures the required behaviour. In telecommunications, a case may be
re-used directly or with minor modifications, if there is a variant of the service (a case that
has been implemented for some other customer or market but where the main behaviour and
functionality is matching) aready specified and implemented. If no similar service is
identified, the use of parts from different cases may be combined into a new service, which

will be explained in the following section.

7.4.3 Adapting a Close Match

If there is a matching case that captures most of the main behaviour, but not al of the
behaviour, the user may select this case as the proposed solution. Then, through validation
and verification, he/she can locate the differences and construct a solution covering all
wanted behaviour by adding transition rules from other cases (the transition rules may need
modification, see Section 7.5.1). All links have their best matches shown in the menu Match
selected for link: in the link window (Figure 4.6), where the user can select a matching
trangtion rule that is not part of the proposed solution (a manua selection will by default
exclude the Ink from a rematch). This alows the user to construct a new case with parts
from other cases (modified or unmodified) by adding in missing behaviour. If some behaviour
exemplified by a link is not included in the solution, this behaviour may be added in tree

different ways:

130 CHAPTER 7. THE REQUIREMENTS DESIGN PROCESSIN CABS

The user sdlects a transition rule from the case library which is good enough to be adapted

and modifiesit until it captures the desired behaviour.

The user lets the system generate a new transition rule capturing the behaviour of the link

(how trangition rules are generated from links is described in Section 7.4.4).

The user may manually construct a new transition rule.

In al three cases, validation and verification will identify if the trangition rule is fufilling its
purpose. Once dl links whose behaviour was not captured by the selected solution have been
handled in this way, we have a solution that can be fully validated and verified. When
transition rules are used from different cases and added to the new case, the new behaviour
is a combination of parts from previous specified cases. In telecommunications, parts of
behaviour in different services often show similarity (end users mostly require a uniform
interface to services) and hence finding parts of behaviour from different services that can be

used when specifying a new serviceis likely.

744 Generating a New Case

If there are no cases in the case library that can be re-used for the new behaviour, the input
examples can be used to automatically generate a set of transition rules which can be used as
a darting case. A solution case generated in this way will be a naive solution in the respect
that it is merely a generdisation of the input links from dl input examples only including the
behaviour of te input examples. It is missing other wanted behaviour that has not been
explicitly exemplified (error cases, odd situations, interaction, etc.) which would have been
included if a previoudy specified, designed and implemented case had been re-used as
starting point for the new behaviour. A generated case is most likely good enough as a

starting point for refinements, modifications and adaptations, as described in Section 7.5.1.

CABS generates trangition rules from the input examples by putting al conditions into the

condition part of the generated transition rule and dl conclusions into the conclusion part of

CHAPTER 7. THE REQUIREMENTS DESIGN PROCESSIN CABS 131

the trangition rule. Since most heuristics are most likely application domain dependent they
should be given as an external set of rules enabling an easy way of changing them (the
CABS prototype has not implemented these heuristics and the user has to do these
adaptations manudly). Since generating transition rules from input examples is not a main
issue in CABS, this part isonly briefly outlined and implemented to point at the possibility and
to capture the situations where no good matching case or set of trangition rules exist in the
case library. This part is based on earlier experiments with rule induction [Funk 88], [Verpers
91]. There are interesting research results in the area of rule induction [Quinlan 87] and logic
program induction [Muggleton 90] which should be used in order to extend this initia

approach.

7.5 Validating a Proposed Solution

Executable specifications have lately become more popular and, in addition, for many non-
executable forma notations, there is an ongoing research effort to identify executable
subsets/extensions [Fuchs 92]. One of the main advantages of executable specifications is
that the requirements designer can explore the specified behaviour (under different
circumstances) by simulation. Executable specifications can be used as pat of the
communication about the system functionality between customers, system designers and
programmers. The simulation alows an interactive exploration of the required functionality
(the required dynamic behaviour) captured by the requirements specification. If any
unexpected, unspecified or unwanted behaviour is encountered then the solution needs
refinement: the requirements designer can refine, revise and/or extend the specification (as
described earlier in this chapter and shown in Figure 7.1), so that it captures correctly the

intended behaviour.

Since the requirements designers intention of the behaviour is not fully covered by the
examples, and since the proposed solution includes more behaviour than explicitly exemplified
in the input examples, the specification has to be vaidated. In CABS, we have implemented a

basic text based smulation tool as shown in Figure 7.2. If smulation is to be used with

132 CHAPTER 7. THE REQUIREMENTS DESIGN PROCESSIN CABS

customers of the system it would need to be improved and the logica notation better
encapsulated. A graphical representation or smulation animation would be one way of further
assigting understanding for people not skilled in forma notations [Hughes, Cooling, 91]. Some
experiments in graphica and icon based representation for smulations and specifications

have been performed in the domain of telecommunications services [Preifelt, Engstedt, 92].

In the smulation tool, the user can create an initia state (the Initialise button in Figure 7.2),
give a sequence of gimuli to the smulator, and explore which transition rules have been
triggered and what facts and responses are concluded. This gives the user a powerful tool
with which to explore the behaviour of the formalised requirements. The user starts a
smulation by initidising the facts. In Figure 7.2 one subscriber is answering calls to number
111, answer_number(a, 111), and cdls to number 111 ae accepted,
accepts_incoming_calls(111) are the initid facts as shown in the top right field. The user
gives a gimulus (which may be selected from a menu containing al vaid stimuli) in the text
fidd Next stimulus: at the top of Figure 7.2 and selects the Smulate button. The New facts
since previous state, Unchanged facts since previous state and Triggered transition
rules fields will be updated and show the state after the stimulus has occurred. If the user
wishes to inspect why a transition rule has triggered, the user can select the button Show
Transition Rule which shows te transition rule with variables replaced by actua vaues
from the simulation. The user can adso explore why a transition rule has not triggered by
choosing the Why Not button®, selecting a transition rule that will be shown with the
conditions which have or have not been met. The field Facts at time shows the current time
step: if the user has simulated a number of steps, the <, > or View time button can be used to

traverse forward and backward in the smulation space (in this implementation, a new

2 Why Not button and the corresponding functionality has not been implemented in the final simulator
for CABS. Such afunctionality isaminor extension and was implemented in an earlier versions of the

simulator.

CHAPTER 7. THE REQUIREMENTS DESIGN PROCESSIN CABS 133

gimulus can only be given at the last time step, but it would be desirable if tree structured
smulations could be built and a different smulation branch could be sarted from any
smulation step). Before a simulation is started, the user has to decide with which cases the
new behaviour should be smulated (only transition rules from these selected cases will be
triggered by a stimulus). For telecommunications services [Funk, Raichman, 1990, it is often
an advantage to first smulate a new case without other interacting cases initialy, and once
this behaviour has been validated and refined so that it covers the basic idea, additional cases
can be explored. If the user wishes to reset a smulation from a particular step, the button
Reset fromis used. If the Initialise button is chosen, the current smulation is cleared and a
new initialisation can be selected (either select from previoudy defined initialisation or define

anew initialisation containing facts that are true at time step zero).

Simulate/ Dalidate cases

Next stimulus: |huuk_uff[a, 1)

Mew facts since previous state: Unchanged facts since previous state:
dial_ tones(a) accepts_incoming calls(111)
bhook_off timefa, 1) ansmer_nr(a, 111)
timei1)
oot timel 0]

Simulated cases:

411 cases
_|fnll_functionality system n
Dccurred stimulus: hook_off(a, 1) kg
? ot E basic_call
Triggerd transition rules: basic_telephony
set_hook_off_time_2 1rzall_back ke

normal_hook_off [Set cases to simulﬂte]

..
L[Cancel] [Initialise] [Reset] [liew time] [Shmu Transition Hule] [Done]

Figure 7.2: Example of smulation window in CABS

134 CHAPTER 7. THE REQUIREMENTS DESIGN PROCESSIN CABS

751 Revising a Solution

If missng behaviour which is part of the input examples is identified, then the proposed

solution needs to be extended (by identifying matching transition rues for the links not
covered by the solution or by refining the trandtion rules). If missing behaviour, which isnot a
part of the input examples, is identified and classified as relevant to include in the initia

behavioura requirements, the input examples should be extended to include this behaviour. In
the domain of telecommunications services, the number of behaviours to be captured in a
specification may be so large that it is not feasible to make input examples for al behaviours,
only for the more common and normal ones. Other more unusual situations and interactions®
are captured by the formalised requirements (a refinement of the behavioura requirements

towards a full specification).

If behaviour is added to the formalised requirements, but not included in the input examples,
there is till a possibility to perform some verification, if the smulation traces are kept as test
cases for later re-verification and to formally prove that any modifications/dterations to a
case have not accidentally changed any of the previoudy captured behaviour represented by
the smulation traces. Verifying modifications/dterations of cases is a major issue for
telecommunications service providers since services are often modified for different markets
and users, or atered to interact in a desirable way with new services. It isawell known fact
that aterations are one of the main causes of errors. This risk of accidentaly introduced
errorsisreduced if previous input examples and previoudy performed smulations are re-used

to verify that none of these behaviours have been accidentally altered (see [Buchanan,

241 looki ng at a telecommunications service such as call diversion or three party call, it could be
argued that the behaviour normally encountered by the phone user isthe main issue for the top level
reguirements sketch. The more unusual situations should of course eventually be catered for, but
this can be left for alater stage in the process, after the main behaviour of the new service has been

validated, verified and approved for full implementation.

CHAPTER 7. THE REQUIREMENTS DESIGN PROCESSIN CABS 135

Shortliffe 84]). Storing simulations has not been implemented in CABS but is a trivia

extension to the automatic verification described in Section 7.6.

The solution may be revised on the level of trangtion rules (14 in Figure 7.1) by editing the
trangtion rules in a traditiona way until they capture the behaviour exemplified in the input
examples (individud trangition rules can be edited in the transition rule window, Figure 5.5). If
trangtion rules are revised to capture the behaviour exemplified in the input examples, the
solution can be verified as normal, as described in Section 7.6 (no extra verification with

smulation traces as described previoudly is needed).

7.6 Automatic and I nteractive Verification of Results

Validation of new cases can be done more or less systematically but as long as traditional

methods for validation are used, there is no guarantee that al requirements exemplified in the
input examples are captured in the formalised requirements. In CABS, a step of formal

verification is added where the input examples ae trandated to test sequences (called test
cases) that are used by the verification tool. Thisis done automatically and can prove that the
behaviour exemplified in the input examples is captured in the case and its environment, i.e.
all the other cases with which it is expected to coexist, and with which it may aso interact or
be dependent on. If behavioural examples outlining excluded behaviour have been given,

these have to be proven not to be included in the behaviour (negative input examples have not
been implemented in CABS but is a draightforward extenson of the existing
implementation). In CABS we have implemented this automatic verification for positive input
examples. If a case does not capture some specific behaviour exemplified in links in the input
examples, CABS will point out which behaviour in the input examples is missng from the
formalised requirements. This indicates that the transition rules in the formalised requirements
specification corresponding to these links fail to fulfil their task of capturing the exemplified
behaviour. Hence, the verification has failed and the user has to refine the input example or

add another input example in order to give more information, so that a transition rule meeting

136 CHAPTER 7. THE REQUIREMENTS DESIGN PROCESSIN CABS

the requirements can be identified by the matching process or generated from the input

examples.

Once a case and its transition rules have been altered, al cases that include this transition rule
directly or indirectly need to be verified. Those cases which need to be re-verified can be
determined automatically (which can be done without a search through al the trangtion

rules).

By using a forma notation, we aso have the possibility of identifying inconsistency in rule
sets [Funk 93]. A program performing some consistency checks on rules has been

implemented but not integrated in the CABS system (see Chapter 9).

7.6.1 Generating Test Casesfrom Input Examples

A test case is a sequence of triples of preconditions (facts and responses), stimulus and
postconditions facts and responses) that are expected to hold before and after the stimulus
has occurred. The input examples are a set of links and nodes. The links contain conditions
(both conditions from the originating node and additiona conditions) and conclusons (both
originating from the terminating node and additiona conditions) which can be used directly to
produce test sequences, containing sequences of stimuli, preconditions and conclusions that
are expected to hold before/after the stimuli have been received. If alink has some additional
conditions that are not a conclusion of some previous link or a part of any previous node,
these terms can be added to the initid start situation if this option is selected. Input examples
adways have a finite number of nodes, so we only need to generate al possible routes
between all the denoted start and end nodes. We do not need to expand loops since if we
follow a branch of stimuli between start node and end node and encounter a node in the input
example that has already been traversed, this branch needs no further exploration since each

node has aready had dl its branches explored.

Once dl branches for an input example have been expanded between start node and end

node in the input examples, we have a number of test cases to verify. Aswell as using test

CHAPTER 7. THE REQUIREMENTS DESIGN PROCESSIN CABS 137

cases, we may also show different properties, such as liveness [Segala, Gawlick,
Sggaard-Andersen, Lynch 98], i.e. if a branch cannot reach an end node within a
reasonable number of stimuli (for instance a phone user is only expected to do a reasonable
number of actions resulting in stimuli, dialing, putting calls on hold, joining them into three
party cals etc. which can be limited to a safe maximum number of stimuli), this can be

identified.

7.6.2 Verifying a Test Case Againgt Formalised Requirements

The purpose of the verification is to verify (formally prove) that al the behaviour captured in
the input examples is included in the formalised requirements and that the behaviour of
negative input examples is excluded from the formalised requirements [Atkinson,

Cunningham 1990] .

Definition of included behaviour: Given the same sequence of stimuli, the formalised
requirements capture the behaviour of the input examples if and only if the formalised
requirements exhibit a list of responses which can be mapped to the list of responses in the
input examples: Note that there may be responses in the formalised requirements that are not

present in the list of responses from the input example.

Definition of excluded behaviour: The formalised requirements exclude the behaviour of the
input examples if and only if the formalised requirements do not exhibit the same responses,

given the same sequence of stimuli as exemplified in the input examples.

In CABS, the requirements designer selects which cases or set of cases are to be verified by
sdlecting from the list Verify Cases in Figure 7.3. If more cases are selected, interaction
between these cases is aso verified (if input examples exemplifying interaction between
these exist). If the check box precondition is ticked, the verification will check that
preconditions connected to stimuli in the test case are checked and any differences are
reported. If the check box postcondition is ticked, the postconditions are checked in the
same way. If the check box response is ticked, the externaly visible response terms are

checked (same response for same sequence of stimuli). If the check box attributes and

138 CHAPTER 7. THE REQUIREMENTS DESIGN PROCESSIN CABS

relations is ticked, attributes and relations connected to stimuli in test sequences are
checked. These settings may be useful if a verification fails because of differences between
the exemplified behaviour of the input examples and the captured behaviour of the proposed
solution and gives the user atool that may be of help in the exploration of the differences. If
the Verify All button is pressed, all existing test cases for the selected cases are verified (if
the verification of a test case fails, the verification stops and the failing Situation is shown in
the Verification window). If the Verify Next button is pressed, the name of the next un-
verified test case is shown in the Verifying test case: field. Test cases are always named
after their originating input example name merged with a number (the number is the order
number in which the test case was generated). If the requirements designer wishes to step
through a test case, the Step button is pressed and one stimulus at a time from the stimulus

lig Test sequence is verified (the highlighted stimulus n the Test sequence: ligt is the last
verified).

In the step mode, the result after every step is shown in the Facts: lig, listing dl the facts
true in the state. What facts have been changed since the previous time are listed first. After
the dotted line the facts that are not true any more are listed and finaly after the second
dotted line, all the facts that have not been changed since the previous step are listed. The
Expected terms: list shows what the test case expects for terms in the state and te
Triggered transition rules: list shows al the transition rules that have been triggered as a
direct consequence of the stimulus. A discrepancy is an indication of a behavioural difference
between the initid requirements and the formalised specification sketch. The user has to
decide if the initid requirements have changed or if the formalised requirement sketch has to
be revised. The Restart button is used to reset the current test case to its initial start state,
which may be useful when stepping trough a test case. The Select New button alows the

user to salect and initialise the Verification window with another test case.

The verification uses the smulator in batch mode. This has the advantage that if any
discrepancies are identified and the verification is hated, the Smulate button can be pressed
and the last test case can be explored with the smulator (stepping forward/backward,

resetting from a particular time and smulating different stimuli and their effects). The origina

CHAPTER 7. THE REQUIREMENTS DESIGN PROCESSIN CABS 139

graphica input example can aso be viewed by pressing the Show Input Example button.
The test case can be viewed by pressing the Show Test Case button. Each step in the Test
Sequence list has a reference to its originating link in the graphica input example which can

be viewed by pressing the Show Link button.

O Uerification

Terify caszes: Verify: [] preconditions [<] postconditions
411 cases B = 5
Pardird seitices UK = [responses [attributes and relations
bardki
basic, call 5| [verity All | [Verify Next)

Selected test case: best_caselS
originating from: a_call back_example

[Step][Restart][Select Neu.l]

Test sequence: Facts :

all subscribers idle call_backfa, 222, 3] ki

hook_offia, 1) service_acocephbedial 3

diallingfa, 282, 2) [L L L L L -

service_regquestia, X, 3) not ring signalib)]

hook_onfa, 4) not ring tonelad :

End of sequence not callingia, b) :
hock_off_timela, 1) :
answer_nria, 1113 i
answer_tor(h, 222 :
accepts_incoming calls(222) g
dialling timela, 2ZE2, 2) Jsiid
time(2) 4
last_call(222, 111) 3

Expected terms:
Occurred: service_regquestia, call_ back, 3) service_accephedia)

Triggered transition rules: |- - - e o e s e

not ring tomela)
call_back_reguest_1 not ring signal(lb)

not callingia, bl

[ouit |[show Input Example][Show Test Case || Show Link | [Simulation] | Done |

e -

Figure 7.3: Example of verification window in CABS

The verification also handles test cases where variables are used. In Figure 7.3 in the Test
sequence ligt, the third step, service request(a, X, 3), can under the given restrictions
(preconditions and postconditions), only be equa to service request(a, call_back, 3) as
shown after Occurred. If the variable causes indeterminism and the variables can be

instantiated to different values, the user has to make a salection to make the test case valid.

140 CHAPTER 7. THE REQUIREMENTS DESIGN PROCESSIN CABS

1.7 Revising and Refining the Solution

A solution may be directly modified by editing transition rules. This does not conflict with the
methodology of CABS since verification and, most likely, validation has to be performed
before the task can be consdered complete. The verification ensures that the solution still
conforms to the input examples. If the verification is unsuccessful, the question to exploreis if
the input examples or the formalised requirement specification has to be modified. Once the
original idea has been formalised, vaidated and verified, the solution includes the behaviour of
the input examples. If the input examples reflect the behaviour of the new functiondity, then

the solution meets the original requirements.

If the proposed solution needs some revision (such as adding in the behaviour for unusua
situations), or if there is no single case that meets the user’s requirements, a more traditional
gpproach of editing transition rules may be necessary. This requires knowledge of production
systems and rule based approaches.

Chapter:

8. Evauation of CABS

As mentioned in Chapter 2, there are hundreds of different telephone services implemented
by modern telephone networks. These exist in different variations where adaptations have
been made for different countries, companies and telephone operators. The CABS case
library contains seventeen telecommunications services (127 trangition rules, 54 terms),
reflecting a variety of different types of telephone services commonly supplied to phone users
which are often used in experiments and research involving service specifications [Funk,
Raichman, 1990]. The case library sdlected for the evauation contains the following
services®™: basic cal; cal barring; call diversion; cal waiting; call reminder; call back; call
return; charge advice; emergency call; three-way caling; pick-up cal; banking; voting; queue
cdls; caler display; basic telephony.

For case-based reasoning, there are a number of key issues to be evaluated (described in
Section 8.1). The most desirable approach for an evauation is when a set of objectively-
measurable criteria can be defined and proven: for example, if the am of a research project

is to apply an gpproach enabling micro-processors which are ten times faster, compared with

% For details on some of the services, see for example BT’ s brochure “Welcome to Selected Services,

Y our User Guide'.

141

142 CHAPTER 8. EVALUATION OF CABS

currently available technology, a prototype that meets this criterion is clear evidence that the
clams of the research hold. In the area of mathematics, a precise answer may be a
mathematical formula or proof. In artificid intelligence and knowledge based systems, where
different areas and approaches are combined and integrated to achieve the desired results, an

empirica approach to evaluation is usualy the preferable choice [Mark, Greyer, 93].

An important question is. with what data should an evauation be carried out. For the case
library, a set of services is chosen that is commonly used in experiments with telephone
sarvices [Funk, Raichman, 90], [Klusener, Vlijmen, Waveren, 93]. For these services, input
examples were created in the same way in which end users are expected to use the system.
These are used to evauate the robustness of the system, and the results reported give an
indication of how wel it meets its clams (identifying smilar behaviour and verifying the
solution against the input examples). The results are reported in the tables of the following

sections.

The decision was taken that end user evaluation was not appropriate, for two main reasons.
Firgtly, real end users are not accessible; telephone services designers are in great demand,
and they would not grant time for the evaluation of CABS. The second reason is that snce
the implementation is fairly large, any results from an end user evauation would be
questionable as it may be difficult to separate the evauation of the prototype (an end user
may like or didike a particular implementation depending on background knowledge,

experience and personal preferences) from the evaluation of the general approach.

8.1 | ssuesto Evaluatein Case-Based Retrieval

The success or failure of case-based reasoning systems depends on five key issues listed in
Table 8.1, each with a brief reference to CABS. They are in no particular order and are

extended and adapted from [O'Leary 93] and [Ketler 93]:

How easy isit to use the system (giving input examples on a suitable abstraction level).

CABS uses graphical input examples. Graphic notations are common in telecommunications

CHAPTER 8. EVALUATION OF CABS 143

gpplications and the notation used is considerably less complex (due to a reduction in
expressiveness) than notations traditionaly used (SDL, MSC, CP, etc.). To evauate the
notation is beyond the scope of this research and the view is taken that the notation should be

adapted and tailored to meet the user’ s wishes.

Congistency and uniformity of knowledge representation (sufficient for al involved parties
and also enabling automated verification, adaptation, etc.).

CABS uses a predicate logic notation based on Horn-clauses.

Clustering of cases (application domain feature).
Telecommunications services, and in particular telephone services, are on a behavioura level
often similar to each other. Different countries and service providers offer similar, but not

identical, services to telephone users. Re-use is high on the agenda in telecommunications.

Metrics for the retrieval of cases.
A set of structural features, based on an analysis d the semantics, is used to identify and

retrieve cases capturing similar behaviour.

Assessment of the solution produced by the system.
CABS uses input examples to verify solutions. Smulation is used to explore behaviour not
covered by the input examples. Theorem proving is a further extension (partly implemented

but not integrated in the prototype system, see Chapter 9).

Table 8.1: The five main issues to be evaluated

This research focuses on the identification of similar behaviour for re-use and to confirm that
the final solution captures the behaviour exemplified in the input examples, so issues 4 and 5
in Table 8.1 are the main issues in this evaluation and will be explored in depth in sections 8.2
and 8.3.

144 CHAPTER 8. EVALUATION OF CABS

To evaluate issue one to three is beyond the scope of this research but they are discussed
briefly because they are of relevance if a full scale implementation of a system based on the

CABS approach is considered:

Issue 1 (Table 8.1): The behaviour imagined by the user has to be expressed in some notation
as input examples, in CABS. To use a graphical notation is an obvious choice for the domain
of telecommunications since graphica notations are often used in this application domain for a
variety for different purposes. CABS has a very basic graphical representation (the notation
should be adapted to the user’'s needs and also for different application domains. This is
beyond the scope of this research.). The main requirement for the input examples is that it
should be possible to trandate them into transition rules used for matching and for generating
test cases used in the verification. Whether the input examples capture the desired behaviour
correctly can only be assessed by the designers, making evaluation of the problem description

difficult (especially without access to end users).

Issue 2 (Table 8.1): For a number of reasons (convenience being one of them), CABS uses a
subset of predicate logic extended with a frame axiom as its knowledge representation
language. With this smple but sufficiently expressive predicate logic, the implementation of
matching, smulation, verification and trandation from input examples to trangtion rules is
redlised with reasonable effort. Trandation to and from natural language has aso been

explored for a notation similar to the one used [Ddianis 95].

Issue 3 (Table 8.1): The application domain of telephone services has the features needed to
make re-use beneficid since similarities between services ae common in
telecommunications. Re-use is considered an important matter, and is high on the priority list
for service development. Since new telephone services are designed and implemented all
over the world in different company branches, companies and service vendors, it is assumed
that a lot of work is repeasted and that there is a large potential for re-use. Effort to
standardise service independent building blocks has been undertaken by the international

telecommunications union but this will not lead to standardised services (as discussed in

CHAPTER 8. EVALUATION OF CABS 145

section 2.3). Section 8.4 shows that CABS has the capability to considerably reduce

repetitive work by identifying similar services.

8.2 Evaluation of Retrieval and Solution Assessment

Figure 8.1 gives an evaluation view of CABS (the large box) and the two main issues.
(i) identifying and retrieving sSimilar behaviour for re-use (issue 4 in Table 8.1) and
(i1) verifying the proposed and selected solution against the input examples (issue 5 in Table
8.1). In the telecommunications service domain, CABS is not expected to find a case in the
case library exactly meeting the exemplified behaviour in the input examples since it is
unlikely that the user would give an example of a behaviour that exactly matched a case in
the case library (When this occurs, either the service is uncomplicated or the user knows
exactly how the service behaves). CABS proposes a list of similar cases that are candidates
for the behaviour expressed in the input examples. The requirements designer makes the fina
seection, eventually changing the initial idea of the behaviour exemplified (changing input
examples or accepting input examples belonging to the case). The overall question to evauate
is whether or not the matching heuristics are practicaly useful and produce a set of similar
cases, which is small enough to be managesable, yet broad enough not to miss relevant
cases®. If we know the solution case for a set of input examples, we can find out how well
the features used by CABS work to identify the solution. At the same time, it would not be
desirable if the matching only gave the single most expected case as a solution, since a case
capturing exactly this behaviour need not necessarily be the solution sought (a requirements

designer may revise and extend the behavioural ideas). Therefore, a set of similar cases

% Even ®, similarity-matching may not, in a fully functioning system, be the only approach to
identifying relevant cases: keyword matching, text -based matching on informal descriptions of cases,
and matching new input examples against input examples stored with cases in the case library are

some interesting extensionsto CABS.

146 CHAPTER 8. EVALUATION OF CABS

where the most similar solution has a high ranking is preferable. In Section 8.3, the input
examples are selected and matched, and the results are summarised and their implications

discussed.

Another central feature of CABS isto verify proposed and selected solutions (see Figure
8.1). The matching process should purposdly give a set of more or less smilar cases from
which the user can select the one(s) they want. The verification, on the other hand, should
confirm that the behaviour exemplified in the input examples is included in the selected
solution and if not, describe where it differs. If it does differ, the requirements designer has to

explore why thisis so. In Section 8.5, proposed and sdlected solutions are verified against the

input examples.
Ides of
Behaviour ./
R $ _____________ CABS .
Benaviourel Case Library
Examples

heuristic festures to
identify similer behaviour !

Identified Similer
Behaving Cases

verify proposed end
Selected solution

Verified
Solution

Figure 8.1: A verification view of CABS.

CHAPTER 8. EVALUATION OF CABS 147

8.3 Selection of Input Examples and Target Cases

As mentioned erlier the set of cases that are stored in the case library are commonly used in
experiments with telephone services [Funk, Raichman, 90], [Klusener, Vlijmen, Waveren,
93]. For al cases in the case library, one input example, giving an example of the behaviour
of the corresponding service, was designed. An effort has been made to produce input
examples which are similar to those a requirements designer might give, without knowledge
of the behaviour of any service implementing the exemplified behaviour. Thisis fairly easy to
achieve, as there is often little choice in how to exemplify a particular behaviour with an input
example. A good illustration of this is basic_example O Figure 8.2) which contains four
nodes. all subscribersidle; dial tone a; a calling b; in speech. The node dial tone a has
the condition dial_tone(a) and the node a calling b has the condition calling(a, b) &
ring_tone(a) & ring_signal(b). The nodes are connected with the links illustrating the
actions the telephone users can make. Thisis sufficient for the matching algorithm to identify
basic_call as the best matching case (for matching results see Table 8.3). Different
requirements designers would most likely express the same behaviour in a smilar way with

the given set of nodes.

148 CHAPTER 8. EVALUATION OF CABS

aII suhscrlhers |dle

el Ly

hook_off

hook_on

hook_on @

hook_on

dialling

hook_off

a calling b

-_ -

Figure 8.2: input example basic_example 0

In Table 8.2, the names of the input examples are given with the corresponding target case
(telephone service). Appendix B lists dl the cases in the case library and Appendix D gives

all the input examples used for the evaluation (aslisted in Table 8.2).

Input example Casein Case Library
a banking_example banking
a barring_example cal_barring
a basic_behaviour_example 0 basic_telephony
a basic_behaviour_example 1 basic_telephony

a basic example 0 basic_cdl

CHAPTER 8. EVALUATION OF CABS

a basic example 1

a busy _example

a cal_back_example

a cal _last caler

a cal_reminder_example

a cal_return_example

a cdl_waiting_example

a charge advice example

a divert_example

a multi_cal_example

a pick_up_cal_example

a gqueue_example

a show_number_example

a voting_example

a wake up_cal

an_emergency_example

Table 8.2: Input examples and target cases

basic_call

basic call

call_back

call_back

cal_reminder

cal_return

cal_waiting

charge advice

cdl_diverson

tree_way_calling

pick_up_call

gueue cals

caler_display

voting

reminder_call

emergency_cal

149

150 CHAPTER 8. EVALUATION OF CABS

8.4 Evaluation of the Matching Algorithm

Each input example targeting the same case has been used for evauating the matching
algorithm. Test cases are al defined as being dependent on the basic_cal service and basic
telephony service (except input examples describing basic call and besic telephony), so these
services are not considered as a solution and are excluded from the matching result. The
parameters for matching transition rules and cases have been left at their default values. In
Figure 8.3 the matching result for the input example a_call_reminder_example is shown
(for an example on a full matching result, see Figure 6.9).

Best matching cases (descending order):

call reminder {3}
charge advice {2}
reminder call {1}
call waiting {1}

call diversion {1}
three way calling {1}

Figure 8.3: Match result for input example a_call_reminder_example

The column Best matching cases in Table 8.3 contains the matching result for each input
example. The result from Figure 8.3 is shown as alist with numbers {321111}in Table 8.3.

After the reaults list a number is shown (/6) with the number of links the match is based on.
Since we know the solution case for the match, the number representing the best case is

underscored. Cases that have the same ranking are not ordered in any way.

Thisrating is actualy quite crude; if a more precise ranking is needed for alarge case library,
it could be refined by taking the individual scores of trangition rules into account when
accumulating the total score for a case, rather than counting the sum of the number of
matching transition rules. The crudeness of the ranking cannot alter the set of proposed
services, but in some cases causes results in two or more cases being ranked equal highest.

Since the requirements designer makes the final selection among al proposed services and

CHAPTER 8. EVALUATION OF CABS 151

the total number of services were manageable, their ranking seemed to be a good enough

guide for the final selection, and a more discriminating a gorithm was not implemented.

If there is only one best match then the matching process has led the user directly to the
solution. If the number is greater than one, then there are severa cases in the case library
which share characteristics with the input example. As explored in detail in Chapter 7, the
requirements designer is expected to handle this Stuation (by adding more input examples,
excluding links from the input example, exploring and selecting the most appropriate case,
combining more than one case, etc.). Excluding links from the input example is an easy
approach to improve a matching result if it is obvious that the best proposed cases are not
acceptable. This can be done directly from the detail window for links, by selecting Link not
relevant for match in Match select for link: (see Figure 4.6). One should bear in mind that
excluding links will not extend the search (the same or fewer cases are proposed as a
solution) and will only be useful if the solution case is within the list of proposed solutions. In
the column Excluded links (Table 8.3), some links which are obvioudy not relevant for the
match have been excluded from the match and the match has been re-done. The number of
links used in the match is given as a number in the same way as in the column Best matching
cases; the number of links will obvioudy aways be less since links have been excluded from

the match.

If the total number of proposed cases which scored higher than one is too high the
requirements designer may increase/reduce appropriate matching parameters. If a service
has few characteristic features, it is expected that this tota will be large, wheress if the
service is very specific in its behaviour, there will be fewer cases. No matching parameters
have been dtered during the evauation presented in Table 8.3 (every transition rule scoring

higher than 10 is counted as a match).

Some matching results clearly point out the solution, for example match 6 in Table 8.3. Case
17, where 10 proposals are ranked, has two proposals ranked highest and this match is

regarded as having a weak focus towards the solution. If the focusis weak the input example

152 CHAPTER 8. EVALUATION OF CABS

(and the service) may be of more general character and share features with many other

services.
Input example Best matching Excluded
cases links
1 a banking_example {2111111}/4 v
2 a barring_example {111}/3 %
3. a basic_behaviour_example 0 {433311}/4 v
4, a basic_behaviour_example 1 {2111}/3 v
5. a basic_example 0 {6211111}/6 v
6. a basic_example 1 {7211111}/7 v
7. a busy_example {211111111}/2 %
8. a cal_back _example {22211}/6 v
9. acadl_last caler {1111}/4 4 {111
10. a cdl_reminder_example {321111}/6 v
11. a cdl_return_example {32211111}/8 \
12. a cdl_waiting_example {211}/5 v

13. a charge advice example {322111111}/7 nb {22111}/4

14. a divert_example {2221111111}/7 v

16. a multi_call_example {321}/6 v

15. apick_up _cal_example {11111}/5 5 {11

17. a gueue example {2211111111}/6 Vv

18. a show_number_example {1}/3 v

19. a voting_example {1111111}/3 7 {1111111}/1
20. a wake up_example {21111}/3 v

21. an _emergency_example {22111}/6 nb {111}/1

Table 8.3: Match result for input examples

CHAPTER 8. EVALUATION OF CABS 153

The input example, a basic_example 0, is in fact faulty because a node is missing®, hence
one link is missing and one is faulty. It is interesting that the solution case was identified in
spite of this mistake. This result was unexpected, but on analysing the result it becomes clear
that this is exactly one of the desired benefits of case-based reasoning compared with other
more precise approaches (e.g. some logica proof of equivalence). Input examples may lack
details or even be partly faulty, but if the heuristics for the match (the features used) are well

chosen, the matching agorithm should be robust enough to identify relevant solutions based
on the part of the input example which is not faulty. During the evauation, a more obscure
fault was identified in the matching (if matching trangition rules had constants in their stimulus
part, variables were accidentdly bound in simulus terms with these congants).
Coincidentaly, this problem only caused the matching agorithm to miss the correct solution in
one example and after correcting this problem the four input examples got one additiona

proposed case.

8.4.1 Over-Diffuse | dentification of Solution

For dl input examples used in the evauation, the solution case is amongst the proposed
solutions, but in two cases (13, 21) the correct solution case was not amongst the highest
ranked, and in two cases (9, 19), more than three proposals where ranked highest. Before
analysing these cases, a brief summary of how such a result may be tackled by the
requirements designer is given. If a requirements designer does not find an appropriate case
among the proposed cases, one of their first actions is to refine the input examples (as
described in Chapter 7), either by supplying more input examples or refining those dready

given. One way of refining input examples is to label links as not directly being a part of the

2" \When two users are talki ng to each other and one of them puts the receiver down, the other user will
have silence until their receiver is also put down, the input example makes both the caller and the
called person idle when one person puts the receiver down, thisis not true since the person who did

not put down the receiver cannot receive acall or lift the receiver (hook_off).

154 CHAPTER 8. EVALUATION OF CABS

behaviour sought for in the case library, which as shown below, often gives a better matching
result. For example, in the service charge_advice, everything in the input example 13 (Table
8.3) up to telephone user a talking to telephone user b (for input example see Appendix C) is
a normal cal, but the matching process does not know that and should still identify similar
services to propose for this part of the input example; this may misdirect the search in some
Stuations or result in a less focused proposa, depending on how large a part of the input
example is part of the target case. If these links (up to node speech) are marked as being
irrelevant for the search?®, the search focuses on the part in which the requirements designer
is interested. For input example 13 this brings the correct service (charge advice) to the top
of the ranking list (shared with call_reminder which could be classified as having a similar
behaviour to the example®); before this selection of links charge advice was ranked to ke
amongst the second best proposals. The re-match result is shown in the column Excluded

linksin Table 8.3.

After the requirements designer has excluded sdlected links in the input example, example 19
still shares the solution with other proposals which may be considered as a weak focus on the
solution, but when inspecting the matching result of the link, the highest ranked trangtion rule
belongs to the service voting, hence the service voting is correctly identified a the best
match (alist with proposed and ranked similar transition rules can be viewed in the detail link
window, see Section 4.2.1). This shows that the link/trangtion rule matching is able to
correctly rank the trangtion rule from the solution case as the highest. This information is not
carried forward when ranking cases in the case library due to the crude approach of counting

the number of matching links for each case. Also, for input example 21, the solution would

% Thelinks are still relevant when verifying the behaviour.

2 Reminder_call may even have parts that could have been re-used to create a new service
charge_advice if such a service had not existed in the case library. No analyses of this possible re-

use has been explored.

CHAPTER 8. EVALUATION OF CABS 155

have been ranked the highest if the link/transition rule ranking had been carried forward to
the ranking of the cases. Hence the ranking of cases would benefit from receiving and using
more information from the link/trangtion rule match. Using more information from the
link/trangition rule match when calculating the overall score for matching cases is considered
aminor dteration. This would further improve the matching results, especidly if the matching
result is based on afew links from the input example. It would add a few calculations to each
ranked case in the case library which would be negligible with other calculations performed
for each trangition rule and case (for more on time efficiency of matching agorithm see

Section 8.7).

8.4.2 Conclusonsfor Match Evaluation

For al input examples given, CABS was able to identify the corresponding solution amongst
the highest ranked proposals and for 14 (out of 21) input examples, it ranked the solution as
the best proposa. In 19 (out of 21) input examples, the solution was amongst the three
highest ranked proposas. When it did not rank the solution amongst the highest, excluding
irrdlevant links in the input example, it put the solution case amongst the highest ranked, but
for input example 19, seven other suggestions were ranked at the same level. This is
sufficient in the case library used for the evauation, but may give the requirements designer
too many cases to select from in a large case library. By using more information from the
links/trangition rule match when ranking, cases from the case library would help in the
identification of the best solution. In the input examples, we purposdaly avoided using solution
specific terms since, in a larger case library, the user may not always be able to identify and
chose these terms. For example, the sarvice wvoting has a term
vote_counter (VoteNumber, TotalVotes) used as a counter and the service call_diversion
has aterm redirect(FromNumber, ToNumber). These terms were purposely not used in the
input examples in order to simulate a less knowledgeable service designer. It may be argued
that a more experienced service designer, when designing input examples and selecting from

aligt of 52 terms, may select one of these terms. This would focus the search considerable

156 CHAPTER 8. EVALUATION OF CABS

(but not necessarily exclude a solution not containing these terms), and improve the matching

result.

This result is sufficient to enable a requirements designer to identify the corresponding casein
the case library. If this was the hit-rate in a full-scale system, it would be very good, since if
this represented all services that would have been fully specified, evaluated, verified,
integrated with other telephone services and implemented™, a large amount of work would

have been saved.

In some cases it would be ben€ficia to provide the designer with both similarity matching and
some additional matching approaches, for example keyword matching. Keyword matching
would in many situations be less accurate and miss possible solutions when compared with
similarity matching, but it may be able to focus the search, especidly in small case libraries,
since it is more likely that there are specific terms unique for a particular service. If an
experienced requirements designer can identify the terms discriminating the solution service
from other services, the service would be found with keyword matching (in
telecommunications services this is less common since many services do not introduce new
terms even if they were, they may not always be easy to guess, even with accessto al term
definitions). As mentioned earlier, a restrictive attitude towards using terms discriminating a
solution from other cases was adopted when producing input examples for the evauation.
Also CABS is not dependent on cases having particular keywords discriminating them from
other services since the matching is bases on a careful analysis of the semantics of transition

rules, trandated to a number of syntactic features.

A relevant question is what happens if the matching cannot identify a suitable case if thereis

no similar case (a new type of service not yet specified and implemented) in the case library.

%0 Implemented in a way where al references between requirements, specification, design and
implementation are kept, and where the design and implementation is structured in a way that re-use

is enabled (for example an object oriented approach).

CHAPTER 8. EVALUATION OF CABS 157

Some case-based reasoning approaches cannot handle such a situation. In CABS, input
examples are trandated to transition rules which are not expected to contain all details,
interactions etc. These input transition rules can be used by the requirements designer as a
starting point for the new service and the input example may be refined and extended to
generate transition rules closer to what is needed for the new service. Hence, the approach
does not falter if there are no suitable cases in the case library or if the requirements designer

(with the help of CABS) fails to identify a suitable case in the case library.

8.5 Evaluation of Automatic Verification

All the input examples that describe a full behavioural example from a start node to an end
node have been used to produce test cases (for consistency, al test cases are listed in Table
8.4). Cases marked with “” in the Generated Test Cases columnin Table 8.4 have input
examples not including a start node and end node or are not detailed enough to generate test
cases. If atest case does not include a start and end node, it may just be a fragment of some
required behaviour which may be sufficient to identify a matching case or it may be an
addition to other input examples (7b, a busy example in Table 8.4 is an addition to 7,
a basic_example 1, so, it is not sufficient on its own to generate test cases, but generates
test cases in conjunction with a basic_example 1). If the requirements designer accepts a
match, dl input examples belonging to the search should be used to generate test cases and
these should pass the automated verification before the solution is accepted. The verification
process of test cases do not accept differences as the matching does and will therefore
identify possible problems. In those test sequences used, the test sequences identified
problems both in the input examples and in the solution case. After correcting these, the input
example will pass. The input examples identified one ore more of the following problems (no

particular order):

a) Variables were used in input examples that might cause unwanted

indeterminism. Refining input examples by changing variables to constants makes them more

158 CHAPTER 8. EVALUATION OF CABS

specific. Veification can handle variables in stimuli if there is only one variable binding

possible (no indeterminism).

b) FaultYmisunderstandings in the input examples were identified. An input
example may contain faults and misunderstandings (as in input example 5 discussed in
Section 8.4.1) yet still be sufficient for identification of an acceptable solution case in the case
library. Test cases produced from such an input example should not pass the verification and

the input example should be refined to reflect the factual requirements.

C) Conditions to links that have not been used anywhere else (in nodes/links) in
an input example may not be determinable when testing a test case. If additional conditions
are consistent they may, by default, be added to the start node (this option has been
implemented in CABS), but if they are rot consistent, no test cases are produced and the

input example needs refinement.

d) Missing facts for transition rules expected to trigger: If during verification, a
particular trangition rule, which is expected to trigger has some preconditions that have not
been mentioned in any node or link in the input example, then these preconditions will also be
missing in the test case and this transition rule cannot trigger. This can be resolved by adding
these facts either to the corresponding link (additional conditions) or to the start node (or any

other appropriate node) in the input example.

€) Identified faults in the case library: If the input example is correct and the
cases tested do not pass, then the cases are not correct. The requirements designer has the
choice of either modifying the matching service or making a new variation of it which meets
the current requirements. If the difference is small, much of the proposed case falling the

verification may be re-used.

Most of the generated test sequences identified some problems, showing that the approach of
using test cases to recognise potential problems is hel pful. Services specified and stored in the
cae library for the evaluation were assumed to be functioning properly based on smulation

during the development. Even so, a number of problems were identified when verifying test

CHAPTER 8. EVALUATION OF CABS 159

cases. This shows that during the development of new services (not previoudy specified and
stored in the case library), the use of test cases will be useful. Test cases are also vauable
when new services are integrated with previous existing services (added value services such
as call_waiting and three way calling have much interaction). Also, if a new service
accidentally alters some of the behaviour of a previoudy formaised service, this will be
identified by the test cases if the previous unatered behaviour that has accidentaly been
changed is included in the input examples/test cases. If test cases identified problems, the
necessary corrections in the input examples or cases in the case library have to be carried out
by the requirements designer until the test cases pass. This correction/refinement was carried
out for some of the input examples and cases during the evaluation, but not for dl of them,
since this effort does not contribute to the evaluation itsalf. Problems of class g, ¢ and d are
al classified as refinements of the input examples and are often trivid (less than twenty

minutes work for most input examples).

Input example Generated Correctly identifying
test cases problems(a-e)/passed(p)

1 a banking_example 1 ad

2. a barring_example 1 p

3. a basic_behaviour_example 0 1 p
4, a basic_behaviour_example 1 1 p
5. a basic example 0 3 b

6. a basic example 1 3 p

7. a busy example - -

7b. 6&7 5 p

8. a cal_back_example 2 b

9. a cal _last _caler 1 be

10. a cdl_reminder_example 2 b

11. a call_return_example 2 b

160 CHAPTER 8. EVALUATION OF CABS

12, a cal_waiting_example 1 e
13. a charge advice example 1 abe
14. a divert_example 2 be
15. a multi_call_example 1 e
16. a pickup_cal_example 1 e
17. a_queue_example 1 e
18. a show_number_example 1 b
19. a voting_example 1 e
20. a wake up_example 1 b,d
21. an_emergency_example 1 de

Table 8.4: Generated test cases and their success rate

8.5.1 Reducing the Need for Refinement

Refinements of type a, ¢ and d may prevent test cases from passing even if there is potentia
for the test case to pass. The effort required from a user in refining these by replacing
variables with constants and including necessary facts to start node/conclusions could be
reduced when generating test cases. This is possible because when the test cases are
produced and verified, the user has selected a solution case. This information can be used to
refine the input examples and fill in missng details or make over-generaisation specific

enough to produce test case which less or no need for refinements of type a, ¢ and d.

Refinements of class a aways originate from the use of variables in input examples. In most
cases it is obvious what terms should be for a stimulus, such as user x lifting the receiver a
time 1, off_hook(x,1). Time variables do not need to be given since these can easily be
determined when generating test cases. A user may exemplify how a serviceisinvoked in a
particular situation by adding a link between two nodes, service request(x,Service,T). The
requirements designer cannot know the name or code for the service since it is either a new

service or it is unknown which of the services it is in the case library, before matching.

CHAPTER 8. EVALUATION OF CABS 161

However once a solution proposa has been accepted, the service is known to be
transfer_call and so CABS could instantiate these variables and generate a test case with
less variables (CABS can handle variables if there is only one choice, then during the

verification of the test case, the variable is instantiated to the only possible value).

Refinements of class ¢ and d are often required because of missing facts in the initia state.
In the input examples, nodes are a conjunction of facts that are required to be true, and the
node denotes all states that have these facts true. When generating a test case, a proper start
state is required. Since nodes are expected to be predefined (often by some more
experienced requirements designer) and it is expected that input examples can be created by
selecting nodes from a set provided, the start node can often be (and is for the evaluation) so
well defined that it can be used as a start state for verifying test cases. If each casein the
case library has a proposed start state (or required facts for any a start state), for smulation
and testing, this could be merged with facts in the start node in the input example. If there are
contradictions it may be relevant to report these. Some variables that have been used in terms
occurring in nodes and links in the input example could be bound to constants and missing

facts could be added, reducing the need of refinements of type a, ¢ and d.

8.5.2 Conclusonsfor Verification

Generating test cases from input examples to verify that the behaviour of the test cases are
included in the solution, has been shown to enable the user to improve the standard of the
input examples and of cases that are under development. In most stuations, refinement of
input examplesistrivial and was usudly achieved by adding (or removing) aterm in a node or
link. The value of these automatically generated test cases is aso obvious if changes are
made in requirements or when new services are integrated with other services, since al
previous test cases can be re-evaluated in order to confirm that no accidental change of

behaviour in other services has occurred by integrating a new service in a communication

162 CHAPTER 8. EVALUATION OF CABS

system. This is a mgor issue in any specification of a large system that is modified and
extended.

8.6 Summary of Evaluation Results

CABS can, using input examples, identify similar cases and aso use the input examples to
identify differences between the behaviour outlined in the input examples and the sdlected
case. An improvement to the ranking of cases with the same number of matching links is
proposed: by using the ranking from the matching link and the transition rules, the ranking for
each case would better reflect the link/trangition rule match (this is a small extension). If
there is no matching case in the case library for an input example, the input examples can be
used as a starting point to construct a new case which is most likely to be more efficient than
formalising a service from scratch (although ro tests have been carried out on this). The
approach is also robust because it is not necessary for the solution to be the highest ranked as
the requirements designer can make the final selection from the proposed solutions. The test
cases generated from the input examples identified problems in both the input examples and

the cases in the case library, and so they proved to be of use.

8.7 Computational Time for the Match

One of the advantages of the CABS approach is that it has a fast matching algorithm
enabling the identification of similar behaviour. The matching is performed in two steps: firstly
al links in the input example are matched against al transition rules and then al cases are
ranked by inspecting their transition rules matching result and by making a ranking of each
case in the case library. It is expected that a common size of an input example contains 5-8
links. As described earlier matching of each link is based on comparing sets of terms. The
computational time used for thisis linear in the size of the sets. In the current case library the
number of termsin atransition rule is between 5 and 35 terms and a link has between 5 and
15 terms. Once the matching result is calculated, it is stored with the link (aranked list of the

best matching trandition rules for the link).

CHAPTER 8. EVALUATION OF CABS 163

Once all transition rules have been matched against al links, each case is matched against the
input example. This is done by taking dl transition rules belonging to a case and giving the
case a numerical value representing the number of trangtion rules that match with any link
from the input example. Hence matching and ranking al cases is a linear agorithm and
directly proportiona to the number of transition rules in the case, the number of casesin the
case library and the number of links in the input examples. This enables an implementation of
avery fast matching agorithm. For aredisticaly large case library, containing some hundred
cases and some thousand transition rules with an optimised implementation of the matching
agorithm, the response time, for matching an input example of norma size (5-8 links), could
be guaranteed to be below a second. Some time measurements where the time scale is
irrelevant® ensures that the prototype implementation performance is in accordance with the

matching algorithm (see Figure 8.4).

3 The implementation is made in an interpreted Prolog. Implementation has been made with no
efficiency considerations and an object oriented layer that at |east triples each access time to links,
cases and transition rules has been used. The Prolog used is written for the 68000 processor
emulated on a PowerPC. External interface to C++, efficient data storage available in LPAProlog and
partial compilation mode (this requires declaration of what parts of the program are static and what
parts are dynamic, which would take considerable time in a prototype system often changed and
modified) have not been used in the prototype implementation. A re-implementation of the matching
taking these factors into consideration and using a faster computer (5-10 times faster computers are
available) should be sufficient to increase the matching performance by two to three orders of

magnitude. Hence the fact that the time scale in the tests are seconds isirrelevant.

164 CHAPTER 8. EVALUATION OF CABS

totd mratching time

matching cases

time

4 //

3 /O//
e
2T ////? i
_ O~ 7 matching transition rules
//O—’

1T ’/

(F/
0T T T T T T T

1 2 3 4 5 6 7

number of links in input example

Figure 8.4: Matching time measurements, 32 cases, 225 transition rules

The variation reflect the different sizes of links, transition rules and cases. Some additiona

tests with different sizes of case libraries (smdler than 32 cases) showed that it is likely that

the tota matching time in the implementation also is linear to the size of the case library (ca.

4:1, every additiona case increases the time consumption with 0.26 time units for an average

sized input example, 68 links) in accordance with the matching algorithm. For more on

optimisation strategies for matching see [Althoff, Auriol, Barletta, Manago 95]

Chapter:

0. Further Work and Extensions

In this chapter, some suggestions and ideas for further work and extensions are given. They
are not presented in any particular order. Some of the proposals are minor implementation
issues, which would have been implemented in the CABS system if there had been more
time. Others may be seen as challenging ideas, maybe PhD projects in themselves, which |

wish to document in this context to ensure that they are not lost.
9.1 Using Iconsfor Termsand Situations

In the links and nodes, the names of the terms and arguments provide the main means for a
requirements designer to remember their meaning, which is informally described in the case
library. For an dternative representation, a suggestion is to use icons (experiments with use
of icons for telecommunications services have been made by [Preifet, Engstedt, 92]). Terms
or conjunctions of terms and nodes which are conjunctions of terms and links (which have the
originating node as preconditions and the terminating node as conclusions) could be assigned
icons. Figure 9.1 shows an idea of how alink could be represented by icons instead of terms,
nodes and links. The node all subscribers idle in Figure 4.1 is represented by the icon in the
upper right corner in Figure 9.1. When clicking on thisicon, a details window could be shown
(as exemplified in Figure 4.4 for the node a calling b). The next node, dial tone aisin the

middle right and the link is represented by an icon symbolising that the receiver is lifted. In the

165

166 CHAPTER 9. FURTHER WORK AND EXTENSIONS

bottom right corner is an icon representing the node a calling b and the link (stimulus didling)
connection the two nodes dial tone and a calling b is shown beside the arrow pointing to
this node. Choosing and designing icons would be highly application domain specific. If the
mapping is a direct mapping between sets of terms, links and nodes, adding such agraphical
representation is a matter of implementation (but with plenty of interesting possible extensions
and improvements that may be small or large research projects. graphica smulation where
the output from a simulation is presented in icons representing the terms may be one of the

larger ones).

LT7ON AN LA
mE\ /mE\ &

User a User b User ¢

Figure 9.1: Idea of graphical representation of terms/nodes/links

CHAPTER 9. FURTHER WORK AND EXTENSIONS 167
9.2 M apping Specification Against Design Objects

Most approaches to forma methods for specification have a weak connection between the
specification and the actual design. Usually the specification is used for guiding the design
and programming, at best the test cases are generated from the specification which may be

used in amethod to verify the implementation.

In large systems one of the main tasks is to update and modify the system (and hence the
corresponding requirements and specifications) to meet new demands. With the weak
connection between specification, design and program, the question arises of whether it is
worth the effort to keep the specification up to date with changes in the system. In industry,
requirements are not often maintained, which is sometimes suspected to be one of the
reasons, that some years after they are written, systems start to get more and more difficult

to modify and maintain.

By choosing the same formalism for the design of the different components and objects of
the design, and the specification, we may use this in a mapping process. Given a new or
modified specification we generate a design where we know which design components
corresponds to which part in the specification. If the complete specification can be mapped in
such a way that all parts of the specification correspond to design components and objects,

then we have a design which can be redised.

An even gtricter approach would be to only alow a specification with aready designed and

implemented components and objects™. If al the components and objects are aready

3 An analogy to this would be to let an architect only use a given set of ready made

symbols in the production of a plan for a building. These symbols correspond to pre-manufactured
components such as ready made walls, electricity and water pipes, floors with aready made finish, all
with a given specification. Contrast this with a plan where all walls, electricity, placing of windows

and water pipes have to be worked out uniquely for each design and the building has to be built with

168 CHAPTER 9. FURTHER WORK AND EXTENSIONS

implemented in software or hardware then there may not be any need for programming or
construction of new hardware. On a lower level, some integration and adaptation of the
objects and components may till be needed. Test cases (generated from specifications, in a
similar way as test cases are generated from input examples may be adopted by breadth first
expansion of possible stimuli/response sequences to a chosen depth) may be used to verify
that the implementation meets the requirements. An interesting question is whether it is
possble to map specifications onto Service Independent Building Blocks (Sib's), as
standardised and specified by the International Telecommunications Union (ITU) as part of
the Intelligent Network Recommendations. If terms in a specification could be mapped
againg functions in a functional language (such as the concurrent programming language
Erlang, [Armgtrong, Virding, Williams, 1993] which is used for implementing

telecommunications services), an implementation could be generated from a specification.

9.3 Using CABSfor Other Application Domains

Application domains which, for practica reasons, are too large for explicitly state based
approaches may be considered as potential application domains for CABS. If an application
domain has a fairly simple interaction with its environment, where the connection between
response and stimulus is not too complicated, but contains large numbers of states, and where
it is of vaue to explore in detail the behaviour to show that the system will have certain
properties and lack other properties, CABS may be considered. Also domains such as train
signaling systems, safety systems in cars, aeronautics, power plants, computerised medical

equipment (dialysis machines, scanners, etc.) may be potentia application domains.
931 Object Oriented System Specifications

A similar approach to CABS may be potentialy useful for requirements capture of software

objects in an object oriented system. In object oriented methods it is popular to include some

bricks and concrete by highly skilled craftsmen.

CHAPTER 9. FURTHER WORK AND EXTENSIONS 169

state based formalism describing behavioura requirements on objects. Each object would be
seen as having a closed behaviour. Stimuli and responses need to be classified as belonging to
the environment of the system, or as belonging to another object in the system. Structuring
the system in this way will result in some limitations in vaidation and verification, since CABS
does not incorporate the overal validation and verification of communicating objects (but the
formalised requirements in logic may be used in some theorem prover able to do validation
and verification of sets of communicating objects). If behavioural requirements used in object
oriented methods are smilar enough to the one used in CABS, smilar behaviour could be

identified.

9.4 Simulation with Connected Telephones

Simulation by providing stimuli sequences in order to explore the behaviour is useful in order
to explore a telecommunications service. If presenting the functiondity to customers, end
user or to evaluate a services popularity with telephone users before implementing the
service, a smulation with real end user equipment may be useful. An interface between the
smulation tool in CABS and telephones could be written. A number of phones could be
connected to a PC and then the service could be tried out before ordering it, if the receiver of
telephone a has been lifted, the stimulus off _hook(a,1) is sent to the simulator in CABS. The
response dia_tone(a) needs to be trandated by the telephone driver and a dial tone is sent.
Time response for smulation of the formalised services may be sufficient if a small number
of telephonesterminals are used (even if the smulator is fast, a couple of hundred

telephones/terminals is to be likely a maximum if response times must be below a second).

9.5 Adding a Theorem Prover to CABS

One of the benefits of using aformal notation for requirements specification is that it enables
the requirements designer to reason about the specification. This is the main advantage of a
logica formalism over many other specification and programming languages [Bundy 92]. The

kinds of reasoning we wish to do are:

170 CHAPTER 9. FURTHER WORK AND EXTENSIONS
Verification (whether the specification implements the required behaviour).
Synthesis (of specificationsinto a new specification).

Transformation (transform the specification into a representation using less memory and/or

time when simulated).

Termination (show that no deadlocks exists).

Abstraction (abstract information about the type of its input/output etc.).

Congstency checking (prove that there are no contradictory statements in the specification).

CABS partly tackles 1 (test cases), 4 (restriction in language, see Appendix A) and 6 (a
program identifying potentia inconsistency between trangition rules has been implemented,
but not integrated). Adding a theorem prover would greatly increase CABS abilities in these
areas. At the moment, there are a number of advanced theorem provers available that could

be used.

9.6 Analysing I nteraction Between Modules

As mentioned earlier, the condition and concluson part in transition rules can be cross-
referenced. This gives vauable information on relations between transition rules and cases.
For example, if a trandtion rule R1 belonging to case C1 has a conclusion term T and a
trangtion rule R2 belonging to case C2 has the term T as a condition, then we can conclude
that case C1 may influence the behaviour of case C2 in one step. More obvious analyses can
be made: for example, if aterm only occursin conclusions of trangtion rule, and is not used in
any condition part of a transition rule, then the conclusion of this term is redundant. A wide
variety of such analyses can be performed with straight forward cross-references between
trangtion rules. These may be helpful in the requirements capturing process and aid the

understanding of cases and their interactions, and relations.

CHAPTER 9. FURTHER WORK AND EXTENSIONS 171

9.7 Generating Code from State-Based Requirements

Statecharts [Harel, Naamad, 87] is part of a semi-automatic method that supports stepwise
refinement to produce C, Ada or VHDL code. Forma methods for requirements
specification and for program specification often have similarities, especialy if the
requirements specification is executable. Code is automatically generated from formal
gpecifications, such as RSML [Heimdahl, Keenan, 1997] and non-instantaneous state
transition assertions (NSA) [Gordon 86]. The code produced from RSML is 510 times
dower than manually produced code from the state machines but if the transformations
producing the code are correctness preserving, the code will have the same properties as the
specification. Since both Statecharts and RSML reduce the complexity of large state
trangtion diagrams by using substates, and if substates and CABS terms in transition rules
can be mapped onto these, the approaches may potertidly be combined. If combined, RSML,
NSA and Statecharts would be able to apply a CABS approach to re-use and CABS would
benefit from generating code from requirements. The same reasoning may be relevant for
UML (Rumbaugh, Booch and Jacobson), OOA (Shlaer-Méllor) and JSD (M. Jackson) which
al have graphica notations and may be extended with a re-use approach based on similar

behaviour (an object with smilar behaviour could be identified and proposed for re-use).

9.8 Re-Use of System Development Processes

Ericsson has a large number of detailed descriptions of system development processes that
have been tailored for different projects (hardware and software) and to meet specific
requirements (1ISO 9000, toll-gates, milestones, well specific input/output information for
different process steps). The processes are currently stored smply as pictures and text. A
preliminary analysis of these processes suggests that the formal notation used in CABS might
be used to describe them. It might then be possible to identify similar processes or parts of
processes that can be re-used. Identifying similarities and differences can also be used to

compare the solution processes to some master or standard process to identify and point out

172 CHAPTER 9. FURTHER WORK AND EXTENSIONS

differences and suggest improvements. This possibility is being investigated with Ericsson and

QLabs.

9.9 Re-Use of SDL

Re-use of SDL (se Section 2.4) diagrams form previous program implementations. SDL is
more expressive than the formal notation used in CABS. Even so the graphica parts may be
used as a skeleton for re-use and the forma notation in CABS may be extended to be more
expressive. Since SDL is a graphica programming language that is being used more widely
and outside traditional telecommunications gpplications, identification of smilar behaviour in

SDL diagramsisinteresting.

Chapter:

10. Summary and Conclusions

As described in Chapter 1, forma notations can be used to formalise coarse grained tele-
communications service requirements a a high level of abstraction. Forma methods for re-
quirements have a number of advantages over informa methods, as discussed in Chapter 2.1
and 2.2. Even so, forma methods are not routinely used for telecommunications service re-
quirements specifications. Previous research projects by Ericsson aiming at the use of forma
requirements for service specifications suggest that the main reasons for thisis that a number

of issues have not been sufficiently addressed and solved (repeated from Section 1.1.1):

Re-use and modification of previoudy specified services or parts of services. The most
frequent dtuation in the domain of telecommunications service specifications is the

specification of services similar to previous ones.

The issue of iteratively refining and incrementally extending requirements that were originally

sketchy, incomplete and contained errors.

End users with background in systems design and programming did not accept the idea of
using the forma notation to specify services a Ericsson. Their interest in forma methods
was high until they where confronted with logical axioms. Even showing dides with logical or

mathematical notations drastically reduced any interest shown earlier.

173

174 CHAPTER 10. SUMMARY AND CONCLUSIONS

These factors contributed to the cancellation of a large forma methods project and currently
there is no active work at Ericsson to bring forma methods to broader use in requirements

specifications for telecommunications services.

10.1 Summary of Work

In this research, the main focus is on issue 1 in the previous list and a different use of formal
methods for requirements specification is proposed. Traditionaly, state based forma methods
for requirements specifications are used to describe the precise behaviour of al the
requirements. This detailed moddling is difficult for more redidically sized problems.
However, formal “sketches’ of the required behaviours can be produced. The formalised
service sketches are not intended to capture all the required behaviour and exclude al the
unwanted behaviour, but are merely intended to sketch the key features of the behaviour
required. These features are used to identify and suggest similar existing services in a case-

based reasoning approach.

The similar services proposed may be adapted to the users needs and can be validated and
verified againg the initid service sketches. The chosen application domain of
telecommunications services is non-trivial and seventeen services often used in evaluation of
service specifications have been specified and used in the evaluation. Matching is the core
component of a case based reasoning system and has been the main focus of this research.
In order to evauate the matching, subsidiary components for the CBR system have been
implemented: a graphical input editor where input examples can be produced and refined, a
smulator to smulate the proposed and chosen solution and a verification component that
generates test cases from the input example and verifies that the final solution contains this
behaviour. The matching component and these subsidiary components have been
implemented in the CABS system enabling the user to sketch desired behaviours of a
telecommunications service, for which the CBR system proposes similar solutions from the
case library that may be re-used in whole or in part. The input examples and the

simulator/verification component are used to evaluate the matching algorithm. See Figure 3.1

CHAPTER 10. SUMMARY AND CONCLUSIONS 175

for the different parts in CABS. Both the matching and the re-use of test cases have been

put in context with an iterative requirements development method as shown in Figure 7.1.

CABS performs matching on two levels. Firstly each link in the input examples with the
corresponding originating and terminating node are trandated to transition rules which will

only be used for matching. These input trangition rules are then matched against al transition
rules in the case library to identify transition rules that capture “similar” behaviour as defined
in Chapter 6. Trangtion rules in the case library are grouped in services and the result from
the transition rule matching is used to identify which of the servicesin the case library have a
smilar behaviour to the input examples. To evaluate the matching, a case library with
seventeen services and twenty-one input examples of services have been used. All the input
examples were very rudimentary and only captured a coarse grained sketch of a small part of
the total behaviour of the corresponding service in the case library. Even so, the matching
successfully identified the corresponding services (including some where the input example

and service did not captured exactly the same behaviour) as evaluated in Chapter 8.

To test the proposed solution, the input examples were used to generate test cases which
were automaticaly tested against the selected service with a batch mode of the simulator.
Since the solution was known to each input example, no problems were expected in the
verification, but more than haf of the test cases did not pass. By anaysing these, a number of
mistakes were found in the input examples and in services in the case library, which shows
that the verification process was useful under these circumstances. So many errors in the
case library would not be expected under real conditions since al the services in the case
library would already have been successfully integrated and fully implemented, and many

mistakes should have been corrected during this process.

Input examples and test cases also play a rde when completely new services have to be
specified and there is no similar service in the case library. The input examples are trandated
to a set of transition rules when used in the matching, and these transition rules can be used

as the starting point for a new service. During refinement of the new service, the test cases

176 CHAPTER 10. SUMMARY AND CONCLUSIONS

will identify where the service differs from the input examples, and the requirements designer

has to either change the input examples or the service requirements.

10.2 Limitations

The forma notation used in CABS is constrained to suit a particular (efficient) matching
drategy and visudisation, in this sense its smplicity is a virtue. However its limited
expressiveness makes CABS unsuitable for more complex behaviour including concurrency,
timing constraints, communicating processes and simultaneously occurring events, which
would have been possible if a more expressive formal notation had been chosen (for example

Petri nets).

If requirements specifications and formal methods are used for tasks where new
requirements bear little similarity to previous requirements, more traditiond use of formal

methods may be preferred, i.e. mathematicians develop the formal requirements directly in a
suitable forma notion using logic or agebraic notation. The proposed method is aimed at
applications where re-use and modification are central issues. Using a system such as CABS
would be unnecessarily limiting for problems where re-use and modification of specification is

|ess relevant.

10.3 Future Work

This research will be continued by identifying commercialy interesting areas where
identification of similar behaviour is of value and where a case library with formalised cases
exists or can easily be produced. By producing prototypes for this new application domain,

further insights to the problem of identifying smilar behaviour will be achieved.

The hope is that this result can be transferred to other application domains where comparison
and re-using of smilar behaviour is relevant. Some potential gpplication domains where the
identification of smilar behaviour is of interest have adready been identified: re-use of system
development processes and re-use of SDL diagrams (SDL is briefly described in Section 2.4)
as mentioned briefly in Section 9.8 and 9.9,

BIBLIOGRAPHY 177

11. Bibliography

Aamodt A. (1993). A Case-Based Answer to Some Problems of Knowledge-Based
Systems. Scandinavian Conference on Artificia Intelligence. E. Sandewall, C.G. Jansson

(eds)), 10S Press, pp 168-182.

Aamodt A., Plaza E. (1994). Case-Based Reasoning: Foundational Issues,
Methodological Variations, and System Approaches. Al Communications, val 7 no. 1,

pp 39-50,

Acharya A. (1994). Scaling up production systems: |ssues approaches and targets. The

Knowledge Engineering Review, vol 9:1, pp 67-72.

Addis T.R. (1993). Knowledge Science: A Pragmatic Approach to Research in Expert

Systems. ESO3, pp 321-339.

Addis T.R., Gooding D.C., Townsend JJ. (1993). Knowledge Acquisition with Visual
Functional Programming. Knowledge Acquisition for Knowledge Based Systems, 7th

European Workshop, EKAW ‘93, Lecture Notesin Al 723, Springer Verlag, pp 379-406.

178 BIBLIOGRAPHY

Allen JF. (1983). Maintaining Knowledge about Temporal Intervals. Communication of

the ACM, November, vol 26, Nr 11, pp 832-843.

Althoff K.-D., Auriol E., Barletta R., Manago M. (1995). A Review of Industrial Case-

Based Reasoning Talls. Al Intelligence, Oxford.

Armstrong J.L., Elshiewy N.A., Virding R. (1986). The Phoning Philosopher’s Problem or

Logic Programming for Telecommunications Applications. |EEE, pp 28-33

Ask G. (1994). Delphi-generated TTCN Test Suites- usage in certification. Internal

Document JT/V-94:247, Ericsson, Sweden.

Ahtianen A., Chatras B., Hornbeck M., Kesti S. (1994). Experience With Octopus
Automated TTCN Translation Tools Applied to GSM/SS/. In protocol Test Systems, vol

V1, Elsevier Science.

Atkinson W., Cunningham J. (1990). Proving Properties of a safety-critical system.

Imperial College Research Report Soc 90/28.

Bardasz T., Zeid 1. (1992). Dejavu: A Case-Based Reasoning Designer’s Assistant Shell.
Artificia Intdligence in Design ‘92, J.S. Gero (ed.), Kluwer Academic Publishers, pp 477-

49%6.

Barroca L.M., McDermid JA. (1992). Formal Methods: Use and Relevance for the
Development of Safety-Critical Systems. The Computer Journal, vol 35, No 6, pp 579-

599.

BIBLIOGRAPHY 179

BernrAbdalah H., Leue S. (1996). Architecture of a Requirements and Design Tool Based

on Message Sequence Charts. Technical Report 96-13, University of Waterloo, pp 1-19.

Borgida A., Greenspann S., Mylopoulus J. (1985). Knowledge Representation as the Basis

for Requirements Specification. IEEE Computer, April.

Bose R. (1994). Strategy for integrating object-oriented and logic programming.

Knowledge-Based Systems, vol 7, number 2, pp 66-74.

Bowen J.P., Hinchey M.G. (1996). Seven More Myths of Formal Methods. To appear in

|EEE Software, pp 1-12.

Brandau R., Lemmon A., Lafond C. (1991). Experience with Extended Episodes:. Cases
with Complex Temporal Structure. Workshop on case-based reasoning, Morgan

Kaufmann, pp 1-12.

Bubenko JA. jr. (1995). Challenges in Requirements Engineering. Invited tak in

Proceedings of |1EEE International Symposium on Requirements Engineering, pp 160-162.

Buchanan B.G., Shortliffe E.H. (1984). Rule Based Expert Systems. The MYCIN

Experiments of the Stanford Heuristic Programming Project. Addison-Wedey.

Bundy A. (1992). Tutorial notes: reasoning about logic programs. Second International
Logic Programming Summer School, LPSS '92. Proceedings, G. Comyn, N.E. Fuchs, &

M.J. Ratcliffe (eds.), Springer-Verlag, pp 232-277.

180 BIBLIOGRAPHY

Callan JP., Fawcett T.E., Risdand E.L., CABOT (1991). An Adaptive Approach to Case-
based Search. Proceedings of the Twelfth International Conference on Artificia

Intelligence.

Cameron E.J., Vdthuijsen H. (1993). Feature Interactions in Telecommunications

Systems. |EEE Communication, August, pp 18-23.

Capellmann C., Chrigtensen S,, Herzog U. (1998). Visualising the Behaviour of Intelligent
Networks. Visua ‘98, Internationa Workshop on Visuaisation Issues for Forma Methods,

ed. Margaria T, Posegga J.

Cldand G., MacKenzie D. (1995). Inhibiting Factors, Market Structure and the
Industrial Uptake of Formal Methods. in Industrid Strength Forma Specification

Techniques, Folorida, pp 46-60.

Cohn, A. G. (1985). On the Solution of Schubert’s Steamroller in Many Sorted Logic.

1JCAI, pp 1169-1174.

Cummins R. (1989). Meaning and menta representation, MIT Press, Bradford Books.

Cybulski JL. (1996). The Formal and the Informal in Requirements Engineering.
Workshop on Requirements Engineering, Monash University, Caulfield, Victoria, Austrdia,

pp 2.1-17.

Ddlianis H. (1995). Concise Naturad Language Generation from Formal Specifications,
Taxonomic Representation. PhD thesis, University of Stockholm, The Roya Ingtitute of

Technology.

BIBLIOGRAPHY 181

Davis E. (1990). Representations of Commonsense Knowledge, chapters 2 and 3. Morgan

Kaufmann.

Domeshek E.A., Kolodner J. (1992). Toward a Case-Based Aid for Conceptual Design.

Internationa Journa of Expert Systems, vol 4, Number 2, pp 201-220.

Easterbrook S., Nuseilbeh B. (1995). Managing Inconsistencies in an Evolving

Specification. |EEE, pp 1-48.

Eberlein A.P.-G., Crowther M.J.,, Halsall F. (1996a8). RATS A Software Tool To Aid The

Transition From Service Idea To Service Implementation.

Eberlein A.P.-G., Crowther M.J, Hadsadl F. (1996b). An Expert System For The

Development Of New Telecommunications Services.

Echarti J.P., StAmarck G. (1988). A logical framework for specifying discrete dynamic

systems. Technical Report, Ellemtel Telecommunications System Laboratories.

Engstedt M. (1991). A Flexible Specification Language using Natural Language and

Graphics. MSc thesis, University of Edinburgh.

Evertsz R. (1991). The Automated Analysis of Rule-based Systems, Based on their
Procedural Semantics. Proceedings of the Twelfth International Conference on Artificia

Intelligence.

Fencott P.C., Lockyer M.A., Taylor P. (1992). The Integration of Structured and Formal

Methods for Real-Time Systems Specification. Proceedings: 5th International Conference

182 BIBLIOGRAPHY

on: Putting into practice method and tools for information system design, France,

September, pp 313-323.

Fouqué G., Matwin S. (1993). Compositional Software Reuse with Case-Based

Reasoning. Conference on Artificia Intelligence Applications 1993, |EEE, Florida

Fuchs N., Schwitter R. (1995). Specifying Logic Programs in Controlled Natural
Language. Workshop on Computational Logic for Natura Language Processing,

Edinburgh.

Funk P.J. (1988). Induction of Automata via Rules from Situation Sequences. Technica

Paper, University of Stockholm and Ellemtel Telecommunications System Laboratories.

Funk P.J. (1993). Development and Maintenance of Large Formal Specifications

Supported by Case-Based Reasoning. Technical Paper TP026, University of Edinburgh.

Funk P.J., Raichman S. (1990). ROS, An Implementation Independent Specification for

ISDN. Technical Report, Ellemtel Telecommunications System Laboratories,.

Funk P.J., Robertson D. (1994). Requirements Specification of Telecommunications
Services Assisted by Case-Based Reasoning. The 2nd International Conference on

Telecommunications Systems, Modelling and Analysis, Nashville, pp 160-169.

Gdfond M., Lifschitz V. (1993). Representing action and change by logic programs.

Logic Programming, pp 301-321.

BIBLIOGRAPHY 183

Goted O.C.Z, Finkelstein A.C.W, (1994). An Analysis of the Requirements Tractability
Problem. Proceedings: International Conference on Requirements Engineering IEEE, pp

94-101.

God A K. (1992). Representation of Design Functions in Experience-Based Design.

Intelligent Computer Aided Design, Elsevier Science Publishers, pp 283-303.

Gordon M. (1986). A Formal Method for Hard Real-Time Programming. pp 379-410.

Grahlmann B. (1991). Combining Finite Automata, Parallel Programs and SDL using

Petri Nets. TACAS 98, pp 1-16.

Heimdahl M.P.E., Leveson N.G. (1995). Completeness and Consistency Analysis of Sate-

Based Requirements. ACM 95/1 pp 3-14.

Hall A. (1990). Seven Myths of Formal Methods. IEEE Software, pp 11-19, September.

Harel D. (1987). Satecharts: A Visual Formalism For Complex Systems. Science of

Computer Programming 8, pp 231-274, Elsevier Science Publishers.

Harel D., Lachover H., Naamad A., Pnudi A., Politi M., Sherman R., Shtull-Trauring A.,
Trakhtenbrot M, (1990). STATEMATE: A Working Environment for the Development

of Complex Reactive Systems. IEEE Transaction on Software Engineering, vol 16, no 4.

Harel D., Naamad. A. (1995). The STATEMATE semantics of Statecharts. Technica

Report CS95-31, The Weizman Institute of Science.

184 BIBLIOGRAPHY

Hayes P. (1985). Some Problems and Non-Problems in Representation Theory. in

Readings In Knowledge Representation, Morgan Kaufmann Publishers Inc, pp 3-22.

Hesketh J., Robertson D., Fuchs N., Bundy A. (1996). Lightweight Formalisation in

Support of Requirements Engineering. University of Edinburgh.

Hinchey M.G. (1993). The Design of Real-Time Applications. pp 178-182, IEEE.

Hirakawa M., Monden N., Yoshimoto |., Tanaka M., Ichikawa T. (1986). Hi-Visud, A
Language Supporting Visual Interaction in Programming. in Visual Languages, Chang
S, Ichikawa T., Ligomenides P. (eds.), Management and Information Systems Plenum

Press, pp 233-259.

Holzmann G.J., Peled D. (1994). An Improvement in Formal Verification. FORTE 1994

Conference, Switzerland. pp 1-12.

Hsa P., Davis A., Kung D. (1993). Satus Report: Requirements Engineering. IEEE

Software, November, pp 75-79.

Hughes T.S., Cooling JE. (1991). Real-Time Systems - Animation Prototyping of Formal
Specifications. in Third International Conference on Software Engineering for Real Time

Systems, Loughbourgh University, pp 51-57.

Hunt J. (1997). Case based diagnosis and repais of software faults. Expert Systems, vol

14,no 1, pp 15-23.

BIBLIOGRAPHY 185

ITU 1.254 Recommendation CCITT 1.254 (1992). Integrated Service Digitad Network,
Generd Structure and Service Capabilities, International Telecommunications Union,

Geneva, Swizerland.

ITU Z.100 Recommendation CCITT Z.100 (1994). CCITT Specification and Design

Language (SDL). Internationa Telecommunications Union, Geneva, Swizerland.

ITU X.21x Recommendation CCITT X.21x (1995). Service Definitions. Internationa

Telecommunications Union, Geneva, Swizerland.

ITU Q.1203, Recommendation CCITT Q.1203 (1992). International Telecommunications

Union, Geneva, Swizerland.

Jackson P. (1990). Introduction to Expert systems, Addison-Wedley.

Jacobson 1., Christerson M., Jonsson P., Overgaard G. (1993). Object-Oriented Software

Engineering, A Use Case Driven Approach. Addison Wesley.

Jensen K. (1992). Coloured Petri Nets, Basic Concepts, Vol 1, Springer-Verlag.

Jensen K. (1997). Coloured Petri Nets, Practical Use, Vol 3, Springer-Verlag.

Johannesson P., Boman M., Bubenko J., Wangler B. (1997). Conceptual Modelling, Prentice

Hall.

Johnson W.L. (1988). Deriving Specifications from Requirements. IEEE, pp 428-438.

Johnson W.L., Brenner K.M, (1993). Developing Formal Specifications from Informal

Requirements. |IEEE Expert, vol 8, no. 4.

186 BIBLIOGRAPHY

Johnson W.L., Brenner K.M, Harris D.R., Sanders, (1993). Developing Formal

Specifications from Informal Requirements. |EEE Expert, August, pp 82-90.

Karjoth G., Kooij M. (1992). Formal Methods for the Implementation of Specifications.

pp 841-8%0.

Kelly V.E., Nonnenmann U. (1987). Inferring Formal Software Specifications from

Episodic Descriptions. Sixth Nationa Conference on Artificia Intelligence.

Kelly V.E., Nonnenmann U. (1991). Reducing the Complexity of Formal Specification

Acquisition. Automating Software Design, M. Lowry, & R. McCartney (eds.), pp 41-64.

Ketler K. (1993). Case-Based Reasoning: An Introduction. Expert Systems With

Applications, vol 6, pp 3-8.

Klusener S, Vlijmen B., Waveren A. (1993). Service Independent Building BlocksH;
Concepts, Examples and Formal Specifications. Technical Report P9310, University of

Amsterdam,.

Kolodner J. (1991). Improving Human Decision Making through Case-Based Decision

Aiding. Al Magazine, Summer, pp 52-68.

Kolodner J.L. (1993). Case-Based Reasoning. Morgan Kaufmann.

Kowalski R., Sergot M. (1986). A Logic-based Calculus of Events. New Generation

Computing 4, Springer-Verla, pp 67-95.

BIBLIOGRAPHY 187

Larkin JH., Simon H.A. (1987). Why a Diagram is (Sometimes) Worth Ten Thousand

Words. Journd: Cognetive Science, vol 11, pp 65-99.

Lecceuche R., Robertson D., Barry C. (1998). Acquisition of Focus Rules for

Requirements Elicitation Systems. Submittet to ECAI 98.

Leue S. (1995). Specifying Real-Time Requirements for SDL Specifications - A Temporal
Logic-Based Approach. Proceedings of the Fifteenth International Symposium on Protocol

Specification, Testing, and Verification PSTV'95, Chapmann & Hall, pp 19-34.

Luger G.F., Stubblefidd W.A. (1989). Artificid Intelligence and the Design of Expert

Systems, Benjamin/Cummings Publishing.

Maiden N.A.M., Mistry P., Sutcliffe A.G. (1995). How People Categorise Requirements
for Reuse: a Natural Approach. Proceedings of Second |IEEE Internationa Symposium

on Requirements Engineering, pp 148-155.

Maiden N.A.M., Sutcliffe A.G. (1995). Requirements Engineering by Example: an
Empirical Study. Proceedings of IEEE International Symposum on Requirements

Engineering, pp 104-111.

Malec J. (1992).Process Transition Networks: The Final Report. Technical Report LiTH-

IDA-R-92-07, Link6ping Univerdty, pp 1-31.

Mark M., Greer J. (1993). Evaluation Methodologies for intelligent Tutoring Systems.

Journa of Artificid intelligence in Education, vol4. no 2/3, pp 129-153.

Mataga P., Zave P. (1993). Formal Specifications of Telephone Features. pp 20-49.

188 BIBLIOGRAPHY

Mizuno O., Niitsu Y, A Method of Designing Communication Service Specifications
Using Message Sequence Charts. Electronics and Communications in Japan, Part 1, vol

76, pp 1-15.

Moor D.J.,, Swartout W.R. (1988). Explanation in expert systems. a survey. Research

Report ISIRR, University of Southern California, pp 88-228.

Mostow J., Barley M., Weinrich T. (1989). Automated reuse of design plans. Artificia

Intelligence in Engineering, val 4, no. 4, pp 181-196.

Mott S. (1993). Case-Based Reasoning: Market, Applications, and Fit With Other

Technologies. Expert Systems With Applications, vol 6, pp 97-104, Pergamon Press Ltd.

Muggleton S.,(1990). Inductive Acquisition of Expert Knowledge, Turing Ingtitute Press and

Addison-Wesley.

Nakata K. (1992). Behavioural Specification with Nonmonotonic Temporal Logic. D.
Finn (ed.) Preiminary Stages of Engineering Analysis and Modelling Workshop, AID '92,

pp 41-45.

Nakatani Y., Tsukiyama M., Fukuda T. (1992). Engineering Design Support Framework by

Case-Based Reasoning. 1SA Transaction, vol 31, no. 2, pp 235-180.

Nonnenmann U., Eddy JK. (1992). KITSS - A functional Software Testing System Using

a Hybrid Domain Model. IEEE, pp 136-142.

Nystrom J. H., Jonsson B. (1996). Formalization of Service Independent Building Blocks.

AIN’96 workshop, Passau. pp 1-14.

BIBLIOGRAPHY 189

O'Leary D. (1993). Verification and Validation of Case-Based System. Expert Systems

With Applications, vol 6, Pergamon Press Ltd, pp 57-66.

Pearce M., Godl A K., Kolodner JL., Smring C., Sentosa L., Billington R. (1992). Case-

Based Design Support. |EEE, October, pp 14-20.

Pohl K. (1994). The Three Dimensions of Requirements Engineering: A Framework and

its Applications. Information Systems, vol 19, no 3, pp 243-258.

Preifelt S, Engstedt M. (1992). Results from the VINST Project. In Swedish. Technical

Report, Ellemtel Telecommunications Systems L aboratories.

Quinlan JR. (1987). Generating Production Rules From Decision Trees. Proceedings of

the Tenth International Joint Conference in Al, Morgan Kaufmann Publisher.

Regensburger F., Barnard A. (1998). Formal verification of SDL systems at the Semens

mobile phone department. TACAS 98, pp 439-455.

Ridey G.A. (1994). Description of TTCN Test Suite Generation from AUC Delphi

Specification. Interna Document F94 2194, Ericsson, Sweden.

Ridey G.A., Ho6k H., Engstedt M., Lapins E., Lindroos L. (1997). Forma specification

system ECLARE. Internal Document UR97, Ericsson, Sweden.

Riesbeck C., Schank R. (1989). Inside Case-Based Reasoning, Lawrence Erlbaum Inc.

Robertson D. (1996). Distributed Specifications. ECAl 96, 12th European Conference on

Artificia Intelligence, Budapest, Hungary, John Wiley & Sons Ltd, pp 390-3%4.

190 BIBLIOGRAPHY

Robertson D., Agusti J. (1998). Automated Reasoning in Conceptua Modelling, draft book,

available from the authors at DAI Edinburgh.

Sandewall E. (1990). Proposal for a ProArt specification platform. Technical Report

LAIC-IDA-90-TR18, Linkdping University.

Segala R., Gawlick R., Sggaard-Andersen J., Lynch N. (1998). Liveness in Timed and

Untimed Systems. Submitted for journa publication. Available from the authors. pp 1-52.

Schofidld M. (1992). Formal Methods: The Next Generation of System Design Tools.

Quality and Reliahility Engineering Internationd. vol 8, pp 549-555.

Semmens L.T., France R.B., Docker T.W.G. (1992). Integrated Structured Analysis and

Formal Specification Techniques. The Computer Journd, vol 35, No 6, pp 600-610.

Simon H.A. (1981). The Sciences of the Artificial, The MIT Press 1969, Massachusetts,

Second edition reprint.

Skoglund N. (1993). Systemhantering med regler. In Swedish, Internal Document, Ellemtel

Telecommunications System Laboratories.

Smyth B., Keane M.T. (1994). Retrieving Adaptable Cases. In: S. Wess, K.-D. Althoff, &

M.M. Richter (eds.), Topics in Case-Based Reasoning, Springer-Verlag.

Sommerville l. (1996). Software Engineering, fifth edition part one & five, Addison Wedey.

BIBLIOGRAPHY 191

Sycara K.P., Navinchandra D., Guttal R., Koning J., Narasmhan S. (1992). CADET: A
Case-Based Synthesis Tool for Engineering Design. International Journa of Expert

Systems, val 4, no. 2, pp 167-188.

Uschold M. (1996). Building Ontologies: Towards a Unified Methodology. Proceedings

of Expert Systems 1996, Cambridge, UK.

Vargas-Vera M., Robertson D., Inder R. (1993). An Environment for Combining Prolog
Programs. In Third International Workshop on Logical Program Synthesis and

Transformation.

Verpers K. (1991). Induction of rules from Behavioural Sequences (in Swedish). M.Sc.

dissertation, Royd Indtitute of Technology, Stockholm, Sweden.

Watanabe L., Rendell L. (1991). Learning Structural Decison Trees from Examples.

Proceedings of the Twelfth International Conference on Artificial Intelligence.

Watson 1. (1997). Applying Case-Based Reasoning: Techniques for Enterprise Systems,

Morgan Kaufmann.

Wenger E. (1987). Artificial Intelligence and Tutoring Systems (Computationa and Cognitive
Approaches to the Communication of Knowledge), pp 261-288. Morgan Kaufmann

Publishers, Inc.

Wieringa R.J. (1996). Requirements engineering: Framework for understanding. John Wiley

& Sons Ltd, Chichesters.

192 BIBLIOGRAPHY

Wringa R., Dubois E. and Huyts S. (1997). Integraing Semiforma and Formal
Requirements. Proceedings of the Ninth International Conference on Advance Information

Systems Engineering (CAISE’ 97), Barcelona, Spain.

Wing JM. (1990). A specifier’sintroduction to Forma Methods. Computer, vol 23. pp 8-24.

Yang S.-A., Robertson D., Lee J. (1995). Use of Case-Based Reasoning in the Domain of

Building Regulations. Topicsin Case-Based Reasoning, Springer-Verlag, pp 292-306.

Zave P. (1991). An Insider's Evauation of PAISLey. IEEE Transaction on Software

Engineering, val 17, no. 3. March.

Zave P. (1993). Feature Interactions and Forma Specifications in Telecommunications.

Computer, vol 26, no. 8.

Zave P., Jackson M. (1996). Four Dark Corners of Requirements Engineering. ACM pp 1-

3A.

