
On the Mutability of Protocols

Jarred P. McGinnis
T

H
E

U N I V E R S

I
T

Y

O
F

E
D I N B U

R
G

H

Doctor of Philosophy

Centre for Intelligent Systems and Applications

School of Informatics

University of Edinburgh

2006

Abstract

The task of developing a framework for which agents can communicate reliably and

flexibly in open systems is not trivial. This thesis addresses the dichotomy between

reliable communication and facilitating the autonomy of agents to create more flexible

and emergent interactions. By the introduction of adaptations to a distributed proto-

col language, agents benefit from the ability to communicate interaction protocols to

elucidate the social norms (thus creating more reliable communication). Yet, this ap-

proach also provides the functionality for the agent to unilaterally introduce new paths

for the conversation to explore unforeseen opportunities and options (thus restoring

more autonomy than possible with static protocols).

The foundation of this work is Lightweight Coordination Calculus (LCC). LCC is

a distributed protocol language and framework in which agents coordinate their own

interactions by their message passing activities. In order to ensure that adaptations

to the protocols are done in a reasonable way, we examine the use of two models of

communication to guide any transformations to the protocols. We describe the use

of FIPA’s ACL and ultimately its unsuitability for this approach as well as the more

fecund task of implementing dialogue games, an model of argumentation, as dynamic

protocols.

The existing attempts to develop a model that can encompass the gulf between re-

liability and autonomy in communication have had varying degrees of success. It is

the purpose of the research described in this thesis to develop an alloy of the various

models, by the introduction of dynamic and distributed protocols, to develop a frame-

work stronger than its constituents. Though this is successful, the derivations of the

protocols can be difficult to reconstruct. To this end, this thesis also describes a method

of protocol synthesis inspired by models of human communication that can express the

dialogues created by the previous approaches but also have a fully accountable path of

construction. Not only does this thesis explore a unique and novel approach to agent

communication, it is grounded in a practical implementation.

iii

Acknowledgements

Nothing of worth is created inside a vacuum. The worth of this document has yet to

be determined but if there is any success and insight found within, the responsibility

of its creation cannot be mine alone. There are numerous people who have given me

assistance in its creation: from friends and acquaintances who during casual chats

unintentionally sparked some new idea, to my supervisors who have patiently guided

me through the PhD process.

I fear any enumeration of the people who deserve acknowledgement will inevitably

be incomplete. Yet, two individuals have made a huge impact upon the completion of

this thesis by their, for lack of a better phrase, academic midwifery. David Robertson

and Chris Walton have been the best supervisors both in wisdom and temperament.

To all my fellow research students, especially the men of the four one five, who

have at one time dotted my i’s and crossed my t’s as well as paused their own work so

that I could discuss with them my own.

I would like also thank my family for the continual support that I have received

throughout my education. It is my family who is most responsible for enabling me to

complete my undergraduate degree and providing me with the opportunity to strive for

the goal to which this thesis is a testament.

I sincerely thank all of you.

v

Declaration

I declare that this thesis was composed by myself, that the work contained herein is

my own except where explicitly stated otherwise in the text, and that this work has not

been submitted for any other degree or professional qualification except as specified.

(Jarred P. McGinnis)

vi

Publications

Through out the course of this degree, I have taken advantage of the immeasurably

helpful input provided by the peer review system. Most of the ideas developed in this

thesis have been presented or published for a number of conferences and workshops.

• McGinnis, J., Robertson, D., and Walton, C. (2006). Protocol synthesis with

dialogue structure theory. Invited Paper in Maudet, N., Moraitis, P., Rahwan, I.,

and Parsons, S., editors, Argumentation in Multi-Agent Systems: Second Inter-

national Workshop, ArgMAS 2005, LNAI. Springer-Verlag, Utrecht, The Nether-

lands.

• McGinnis, J., Robertson, D., and Walton, C. (2005). Protocol synthesis with

dialogue structure theory. In Proceedings of the International Conference for

Autonomous Agents and Multi-Agent Systems, AAMAS, pages 13291330

• Chesnevar, M. C. C., McGinnis, J., Rahwan, I., Reed, C., Modgil, S., Simari,

G., South, M., Vreeswijk, G., and Willmott, S. (2005). Aif: Argumentation

interchange format strawman model. Technical report, Agentlink.

• McGinnis, J., Robertson, D., and Walton, C. (2005). Protocol synthesis with

dialogue structure theory. In Proceedings of Proceedings of the European Union

Multiagent Systems Workshop, 2005.

• McGinnis, J. and Robertson, D. (2004b). Realizing agent dialogues with dis-

tributed protocols. In Developments in Agent Communication, volume 3396 of

LNAI. Springer-Verlag.

• McGinnis, J. and Robertson, D. (2004). Dynamic and distributed interaction

protocols. In Proceedings of the AISB 2004 Convention, pages 4554.

• Brak R., Fleuriot J. and McGinnis, J., Theorem proving for protocol languages,

Proceedings of the European Union Multiagent Systems Workshop, 2004.

vii

• McGinnis, J., Robertson, D., and Walton, C. (2003). Using distributed protocols

as an implementation of dialogue games. Presented EUMAS 2003.

viii

To S.

ix

Table of Contents

1 Introduction 1

1.1 Agent Communication . 2

1.1.1 Approaches to Agent Communication 3

1.1.2 Agent Communication and Content Languages 4

1.2 Motivation, Hypothesises and Aims 6

1.2.1 Novel Means of Communication 6

1.2.2 Exploit LCC to Communicate Social Models 7

1.2.3 Allow ‘Truly’ Heterogeneous Agents to Communicate 7

1.2.4 Bridging the Two Cultures of Agent Communication 8

1.2.5 What I am Not Trying to do 9

1.3 Thesis Outline . 10

2 The Current Landscape of Agent Communication 11

2.1 Electronic Institutions . 12

2.1.1 Islander and Ameli . 13

2.1.2 Others . 15

2.2 Distributed Protocols . 16

2.2.1 The Melbourne Strain . 17

2.2.2 The Portuguese Approach 18

2.3 Mentalistic Approaches . 19

2.3.1 KQML . 19

xi

2.3.2 FIPA ACL . 22

2.4 Social Approaches . 24

2.5 Rationalistic Approaches . 26

2.5.1 Dialogue Games . 28

2.6 Summation and Analysis . 31

3 The Lightweight Coordination Calculus(LCC) 33

3.1 Syntax . 35

3.2 Expansion Engine and Framework 37

3.3 Agent Engineering Requirements . 41

3.4 An Example . 42

3.5 Chapter Summary . 44

4 Realising Dynamic Protocols with LCC 47

4.1 Communicating FIPA Semantics . 48

4.1.1 Problems of FIPA . 49

4.1.2 FIPA Communicative Acts as Protocols 50

4.2 Dialogue Games . 59

4.2.1 Writing Dialogue Games as LCC Protocols 61

4.2.2 Creating Complex Dialogue Games 76

4.2.3 Chapter Summary . 83

5 Interaction Protocols by Dialogue Structure Synthesis 87

5.1 Using Dialogue Structures . 88

5.2 Transformations . 91

5.3 Synthesising Protocols . 105

5.4 An Example Using Dialogue Games for Synthesis 108

5.5 Chapter Summary . 118

xii

6 System Design and Implementation 121

6.1 Basic Framework . 122

6.2 Creating Dynamic Protocols . 124

6.3 Synthesising Protocols . 126

6.4 Chapter Summary . 129

7 Conclusions 131

7.1 Summary . 131

7.2 Evaluation of Contribution . 132

7.3 Further Work . 135

7.3.1 Trust . 136

7.3.2 Permission . 136

7.3.3 Possible Collaborative Technologies 136

A Complete Trace of the Dialogue State from 4.2.2.2 139

B Prolog Code 141

B.1 insert.pl . 141

B.2 syn.pl . 143

B.3 rawinterface.pl . 145

B.4 syninterface.pl . 148

Bibliography 151

xiii

List of Figures

1.1 Layer Cake of Agent Communication 5

2.1 Example Electronic Institution and Scene 15

2.2 KQML Performatives . 20

2.3 An Example of a KQML Performative 21

2.4 KQML Semantics for tell . 21

2.5 FIPA’s Communicative Acts . 22

2.6 FIPA ACL’s SL Semantics for inform 23

2.7 Commitment Revision ACL . 25

2.8 Typology of Dialogues . 29

2.9 Summary Table of Communication Models 32

3.1 An Abstract Syntax of the Protocol Language 36

3.2 Rules for Expanding an Agent Clause 39

3.3 Sequence of Rewrites . 39

3.4 Figure of the Standard View of Protocol led Multiagent System 40

3.5 Figure of the Distributed Protocol Multiagent System 41

3.6 Conversation Space as LCC Agent Clauses 43

3.7 Expansion of Dialogue State of the Agents 44

4.1 LCC for the Inform Communicative Act 52

4.2 FIPA Inform as LCC Agent Clauses 52

4.3 AUML diagram for FIPA query protocol 53

xv

4.4 FIPA Query Protocol as LCC . 54

4.5 AUML diagram for contract net protocol 55

4.6 FIPA Contract Net Protocol as LCC 57

4.7 FIPA CAs as an Dynamic LCC Clause 58

4.8 Graphical Representation of the Information seeking Game 62

4.9 A Protocol for an Information Seeking Dialogue Game 64

4.10 The Recursive Roles for the Information Seeking Dialogue Game Pro-

tocol . 66

4.11 Graphical Representation of the Persuasion Game 68

4.12 A Protocol for a Persuasion Dialogue Game 69

4.13 The Recursive Roles for the Persuasion Dialogue Game Protocol . . . 70

4.14 Graphical Representation of the Inquiry Game 71

4.15 A Protocol for an Inquiry Dialogue Game 73

4.16 The Recursive Clauses for the Inquiry Dialogue Game Protocol 74

4.17 The Recursive Clauses for the Inquiry Dialogue Game Protocol[Cont’d] 75

4.18 A Protocol to Define the Control Layer 77

4.19 A Protocol to Return to the Control Layer 78

4.20 Control Layer Part of the Dialogue State 79

4.21 Persuasion Role added to the Dialogue State 79

4.22 Resulting Dialogues State after Persuasion Role were Added 81

4.23 Continuation of the Example’s Dialogue State 82

4.24 Graphical Representation of the Complex Dialogue Game Example . 83

4.25 Continuation of the Example’s Dialogue State 85

5.1 The Twenty-four Possible Transformations 93

5.2 The Twenty-four Possible Transformations [cont’d] 94

5.3 After the First Pruning . 95

5.4 After the Second Pruning . 97

5.5 After the Final Pruning of Transformations 99

xvi

5.6 The Vocabulary of Transformations 101

5.7 Choosing which Synthesis Rules . 105

5.8 An illegal Transformation . 105

5.9 Revision of the Synthesis of Figure 5.8 106

5.10 The Placing of Constraints . 107

5.11 Graphical Representation of the Information seeking Game 108

5.12 A Protocol for an Information Seeking Dialogue Game 109

5.13 The Recursive Roles for the Information Seeking Dialogue Game Pro-

tocol . 110

5.14 Synthesis Rules for an Information Seeking Game 111

5.15 Resulting Dialogue State Using the Information Seeking Protocol . . 113

5.16 Synthesis and Expansion of the Same Information Seeking Dialogue

Game . 114

5.17 Synthesis and Expansion of the Same Information Seeking Dialogue

Game[cont’d] . 115

5.18 Two Versions of the Dialogue State 117

6.1 Basic LCC Framework . 123

6.2 Dynamic LCC Framework . 125

6.3 Relationship Diagram Between Components 128

xvii

Chapter 1

Introduction

The term ‘computer’ used to be a job description rather than describing ‘a machine for

performing calculations automatically’. There were rooms filled with humans doing

computations by hand for days. Today, it is taken for granted that those same compu-

tations are performed instantaneously and automatically without the need for human

intervention. We trust our machines to get one plus one correct every time. The ma-

chines now called computers and the humans that have designed them have continued

to push the bounds of what is considered a necessarily human task and what can be del-

egated to machines. As the internet makes massive scale distributed computation more

and more ubiquitous, communication and socially-oriented tasks seem to be another

human activity that can be left to the machines.

The agent paradigm not only has the baggage inherited from its object-oriented and

distributed systems pedigree, but there is also issues concerning concurrency, coordi-

nation, and its use of anthropic concepts for internal activities of agents and communi-

cation between them. Yet, the solutions to these difficulties hold the promise of making

the pervasive uncertainty of communication in an open, automated and distributed sys-

tem more manageable, the benefits of which are incalculable. The approach described

in this thesis attempts to make the minimal engineering requirements on agent in order

for them to utilise and adapt the protocols. Despite this restriction, the goal of this

1

2 Chapter 1. Introduction

project is to facilitate complex, robust, and reliable communication between agents.

It is likely that the reader of this thesis will be acquainted with the programming

paradigm of agency and agent communication. This carries the risk of making an

introductory chapter, such as this, superfluous. Rather than strictly introduce the broad

research field, the purpose of this chapter is to make clear any implicit assumptions,

views, and personal understandings of the many (and at times ill-defined) terms used

in the literature. Firstly this chapter explains broadly communication in multiagent

systems. In an equally general way, I will demarcate the boundaries of what I set out

to accomplish and why. Finally, I will provide a description of the thesis’ chapters.

1.1 Agent Communication

An agent in isolation is a sad creature indeed, but they are a rarity. It is an underuti-

lization of the technology. Most agent research implies some form of communication

even if it is rudimentary and uninteresting. For example, “blocks world” problems are

mainly concerned with the development of more sophisticated agent-based problem

solving techniques. Their communication is limited to stating locations of boxes, but

issues of coordination and how agents work in an environment made dynamic by the

activities of others must still be addressed. At the other end of the spectrum, agents

are treated as dialogical only entities. These agents interact with the system and other

agents only through ‘verbal’ utterances. This is the foundation for many e-commerce

multiagent systems and argumentation theoretic systems.

Agent communication is the focus of this thesis and in particular the development

of a means for communication that is more interesting than the rudimentary messages

passed between the blocks world agents. Our focus is on communication in open mul-

tiagent systems. Open because agents are free to enter and leave at will and open

because agents are not necessarily designed and engineered the same. Their internal

make up is hidden from examination, black boxes. Black boxes in the sense that no

1.1. Agent Communication 3

assumptions can be made about the agents problem solving apparatus. The only as-

sumption is that they can accept input from the system and are capable of returning

output. At the very least they differ in their observation of the system. There is no

assumption of a global view of the system. Each agent can differ in both spatial and

temporal as well as semantic view points of the system. The autonomy of the agents

creates additional difficulties for their performance of actions. No longer can the exe-

cution of a task be guaranteed as is the case for remote function calling or distributed

processing. Agents must act in the world through communication. They must re-

flect upon the system, determine who might be able to assist their task, and initiate

a dialogue with that other agent. This activity creates the dynamic environment of a

multiagent system. Participants are constantly acting in and reacting to the system,

keeping everything in flux. Their communication as a result is asynchronous. All this

is a recipe for chaos, and there are various approaches to restore a measure of order.

These approaches can be roughly described as either “top-down” or “bottom-up”. At

times the divide between the two seems unreconcilable. This need not be so, and this

thesis makes progress towards reconciling these two cultures of agent communication.

1.1.1 Approaches to Agent Communication

A “top-down” approach to agent communication views agents as members of a society.

This paradigm is typified by electronic institutions (EI). The society has mores, norms,

and traditions. For agents to participate in multiagent systems and thus participate in

the society, the onus rests upon the individual engineer to design its agent to follow the

rules of the society. The consequence of this is more reliable agent communication. It

also is more scalable due to the ability to know the global state of multiagent system as

the dialogical activities are specified by the society. This comes at a cost of autonomy.

Agents are not completely free to explore the conversation space. Conversation space

being defined as the set of all possible meaningful sequences of messages given an

agent communication language. Agents can only converse by following the sequences

4 Chapter 1. Introduction

allowed by the society.

The advantages and disadvantages of the “bottom-up” approaches are reversed.

Mentalistic and rationalistic approaches such as FIPA’s ACL specifications and dia-

logue games are examples of the bottom-up approaches. Each agent is assumed to

have an understanding of the basic elements for communication. Given its state, it is

expected to infer the appropriate dialogical action. The global behaviour of the system

emerges from all the individual communicative decisions made by each agent. There

is usually no external check upon the message that the agent sends. This allows the

greatest amount of autonomy for individual agents but the risk of disorder or break

down of the system increases as the population of the system or the complexity of the

conversations increase.

Regardless of the high-level approach to communication, there are some aspects

that are shared. For example figure 1.1 shows the levels of communication. At the

lowest level there is the physical mechanism for ensuring messages are delivered and

received unadulterated (e.g. HTTP). This is a well trodden research path upon which

we can safely travel. More abstractly there exists the level concerning a language of

communicative primitives. Finally, there is the level, which is our ultimate concern,

that governs whole patterns of interactions, social norms, and communication within

multiagent systems.

1.1.2 Agent Communication and Content Languages

Agent communication is predominantly based on speech act theory developed by two

philosophers during the mid twentieth century [Searle, 1969b, Austin, 1962]. The idea

is that communication is similar to other actions in that it furthers the intentions of

utterer to accomplish some task. These locutions attempt to modify the meaning of the

content of the message. Just as humans use inflection in spoken communication and

punctuation in writing to further color the intent of the person communicating. The

simplest sentence, such as ‘stop’, can have several distinct meanings by the addition

1.1. Agent Communication 5

Interaction Protocols

Agent Communication Language

Transport Protocols

Content Language

Figure 1.1: Layer Cake of Agent Communication

6 Chapter 1. Introduction

of a question mark, exclamation mark or full stop. So it is for agent communication.

The content of the message which can be expressed in a knowledge representation lan-

guage such as KIF [Genesereth and Fikes, 1992] or a statement in propositional logic.

This is usually wrapped by a performative or locution. So, the proposition “Caesar is

dead” can have a different meaning if it is expressed within a locution that is specified

as a query, command or statement. The communication language, content language

and the ontology must somehow be agreed by the participating agents, regardless of

the implementation of the model or means of communication. Without this assump-

tion little progress can be made, but as we will show, the use of LCC and distributed

protocols is able to ease the burden somewhat.

1.2 Motivation, Hypothesises and Aims

What are the questions this research proposes to answer? What are the boundaries?

What ground shall we tread? What territory should be avoided? This work is inter-

ested in agent communication. As it occurs in open multiagent systems is of particular

interest, as well as the use of interaction protocols. Interaction protocols are a well

known and commonly used paradigm for agent communication. The novelty of this

thesis is the use of distributed and dynamic protocols.

1.2.1 Novel Means of Communication

The use of distributed protocols is already novel in the realm of agent communication.

By allowing agents, who now have providence of their interaction protocols, to modify

them creates interesting possibilities as well as difficulties. Chapter 3 describes the

LCC language and framework which provides this means. The question that remains

is whether this means is enough to produce dynamic protocols. Also, can this extended

functionality be done in a modular way. The interdependencies between the language,

framework, and transformations should be minimal and changes to one should not

1.2. Motivation, Hypothesises and Aims 7

generally affect the other. Given the use of dynamic protocols, are there any unique

problems that need to be addressed and are they surmountable?

1.2.2 Exploit LCC to Communicate Social Models

Several consequences arise from the use of the distributed protocols and framework

of LCC. A common method for developing communicating agents is for a human to

design and implement their agent in accordance with a specification. In order for this

agent to communicate with other agents, it relies on other engineers interpreting and

implementing their own agents in a sufficiently similar way to allow some progress

in communication. Instead, an engineer develops the social norms for the agent as a

protocol that the agent’s communicative partners can receive, understand, and utilise.

There is no ambiguity to whether these agents can communicate. It is already known

that LCC, as discussed in chapter 3, is capable of expressing social models that rely

on static and explicit protocols. What this thesis shall explore is whether by the use of

LCC extended to create dynamic protocols can reproduce the more agent-centric and

flexible models of communication.

1.2.3 Allow ‘Truly’ Heterogeneous Agents to Communicate

Open multiagent systems assume agents are not necessarily homogenous. In prac-

tice agents always have a lot of similarities and assumptions. Usually this uniformity

is enforced by external agents or software (e.g. Electronic Institutions) or through

thoroughly defined specifications for individual agent behaviours. Obviously a certain

amount of regularity is necessary, such as the sharing of an agent communication lan-

guage and a transport protocol, but one aim of this thesis is to alleviate some of the

burden of conformity by giving the agents the means to communicate the social norms

with which they communicate. A question relating to the previous subsection; if these

social norms can be expressed as dynamic protocols, does this reduce some of the

8 Chapter 1. Introduction

assumptions required to get heterogenous agents to communicate? For example, can

social commitments or dialogue games be expressed sufficiently as protocol to allow

agents to communicate without necessarily understanding commitment revision or the

commencement rules?

1.2.4 Bridging the Two Cultures of Agent Communication

Ultimately, the implementation of “bottom-up” approaches as protocols, distributing

that protocol, and allowing modifications when the agent requires it creates a hybrid

approach. It provides the stability of a protocol led approach but the flexibility of the

agent-centric ones. This thesis shows that the dogmatic divide of the two main camps

of agent communication need not be. It is more likely that a amalgamation of the two

will be preferred. The following of strict protocols is used when appropriate and emer-

gent behaviours are allowed when necessary, but it is always done in the context of

communicable and mutable protocols. Though this thesis focuses on the use of dia-

logue games in this context, the ideas are readily transferable to the other “bottom-up”

models described in the literature review. The question here is whether this research

achieve its goal of having the flexibility of the agent-centric bottom-up approach to

communication while also preserving some of the reliability and predictability of pro-

tocol led ‘top-down’ models.

All the mentioned approaches suffer from the dialects problem. Even standardi-

sation attempts have only succeeded to achieve superficial conformance. Instead, it

would be better to develop a means to reconcile the differences rather than hope for

some convergence at the specification level. It is more likely that even more models

of communication will be proposed further exacerbating any notion of reconciliation

at an abstract level. It is for this goal that this thesis also strives, and answer whether

dynamic distributed protocols is the mechanism to achieve it,

1.2. Motivation, Hypothesises and Aims 9

1.2.5 What I am Not Trying to do

In addition to stating my hypothesis and goals for this project, it is useful to also clarify

some of the boundaries for the thesis. This is a list of what I am not attempting to do.

1.2.5.1 replace any model of communication

On the occasions when the incremental successes of my research were published in

conference proceedings, a common review was to defend whatever model of agent

communication I was suggesting to improve by this approach. This is a misunder-

standing. The intention is to improve the means of implementing the various models

of communication that have been developed, not replace them. Chapters 4 and 5, de-

scribe a novel mechanism for agent communication, but it relies on the abstractions

and formalisms developed by the authors mentioned in 2.

1.2.5.2 create only another theoretical model

There is a well recognized deficiency in many aspects of agent research and that is

the gulf which separates the theoretical work from the practical. This is changing and

recent research is addressing that divide. This thesis is also a part of that movement. A

goal here is to instantiate and implement existing theoretic work.

1.2.5.3 create yet another language (YAL)

The work of this should be done within the context of existing languages and paradigms.

This work will restrict itself to a minimal amount of modifications to the LCC frame-

work. In the spirit of LCC, the work here aims to put the smallest additional burden

upon agent engineers.

1.2.5.4 claim this is a panacea

There will be no panacea. There will be inappropriate domains for this approach.

Indeed the spirit of this work is in reaction to attempts to dictate an orthodoxy to agent

10 Chapter 1. Introduction

communication. The power (and the difficulty) of multiagent communication comes

from its diversity. The philosophy of this work is to spend energy devising a method

allowing agents to communicate their semantics for communication and social norms

not to proscribe all but one understanding of agency and agent communication. The

final chapter discusses in more detail the domains for which this approach in its current

form is ill suited but also what steps can be made to redress those shortcomings.

1.3 Thesis Outline

The following chapter reviews the existing literature. Chapter 3 describes the language

and framework that is the foundation for this research work. It describes the LCC

language and framework. This chapter is essential for understanding the approach and

spirit of the thesis. Chapters 4 and 5 are the main course. The real meat of the work is

found here. The former describes the development of the dynamic transformations of

interaction protocols with an emphasis on its use in conjunction with dialogue games.

The latter explains a further expansion of the idea of adaptable protocols. Protocols are

now synthesised completely at run time. This process is informed by notions developed

from research into dialogue structures for use in computational linguistics. Finally, the

last chapter concludes with a summary, evaluation of the contribution, and a discussion

of future avenues for research on this topic.

Chapter 2

The Current Landscape of Agent

Communication

The field of agency has evolved rapidly, and many solutions have been developed to

address the problem of interoperability in automated communication. Each one must

make assumptions in order to solve a portion of the problem. This is absolutely neces-

sary. As developing a truly open, heterogenous multiagent system is a grand task, and

different environments require different solutions given their assumptions. Electronic

Institutions (EI) with its top-down approach gives us reliable and robust multiagent sys-

tems. Yet it is at the cost of a third parties intervention or in the worse case a complete

loss of autonomy. Distributed protocols, which ultimately provide us our means to en-

act the method described within these pages have been largely unexplored, especially

with respect to on-the-fly protocol construction. Mentalistic (BDI based) approaches

to communication are widely used but their inappropriateness for open systems is even

more widely known (e.g. the semantic verification problem [Wooldridge, 2000]). Per-

missive approaches go a great distance, but tend to become a hodgepodge of various

models. The game-theoretic approaches are more generally applicable than the per-

missive or social approaches, but tend to be heavily theoretic and dependant on ideal

world assumptions. This thesis borrows from and expands upon these foundations.

11

12 Chapter 2. The Current Landscape of Agent Communication

Although, it does not completely solve the grand task. Instead it describes two generic

approaches that offer flexibility and stability necessary for more complex agent dia-

logues.

This chapter describes the existing literature in the field, and its relation to the work

of this thesis. Any division of categories is going to be unsatisfactory for one reason

or another. For instance, the description of Electronic Institutions could have been put

under section 2.4 as it certainly fits in that category. It has been put into its own section

because of its importance in the development of LCC, the protocol language described

in chapter 3. There is a distinct emphasis on infrastructure in EI research, which is of

lesser interest for other social models of communication in multiagent systems. After

the description of EIs and distributed protocols, sections 2.3, 2.4, and 2.5 describe other

models of agent communication. Again, a clear division between these is not possible.

For example, many dialogue game descriptions consider the use of commitment as

essential.

2.1 Electronic Institutions

The impetus for LCC and in particular the use of LCC for dynamic proto-

cols comes from work done with Electronic Institutions. Especially the work

of [Esteva et al., 2000, Noriega, 1997]. The idea was to retain the benefits of EI ap-

proaches, but in a more decentralised and flexible manner. Electronic Institutions(EI)

provide structure to large and open multi-agent systems(MAS). By emulating human

organizations, Electronic Institutions provide a framework which can increase inter-

operability. Implicit in the EI approach is this idea of an extraneous participant in the

conversation such as a mediating or governing institutional agent to enforce the norms

specified by the EI. The other Electronic Institutions described here vary in detail but

the basic principles are close to the ISLANDER model.

2.1. Electronic Institutions 13

2.1.1 Islander and Ameli

The ISLANDER [Esteva et al., 2002] framework formally defines several aspects of

electronic institutions. The core is the formal definition of roles for agents, a shared

dialogical framework, the division of the Institution into a number of scenes and a

performative structure which dictates, via a set of normative rules, the relationships

between the scenes. Agents interact with an Institution through the exchange of illo-

cutions, i.e. messages with intentional force [Noriega, 1997].

Participating agents are required to adopt a role within the Institution. This is sim-

ilar to our entering a shop and assuming the role of a customer, and the employee

adopting the role of salesperson. A role is defined as a finite set of dialogical actions.

By the adoption of a role within an Institution, an agent’s activities within the Insti-

tution can be anticipated. This abstraction of agents as a role allows the Institution

to regulate and identify agent activities without analysing individual agents. Relation-

ships between agents can be dealt with as generalizations. A role can also be defined

as subsuming or being mutually exclusive to another role.

The dialogical framework provides a standard for communication. Agents are guar-

anteed to have a shared vocabulary for communication as well as a common world-

view with which to represent the world they are discussing. The dialogical framework

is defined as a tuple consisting of an ontology, a representation language, a set of il-

locutions, and a communication language. The representation is an encoding of the

knowledge represented by the ontology and makes up the inner language. This is con-

tained with an individual illocution that is passed between agents. The illocution, as

part of the outer language or communication language, expresses the intention of the

agent by its communicating the message of the inner language. The dialogical frame-

work, which contains the ontological elements, is necessary for the specification of

scenes.

All interactions between agents occur within the context of scenes. Scenes are in-

teraction protocols between agent roles. They are expressed as a well-defined protocol

14 Chapter 2. The Current Landscape of Agent Communication

which maps out the conversation space between two agent roles. These scenes are

represented as graphs. The nodes are conversation states and arcs representing the ut-

terances of illocutions between the participants. Each scene will have a set of entrance

and exit states with conditions that must be satisfied before the agent can begin or exit

a scene. A set of roles and scene states are formally defined. An element of the set of

states will be the initial state and a non-empty subset will be final states. Between the

states there is a set of directed and labelled edges.

Scenes are individual agent conversations. In order for agents to participate in more

interesting activities, it is necessary to formalize relationships between these individual

conversations. The performative structure formalizes this network of scenes and their

association with each other. The roles an agent adopts and the actions of the agents

create obligations and restrictions upon the agent. These obligations restrict the further

movement of agents. The performative structure is made of a finite non-empty set of

scenes. There is a finite and non-empty set of transitions between these scenes. There

is a root scene and an output scene. Arcs connect the scenes of the Institution. These

arcs have different constraints placed upon them. For example, the constraints can

synchronize the participating agents before the arc can be fully traversed, or there are

constraints that provide an agent a choice point upon which scene to enter.

Within the scenes of an Electronic Institution, the actions an agent performs affect

the future actions available to the agent. These consequences can extend beyond the

current scene. These consequences could be the requirement for a agent to perform

an action in some future scene or even which scenes or sequence of scenes an agent is

now required to be a participant. These normative rules are categorized between two

types. Intra-scene dictate actions for each agent role within a scene, and inter-scene

are concerned with the commitments which extend beyond a particular scene and into

the performative structure [Esteva et al., 2000, Estava et al., 2001]. Figure 2.1 gives an

example of an example of an institution designed for the diagnosis of breast cancer and

one of the scenes for this institution for determining candidates for specialist referral.

2.1. Electronic Institutions 15

INITIAL

WAIT ACCEPT

DIAG

request(P, D)

norefer(D, P)

symptoms(P, D)

accept(D, P)

refer(D, P)

PRACTITIONER

GENERAL

FAMILY HISTORY

CLINIC

BREAST CANCER

CLINIC
SCREENING

GENETICS

REFERRAL

SURGEON

INSTITUTION
DIAGNOSIS

Figure 2.1: Example Electronic Institution and Scene

Tools [Esteva et al., 2002] exist to aid in the creation of the various components and

development of Electronic Institutions. This includes a tool to verify any specifications

developed as well as tools to aid the synthesis of agents that can participate in the

Electronic Institution [Vasconcelos, 2002].

Ameli is the infrastructure and governing agent that mediates participating agent’s

interactions [Esteva et al., 2004]. Islander’s focus was the specification of EIs. Ameli’s

is the execution of them. Ameli’s innovative contribution is the ability to implement

any electronic institution specification defined in Islander regardless of domain. Given

an Islander EI specification, Ameli ensures that agents participating in the institution

adhere to all the norms specified. There is research in its infancy that is exploring the

idea using the LCC language to directly implement and execute EI specifications.

2.1.2 Others

There are several other Electronic Institutional models [Dignum, 2003,

Vázquez-Salceda, 2003, López, 2003]. Most of these address ISLANDER’s

rigidity in representation and enforcement of norms, and are not concerned, in

particular, with issues addressed in this thesis. As a result their focus tends to be on

the development of computationally hard but expressive logics for the formalisation

of norm specifications and addressing the difficulties associated in interpreting and

implementing them [Cortés, 2004].

In general, the Electronic Institution approach has a number of difficulties that

16 Chapter 2. The Current Landscape of Agent Communication

confront its appropriateness for open heterogeneous multiagent systems. Though EIs

are ideal and necessary for systems the require high reliability and predicability, they

are not always desirable generally. The primary concern is the requirement of third-

party coordination and control. There still remains the questions of how institutions

and their rules are disseminated and evaluated by the agents themselves as the normal

practice relies on the engineer to endow the agent with sufficient understanding of the

institution before the interaction.

2.2 Distributed Protocols

Distributed protocols is largely an unexplored approach to agent communication. The

orthodoxy has individual engineers developing an agent’s communicative model by

the interpretation of formal, graphical, or natural language descriptions of a multiagent

system’s interactions. Distributed protocols take the view that the agents themselves

can communicate, in a computationally digestible format, the interaction protocols for

a multiagent system. The advantage is that agents are not tied to a set of predefined

protocols that their creator foresaw.

Most of the existing literature for this approach is developed for closed systems,

and have a simple model of representations (e.g. finite state machines). All of them re-

strict themselves to static protocols. The two most prominent approaches are described

below.

Chapter 3 is devoted to another distributed protocol language, LCC, that is more

developed and expressive than the work described in this section and forms the basis

for the dynamic protocols and protocol synthesis that constitutes the main contribution

of this thesis.

2.2. Distributed Protocols 17

2.2.1 The Melbourne Strain

This work [de Silva, 2002] concentrates on developing algorithms for agents to eval-

uate a received protocol represented as petri-nets. The concerns addressed are syntax

conformity, loop detection, and determining the safety of an agent’s private informa-

tion.

The author echoes the importance of local representation of protocols. By giving

the protocol’s definition with respect to an individual’s actions within a system rather

than defining the entire system’s catalogue of interaction, agents do not need to sift

through the global protocol to find their own role held within. This disambiguation

also reduces some of the redundancy of states from the agent’s perspective.

This research also affirms the importance of insulating the agent’s internal func-

tions from the interaction protocol being used. The declaration of functions and vari-

able instantiation is important for elucidation of a protocol’s semantics, but the actual

definition of these would impede on an agent’s autonomy.

The authors chose the extended petri-net representation because of the limitations

of an FSM representation that has been used in previous implementations of distributed

protocols [Nodine and Unruh, 1997, Martin et al., 1996]. Though this representation is

more expressive, there is no directly implementable format and it requires translation

to a machine reliable format.

This work’s findings could extend this thesis’ contribution. Thoug issues of trust

and safety have been ignored through out this thesis, but it does guarantees that if

a given protocol is error free that no corruption will occur by introducing protocol

adaptations. The concern of this thesis is not whether a received protocol is deficient,

but instead it is an exploration into the possibilities of an agent system with interaction

protocols being distributed in a peer to peer manner. In particular the possibilities of

run time protocol creation. A topic that is not addressed by the Melbourne research.

18 Chapter 2. The Current Landscape of Agent Communication

2.2.2 The Portuguese Approach

This work describes an implementation of the use of XML specifications translated

from AUML diagrams and then converted to a set of production rules to provide the

interaction protocol for the agent to use [Freire and Botelho, 2002]. Beside the rep-

resentation of AUML protocol specifications as XML, the authors propose two other

components for the execution of explicitly represented protocols. Another require-

ment is an interpreter for the XML protocols. Their approach is a translation from the

protocol specifications to a set of if-then production rules. Finally, there should be

an interface between the agent’s decision making apparatus and the protocol’s XML.

They propose a predicate for the interpreter to specify a set of communicative actions

for the agent to choose from, and a predicate to indicate the chosen action.

The authors reinforce our claim of the importance of separating the agent’s internal

deliberative model from its communicative to gain the well documented advantages

of modularization. The authors argue that by making an agent’s internal rationaliza-

tions independent of a set of fixed predefined protocols and providing the agent with

a generic interpreter of interaction protocols allows them to participate in unpredicted

conversations.

The proposed approach for agents to understand these protocol specifications is

to convert them to production rules. There is also number of critiques against using

AUML for the representation of agent interaction protocols [Paurobally et al., 2004].

The author’s decision to use this format seems to be a legacy from FIPA specifications.

The authors identify the usefulness of defining protocols from an agent perspective

versus a global one. As this paper is a proposal, the authors do not claim to have

a concrete syntax for interaction protocols nor give much detail on the interpreter or

interface. It is clear that the protocols are static, defined beforehand, and require a third

party, the protocol server agent, which is a potential drawback that LCC avoids.

2.3. Mentalistic Approaches 19

2.3 Mentalistic Approaches

Mentalistic or Belief-Desire-Intentions (BDI) approaches to agent communication have

come from the seminal books of [Searle, 1969b] and [Austin, 1962]. The idea that hu-

man utterances have observable side effects much like physical actions. By utterances

alone, humans can affect the state of the world. The commonly used examples of say-

ing ‘I do’ at your wedding ceremony or a country’s leader declaring war illustrate these

changes of state obtained by human utterances.

2.3.1 KQML

The illocutionary model of communication fits well with BDI theories of agents, and

the need for a standardisation of a communication language was quickly recognised.

The first language to gain wide recognition is the KQML language [Finin et al., 1994]

developed as part of the Knowledge Sharing Effort (KSE). Initially KQML was de-

veloped to enhance knowledge sharing and not for agents per se, but the conceptual

underpinnings were readily applicable. Of the many issues facing agent communica-

tion, it was the need to not only share information but also the complex attitudes the

agent held with regard to that information (e.g. requesting, informing, questioning).

The development of the KQML’s ACL was the attempt to create a set of performa-

tives to capture the various propositional attitudes an agent might want to express. The

KQML of performative names are listed in the figure 2.2.

Other’s [Cohen and Levesque, 1995] have criticized the use of the term performa-

tive as it implies the success of the communication primitive. Ultimately, the term

as well as others used such as FIPA ACL’s ‘communicative act’ or more generally

‘locution’ refers to communication primitives that are sufficiently similar to be used

interchangeably.

KQML was developed to be independent of low level transport details (e.g. TCP/IP,

IIOP, etc.) as well as the content language and ontology. The basic concepts of KQML

20 Chapter 2. The Current Landscape of Agent Communication

Insert Uninsert Delete-one Delete-all

Undelete Tell Untell Broadcast

Forward Achieve Unachieve Broker-one

Recommend-one Recruit-one Broker-all Recommend-all

Recruit-all Advertise Unadvertise Deny

Subscribe Stream Eos Standby

Ready Next Rest Discard

Ask-if Ask-one Ask-all

Figure 2.2: KQML Performatives

resonate through other models of agent communication. This is especially true of FIPA

ACL, but also for other non-mentalistic approaches.

A KQML message can be dissected into two parts; locution and content parts. The

content portion of the message holds the information being expressed in the agent’s

own representation language. The part also contains the needed information for the

low-level details for communication such as identifiers for the sender and receiver,

the ontology, content language, etc.. The heart of KQML is speech-act that acts as a

wrapper around the content.

Figure 2.3 shows an example of a KQML performative. This performative is an

instance of tell. It encapsulates the content part containing the details of the mes-

sage to which the speech act adds its illocutionary force. The parameters shown are

reserved keywords starting with a colon followed by their values. From the example,

the parameter :sender has the value of ‘agent-bob’. The entire message could be

read as “Agent-bob tells agent-tom that the price for item64 is 34 British pounds (gbp).

The content of this message is using Prolog as its language and standard-commerce

as its content ontology. This tell is in response to a previous message labeled as

id7.24.97.45391.” The set of performatives defined by [Finin et al., 1994] is not con-

sidered to be exhaustive, closed, or minimal and there exists a number of variants of

2.3. Mentalistic Approaches 21

(tell

:sender agent-bob

:content ‘‘price(item64,34,gbp)’’

:receiver agent-tom

:in-reply-to id7.24.97.45391

:language Prolog

:ontology standard-commerce

)

Figure 2.3: An Example of a KQML Performative

KQML [Labrou et al., 1999].

The semantics of the performatives are given in terms of preconditions, postcondi-

tions, and completion conditions. Conditions are expressed for both the speaker and

hearer of the utterance.

tell(A,B,X)

Pre(A): Bel(A,X)∧Know(A,Want(B,Know(B,S)))

Pre(B): Int(B,Know(B,S))

where S may be any o f Bel(B,X), or ¬(Bel(B,X))

Post(A): Know(A,Know(B,Bel(A,X)))

Post(B): Know(B,Bel(A,X))

Completion: Know(B,Bel(A,X))

Figure 2.4: KQML Semantics for tell

The figure 2.4 is taken from the example in [Labrou et al., 1999]. In the example

22 Chapter 2. The Current Landscape of Agent Communication

agent A is the speaker and B is the hearer. The precondition, Pre(A) for A must be

satisfied if the agent is to utter the tell of X. If the agent is to accept and understand

the performative, Pre(B) must be satisfied. Once uttered the Post(A) conditions should

hold, and once B has accepted and understood the message Post(B). The Completion

condition is the final state associated with the intention associated with the performa-

tive being expressed. The conditions are all expressed in terms of the BDI language,

but the formal definition of these terms is not given.

2.3.2 FIPA ACL

The Foundation for Intelligent Physical Agents is a standardisation body concerned

with the numerous issues of interoperability in agent-based systems. One of the tech-

nical committees of this organisation was charged with the development of a specifi-

cation for an ACL [FIPA, 2001]. The resulting set of communicative acts is listed in

figure 2.5.

Accept Proposal Agree Cancel Call for Proposal

Confirm Disconfirm Failure Inform

Inform If Inform Ref Not Understood Propagate

Propose Proxy Query If Query Ref

Refuse Reject Proposal Request Request When

Request Whenever Subscribe

Figure 2.5: FIPA’s Communicative Acts

FIPA ACL is very similar to KQML as it is based on speech acts and a BDI-centric

view of agency. The syntax of the individual locutions and the formatting of their

content also resembles KQML. The specifications provide an English description of

each of their locutions or what FIPA calls communicative acts. In addition there is

a formal semantics defined in a form of modal logic. The language used is called

2.3. Mentalistic Approaches 23

‘Semantic Language’(SL) [Sadek, 1991].

SL is a multimodal logic with the typical representations of beliefs, desires, and

intentions, but it also adds uncertain beliefs as well. Each communicative act is defined

in terms of a SL formula for both the act’s feasible preconditions and rational effect.

The feasible preconditions are the mental states that must exist before an agent can

send that communicative act. The existence of the mental states does not behoove the

agent to take the action, but only provides the conditions that would make the action

appropriate if the agent is to be compliant to the standards. Rational effects are the

mental states that are expected, given an agent has performed the communicative act.

Though expected states are often defined in the rational effects for recipient agents,

conformance does not mandate that these conditions hold.

< i,inform(j,φ) >

FP : Biφ ∧ ¬Bi(Bi f jφ ∨Ui f jφ)

RE : B jφ

Figure 2.6: FIPA ACL’s SL Semantics for inform

Figure 2.6 defines the inform, a communicative act closely akin to KQML’s tell

from figure 2.4. The feasible preconditions can be read as saying that agent i believes

φ and does not have any belief that agent j has any belief about the proposition. The

rational effect simply states that agent j is to believe φ.

FIPA has superseded KQML as the most prevalent attempt at a standard agent

communication language, but serious foundational difficulties remain for any mental-

istic approaches. Numerous criticism of KQML and FIPA ACL exist. The seman-

tics of mentalistic approaches are either undefined, or poorly defined, or simply not

computable. There is the problem with being able to verify any mentalistic seman-

tics [Wooldridge, 2000]. The conclusions from these difficulties must be that mental-

istic approaches are inappropriate basis for a communication language in open mul-

24 Chapter 2. The Current Landscape of Agent Communication

tiagent systems. This conclusion can be supported by the growth in popularity of

other approaches a sampling of which is described in the following section. Nonethe-

less, FIPA remains a popular basis for agent communication. This is due to a number

of secondary factors to its questionable semantic foundations which include: sizable

industrial and governmental funding, and the simple truth that semantics are largely

ignored (e.g. JADE [Bellifemine et al., 1999]) [Verdicchio and Colombetti, 2003].

2.4 Social Approaches

This section describes a number of related models of agent communication. Differ-

ent researchers have come up with a number of ideas that could be categorized as

social approaches such as conversation policies, obligation, commitment, norms, land-

marks, etc. They are related to Electronic Institutions described previously because an

agents is seen as a participant in a system where communication is its primary means

to achieve its goal and like natural occurring social systems there are conventions that

facilitate the activity in the system to run more smoothly. The distinction is that in elec-

tronic institutions these conventions come top down. The social approaches described

in this section take a more agent-centric or bottom up view. Agents are armed with

social models that allow for a freer exploration of the conversation space to address

the dynamism inherit in complex systems, to organise themselves, and to be able to

consider characteristics of the system unforseen at design time.

In [Singh, 2000], the authors identify several desirable criteria for the semantics of

an Agent Communication Language. According to Singh, an ACL should be formal,

declarative, verifiable, and meaningful. To this end, he has developed a social seman-

tics. He defines three facets to every communicative act. The objective claim which

commits an agent to another that some proposition p holds. The subjective claim is that

an agent believes p, and the practical claim that the agent has some justification or rea-

son for believing p. This is a novel approach, because most reactions to the semantic

2.4. Social Approaches 25

verification problem of the mentalistic approach is to completely throw it away. Singh

has, instead, embraced the mentalistic approach but coupled it with the idea of social

commitment. The purely mentalistic approach rests on the assumption that the agent is

sincere about p, but Singh has added that the agent is also socially committed to being

sincere about p. It is recognized that the use of social semantics does not replace the

need for protocols, but the combination of social semantics and protocols would create

a much more flexible ACL [Maudet and Chaib-draa, 2002].

Utterance Operation Creditor Debtor

Request Add Speaker Addressee

Offer Add Addressee Speaker

Release Del Speaker Addressee

Discharge Del Addressee Speaker

Figure 2.7: Commitment Revision ACL

The approach described in [Flores and Kremer, 2002] uses the commitment them-

selves to develop the conversation between two agents. Flores argues that our verbal

utterances carry with them obligations dependent on the role of the agent within a

society. The question ‘What time is it?’ carries with it the obligation (in polite so-

ciety) to not only reply but make an attempt to actually find out the time. The use

of social commitments in multi-agent communication is to provide a number of rules

that dictate appropriate illocutions and actions performed based on the agent volun-

tarily obligating itself to commitments with other agents and eventually discharging

those commitments. A protocol is defined for the negotiation of the adoption of social

commitments. The locutions involved for this commitment store revision is shown in

figure 2.7. Agents propose to add and remove commitments for action from personal

commitment stores. An agent will propose to add a commitment to perform some

actions. Once this is accepted and the commitment is satisfied the protocol includes

steps to propose the release of any further commitment to that action. It is through

26 Chapter 2. The Current Landscape of Agent Communication

this simple protocol and the social commitment-based conversation policies an agent

conversation can be developed.

The agent-centric design of these social models for communication are excellent

candidates to drive dynamic protocols, as the models would also gain a means for dis-

semination. For a particular domain it is possible to develop a normative social model

to govern whole conversations, but social approaches lack a generic model to do this.

Instead they provide the possibility of more local normative constraints. The dialects

problem also exists as there has been no standardisation effort like the mentalistic

FIPA ACL or any one approach that has gained dominant support. Instead this thesis

has chosen to concentrate on rationalist approaches, but their use does not exclude the

use of social approaches to further embellish conversation semantics.

2.5 Rationalistic Approaches

The rationalistic approaches to communication can be cleaved, though not cleanly, into

two disciplines. Some researchers concentrate on mechanism design. It is their goal to

produce protocols that can guarantee certain properties such as honesty or profit max-

imisation. Game theoretic approaches tend to have impractical assumptions for use

in agent systems generally such as agents having complete knowledge, participants al-

ways acting rationally, or engineers having an a priori understanding of the interaction.

This field tends to view protocols as rigid, and therefore not very fertile ground for the

run-time adaptation of protocols that is our goal.

The other half is the use of argumentation for multi-agent systems. Argumentation

in general is a powerful model for agent communication as it allows the discussion

of the topic, but also the reasoning and other meta information involved. This allows

agents to address knowledge deficiencies of others, correct false beliefs, and influence

an agent’s utilities and preferences for beliefs. This functionality can potentially result

in agents converging on a solution quicker as they can identify the cause of the dis-

2.5. Rationalistic Approaches 27

agreement rather than relying on a brute force iteration through all permutations of the

solution space. This also can be achieve by agent’s tailoring their own or other’s space

of acceptability. These advantages come with increased complexity, but it is hoped

through the adoption of dialogue games as distributed protocols, but also through dy-

namic protocols no loss of flexibility or expressivity occurs.

Argumentation has a long and rich history [Aristotle, 1997, Gautama, 2003].

Through out this long history philosophers have identified a number of modes of argu-

mentation. In one such enumeration [Gilbert, 1994] at least four is given. Emotional

argumentation appeals to emotions and depends on empathy. Visceral arguments re-

quire the physical or social aspects of humanity. Bosses and parents can make visceral

arguments because of their social position with respect to their employees or children.

Similarly, the school yard bully can make a punch in the arm a convincing visceral

justification for his proposition for a child to give him his lunch money. Kisceral argu-

mentation relies upon the supernatural or religious. The logical mode of argumentation

is held is the highest esteem. Especially in the occidental secular tradition, the quality

of these arguments are generally thought to be better than other modes. They have the

feel of inevitability and necessity. One part of the argument is deduced from the other.

This is the mode of argumentation that is of most interest especially within the context

of multiagent systems.

In the classical view of logic, there is a set of statements or propositions, ∆, that

allow one to infer an additional proposition ϕ, written as ∆ ` ϕ. To arrive at ϕ it is not

necessary to appeal to all the propositions of ∆. Instead a subset, Γ is used by means

of various axioms to arrive at the conclusion. Γ is said to be the grounds for making

the argument of ϕ.

Argumentation in multiagent systems occurs when the possibly inconsistent

database of propositions is dispersed between agents. The agents trade arguments

in an attempt to defeat other arguments. Defeat can be defined as either rebut or un-

dercut depending on whether the argument contradicts the conclusion (i.e. ϕ) or the

28 Chapter 2. The Current Landscape of Agent Communication

grounds (i.e. Γ) of the other argument. As there may be many possible ways to attack

or defeat an argument, there is usually some type of preference ordering either by a

numerical utility function or a more abstract valuation (e.g. argument by appealing to

authority is considered weaker than appealing to counter examples). Argumentation

research is much more broad than the discussion here presents. There is abstract argu-

mentation which ignores the propositions and is only concerned with the topology of

the argument structure and the relationships between arguments. There have even been

excursions into the analysis of the tetralemma for use in agent systems. Tetralemma is

an alterative four valued logical system. The values are (true, false, both true and false,

neither true nor false) whereas the western tradition uses the more prosaic two valued

system of either true or false.

Instead, dialogue games is concerned with the process of two agents firing argu-

ment salvos at one another. Several authors have developed typologies and protocols

for this kind of communication and it is this work that complements our investigation

into dynamic interaction protocols for use in multiagent systems.

2.5.1 Dialogue Games

The philosophers Doug Walton and Erik Krabbe have developed a typology of dia-

logues to detect fallacious reasoning [Walton and Krabbe, 1995]. This typology was

adopted by Chris Reed [Reed, 1998] in a formalism for multi-agent systems and inter-

agent communication. Of the six kinds of dialogue identified, five of these dialogue

types are applicable to the domain of agent communication. The sixth, eristic, is a

dialogue where reasoning has ceased and the participants use the dialogue for the air-

ing of grievances and one-upmanship. This dialogue type is important for the study of

human conversations, but it is ignored by the agent research community.

Dialogues are classified into the different types by three criteria. The first criterion

considers the initial situation. What information does each of the participants have?

Are the agents cooperative or competitive with each other? The second criterion con-

2.5. Rationalistic Approaches 29

Type Initial State Goal Aim

Persuasion Opinions conflict Resolve opinions Persuade other

Negotiation Interests conflict Make a deal Get the best deal

Inquiry General ignorance Gain knowledge Find a proof

Deliberation Need for action Reach a decision Influence outcome

Information Personal ignorance Spread knowledge Gain or

Seeking pass knowledge

Figure 2.8: Typology of Dialogues

cerns the individual goals an agent has for the interaction, and the third criterion are

the goals shared by the participating agents. In Information-Seeking dialogues, one

agent seeks the answer to a question which it believes the other agent possesses. In-

quiry dialogues occur when two agents work together to find the answer to a question

whose solution eludes both agents. A Persuasion dialogue has one agent attempting to

convince another to adopt some proposition which it currently does not believe. Ne-

gotiation dialogues occur when the participants haggle over the division of a scarce

resource. In Deliberation dialogues, the agents attempt to agree on a course of ac-

tion for a particular situation. It is rare that any actual dialogue will be purely of one

instance of one kind of dialogue. It is more likely that a dialogue will consist of an

amalgamation of the different types. For example, during a negotiation, propositions

may need clarification and an information-seeking dialogue would occur. This dia-

logue typology is fundamental to recent agent communicative models using dialogue

games.

Dialectics have been of interest to philosophers as a tool to formalise argumenta-

tion for millennia. It is an attempt to identify when an argument or its justification is

weakened or undercut by an argument or refutation made be the other participant. By

each player making ‘moves’ and following a set of rules, it was hoped that properties

of good and bad arguments could be identified. This formalism for argumentation has

30 Chapter 2. The Current Landscape of Agent Communication

been employed to increase the complexity and robustness of software agents conversa-

tions. The objective is to produce a meaningful interaction between dialogical partners

by following the rules of an individual dialogue game.

There are several components to a dialogue game. Firstly, the participants must

share a set of locutions. This is a common requirement for models of agent communi-

cation. The commencement and termination rules specify the conditions under which

a dialogue can start or end. This is a set of performatives from an agent communica-

tion language that is shared between the agents. This language must include the ability

to utter assertions as well as justifications and challenges to those assertions. Another

component is the combination rules. These rules define when particular illocutions

are permitted, required, or illegal. The last part necessary for a dialogue game is the

rules for commitment. These rules create obligations on the agent with respect to the

dialogical moves of the agent. These commitments can be divided into dialogical and

semantic. Dialogical commitments are the obligation of an agent to make a particular

move within the context of the dialogue game. Semantic commitments indenture the

agent to an action beyond the dialogue game itself. A record of these commitments is

publicly stored. For example, if you say you are willing to pay the highest price in an

auction, it will be known that you are committed to actually pay that price.

Dialogue game frameworks [McBurney and Parsons, 2002,

Maudet and Evrard, 1998] attempt to construct more complex and robust

agent conversations. This is achieved by combining different atomic dia-

logue types which have been identified by philosophers analysing human di-

alogues [Walton and Krabbe, 1995]. This approach avoids the semantic ambi-

guities inherent in mentalistic models and the rigidity of static protocol-based

approaches [FIPA, 2001]. The dialogue game approach depends on several assump-

tions about participating agents. Agents participating in the dialogue game framework

must agree on all the rules of the framework. The number of requirements made

on individual agents in order for them to play dialogue games makes the approach

2.6. Summation and Analysis 31

unsuited for open multi-agent systems.

2.6 Summation and Analysis

Outlined above are the major approaches to agent communication and the building

blocks for this thesis’ contribution to the topic. A bullet point summation is shown

in figure 2.9. Electronic Institutions have their usefulness for rigid multiagent sys-

tems where autonomy of the agents is willingly sacrificed to the systems as a whole.

Distributed protocols is the approach taken to achieve the transparent protocol trans-

formation, but the state of the art has not been fully explored. No other research has

developed the idea to the extent of LCC and coordination oriented programming. For

dynamic protocols to succeed there must be some model of transformation to ensure

meaningful adaptations. Of the approaches commitment models and argumentation is

the most promising. The emphasis of this document will be the adoption of dialogue

games for our purposes.

The next chapter, chapter 3, describes the protocol language and the supporting

framework that will be the basis for this thesis’ contribution that can go some measure

toward addressing the gaps left by the technologies and models just described.

32 Chapter 2. The Current Landscape of Agent Communication

Approach Advantages Shortcomings

Institutional reliable dependant on centralized control

formally defined static

FSM representations

dissemination problem

Distributed Protocols modular static

novel approach inchoate development

closed systems

Mentalistic widely used used naively

agent-centric unverifiable

requirement heavy

too abstract

Social agent-centric limited scope

flexible requirement heavy

Rational flexible too theoretical

agent-centric requirement heavy

robust

Figure 2.9: Summary Table of Communication Models

Chapter 3

The Lightweight Coordination

Calculus(LCC)

The development of LCC came from dissatisfaction with Electronic Institu-

tions [Walton and Robertson, 2002] model for communication, especially the IS-

LANDER approach [Esteva et al., 2002]. Although the EI framework provides struc-

ture and stability to an agent system, it comes at a cost. Integral to EI is the notion

of the administrative agents. Their task is to enforce the conventions of the Institu-

tion and shepherd the participating agents. Messages sent by agents are sent through

the EI. This synchronises the conversation between the conversing agents, and keeps

the administrative agent informed of the state of the interaction. This centralisation of

control runs counter to the agent paradigm of distributed processing. This initial idea

has been expanded to a more general one of coordination oriented programming. Al-

though, our focus and discussion will be restricted to agents and multiagent systems,

the archetype is applicable to processing in open distributed systems in general and in

particular semantic web and grid applications.

By coding from the perspective of the interaction between agents rather than from

the more traditional agent-centric view, a unique and useful programming model is

created. It allows engineers to address some difficult issues associated with coordi-

33

34 Chapter 3. The Lightweight Coordination Calculus(LCC)

nating communicating agents independently of the internal construction of the agents

themselves.

Coordination becomes an important consideration in a number of situations. Con-

text is important in communication. The exact same word uttered has completely dif-

ferent meaning given a change in context. The utterance of ‘fire’ has drastically differ-

ent consequence compared versus the blindfolded man against a wall to the travelling

companion entering a pub on a cold night. Context can be understood not only in the

abstract sense (i.e. the context of an auction versus an informal discussion), but also

in terms of the context of an instance of an interaction. During an auction, the com-

munication of a bid is only appropriate in the context of the bidding still being open.

Both senses of context must be understood for an agent to participate successfully in

an interaction.

The creation or satisfaction of commitments inherent to the interaction that can not

be left to the caprices of the agents themselves must also be considered. For example,

it might be important to force an agent to satisfy some meta-dialogical requirement in

order, or as a consequence, of communicating a message. This is common in auctions

where the communication of “I bid X” commits you to paying ‘X’.

Coordination oriented programming can alleviate the ambiguity of the locutions

exchanged between messages. By introducing conditions upon the occurrence of mes-

sages during the interaction the meaning of the messages can be clarified. If an agent

is new to the interaction, this approach also provides a means for introducing agents

to the minimal participation requirements of the multiagent system. This is done with

a minimal engineering overhead for the newly arrived agent. These considerations are

less of a problem when the multiagent system can be guaranteed to never change, and

all the participating agents are developed by the same engineer. These assumptions

become impractical for the large, complex and open multiagent systems which are of

increasing interest.

Coordination oriented programming is a declarative specification of an interaction

3.1. Syntax 35

that is executable independent of the design of specific agents. This program when

executed coordinates the interaction between agents. It can be in a peer to peer way and

avoid the need third-party agents to coordinate the dialogue. The language developed

for this purpose is called LCC, lightweight coordination calculus.

In this chapter, the fundamentals of LCC are explained. This

work has been developed in a number of papers [Robertson, 2004c,

Robertson, 2004a, Robertson, 2004b, Walton and Robertson, 2002, Walton, 2004a,

Walton and Barker, 2004, Walton, 2004b]. There are a number of re-

searchers who have further extended LCC and its framework to address a

diverse number of problems in agent communication [Hassan et al., 2005,

Lambert and Robertson, 2005, McGinnis and Robertson, 2004a,

McGinnis et al., 2003, McGinnis and Robertson, 2004b, Paolo Besana, 2005,

Osman et al., 2006, Grando and Walton, 2006]. This language and framework

will be the basis for the later chapters of the thesis and my own enhancements.

3.1 Syntax

Figure 3.1 defines the syntax of a protocol language taken from [Robertson, 2004c]

which also gives a fuller explanation of the language and framework. The protocol

consists of a set of agent clauses, A{n}. These clauses make the agent definition con-

sisting of a role (R) and unique identifier (Id). A role is defined in a similar way as

Electronic Institutions: it is a way of defining communicative activity for a group of

agents rather than individuals, but An important distinction must be made. Electronic

Institutions rely largely on a finite state representation of the interaction protocol. The

roles act as a bounding box for a set of states and transitions. LCC is based on a

process calculus and is therefore well suited to express the concurrency found in mul-

tiagent systems.

The agent definition is expanded by a number of operations. Operations can be

36 Chapter 3. The Lightweight Coordination Calculus(LCC)

P ∈ Protocol ::= 〈S,A{n},K〉

A ∈ Agent Clause ::= θ :: op.

θ ∈ Agent Definition ::= agent(R,Id)

op ∈ Operation ::= no op

| θ

| (op) (Precedence)

| M⇒ θ (Send)

| M⇐ θ (Receive)

| op1 then op2 (Sequence)

| op1 par op2 (Parallelization)

| op1 or op2 (Choice)

| (M⇒ θ)← ψ (Prerequisite)

| ψ← (M⇐ θ) (Consequence)

M ∈ message ::= 〈m,P 〉

Figure 3.1: An Abstract Syntax of the Protocol Language

3.2. Expansion Engine and Framework 37

classified in three ways: actions, control flow, and conditionals. Actions are the send-

ing or receiving of messages, a no op, or the adoption of a role. Control Flow oper-

ations temporally order the individual actions. Actions can be put in sequence (one

action must occur before the other), performed simultaneously (actions must both be

completed without regard to order) or given a choice point (one and only one action

should occur before any further action). The ‘⇒’ and ‘⇐’ denote messages, M, being

sent and received. On the left-hand side of the double arrow is the message and on the

right-hand side is the other agent involved in the interaction.

Constraints can fortify or clarify semantics of the protocols. Those occurring on the

left of the ‘←’ are postconditions and those occurring on the right are preconditions.

The symbol ψ represents a first order proposition. For example, an agent receiving a

protocol with the constraint to believe a proposition s upon being informed of s can

infer that the agent sending the protocol has a particular semantic interpretation of the

act of informing other agents of propositions.

3.2 Expansion Engine and Framework

A message is defined as the tuple, 〈m,P 〉. Where m is the message an agent is cur-

rently communicating, and P is the protocol written using the language described in

figure 3.1. The protocol, in turn, is a triple, 〈S,A{n},K〉. S is the dialogue state. This is a

record of the path of the dialogue through the conversation space and the current state

of the dialogue for the agents. This set of agent clauses is marked to show the progress

of the dialogue and the current state of the interaction. The messages are marked as

closed or failed depending on whether they are communicated successfully. Messages

which have been communicated are encased by a ‘c’, c(M).

An operation is decided to be closed, meaning that it has been covered by the

preceding interaction, as defined in the following function:

38 Chapter 3. The Lightweight Coordination Calculus(LCC)

closed(c(X))

closed(A or B) ← closed(A) ∨ closed(B)

closed(A then B) ← closed(A) ∧ closed(B)

closed(X::=D) ← closed(D)

The second part is a set of agent clauses, A{n}, necessary for the dialogue. The

protocol also includes a set of axioms, K, consisting of common knowledge to be

publicly known between the participants. This explicit communication of the dialogue

state provides a means of coordination. It is possible to create an agent which retains no

internal record of the state of the dialogue but rather uses the communicated dialogue

state as a book mark for which to hold its place and remind it of the next communicative

step it can take.

Figure 3.2 describes rules for expanding the received protocols. An agent receives

a message of the form specified in figure 3.1. The message is added to the set of

messages, Mi, currently being considered by the agent. The agent takes the clause, Ci,

from the set of agent clauses received as part of P . This clause provides the agent with

its role in the dialogue. The agent then expands Ci by the application of the rules in

figure 3.2. The expansion is done with respect to the different operators encountered

in the protocol and the response to Mi. The result is a new dialogue state, Cn; a set

of output messages, On and a subset of Mi, which is the remaining messages to be

considered, Mn. The result is arrived at by applying the rewrite rules.

satis f ied(C) is true if C can be solved from the agent’s current state of knowledge.

satis f y(C) is true if the agent’s state of knowledge can be made such that C is satisfied.

The bottom of figure 3.2 should read that clause(P ,X) is true if clause X appears in

the dialogue framework of protocol P , as defined in figure 3.1. The sequence would

be similar to figure 3.3. Cn is then sent as part of P which will accompany the sending

of each message in On.

Figures 3.4 and 3.5 give a visualisation of the LCC approach (figure 3.5) to agent

3.2. Expansion Engine and Framework 39

A::=B
Mi,Mo,P ,O
−−−−−−→ A::=E

i f B
Mi,Mo,P ,O
−−−−−−→ E

A1 or A2
Mi,Mo,P ,O
−−−−−−→ E

i f ¬closed(A2) ∧ A1
Mi,Mo,P ,O
−−−−−−→ E

A1 or A2
Mi,Mo,P ,O
−−−−−−→ E

i f ¬closed(A1) ∧ A2
Mi,Mo,P ,O
−−−−−−→ E

A1 then A2
Mi,Mo,P ,O
−−−−−−→ E then A2

i f A1
Mi,Mo,P ,O
−−−−−−→ E

A1 then A2
Mi,Mo,P ,O
−−−−−−→ A1 then E

i f closed(A1) ∧ A2
Mi,Mo,P ,O
−−−−−−→ E

C ← M ⇐ A
Mi,Mi−{M⇐ A},P , /0
−−−−−−−−−−−−→ c(M ⇐ A)

i f (M ⇐ A) ∈Mi ∧ satis f y(C)

M ⇒ A ←C
Mi,Mo,P ,{M⇒ A}
−−−−−−−−−−→ c(M ⇒ A)

i f satis f ied(C)

null ←C
Mi,Mo,P , /0
−−−−−−→ c(null)

i f satis f ied(C)

agent(r, id) ← C
Mi,Mo,P , /0
−−−−−−→ a(R, I)::=B

i f clause(P ,a(R, I)::=B) ∧ satis f ied(C)

Figure 3.2: Rules for Expanding an Agent Clause

〈Ci
Mi,Mi+1,P ,Oi
−−−−−−−−→ Ci+1, . . . ,Cn−1

Mn−1,Mn,P ,On
−−−−−−−−→ Cn〉

Figure 3.3: Sequence of Rewrites

40 Chapter 3. The Lightweight Coordination Calculus(LCC)

communication compared to the more orthodox approach typified by Electronic Insti-

tutions(figure 3.4).

Figure 3.4: Figure of the Standard View of Protocol led Multiagent System

The standard view expects individual agent engineers to interpret formal definitions

and specifications to design their agents with. The agents then communicate messages

usually via third party agent that maintains the global state of the dialogue and ensures

norms are adhered to. In contrast, the LCC approach has the protocol designed sepa-

rate from the agent and the agents themselves coordinate the dialogue by the explicit

communication of the protocols and the dialogue state.

The par operator is not implemented by the expansion engine, because of the

possible problems that could occur in multiparty dialogues. Since the dialogue state is

sent with the message, there is the possibility of deadlock or state inconsistency. If the

agent receives to differing dialogue states for the same protocol, there is the possibly

intractable problem of how to reconcile the two versions of the dialogue state. This is

3.3. Agent Engineering Requirements 41

Figure 3.5: Figure of the Distributed Protocol Multiagent System

a consequence of the necessity to communicate the dialogue state to be able to adapt

them and achieve dynamic protocols. A variation of the LCC language and framework,

MAP [Walton, 2004b] does not maintain the dialogue state and avoids this difficulty,

but makes it unsuitable for run time protocol adaptations.

3.3 Agent Engineering Requirements

Agents themselves communicate the conventions of the dialogue. This is accom-

plished by the participating agents satisfying two simple engineering requirements.

Agents are required to share a dialogical framework. This an unavoidable necessity in

any meaningful agent communication. This includes the requirements on the individ-

ual messages and constraints1 are expressed in a ontology understood by the agents.

The issue of ontology mapping is still open, but the ideas and algorithm developed
1The specification of the constraint must be understood by the agent, but how it is satisfied is left to

the internal reasoning of the agent

42 Chapter 3. The Lightweight Coordination Calculus(LCC)

in this thesis have proven to be useful for research into run-time ontology reconcilia-

tion [Paolo Besana, 2005].

The other requirement obligates the agent to provide a means to interpret the re-

ceived message and its protocol. The agent must be able to unpack a received protocol,

find the appropriate actions it may take, and update the dialogue state to reflect any ac-

tions it chooses to perform. The approach taken here is the expansion engine described

previously in section 3.2.

3.4 An Example

We will take a simple example to illustrate LCC and the framework being used. The

conversation space can follow any one of these sequences. These are all the possible

permutations of message sequences for the interaction for the role being described.

For a(r1,a1) :



































〈m1 ⇒ a(r2,a2), m3 ⇐ a(r2,a2)〉,

〈m2 ⇒ a(r2,a2), m4 ⇐ a(r2,a2)〉,

〈m1 ⇒ a(r2,a2), m4 ⇐ a(r2,a2)〉,

〈m2 ⇒ a(r2,a2), m3 ⇐ a(r2,a2)〉



































The agent identified as a1 playing the role of r1 can either start the dialogue by

the communication of the message m1 or m2. Afterwards the dialogical partner, a2,

having adopted the role, r2, can reply by either sending the message m3 or m4. It is

easy to imagine how quickly the conversation space between agent can expand to an

unmanageable size.

This conversation space can be defined in LCC as the agent clauses shown in fig-

ure 3.6. This defines the steps of the protocol that is necessary for the agent playing

the role identified in the agent definition (i.e. left-hand side of the ‘::=’). It is easy to

see that the agent a1 can satisfactorily explore the conversation space by following the

agent clause. The same is true for its dialogical partner following the protocol for the

role of r2.

3.4. An Example 43

a(r1,a1)::=

(m1 ⇒ a(r2,a2) or m2 ⇒ a(r2,a2)) then

(m3 ⇐ a(r2,a2) or m4 ⇐ a(r2,a2)).

a(r2,a2)::=

(m1 ⇐ a(r1,a1) or m2 ⇐ a(r1,a1)) then

(m3 ⇒ a(r1,a1) or m4 ⇒ a(r1,a1)).

Figure 3.6: Conversation Space as LCC Agent Clauses

Agent a1 decides to initiate a dialogue. The protocol is expanded by the rules in

figure 3.2. Since this agent is identified by a1 playing the role of r1, it can satisfy the

first expansion rule (e.g. A ::= B Mi,Mo,P ,O
−−−−−−→ A ::= E if B Mi,Mo,P ,O

−−−−−−→E). Expan-

sion can now continue but the agent must first decide which of the two operations of

the or to perform. Agent a1 for one reason or the other chooses to send message m1.

This particular protocol has not put any explicit constraints to be satisfied on the ex-

change of messages. Instead it is left to the discretion of the agents to choose between

the actions allowed by the protocol. Once the agent makes its choice, it expands its

appropriate clause and updates the dialogue state. This is done in accordance with the

expansion rules defined by figure 3.2. The expansion can go no further for the agent,

because it cannot satisfy the either half of the second or , because neither message

has been received yet. At the very top of figure 3.7 reflects the closed m1 message in

a1 dialogue clause. There is no dialogue state for a2’s agent clause as the agent has

yet to take any action.

The agent a2 receives the protocol’s agent clauses, the dialogue state showing agent

a1’s action in the dialogue, and the message m1. Upon receiving this, the agent expands

the protocol and updates it dialogue state to reflect the reception of the message from

a1. Following the expansion rules the agent closes that part of its clause in the dialogue

44 Chapter 3. The Lightweight Coordination Calculus(LCC)

a(r1,a1)::=

c(m1 ⇒ a(r2,a2)) then

(m3 ⇐ a(r2,a2) or m4 ⇐ a(r2,a2)).

⇓ ⇓

a(r1,a1)::= a(r2,a2)::=

c(m1 ⇒ a(r2,a2)) then c(m1 ⇐ a(r1,a1)) then

(m3 ⇐ a(r2,a2) or m4 ⇐ a(r2,a2)). c(m4 ⇒ a(r1,a1)).

⇓ ⇓

a(r1,a1)::= a(r2,a2)::=

c(m1 ⇒ a(r2,a2)) then c(m1 ⇐ a(r1,a1)) then

c(m4 ⇐ a(r2,a2)). c(m4 ⇒ a(r1,a1)).

Figure 3.7: Expansion of Dialogue State of the Agents

state. Agent a2 decides to send m4, and once again the expansion engine does its work

and the outgoing message, the agent clauses, and their dialogue states are sent back to

agent a1. This is reflected by figure 3.7 after the first ⇓. The final state is achieved

when agent a1 receives m4 and updates its clause and ends the dialogue.

3.5 Chapter Summary

The use of LCC removes the reliance on centralised agents for synchronisation of indi-

vidual participants in the system, provide a means for dissemination of the interaction

protocol and to separate the interaction protocol from the agent’s rationalisations to

allow the dynamic construction of protocols during the interaction. By defining in-

teraction protocols during run-time, agents are able to interact in systems where it is

impossible or impractical to define the protocol beforehand. For example, negotiation

dialogues where the domain of negotiation is not fixed or unknown. Another example

3.5. Chapter Summary 45

would be diagnosis dialogues where the course of the dialogue is determined by the

information sent and not a fixed sequence of messages.

A similar approach to LCC is MAP [Walton, 2004b]. MAP is more orientated to-

ward web services, but this difference is trivial for the issues being addressed. They

differ in their approaches to synchronicity. Both frameworks distribute protocols but

for MAP this is done only at required times (e.g. initiation of the dialogue). It does

not maintain or communicate the dialogue state during the interaction. A consequence

of this difference allows MAP to easily parallelize and multi-cast interactions. LCC

is capable of producing protocols with more than two participants but it is limited to

interactions that can be serialized. However, LCC can have any number of distinct

parallel interactions.

Other issues of agent communication must also be assumed such as issues of trust,

agent discovery, and timing. Trust in agency is a large concern for agency and it is rec-

ognized that the use of distributed protocols emphasises this issue as agents themselves

control the social norms and do not depend on a third party arbiter. How the agents

find their communicative partner and determine the suitability of the protocol is also

assumed and the implementation described relies on a bootstrapping mechanism which

directs the agent to others. LCC assumes asynchronous communication and does not

directly address potential real time demands on messages. As they are currently de-

scribed the protocols are static and brittle and unforgiving to failure regardless of the

triviality of the fault. This is currently being addressed within constraint satisfaction

relaxation [Hassan et al., 2005] and with dynamic protocols as described in the next

chapters of this thesis.

Despite these relatively innocuous limitations, this protocol language is well suited

for our purposes. By distributing the protocol during the interaction, the agents have

providence over the interaction protocol allowing agents to make transformations. The

explicit transmission of the dialogue state records and communicates the choices made

as the protocol is realised. It also catalogues the transformations made and the result-

46 Chapter 3. The Lightweight Coordination Calculus(LCC)

ing properties which now hold because of those changes. This allows the mechanism

for the flexible protocolled approach we seek. With the machinery to make transfor-

mations possible, it is important to ensure they are controlled and meaningful. The

follow chapters detail two different possibilities to realize this.

Chapter 4

Realising Dynamic Protocols with LCC

The ability to modify the interaction protocol being used by conversing agents requires

modification to the LCC framework. There must be a point of contact between the ex-

pansion engine and the decision making procedures of the agent to allow the agent to

evaluate the protocol, including the dialogue state, and determine if an adaption to the

protocol is warranted. If so the transformation is made by sending the protocol and

the adaption to the predicate performing the transformation. The framework has been

extended to include a transformation predicate to ensure all transformations preserve

the symmetry of the protocols. This extension follows the modular spirit of the orig-

inal framework and does not modify it. The expansion engine performs exactly the

same and protocol language has remains unchanged. Protocols are passed from the

framework to the transformation engine and a protocol is returned. If an adaptation

is unnecessary the agent returns the original protocol unadulterated. If a change has

been made, no special consideration must be communicated to the framework and the

expansion engine performs as normal on the modified protocols. The point of contact

exists after the agent receives the protocol from a dialogical partner, and right before

the transmission as these points reflect a change in the dialogue state and thus the pos-

sibility that the remainder of the protocol no longer addresses the needs arisen from

that new state. Chapter 6 details the specific changes in the code of the framework.

47

48 Chapter 4. Realising Dynamic Protocols with LCC

This chapter will concentrate on two models of communication for use with the

LCC framework to realize dynamic protocols: BDI and dialogue games. The use of

BDI logics, typified by the FIPA ACL, is a popular model for creating an agent centric

model of communication. Although there are numerable and some insurmountable

difficulties associated with its use, none the less an implementation as a distributed

protocols addresses some. Section 4.1 lists some of the problems identified by the

research literature. Further extensions to LCC with BDI are discussed but ultimately

abandoned. Instead the later part of the chapter focuses on the use of dialogue games

from argumentation theory as a preferable model with which to base our adaptable

protocols.

4.1 Communicating FIPA Semantics

There have been a number of systems developed using the FIPA ACL such

as [Bellifemine et al., 1999], but the existence of those FIPA-compliant systems fail

to prove the ACL is appropriate as a standard for all agent communication. There are

a number of fundamental problems with the model for agent communication which

impede its adoption as the standard for which it was designed. The proposal here is a

much more direct one: to provide a means for agents to communicate their semantics

for conversation by the act of conversing. This is applicable for any model, but this

discussion will use FIPA to illustrate its points as it is a well known, although troubled,

agent communication language. An implementation of FIPA communicative actions as

LCC dynamic protocols solves some of the difficulties and illustrates the advantages of

this thesis’s approach. These difficulties and the solution described here are applicable

to agent communication in general.

4.1. Communicating FIPA Semantics 49

4.1.1 Problems of FIPA

FIPA ACL’s fate seems to be that of the “straw man” of agent communication. There

is a great litany of research papers that use the failures of the ACL’s design as a counter

example to the ideas each author is purporting.

The criticism expressed here are largely taken from some of the seminal cri-

tiques of the FIPA ACL specifications [Wooldridge, 2000, Pitt and Mamdani, 1999,

Mayfield et al., 1995, Labrou and Finin, 1997]. The hope is to avoid the more niggling

complaints that also exist in abundance and focus on the more fundamental flaws. The

purpose is to identify those problems that can be solved by this thesis’ approach. The

debate of whether a canonical set of locutions is possible or even desirable will be

avoided. As the literature of the field as well as precedence in other fields of AI seem

to soundly point toward the negative.

Much of the criticism stems from FIPA’s basing the semantics of its locutions1.

BDIs of the communicating agents. The developers of KQML [Finin et al., 1994],

a preceding ACL, knew that computational complexity and ungrounded semantics of

multimodal BDI logics presented a problem. They also recognized the contentiousness

of attempting to define the semantics of that logic. A caution ignored by the FIPA

initiative. Another line of attack is that this approach takes one model of reasoning for

agency and makes it inextricable from one particular model of agent communication.

If the goal is interoperability in open multiagent systems, this is not a good starting

point.

The formal semantics for FIPA ACL are defined in terms of Semantic Language

(SL). Each communicative act has a feasibility condition and a rational effect defined

in terms of a formula in SL. The problem of developing agents to conform to these

requirements is compounded by the relative inaccessibility of the foundational docu-

1The FIPA specifications use the term Communicative Act. KQML calls them performatives. The
literature in general uses the term locution. This document use the terms locution and communicative
act interchangeably. Though arguments have been made against the use of the term performative, for
consistency its usage has been maintained but only to refer to the communicative primitives of KQML

50 Chapter 4. Realising Dynamic Protocols with LCC

ments of SL [Sadek, 1991], and the relative importance of the informal versus formal

descriptions of the locutions for purposes of conformity to the standard.

This unsteady foundation is further shaken by the questioning of whether inten-

tions are at all necessary for basing the preconditions of locutions [Habermas, 1991].

Some consider context of the locution sufficient to determine the intention of an in-

dividual utterance. One way context is given is through the use of protocols. This

has been recognized with regards to FIPA ACL specifically [Pitt and Mamdani, 1999].

There are also criticism for the lack of an operational semantics and questions over the

soundness and complexity of SL.

The advantage LCC and dynamic protocols can provide FIPA and other models of

communication is an explicit expression of the conditions for individual locutions and

their context with respect to other locutions. This can be done using the traditional

static or dynamic protocols. Unfortunately, the most fundamental problems with the

FIPA ACL cannot be addressed. It is for this reason that the use of a more agreeable

approach is necessitated, namely the adoption of dialogue games which is explored

later in this chapter.

4.1.2 FIPA Communicative Acts as Protocols

By encoding each communicative act as a series of protocol steps or agent clauses,

agents can communicate using FIPA performatives and have a publicly accountable

expression of the feasible preconditions and the rational effect associated with that act.

These conditions are expressed as LCC constraints or other communicative acts when

the it is implied to be a response to another. Rational effects within agents are not

ensured. They are not necessary for conformance to the standard. If rational effects

are written as LCC constraints, the interpretation is much less lenient as LCC requires

the satisfaction of all constraints. The solution is to exclude the rational effects from

the protocols all together.

The most widely used FIPA communicative act is inform. Many of the

4.1. Communicating FIPA Semantics 51

other communicative acts are defined in terms of inform. The formal description

from [FIPA, 2001] for inform is as follows:

Feasible Preconditions(FP): Biφ ∧ ¬Bi(Bif jφ ∨ Uif jφ)
Rational Effects(RE): B jφ

‘B’ is stating that an agent identified by the following subscript letter has some

belief. Therefore, Biφ states that agent ‘i’ believes φ. The predicate Bifiφ represents

the uniquely SL construction which is shorthand for Biφ ∨ Bi¬φ (i.e. i either believes

φ or its negation). Similarly, Uif jφ is short hand for either the agent is uncertain or is

not uncertain about a proposition, Uiφ ∨ Ui¬φ.

Unfortunately we are already into some difficulties, because the informal english

description gives three conditions:

• holds that some proposition is true,

• intends that the receiving agent also comes to believe that the proposition is true,

and,

• does not already believe that the receiver has any knowledge of the truth of the

proposition.

The first and third can be mapped more or less to the two conjuncts of the formal

feasible preconditions, but the intention Ii(B jφ) does not appear. Such is the fate of

the poor engineer who attempts to develop an FIPA compliant agent. Luckily by using

LCC, whatever interpretation we decide upon will be clear to our dialogical partners.

The translation from the formal description is straightforward and is shown in fig-

ure 4.1. For this to work, two additional requirements are made on the agents. Firstly,

the agents must understand SL its definition of belief, intentions, uncertainty, etcetera,

but this is unavoidable if one is to implement the FIPA ACL. The requirement intro-

duced is the representation of the SL formula.

52 Chapter 4. Realising Dynamic Protocols with LCC

in f orm(φ) ⇒ a(,Pid) ← believe(Id,φ) and

not(believe(Id,(bi f (Pid,φ) or ui f (Pid,φ))))

assert(believe(Pid,φ)) ← in f orm(φ) ⇐ a(, Id)

Figure 4.1: LCC for the Inform Communicative Act

Two lines of attack are available that can be taken to implement the FIPA commu-

nicative acts as protocols. Each communicative act could be written as a snippet of

protocol as shown in figure 4.1 which would then be spliced in by the transformation

function when the agent wanted to use it. Another possibility, although it has the same

functional characteristics, has more appeal for aesthetic reasons. Each communicative

act could be written within an agent clause. Figure 4.2 has the same protocol actions

described but they are encapsulated within the context of a role and agent clause.

a(in f orm ca sender, Id)::=

in f orm(φ) ⇒ a(in f orm ca receiver,Pid) ← believe(Id,φ) and

not(believe(Id,(bi f (Pid,φ) or ui f (Pid,φ)))).

a(in f orm ca receiver,Pid)::=

assert(believe(Pid,φ)) ← in f orm(φ) ⇐ a(in f orm ca sender, Id).

Figure 4.2: FIPA Inform as LCC Agent Clauses

The use of an agent clause may seem to be unnecessary for a single communica-

tive act, but this role encapsulation will be helpful when constructing more complex

protocols from the single communicative act ones.

FIPA also recognizes the importance of context for defining communicative seman-

tics and has defined a number of interaction protocols for typical agent interactions.

4.1. Communicating FIPA Semantics 53

From our simple protocols which govern the BDI constraints of an individual com-

municative act, the more complex protocols are constructed. For example, figures 4.3

and 4.5 show two AUML descriptions of FIPA protocols.

Figure 4.3: AUML diagram for FIPA query protocol

Figure 4.3 shows the protocol FIPA proposes for requests. A query is sent and an

agent is meant to reply with either an inform, failure, not understood, or refuse. This

is easily represented as an LCC protocol as shown in figure 4.4.

54 Chapter 4. Realising Dynamic Protocols with LCC

a(query IP initiator, Id)::=

a(query ca sender, Id) then


















a(in f orm ca receiver, Id) or

a(f ailure ca receiver, Id) or

a(not understood ca receiver, Id) or

a(re f use ca receiver, Id)



















.

a(query IP responder,Pid)::=

a(query ca receiver,Pid) then


















a(in f orm ca sender,Pid) or

a(f ailure ca sender,Pid) or

a(not understood ca sender,Pid) or

a(re f use ca sender,Pid)



















.

Figure 4.4: FIPA Query Protocol as LCC

4.1. Communicating FIPA Semantics 55

Another well known protocol is the contract net protocol represented as AUML in

figure 4.5. The initiator sends the cfp communicative act having satisfied its feasible

preconditions. The recipient of the cfp can either reply with not understood, refuse,

or propose. Following the propose, the agent should next send a reject proposal or an

accept proposal. If the agent sent an accept proposal it can send a cancel or wait for

the other agent to send an inform if it is successful or a failure.

Figure 4.5: AUML diagram for contract net protocol

56 Chapter 4. Realising Dynamic Protocols with LCC

An example of encoding this protocol in LCC is shown in figure 4.6.

Though these protocols are considered standards by FIPA, some authors have

pointed out ambiguities or a lack of desirable functionality [Paurobally, 2002,

Pitt and Mamdani, 1999]. This is much easier to fix through distributed dynamic pro-

tocols as modifications can be done at run time without changing the basic and standard

interaction protocols defined by FIPA’s standards. Even if a remedy is impossible, at

least with the protocol expressed in a manner that can be communicated and evaluated,

errors or inconsistencies can be identified.

By the composition of individual communicative act protocols and the predefined

FIPA interaction protocols as LCC, the FIPA complaint agent can create protocols at

run time that also communicate the expectations for others on the use of those individ-

ual communicative acts and interaction protocols. For example, figure 4.7 shows the

dialogue state for the initiating agent of the contract net protocol. For simplicity’s sake

only one of the participating agent’s clauses is shown and the syntax of the FIPA ACL

content languages is not followed.

In the figure, the agent is sending a “call for proposals” (cfp) as part of the contract

net protocol to receive proposals on the building of the new parliament. The protocols

is followed by the agents until the agent must decide whether to accept or reject the

proposal. The bid received seems more of an error than a serious bid. Rather than reject

the proposal and cause the interaction to terminate unsuccessfully, the initiating agent,

agentA, decides to query agentB to ensure the submitted proposal was not erroneous.

At this point the protocol is adapted by the introduction of the initiating role for the

query protocol as shown in figure 4.4. This in turn is a series of protocols for individual

communicative acts. An example of the protocol for the inform act was shown in

figure 4.2. The query is answered with the inform and concludes the query interaction

protocol. The actions of FIPA’s query interaction protocol is underlined in the figure.

The agent, confident that the received bid is not an error now, returns to the step in the

contract net protocol where it must decide whether to accept the received proposal.

4.1. Communicating FIPA Semantics 57

a(contract net IP initiator, Id)::=

a(c f p ca sender, Id) then












a(propose ca receiver, Id) or

a(re f use ca receiver, Id) or

a(not understood ca receiver, Id)













then







a(accept proposal ca sender, Id) or

a(re ject proposal ca sender, Id)






then













a(in f orm ca receiver, Id) or

a(f ailure ca receiver, Id) or

a(cancel ca sender, Id)













.

a(contract net IP responder,Pid)::=

a(c f p ca receiver,Pid) then












a(propose ca sender,Pid) or

a(re f use ca sender,Pid) or

a(not understood ca sender,Pid)













then







a(accept proposal ca receiver,Pid) or

a(re ject proposal ca receiver,Pid)






then













a(in f orm ca sender,Pid) or

a(f ailure ca sender,Pid) or

a(cancel ca receiver,Pid)













.

Figure 4.6: FIPA Contract Net Protocol as LCC

58 Chapter 4. Realising Dynamic Protocols with LCC

a(contract net IP initiator,agentA)::=

a(c f p ca sender,agentA)::=

c(c f p(newParliment) ⇒ a(c f p ca receiver,agentB)) then

a(propose ca receiver,agentA)::=

c(propose(300B,20years) ⇐ a(propose ca sender,agentB)) then


























a(query IP initiator,agentA)::=

a(query ca sender,agentA)::=

c(query(seriously) ⇒ a(query ca reciever,agentB)) then

a(in f orm ca receiver,agentA)::=

c(in f orm(seriously) ⇐ a(in f orm ca sender,agentB))



























then







a(acceptproposal ca sender,agentA) or

a(re jectproposal ca sender,agentA)






then













a(in f orm ca receiver,agentA) or

a(f ailure ca receiver,agentA) or

a(cancel ca sender,agentA)













Figure 4.7: FIPA CAs as an Dynamic LCC Clause

4.2. Dialogue Games 59

It has been shown that it is possible to use LCC and FIPA’s communicative acts and

interaction protocols to create dynamic and meaningful protocols. However, the use

of BDI-logic based models of communication as a model for distributed protocols can

not be endorsed. Ultimately, there is a problem at the abstract level. The inclusion of

explicit constraints on the internal states of the agent seems a step too far in the balance

between autonomy and reliability. It provides the system with a public declaration

of intended belief states to which agents could be held accountable, but it does not

solve the problem of an insincere agent. A sufficiently clever agent can still pretend

to satisfy the constraint for a belief state that it does not believe. This is the main

reason, that we turn to a more accommodating communicative model to try to facilitate

dynamic protocols. Dialogue games’ focus is on the interaction itself to build a model

of communication rather than the internal mental caprices of agents, and should fit well

with LCC’s coordination oriented approach to protocols.

4.2 Dialogue Games

LCC is a mechanism for communication designed independent of any one rational or

communicative model of agency. The language allows the creation of flexible proto-

cols as well as the ability to have dynamic protocols. The framework for the language

provides the means for the dissemination of the interaction protocols, which will be

useful for dynamic conversation spaces. This is done in a decentralised manner in

keeping with the spirit of the agency paradigm. Yet this is not enough to drive the

complex and robust agent conversations which we seek. It would not be desirable to

allows agents to make arbitrary changes to their protocols. A model of communication

is required which can take advantage of the unique properties of the LCC approach.

After thoroughly investigating the popular models of chapter 2, the model that proved

to be most promising is dialogue games.

Dialogue games have several important characteristics which make them suit-

60 Chapter 4. Realising Dynamic Protocols with LCC

able for our purposes. Dialogue games are similar to conversation poli-

cies [Greaves et al., 2000] with the advantage of having scope over the entire con-

versation rather than specifying policies over only segments of a dialogue. Dia-

logue games are one of the many progeny of argumentation theory to find applica-

tion in multiagent communication. The orderly and structured nature of dialogue

games are easily translated to LCC protocols. The dialogue games from which we

develop our protocols are not defined with any preference for a single semantics of

agency. There is a separation between the semantics of agency and the semantics

and syntax for communication. This avoids sematic verification woes that bedevil

BDI approaches to agent communication as mentioned earlier in this chapter. Previ-

ous research has provided us with a number of formal specifications for the dialogue

games [McBurney and Parsons, 2002].

The shortcomings of using dialogue games can be addressed by an implementa-

tion in the LCC framework. Implementation is the keyword. The majority of dialogue

game research is focused on the theory and formalisms though a sea change is occur-

ring with the argumentation community, typified by the Argumentation Interchange

Format (AIF) effort [Chesnevar et al., 2005]. The development of solid formal foun-

dations have been made to the determent of practicalities. The question of whether

these dialogue games will survive in the wilds of open multiagent systems are of less

interest to the community. The implementation of dialogue game specifications for use

in the LCC framework is facilitated by both approaches having their roots in propo-

sitional logic. The various dialogue games developed suffer from a common problem

in agent communication. This is the problem of dialects. Each agent will be devel-

oped from specifications of a game which detail the ‘house rules’ for that particular

type of game. Two agents who can play a game of negotiation or deliberation may not

be able to communicate if their ‘house rules’ differ. Work has been done to establish

when these differences are negligible [Johnson et al., 2002], but the LCC answer is to

ensure only one protocol is used. Agents by the act of playing the dialogue game also

4.2. Dialogue Games 61

communicate its ‘house rules’.

Dialogue games and LCC compliment each other to create dynamic interaction

protocols for use in open multiagent systems. The model of agent communication

found in dialogue games fit well with the novel mechanism of communication found

in the LCC framework. Both approaches see the separation of syntax and semantics

as of paramount importance. As well as their foundations in propositional logic make

their amalgamation a simpler task. Together a far better solution to the problem at hand

is found than with either in isolation. The spirit of dialogue games have found a host

in the body of the LCC.

Section 4.2.1 defines several dialogue games as LCC clauses. Using these, sec-

tion 4.2.2 illustrates how more complex dialogue games are implemented as adaptable

protocols.

4.2.1 Writing Dialogue Games as LCC Protocols

The following subsections define several types of Dialogue Games taken

from [Parsons et al., 2004]. There are several reasons for the focus on the definitions

described in that paper. The paper is the result of work that has had several iterations

of development and peer review. The clearly written ‘English’ definitions, which are

reproduced in this chapter, facilities translation to an LCC protocol. The same au-

thors have also published work concerning the creation of complex dialogue games,

and commitment in dialogue games. This provides consistency for the demonstration

using LCC in section 4.2.2 . The literature that this chapter utilises is also bolstered by

formal definitions of the locutions used, dialogue games, and their combinations. All

of which makes our task of translation much easier.

The set of locutions used are also from [Parsons et al., 2003b, Parsons et al., 2003a,

Parsons et al., 2002]. It is assumed the agents know the semantics of these locutions.

This assumption also covers the definition of the logical operators that are used in

the content of the messages. As seen in the previously, the semantics of individual

62 Chapter 4. Realising Dynamic Protocols with LCC

locutions can be clarified through the constraints or common knowledge. This is of

secondary concern and is left as an exercise for the reader. Instead the focus will be on

the protocols and their dynamic composition to create complex dialogue games from

atomic ones.

4.2.1.1 Information Seeking Game

null

accept(R)
send

assert(R)

receive
assert(P)

challenger of T

adopt

receiveadopt
challenger of T

send
challenge(R)

adopt

List = [R|T]
seeker of P

challenger of not(P)

adopt

receive

assert(Unknown)

assert(not(P))

receive

send

question(P)

adopt
challenger

of P
challenger

of S

challenger
of List

Figure 4.8: Graphical Representation of the Information seeking Game

Information Seeking games are used by an agent that wishes to know the answer

to some proposition and it believes another agent knows this information. This game

is less overtly antagonistic than some of the others. The goal of the game is to spread

information. The initial condition of the initiating agent lacks that information, and the

other agent is meant to alleviate that.

The english description of the information seeking game defined

in [Parsons et al., 2004] is as follows:

1. Agent A asks question(p).

4.2. Dialogue Games 63

2. Depending upon the contents of its knowledge-base and its assertion attitude,

agent B replies with either assert(p), assert(¬p), or assert(U), where U indicates

that, for whatever reason, B cannot give an answer.

3. A either accepts B’s response, if its acceptance attitude allows, or challenges.

U cannot be challenged, and as soon as it is asserted, the dialogue terminates

without the question being resolved.

4. B replies to a challenge with an assert(S), where S is the support of an argument

for the last proposition challenged by A.

5. Go to (3) for each proposition in S in turn.

Figure 4.8 provides a diagram to represent the dialogue game. The left hand side

role coresponds to the agent clause found in figure 4.9 and the role on right hand side

is defined in an agent clause from figure 4.10. Arcs are actions taken with the dia-

logue which are either messages being communicated or roles being adopted. Circles

identify states and roles are represented as squares. The figures represent the interac-

tion from the view point of the initiating agent. Figures 4.9 and 4.10 are one translation

from the english description above to the computational LCC representation of the pro-

tocol. Translation is the keyword. It is well known that interpretations and translations

commonly result in information loss. Traditionally in protocol led multiagent systems,

two agent engineers read the same specification, create two interpretations, and two

implementations and assume that other agent engineer has developed his agent in such

a way that the agents can still communicate. The risk of such assumptions may not be

that great in domains of less complexity and regularity, but as the complexity of agent

interactions increase so too the risk of misunderstanding. The use of LCC, and the

introdcution of the dynamic adaptations explored in this thesis provide an advantage

over this traditional model. In LCC there is only one protocol and it is communicated

during interactions. If the other agent has different expectations on the interaction, it is

at least possible to evaluate the LCC protocol as it is expressed in a computational and

64 Chapter 4. Realising Dynamic Protocols with LCC

declarative format. Having the communicative norms as LCC in a computational for-

mat also allows the protocols to be verified before interactions (e.g. simulation, model

checking, etc.).

a(seeker(P,B),A)::=

question(P) ⇒ a(provider(P,A),B) then






assert(P) ⇐ a(provider(P,A),B) then

a(challenger([P],B),A)






or







assert(not(P)) ⇐ a(provider(P,A),B) then

a(challenger([not(P)],B),A)






or

assert(U) ⇐ a(provider(P,A),B).

a(provider(P,A),B)::=

question(P) ⇐ a(seeker(P,B),A) then






assert(P) ⇒ a(seeker(P,B),A) then

a(de f ender([P],A),B)






or







assert(not(P)) ⇒ a(seeker(P,B),A) then

a(de f ender([not(P)],A),B)






or

assert(U) ⇒ a(seeker(P,B),A).

Figure 4.9: A Protocol for an Information Seeking Dialogue Game

The protocol of figure 4.9 defines the initial roles for the agents involved. The two

roles are symmetrical with one another. The focus will be from the perspective of the

initiating agent as the explanation for the design decisions is given. The separation of

the information seeking game into two roles is to enable the recursion over the set of

supporting propositions described by rule 5 of the english description. Figure 4.10 is

the definition of the two recursive roles that the agents can adopt during the dialogue.

The initial role that an agent takes to begin an information seeking game is the

4.2. Dialogue Games 65

seeker role of figure 4.9. Part of this role’s definition, a(seeker(P,B),A), is P which is

the proposition for which the information is being sought and B the identifier of the

agent with whom the agent A would like to begin the game. The LCC protocol begins

the game proper with the question locution sent is the commencement rule specified in

step 1 of the game’s description. Looking at the partner’s clause, we see the provider

role has the complementary step of receiving that question locution. The provider can

respond by asserting the proposition P, its negation, or unknown. Unknown is the

the statement expressed as U in rule 2 of the specification. Step 3 states that upon

the assertion of unknown, U, the dialogue should terminate. The seeker’s clause has

the steps for the reception of the three possible replies from the provider to the initial

question. If P or its negation are asserted the next step is the adoption of the recursing

role of ‘challenger’ defined in 4.10. The immediate completion of the protocol, and

thus the interaction, upon receiving the assert of U is also defined by the protocol.

Already important design decisions have been made. Another engineer encoding

this dialogue game might choose to explicitly constrain the sending of the question

and the subsequent assert responses. I have throughout the definition of these proto-

cols tried to include the least number of explicit constraints upon the messages, such

as when the description makes an explicit condition upon the sending of an message.

Allowing the focus to be on the messages being exchanged and ultimately the modifi-

cation of the protocol to achieve the dynamism that is our goal. This is also consistent

with the basic philosophy of the LCC framework in that it is important to make the

minimal engineering requirements upon communicating agents. The consequence of

this style puts the burden upon the agent’s reasoning ability, but also increases its au-

tonomy.

After the assertion of either the proposition or its negation, the role of challenger

is taken by the initiating agent as defined in figure 4.10. For its next action the agent

has a choice; it can send the accept of the previously received assertion or challenge it.

The third choice, null ← (List = []), is the base case for the recursion. The constraint

66 Chapter 4. Realising Dynamic Protocols with LCC

is satisfied when the list of propositions is empty. The null action is done and the role,

and thus the protocol, is finished.

a(challenger(List,B),A)::=

null ← (List = []) or






accept(R) ⇒ a(de f ender(List,A),B) ← (List = [R|T]) then

a(challenger(T,B),A))






or













challenge(R) ⇒ a(de f ender(List,A),B) ← (List = [R|T]) then

assert(S) ⇐ a(de f ender(List,A),B) then

a(challenger(S,B),A) then a(challenger(T,B),A)













.

a(de f ender(List,A),B)::=

null ← (List = []) or






(List = [R|T]) ← accept(R) ⇐ a(challenger(List,B),A) then

a(de f ender(T,A),B)






or













(List = [R|T]) ← challenge(R) ⇐ a(challenger(List,B),A) then

assert(S) ⇒ a(challenger(List,B),A) ← support(R,S) then

a(de f ender(S,A),B) then a(de f ender(T,A),B)













.

Figure 4.10: The Recursive Roles for the Information Seeking Dialogue Game Protocol

The accept and challenge locutions have the constraint, ← (List = [R|T]). This

takes the list of propositions under consideration which for the first iteration is always

the single proposition P and separates the first element of that list. Once again I have

left explicit constraints concerning the agent’s acceptance attitude out of the protocol,

but certainly it is appropriate to include them especially considering their explicit men-

tion in rule 3 of the specification. For example, an additional constraint could be added

to the sending of accept in the challenger role like this:

accept(R) ⇒ a(de f ender(List,A),B) ← (List = [R|T])and acceptable(R)

4.2. Dialogue Games 67

Now the protocol explicitly requires an acceptability predicate be satisfied before

accept can be sent rather than trusting the agent to do this itself. However this has no

effect on creating complex dialogue games with dynamic protocols.

If the agent chooses to accept the agent’s assertion of either P or not(P), the proto-

col recurses upon the tail of the list of propositions. If this acceptance was for the initial

proposition the tail will be empty and the base case constraint will succeed and com-

plete the dialogue game. This termination rule is not explicitly expressed in the steps

of the proposition, but it is safe to assume that it is not controversial design decision.

The specification is very clear as to what should happen after a challenge is sent. Rule

4 tells us the recipient of the challenge should send an assert(S). The defender role has

defined this step in the protocol. The constraint is included in order to introduce the

new propositions into the protocol. Rule 5 is the recursive step, the agents must con-

tinue through the supporting propositions considering whether to accept or challenge

them and if they in turn are challenged it must also consider those newly introduced

propositions. The challenger agent first adopts the a(challenger(S,B),A) role for the

newly introduced S propositions and then continues to take the a(challenger(T,B),A)

for the remainder of the existing list propositions, T.

4.2.1.2 Persuasion

Persuasion dialogues games are played when one agent wishes to convince another of

some proposition. The initiator of the game wishes to have another adopt some belief.

The agent proposes some statement and attempts to convince the other to agree upon

that statement. The goal of the dialogue is to reconcile the disparity of belief between

the agents. It may be the case that the other agent already believes in the proposition

which makes the persuader’s task much easier. The English description of the game’s

rules are as follows [Parsons et al., 2004]:

1. A issues a know(p), indicating it believes that p is the case.

68 Chapter 4. Realising Dynamic Protocols with LCC

adopt
defender

of T

adopt
challenger
of not(R)

List = [R|T] null

defender of T

adopt

defender of S
adopt

defender of T
adopt

assert(S)
send

challenge(R)
receive

assert(not(R))
receive

defender of T
adopt

reject(R)
receive

accept(R)
receiveof List

defender

adopt

assert(P)
send

know(P)
send

persuader
of P

defender
of P

Figure 4.11: Graphical Representation of the Persuasion Game

2. A asserts p.

3. B accepts p if its acceptance attitude allows, else B either asserts ¬p if it is

allowed to, or else challenges p.

4. If B asserts ¬p, then go to (2) with the roles reversed and ¬p in the place of p.

5. If B has challenged, then:

(a) A asserts S , the support for p;

(b) Go to (2) for each s ∈ S in turn.

6. If B does not challenge, then it issues either accept(p) or reject(p), depending

upon the status of p for it.

Figure 4.11 shows the graph for the game, and figures 4.12 and 4.13 are the per-

suasion game as an LCC protocol. The initiating role is the persuader role. The

bootstrapping variables for this game are the same, p is the proposition the agent wants

to discuss and B is the dialogical partner’s identifier. The game begins by the sending

4.2. Dialogue Games 69

a(persuader(P,B),A)::=

know(P) ⇒ a(listener(P,A),B) then

assert(P) ⇒ a(listener(P,A),B) then

a(de f ender([P],B),A).

a(listener(P,A),B)::=

know(P) ⇐ a(persuader(P,B),A) then

assert(P) ⇐ a(persuader(P,B),A) then

a(challenger([P],A),B).

Figure 4.12: A Protocol for a Persuasion Dialogue Game

of two locutions, know(p) and assert(p). These rules 1 and 2 are translated to first steps

in the persuader’s clause.

The three possible responses described in rule 3 are accept, challenge, or as-

sert(not(P)). After the persuader agent communicates the opening locutions, it adopts

the defender role as shown in figure 4.13. This is the recursive role and once again we

have the null step and the list dividing constraints. Also, there is the ability to commu-

nicate a reject of P which is described in rule 6. If the agent assertss the negation then

they switch roles. The defender of P becomes the challenger of not(P) and vice versa

for the other agent. Rule 5 is similar to the information seeking game. If a challenge

is sent the agents adopt recursive roles over the set S of supporting propositions. This

behaviour, similar to the information seeking game, can also be seen in 4.13.

4.2.1.3 Inquiry

Another game defined in [Parsons et al., 2004] is inquiries. Inquiry games are played

when two agent seek to develop the argument in support for some proposition. This

game is a less explicitly antagonistic dialogue as they agents collaborate to prove some

70 Chapter 4. Realising Dynamic Protocols with LCC

a(de f ender(List,A),B)::=

null ← (List = []) or


















(List = [R|T]) ← accept(R) ⇐ a(challenger(List,B),A) or

(List = [R|T]) ← re ject(R) ⇐ a(challenger(List,B),A)






then

a(de f ender(T,A),B)













or













(List = [R|T]) ← challenge(R) ⇐ a(challenger(List,B),A) then

assert(S) ⇒ a(challenger(List,B),A) ← support(R,S) then

a(de f ender(S,A),B) then a(de f ender(T,A),B)













or







(List = [R|T]) ← assert(not(R)) ⇐ a(challenger(List,B),A) then

a(challenger([not(R)],A),B) then a(de f ender(T,A),B)






.

a(challenger(List,B),A)::=

null ← (List = []) or


















accept(R) ⇒ a(de f ender(List,A),B) ← (List = [R|T]) or

re ject(R) ⇒ a(de f ender(List,A),B) ← (List = [R|T])






then

a(challenger(T,B),A)













or













challenge(R) ⇒ a(de f ender(List,A),B) ← (List = [R|T]) then

assert(S) ⇐ a(de f ender(List,A),B) then

a(challenger(S,B),A) then a(challenger(T,B),A)













or







assert(not(R)) ⇒ a(de f ender(List,A),B) ← (List = [R|T]) then

a(de f ender([not(R)],B),A) then a(challenger(T,B),A)






.

Figure 4.13: The Recursive Roles for the Persuasion Dialogue Game Protocol

4.2. Dialogue Games 71

Q implies P
challenger of

adopt

challenger of
Listseeker of P

send

receive

receive

send send

send

receive adopt

adopt

adopt

receive

receive

receive
send

send

receive

receive

assert(implies(R,Q))

assert(unknown)

assert(Q)
accept([Q|Arg])

reject([Q|Arg])

accept([Q|Arg])

reject([Q|Arg])

challenger of R implies Q

adopt

prove(P)

assert(unknown)

provider2 of ArgSet
adopt

challenge(R) accept(R)

reject(R)

challenger of Tassert(S)

challenger of S

challenger of T

List = [R|T]

provider of Arg

assert
(implies(Q,P))

Figure 4.14: Graphical Representation of the Inquiry Game

72 Chapter 4. Realising Dynamic Protocols with LCC

statement that neither can develop alone. There is also more equality of role in this

dialogue as both agents have a lack in knowledge and both share the goal to alleviate

that deficiency.

1. B proffers prove(p), inviting A to join it in the search for a proof of p.

2. A asserts q→p for some q or asserts U.

3. B accepts q→p if its acceptance attitude allows, or challenges it.

4. A replies to a challenge with assert(S), where S is the support of an argument

for the last proposition challenged by B.

5. Go to (2) for each proposition s ∈ S in turn, replacing q→p by s

6. B asserts q, or r→q for some r, or U.

7. If A(CS(A)∪CS(B)) includes an argument for p that is acceptable to both agents,

then first A and then B accept it and the dialogue terminates successfully.

8. If at any point one of the propositions is not acceptable to an agent, in issues a

reject, and the dialogue ends successfully.

9. Go to 6, reversing the roles of A and B and substituting r for q and some t for r.

Figure 4.14 shows the agent clauses as a graph. The LCC protocol for the inquiry

dialogue game is defined in figure 4.15 and continued in figures 4.16 and 4.17. The

in initiating role for this game is the seeker role. The first message sent is prove(P)

as specified by rule 1. The response can be either the assertion of a proposition that

implies P (e.g. Q implies P) or unknown, U. The assertion of unknown ends the

dialogue. The initiating agent takes the role of challenger. The role has the extra

variable, ArgSet, which keeps record of the argument as it develops. This feature could

have been excluded as the argument is recorded in the dialogue state. Once again

design decisions have had to be made when reading the english description.

4.2. Dialogue Games 73

a(seeker(P,A),B)::=

prove(P) ⇒ a(provider(P,B),A) then


















assert(implies(Q,P)) ⇐ a(provider(P,B),A) then

a(challenger([implies(Q,P)], [P, implies(Q,P)],A),B)






or

assert(unknown) ⇐ a(provider(P,B),A)













.

a(provider(P,B),A)::=

prove(P) ⇐ a(seeker(P,A),B) then


















assert(implies(Q,P)) ⇒ a(seeker(P,A),B) ← implies(Q,P) then

a(de f ender([implies(Q,P)], [P, implies(Q,P)],B),A)






or

assert(unknown) ⇒ a(seeker(P,A),B)













.

Figure 4.15: A Protocol for an Inquiry Dialogue Game

The reply to the assertion of Q implies P can be accept, challenge or reject. The

reject step is allowed by rule 8. The accept or challenge is specified by rule 3. The

usual business occurs when a challenge occurs and comes from rule 4 and 5. The

next stage is captured by the provider2 role. The initiating agent can now assert the

argument Q or another implication such as R implies Q or U. If the argument is

satisfactory the second agent may accept or reject the argument. In response to an

accept, the initiating agent can also either accept or reject in accordance with rule 7.

The agent can reply to the assert of R implies Q the agents switch roles, it is now

the initiating agents turn to have its assertions accepted, rejected, or challenged by

taking the defender role. This mutual recursion is performed between the challenger

/ defender and the provider2 / seeker2 roles until an argument is agreed upon. Thus

armed with these agent clauses and the Dynamic LCC framework, it is now possible

to demonstrate its practice.

74 Chapter 4. Realising Dynamic Protocols with LCC

a(challenger(List,ArgSet,A),B)::=

(a(provider2(ArgSet,A),B) ← (List = [])) or






accept(R) ⇒ a(de f ender(List,ArgSet,B),A) ← (List = [R|T]) then

a(challenger(T,ArgSet,A),B)






or













challenge(R) ⇒ a(de f ender(List,ArgSet,B),A) ← (List = [R|T]) then

assert(S) ⇐ a(de f ender(List,ArgSet,B),A) then

a(challenger(S, [S|ArgSet],A),B) then a(challenger(T, [S|ArgSet],A),B)













or

re ject(R) ⇒ a(de f ender(List,ArgSet,B),A) ← (List = [R|T]).

a(de f ender(List,ArgSet,B),A)::=

(a(seeker2(ArgSet,B),A) ← (List = [])) or






(List = [R|T]) ← accept(R) ⇐ a(challenger(List,ArgSet,A),B) then

a(de f ender(T,ArgSet,B),A)






or













(List = [R|T]) ← challenge(R) ⇐ a(challenger(List,ArgSet,A),B) then

assert(S) ⇒ a(challenger(List,ArgSet,A),B) ← support(R,S) then

a(de f ender(S, [S|ArgSet],B),A) then a(de f ender(T, [S|ArgSet],B),A)













or

(List = [R|T]) ← re ject(R) ⇐ a(challenger(List,ArgSet,A),B).

Figure 4.16: The Recursive Clauses for the Inquiry Dialogue Game Protocol

4.2. Dialogue Games 75

a(provider2(Arg,A),B)::=


























assert(Q) ⇒ a(seeker2(Arg,B),A) ← know(Q) then












accept([Q|Arg]) ⇐ a(seeker2(Arg,B),A) then

accept([Q|Arg]) ⇒ a(seeker2(Arg,B),A) or

re ject([Q|Arg]) ⇒ a(seeker2(Arg,B),A)













or

re ject([Q|Arg]) ⇐ a(seeker2(Arg,B),A)



























or







assert(implies(R,Q)) ⇒ a(seeker2(Arg,B),A) ← implies(R,Q) then

a(de f ender([implies(R,Q)], [implies(R,Q)|Arg],A),B)






or

assert(unknown) ⇒ a(seeker2(Arg,B),A).

a(seeker2(Arg,B),A)::=


























assert(Q) ⇐ a(provider2(Arg,A),B) then












accept([Q|Arg]) ⇒ a(provider2(Arg,A),B) then

accept([Q|Arg]) ⇐ a(provider2(Arg,A),B) or

re ject([Q|Arg]) ⇐ a(provider2(Arg,A),B)













or

re ject([Q|Arg]) ⇒ a(provider2(Arg,A),B)



























or







assert(implies(R,Q)) ⇐ a(provider2(Arg,A),B) then

a(challenger([implies(R,Q)], [implies(R,Q)|Arg],B),A)






or

assert(unknown) ⇐ a(provider2(Arg,A),B).

Figure 4.17: The Recursive Clauses for the Inquiry Dialogue Game Protocol[Cont’d]

76 Chapter 4. Realising Dynamic Protocols with LCC

4.2.2 Creating Complex Dialogue Games

The protocol language and the agent clauses it defines, as described so far, already

allows for a spectrum of adaptability. At one extreme, the protocol can be fully con-

strained. Protocols at this end of the spectrum would be close to the traditional pro-

tocols and some electronic institutions. By rigidly defining each step of the protocol,

agents could be confined to little more than remote processing. This sacrifice allows

the construction of reliable and verifiable agent systems. At the other extreme, the pro-

tocols could be nothing more than the ordering of messages or even just the statement

of legal messages(without any ordering) to be sent and received. Though the protocol

language is expressive enough for both extremes of the spectrum, the bulk of inter-

actions are going to be somewhere in the middle. A certain amount of the dialogue

will need to be constrained to ensure a useful dialogue can occur. Unfortunately, any

flexibility must decided a priori to the execution of the protocols. Instead, this sec-

tion proposes an approach that maintains the use of protocols and their reliable and

predicable norms that map out a course through the conversation space, but also al-

low a dynamic composition of more complex protocols by the combination of atomic

dialogue games in order to explore runtime opportunities.

4.2.2.1 The Formal Framework for Complex Dialogue Games

The formal framework for which these dynamic protocols is based is de-

scribed in the paper of [McBurney and Parsons, 2002]. These are the same au-

thors who have defined the rules for the atomic games of [Parsons et al., 2004].

In [McBurney and Parsons, 2002] the authors formally describe a framework for cre-

ating complex dialogue games.

The framework proposes three layers; topic, dialogue, and control. The topic layer

is concerned with the content of locutions. They are the propositions represented in a

logical language, L . The assumptions made about the topic layer are consistent with

our implementation.

4.2. Dialogue Games 77

The dialogue layer is the game itself. This layer consists of various commence-

ment, combination, termination rules and locutions of individual games, and is de-

scribed using LCC protocols. The previous sections gave examples of this for three of

those games. These will be the basis for the example of the complex dialogue game

demonstrated in section 4.2.2.2

Finally, the control layer requires a few more agent clauses to be defined. This

layer is where the agent propose the start of individual games to be played. During the

interaction, agents can propose to initiate another game. The protocol for the control

layer is defined in 4.18. The initiating game proposes to begin an instance of an atomic

dialogue game. The other agent can reject or accept the proposal. If it accepts, the

protocol for that game is started as a consequence of the constraint startgame(Game,P).

This is a possible way to indicate a transformation must be done rather than solely

relying upon the agent’s rational capabilities.

a(control layer a,A)::=

begin(Game,P) ⇒ a(control layer b,B) ← choosegame(Game,P,B) then






re ject(Game,P) ⇐ a(control layer b,B) or

startgame(Game,P) ← accept(Game,P) ⇐ a(control layer b,B)






.

a(control layer b,B)::=

begin(Game,P) ⇐ a(control layer a,A) then






re ject(Game,P) ⇒ a(control layer a,A) or

accept(Game,P) ⇒ a(control layer a,A)






.

Figure 4.18: A Protocol to Define the Control Layer

Following the framework’s specification, agents are able to interrupt dialogue games

with the locution propose return control in order have the meta-dialogue about dia-

logues. Figure 4.19 defines the protocol necessary to interrupt the dialogue game and

78 Chapter 4. Realising Dynamic Protocols with LCC

suggest the starting of another. The other agent can reject or accept. If the agent

accepts, they take on their control layer roles.

a(interrupt a,A)::=

propose return control ⇒ a(interrupt b,B) then












re ject(return control) ⇐ a(interrupt b,B) or






accept(return control) ⇐ a(interrupt b,B)

then a(control layer a,A)



















.

a(interrupt b,B)::=

propose return control ⇐ a(interrupt a,A) then












re ject(return control) ⇒ a(interrupt a,A) or






accept(return control) ⇒ a(interrupt a,A)

then a(control layer b,B)



















.

Figure 4.19: A Protocol to Return to the Control Layer

With these agent clauses for the control layer and the atomic games (i.e. the dia-

logue layer) defined, the process of creating complex dialogue games dynamically can

be achieved. The following example illustrates how it is done.

4.2.2.2 An Example

The example has the first agent, named prosaically agentA, attempting to persuade

another agent to believe the proposition that ‘Thursday is the best day for a meeting’.

Thus it proposes to play a persuasion dialogue game with the other. To simplify the

explanation, The following figures will show the dialogue state of the initiating agent

only.

Figure 4.20 shows the dialogue state for agentA. At the top, the dialogue shows that

two locutions have been communicated. Both the begin and accept have been commu-

4.2. Dialogue Games 79

a(control layer a,agentA)::=

c(begin(persuasion, thursday best meeting day) ⇒

a(control layer b,agentB)) then

c(accept(persuasion, thursday best meeting day) ⇐

a(control layer b,agentB)).

Figure 4.20: Control Layer Part of the Dialogue State

nicated. By receiving the accept, the postcondition startgame(Game,P), as specified

by figure 4.18, must be satisfied. This provides the agent with a function, whose spe-

cific definition remains internal to the agent, with an explicit constraint to perform a

transformation. Figure 4.21 shows in bold the result of the transformation. The agent

has added the appropriate agent definition for it to initiate an instance of a persuasion

game. The complementary role is automatically added to the other agent’s dialogue

state as well.

a(control layer a,agentA)::=

c(begin(persuasion, thursday best meeting day) ⇒

a(control layer b,agentB)) then

c(accept(persuasion, thursday best meeting day) ⇐

a(control layer b,agentB)) then

a(persuader(thursday best meeting day,agentB),agentA).

Figure 4.21: Persuasion Role added to the Dialogue State

The dialogue state is returned to the expansion engine and the dialogue continues

normally. Figure 4.22 shows the result of this expansion as the agents play the persua-

sion game. Firstly, the persuader agent sends his know and assert of his proposition,

thursday best meeting day. The agent then adopts the defender role and his dialogical

80 Chapter 4. Realising Dynamic Protocols with LCC

partner chooses to assert the negation. Following the protocol, the agent becomes the

challenger to this new proposition, and communicates the challenge locution. In re-

sponse, the other agent asserts a set of supporting propositions. It just happens to be a

set of one.

In this example, let us say that agentA’s acceptance attitude cannot accept the sup-

porting argument. If this protocol was static it would communicate the reject locution

and the game would conclude unsuccessfully. However, let’s assume this agent is

clever enough to recognize that its rejection is based on a lack of personal knowledge.

If the agent could rectify that gap of information, it may be able to accept the argument

proposed by agentB. This increased complexity in dialogue protocols is a motivation

for the authors of [McBurney and Parsons, 2002]. They identify a number of possible

combinations of dialogues.

• Iteration: This is a repetition of one kind of dialogue that begins upon the im-

mediate conclusion of another.

• Sequencing: Similar to iteration but the successive dialogue game need not be

of the same type.

• Parallelization: Two dialogues are conducted in parallel until both have con-

cluded.

• Embedding: During the participation of one game, another is begun until its

conclusion at which time the initial game is picked up at the point of interruption

and played until it conclusion.

• Testing: An odd inclusion in this list and has been ignored as it seems more of a

kind of dialogue rather than a kind of dialogue combination.

In our example thus far we have seen an example of sequencing. Figure 4.21

showed the insertion of the agent definition for the agents to play the persuasion dia-

logue at the end of the control layer game. The mechanism for introducing an itera-

4.2. Dialogue Games 81

a(control layer a,agentA)::=

c(begin(persuasion, thursday best meeting day) ⇒

a(control layer b,agentB)) then

c(accept(persuasion, thursday best meeting day) ⇐

a(control layer b,agentB)) then

a(persuader(thursday best meeting day,agentB),agentA)::=

c(know(thursday best meeting day) ⇒

a(listener(thursday best meeting day,agentA),agentB)) then

c(assert(thursday best meeting day) ⇒

a(listener(thursday best meeting day,agentA),agentB)) then

a(de f ender([thursday best meeting day],agentB),agentA)::=

c(assert(not(thursday best meeting day)) ⇐

a(challenger([thursday best meeting day],agentB),agentA)) then

a(challenger([not(thursday best meeting day)],agentA),agentB)::=

∗ c(challenge(thursday best meeting day) ⇒

a(de f ender([thursday best meeting day],agentA),agentB)) then

c(assert([room4 unavailable]) ⇐

a(de f ender([thursday best meeting day],agentA),agentB)) then

a(challenger([room4 unavailable],agentB),agentA) then

a(challenger([],agentB),agentA)

Figure 4.22: Resulting Dialogues State after Persuasion Role were Added

82 Chapter 4. Realising Dynamic Protocols with LCC

tion transformation is the same. Parallelization is the most difficult to address. LCC

is capable of parallel operations, but in order to maintain the dialogue state there must

always be only one copy being used to maintain consistency. Since this is necessary

to make the protocols dynamic, it is a necessary trade off. However, it could be done

through parallel but separate execution of the dialogue games. The draw back to this

approach is that there would not be one single and unified dialogue state to record this

combination such as shown in the figures of the example (e.g. 4.20, 4.21, 4.22, 4.23

and 4.25). The other approach is to adapt the dialogue one locution at a time rather

than the whole game at once. This approach is explored in chapter 5. Embedding is

the situation facing our example. The persuasion game is not yet concluded but it can

be successfully if an instance of an information seeking game could be embedded and

agentA’s ignorance alleviated. Figure 4.23 starts at the last message closed and be-

fore the agent takes on the role of a(challenger([room4 unavailable],agentB),agentA).

Figure 4.22 has an asterisk beside the line that is represented by the series of dots in

figures 4.23 and 4.25. The dots are meant to represent the the line marked by an aster-

isk and all the preceding lines in the dialogue state. This is done in order to focus on

the current transformations being discussed. For completeness, the entire and complete

dialogue state is shown in the appendix A.

. . .

c(assert([room4 unavailable]) ⇐

a(de f ender([thursday best meeting day],agentA),agentB)) then

a(interrupt a,agentA) then

a(challenger([room4 unavailable],agentB),agentA) then

a(challenger([],agentB),agentA).

Figure 4.23: Continuation of the Example’s Dialogue State

Figure 4.23 shows the transformation occuring by the assertion of the interrupt

4.2. Dialogue Games 83

role which defined in figure 4.19 after the assertion of the supporting proposition. The

agent proposes the return to the control level, and the other obliges and they follow

the protocol to take on the control layer roles. An information seeking game is pro-

posed and accepted. The agent clause for information seeking game are inserted and

played to completion. AgentA now has the information necessary to accept the support

proposition asserted in the persuasion dialogue. The embedded control and informa-

tion seeking dialogue are encapsulated by the large parenthesis in the figure 4.25. The

persuasion game then also concludes with the accept of the assert. Figure 4.24 shows

the combination of dialogue games and control layer for this example.

Seeking
Information

Game

Control Layer

Control Layer

Persuasion
Game

Sequencing

Sequencing

Embedding

Figure 4.24: Graphical Representation of the Complex Dialogue Game Ex-

ample

4.2.3 Chapter Summary

As this section has shown, the formal framework for complex dialogue games works

well with a distributed dynamic protocol framework. The formalism provides a mod-

84 Chapter 4. Realising Dynamic Protocols with LCC

ular and controlled method for modifying agents’ interaction protocols during their

dialogues. Using LCC, eases the requirements on the participating agents by having

an explicit and computational representation of their expectations for the dialogue (i.e.

the encoding of the dialogue game rules as agent clauses). This was also shown to be

useful in addressing the ambiguity as found in the use of FIPA ACL’s semantics.

This reduction in ambiguity is applicable to any model of communication which

can be encoded as LCC clauses. The use of dynamic protocols extends the number of

models that can be accommodated. The orthodox view that agent-centric models and

protocolled models of communication are exclusive has been blurred. Protocols can

be viewed as expectations for interaction rather than static specifications.

By allowing transformations, the agents are free from the static tradition of the

protocolled approach, but retain the reliability and accountability associated with that

approach. Received protocols can be evaluated but also modified if needed. The fol-

lowing chapter explores the idea of protocol transformation further. Rather than the

introduction of agent definitions which are then expanded to a sequence of messages,

the agent synthesises ‘just enough’ protocol to drive the interaction forward.

4.2. Dialogue Games 85

. . .

c(assert([room4 unavailable]) ⇐

a(de f ender([thursday best meeting day],agentA),agentB)) then










































































































a(interrupt a,agentA)::=

c(propose return control ⇒ a(interrupt b,agentB)) then

c(accept(return control) ⇐ a(interrupt b,agentB)) then

a(control layer a,agentA)::=

c(begin(in f o seek,room4 has white board) ⇒

a(control layer b,agentB)) then

c(accept(in f o seek,room4 has white board) ⇐

a(control layer b,agentB)) then

a(seeker(room4 has white board,agentB),agentA)::=

c(question(room4 has white board) ⇒

a(provider(room4 has white board,agentA),agentB)) then

c(assert(room4 has white board) ⇐

a(provider(room4 has white board,agentA),agentB)) then

a(challenger([room4 has white board],agentB),agentA)::=

c(accept(room4 has white board) ⇒

a(de f ender([room4 has white board],agentA),agentB)) then

a(challenger([],agentB),agentA))::= null then











































































































a(challenger([room4 unavailable],agentB),agentA)::=

c(accept(room4 unavailable) ⇒

a(de f ender([room4 unavailable],agentA),agentB)) then

a(challenger([],agentB),agentA) then

a(challenger([],agentB),agentA).

Figure 4.25: Continuation of the Example’s Dialogue State

Chapter 5

Interaction Protocols by Dialogue

Structure Synthesis

The previous chapter explored the consequences and possibilities of having social

norms distributed by the interacting agents. Besides having protocol specifications

as implementations, we investigated the possibility of introducing more flexibility and

dynamism into otherwise static mechanisms of communication. This made it possi-

ble for agents to make adaptations by inserting protocol steps for the purpose of ad-

dressing run-time dialogical needs. The use of the formal definition provided by the

framework for complex dialogue games made this much easier. Embedding and other

combinations could be made safely without corrupting or derailing the individual game

instances. The previous chapter showed how the use of LCC protocols could facilitate

the creation of complex dialogue games.

We concentrated on the use of one particular dialogue game frame-

work [McBurney and Parsons, 2002], but there are others. Dialogue games, too, are

just one example of using argumentation for multiagent communication, and argu-

mentation itself is one of a number of communicative models. Not all models have a

clear and formal definition of how to combine or modify protocols nor is it straightfor-

ward to guarantee that those modifications do not break the protocol as we can when

87

88 Chapter 5. Interaction Protocols by Dialogue Structure Synthesis

using dialogue games to adapt the protocols like in chapter 4.

Even with the use of dialogue games, a difficulty persists with adaptable protocols.

It is not possible to clearly identify or trace the process of adaptation. At the end of the

dialogue all that exists is a record of the locutions communicated and their ordering.

It is not obvious that an adaptation was made or which adaptation was performed at a

given time. This motivated an examination into protocol synthesis. Rather than per-

forming transformations on existing protocols, the entire protocol is developed during

the interaction informed by a set of synthesis rules and motivated by the last actions

taken in the dialogue. In other words each step of the protocol is adapted. At the end of

the interaction the same record of communicated locutions would exist but in addition

the agent could identify how the locution step was introduced as well as see any steps

which were not taken. This could be done by the examination of the synthesis rules

which created the protocol.

Relationships exist between messages regardless of the particular domain with

which the messages are concerned. A question usually implies the anticipation of

the eventual occurrence of an answer even if the reply is a shrug of the shoulders. This

is regardless of whether that answer be to the question of “What time is it?” or “Can

you compare and contrast the post-modern interpretations of abstract expressionism to

a random sequence of adjectives?” It is these generalised patterns which exist in hu-

man communication that we have adopted for our purposes of synthesising protocols

in automated communication.

5.1 Using Dialogue Structures

In human dialogue the utterances that the participants make do not occur in isolation.

Humans rely on tacit patterns to ground communication. Some have proposed this

is an example of following of certain rules, and others have argued these rules are

only descriptions of the process of having a conversation [Searle, 1969a]. Regardless,

5.1. Using Dialogue Structures 89

these patterns can be generalised without concern to the content of the messages. The

idea for this approach was largely inspired by the works of [Asher and Gillies, 2003,

Searle, 1969a], and the standardisation efforts of Dialogue Structure Theory (DST) for

the annotation of human dialogue transcriptions [Core and Allen, 1997].

There are a number of approaches that could be used for the run time synthesis of

interaction protocols. Although each have proved their worth for a variety of multia-

gent applications. Each fails in some aspect to provide the unique advantages found

by the use of dialogue structures.

Performatives are a common approach for agent communication, and it may be

possible to pack pan-dialogical concerns into individual performatives. Yet, this would

be an ungainly implementation and an abuse of the spirit of performatives. They are

meant to reflect the conditions and effects of a single communicative act rather than

the relationships between them or their place within a sequence of message exchanges.

In the previous chapter, it was shown how the LCC framework could be used to repro-

duce the FIPA interaction protocols in such a way that they are not just specifications

but ‘specifications as implementations’ which are communicated by the agents them-

selves. In addition the individual preconditions and rational effects can be encoded

with these protocols to clearly communicate the semantics of the individual performa-

tives used. Also, our concern is more generic than particular performatives in a given

ACL. It is our goal to capture the generic structure of conversation that occurs in dia-

logues regardless of the locution or ACL used, and because this is done using the LCC

framework we still retain the abilities described in the previous chapter.

Planning research has been brought to bear on the problem [Rao, 1996]. Agents

use planning techniques to produce an interaction protocol to reach a previously de-

fined goal by means of communicating with other agents. Firstly, communication is

not always driven by clearly defined a priori goals or end states. It is better to view

communication as a process. Planning is also presented with the unique challenges

of the agency model. Besides planning’s reputation for a paucity in terms of data

90 Chapter 5. Interaction Protocols by Dialogue Structure Synthesis

structures, there is also another difficulty in using planners for this purpose. It will be

difficult for a planner to produce anything more robust than a look-ahead planner, be-

cause of the unpredictability of other agents. The planning agent would constantly be

replanning in reaction to others’ actions. It would result in a lot of computation with-

out much satisfaction. Even with the help of making assumptions about other agent’s

rational behaviour, existing approaches still have speed issues for real-time systems. It

is for this reason that it would be much more appropriate to have a small set of trans-

formations which the agent can apply mechanically to achieve the same goal. This set

defined in terms of a process calculus is exactly what we described in this paper.

Machine learning is also being applied to the many aspects of the agency paradigm.

These techniques have been shown to be useful for the purposes of agent communi-

cation [Rovatsos, 2004], but the techniques of machine learning introduce a number

of unnecessary difficulties. For example, it would be helpful to have transparency and

readability of the protocols used by the agents to facilitate human/computer interaction

or even humans to understand the protocols used which will assist in the design of new

agents. Also, the common problem of producing corpora that hounds machine learning

for agency is also a problem in synthesising interaction protocols. Similar to planning

approaches, the same goal can be achieved with a set of transformations which can free

the agent to spend its computation on learning a strategy for the domain rather than the

discussion of that domain.

It is correct to point out the work using social commitments, norms, dialogue

games, and other such models of communication provides agents with the ability to

reason about communication. Yet, we still retain advantages. To reiterate one of the

mantras of this research. It is not the goal to replace any particular model of agency.

The goal is to exploit the unique advantages described in chapter 3 provided by the

LCC framework, but to enhance its flexibility. The transformations are purely dialogi-

cal in the sense they are generic operations which unfold a single message protocol to a

two message protocol which in turn can be used to synthesise a three message protocol,

5.2. Transformations 91

and so on. The agent receiving the synthesised protocol can follow it blindly without

needing to understand that its dialogical actions satisfy some commitment, norm, or

rule of a dialogue game. This is gives us a simple dialogically informed means to

drive protocol led communication while maintaining an agents ability to unilaterally

explore dialogical options not currently present in a given protocol. The other unique

advantage is that not only can an agent generate its expected moves given its model

(e.g. norms, commitments, etc.) but it can also communicate its expectations to others.

Whereas, most models typically only provide guidance for a single agent and depend

on other agents also having the same model of communication to coordinate their con-

versation. An example described in this chapter will show how synthesis is done with

a dialogue game agent for a complex dialogue game.

The details of dialogue structure theory which is largely concerned with issues

unique to human communication. Our focus on agent communication neatly avoids

the most difficult issues associated with this research. DST has been useful for devel-

oping metaphors for the development of protocols and protocol synthesis, but its use

is superficial. DST, whether used for annotating human dialogue or generating natural

language, must concern itself with the minutia and subtleties that software communi-

cation does not. All aspects of agent communication is engineered. As a result, there

is a regularity, simplicity, and explicitness to it. This artifactual form of communica-

tion is not complicated by thousands of years of culture and tradition that complicates

human discourse [Rickard, 1989]. Having been saved from the most onerous tasks of

DST, we are freed to concentrate on the much more modest task at hand, which is using

some basic ideas from the field to drive protocol synthesis.

5.2 Transformations

There are various structures which occur in human dialogue which have a different

semantic interpretation but share the same syntactical shape. For example, a question

92 Chapter 5. Interaction Protocols by Dialogue Structure Synthesis

followed by an answer has the same structure as a statement and a confirmation. An

agent sends a message which is followed by another message being received. It is

therefore useful to generalise the vocabulary of transformations to those whose seman-

tics can be uniquely identified by its syntactic structure. Otherwise a kind of semantic

leakage occurs and ambiguity seeps into the dialogue and protocol. The sort of distinc-

tions of a question and answer versus a propose and accept should be dealt with at the

ACL level. Our concern is makes no assumptions about the particular locutions used

for the protocol.

Throughout this section the protocols are restricted to two party dialogues with no

explicit role adoption (i.e. the ability to define recursion). Some multiparty conversa-

tions can be treated as a number of dialogues, and for these conversations synthesis is

applicable. One of the reasons for this restriction is that to consider all the permuta-

tions of multiparty protocols are infinite, making their categorization a daunting task.

Using only synthesis of adjacency pairs from the fringe of an existing protocol, we

can create every possible protocol given this restriction. By an inductive argument we

show that all possible permutations of transformations for a simple protocol can be

extended to cover all dialogue LCC protocols. Even after removing all illegal protocol

constructions, There are twenty-four possible protocol sequences, shown in figure 5.1

and continued in figure 5.2. This is already too ungainly a number, but the process of

pruning away errant transformations is shown in figures 5.3, 5.4, and 5.5.

The set of transformations in figures 5.1 and 5.2 was created by taking all the pos-

sible permutations of the two message protocol given an atomic protocol. An atomic

protocol being defined as a single message being communicated, as a more simpler

(non-empty) protocol can not be conceived. To reiterate the syntax we are using, M is

the message being sent or received. A number following the M serves to distinguish the

two messages as they are not necessarily the same. A right facing arrow, ‘⇒’, shows a

message that is outgoing while an incoming message is shown by the ‘⇐’ style arrow.

The ‘θ’ represents the definition of the agent’s partner (i.e. either the source or the re-

5.2. Transformations 93

Before a Message is Sent

M1⇒ θ −→ M1⇒ θ then M2⇐ θ

M1⇒ θ −→ M1⇒ θ then M2⇒ θ

M1⇒ θ −→ M1⇒ θ or M2⇐ θ

M1⇒ θ −→ M1⇒ θ or M2⇒ θ

Before a Message is Received

M1⇐ θ −→ M1⇐ θ then M2⇐ θ

M1⇐ θ −→ M1⇐ θ then M2⇒ θ

M1⇐ θ −→ M1⇐ θ or M2⇐ θ

M1⇐ θ −→ M1⇐ θ or M2⇒ θ

Upon Failure of a Sent Message

f (M1⇒ θ) −→ f (M1⇒ θ) then M2⇐ θ

f (M1⇒ θ) −→ f (M1⇒ θ) then M2⇒ θ

f (M1⇒ θ) −→ f (M1⇒ θ) or M2⇐ θ

f (M1⇒ θ) −→ f (M1⇒ θ) or M2⇒ θ

Upon Having Sent a Message

c(M1⇒ θ) −→ c(M1⇒ θ) then M2⇐ θ

c(M1⇒ θ) −→ c(M1⇒ θ) then M2⇒ θ

c(M1⇒ θ) −→ c(M1⇒ θ) or M2⇐ θ

c(M1⇒ θ) −→ c(M1⇒ θ) or M2⇒ θ

Figure 5.1: The Twenty-four Possible Transformations

94 Chapter 5. Interaction Protocols by Dialogue Structure Synthesis

Upon Failure of a Received Message

f (M1⇐ θ) −→ f (M1⇐ θ) then M2⇐ θ

f (M1⇐ θ) −→ f (M1⇐ θ) then M2⇒ θ

f (M1⇐ θ) −→ f (M1⇐ θ) or M2⇐ θ

f (M1⇐ θ) −→ f (M1⇐ θ) or M2⇒ θ

Upon Having Received a Message

c(M1⇐ θ) −→ c(M1⇐ θ) then M2⇐ θ

c(M1⇐ θ) −→ c(M1⇐ θ) then M2⇒ θ

c(M1⇐ θ) −→ c(M1⇐ θ) or M2⇐ θ

c(M1⇐ θ) −→ c(M1⇐ θ) or M2⇒ θ

Figure 5.2: The Twenty-four Possible Transformations [cont’d]

cipient of the message). The single message is marked as open, closed or failed. Open

being defined as unsent or unevaluated. Each of these single message protocols can be

expanded to a two message protocol by the addition of a then or an or operator

followed by another message either incoming or outgoing. The total number of these

two message protocols is seventy-two1. By excluding protocols not possible within

the LCC framework, the set is thinned to the twenty-four possible transformations of

figures 5.1 and 5.2. For example a protocol cannot exist that has a closed message fol-

lowing an open one (e.g. M1⇐ θ then c(M2⇒ θ)). This is because of the way the

protocol is expanded by the LCC framework. The message M2 could not be expanded

unless M1 had been expanded. If the conditions of M1 were satisfied, it too would be

marked closed. If the conditions were not satisfiable, the message would not be marked

closed but this would also make it impossible by the definition of the expansion rules

for the then operator to expand and close M2. Therefore this particular protocol

sequence will never exist and can be ignored when considering synthesis rules.

Figure 5.3 shows the set after the first pruning. The set of twenty-four sheds six:

M1⇒ θ −→ M1⇒ θ or M2⇐ θ
1The full set of seventy-two is not shown

5.2. Transformations 95

Before a Message is Sent

M1⇒ θ −→ M1⇒ θ then M2⇐ θ

M1⇒ θ −→ M1⇒ θ then M2⇒ θ

M1⇒ θ −→ M1⇒ θ or M2⇒ θ

Before a Message is Received

M1⇐ θ −→ M1⇐ θ then M2⇐ θ

M1⇐ θ −→ M1⇐ θ then M2⇒ θ

M1⇐ θ −→ M1⇐ θ or M2⇐ θ

Upon Failure of a Sent Message

f (M1⇒ θ) −→ f (M1⇒ θ) then M2⇐ θ

f (M1⇒ θ) −→ f (M1⇒ θ) then M2⇒ θ

f (M1⇒ θ) −→ f (M1⇒ θ) or M2⇒ θ

Upon Having Sent a Message

c(M1⇒ θ) −→ c(M1⇒ θ) then M2⇐ θ

c(M1⇒ θ) −→ c(M1⇒ θ) then M2⇒ θ

c(M1⇒ θ) −→ c(M1⇒ θ) or M2⇒ θ

Upon Failure of a Received Message

f (M1⇐ θ) −→ f (M1⇐ θ) then M2⇐ θ

f (M1⇐ θ) −→ f (M1⇐ θ) then M2⇒ θ

f (M1⇐ θ) −→ f (M1⇐ θ) or M2⇐ θ

Upon Having Received a Message

c(M1⇐ θ) −→ c(M1⇐ θ) then M2⇐ θ

c(M1⇐ θ) −→ c(M1⇐ θ) then M2⇒ θ

c(M1⇐ θ) −→ c(M1⇐ θ) or M2⇐ θ

Figure 5.3: After the First Pruning

96 Chapter 5. Interaction Protocols by Dialogue Structure Synthesis

M1⇐ θ −→ M1⇐ θ or M2⇒ θ
f (M1⇒ θ) −→ f (M1⇒ θ) or M2⇐ θ
c(M1⇒ θ) −→ c(M1⇒ θ) or M2⇐ θ
f (M1⇐ θ) −→ f (M1⇐ θ) or M2⇒ θ
c(M1⇐ θ) −→ c(M1⇐ θ) or M2⇒ θ

The transformations which have both an outgoing message and an incoming mes-

sage disjointed with an or operator cannot exist due to the nature of the ‘hot potato’

coordination of LCC. Although not strictly illegal there will never be the ambiguity

of whose turn it is to speak. This is due to the our limitation on protocol synthesis

for dialogues only. Protocols for multiparty conversations could indeed have this am-

biguity. Also, if an agent requires its partner to speak it can apply the appropriate

transformation to the protocol creating a prompt for response and pass the protocol to

the other.

Failure is defined as both the inability to communicate at the semantic level (i.e. the

message was sent and received but not sensible with respect to an agent’s knowledge

base) as well as the physical failure to send or receive a message. Either a message

being received or a message being sent is considered failed. When the failed message

is outgoing. The sending agent has marked the failure in the dialogue state (i.e. that

agent knows about the failure). What should be done? He could synthesise a protocol

to have an incoming message come in to address that failure,

f (M1⇒ θ) −→ f (M1⇒ θ) then M2⇐ θ

This would be incorrect for two reasons. The first reason is the other agent does not

have the protocol. By the definition of the framework for use in dialogues, the agent

who marked the protocol is the one expected to communicate. The other reason is that

the other agent may or may not be aware of the failure and it would be an odd protocol

which expected agents to correct failures unknown to them. Another possibility for a

failed outgoing message is:

f (M1⇒ θ) −→ f (M1⇒ θ) or M2⇒ θ

5.2. Transformations 97

Before a Message is Sent

M1⇒ θ −→ M1⇒ θ then M2⇐ θ

M1⇒ θ −→ M1⇒ θ then M2⇒ θ

M1⇒ θ −→ M1⇒ θ or M2⇒ θ

Before a Message is Received

M1⇐ θ −→ M1⇐ θ then M2⇐ θ

M1⇐ θ −→ M1⇐ θ then M2⇒ θ

M1⇐ θ −→ M1⇐ θ or M2⇐ θ

Upon Failure of a Sent Message

f (M1⇒ θ) −→ f (M1⇒ θ) then M2⇒ θ

Upon Having Sent a Message

c(M1⇒ θ) −→ c(M1⇒ θ) then M2⇐ θ

c(M1⇒ θ) −→ c(M1⇒ θ) then M2⇒ θ

c(M1⇒ θ) −→ c(M1⇒ θ) or M2⇒ θ

Upon Failure of a Received Message

f (M1⇐ θ) −→ f (M1⇐ θ) then M2⇒ θ

Upon Having Received a Message

c(M1⇐ θ) −→ c(M1⇐ θ) then M2⇐ θ

c(M1⇐ θ) −→ c(M1⇐ θ) then M2⇒ θ

c(M1⇐ θ) −→ c(M1⇐ θ) or M2⇐ θ

Figure 5.4: After the Second Pruning

98 Chapter 5. Interaction Protocols by Dialogue Structure Synthesis

It is possible to synthesise such a protocol, but there are practical problems. Firstly,

as the LCC framework is defined this would fail to expand. Even if the framework was

modified to handle this protocol, and the expansion of the protocol would recognised

the failure of ‘M1⇒ θ’, backtrack, and attempt to expand the righthand side of the or

operator. The problem is that the recording of the failed message would be lost as only

the one message of the or , which was chosen to be communicated, is recorded in the

dialogue state. The reasoning is similar for the dismissal of the protocols synthesised

from a failed received message.

f (M1⇐ θ) −→ f (M1⇐ θ) then M2⇐ θ
f (M1⇐ θ) −→ f (M1⇐ θ) or M2⇒ θ

Therefore, the only possible transformation which should be applied is the send-

ing of a second message, a correction. Figure 5.4 shows the result of another four

transformations being cast away by this second pruning.

It is not possible to make a transformation on the closed atomic protocol of a single

sent message. By the definition of LCC, the message has already been communicated

and with it the protocol one wishes to transform. For this reason, we can dismiss any

protocol synthesised upon a closed outgoing message such as these:

c(M1⇒ θ) −→ c(M1⇒ θ) then M2⇐ θ
c(M1⇒ θ) −→ c(M1⇒ θ) then M2⇒ θ
c(M1⇒ θ) −→ c(M1⇒ θ) or M2⇒ θ

This point, c(M1⇒ θ), in the dialogue state occurs after the agent has evaluated,

made its decision with respect to the conversation, and has expanded the protocol and

only just before the message with the protocol and the dialogue state are sent to the

other agent. It would be too late to synthesise more protocol. The situation is different

for an incoming message which has been closed. The agent has just received the

message. It has marked the message as closed and is at the point to make a decision,

and can respond or synthesise more protocol.

For a closed received message the only transformation which can be applied is

the addition of an outgoing message. As the agent has just received the message and

5.2. Transformations 99

Before a Message is Sent

M1⇒ θ −→ M1⇒ θ then M2⇐ θ

M1⇒ θ −→ M1⇒ θ then M2⇒ θ

M1⇒ θ −→ M1⇒ θ or M2⇒ θ

Before a Message is Received

M1⇐ θ −→ M1⇐ θ then M2⇐ θ

M1⇐ θ −→ M1⇐ θ then M2⇒ θ

M1⇐ θ −→ M1⇐ θ or M2⇐ θ

Upon Failure of a Sent Message

f (M1⇒ θ) −→ f (M1⇒ θ) then M2⇒ θ

Upon Failure of a Received Message

f (M1⇐ θ) −→ f (M1⇐ θ) then M2⇒ θ

Upon Having Received a Message

c(M1⇐ θ) −→ c(M1⇐ θ) then M2⇒ θ

Figure 5.5: After the Final Pruning of Transformations

100 Chapter 5. Interaction Protocols by Dialogue Structure Synthesis

protocol and it should not be able to synthesise more steps for the dialogical partner

that it won’t be able to know about.

c(M1⇐ θ) −→ c(M1⇐ θ) then M2⇐ θ
c(M1⇐ θ) −→ c(M1⇐ θ) or M2⇐ θ

Five more transformations can be scratched from the list leaving a more manage-

able nine shown in figure 5.5. Figure 5.5 now shows the exhaustive set of the only pos-

sible syntactic transformations from an atomic protocol to one with two steps. Given

all the possible two step protocols, one can apply the transformations to each of those

and have all the permutations of a three step protocol, and in turn apply the transfor-

mations again to have all four step protocols. This can be done indefinitely in order to

represent all possible protocols that can written an LCC agent clause. There is no uni-

versally acceptable model of conversation, but we can map phenomena from linguistics

research to the identified transformations. This is not implying that the transformation

is an exact match to all similar phenomena in human dialogue, but that the mapping

have an easily identifiable similarity. This is how figure 5.6 is derived from figure 5.5.

In dialogues, humans cue for response by a number of verbal and non-verbal cues.

This is captured by the two transformations with their transitions labelled response in

figure 5.6. A message is sent and at some point later a message is received from the

same agent. The messages and their content can be said to be a response.

During discussions, humans will provide choice to their dialogical partners when

appropriate. In the example below, the speaker defines the allowable response set.

“500 dollars for the set. Take it or Leave it.”

The hearer can respond by taking the offer, but the speaker has also provided a

counter to that response (i.e. allowing the hearer to also leave it and reject the offer).

It other situations where power dynamics differ or the initial speech act is a command

a counter might not be appropriate and the hearer’s only allowable response is to ac-

quiesce to the will of the speaker.

5.2. Transformations 101

Before a Message is Sent

M1⇒ θ
response(M1,M2)
−−−−−−−−−−→ M1⇒ θ then M2⇐ θ

M1⇒ θ
continuation(M1,R2)
−−−−−−−−−−−→ M1⇒ θ then M2⇒ θ

M1⇒ θ
counter(M1,M2)
−−−−−−−−−→ M1⇒ θ or M2⇒ θ

Before a Message is Received

M1⇐ θ
continuation(M1,M2)
−−−−−−−−−−−−→ M1⇐ θ then M2⇐ θ

M1⇐ θ
response(M1,M2)
−−−−−−−−−−→ M1⇐ θ then M2⇒ θ

M1⇐ θ
counter(M1,M2)
−−−−−−−−−→ M1⇐ θ or M2⇐ θ

Upon the Reception of a Message

c(M1⇐ θ)
clari f ication(M1,M2)
−−−−−−−−−−−−→ c(M1⇐ θ) then M2⇒ θ

Upon Failure of a Message

f (M1⇒ θ)
correction(M1,M2)
−−−−−−−−−−→ f (M1⇒ θ) then M2⇒ θ

f (M1⇐ θ)
correction(M1,M2)
−−−−−−−−−−→ f (M1⇐ θ) then M2⇒ θ

Figure 5.6: The Vocabulary of Transformations

This same need exists in agent communication. The counter transformation allows

agents to introduce this type of step in dialogues. Here we have a departure from the

phenomenon occurring in human dialogue, versus agent interaction protocols. Rarely

in human dialogue are the options for response so explicitly stated as in our example.

In agent communication it is not only common, but usually necessary.

Another feature of human dialogues is the use of cues to signify they wish to con-

tinue their turn in the dialogue. In the example below, the speaker was not finished with

the enumerations of the trespasses committed by the person referred to in the sentence.

A:“She ate the whole cake. And you know what else? She didn’t even say
thanks.”
B:“The nerve.”

The speaker signalled this by the “And you know what else” phrase and then stated

a further transgression performed by the subject of conversation. The continuation

transformation enables software agents to do the same. The protocol coordinates

102 Chapter 5. Interaction Protocols by Dialogue Structure Synthesis

whose turn it is to speak and an agent wishing to communicate more than one lo-

cution would not need a signalling phrase usually required for polite human dialogue

but instead have a protocol allowing the multiple messages to be communicated.

Clarifications and Corrections are of great interest to those studying dialogue struc-

tures [Ginzburg, 1996, Asher and Gillies, 2003]. Corrections are usually reactions to

failures in the dialogue. We have addressed outright failures such as message loss

or complete misunderstanding as criteria for a correction transformation. Whereas,

clarifications occur when a message received is understood but found to be wanting

in detail. An agent providing a date but the other agent needs a year for the date as

well clarification versus an agent communicating a seemingly erroneous date such as

the tenth day of the seventeenth month correction. The message encapsulated by a

‘c’ before the clarification transformation represents in the protocol language that the

message has been sent. The ‘f’ encapsulation represents a message failure which is the

requirement for an agent making a correction transformation. Clarifications and Cor-

rections have a unique property as they could be said to be attempts to undo a dialogical

action that has occurred or modify the common knowledge created during the dialogue.

Whereas responses, counters, and continuations are concerned with only the structur-

ing of locutions with respect to other locutions in a generic sense. Clarifications and

corrections concern particular instances of messages and in particular messages that

have been communicated. It is therefore necessary to have some δ function which

can be used to address the content that is being corrected or clarified. For example, a

clarification of a message by another may in some instance require a smaller set than

previously discussed as in this exchange.

A:“Get the thingie.”
B:“The thingie?” { clarification }
A:“The wrench.” { response }

The set of thing(ie)s is reduced to the set of wrenches, but it not possible to make a

more broad claim that in all circumstances the result of a clarification is a smaller set.

Therefore the agent would define its δ in such a way that would ensure that the result of

5.2. Transformations 103

a clarification is indeed a smaller set. A correction is more of a revision. It’s point is to

nullify some proposition stated by a previous speech act. In this conversation snippet,

there are two corrections.

A:“Hand me the wrench.”
B:“You mean a Hammer. You need a hammer to hammer a nail.” { cor-
rection }
A:“I know, but the hammer exploded yesterday.” {correction }

B corrects A’s request for the wrench because he knows the hammering of a nail

requires a hammer, but B does not know the extraordinary fate of the required tool and

A must correct B’s correction. A knew that a hammer is for hammering, but also that

a wrench used unconventionally could be employed as a substitute.

The transformations described are as generic as the LCC framework. There is no

assumption of the rational make up of agents, the ACL involved or the domain on-

tology. In order for the transformations to make sense for a particular domain, it is

necessary to define specific instances of the dialogue structures with respect to the do-

main being discussed and the locutions being communicated. These serve as synthesis

rules. They dictate for the agent what is considered the correct responses, counters,

continuations, corrections or clarifications given the ACL and domain of the dialogue.

The rules go one more level of detail. The transformations of figure 5.6 give the

generic syntax for synthesising protocols. The rules tie those generic structures to

the specific domain and set of locutions. For example, in a response the protocol has

two messages, one coming in and one going out, separated by the then operator.

The synthesis rules for the agent say just what locution can be used for a response

transformation.

response(ask(X),tell(X)).

The synthesis rule above says that the proper response for an ask locution is a tell

and their content is the same. Given this synthesis rule, if the agent, we’ll call him

‘agentA’, has a protocol which is just the sending of an ask to agentB, written as

104 Chapter 5. Interaction Protocols by Dialogue Structure Synthesis

agent(Proposition,agentA) ::= ask(Proposition) ⇒ agent(Proposition,agentB).

then we can synthesise a two step protocol which provides the protocol step to

allow agentB to respond.

agent(Proposition,agentA) ::= ask(Proposition) ⇒ agent(Proposition,agentB)
then tell(Proposition) ⇐ agent(Proposition,agentB).

As synthesis proceeds using the standard LCC framework described in chapter 3, a

boot strapping role and initial message to be sent is still used. For synthesis, the role is

ignored, but is useful for the agent’s internal decision process to determine the locution

to initiate the dialogue, as well as any initial variables needed.

We take advantage of the common knowledge mechanism in LCC to communicate

the synthesis rules. This provides a public representation of the rules that synthesised

the protocol and the ability for other agents to employ the rules for synthesising.

How an agent determines which rule is applicable is partly defined by the rule it-

self, but it also depends on the agent to be able to reason about them. The synthesis

engine restricts transformations. The figure 5.7 gives an example of two agent clauses

of an LCC protocol with five synthesis rules that the agent can employ. agentA has yet

to send the ask. The synthesis engine only allows one transformation to be applied,

response(ask(X) ← need(X), tell(X)). The agent still has the freedom to choose

whether it wants to perform this transformation, but it will not be allowed to apply any

of the others. The response(ask(X), tell(X)) rule can not be used because the first half,

ask(X) does not exactly match the existing protocol, ask(X) ← need(X). The rules

clari f ication(X ,ask(X)) and correction(X ,ask(X)) are not usable as defined by trans-

formations the locution on which the synthesis is occurring must be closed or failed.

The response(tell(X),con f irm(X)) can not be used because it requires a tell(X) in

the protocol. After response(ask(X) ← need(X), tell(X)) synthesis rule is applied, it

will be appropriate.

We now turn to describe the engine that will drive the synthesis, and ensure that

the synthesised protocols maintain symmetric clauses.

5.3. Synthesising Protocols 105

a(,agentA)::=ask(X) ← need(X) ⇒ a(,agentB).

a(,agentB)::=ask(X) ⇐ a(,agentA).

response(ask(X), tell(X)).

response(ask(X) ← need(X), tell(X)).

clari f ication(X ,ask(X)).

correction(X ,ask(X)).

response(tell(X),con f irm(X)).

Figure 5.7: Choosing which Synthesis Rules

5.3 Synthesising Protocols

The process of synthesis progresses upon the last message in the protocol. This is

to prevent transformations such as figure 5.8. The two responses are performed with

respect the first message, M1. This could go on indefinitely as the agent repeatedly

applies synthesis rules with respect to M1.

M1⇒ θ
response(M1,M2)
−−−−−−−−−−→ M1⇒ θ then

M2⇐ θ

M1⇒ θ then
response(M1,M3)
−−−−−−−−−−→ M1⇒ θ then

M2⇐ θ M3⇐ θ then

M2⇐ θ

Figure 5.8: An illegal Transformation

This is avoided by stepping forward to the last step of the protocol synthesised,

and evaluating whether there are any synthesis rules to apply for that message. This

way the protocol continues to expand but only in one direction, forward. The synthesis

106 Chapter 5. Interaction Protocols by Dialogue Structure Synthesis

engine maintains a single thread of dialogue rather than attempting to expand all po-

tential conversations. Not only is this more computationally viable as you avoid state

explosion and replication, it is more inline with how dialogues work as participants

act and react to one another’s contribution to the conversation. This is done by halting

further synthesis after the application of any counter rules (i.e. The addition of the or

operator and another message). When the agent has made its choice and the dialogue

state has only one thread, synthesis can once again occur.

The does not restrict the set of protocols that can be expressed. Any ordering of

messages expressed in LCC can still be expressed using the synthesis engine. This

is due to our exhaustive set of meaningful transformations which can be performed

iteratively to create the necessary protocols. The protocol in figure 5.8 is no exception.

What made that protocol illegitimate was its construction, not its structure. Figure 5.9

shows a revision of the protocol’s synthesis. The rules and their order of application

are different but the resulting protocol is the same.

M1⇒ θ
response(M1,M3)
−−−−−−−−−−→ M1⇒ θ then

M3⇐ θ

M1⇒ θ then
continuation(M3,M2)
−−−−−−−−−−−−→ M1⇒ θ then

M2⇐ θ M3⇐ θ then

M2⇐ θ

Figure 5.9: Revision of the Synthesis of Figure 5.8

LCC deals with meta-dialogical (e.g. deontic) concerns in a number of ways, one

of which is the use of constraints. The use of constraints also deals context-dependent

dialogical issues. The use of constraints with the synthesis rules also provide this

functionality. The synthesis rules can be expressed in such a way to convey context-

sensitive locutions. For example, a synthesis rule can be written like this:

response(ask(X), tell(X) ← hasPrivileges(X ,θ)).

5.3. Synthesising Protocols 107

This could be described as the proper response to an ask about ‘X’ is a tell about

‘X’ but only if the agent θ has privileges to that information. The synthesis engine puts

the constraint in the appropriate agent clause in accordance with the syntactical rules

of LCC. Take the revised response rule below.

response(ask(X),known(X) ← tell(X) ← hasPrivileges(X ,θ)).

By the definition of LCC, the construction of a constraint on the left hand side of

the ← may only exists upon a received message (e.g. M1⇐ θ) and having a constraint

on the right hand side is for outgoing messages (e.g. M1⇒ θ). Since this is a case, it

is unambiguous for the synthesis engine to place the message and constraint onto the

correct agent’s clause. Figure 5.10 shows the resulting agent clauses after the response

rule is applied and the protocol is synthesised.

a(,agentA)::=

ask(X) ⇒ a(,agentB) then

known(X) ← tell(X) ⇐ a(,agentB).

a(,agentB)::=

ask(X) ⇐ a(,agentA) then

tell(X) ⇒ a(,agentA) ← hasPrivileges(X ,agentA).

Figure 5.10: The Placing of Constraints

With hopefully a sufficient explanation of the idea of synthesising protocols let us

turn to its practice for agent communication. Once again, dialogue games are a useful

model to implement.

108 Chapter 5. Interaction Protocols by Dialogue Structure Synthesis

5.4 An Example Using Dialogue Games for Synthesis

null

accept(R)
send

assert(R)

receive
assert(P)

challenger of T

adopt

receiveadopt
challenger of T

send
challenge(R)

adopt

List = [R|T]
seeker of P

challenger of not(P)

adopt

receive

assert(Unknown)

assert(not(P))

receive

send

question(P)

adopt
challenger

of P
challenger

of S

challenger
of List

Figure 5.11: Graphical Representation of the Information seeking Game

This section will use the Information-Seeking dialogue game and show how sim-

ple manipulations of the set of synthesis rules provide versatility to the protocol based

approach to dialogue. Figure 5.11 is a graphical representation of the protocol used.

As a reminder, circles signify states, bold circles are final states and squares are the

definition of roles. The arcs are the occurrence of messages or the adoption of roles.

Figure 5.12 and 5.13 show the information seeking game protocol developed previ-

ously in chapter 4.

Previously, dynamic protocols were achieved by splicing the roles that defined the

pariticpant’s part in a dialogue game instance into another dialogue game protocol.

This created on-the-fly dialogue game combinations from the atomic game protocols.

This example will focus on a single game, but the techniques are readily applicable to

game combinations. The synthesis approach requires a more robust synthesising agent.

Since synthesis is defined in terms of purely dialogical terms (i.e. the relationship be-

tween incoming and outgoing messages), there is a loss of meta-dialogical expressivity

5.4. An Example Using Dialogue Games for Synthesis 109

a(seeker(P,B),A)::=

question(P) ⇒ a(provider(P,A),B) then






assert(P) ⇐ a(provider(P,A),B) then

a(challenger([P],B),A)






or







assert(not(P)) ⇐ a(provider(P,A),B) then

a(challenger([not(P)],B),A)






or

assert(U) ⇐ a(provider(P,A),B).

a(provider(P,A),B)::=

question(P) ⇐ a(seeker(P,B),A) then






assert(P) ⇒ a(seeker(P,B),A) then

a(de f ender([P],A),B)






or







assert(not(P)) ⇒ a(seeker(P,B),A) then

a(de f ender([not(P)],A),B)






or

assert(U) ⇒ a(seeker(P,B),A).

Figure 5.12: A Protocol for an Information Seeking Dialogue Game

110 Chapter 5. Interaction Protocols by Dialogue Structure Synthesis

a(challenger(List,B),A)::=

null ← (List = []) or






accept(R) ⇒ a(de f ender(List,A),B) ← (List = [R|T]) then

a(challenger(T,B),A))






or













challenge(R) ⇒ a(de f ender(List,A),B) ← (List = [R|T]) then

assert(S) ⇐ a(de f ender(List,A),B) then

a(challenger(S,B),A) then a(challenger(T,B),A)













.

a(de f ender(List,A),B)::=

null ← (List = []) or






(List = [R|T]) ← accept(R) ⇐ a(challenger(List,B),A) then

a(de f ender(T,A),B)






or













(List = [R|T]) ← challenge(R) ⇐ a(challenger(List,B),A) then

assert(S) ⇒ a(challenger(List,B),A) ← support(R,S) then

a(de f ender(S,A),B) then a(de f ender(T,A),B)













.

Figure 5.13: The Recursive Roles for the Information Seeking Dialogue Game Protocol

5.4. An Example Using Dialogue Games for Synthesis 111

like explicit role adoption. As such, synthesis results in more tolerant agent clauses. A

protocol is said to be more tolerant if it has a more liberal definition of the conversa-

tion space. The more tolerant the protocol definition, the more the agent is required to

decide for itself the appropriate action to take. In other words, there is a large number

of possible paths the participants can take and still be within the protocol. The least

tolerant protocol are the more orthodox one typified by electronic institutions. There

is a strict ordering of messages to be exchanges as well as norms to which must be

adhered. This is not to say that there is any loss of expressivity for the exchange of

messages or combination of messages. Any legal LCC sequence of messages can also

be expressed using synthesis.

a) response(question(P),assert(P)).

b) counter(assert(P),assert(not(P))).

c) counter(assert(not(P)),assert(unknown)).

d) response(assert(R),accept(R)).

e) counter(accept(R),challenge(R)).

f) response(challenge(R),assert(S) ← support(R,S)).

g) response(assert(S),accept(R) ← memberO f (R,S)).

h) counter(accept(R),challenge(R) ← memberO f (R,S)).

i) continuation(accept(R),accept(T) ← memberO f (T,S) and R 6= T).

Figure 5.14: Synthesis Rules for an Information Seeking Game

Figure 5.14 shows our set of synthesis rules which can reproduce the dialogue game

protocol in figures 5.12 and 5.13. Although we will step through the protocol from the

perspective of the initiator of the dialogue (i.e. the seeker) the protocol synthesised

produces the symmetric clause for the dialogical partner.

Rule a in figure 5.14 is the synthesis rule for a response producing a message

going out, question(P), followed by a message coming in, assert(P), separated by the

112 Chapter 5. Interaction Protocols by Dialogue Structure Synthesis

operator ‘ then ’. According to the protocol an agent could also respond with an

assert of the negation as well as asserting unknown. A protocol can also be synthesised

with these steps by rules b and c. In the original protocol the assertion of unknown

ended the conversation. This strictness is not preserved the response rules of d. A

more specific rule could have been defined to disallow this step such as:

d′) response(assert(R),accept(R) ← R 6= unknown).

Without the constraint, the synthesis’ laxity is due to the uniqueness and transitivity

of variables in the synthesis rules. This uniqueness is because the variables in the

individual rules only refer to the same variable within that rule. Their scope does not

extend beyond that rule. The P in rule a is not the same P as in rule b. What does make

them the same is if the rules are applied iteratively and the assert(P) of the second

part of rule a is the assert(P) of the first part of rule b. By transitivity P becomes

the same through out both transformations. This is why one could apply rule d to an

assert(unknown) message. Such flexibility puts the burden on the agent to not perform

such an operation if it is deemed to be prohibited. It also becomes a weakness when

wanting to define recursive, or persistent meta-dialogical behaviour.

Not only can an agent accept an assertion but it should be able to challenge one.

Rule e enables that. Rules f, g, and h provide an example of how to constrain the

transformations given some condition in the conversation. An agent can respond to a

challenge with an assertion of the grounds for the argument as long as it can satisfy

the constraint that those grounds are the support for the proposition that is challenged.

Rules d and e deal with the correct responses for a single proposition. Rules g and h

deal with the responses to a set of propositions with the added constraint that proposi-

tion that is accepted or challenged is a member of that set of propositions. These rules

differ from rules d and e because the constraint ensures S is a list rather than a single

proposition.

The final rules give the ability to respond to all the propositions under consider-

ation. An agent accepting one proposition can continue to consider communicating

5.4. An Example Using Dialogue Games for Synthesis 113

acceptance of some other proposition. The accept could be subject to the counter rule

e which enables the agent to consider all the supporting arguments. In the protocol

this was done through recursion enabled by the use of roles. Synthesis is driven by the

locutions and their relationships and as such does not have some encapsulating data

structure that can force iteration over the set of supporting arguments. The result is a

synthesised protocol that is more tolerant than the original and depend on the discretion

of the agent doing the synthesis.

a(seeker(ρ,agentB),agentA)::=

c(question(ρ) ⇒ a(provider(ρ,agentA),agentB)) then

c(assert(ρ) ⇐ a(provider(ρ,agentA),agentB)) then

a(challenger([ρ],agentB),agentA)::=

c(challenge(ρ) ⇒ a(de f ender([ρ],agentA),agentB)) then

c(assert([α,β,γ]) ⇐ a(de f ender([ρ],agentA),agentB)) then

a(challenger([α,β,γ],agentB),agentA)::=

c(accept(α) ⇒ a(de f ender([α,β,γ],agentA),agentB)) then

a(challenger([β,γ],agentB),agentA)::=

c(accept(β) ⇒ a(de f ender([β,γ],agentA),agentB)) then

a(challenger([γ],agentB),agentA)::=

c(accept(γ) ⇒ a(de f ender([γ],agentA),agentB)) then

a(challenger([],agentB),agentA))) then

a(challenger([],agentB),agentA).

Figure 5.15: Resulting Dialogue State Using the Information Seeking Protocol

Figure 5.15 shows the resulting dialogue state for the initiating agent of the infor-

mation seeking dialogue game using the protocol of figures 5.12 and 5.13. The various

alternative messages (i.e. the or branches not taken) do not appear as the dialogue

state only shows the choices made during the conversation. In this example the agent

114 Chapter 5. Interaction Protocols by Dialogue Structure Synthesis

questioned the proposition ρ. The other agent replied with its assertion. The first agent

challenged the assertion to which it received the reply of the set of the propositions α,

β, and γ. This set being the support for the original proposition. Obligingly, the agent

accepts all supporting propositions for ρ.

Rule a, b, and c applied

(1) question(ρ) ⇒ a(,agentB) then assert(ρ) ⇐ a(,agentB) or

assert(not(ρ)) ⇐ a(,agentB) or assert(unknown) ⇐ a(,agentB)

Rule d and e applied

(2) c(question(ρ)) ⇒ a(,agentB)) then c(assert(ρ) ⇐ a(,agentB)) then

accept(ρ) ⇒ a(,agentB)) or challenge(ρ) ⇒ a(,agentB)

Rule f, g, and h applied

(3) c(question(ρ) ⇒ a(,agentB)) then c(assert(ρ) ⇐ a(,agentB)) then

c(challenge(ρ) ⇒ a(,agentB)) then assert([α,β,γ]) ⇐ a(,agentB) then

accept(α) ⇒ a(,agentB) or challenge(α) ⇒ a(,agentB)

Rule i, and e applied

(4) c(question(ρ) ⇒ a(,agentB)) then c(assert(ρ) ⇐ a(,agentB)) then

c(challenge(ρ) ⇒ a(,agentB)) then c(assert([α,β,γ]) ⇐ a(,agentB)) then

accept(α) ⇒ a(,agentB) then

accept(β) ⇒ a(,agentB) or challenge(β) ⇒ a(,agentB)

Figure 5.16: Synthesis and Expansion of the Same Information Seeking Dialogue

Game

Figures 5.16 and 5.17 is the process and the construction of the same instance of

the information seeking dialogue game. Rather than using the prefabricated dialogue

game protocol, the agent constructs the game during the interaction as defined by the

synthesis rules of figure 5.14. At step one, the agent applies the synthesis rules a, b,

and c stopping after the counter rule. Nothing has been communicated yet and the now

5.4. An Example Using Dialogue Games for Synthesis 115

Rule i, and e applied

(5) c(question(ρ) ⇒ a(,agentB)) then c(assert(ρ) ⇐ a(,agentB)) then

c(challenge(ρ) ⇒ a(,agentB)) then c(assert([α,β,γ]) ⇐ a(,agentB)) then

c(accept(α) ⇒ a(,agentB)) then accept(β) ⇒ a(,agentB) then

accept(γ) ⇒ a(,agentB) or challenge(γ) ⇒ a(,agentB)

Rule i, and e applied

(6) c(question(ρ) ⇒ a(,agentB)) then c(assert(ρ) ⇐ a(,agentB)) then

c(challenge(ρ) ⇒ a(,agentB)) then c(assert([α,β,γ]) ⇐ a(,agentB)) then

c(accept(α) ⇒ a(,agentB)) then c(accept(β) ⇒ a(,agentB)) then

accept(γ) ⇒ a(,agentB)

No more protocol is synthesised

(7) c(question(ρ) ⇒ a(,agentB)) then c(assert(ρ) ⇐ a(,agentB)) then

c(challenge(ρ) ⇒ a(,agentB)) then c(assert([α,β,γ]) ⇐ a(,agentB)) then

c(accept(α) ⇒ a(,agentB)) then c(accept(β) ⇒ a(,agentB)) then

c(accept(γ) ⇒ a(,agentB))

Figure 5.17: Synthesis and Expansion of the Same Information Seeking Dialogue

Game[cont’d]

116 Chapter 5. Interaction Protocols by Dialogue Structure Synthesis

synthesised protocol resembles the conversational choices provided by the seeker and

provider roles. One agent can ask a question and the other can reply with an assertion,

an assertion of the negation, or an assertion of unknown. In our example, two messages

are then passed, question(ρ) and assert(ρ). These messages are recorded as closed in

the dialogue state and the alternative locution choices are no longer shown.

For step two, the rules d and e are applied allowing the agent to either accept

or challenge the other agent’s assertion. This is the same behaviour allowed by the

adoption of the challenger role.

In step three, the agent chooses to challenge but before the message is sent the rules

f, g, and h are applied. This provides agentB with the ability to assert the supporting

propositions, α, β, and γ and for agentA himself to respond with an acceptance or

challenge upon an element of that proposition set. The current synthesis rules depend

on the agent to decide which proposition to consider for acceptance or not, whereas

the protocol of figures 5.12 and 5.13 gave the agent no choice and ensured that all

propositions are considered.

Step four occurs after the challenge is sent and the assertion of the support is re-

ceived. The rules i, and e are used to allow the agent to accept or challenge one of

the other propositions of the support. Like the dialogue in figure 5.15, step five, six

and seven repeatedly use the rules i, and e to enable agentA to accept each supporting

proposition. Figure 5.17 starts with step five.

Figure 5.18 shows a graphical representation of the final dialogue state. The proto-

colled approach is on the right and the synthesised approach is on the left. The right-

hand side has the roles, the shaded boxes, being expanded and the locutions being sent

and received. The left-hand side shows the dialogue state from synthesis. There are no

role adoptions, but the locutions and their content are the same.

If necessary by the addition of one more rule we can have the ability to embed the

information seeking dialogue games just as was done in the previous chapter. This

allows more complex dialogue games consisting of more than one instance of an in-

5.4. An Example Using Dialogue Games for Synthesis 117

challenger of

[α,β,γ]

challenger of

[β,γ]

ρ
send

question() ρ
send

question()

receive

[α,β,γ]assert()

receive

[α,β,γ]assert()

send
αaccept()

send
αaccept()

send
accept()β

send
accept()β

accept()
send

γ accept()
send

γ

send
send

seeker of
ρ

challenger of

[ρ]

challenger of

[γ]

challenger of []

adopt

receive
assert()

receive
assert()

challenge()
challenge()

ρ ρ

ρ ρ

Figure 5.18: Two Versions of the Dialogue State

118 Chapter 5. Interaction Protocols by Dialogue Structure Synthesis

formation seeking game. It simply requires an additional synthesis rule.

k) response(,question(P)).

By allowing the response to any message to be the first message of the information

seeking game (i.e. the commencement rule), an agent can initiate that type of game at

any point within another. The same could be done to initiate the other atomic game

types as well, but what if this is too much flexibility and a more regimented approach

is needed. The use of constraints express context sensitive information, but they have

a limited scope.

5.5 Chapter Summary

Synthesis using dialogue structures has provided a novel mechanism for dynamic dis-

tributed protocols. It had the advantage over the dynamic protocols described in the

previous chapter of having traceability. Given a protocol and a set of synthesis rules,

you could reconstruct the protocol or vise versa (i.e. determine a set of synthesis rules

that created the protocol.) The cost for this was an increased reliance on an agent’s

understanding of the dialogue state. It was not possible to express explicit changes in

role in the synthesised protocols. The introduction of synthesised role adoption would

sacrifice the traceability, because result of the expansion of the role into an agent clause

cannot be guaranteed. It now depended on the agent to ensure all supporting arguments

were considered. Functionally there is no difference and, as seen in the example, the

same conversation spaces can be covered.

One possible way this can be done is a manipulation of the common knowledge

through the assertion and retraction of propositions to keep track of any recursion or

role adoption. This solution though viable presents additional problems that should

be considered. One attractive feature of LCC protocols is they are defined declara-

5.5. Chapter Summary 119

tively. This is lost by the assertion and retraction of facts in the knowledge base. Agent

clauses become dependant on others. Since these clauses exist within the context of

a multiagent system this non-monotonicity is distributed. This is a complication best

avoided. For example, the situation could arise that the contributing fact for a message

being sent could become unknown because of another agent’s actions, but the send-

ing agent is unaware of the retraction. The machinery is in place to implement this

solution, it is rejected for those reasons.

Another solution is the overloading of the messages to contain the information

necessary to have recursion and role adoption. This has not been advocated as this can

not be generally applicable and muddles the separate layers of communication. Despite

this shortcoming, protocol synthesis has a number of potentially useful applications.

This synthesis of distributed protocols could also be useful for norm convergence

or evolutionary development of static protocols. An agent could reason about the syn-

thesis rules that it applies given a certain state or conversational partner. For example,

if synthesis rules x, y, and z are always triggered for a given interaction, the agent

could store the produced protocol thus gaining a computational saving upon the next

encounter with that agent rather than wasting computational cycles synthesising the

same protocol over and over. Similarly, using synthesis agents could negotiate the

protocol for communication by suggesting various sequences of rules to be applied.

Having described the contributions of this thesis, we now turn to the more prag-

matic discussion of implementation. Through out this project, the ideas developed have

been reinforced by a proof-of-concept implementation built with a Prolog and Linda

based program developed for the LCC framework. This has proven not only to be an

excellent testing ground, but also serves to show just how lightweight and modular the

extensions I have described are.

Chapter 6

System Design and Implementation

This chapter describes the details for implementing protocol adaptations and pro-

tocol synthesis. An important contribution of this thesis is not only develop-

ing the ideas of dynamic and distributed protocols, but also providing a practi-

cal and computational solution. The explanation of this chapter is facilitated by

the implementation in a high level declarative language. The protocol language,

expansion engine, adaptation and synthesis engine are all written in Sicstus Pro-

log [the Intelligent Systems Laboratory, 1987] and the message passing system was

implemented in LINDA [Carriero and Gelernter, 1989]. Firstly, the basic framework

described in chapter 3 is reviewed in section 6.1. Following the progression of the the-

sis’ chapters, section 6.2 illustrates the additions to the basic framework necessary for

creating the dynamic protocols described in section 4. It shows through a very simple

addition to the interface between the agent’s rationalisations and the protocol expan-

sion engine that dynamic protocols can be achieved. Section 6.3 relates the similar

functionality used for the protocol synthesis from chapter 5. Though the modifications

to the interface are similar, the consequences of using synthesis has a fundemental

effect upon the LCC approach.

121

122 Chapter 6. System Design and Implementation

6.1 Basic Framework

An important engineering question at the start of this work was whether the existing

language and mechanism, with its virtue of simplicity and light-weight requirements

for use, could accommodate the idea of adaptable and executable interaction protocols.

It was necessary to answer whether this new mechanism of communication could be

achieved without significant loss of expressivity or requiring a drastic change to the

underlying mechanism.

One of the significant results of this work was to confirm that it was indeed possible

and the description of which follows. Figure 6.1 provides a simple diagram to illustrate

the process. Firstly, the agent’s are loaded with their knowledge bases. These are a set

of Prolog predicates and rules to govern the decision making processes and satisfaction

of any constraints that may occur in the agent clauses. Dialogues are initiated by

an agent with a bootstrapping mechanism that requires a unique agent identifier, a

role, and the name of a file which contains the protocol that it wants to use. The file

defining the protocol in terms of agents’ clauses and the common knowledge is read

and loaded into memory for the agent to use. The next step is for the agent to identify

the appropriate clause for its role and attempt to perform the actions defined for that

role.

The expansion engine does this by trying to satisfy one of the rules in figure 3.2

described in chapter 3. The expansion engine either halts, reaches the end of the pro-

tocol and terminates, or returns a set of locutions to be sent. The agent then decides

whether to send the message or not. If the agent decides not to send the locution, the

expansion engine attempts to explore another path in the protocol and find another lo-

cution that can be sent. The agent once again gets to decide upon the appropriateness

of the message. This continues until either the agent finds an acceptable locution to be

sent or the expansion engine exhausts the possibilities and the protocol fails. Each time

the expansion engine finds a locution to be send or encounters an incoming locution,

the corresponding portions of the dialogue state are marked to reflect those activities

6.1. Basic Framework 123

Initate Dialogue

Expand Protocol

Agent Decision

Reject Message

Send Message

Receive Message

 (to be sent)

Process Msg /

Messages
Check for

Figure 6.1: Basic LCC Framework

124 Chapter 6. System Design and Implementation

occurring.

The message containing the agent clauses, the common knowledge base, the marked

agent clauses of the dialogue state that the expansion engine created, and the locution

is sent to the LINDA server. LINDA server uses a blackboard approach to communi-

cation and the message is left on the server addressed to the recipient as specified by

the protocol.

The dialogue continues with the agents checking the LINDA server for messages

addressed to its identifier. Taking the received protocol with all its constituents, the

agent applies the expansion process once again. Firstly, it processes the received lo-

cutions and marks its dialogue state. Next the expansion proceeds as described before

in order to find a reply that both satisfies the agent definition including any constraints

and the agent’s own discretion. The protocol bounces between the agents until no more

protocol is left to execute and the dialogue ends successfully. In order to have dynamic

protocols or protocol synthesis this process must include a way to amend existing pro-

tocols. The surprising result is this is the only extension required. Adaptations can be

achieved without requiring any extra machinery to the framework or language save for

the addition of to the interface which allows the agent to adapt the protocol and return

it to the expansion engine.

6.2 Creating Dynamic Protocols

Figure 6.2 shows the simple addition to the basic framework as well as illustrate its

modularity. The algorithm for insertions of protocol code into an existing dialogue

state starts by dissecting the initial protocol. It identifies the agents’ clauses and the

corresponding clauses in the dialogue state. The head of the list in the dialogue state

will be the clause for the agent who last performed an action and updated the dialogue

state. Insertions are done to the dialogue state rather than the protocol itself as it

is meant to modify the current instance of protocol rather than the template for the

6.2. Creating Dynamic Protocols 125

current dialogue. The current position of the dialogue state is identified (i.e. after the

closed portions of the agent clause).

Initate Dialogue

Expand Protocol

Agent Decision

Reject Message

Send Message

Receive Message

 (to be sent)

Process Msg /

Messages
Check for

Mechanism
Adaptation / Synthesis

Figure 6.2: Dynamic LCC Framework

The new code is spliced in with an then operator. Any remaining protocol op-

erations are then added after the newly introduced operations also separated by the

then operator. This is done for both the agent performing the insertion and its con-

versational partner. The newly adapted protocol is then returned to the calling predicate

which can be utilised by the expansion engine and the agent can take advantage of the

newly introduced protocol steps.

The only addition to the framework necessary is to add a point that allows the agent

to not only decide whether to send a message but also to evaluate whether to make

an adaptation to the protocol. This is done immediately after the agent receives the

126 Chapter 6. System Design and Implementation

protocol from the LINDA server. Whether the agent decides to make a transformation

or not, the expansion engine proceeds regardless. All the code for this is given in

sections B.1 and B.3 from the appendix B. Conceptually this is not much different

from the basic framework. It still relies on a library of predefined protocols that can be

spliced in by the adaptation engine. The protocols do not come ex nihilo. This is not

the case when the agent uses synthesis.

6.3 Synthesising Protocols

Synthesising protocols reuses the mechanism that enabled adaptations to be preformed

to existing protocols. The predicates from section B.1 can be used unchanged. How-

ever the nature of the adaptation has changed completely. We are no longer adapting

existing protocols. Instead we must let the agent’s synthesis rules dictate the incremen-

tal adaptations. This requires a modification to the interface.

Several iterations of adaptations will be made as the synthesising agent applies its

domain rules. Previously, the agent could make sure its adaptations include the addi-

tional steps required for the agent to make the appropriate reply. Due to the incremental

way the protocols are created and the importance of building upon each previous action

taken in the dialogue after each choice the agent makes, the loop provides the agent

an opportunity to expand and synthesise the protocol until neither is possible and the

agent sends its messages or the conversation concludes.

This requires additional code as shown in section B.2 as well as a modified inter-

face, section B.4. The dialogue starts by an agent choosing a locution to with which to

begin the conversation. The synthesis engine takes this locution and attempts to apply

any matching synthesis rules that have been defined for the domain. The synthesis

rules are applied, and the output is the newly synthesised steps which are amended to

the protocol. When the agent applies a domain rule the synthesis engine first translate

the rule to the appropriate LCC syntax as shown in figure 5.6 from chapter 5. This new

6.3. Synthesising Protocols 127

protocol is expanded by the synthesis engine as well as allowing the agent to make any

decision about which message to send. Unlike the previous approach, it is necessary

to return the protocol to the synthesis engine as it may need to be amended given the

dialogical choice the agent just made. In particular, it may be required to synthesise

the response steps for its dialogical partner. Once the cycle of expansion and synthesis

is exhausted and no more protocol can be amended or traversed, the message is sent as

normal.

By this simple addition to the basic framework, the functionality of distributed

protocol communication is changed. Synthesis entirely replaces the need for proto-

col libraries and becomes the driving force of the interaction. The agent’s involved

no longer have any agent clauses that was one of the main components of the LCC

message. Instead, there is only the dialogue state onto which additional protocol steps

are synthesised onto. We achieve “protocol-esque” communication in a way that the

synthesising agent itself can autonomously and automatically create. This increased

functionality comes from a minimal additional cost in code and modification to the

existing framework.

Figure 6.3 shows a diagram of the relationships between the components of our

communicating agent. The diagram focuses on one agent from the system. It has sev-

eral key parts; the expansion engine, the agent’s knowledge base, the synthesis engine,

the adaptation engine and the interface. The interface connects all the components

together and is equivalent to the main class from object oriented programming. The

knowledge base contains all the agents preferences and decision making machinery.

The expansion engine refers to the knowledge base to satisfy any constraints that it

encounters in the expansion of protocols. If the constraint cannot be satisfied by this

knowledge base that operation dependant on that constraint cannot succeed, as defined

by the expansion rules from figure 3.2. The interface calls upon the expansion engine

to expand a protocol and a dialogue state that is amiable the agent’s rationalisations.

The agent’s rationalisation might also choose to adapt / synthesise the existing protocol

128 Chapter 6. System Design and Implementation

Expansion
engine

Agent’s KB
Adaptation /
Synthesis

engine

Interface

retrieves msgs
sends and

satisfies constraints
encountered

or protocol to be inserted
provides synthesis rule

accepts or rejects
msg to be sent

returns adapted /
synthesised protocol

and msg (to be sent)
returns protocol

for expansion
sends protocol

Message Server

Agent

Agent Agent
Agent

Agent

Figure 6.3: Relationship Diagram Between Components

6.4. Chapter Summary 129

and the aptly named adaptation / synthesis engine provides that functionality.

6.4 Chapter Summary

The modifications necessary to satisfy the ultimate goal of dynamic protocols were

surprisingly unobtrusive upon the language of LCC and its associated expansion en-

gine. The ability to modify protocols during the execution of an agent conversation

was achieved in a wholly modular way allowing the functionality to be used or not

without consequence to the protocols or the interaction. Certain engineering decisions

were made concerning this implementation such as the use of Prolog and Linda.

The ideas explained in this thesis are not contingent on any particular language or

technology. Though I have more experience in other languages, in particular JAVA,

the choice to use Prolog was in order to take advantage of existing code for the basic

framework and LCC expansion engine. The high level nature of the language surely

facilitated the translation, implementation, and testing of the concepts developed. It

was important to show that a practical implementation was possible without the ap-

proach being dependant on it. However, I am not claiming that the implementation

is of industrial strength in that it has been through a full cycle of quality assurance

testing. It is not a very user oriented or aesthetically pleasing implementation either.

The inherited code for the basic LCC framework did have a graphical front end, but in

order to truly identify and remedy bugs, it was simpler for myself to interact with the

lowest level of the system without the GUI sugar coating.

Despite these issues, the implementation is useful as a proving grounds for the work

developed in the thesis as well as providing an example for other implementations and

agent system frameworks. Indeed, the work developed is not restricted solely to that

of agents. The concepts developed here also have purchase in the related field of the

semantic web and web services [Walton and Barker, 2004].

Chapter 7

Conclusions

There are a great number of issues to address before computers can communicate in

an equally robust and complex manner as their human creators. Computers already

have a brute force advantage over humans when it comes to computation or multi-

tasking. If computational power can indeed emulate our innate ability to infer meaning

and context from the scantest of information, follow the capricious flow of human

conversations or even deceive, the consequences would be extremely profound. One

could imagine not only complex negotiation being handled in seconds, but thousands

of such negotiations in parallel. For example, the negotiation of international mobile

phone call charges could be completed between your telecom and the host country’s

before the person you are calling answers. Fanciful speculation aside, the contributions

of this thesis make a small measure of progress toward that grand challenge of more

human than human communication.

7.1 Summary

The agent paradigm is clearly well suited for the massively distributed peer-to-peer

environment that the ubiquity of the internet has given us. Those day dreams of thou-

sands of simultaneous complex negotiations will undoubtedly take place upon the web

with source computers spread across the globe. Agent communication will be an es-

131

132 Chapter 7. Conclusions

sential component. The purpose of this thesis was explore and hopefully expand the

understanding of agent communication. At the start of this investigation, a gap was

perceived. There was the strict and static protocols of the ‘top-down’ institutional ap-

proaches to multiagent interactions. The approach sacrificed agent autonomy for the

reliable and predicable social system into which they would participate.

On the other side were the ‘bottom-up’ approaches. They were models of com-

munication for individual agents that would hopefully arm them sufficiently with the

ability to reason about the communicative actions of other agents and reply appro-

priately, or understand their own desires and the correct messages to communicate to

convince others to help satisfy those desires. From this it, it is hoped that the commu-

nity would emerge from these individuals. Reliability was sacrificed to autonomy and

flexibility.

The goal of the project became to address this gap, to find a way to

utilise advantages from both approaches. The use of the LCC language and

frameworks developed in [Robertson, 2004b, Robertson, 2004a, Robertson, 2004c,

Walton and Robertson, 2002] for distributed protocols facilitated this. Agents were

now able adapt their interaction protocol and communicate those changes to their dia-

logical partner. The following sections present an evaluation of this project’s hypothe-

sises and goals, as well as speculation on how to address some of the open issues that

remain given this research domain.

7.2 Evaluation of Contribution

This thesis has shown that dynamic protocols are indeed possible. Using a distributed

language and an abstract model of communication, it is possible to generate dynamic

protocols without compromising either LCC language or the abstract communicative

model being implemented. This additional functionality has been done in a modular

way that does not impede on the functionality of the expansion engine used.

7.2. Evaluation of Contribution 133

One of the initial questions proposed by this thesis is whether the representation

of agent-centric approaches of communication could be expressed as LCC protocols.

We showed that is was possible, but it also showed it to be unsuitable for the commu-

nicative acts of FIPA’s BDI-based model. This is because of the conflict between the

explicit and public representation and communication of the protocols and dialogue

state inherit in the model of LCC versus FIPA’s reliance on mentalistic and private

grounding for their locutions.

Given a model of communication represented as LCC, was it possible to allevi-

ate some of the burden for communicative partners? In other words, could an agent

receive a protocol developed in accordance with some communicative model such as

dialogue games and participate in the interaction without the need to understand the

model represented. This approach certainly alleviates this dialects problem. The prob-

lem when two agent share a common model of communication (e.g. dialogue games),

but differ on a specific implementation. It is unavoidable that communicating agents

will be required to share some common knowledge and representation of the topic of

conversation. Our approach helps to further elucidate the particular semantics of the

locutions and social norms for conversing. It can also do this in response to run time

requirements of the conversation itself rather than rely on an a priori understanding of

all the possible paths of discourse.

The core contributions of this thesis come from chapters 4 and 5. In chapter 4,

we first explored the use of BDI based protocols by using FIPA specifications. This

approach addressed some of the issues associated with using those specifications as a

basis for communication. Firstly, this project achieved a means of representing FIPA’s

norms for the use of communicative acts as a protocol, but in a dynamic way that

would allow an agent using the communicative acts to still decide when and where to

use those acts without being confined to a predefined and static protocol. This also

allowed agents to communicate the dialogical context as well as the expectation for

other’s communicative actions.

134 Chapter 7. Conclusions

The representation of FIPA’s communicative act library and their AUML interac-

tion protocol specifications as LCC clarifies any ambiguities in those specifications as

well as provides a format that is much more easily evaluated, verified and, if needed,

modified or corrected. Although these advantages can be gained by the use of our

dynamic additions to LCC and FIPA’s ACL, it is their basing communication on the

occurrence of internal and private mental states that makes this approach unsuitable.

The representation as LCC constraints of these mental states in the protocols have the

benefit of explicitly making those states accountable, it does not address the funda-

mental issue of sincerity and verifiability.

Instead, section 4.2 proposes using dialogue games as a more suitable model of

communication to be implemented as dynamic LCC. This provided the benefit of a

practical implementation platform for which dialogue games could not only be devel-

oped but executed. Similar to section 4.1 the model of dialogue games for communi-

cation benefits from being represented as LCC by providing a mechanism to commu-

nicate its social norms to other agents during their interactions as well as providing a

format that can be evaluated, verified, and modified automatically.

Chapter 5 extends this work to an even more novel approach. Rather than mod-

ifying existing protocols, we attempted to synthesis protocols by finding a small but

exhaustive set of transformations that could then be applied in reaction the current dia-

logue state. We evaluated all the permutations of transformations, identifying and dis-

carding the objectionable one, and finding matches for the remainder to phenomenon

identified for human communication. This resulted in a small minimal set of trans-

formations that still provided the same expressiveness of normal LCC protocols. This

minimal set of synthesis rules was shown to be complete (i.e. It could create all pos-

sible protocols given the restrictions imposed) and sound in that it was not possible to

introduce syntactically erroneous protocols using synthesis.

Through a relatively small modification of code, we we able to achieve a funda-

mental change in the functionality of dynamic and distributed protocols. No longer

7.3. Further Work 135

do agents require libraries of protocols to address all the possible interactions they are

capable of. Instead, the agent’s synthesise the protocols by the application of a set of

rules that translate to syntactically correct protocol.

One unexpected result was this was all achieved without needing to modify the

LCC language or expansion engine. This increased amount of flexibility and dy-

namism was achieved in a completely modular way and only required the framework

to provide an opportunity to the agent to make any needed transformations from which

the resulting protocols are identical to those defined in the more traditional way (i.e. a

static definition defined by an engineer prior to the interaction).

Overall, the line that separates the “agent-centric” and protocol led models of com-

munication has been blurred. It is now possible to represent the capricious nature of the

“agent-centric” communication as the more reliable and accountable protocols without

requiring the agent to be dictated to by the protocol. Instead, the agent can still use it’s

reasoning capabilities and communicative model to modify the LCC to reflect avenues

of dialogue it wants to explore.

7.3 Further Work

Distributed interaction protocols is a relatively unplumbed field of research within the

agent communication community. Making these protocols dynamic has been usually

left as speculation in the final sections of existing literature. Due to this domain’s

incipient nature, there are more questions that remain than can possibly fit into the

short span of research time allotted to this thesis. We have focused on addressing the

fundamental issues for implementing mutability in protocol led agent communication,

but there remains a number of channels for continued exploration.

136 Chapter 7. Conclusions

7.3.1 Trust

When is it okay to trust agents to modify protocols? Giving agents providence over

the social norms as they are using those norms is to provide the ability to subvert them

to. Previous research into static distributed protocols focused solely on the topic of

trust [de Silva, 2002] and how an agent might evaluate a received protocol. Trust is

an open issue for agency in general [Ramchurn et al., 2004] and research literature is

applicable for use with the distributed dynamic protocols as well. The unique difficul-

ties are the need to ensure desirable properties are some how guarded from exclusion

by any adaptations performed. This includes the more mundane properties such as

deadlock or termination as well as more abstract and domain specific properties (e.g.

Highest bidder always wins the auction). Model checking techniques have been pro-

posed to address these issues and their findings are appropriate for static as well as

dynamic protocols.

7.3.2 Permission

The literature has already described a number of permissive strategies concerning the

utterances of individual locutions, participation in a multiagent system. It is likely that

there too needs to be mechanisms to control who has the right to modify the protocols

as well as when and how much of the protocol should be adapted.

7.3.3 Possible Collaborative Technologies

This thesis has focused on the use of dialogue games to illustrate its approach. Their

use is not necessary to realising dynamic protocols, but due to their similarity in view

of agent communication. They were an excellent compliment. Another model that

seems to compliment protocol synthesis in particular is the work being done on eco-

grammars adapted to the agency paradigm.

Researchers have begun to investigate the use of eco-grammars for application in

7.3. Further Work 137

agent communication [Bel-Enguix and Jiménez-López, 2005]. Using theories of con-

versational grammar systems(CGS), the researchers attempt to develop a formal and

computational theory of dialogue by an extension of eco-grammars. The classical ap-

proach to formal language theory uses a single grammar to generate a language. In an

eco-grammar system there are several grammars used to generate the one language.

Using this framework the authors have attempted to make correlations to a multiagent

model of communication.

Though the authors have an eye toward implementation in multiagent systems, the

research is theoretical in nature and has not fully converted its concepts to the difficul-

ties inherit in multiagent systems and communication. It currently lacks a translation

mechanism to convert the results of the grammar rules to a format that an agent can

utilize for communication in a multiagent system. The research of this chapter can

nicely fill this developmental gap. It is simple to imagine connecting the grammar

rules to adjacency pairs and the LCC synthesis rules that have just been described.

One could envision run time synthesis and execution of the interaction protocol using

the communicating agents’ grammar rules expressed as LCC protocols.

Appendix A

Complete Trace of the Dialogue State

from 4.2.2.2

a(control layer a,agentA)::=

c(begin(persuasion, thursday best meeting day) ⇒

a(control layer b,agentB)) then

c(accept(persuasion, thursday best meeting day) ⇐

a(control layer b,agentB)).

a(persuader(thursday best meeting day,agentB),agentA)::=

c(know(thursday best meeting day) ⇒

a(listener(thursday best meeting day,agentA),agentB)) then

c(assert(thursday best meeting day) ⇒

a(listener(thursday best meeting day,agentA),agentB)) then

a(de f ender([thursday best meeting day],agentB),agentA)::=

c(assert(not(thursday best meeting day)) ⇐

a(challenger([thursday best meeting day],agentB),agentA)) then

a(challenger([not(thursday best meeting day)],agentA),agentB)::=

139

140 Appendix A. Complete Trace of the Dialogue State from 4.2.2.2

∗ c(challenge(thursday best meeting day) ⇒

a(de f ender([thursday best meeting day],agentA),agentB)) then

c(assert([room4 unavailable]) ⇐

a(de f ender([thursday best meeting day],agentA),agentB)) then










































































































a(interrupt a,agentA)::=

c(propose return control ⇒ a(interrupt b,agentB)) then

c(accept(return control) ⇐ a(interrupt b,agentB)) then

a(control layer a,agentA)::=

c(begin(in f o seek,room4 has white board) ⇒

a(control layer b,agentB)) then

c(accept(in f o seek,room4 has white board) ⇐

a(control layer b,agentB)) then

a(seeker(room4 has white board,agentB),agentA)::=

c(question(room4 has white board) ⇒

a(provider(room4 has white board,agentA),agentB)) then

c(assert(room4 has white board) ⇐

a(provider(room4 has white board,agentA),agentB)) then

a(challenger([room4 has white board],agentB),agentA)::=

c(accept(room4 has white board) ⇒

a(de f ender([room4 has white board],agentA),agentB)) then

a(challenger([],agentB),agentA))::= null then











































































































a(challenger([room4 unavailable],agentB),agentA)::=

c(accept(room4 unavailable) ⇒

a(de f ender([room4 unavailable],agentA),agentB)) then

a(challenger([],agentB),agentA) then

a(challenger([],agentB),agentA).

Appendix B

Prolog Code

B.1 insert.pl

This is the code for adapting existing protocols. These predicates are reused for both

dynamic protocols and protocol synthesis.

do insert(Af,At,AfNC,AtNC,Prot,

def([Af ::= NewAfDS,At ::= NewAtDS],AC,CK)) :-

Prot = def(DS,AC,CK),

DS = [Af ::= AfDS,At ::= AtDS],

insert for At(AtDS,AtNC,NewAtDS),

insert for Af(AfDS,AfNC,NewAfDS).

141

142 Appendix B. Prolog Code

do insert(Af,At,AfNC,AtNC,Prot,

def([Af ::= NewAfDS,At ::= NewAtDS],ACC,CK)) :-

Prot = def(DS,AC,CK),

DS = [Af ::= AfDS],

insert for Af(AfDS,AfNC,NewAfDS),

copy term(AC,ACC),

getDSforAt(At,AC,AtDS),

insert for At(AtDS,AtNC,NewAtDS).

insert for Af(c(X) then Rem,NewClause,c(X) then Ret):-

insert for Af(Rem,NewClause,Ret).

insert for Af(Ad ::= Rem,NewClause,Ad ::= Ret):-

insert for Af(Rem,NewClause,Ret).

insert for Af(First Open Msg then Rem,NewClause,

NewClause then First Open Msg then Rem).

insert for Af(Last Message,NewClause,

NewClause then Last Message).

insert for At(c(X) then Rem,NewClause,c(X) then Ret):-

insert for At(Rem,NewClause,Ret).

insert for At(Ad ::= Ac,NewClause,Ad ::= Ret) :-

insert for At(Ac,NewClause,Ret).

insert for At(First Open Msg then Rem, NewClause,

First Open Msg then NewClause then Rem).

B.2. syn.pl 143

B.2 syn.pl

This code enables protocol synthesis by translating the agent’s selection of a synthesis

rule into the correct LCC code.

syn(A1,def([A1 ::=Clause1,A2 ::=Clause2],AC,CK),R,

def([A1 ::=NClause1,A2 ::=NClause2],AC,CK)):-

syn(A1,Clause1,Clause2,R,NClause1,NClause2).

syn(A1,def([A2 ::=Clause2,A1 ::=Clause1],AC,CK),R,

def([A2 ::=NClause2,A1 ::=NClause1],AC,CK)):-

syn(A1,Clause1,Clause2,R,NClause1,NClause2).

syn(A1,def([],[A1 ::=Clause1,A2 ::=Clause2],CK),R,

def([A1 ::=NClause1,A2 ::=NClause2],

[A1 ::=Clause1,A2 ::=Clause2],CK)):-

syn(A1,Clause1,Clause2,R,NClause1,NClause2).

syn(A1,def([],[A2 ::=Clause2,A1 ::=Clause1],CK),R,

def([A2 ::=NClause2,A1 ::=NClause1],

[A2 ::=Clause2,A1 ::=Clause1],CK)):-

syn(A1,Clause1,Clause2,R,NClause1,NClause2).

syn(A1,(Msg ⇒ A2 ← Constraint),(Msg ⇐ A1),

response(Msg ← Constraint,NMsg ← Constraint2),

(Msg ⇒ A2 ← Constraint) then (NMsg ⇐ A2),

(Msg ⇐ A1) then (NMsg ⇒ A1 ← Constraint2)).

144 Appendix B. Prolog Code

syn(A1,(Msg ⇒ A2 ← Constraint),(Msg ⇐ A1),

response(Msg ← Constraint,NMsg),

(Msg ⇒ A2 ← Constraint) then (NMsg ⇐ A2),

(Msg ⇐ A1) then (NMsg ⇒ A1)).

syn(A1,(Msg ⇒ A2),(Msg ⇐ A1),

response(Msg,NMsg ← Constraint),

(Msg ⇒ A2) then (NMsg ⇐ A2),

(Msg ⇐ A1) then (NMsg ⇒ A1 ← Constraint)).

syn(A1,(Msg ⇒ A2),(Msg ⇐ A1),

response(Msg,NMsg),

(Msg ⇒ A2) then (NMsg ⇐ A2),

(Msg ⇐ A1) then (NMsg ⇒ A1)).

B.3. rawinterface.pl 145

B.3 rawinterface.pl

This is the interface for the expansion engine, the agent’s deliberations, and the mech-

anisms for protocol adaptations. This is adapted code from the basic framework. De-

bugging and Console predicates have been removed for brevity.

load agent(Name) :-

agent dir(Path),

concat list([Path,’/’,Name,’.agent’],File),

see(File),

read agent,

seen.

read agent :-

read(Clause),

\+ Clause = end of file, !,

assertz(Clause),

read agent.

read agent.

institution(I, Role, Id) :-

load institution(I, Prot),

postit(a(Role,Id), [], Prot).

switcheroo([m(Af,M ⇒ At)|T],Af,At,[m(At,M ⇐ Af)|NT]) :-

switcheroo(T, , ,NT). switcheroo([], , ,[]).

agent id from role(a(,Id), Id).

146 Appendix B. Prolog Code

send prot msgs([m(Af,M ⇒ At)|T], Prot) :-

agent id from role(Af, From), nonvar(From),

agent id from role(At, To), nonvar(To),

send msg(From, To,

protocol(m(Af,M ⇒ At),Prot)),

send prot msgs(T, Prot).

send prot msgs([],).

send msg(From, To, Message) :-

find server(Server, PID),

add msg(Server, PID, From, To, Message).

retrieve msgs(From, To, List):-

find server(Server,PID),

linda client(Server:PID),

bagof in noblock(Server,PID,From,To,List),

close client,!.

replace msgs(From,To,[H|T]) :-

find server(Server,PID),

add msg(Server,PID,From,To,H),

replace msgs(From,To,T).

replace msgs(, ,[]).

B.3. rawinterface.pl 147

react(From,Id) :-

retrieve msgs(From,Id,List),

List = [protocol(,Prot)|],

bagof(M,Pˆmember(protocol(M,P),List),MS),

switcheroo(MS,Af,At,NewMS),

postit(At,NewMS, Prot).

postit(Role, IMsgs, Prot) :-

adaptprotocol(Role,Prot,NewProt),

expansion(Role, IMsgs, [], NewProt,

RMsgs, Msgs, EProt),

RMsgs = [],

agent decision(EProt),

send prot msgs(Msgs, EProt).

adaptprotocol(Role,Prot,TProt) :-

decide2adapt(Af,Role,AfNC,AtNC),

do insert(Af,Role,AfNC,AtNC,Prot,TProt),

adaptprotocol(,Prot,Prot).

148 Appendix B. Prolog Code

B.4 syninterface.pl

This is the interface between the LCC framework and expansion engine, the agent’s

deliberations, and the protocol synthesis mechanism. This is adapted code from the

basic framework. Debugging and Console predicates have been removed for brevity.

institution(I, Role, Id) :-

load institution(I, Prot),

postit(a(Role,Id), [], Prot).

react(From,Id) :-

retrieve msgs(From,Id,List),

List = [protocol(,Prot)|],

bagof(M,Pˆmember(protocol(M,P),List),MS),

switcheroo(MS,Af,At,NewMS),

postit(At,NewMS, Prot).

switcheroo([m(Af,M ⇒ At)|T],Af,At,[m(At,M ⇐ Af)|NT]) :-

switcheroo(T, , ,NT). switcheroo([], , ,[]).

synandexpand(Role,IMsgs, RMsgs, Msgs,Prot,EProt) :-

question(Role,Prot,SProt),

Prot = SProt,

expansion(Role, IMsgs, [], SProt,

RMsgs, Msgs, EProt),

SProt = EProt.

B.4. syninterface.pl 149

synandexpand(Role,IMsgs, RMsgs, Msgs,Prot,SEProt) :-

question(Role,Prot,SProt),

expansion(Role, IMsgs, [], SProt,

RMsgs, Msgs, EProt),

synandexpand(Role,IMsgs, RMsgs,

Msgs,EProt,SEProt).

postit(Role, IMsgs, Prot) :-

synandexpand(Role,IMsgs, RMsgs, Msgs,Prot,SEProt),

RMsgs = [],

agent decision(SEProt),

send prot msgs(Msgs, SEProt).

agent id from role(a(,Id), Id).

send prot msgs([m(Af,M ⇒ At)|T], Prot) :-

agent id from role(Af, From), nonvar(From),

agent id from role(At, To), nonvar(To),

send msg(From, To,

protocol(m(Af,M ⇒ At),Prot)),

send prot msgs(T, Prot).

send prot msgs([],).

send msg(From, To, Message) :-

find server(Server, PID),

add msg(Server, PID, From, To, Message).

150 Appendix B. Prolog Code

retrieve msgs(From, To, List):-

find server(Server,PID),

linda client(Server:PID),

bagof in noblock(Server,PID,From,To,List),

close client,!.

replace msgs(From,To,[H|T]) :-

find server(Server,PID),

add msg(Server,PID,From,To,H),

replace msgs(From,To,T).

replace msgs(, ,[]).

question(Role,Prot,SProt) :-

dosyn(Role,Prot,SProt).

dosyn(Af,Prot,Final) :-

decide2synthesise(Prot,Rule),

syn(Af,Prot,Rule,TProt),

question(Af,TProt,Final).

dosyn(,Prot,Prot).

bagof in noblock(Server,PID,From,To,[H|T]):-

in noblock(msg(From,To,H)),!,

bagof in noblock(Server,PID,From,To,T).

bagof in noblock(, , , ,[]).

Bibliography

[Aristotle, 1997] Aristotle (1997). Topics. Clarendon Press.

[Asher and Gillies, 2003] Asher, N. and Gillies, A. (2003). Common ground, correc-

tions and coordination. Argumentation, 17(4):481–512.

[Austin, 1962] Austin, J. L. (1962). How to do Things With Words. Oxford University

Press.

[Bel-Enguix and Jiménez-López, 2005] Bel-Enguix, G. and Jiménez-López, M. D.

(2005). A multi-agent system model of dialogue.

[Bellifemine et al., 1999] Bellifemine, F., Poggi, A., and Rimassa, G. (1999). JADE

- a FIPA-compliant agent framework. In Proceedings of PAAM’99, pages 97–108,

LONDON. PAMM.

[Carriero and Gelernter, 1989] Carriero, N. and Gelernter, D. (1989). Linda in con-

text. In Comm. of the ACM, volume 32:4, pages 444–458. ACM Press.

[Chesnevar et al., 2005] Chesnevar, M. C. C., McGinis, J., Rahwan, I., Reed, C., Mod-

gil, S., Simari, G., South, M., Vreeswijk, G., and Willmott, S. (2005). Aif: Argu-

mentation interchange format strawman model. Technical report, Agentlink.

[Cohen and Levesque, 1995] Cohen, P. R. and Levesque, H. J. (1995). Communica-

tive actions for artificial agents. In Lesser, V. and Gasser, L., editors, Proceedings

of the First International Conference on Multi-Agent Systems (ICMAS’95), pages

65–72, San Francisco, CA, USA. The MIT Press: Cambridge, MA, USA.

151

152 Bibliography

[Core and Allen, 1997] Core, M. G. and Allen, J. F. (1997). Coding dialogues with the

DAMSL annotation scheme. In Traum, D., editor, Working Notes: AAAI Fall Sym-

posium on Communicative Action in Humans and Machines, pages 28–35, Menlo

Park, California. American Association for Artificial Intelligence.

[Cortés, 2004] Cortés, U. (2004). Electronic institutions and agents. AgentLink News,,

(15):14–15.

[de Silva, 2002] de Silva, L. P. (2002). Extending agents by transmitting protocols in

open systems. Honours, RMIT University, Melbourne, Australia.

[Dignum, 2003] Dignum, V. (2003). A model for organizational interaction. Based on

Agents, Founded in logic. Phd thesis, Utrecht University.

[Estava et al., 2001] Estava, M., Rodriguez, J. A., Sierra, C., Garcia, P., and Arcos,

J. L. (2001). On the formal specifications of electronic institutions. LNAI, pages

126–147.

[Esteva et al., 2002] Esteva, M., de la Cruz, D., and Sierra, C. (2002). Islander: an

electronic institutions editor. In Proceeding of the first International joint confer-

ence on Automomous agents and multiagent systems, pages 1045–1052, Bologna,

Italy. ACM press.

[Esteva et al., 2000] Esteva, M., Rodrı́guez-Aguilar, J. A., Arcos, J. L., Sierra, C., and

Garcia, P. (2000). Institutionalising open multi-agent systems. In proceedings of

the Fourth International Conference on MultiAgent Systems (ICMAS’2000), pages

381–83, Boston. ICMAS.

[Esteva et al., 2004] Esteva, M., Rosell, B., Rodriguez-Aguilar, J. A., and Acros, J. L.

(2004). Ameli: An agent-based middleware for electronic institutions. In Proceed-

ings of the International Joint Conference on Autonomous Agents and MultiAgent

Systems (AAMAS).

Bibliography 153

[Finin et al., 1994] Finin, T., Fritzson, R., McKay, D., and McEntire, R. (1994).

KQML as an Agent Communication Language. In Adam, N., Bhargava, B., and

Yesha, Y., editors, Proceedings of the 3rd International Conference on Information

and Knowledge Management (CIKM’94), pages 456–463, Gaithersburg, MD, USA.

ACM Press.

[FIPA, 2001] FIPA (2001). Communicative act library specification.

[Flores and Kremer, 2002] Flores, R. A. and Kremer, R. (2002). To commit or not

to commit: Modelling agent conversations for action. Computational Intelligence,

18(2):120–173.

[Freire and Botelho, 2002] Freire, J. and Botelho, L. (2002). Executing explicitly rep-

resented protocols.

[Gautama, 2003] Gautama, A. (2003). Nyaya Sutras of Gotama. Munshiram

Manoharlal Publishers.

[Genesereth and Fikes, 1992] Genesereth, M. R. and Fikes, R. E. (1992). Knowledge

interchange format, version 3.0 reference manual. Technical Report Technical Re-

port Logic-92-1, Standford University.

[Gilbert, 1994] Gilbert, M. (1994). Multi-modal argumentation. In Philosophy of the

Social Sciences, pages 159–177. SAGE publications.

[Ginzburg, 1996] Ginzburg, J. (1996). Dynamics and the semantics of dialogue. In

Seligman, J. and Westerståhl, D., editors, Logic, Language, and Computation, pages

221–237. CSLI, Stanford, Ca.

[Grando and Walton, 2006] Grando, A. and Walton, C. (2006). Mapa: a language

for modelling conversations in agent environments. In Proceedings of the Intelli-

gent Information Processing and Web Mining Conference 2006 (IIPWM06), Ustron,

Poland.

154 Bibliography

[Greaves et al., 2000] Greaves, M., Holmback, H., and Bradshaw, J. (2000). What is

a conversation policy? In Dignum, F. and Greaves, M., editors, Issues in Agent

Communication, pages 118–131. Springer-Verlag: Heidelberg, Germany.

[Habermas, 1991] Habermas, J. (1991). Comments on john searle: ‘meaning, com-

munication and representation’. In John Searle and his Critics. Cambridge Press.

[Hassan et al., 2005] Hassan, F., Robertson, D., and Walton, C. (2005). Addressing

constraint failures in an agent interaction protocol. In In Proceedings of the 8th

Pacific Rim International Workshop on Multi-Agent Systems, Kuala Lumpur.

[Johnson et al., 2002] Johnson, M. W., McBurney, P., and Parsons, S. (2002). When

are two protocols the same?

[Labrou and Finin, 1997] Labrou, Y. and Finin, T. (1997). Comments

on the specification for fipa ’97 agent communication language.

http://www.cs.umbc.edu/kqml/papers/fipa/comments.shtml.

[Labrou et al., 1999] Labrou, Y., Finin, T., and Peng, Y. (1999). Agent communication

languages: The current landscape. IEEE Intelligent Systems, 14(2):45–52.

[Lambert and Robertson, 2005] Lambert, D. and Robertson, D. (2005). Matchmaking

multi-party interactions using historical performance data. In AAMAS, pages 611–

617.

[López, 2003] López, F. (2003). Social Power and Norms: Impact on agent be-

haviour. Phd thesis, University of Southampton.

[Martin et al., 1996] Martin, F. J., Plaza, E., Rodrı́guez-Aguilar, J. A., and Sabater, J.

(1996). Jim - a java interagent for multi-agent systems.

[Maudet and Chaib-draa, 2002] Maudet, N. and Chaib-draa, B. (2002). Commitment-

based and dialogue-game based protocols: new trends in agent communication lan-

guages. The Knowledge Engineering Review, 17(2).

Bibliography 155

[Maudet and Evrard, 1998] Maudet, N. and Evrard, F. (1998). A generic framework

for dialogue game implementation.

[Mayfield et al., 1995] Mayfield, J., Labrou, Y., and Finin, T. (1995). Desiderata for

agent communication languages. In AAAI Spring Symposium on Information Gath-

ering.

[McBurney and Parsons, 2002] McBurney, P. and Parsons, S. (2002). Games that

agents play: A formal framework for dialogues between autonomous agents. Jour-

nal of Logic, Language and Information, 11(3):315–334.

[McGinnis and Robertson, 2004a] McGinnis, J. and Robertson, D. (2004a). Dynamic

and distributed interaction protocols. In Proceedings of the AISB 2004 Convention,

pages 45–54.

[McGinnis and Robertson, 2004b] McGinnis, J. and Robertson, D. (2004b). Realizing

agent dialogues with distributed protocols. In Developments in Agent Communica-

tion, volume 3396 of LNAI. Springer-Verlag.

[McGinnis et al., 2003] McGinnis, J., Robertson, D., and Walton, C. (2003). Using

distributed protocols as an implementation of dialogue games. Presented EUMAS

2003.

[Nodine and Unruh, 1997] Nodine, M. H. and Unruh, A. (1997). Facilitating open

communication in agent systems: the infosleuth infrastructure. In Proceedings of

the Fifth International Workshop on Agent Theories, Architectures, and Languages.

[Noriega, 1997] Noriega, P. (1997). Agent-Mediated Austions:The Fishmarket

Metaphor. PhD thesis, Institut d’Investigacio en Intelligencia Artificial (IIIA).

[Osman et al., 2006] Osman, N., Robertson, D., and Walton, C. (2006). Run-time

model checking of interaction and deontic models for multi- agent systems. In

156 Bibliography

Proceedings of the Fifth International Joint Conference on Autonomous Agents and

Multi Agent Systems (AAMAS06), Hakodate, Japan.

[Paolo Besana, 2005] Paolo Besana, Dave Robertson, M. R. (2005). Exploiting inter-

action contexts in p2p ontology mapping. Accepted for Workshop P2PKM’05.

[Parsons et al., 2003a] Parsons, S., McBurney, P., and Wooldridge, M. (2003a). The

mechanics of some formal inter-agent dialogues. In Workshop on Agent Communi-

cation Languages, pages 329–348.

[Parsons et al., 2004] Parsons, S., McBurney, P., and Wooldridge, M. (2004). Some

preliminary steps towards a meta-theory for formal inter-agent dialogues. In Pro-

ceedings of the First International Workshop on Argumentation in Multi-Agent Sys-

tems.

[Parsons et al., 2002] Parsons, S., Wooldridge, M., and Amgoud, L. (2002). An anal-

ysis of formal inter-agent dialogues. In Proceedings of the first international joint

conference on Autonomous agents and multiagent systems, pages 394–401. ACM

Press.

[Parsons et al., 2003b] Parsons, S., Wooldridge, M., and Amgoud, L. (2003b). On

the outcomes of formal inter-agent dialogues. In 2nd International Conference on

Autonomous Agents and Multiagent Systems, Melbourne, Australia.

[Paurobally, 2002] Paurobally, S. (2002). Rational Agents and the processes and

states of negotiation. Phd thesis, Imperial College, London.

[Paurobally et al., 2004] Paurobally, S., Cunningham, J., and Jennings, N. R. (2004).

Verifying the contract net protocol: A case study in interaction protocol and agent

communication language semantics.

[Pitt and Mamdani, 1999] Pitt, J. and Mamdani, A. (1999). A protocol-based seman-

tics for an agent communication language. In IJCAI ’99: Proceedings of the Six-

Bibliography 157

teenth International Joint Conference on Artificial Intelligence, pages 486–491, San

Francisco, CA, USA. Morgan Kaufmann Publishers Inc.

[Ramchurn et al., 2004] Ramchurn, S. D., Hunyh, D., and Jennings, N. R. (2004).

Trust in multi-agent systems. Knowledge Engineering Review.

[Rao, 1996] Rao, A. S. (1996). AgentSpeak(L): BDI agents speak out in a logical

computable language. In van Hoe, R., editor, Seventh European Workshop on Mod-

elling Autonomous Agents in a Multi-Agent World, Eindhoven, The Netherlands.

[Reed, 1998] Reed, C. (1998). Dialogue frames in agent communication. In De-

mazeau, Y., editor, Proceedings of the Third International Conference on Multi-

Agent Systems(ICMAS-98), pages 246–253. IEEE Press.

[Rickard, 1989] Rickard, P. (1989). A History of the French Language. Routledge

(UK).

[Robertson, 2004a] Robertson, D. (2004a). A lightweight coordination calculus for

agent social norms. In Declarative Agent Languages and Technologies, New York,

USA. a full day workshop occuring as part of AAMAS’04.

[Robertson, 2004b] Robertson, D. (2004b). A lightweight method for coordination of

agent oriented web services. In Proceedings of AAAI Spring Symposium on Seman-

tic Web Services, California, USA.

[Robertson, 2004c] Robertson, D. (2004c). Multi-agent coordination as distributed

logic programming. In Proceedings for International Conference on Logic Pro-

gramming.

[Rovatsos, 2004] Rovatsos, M. (2004). Computational Interaction Frames. PhD the-

sis, Department of Informatics, Technical University of Munich.

[Sadek, 1991] Sadek, M. D. (1991). Attitudes Mentales et Interaction Rationnelle:

Vers une Thorie Formelle de la Communication. PhD thesis, Universit de Rennes I.

158 Bibliography

[Searle, 1969a] Searle, J. (1969a). (on) Searle on Communication. Cambridge Uni-

versity Press.

[Searle, 1969b] Searle, J. (1969b). Speech Acts. Cambridge University Press.

[Singh, 2000] Singh, M. P. (2000). A social semantics for agent communication lan-

guages. In Dignum, F. and Greaves, M., editors, Issues in Agent Communication,

pages 31–45. Springer-Verlag: Heidelberg, Germany.

[the Intelligent Systems Laboratory, 1987] the Intelligent Systems Laboratory (1987).

Sicstus Prolog Users Manual. Swedish Institute of Computer Science, Sweden.

[Vasconcelos, 2002] Vasconcelos, W. (2002). Skeleton-based agent development for

electronic institutions. In First International Joint Conference on Autonomous

Agents and Multi-Agent Systems, Bologna, Italy. AAMAS, ACM Press.

[Vázquez-Salceda, 2003] Vázquez-Salceda, J. (2003). The role of norms and elec-

tronic institutions in multi-agent systems applied to complex domains the HARMO-

NIA framework. Phd thesis, Universitat Politcnica de Catalunya.

[Verdicchio and Colombetti, 2003] Verdicchio, M. and Colombetti, M. (2003). A log-

ical model of social commitment for agent communication. In Sandholm, T. and

Yokoo, M., editors, Proceedings of the Second International Joint Conference on

Autonomous Agents and Multi Agent Systems (AAMAS 03), pages 528–535, Mel-

bourne, Australia. ACM Press.

[Walton, 2004a] Walton, C. (2004a). Model Checking Multi-Agent Web Services. In

Proceedings of the AAAI Spring Symposium on Semantic Web Services, Stanford,

CA. AAAI.

[Walton and Barker, 2004] Walton, C. and Barker, A. (2004). An Agent-based e-

Science Experiment Builder. In Proceedings of the 1st International Workshop on

Semantic Intelligent Middleware for the Web and the Grid, Valencia, Spain.

Bibliography 159

[Walton and Robertson, 2002] Walton, C. and Robertson, D. (2002). Flexible multi-

agent protocols. Technical Report EDI-INF-RR-0164, University of Edinburgh.

[Walton, 2004b] Walton, C. D. (2004b). Multi-Agent Dialogue Protocols. In Proceed-

ings of the Eighth International Symposium on Artificial Intelligence and Mathe-

matics, Fort Lauderdale, Florida.

[Walton and Krabbe, 1995] Walton, D. and Krabbe, E. C. W. (1995). Commitment in

Dialogue: Basic Concepts of Interpersonal Reasoning. SUNY press, Albany, NY,

USA.

[Wooldridge, 2000] Wooldridge, M. (2000). Semantic issues in the verification of

agent communication languages. Autonomous Agents and Multi-Agent Systems,

3(1):9–31.

