

Coordinated Constraint Relaxation Using a
Distributed Agent Protocol

Mohd Fadzil Hassan

Doctor of Philosophy

Centre for Intelligent Systems and their Applications (CISA)

School of Informatics,

The University of Edinburgh.

2007

 i

Abstract
The interactions among agents in a multi-agent system for coordinating a distributed,

problem solving task can be complex, as the distinct sub-problems of the individual

agents are interdependent. A distributed protocol provides the necessary framework for

specifying these interactions. In a model of interactions where the agents’ social norms

are expressed as the message passing behaviours associated with roles, the dependencies

among agents can be specified as constraints. The constraints are associated with roles to

be adopted by agents as dictated by the protocol. These constraints are commonly

handled using a conventional constraint solving system that only allows two satisfactory

states to be achieved – completely satisfied or failed. Agent interactions then become

brittle as the occurrence of an over-constrained state can cause the interaction between

agents to break prematurely, even though the interacting agents could, in principle, reach

an agreement. Assuming that the agents are capable of relaxing their individual

constraints to reach a common goal, the main issue addressed by this thesis is how the

agents could communicate and coordinate the constraint relaxation process. The

interaction mechanism for this is obtained by reinterpreting a technique borrowed from

the constraint satisfaction field, deployed and computed at the protocol level.

The foundations of this work are the Lightweight Coordination Calculus (LCC) and

the distributed partial Constraint Satisfaction Problem (CSP). LCC is a distributed

interaction protocol language, based on process calculus, for specifying and executing

agents’ social norms in a multi-agent system. Distributed partial CSP is an extension of

partial CSP, a means for managing the relaxation of distributed, over-constrained, CSPs.

The research presented in this thesis concerns how distributed partial CSP technique,

used to address over-constrained problems in the constraint satisfaction field, could be

adopted and integrated within the LCC to obtain a more flexible means for constraint

handling during agent interactions. The approach is evaluated against a set of over-

constrained Multi-agent Agreement Problems (MAPs) with different levels of hardness.

Not only does this thesis explore a flexible and novel approach for handling constraints

during the interactions of heterogeneous and autonomous agents participating in a

problem solving task, but it is also grounded in a practical implementation.

 ii

Acknowledgements

I would like to thank all those people who have supported me throughout this PhD. First

and foremost, my deepest gratitude to both of my supervisors, Dr. David Robertson and

Dr. Chris Walton, for all their time, support, friendship and intellectual inspirations. They

have been the best supervisors both in wisdom and temperament, and this thesis would

not have been possible without their help and support.

To all my fellow research students, especially to the past and present members of

the Room 4.15, Appleton Tower; Adam Baker, Paolo Besana, Thomas French, Li Guo

and Jarred McGinnis. Your kindness, friendship, hospitality and enlightening discussions

proved invaluable.

I would also like to thank the Malaysian community in Edinburgh, especially the

people of 32/10 Sinclair Place (Yr. 2003-2004), 5/8 Westfield Court (Yr. 2004-2006) and

5/11 Westfield Court (Yr. 2006-2007). I have been lucky in having great and wonderful

friends, who have individually helped me in one way or another throughout the years.

I am also indebted to the Universiti Teknologi PETRONAS, Malaysia, which

funded my research. Without its financial aid, this thesis would not be possible.

A special thank you to my family, especially my parents, Tn. Hj. Hassan Abdullah

and Pn. Hjh. Fatimah Khamis, for the continual support and encouragement that I have

received throughout my education. It is my family who is most responsible for inspiring

me to strive for the goal to which this thesis is a testament.

Last but not least, my heartfelt thanks to a great friend, my wife and soul-mate,

Zahiraniza Mustaffa. Her unfailing moral support in times of difficulties, understanding,

and counsel have been invaluable in contributing to the successful completion of this

thesis.

I sincerely thank all of you.

 iii

Declarations

I declare that this thesis was composed of myself, that the work contained herein is my

own except where explicitly stated otherwise in the text, and that this work has not been

submitted for any other degree or professional qualification except as specified.

(Mohd Fadzil Hassan)

 iv

Publications

Throughout the course of this degree, I have taken the advantage of immeasurably helpful

input provided by the peer review system. Most of the ideas developed in this thesis have

been presented or published for the following workshops and journals.

 Hassan, M.F., and Robertson, D. (2004). Constraint relaxation to reduce

brittleness of distributed agent protocols. In Proceedings of the Coordination in

Emergent Agent Societies Workshop (CEAS’ 04), held in conjunction with the

16th European Conference on Artificial Intelligence (ECAI’ 04), Valencia, Spain.

 Hassan, M.F., Robertson, D., and Walton, C. (2005). Addressing constraint

failures in agent interaction protocol. In Proceedings of the Eight Pacific-Rim

International Workshop on Multi-Agents (PRIMA’ 05), Kuala Lumpur, Malaysia.

To appear in the Lecture Notes in Artificial Intelligence series (LNAI), Lukose,

D., and Shi, Z. (Eds.), vol. 4078, Springer Verlag.

 Robertson, D., Barker, A., Besana, P., Bundy, A., Chen-Burger, Y.H., Dupplaw,

D., Giunchiglia, F., van Harmelen, F., Hassan, F., Kotoulas, S., Lambert, D., Li,

G., McGinnis, J., McNeill, F., Osman, N., de Pinninck, A.D., Siebes, R., Sierra,

C., and Walton, C. Models of interaction as a grounding for peer to peer

knowledge sharing. To appear in the Advances in Web Semantics, Chang, E.,

Dillon, T., Meersman, R., and Sycara, K. (Eds.), vol. 1, LNCS-IFIP, Springer

Verlag.

 v

Table of Contents

1. Introduction... 1

1.1 Multi-Agent Systems ... 1

1.2 Coordination in MAS... 4

1.3 Agent Interaction for Distributed Problem Solving... 6

1.4 Scope, Motivation, and Aims... 10

1.5 Thesis Outline .. 13

2. Related Work .. 15

2.1 Agent Interaction ... 15

2.1.1 Approaches to Agent Interaction .. 16

2.1.2 Communication in Multi-Agent Systems ... 17

2.2 Objective-based Approaches for Agent Interaction... 20

2.2.1 Electronic Institutions ... 20

2.2.2 Lightweight Coordination Calculus.. 24

2.3 Distributed Problem Solving Environment.. 34

2.4 Over-Constrained Problems... 38

2.5 Partial Constraint Satisfaction Problems ... 42

2.6 Chapter Summary .. 46

3. Interaction Formalisation and Over-Constrained Problems.................................. 48

3.1 Customer/Vendor Scenario.. 48

3.2 Sources of Brittleness in Interaction Protocols.. 58

3.3 Addressing Brittleness via Constraint Relaxation ... 66

3.4 Overview of Constraint Relaxation Approach... 68

3.5 Chapter Summary .. 71

 vi

4. Protocol Specification ... 72

4.1 Application of Distributed Partial CSP for Addressing Over-Constrained

Problem.. 74

4.1.1 A Metric for Solution Subset Distance ... 76

4.1.2 Finding a Solvable MAP... 81

4.1.3 Global Distance Computation... 84

4.1.4 Constraint Relaxation.. 87

4.2 Algorithms for Finding Relaxed Problems that Achieve Solvable State with

Minimal Distance... 89

4.3 Implementing Constraint Relaxation Approach in LCC 95

4.4 Chapter Summary .. 104

5. Implementation and Working Example ... 105

5.1 Implementation .. 105

5.2 Working Example .. 108

5.3 Chapter Summary .. 118

6. Evaluation.. 119

6.1 Measures Used ... 119

6.2 Experimental Test Bed... 122

6.2.1 Problem Generation Phase.. 123

6.2.2 Distributed Constraint Relaxation Phase .. 127

6.3 Experimental Results ... 128

6.4 Analysis of Results .. 131

6.4.1 Macro-level Analysis .. 132

6.4.2 Micro-level Analysis... 136

6.5 Chapter Summary .. 141

 vii

7. Conclusions and Future Works ... 142

7.1 Conclusions.. 142

7.2 Future Works ... 144

7.2.1 Employing Constraint Relaxation Strategies .. 144

7.2.2 Utilising Different Distance Metrics... 144

7.2.3 Handling of Non-Crisp Constraints .. 145

7.2.4 Evaluation Based on Real-Life Applications.. 146

Appendix A. Prolog Code... 147

A.1 interface.pl ... 147

A.2 expansion_engine.pl... 150

A.3 constraint_handling.pl.. 155

Bibliography .. 159

 viii

List of Figures

Figure 1.1: Factors in a program’s decision-making process ... 2

Figure 1.2: Cooperation topology... 2

Figure 1.3: Categorisation of common dependencies among activities 4

Figure 1.4: Problem solving stages... 7

Figure 1.5: Possible sub-problems of interacting agents .. 9

Figure 1.6: Conceptual model of agent interaction... 9

Figure 2.1: A generic communication stack for agent interaction.................................... 18

Figure 2.2: Example of El and scene .. 23

Figure 2.3: Syntax of LCC protocol language .. 26

Figure 2.4: Diagrammatical view of LCC operators .. 26

Figure 2.5: Example of LCC protocol .. 27

Figure 2.6: Basic architecture of agent interactions in LCC... 28

Figure 2.7: Message-passing in LCC.. 30

Figure 2.8: Variable interdependency in distributed problem solving 38

Figure 2.9: Example of an over-constrained problem .. 39

Figure 2.10: The problem space of partial constraint satisfaction 43

Figure 2.11: Example of partial CSP application to solve an over-constrained problem. 47

Figure 3.1: Roles and interaction diagram.. 49

Figure 3.2: Enacting distributed constraint solving interaction in LCC 58

Figure 3.3: Bilateral problem solving process .. 58

Figure 3.4: Conceptual overview of constraint graphs and solution lists involved in

agents’ interactions ... 61

Figure 3.5: Partially expanded interaction protocol clauses of the customer agent.......... 64

Figure 3.6: Partially expanded interaction protocol clauses of the vendor agent 64

Figure 3.7: Interaction graphs for customer and vendor... 65

Figure 3.8: Formal model of constraint relaxation interactions.. 69

 ix

Figure 4.1: Problem solving stages and constraint relaxation task................................... 73

Figure 4.2: Possible relationships between the solution sets of the original(S) and the

relaxed (S’) problems.. 77

Figure 4.3: Equations for distance computation ... 78

Figure 4.4: The value of ‘d’ derived from the solution sets of the original and relaxed

problems.. 79

Figure 4.5: Necessary bound for restraining the relaxed problems generated by agents . 80

Figure 4.6: The search for a solvable MAP state.. 83

Figure 4.7: Algorithm for constraint relaxation (i) ... 91

Figure 4.8: Algorithm for constraint relaxation (ii) .. 92

Figure 4.9: Algorithm for constraint relaxation (iii)... 93

Figure 4.10: Algorithm for constraint relaxation (iv) ... 94

Figure 4.11: Interaction between agent roles.. 97

Figure 4.12: Encoding of constraint relaxation as a LCC protocol (i)............................ 101

Figure 4.13: Encoding of constraint relaxation as a LCC protocol (ii) 102

Figure 4.14: Encoding of constraint relaxation as a LCC protocol (iii) 103

Figure 4.15: Encoding of constraint relaxation as a LCC protocol (vi).......................... 104

Figure 5.1: Architecture for distributed constraint relaxation interactions..................... 106

Figure 5.2: Problem space of the customer agent ... 110

Figure 5.3: Problem space of the vendor agent... 111

Figure 5.4: Flow of inter-agent interactions ... 114

Figure 5.5: Selection of agents’ CSPs during constraint relaxation computations......... 117

Figure 6.1: A complete relaxation cycle ... 121

Figure 6.2: Number of combination of r values from n possible values 124

Figure 6.3: The size of combinations for different values of r 125

Figure 6.4: Relaxation cycles for over-constrained MAPs with 25% compatibility level of

local constraints. ... 133

Figure 6.5: Relaxation cycles for over-constrained MAPs with 50% compatibility level of

local constraints. ... 133

 x

Figure 6.6: Relationship between the parameters and number of relaxation cycles

obtained... 135

Figure 6.7: Comparison between 25% and 50% compatibility levels of local constraints–

Over-constrained problem with a domain size of 4 139

Figure 6.8: Comparison between 25% and 50% compatibility levels of local constraints−

Over-constrained problem with a domain size of 5 140

Figure 6.9: Comparison between 25% and 50% compatibility levels of local constraints−

Over-constrained problem with a domain size of 6 140

Figure 6.10: Comparison between 25% and 50% compatibility levels of local constraints

–Over-constrained problem with a domain size of 7 141

 xi

List of Tables

Table 2.1: Rewrite rules for expansion of a protocol clause... 33

Table 3.1: LCC protocol for the given scenario ... 50

Table 3.2: Sequence of message passing .. 62

Table 4.1: Distance metric computation for achieving a MAP solvable state.................. 85

Table 4.2: Distance metric computation for achieving a MAP solvable state.................. 85

Table 4.3: Distance metric computation for achieving a MAP solvable state.................. 86

Table 6.1: Protocol’s performance against over-constrained MAPs with 25%

compatibility level of local constraints ... 129

Table 6.2: Protocol’s performance against over-constrained MAPs with 50%

compatibility level of local constraints ... 130

 xii

List of Definitions

Definition 2.1: Constraint Satisfaction Problem (CSP) .. 36

Definition 2.2: Distributed Constraint Satisfaction Problem (DCSP) 36

Definition 2.3: Multi-Agent Agreement Problem (MAP) .. 37

Definition 2.4: partial Constraint Satisfaction Problem.. 43

Definition 2.5: distributed partial Constraint Satisfaction Problem.................................. 45

 1

Chapter 1

Introduction

The work described in the thesis brings together established works from two separate

research disciplines; the constraint satisfaction and multi-agent system research fields. It

specifically demonstrates on how an established technique for addressing over-

constrained problem within the constraint satisfaction research field can be specified as a

distributed agent protocol. This allows for a more flexible interactions among agents

involved in a distributed problem solving task. The integration of constraint satisfaction

techniques in multi-agent systems is a growing research area [Calisti and Neagu, '04], and

this work enriches this expanding research area in the following two general aspects.

1. For the constraint satisfaction research field, it makes the available techniques

to address over-constrained problem relevant for the peer-to-peer agent

environment.

2. For the multi-agent system research field, particularly the distributed agent

protocol, it addresses the brittleness problem commonly faced by problem

solving agents during their interactions for finding a solution.

This thesis begins by giving a general overview on multi-agent systems, coordination in

multi-agent systems, followed by a discussion on how agent interactions provide the

means to coordinate agents in a distributed problem solving environment. Next, a

discussion on the motivation and aim of the research work will be provided. A

description of the thesis’ remaining chapters will conclude this introductory chapter.

1.1 Multi-Agent Systems

A software entity is generally accepted and recognised as an “agent” if it can exhibit an

autonomous feature, which means it is able to perform an independent computational

activity and interacts with its surrounding environment [Wooldridge and Jennings, '95].

Chapter 1. Introduction

 2

Its behaviour is directed not only by its own experience (stored knowledge), but by its

ability to evaluate and combine this with knowledge about the current situation and the

environment, along with any other pertinent information available to produce an

autonomous and deliberative decision making process [Chalmers, '04], as illustrated in

figure 1.1.

Decision Making Process

Stored
Knowledge

Environment
Information Rules

Information
from Others

Figure 1.1: Factors in a program’s decision-making process

An important aspect of the agent-based approach is the principle that agents (like

humans) can function more effectively in groups that are characterised by cooperation

and division of labour [Chaib-Draa and Dignum, '02]. In fact, cooperation is often

presented as one of the key concepts which differentiates multi-agent systems (MAS)

from other related disciplines such as distributed computing, object-oriented systems, and

expert systems. The broad view description of cooperation within the context of MAS

can be illustrated using the topology provided in figure 1.2 [Doran et al., '97; Franklin

and Graesser, '97].

Multi-Agent System

Independent

Discrete Emergent
Cooperation

Cooperative

Communicative
Non-communicative

Deliberative Negotiating
Figure 1.2: Cooperation topology

Chapter 1. Introduction

 3

A MAS is independent if each agent pursues its own agenda independently of the

others. A system is discrete if it is independent, and if the agendas of the agents bear no

relation to one another. A system can be described as having emergent cooperation

behaviour if from an observer’s viewpoint, the agents appear to be working together, but

from the agent’s viewpoint they are not. They are simply carrying out their own

individual behaviour.

The opposite of independent systems are cooperative systems, in which the agendas

of the agents include cooperating with other agents in some way. Such cooperation can

be either communicative in that the agents communicate with each other in order to

cooperate or it can be non-communicative. For the non-communicative form, agents

coordinate their cooperative activities by each agent observing and reacting to the

behaviour of the others. On the other hand, communicative cooperation can be in at least

two forms – deliberative or negotiating. In deliberative systems, agents jointly plan their

actions in order to cooperate with each other. Negotiating systems are similar to

deliberative systems, except that they have an added element of competition.

A more precise and constrained definition emphasised that cooperation occurs when

the actions of each agent satisfy at least one of the following conditions [Doran et al.,

'97]:

1. The agents have a (possibly implicit) goal in common (which no agent could

achieve in isolation) and their actions aim at achieving that goal.

2. The agents perform actions which enable them to achieve not only their own

goals, but also the goals of other agents.

Following these definitions, the scope of the research work reported in the thesis is

primarily concerned on MAS which can be viewed as a loosely coupled network of

problem solvers that interact to solve problems that are beyond the individual capabilities

or knowledge of each problem solver. The problem solvers are autonomous and can be

heterogeneous in nature [Sycara, '98].

One of the biggest concerns in any distributed reasoning system is how the action of

the individual agents can be coordinated so that they work together effectively [Rich and

Chapter 1. Introduction

 4

Knight, '91]. Therefore, in the next section, a general overview of coordination in MAS is

given.

1.2 Coordination in MAS

A general definition of coordination is provided by the coordination theory introduced in

[Malone and Crawston, '94]. In this theory, coordination is viewed as a process of

managing dependencies between activities, and the categorisation of these dependencies

is provided in figure 1.3. According to this theory, autonomous entities need to

coordinate their actions in order to manage the dependencies that exist between these

activities.
Dependencies

Shared Resource Producer/Consumer
Relationship Simultaneity Constraint Task/Sub-task

Prerequisite
constraint

Transfer Usability

Figure 1.3: Categorisation of common dependencies among activities

In a definition that focuses specifically on MAS, coordination is viewed as a

process in which agents engage in order to ensure a community of individual agents acts

in a coherent manner. Coherence means that the agents’ actions are consistent with each

other. In other words, coherence refers to how well a system of agents behaves as a unit,

and these agents need to be coordinated for the reasons described in [Nwana et al., '96]:

 Preventing anarchy or chaos – coordination is necessary or desirable because, with

decentralisation in agent-based systems, anarchy can set in easily. Agents no longer

possess a global view of the entire group to which they belong. Consequently, agents

only have local views, goals and knowledge, which may conflict with others. They

can enter into all sorts of arrangements with other agents or agencies. Like in any

society, such haphazard arrangements are prone to anarchy; to achieve common

Chapter 1. Introduction

 5

goals, which are a major reason for having multiple agents in the first place, a group

of agents need to be coordinated

 Meeting global constraints – there usually exist global constraints which a group of

agents must satisfy if they are to be deemed successful

 Distributed expertise, resources or information – agents may have different

capabilities and specialised knowledge

 Dependencies between agents’ actions – agents’ goals are frequently interdependent

 Efficiency – even when individuals can function independently, thereby obviating the

need for coordination, information discovered by one agent can be of sufficient use to

another agent that both agents can solve the problem faster

Coordination among agents is accomplished through social interactions, one of the

fundamental features of MAS. These social interactions are enacted through a variety of

interaction protocols, here regarded as the public rules or norms for communications of

the participants of a group when carrying out some social encounter. In this context, the

protocol ensures that all participants following it can expect certain responses from others

and can coordinate meaningfully towards a goal [Paurobally et al., '03].

Chapter 1. Introduction

 6

1.3 Agent Interaction for Distributed Problem Solving

As described in [Faratin and Klein, '01], collaborative problem solving task which uses

the MAS approach is generally composed of the following three stages: pre-interaction,

interaction and post-interaction. These stages are illustrated using a simplified diagram in

figure 1.4, which involves two agents (agent a and b). Boxes, ovals and links represent

processes involved in the decision making, data, and information flow respectively.

The local problem of the agent is defined in the pre-interaction phase. This stage of

the collaborative activity, which is non-interactive, can be informally described as the

stage where the agent “gets to know itself and what it wants”. At this stage the agent

attempts to not only define its local problem, but it may also attempt to solve the problem

independently of interactions with other agents. A local solution is a locally consistent

assignment of values to a set of variables that satisfy some set of domain constraints. Let

j (j∈{a,b}) represent an agent. Let { }j
n

j
1

j i,...,iI = represent the local n-dimensional

variables, or issues, of agent j. Domain constraints are local/endogenous restrictions on

the local decision making, which include a minimal unary constraint of the domain, or

reservation value for each of the variable. Another possible constraint are the binary/n-

nary dependencies between the variables. In this research, we restrict ourselves to the

problems in which both the set and ontology of the variables are shared among the

agents, that is Ia=Ib.

Once agents have a consistent assignment of values to each of their local variables,

they enter the next stage of the collaborative activity which is interaction. This stage is

specifically concerned on the modification and checking of consistency of the joint set of

constraints. Conflicting preferences (or interaction constraints) make the achievement of

a mutually agreed set of values for a variable difficult to achieve. The post-interaction

stage is essentially a commitment problem where mutual agreement on the values of the

set of variables achieved during interaction stage must be honoured.

Chapter 1. Introduction

 7

Domain
constraints Variables

Local problem

Domain
constraints Variables

Local problem

Pre-interaction stage

Solution1

Solutionn

.

.
Interaction
constraints

Agent
decision making

mechanism

Interaction
constraints

Solution1

Solutionn

.

.

Agent
decision making

mechanism

Solution1

Solutionn

.

.

Interaction
stage

Agent a Agent b

Post-interaction

Figure 1.4: Problem solving stages

Depending on the kind of sub-problem interdependencies, the interaction among

agents in a multi-agent system for a distributed problem solving task can be complex,

often requiring a multi-step dialogue. This interaction can be achieved through a protocol

that provides not only the communication of agents, but also the creation and destruction

of agents (i.e. agents entering/leaving a MAS), the spatial distribution of agents, as well

as synchronisation and distribution of actions over time [Bocchi and Ciancarini, '03]. It

generally involves two important elements – the subjects whose activities need to be

coordinated (i.e. agents) and the entities between which dependencies arise (i.e. objects of

coordination), namely sub-problems handled by the individual agents [Omicini and

Ossowski, '03].

The specification of the involved elements and the relationship that exist between

them are generally mediated and represented by the notion of role. When assuming a

role, an agent is in charge of the corresponding task or action, and is entitled to all the

Chapter 1. Introduction

 8

authorisations and permissions (and limitations as well) pertaining to its role. This can be

viewed as social norm constraints imposed on the agents upon assuming the roles

specified in the protocol. The state of the agent interactions is then reflected on the ways

these constraints are mutually and individually satisfied by the interacting agents.

The following is a short but (by current standards) complex scenario that deals with

the purchasing and configuration of a computer between the customer and vendor agents,

which is borrowed from [Robertson, '04c], to describe agent interactions for a distributed

problem solving task:

An internet-based agent acting on behalf of a customer wants to buy a

computer but doesn’t know how to interact with other agents to achieve this,

so it contacts a service broker. The broker supplies the customer agent with

the necessary interaction information. The customer agent then has a

dialogue with the given computer vendor in which the various configuration

options and pricing constraints are reconciled before a purchase is finally

made.

To simplify the discussion, it is assumed that the interaction between the vendor

and customer agents is concerned on only four abstract attributes namely V1, V2, V3 and

V4. Figure 1.5 provides an abstraction of a generic description of the possible problems of

the agents, which can range from a loosely constrained sub-problem (i.e. P1) where each

variable is independent of each other and solely constrained by the assigned domain

values to a densely constrained sub-problems (i.e. P2 and P3) where variables are

interdependent. P1 is formally known as a unary constrained problem while P2 and P3 can

be regarded as n-nary constrained problems, with different degrees of hardness [Tsang,

'93].

Chapter 1. Introduction

 9

P1

V3

V2

V1

V4

P2

V3

V2

V1

V4

P3

V3

V2

V1

V4

Figure 1.5: Possible sub-problems of interacting agents

The means of communicating and coordinating the problem solving efforts given

the distinct sub-problems of the customer and vendor agents can be provided through an

interaction model, as abstractly described in figure 1.6.

Customer
agent

Vendor
agent

Interaction
model

Locally defined
sub-problem

Locally defined
sub-problem

Figure 1.6: Conceptual model of agent interaction

The interaction model provides roles (i.e. customer and vendor) that could be

assumed by the interacting agents for reconciling their distinct sub-problems in finding

mutually acceptable values for all the four variables. The interactive states of the agents

communicating through this model are dependent on the satisfiability of the constraints

associated with the variables of the problem to be solved. The computation performed on

an interaction model might involve the execution of the roles contained in the model

across different machines or agents, therefore satisfaction of constraints by an agent

associated with a particular role in an interaction model is done in ignorance of

constraints imposed by other agents in the interaction. Hence, for a successful termination

of the interaction model in coordinating the agents to achieve the intended objective of

finding an agreeable solution, we require all constraints associated with the agents’ roles

to be solvable. For instance, within the given scenario, the agents are in conflict if no

Chapter 1. Introduction

 10

compatibility is found between the corresponding variables values defined by the

interacting agents. This conflict may lead to a failure in the reconciliation process,

preventing the agents’ progressions in their respective prescribed roles of the interaction

model for achieving a solvable state. This inconsistent local view of interacting agents,

which causes interaction failure, can be perceived as an over-constrained problem.

As such, interaction models are considered brittle, in a sense that the constraints

imposed on the roles contained in the models must either succeed or fail, and if they fail

the entire models may fail to achieve the objective of adequately resolving the

interdependence among the agents’ sub-problems. Consequently, protocol failure can

cause the interaction between agents to break prematurely, even though the interacting

agents could in principle reach an agreement.

This problem will be re-visited again in chapter 3, illustrated in detail via an

interaction model, formalised and executed using a particular distributed interaction

protocol language called the Lightweight Coordination Calculus (LCC).

1.4 Scope, Motivation, and Aims

In many constraint satisfaction research works, an extensive use of the terms ‘agent’ and

‘agent interaction’ can be found [Yokoo, '93; Yokoo et al., '98; Yokoo, '01]. However, it

should be clearly noted that these two terms have been used in the constraint satisfaction

and MAS worlds with slightly different meanings [Calisti and Neagu, '04].

In the constraint satisfaction research field, an agent is a computational entity acting

as a decision maker following pre-defined coordination mechanisms (i.e. constraint

solving mechanisms or algorithms) and sharing an implicit common representation of the

world with other agents (i.e. no explicit use of structured communication stack and

ontologies). In contrast, from a MAS perspective, an agent is autonomously deciding

whether or not to follow specific coordination mechanisms and can communicate with

other agents by means of structured semantic-grounded exchange of messages.

Within the constraint satisfaction world, the fundamental issue is on how to obtain a

consistent assignment of values to a set of variables maintained by distinct agents within

a distributed environment, with a very little emphasis put on the communication model

Chapter 1. Introduction

 11

employed by the agents. The requirement to communicate is mainly driven by the

algorithm used for finding a solution to a given constrained problem. In a way, the

definition of agent in the constraint satisfaction world is very much equivalent to the

‘weak agency’ of MAS. Given the slightly distinct definitions of the terms ‘agent’ and

‘agent interaction’ as specified in the constraint satisfaction and MAS communities

respectively, any mentioned of these terms in this thesis is implicitly assumed to be the

definitions provided by the latter unless it is duly noted otherwise.

The work presented in this thesis considers a stronger notion of agency. It

specifically focuses on how an explicit interaction model used in synchronising the

message-passing behaviour of heterogeneous problem solving agents can be affected by

failure of any of the agents involved in the interaction process to satisfy the constraints

imposed on the individual agent roles engineered within the model. Given that the

participating agents are capable of relaxing their individual constraints to accommodate

the constraints of others in order to reach a common goal, the main issue this work tries

to address is how agents could communicate and coordinate the constraint relaxation

process. This can be achieved by providing agents with some safe envelope of constraint

bounds across the interaction for reconciling their sub-problem differences. The

interaction mechanism is obtained by re-interpreting a technique borrowed from the

constraint community, deployed at the interaction protocol level.

It is not the aim of this research to provide any new advance in the already mature

fields of constraint satisfaction. Instead, it attempts to bridge the gap between the worlds

of constraint satisfaction and MAS by promoting the use of the techniques established by

the former to solve a class of a distributed interaction problem faced by the latter. It is the

aim of this research to extend the capability of conceptual and theoretical techniques for

addressing over-constrained problems within the constraint satisfaction field by

reinterpreting these techniques from the distributed agent protocol perspective. The study

is concerned with how existing approaches used to address over-constrained problems in

constraint satisfaction field can be integrated and adapted within a distributed interaction

protocol framework to have a more flexible means of constraint handling during agent

interactions. For this purpose, we focus on a particular interaction protocol language

called the Lightweight Coordination Calculus (LCC).

Chapter 1. Introduction

 12

As described in [Sycara, '98], the use of constraint satisfaction techniques in MAS

is not new as they have been utilised either as a part of the agents’ problem solving

apparatus or coordination formalisms as reported in [Macho-Gonzales et al., '00; Aldea et

al., '01; Meisels and Kaplansky, '02]. However, in these works, the focus is strictly on the

conventional formalisms of constraint satisfaction which require all constraints to be

satisfied and do not address over-constrained problems. The few approaches that do

attempt to integrate the currently available constraint satisfaction techniques for over-

constrained problem with MAS include that of [Luo et al., '03], which proposed a fuzzy

constraint-based model for bilateral multi-issue negotiations in MAS. The work is applied

to an accommodation-renting scenario involving a negotiation between a prospective

tenant and a letting agency. The model is directly engineered as part of the internal

functionality of the interacting agents.

This thesis, on the other hand, considers the problem of integrating a particular

constraint satisfaction technique for solving an over-constrained problem (i.e. distributed

partial Constraint Satisfaction Problem) as part of the constraint-handling feature of the

distributed interaction protocol system (i.e. LCC). This is a novel way of providing a

more flexible approach for handling constraints during the interactions of heterogeneous

and autonomous agents participating in a distributed problem solving task. The proposed

approach is not specifically engineered as part of the agency, and its deployment and

execution does not rely on any centralised mechanism. In this way, the brittleness of

agent interaction due to the conflicting constraints imposed by the individual agents can

be addressed by the agents themselves without any third-party intervention.

The use of a third-party mediator for coordinating the relaxation of an over-

constrained situation might be acceptable if confidentiality is not the main concern; so it

is acceptable for agents to reveal their internal goals to the third parties. However, in

some domains (e.g. customer-vendor bargaining interaction), it is not practical for this

private information to be completely revealed, as it might jeopardise the agents’

individual strategies for obtaining an optimal outcome from the interaction process. As

emphasised in [Pruitt, '81; Rosenschein and Zlotkin, '94], it is important that the agents

minimise the amount of information they reveal about their preferences since any such

revelation can weaken their bargaining position. Another reason why the agents need to

Chapter 1. Introduction

 13

minimise such information revelation is that humans, depending on the nature of

interaction, are not always willing to completely disclose private information while

interacting with each other [Heiskanen et al., '01]. Thus, if we want interacting agents to

actually represent humans, they must follow the same broad tenet. In addition, heavy

dependency on a third-party agent to resolve any arising conflicts might lead to

bottlenecks. It is, hence, more advantageous for the constraint relaxation approach to be

managed directly by the involved agents themselves.

1.5 Thesis Outline

 Chapter 2 reviews the literature on approaches to agent interaction, and the

interaction protocol language used in this research (i.e. LCC). It also includes

a description on the distributed problem solving environment and approaches

for handling over-constrained problems within the constraint satisfaction

research field.

 Chapter 3 provides a discussion on the interaction model, formalised and

executed using LCC for a particular scenario. Using an example, brittleness of

the interaction model due to an over-constrained problem is described.

 Chapter 4 provides a detailed description of realising a distributed partial CSP

as an LCC protocol.

 Chapter 5 provides a discussion on the implementation of our approach and

detailed execution of the constraint relaxation protocol using the scenario of

chapter 3.

 Chapter 6 provides a description on the test bed used in evaluating the

protocol. This chapter also provides an analysis on the results obtained from

the evaluation.

Chapter 1. Introduction

 14

 Chapter 7 concludes with a summary and a discussion of future avenues for

research on this topic.

 15

Chapter 2

Related Work

This chapter provides a detailed review on two areas deemed important to the research

reported in this thesis; agent interaction and distributed, over-constrained, constraint

satisfaction problems. For the former, this include a review on approaches to agent

interaction, and the interaction protocol language used in this research (i.e. LCC). A

description on the distributed problem solving environment and approaches for handling

over-constrained problems within the constraint satisfaction research field are provided

for the latter.

2.1 Agent Interaction

Agents populating a MAS can be mainly classified as either benevolent (cooperative) or

self-interested [Lesser, '99]. Cooperative agents work toward achieving some common

goals, whereas self-interested agents have distinct goals but may interact to advance their

own goals. In the latter case, self-interested agents may, by exchanging favours,

coordinate with other agents in order to get those agents to perform activities that assist in

the achievement of their own objectives.

In both classifications, the need for interaction between agents is absolutely

essential because it enables the MAS to exist. If agents are not able to interact with one

another, no global behaviour in the MAS is possible, and hence the fundamental benefits

of using a MAS approach could not be fully gained. Agent interaction becomes a critical

issue in MAS as it allows interdependency that exists between agents to be coordinated,

in order for the agents’ overall goals to be achieved [Schumacher and Ossowski, '06].

Given this consideration, computational agents require ordered and structured

interactions [Bond and Gasser, '88]. Such structuring is needed because in the absence of

any normative rules of public behaviour, interactions lead to chaotic dynamics where

agents can send messages that cannot be understood or the message is inappropriate

Chapter 2. Related Work

 16

given the history of the current interaction [Faratin, '00]. Therefore, in this research, we

are interested in the interactive aspect of agents particularly for MAS-based distributed

problem solving systems. This section then provides an introductory overview of aspect

fundamental to the focus of the research work reported in this thesis: approaches to agent

interaction and communication in MAS. These are followed by an overview on two

objective-based approaches to agent interaction; Electronic Institution (EI) and

Lightweight Coordination Calculus (LCC), in the subsequent section.

2.1.1 Approaches to Agent Interaction

The many diverse approaches to the multi-agent interaction can be categorised in two

main classes – the subjective and objective approaches [Omicini and Ossowski, '03].

In the subjective approach, interaction is encapsulated as part of the intra-agent

components. Interactions are possible through the specification and development of agent

languages and architectures, closely integrated with the agent’s internal structure. With

this approach, each agent is assumed to have an understanding of the basic

communication elements to enable it to establish interactions. Given its state, it is

expected to infer the appropriate interaction action. The global behaviour of the system

emerges from all the individual interactive decisions made by each agent. This allows for

the greatest amount of autonomy for individual agents but at the risk of disorder or break

down of the system as the complexity of the interactions increase [McGinnis, '06]. The

subjective approach is widely used and it includes mentalistic or Belief-Desire-Intention

(BDI) model [Bratman, '87] of agent interactions based on the speech act theory of

[Austin, '62; Searle, '69].

As interactions may occur between similar or different agents within the same

system or across heterogeneous environments, sole dependency on the subjective

approach for coordinating agent interactions proved to be inadequate and led to a number

of problems, including the semantic verification problem [Wooldridge, '00]. This gives

rise to the objective approach which argues that several aspects of multi-agent systems

that conceptually do not belong to agents themselves should not be assigned to, or hosted

inside agents. Examples include infrastructure for communication and coordination, the

Chapter 2. Related Work

 17

topology of a spatial domain, and support for the action model [Schumacher and

Ossowski, '06]. In the objective approach, a MAS is not simply considered as a sum of

individuals. Instead, a MAS is perceived as a society of agents where a collective social

behaviour is likely to emerge. This society defines not only the world where agents live,

but also the laws that permeate the interaction space or the communication media that

enable agent interactions [Bocchi and Ciancarini, '03]. The society has norms and

traditions. For agents to participate in a MAS and thus participate in the society, it is the

responsibility of each individual agent’s engineer to design his/her agents to follow the

rules of the society. The consequence of this is a more reliable agent interaction. It is also

more scaleable due to the ability to know the global state of the MAS as interaction

activities are specified by the society. This comes at the cost of autonomy. Agents are not

completely free to explore the interaction space, that is the set of all possible meaningful

sequences of messages given an agent communication language. Agents can only

converse by following the sequences allowed by the society [McGinnis, '06]. This

objective approach necessitates a clear identification of the interaction setup in a MAS,

which naturally calls for a separation between the design of each individual agent and the

design of their interactions [Schumacher and Ossowski, '06]. Further details with regards

to the objective-based approaches to agent interactions including the Lightweight

Coordination Calculus (LCC), an interaction protocol language used in the research

work, are described in section 2.2.

2.1.2 Communication in Multi-Agent Systems

Regardless of the high-level approaches used to mediate agent interactions, there exist

some communicative aspects that need to be shared among agents to ensure that a proper

and smooth interaction can take place. These communicative aspects can be described

using a generic communication stack [Calisti, '02], which is composed of low-level data-

transport level and abstract components used at the higher communication level, as

illustrated in figure 2.1.

At the lowest level, a transport layer consists of basic building blocks responsible

for transparently routing and delivering agent messages to the final intended recipient(s).

Chapter 2. Related Work

 18

On top of the transport infrastructure, agents interoperate by parsing and interpreting

messages in the context of on-going conversation, achieved through components of the

communication layer. Brief descriptions of the abstract components of the

communication layer are as follows:

Conversational level

Communicative Act

Content Expression

Ontology

Syntactic representation of
the context

XML, SQL, DAML

Data exchange protocol
HTTP, GIIOP, SMTP

Transport
Optical fiber, TCP-IP

Sequence of licit messages within a
specific context

Instance of a single message in a particular
ACL

Instance of a statement embedded in a
message expressing states of the world

Description of objects, actions and
functions in a given domain

TRANSPORT LAYER

C
O

M
M

U
N

IC
ATIO

N
 LA

Y
E

R

Figure 2.1: A generic communication stack for agent interaction

Interaction Protocols for Agent Conversations. A conversation is regarded as an

interaction protocol instance or occurrence [Jouvin and Hassas, '02]. Conversation can be

defined as a succession of messages (communicative acts) exchange between two or

more agents following a well defined interaction pattern called protocol. An interaction

protocol defines several agent roles, which defines the set of responsibilities of one

interlocutor participating in the conversation. Several roles may be impersonated by a

single agent. Conversations are the instantiation of interaction protocols in actual

systems, and are by themselves a basic organisational construct, in that they define a

relationship between interlocutors, and their roles.

Interaction protocols are used to specify the set of allowed message types (i.e.

performatives), message contents and the correct order of messages during the

conversations between agents [Odell et al., '00; Lind, '01; Odell et al., '03], and they can

become the basis for agent negotiation and cooperation [Chen and Sadaoui, '03].

Interaction protocols can force agents to act correctly in predictable ways. Using the

protocols, the autonomous behaviours of agents can be predictable because agents are

Chapter 2. Related Work

 19

obliged to obey some rules. The interaction protocols can range from complicated

negotiation schemas to a simple request for a task to be performed. This layer that

governs whole patterns of interactions, social norms, and communication within MAS is

the ultimate concern of the research work reported in this thesis.

Agent Communication Language (ACL) and Content Expression. Once the valid

sequence of possible communicative acts is known, it is necessary that agents parse and

interpret every message they receive. This requires the adoption of a standard ACL and a

knowledge representation language that have a precisely defined syntax and semantics.

The ACL provides an agent with a set of performatives or locutions allowing it to

communicate and express its intentions in accomplishing some task. These performatives

or locutions are used to wrap the message content expressed in a knowledge

representation language. So, the proposition “Reasonable temperature” can have a

different meaning if it is expressed within a locution that is specified as a query,

command or statement.

The first ACL to gain wide recognition is the Knowledge Query and Manipulation

Language (KQML), which was proposed along with the Knowledge Interchange Format

(KIF) as a means for knowledge sharing in the early 1990’s [Finin et al., '94; Wooldridge,

'02]. The development of KQML was an attempt to provide a set of performatives to

capture the various propositional attitudes an agent might want to express, while KIF

[Genesereth and Fikes, '92] focused on the representation of knowledge of a certain

domain.

A number of limitations associated with the KQML have led to the development of

FIPA-ACL [FIPA, '01]. FIPA-ACL offers the same functionality as KQML, but with

improvements like the introduction of formal semantics.

Ontology Definition. The description of the world state that the agents are

communicating about may contain references to objects, actions and functions (i.e. object

models) in one or more domains. An ontology provides a vocabulary (class model) for

representing and communicating domain-dependent knowledge, including a set of

Chapter 2. Related Work

 20

relationships and properties that are valid for the elements identified by that vocabulary

[Chnadrasekaran et al., '99].

 The communication language, content language and the ontology must somehow

be agreed by the participating agents, regardless of the approaches adopted in governing

the agent interactions. For our work, this assumption is made because without it, little

progress could be made.

2.2 Objective-based Approaches for Agent Interaction

The rapid evolvement of the field of agency gives rise to the development of a number of

objective-based approaches to agent interaction. This section describes the existing

literature in the field, focusing on two approaches namely Electronic Institution (EI) and

Lightweight Coordination Calculus (LCC). The former is a prominent and popular

technique for specifying and deploying agent interaction protocols in MAS while the

latter has evolved due to dissatisfactions attributed to the shortcomings of the former. EI

has a significant role in the development of LCC, a distributed protocol language that

provides the foundation for the research work reported in this thesis. As such, the

following sub-section is dedicated to provide a review on EI and its features before LCC

is described in details in sub-section 2.2.2.

2.2.1 Electronic Institutions

The objective-based paradigm of agent interactions is largely typified by EI [Noriega,

'97; Esteva et al., '00] . The underlying concept behind the framework is that human

interactions are always guided by formal and informal conventions. Human interactions

are never completely unconstrained; rather such notions as conventions, customs,

etiquette, and laws control them. EI framework provides a means for controlling the

interactions of agents in a MAS using formal institutions [Esteva et al., '01].

An EI is considered analogous to a theatre production. The agents that are

coordinated by the institution are analogous to the actors, and each agent takes one or

more roles in the institution. The interactions are articulated through the use of scenes in

Chapter 2. Related Work

 21

which groups of agents directly interact. Within a scene, all the participating agents

follow a single script which guides their interactions.

Though there exist a number of EI frameworks which vary in details, their basic

principles are close to the ISLANDER [Esteva et al., '02]. The ISLANDER framework

formally defines several core aspects of EIs. Central to ISLANDER are the formal

definition of roles for agents, a shared dialogical framework, the division of the

institution into a number of scenes and a performative structure which dictates, via a set

of normative rules, the relationship between scenes.

The notion of role is central in the specification of EIs and each role defines a

pattern of behaviour within the institution. A role can be defined as a finite set of actions,

intended to represent the capabilities of the role. For instance, an agent assuming the

buyer role is capable of submitting bids and an agent assuming the auctioneer role can

offer goods at auction. In order to take part in an EI, an agent is obliged to adopt some

role(s). Thereafter, an agent playing a given role must conform to the pattern of

behaviour attached to that particular role. Therefore, all agents adopting similar roles are

guaranteed to have the same rights, duties and opportunities.

In order to allow agents to successfully interact with other agents, the fundamental

issue of having a common language and ontology must be addressed. This guarantees the

interacting agents to have a shared vocabulary for communication as well as a common

world-view with which to represent the world they are discussing. For this purpose, EI

dictates that agents must share a dialogical framework when communicating. By sharing

a dialogical framework, heterogeneous agents are capable to exchange knowledge and

information with the other agents. The core of the dialogical framework includes an

ontology, a content language, and a set of illocutions. The content language allows for the

encoding of knowledge and information to be exchanged among agents using the

vocabulary offered by the ontology, and this part makes up the inner language. The

propositions generated using the inner language need to be embedded into an outer

language, the communication language which expresses the intentions of the utterance by

means of the illocutions, before being passed between the agents. The dialogical

framework, which consists of the ontological elements, is essential for the specification

of scenes.

Chapter 2. Related Work

 22

All interaction between agents occurs within the context of scenes. A scene defines

a generic pattern of interaction protocol between roles, expressed as the set of valid

sequences of illocution that agents assuming the role can exchange. Any agent

participating in a scene has to play one of its roles. A scene is specified as a directed

graph where the nodes represent the different states of the interaction and the directed

arcs connecting the nodes are labelled with the actions that make the scene state evolve.

Each scene has a set of entrance and exit states, and agents participating in the scene must

satisfy conditions associated with these states before they can enter or exit a scene.

As agents might be involved in a number of individual scenes, the relationship

between these scenes needs to be properly formalised. The performative structure defines

this network of scenes and their inter-relation with each other. It specifies how the agents

depending on their role can move among different scenes, taking into account the

relationship among the different scenes. The roles adopted by an agent and the actions

performed by the agent upon assuming these roles create obligations and affect future

actions available to the agents. These consequences can either limit or enlarge its

subsequent possibilities for action, and provide a possible path for an agent within the

performative structure. These are referred to as normative rules, and can be categorised as

either intra-scene or inter-scene. Intra-scene dictates actions for each agent role within a

scene, and inter-scene is concerned with the commitments which extend beyond a

particular scene and into the performative structure [Esteva et al., '00; Esteva et al., '01].

In order to illustrate the concept of institution and scene, an example is provided in

figure 2.2, which is borrowed from the work reported in [Walton and Robertson, '02].

Figure 2.2(a) provides an example of an institution designed for the diagnosis of breast

cancer and one of the scenes for this institution is illustrated in figure 2.2(b). The

institution consists of a number of inter-linked scenes. The rectangles represent scenes,

and the inter-scene connectives represent the performative structure. The scene of figure

2.2(b) is intended to represent a patient(P) visiting a doctor(D) to obtain a diagnosis of

breast cancer symptoms.

Chapter 2. Related Work

 23

General
Practitioner

Breast Cancer
Clinic Screening

Family History
Clinic Genetics

Surgeon
Referral

Diagnosis
Institution

ACCEPT

norefer(D,P)

symptoms(P,D)

accept(D,P)

request(P,D)

refer(D,P)
INITIAL

WAIT

DIAG
a) b)

Figure 2.2: Example of El and scene

The specification of EI as defined using the ISLANDER framework is executed

using AMELI [Esteva et al., '04], the infrastructure and governing agent that mediates

participating agent’s interactions. Given an ISLANDER EI specification, AMELI ensures

that agents participating in the institution adhere to all the specified norms. The

innovative contribution of AMELI is its ability to implement any EI specification defined

in ISLANDER regardless of domain.

Although not always described as such, EI is a form of protocol that is intended to

be globally understood by the agents concerned. It relies on agents being aware of the

current state of the institution, when and where they are expected to interact. A key issue

with such a protocol, however, is how the global control is enforced in practice. The

current enforcement technique (i.e. AMELI) relies on the use of administrative agents, or

agent proxies to ensure the smooth running of the institution. It is through this central,

coordinating agent (or “governor”) that all messages associated with the institution are

routed to. The governor can then enforce sequencing as necessary; prompt agents for

appropriate messages; and generally keep the interaction coherent. The problem with this

solution is that the agents are dependent on the governor to provide the necessary

coordination for effectively interacting with each other. As argued in [Walton and

Robertson, '02; Robertson, '04a], the use of governor undermines a key principle of

agency−that each agent can operate autonomously−since governors remove part of that

autonomy. In addition, the governor can become a bottleneck in agents’ interactions if

only a small number of governors are available to accommodate a sizeable number of

interacting agents.

Chapter 2. Related Work

 24

These limitations affect EI appropriateness for open heterogeneous MAS, and give

rise to the development of distributed protocol approach that preserves agents’ autonomy;

does not rely on the governor, yet provides interaction coordination.

2.2.2 Lightweight Coordination Calculus

Distributed protocols are a new approach to multi-agent interaction. In the common

practice, an agent’s communicative model is developed by the individual engineers by

interpreting any formal, graphical or natural language descriptions of a multi-agent

system’s interactions. The distributed protocol method, however, takes the view that the

agents themselves can participate in a communication using a given interactive model if

they are provided with the means to compute their parts in the interaction as specified in

the model. The advantage of distributed protocols is that agents are not tied to a set of

predefined protocols that their creator foresaw. A number of existing approaches for

distributed protocols include [deSilva, '02; Freire and Botelho, '02], however as described

in [McGinnis, '06], Lightweight Coordination Calculus (LCC) is considered more

developed since it is readily available in an executable form and can be directly utilised

for the work presented in this thesis. This does not necessary mean that our work is solely

dependent on LCC. It is portable to any distributed protocol platform that has the same

features as LCC, to be described in the remaining of this section, with very minimal

adjustments.

The development of LCC is mainly driven by the dissatisfaction with the EI

approach for agent interactions, especially the ISLANDER approach due to the described

limitations. A detailed discussion concerning LCC specification and the means to

compute interaction protocol terms within the LCC are given in the following two sub-

sections.

2.2.2.1 LCC Syntax

LCC borrows the notion of role from agent systems that enforce social norms (e.g. EI)

but reinterprets this in a formalism based on process calculus. The syntax of the protocol

Chapter 2. Related Work

 25

language, taken from [Robertson, '03] is shown in figure 2.3. Social norms in LCC are

expressed as message-passing behaviours associated with roles. In LCC, the interaction

framework is composed of a set of clauses, each of which defines how a role in the

interaction must be performed. Roles are described by the type of role and an identifier

for the individual agent undertaking that role. The definition of performance of a role is

constructed using combinations of the sequence operator (‘then’) or choice operator

(‘or’) to connect messages or changes of role. Messages are either outgoing to another

agent in a given role (‘⇒’) or incoming from another agent in a given role (‘⇐’). Figure

2.4 provides a diagrammatical view of these operators. The most basic behaviours are to

send or receive messages, and more complex ones can be constructed using combinations

of the sequence and choice operators. A set of such behavioural clauses specifies the

message passing behaviour expected of a social norm and, in LCC, this is referred to as

the interaction framework.

Message input/output or change of role can be governed by a constraint defined

using the normal logical operators for conjunction, disjunction and negation. Notice that

there is no commitment made in LCC with regards to the choice of constraint language as

it depends on the constraint solvers used. However, in the current LCC implementation,

constraints are specified as first order predicate calculus. The two options provided by

LCC on how agents can satisfy these constraints are as follows [Robertson, '04c]:

 Internally according to whatever knowledge and reasoning strategies it

possesses. This is the normal assumption on most MAS, yet it might not always

be ideal. Sometimes, it might be preferred not to have the knowledge

specifically used for a social interaction internalised within the agents as

commonly required (e.g. in cases where knowledge might be inconsistent with

the agents’ own beliefs). In such cases, LCC offers a second option:

 Externally using a set of Horn clauses defining common knowledge assumed for

the purpose of the interaction. This common knowledge can be set as public

(accessible to all agents participate in the interaction) or private (accessible to

individual or limited set of agents involved in the interaction). Like the LCC

Chapter 2. Related Work

 26

protocols themselves, the common knowledge is passed between agents along

with messages during interaction. Therefore, it is temporary – lasting only as

long as the interaction. Further description with regards to this option is

provided in the next sub-section.

Figure 2.3: Syntax of LCC protocol language

THEN
OR

SEND RECEIVE

KEY:

Role/
Message

Flow of
control

Figure 2.4: Diagrammatical view of LCC operators

Framework := {Clause,…}

Clause := Role::Def
Role := a(Type,Id)
Def := Role | Message | Def then Def | Def or Def |

null C
Message := M ⇒ Role | M ⇒ Role C | M ⇐ Role |

C M ⇐ Role
C := Term | ¬C | C ∧ C | C ∨ C

Type := Term
M := Term

Where null denotes an event, which does not involve message passing; Term is a
structured term in Prolog’s syntax and Id is either a variable or a unique identifier for the
agent. The operators ¬, ←, ∧ or ∨ are the normal logical connectives for negation,
implication, conjunction or disjunction. M ⇒ A denotes that a message, M, is sent out
to agent A. M ⇐ A denotes that a message, M, from agent A is received. The
implication operator dominates the message operators, so for example ,
M ⇒ Agent C is understood as (M ⇒ Agent) C

Chapter 2. Related Work

 27

Coherence of interaction between agents can be ensured by imposing constraints

relating to the messages they send and receive in their chosen roles (see use of C in

figure 2.3). Constraints are imposed through the implication operator (marked by ‘ ’),

which indicate the requirements or consequences for an agent on the performatives or

roles available to it. The clauses of the protocol are arranged so that, although the

constraints on each role are independent of others, the ensemble of clauses operates to

give the desired overall behaviour [Robertson, '04c]. For example, the LCC protocol of

figure 2.5 places two constraints on the variable X: the first (p(X)) is a condition on the

agent A1 in role r1 sending the message offer(X) and second (q(X)) is a condition on the

agent A2 in role r2 sending message accept(X) in reply. By (separately) satisfying p(X)

and q(X) the agents A1 and A2 mutually constrain the variable X.

Figure 2.5: Example of LCC protocol

Although LCC looks different from EI-based framework like ISLANDER, it provides all

the representational features of one, as described in detail in [Robertson, '04a]. Other

aspects of LCC are further discussed in [Walton and Robertson, '02; Robertson, '03;

Robertson, '04c; Robertson, '04b], which are summarised in the following sections of

2.2.2.2 and 2.2.2.3. A discussion on a variant of LCC called Multi-agent Protocol which

is implemented in the Java platform is provided in [Walton, '04b; Grando and Walton,

'06]. A number of other results based on LCC or similar approaches are described in

[McGinnis et al., '03; McGinnis and Robertson, '04; Walton, '04a; Walton and Barker,

'04; Lambert and Robertson, '05; McGinnis and Robertson, '05; Grando and Walton, '06;

Osman et al., '06].

a(r1,A1)::offer(X) ⇒ a(r2,A2) p(X) then accept(X) ⇐ a(r2,A2)

a(r2,A2)::offer(X) ⇐ a(r1,A1) then accept(X) ⇒ a(r1,A1) q(X)

Chapter 2. Related Work

 28

2.2.2.2 Coordination Mechanism

In LCC, one of the main concerns is for the mechanism used to provide coordination for

distributed agent interactions to have as low an impact as possible on the engineering of

agents. This can be achieved through a modular mechanism, acting as an intermediary

between the agent and the medium used to transmit messages, as depicted in figure 2.6.

On the principle, the functionality of the mechanism is similar to the function of governor

in EI. However, in LCC, the coordination is managed by the agents themselves who have

full control and access to the mechanism.

Constraint
solver

Protocol
expander

Message encoder/decoder

Message passing
media

Agent

LCC

Figure 2.6: Basic architecture of agent interactions in LCC

The module has the following elements:

 A message encoder/decoder for receiving and transmitting messages via whatever

message passing media being used to transport messages between agents. For

example, if the blackboard-based platform like the Linda tuple space [Carrieno

and Gelernter, '89] is being used for inter-agent communication, then the

encoder/decoder must be able to read Linda messages and extract the LCC

protocol expressions contained within; similarly for other platforms.

 A protocol expander that decides how to expand a protocol received with a

message. Detailed specification on this part is provided in sub-section 2.2.2.3.

Chapter 2. Related Work

 29

 A constraint solver capable of deciding whether constraints passed to it by the

protocol expander are satisfied.

The existing Prolog-based mechanism for deploying LCC protocols relies on

passing the protocol and associated information about the state of the collaboration with

messages sent between agents [Robertson, '04c]. This means that the interacting agents

do not retain any protocol clause (or clauses if it has multiple roles) appropriate to it. This

has the advantage since agents are not required to provide any clause storage, but it works

only for interactions that are linear, in a sense that at any given time, only one agent alters

the state of the interaction regardless of how many agents are involved in the interactions.

An example of a linear interaction is a dialogue between two agents where each agent

takes alternate turn in the interaction. An example of a non-linear interaction is an auction

involving a broadcast call for bids.

This method of coordination is described in figure 2.7. For ease of discussion, the

diagrams depict an interchange between only two agents (Agent 1 and Agent 2), with a

message (Message 1) being sent from Agent 1 to Agent 2 and another message (Message

2) being returned in response. The clauses determining the behaviours of the interacting

agents are distributed among the agents as the protocol is passed between them. These

distributed clauses, which are depicted as clause stores in figure 2.7, describe the state of

agents’ interactions. Upon receipt of a message, the agents look for their clauses in the

clause store. The agents make the necessary update on the respective clauses once they

have completed their parts of the protocol. The state of the whole interaction is preserved

by the message as it passes between agents.

Chapter 2. Related Work

 30

Agent 1 Agent 2
Message 1

LCC protocol

Clause store

Clause

Message 2

LCC protocol

Clause store

(1) (2)

(3)

(4)

(5)(6)

KEYS:
(1) – Sending of Message 1
(2) – Receiving of Message 1
(3) – Clauses store look-up
(4) – Updates of clauses
(5) – Sending of Message 2
(6) – Receiving of Message 2

Figure 2.7: Message-passing in LCC

In order to support this method of coordination, the format of messages exchanged

among the agents within the LCC is as follows:

i. A message must contain (at least) the following information, which can be encoded

and decoded by the sending and receiving mechanisms attached to each agent:

 An identifier, I, for the social interaction to which the message belongs. This

identifier must be unique and is chosen by the agent initiating the social

interaction.

 A unique identifier, A, for the agent intended to receive the message.

 The role, R, assumed of the agent with identifier A with respect to the message.

 The message content, M, expressed in the dialogical framework shared and

understood by the interacting agents.

 The protocol, P, of the form P := 〈T,C,K〉 for continuing the social interaction.

a. T is the interaction state. This is a record of interactions accomplished so

far, which indicates the current interaction state for each agent. This is

achieved by marking the agent interaction clauses as closed or failed

depending on whether they have been communicated successfully. This

computational process is performed by the agents themselves after

Chapter 2. Related Work

 31

successfully executing their parts in the protocol. Clauses that have been

communicated are enclosed by a ‘c’, c(M) as illustrated in table 2.1. A

protocol term is considered closed, meaning that it has been covered by

the preceding interaction, as follows:

closed(c(X)).
closed(A or B) closed(A) ∨ closed(B).
closed(A then B) closed(A) ∧ closed(B).
closed(X::D) closed(D).

b. The second part is a set, C, of LCC clauses defining the interaction

framework (based on the syntax in figure 2.3).

c. The final part, a set K, of axioms consisting of common knowledge as

described earlier.

ii. The agent must have a mechanism for satisfying any constraints associated with its

clause in the interaction framework. Where these can be satisfied from common

knowledge (the set of K above), it is possible to supply standard constraint solvers

with the protocol. Otherwise, it is the responsibility of the agent.

2.2.2.3 Expansion Engine

Within the LCC, agents themselves are expected to communicate the conventions of the

interaction protocol. This is accomplished by the participating agents satisfying the

following two engineering requirements.

First, agents are required to share a dialogical framework. This is an unavoidable

necessity in any meaningful agent communication. As such, the individual messages and

constraints are required to be expressed in an ontology understood by the agents. For the

constraints, though their specifications need to be understood by all of the agents

involved in the interactions, how they are satisfied is left to the internal reasoning of each

individual agent.

Second, agents are required to provide a means to process the received message and

its protocol. Given the descriptions about the message format, the basic operation an

agent must perform when interacting via LCC is to decide what the next steps for its role

Chapter 2. Related Work

 32

in the interaction should be, using the information carried with the message it receives

from some other agent. An agent is capable of conforming to a LCC protocol if it is

supplied with a way of unpacking any protocol it receives, finding the next moves that it

is permitted to take, and updating the state of the protocol to describe the new state of the

interaction. In the current practice, these are achieved by applying rewrite rules of table

2.1 to expand the protocol terms.

The nine rules specified in table 2.1 define the expansion of a single interaction

clause. Full expansion of a clause is achieved through exhaustive application of these

rules. Rewrite rule 1 expands a protocol clause with head A and body B by expanding B

to give a new body, E. The other eight rewrite rules are concerned with the operators in

the clause body. A choice operator is expanded by expanding either side, provided the

other is not already closed (rewrite rules 2 and 3). A sequence operator is expanded by

expanding the first term of the sequence or, if that is closed, expanding the next term

(rewrite rules 4 and 5). A message matching an element of the current set of received

messages, Mi, expands to a closed message (i.e. marked as c(message)) if the constraint,

S, attached to that message is satisfied (rewrite rule 6). A message sent out expands

similarly (rewrite rule 7). A null event can be closed if the constraint associated with it

can be satisfied (rewrite rule 8). An agent role can be expanded by finding a clause in the

protocol with a head matching that role and body B – the role being expanded with that

body (rewrite rule 9).

Chapter 2. Related Work

 33

 P, ,M M

 P, ,M M

A}{MP,,M ,M

i
P,A},{M-M ,M

O P, ,M M
211

O P, ,M M
21

O P, ,M M
1 2

O P, ,M M
21

O P, ,M M
21

O P, ,M M
21

O P, ,M M
12

O P, ,M M
21

O P, ,M MO P, ,M M

S)satisfied(B)::I)a(R,clause(P, if B::I)a(R,SI)a(R,9)

S)satisfied(if c(null)Snull8)

S)satisfied(if A)c(MSAM7)

satisfy(S)MA)(M if A)c(MAMS)6

EA)closed(A if E then A A then A)5

EAif A then E A then A)4

EA)closed(A if E Aor A)3

EA)closed(A if E Aor A)2

EB if E::AB::A)1

oi,

oi,

oi

ii

oi,oi,

oi,oi,

oi,oi,

oi,oi,

oi,oi,

∧⎯⎯⎯⎯ →⎯←

⎯⎯⎯⎯ →⎯←

⇒⎯⎯⎯⎯⎯⎯ →⎯←⇒

∧∈⇐⇐⎯⎯⎯⎯⎯⎯⎯ →⎯⇐←

⎯⎯⎯⎯ →⎯∧⎯⎯⎯⎯ →⎯

⎯⎯⎯⎯ →⎯⎯⎯⎯⎯ →⎯

⎯⎯⎯⎯ →⎯∧¬⎯⎯⎯⎯ →⎯

⎯⎯⎯⎯ →⎯∧¬⎯⎯⎯⎯ →⎯

⎯⎯⎯⎯ →⎯⎯⎯⎯⎯ →⎯

∅

∅

⇒

∅⇐

A protocol term is said to be closed, meaning that it has been covered by the preceding
interaction if the following holds.

closed(D)D)::closed(X
closed(B) closed(A)B)then closed(A

closed(B) closed(A)B)or closed(A
) c(X) closed(

←
∧←

∨←

satisfied(S) is true if S can be solved using the agent’s current knowledge.
satisfy(S) is true if the satisfaction of S is derivable from the agent’s knowledge.
clause(P,X) is true if clause X appears in the interaction protocol P.

Table 2.1: Rewrite rules for expansion of a protocol clause

The following describe how the expansion of protocol terms are achieved in LCC:

 An agent with unique identifier, A, retrieves a message of the form (I,M,R,A,P)

where: I is a unique identifier for the interaction; M is the message; R is the role

assumed of the agent when receiving the message; A the agent’s unique identifier;

and P the attached protocol consisting of T, the dialogue state; a set of dialogue

clauses, C; and a set of axioms, K, defining knowledge pertaining to the subject

matter of the interaction. The message is added to the set of messages currently

under consideration by the agent – yielding the message set Mi∈M.

Chapter 2. Related Work

 34

 The agent extracts from P the interaction clause, Ci∈C, determining its part of the

interaction.

 The rewrite rules of table 2.1 are applied to give an expansion of Ci in terms of

protocol P in response to the set of received messages, Mi, producing: a new

interaction clause Cn, an output message set On and remaining unprocessed

messages Mn (a subset of Mi). These are produced by applying the protocol rewrite

rules in table 2.1 exhaustively to produce the sequence:

 ()n
O,P,M,M

1n2i
O,P,M,M

1i,1i
O,P,M,M

i CC,...,CCCC 1nn1n1i2i1ii1ii ⎯⎯⎯⎯⎯ →⎯⎯⎯⎯⎯⎯ →⎯⎯⎯⎯⎯ →⎯ −−++++
−+++

 The agent’s original clause, Ci, is then replaced in P by Cn to produce the new

protocol, Pn.

 The agent can then send the messages in set On, each accompanied by a copy of the

new protocol Pn.

2.3 Distributed Problem Solving Environment

In a distributed problem solving environment, sub-problems are interdependent and

overlapping [Decker et al., '88], so agents working in the environment must carefully

coordinate their local problem solving actions which can only be achieved through proper

agent interactions. These interactions allow interdependence of the sub-problems due to

the relationships that exist between them to be adequately resolved. These relationships

can be associated to two basic situations related to the natural decomposition of domain

problem solving into sub-problems to be solved individually by the agents [Lesser, '99].

The descriptions of the situations are as follows:

Similar or Overlapping Sub-problems Situation. In this situation, different agents have

either alternative methods or data that can be used to generate a solution given a set of

similar or overlapping sub-problems. For example, in a distributed situation assessment

application, overlapping sub-problems occur when different agents are interpreting data

Chapter 2. Related Work

 35

from different sensors (independent information sources) that have overlapping sensor

regions (cover similar information).

Sub-problems are Part of a Larger Problem Situation. In this situation, a form of

interdependence occurs when a number of sub-problems are part of a larger problem in

which a solution to the larger problem requires that certain constraints exist among the

solutions to its sub-problems. For example, in a distributed expert system application

involving the design of an artefact where each agent is responsible for the design of a

different component (sub-problem), there are constraints among these sub-problems that

must be adhered to if the individual component designs will mesh together into an

acceptable overall design. This situation also includes the case where the results of one

sub-problem are needed to solve another.

Besides these two, there exists another situation where the interdependencies among

sub-problems are not inherent to the problem domain. This occurs when it is not possible

to decompose the problem into a set of sub-problems to allow a perfect fit between the

computational requirements for effectively solving each sub-problem and the agents to

solve them. An example of this type of constraint is insufficient local information or

resources for an agent to completely or accurately solve the assigned sub-problems

through its own processing. This might lead to the creation of shared agent plans so that

the use of scarce resources can satisfy multiple objectives of the agents or the

reconfiguration of resources to better meet the competing needs of agents.

The sub-problems handled by the distinct agents can be modelled using a

Distributed Constraint Satisfaction Problem formalism. This formalism, an extension of

Constraint Satisfaction Problem framework, is developed to accommodate the needs of

distributed problem solving environments. The definitions for CSP and DCSP are given

as follows:

Chapter 2. Related Work

 36

Definition 2.1: Constraint Satisfaction Problem (CSP)

A CSP is a problem composed of [Tsang, '93]:

 a finite set of variables, V={V1,…,Vk}, and each variable Vi∈V is associated with

o a finite domain of values, D={D1…Dk}, and

o a set of constraints, C={C1,…,Cm} which restricts the values that the

variables can simultaneously take

Definition 2.2: Distributed Constraint Satisfaction Problem (DCSP)

DCSP is defined abstractly as consisting of the following three components [Yokoo

et al., '98]:

 an agent set A = {A1, A2,…, An}, finite, non-empty set

 each agent Ai ∈ A has a finite set of k variables V1, V2,…, Vk, and each variable

is associated with a finite domain of values D1, D2,…, Dk, that can be assigned

to the variables

 there exist two kinds of constraints over the variables among the agents that

defines the permissible subsets of assignments to the variables:

o Intra-agent constraints, between variables of the same agent

o Inter-agent constraints, between variables of different agents

This formalism is further refined in the Multi-agent Agreement Problem (MAP),

which is a special class of DCSP. The major difference between the two is that the former

allows a variable to be shared among a set of agents (participants) while the latter assigns

each variable to a unique agent. As it is specifically intended to model “agreement”, the

MAP requires the constraints between variables belonging to different agents to be

limited to equality constraints. DCSP, on the other hand admits general inter-agent

constraints.

The motivation for introducing the MAP representation with shared variables is to

conveniently and explicitly capture problems where multiple agents are involved in a

joint decision. This is a feature of many distributed problem solving domains where each

agent brings its own private constraints to bear on the decision, yet agents must come to

an agreement.

Chapter 2. Related Work

 37

Definition 2.3: Multi-Agent Agreement Problem (MAP)

MAP can be defined as follows [Modi and Veloso, '04; Davin and Modi, '06]:

 A = {A1,A2,…,An} is a set of agents

 V = {V1,V2,…,Vm} is a set of variables

 D = {D1,D2,…,Dk} is a set of values. Each value can be assigned to any variable

 participants(Vi) ⊆ A is a set of agents assigned the variable Vi. A variable

assigned to an agent means it has (possibly shared) responsibility for choosing

its value

 vars(Ai) ⊆ V is the set of variables assigned to agent Ai

 For each agent Ai, Ci is an intra-agent constraint that evaluates to true or false. It

must be defined only over variables in vars(Ai)

 For each variable Vi, an inter-agent “agreement” constraint is satisfied if and

only if the same value from D is assigned to Vi by all the agents in

participants(Vi)

An assignment of values to variables is valid (sound) iff it satisfies both inter-agent

and intra-agent constraints. An assignment is complete iff every variable in V is assigned

some value. The goal is to find a valid and complete assignment. For example, figure 2.8

provides an abstract illustration concerning the interdependency that involves four

variables (i.e. V1, V2, V3 and V4) and three agents (i.e. agent A, agent B and agent C), in

which each node represents a variable, and each arc represents a local constraint between

variables represented by the end points of the arc. The intra-agent constraints of each

agent are varied in terms of constraint density, in which agent B has a highly constrained

problem while agent C has a least constrained one. Since agents are distributed in

different locations or in different processes, each agent only knows the partial problem

associated with those constraints in which it has variables. A global solution then consists

of a complete set of the overlapping partial solution of each agent. Interaction among

agents is necessary and important for solving this problem, since each agent only knows

its variables, variable domains and related inter-agent and intra-agent constraints. A

Chapter 2. Related Work

 38

solution S, is an instantiation for all variables that satisfies all intra-agent and inter-agent

constraints.

Agent A Agent B Agent C

V1

V2

V3 V4

V1

V2

V3 V4

V1

V2

V3 V4

Figure 2.8: Variable interdependency in distributed problem solving

2.4 Over-Constrained Problems

A CSP consists of a finite number of variables, each having a finite and discrete set of

possible values, and a set of constraints over these variables. A solution to a CSP is an

instantiation of all variables for which all the constraints are satisfied. Though powerful,

the CSP schema presents some limitations. In particular, all constraints are considered

mandatory and need to be fully satisfied. However, in many real-world problems, it is

often the case that there exists no consistent instantiation of variables that satisfies all

constraints. This leads to unsolved problems. These problems are said to be over-

constrained: any complete assignment of variables violates some defined constraint of the

CSP [Meseguer et al., '03; Zhou et al., '05]. An over-constrained problem is illustrated in

figure 2.9: the Robot Clothing Problem [Freuder and Wallace, '92]. The nodes in the

graph represent the three variables – shoes, shirt and slacks – representing the items of

clothing that must be chosen. Each node is also labelled with a set of values for the

corresponding variables, i.e. the domain of each variable. The arcs that connect the

variables are labelled with the legal combinations of values for each of the variables, i.e.

the constraints between the variables. Since the conventional formulation of CSPs

requires all constraints to be satisfied, visibly, this problem is over-constrained as it

admits no solution.

Chapter 2. Related Work

 39

shoes

shirt slacks

{red,white} {denims,blue,gray}

{cordovans,sneakers}

{ (cordovans,white) }
{ (cordovans,gray),
(sneakers,denims) }

{ (red,gray),
(white,denims),
(white,blue) }

Figure 2.9: Example of an over-constrained problem

In practice however, it is sometimes the case that certain constraints can be violated

occasionally, or weakened to some degree. As conventional CSP techniques lack the

mechanisms to accommodate such a notion of constraint handling, this gives rise to the

establishment of a niche research area within the constraint satisfaction research field

focusing on approaches to solve over-constrained problems. These approaches include:

Extended CSP. Constraints in the conventional CSP scheme are crisp, in which they can

only be either in two possible states – completely satisfied or completely violated. In

order to address this rigidity, several models have been devised to extend the existing

CSP scheme to enable it to accommodate different constraint representations that include

non-crisp constraint forms like fuzziness, probabilities and weights [Meseguer et al., '03].

 In the fuzzy model, constraints are represented by fuzzy relations [Dubois et al.,

'96]. In this model, constraint satisfaction becomes a matter of degree. The degree

in which this relation is satisfied is given by a membership function from the

interval [0, 1], where 1 means complete satisfaction and 0 complete violation. The

satisfaction degree for each possible value assignment is computed, and a solution

is the value assignment with maximum satisfaction degree.

Chapter 2. Related Work

 40

 In the weighted model, each constraint is labelled with a weight, which represents

the cost (or penalty) that exists if the constraint is violated. The cost of a complete

assignment is the addition of costs of all constraints instantiated by that

assignment. A solution is the value assignment with minimum cost.

 In the probabilistic model, each constraint is labelled with a probability of

presence, assumed independent of the presence of other constraints. A solution is

the value assignment with maximum probability of being a solution to the real

problem.

Partial Constraint Satisfaction Problem. In the partial Constraint Satisfaction Problem

(partial CSP) model, constraints are represented by crisp relations. The scheme proposed

in [Freuder and Wallace, '92] is an interesting extension to CSP, which allows the

relaxation and optimisation of over-constrained problems via the weakening of the

original CSP. In this scheme, a general model of partial constraint satisfaction is

proposed that provides comparison with alternative problems rather than alternative

solutions. It is suggested that partial satisfaction of a problem, P, should be viewed as a

search through a space of alternative problems for a solvable problem “close enough” to

P. Freuder and Wallace argue that a full theory of partial satisfaction should consider not

merely how a partial solution requires us to violate or vitiate constraints, but how the

entire solution set of the problem with these altered constraints differs from the solution

set of the problem with which we started. This scheme provides the basis of the proposed

approach to address distributed over-constrained problems that lead to the brittleness of

the interaction protocol. Further details with regard to this scheme are provided in the

next section and the notion of a brittle agent interaction is described using an example in

chapter 3.

Chapter 2. Related Work

 41

Constraint Hierarchies. In this model constraints are divided into a hierarchy of levels,

according to their relative importance. This model, which only considers crisp

constraints, provides a framework to define a constraint hierarchy as a finite collection of

constraints labelled with a level of strength or preference, i.e. hard and soft constraints

[Borning et al., '92]. While the hard (required) constraints must hold, the soft

(preferential) constraints should be satisfied as much as possible depending on the criteria

used. A solution to an over-constrained problem then is an assignment of values to

variables that best satisfies the constraints and respecting the associated hierarchy.

Though there exist a number of well-established approaches for solving over-

constrained problems, partial CSP is chosen as it fits well for the interaction protocol

environment – no further assumptions are needed with regards to the formalism and

criteria used by the heterogeneous and distributed agents concerning the constraints

communicated between them. In partial CSPs, constraints are represented as crisp

relations, which have been generally accepted as a natural formalism to specify many

kinds of real-life problems. As such, agents face an over-constrained situation and fail to

expand their parts in the protocol led interaction are neither obligated nor required to

revise the formalisation of their local problems. In addition, partial CSP has also been

extended to support the solving of distributed, over-constrained problem. This new,

extended scheme is known as the distributed partial CSP [Hirayama and Yokoo, '97;

Yokoo, '01]. In the other approaches used to address over-constrained problems (i.e.

extended CSP or Constraint Hierarchies), there is a need to provide an additional

formalism to appropriately represent the extended mechanism used in handling the

constraints (i.e. fuzzy, probability or hierarchy). Integrating these approaches with LCC

will require a major revision on the current distributed interaction protocol system of

LCC to accommodate this need. This, however, is a separate research issue that is beyond

the scope of our current research. We are interested in a mechanism to coordinate and

compute the weakening of the original CSPs among the interacting agents faced with an

over-constrained problem which causes an interaction to break.

Chapter 2. Related Work

 42

2.5 Partial Constraint Satisfaction Problems

A partial CSP requires the weakening of a problem in order to accept more solutions.

Essentially, in partial CSP, the focus is on relaxing the original CSP so that a satisfactory

solution can be found [Freuder, '90]. For a given CSP, one might relax it based on the

following four options [Freuder and Wallace, '92], and the example of the over-

constrained problem in figure 2.9 is used to illustrate each option:

1. Enlarging a variable domain (e.g. buying a new shirt)

2. Enlarging a constraint domain (e.g. deciding that certain shoes do, after all, go with

a certain shirt).

3. Removing a variable (e.g. deciding not to wear shoes at all).

4. Removing a constraint (e.g. ignore clashes between shoes and shirts).

 However, all of these options can be considered in terms of the basic process of

enlarging constraint domains (i.e. option 2). For instance, option 1 of enlarging a variable

domain is the same as enlarging the domain of a constraint since a variable domain can

be defined as a unary constraint. Removing all the constraints on a variable is equivalent

to removing the variable of option 3, while enlarging a binary constraint until it contains

all pairs of values in the specified domains for the two variables is tantamount to

removing the constraint as defined in option 4.

Formally, a partial CSP can be viewed as a partially ordered set of CSPs, with a

common root. The root is the original CSP. The rest of the nodes in the graph are CSPs

obtained from the original one through a sequence of relaxation operations, as illustrated

in figure 2.10 [Yang and Fong, '92]:

Chapter 2. Related Work

 43

Original CSP

CSP1 CSP2 CSP3

CSP4 ……. ……. …….

Relaxation

Figure 2.10: The problem space of partial constraint satisfaction

Given two CSPs in the graph, one can measure the distance between them, by

associating a partial CSP with a metric. The metric might measure the difference in the

number of solutions, the number of added domain values, or it might measure the number

of missing (or relaxed) constraints. Solving a partial CSP then becomes a problem of

finding a solution of a relaxed CSP within the space of partial CSP, so that the distance

metric between the solution of the relaxed CSP and the ideal solution of the original CSP

is within some acceptable bound. Two special bounds have been established to ensure the

space of partial CSPs is restrained. The first is a sufficient bound, which specifies that a

solution to a relaxed CSP is good enough if the metric distance between the solution and

the ideal solution is within this bound. The second one is the necessary bound which

specifies that the space of CSPs under consideration must all contain solutions that are

within the bound.

Definition 2.4: partial Constraint Satisfaction Problem

A partial CSP can be formally described as a triple [Freuder and Wallace, '92]:

〈(P, U), (PS, ≤), (M, (Necs, Suff))〉, where

 P is an original CSP, U is a set of ‘universes’, i.e., a set of potential values for

each variable in P

 (PS,≤) is a problem space, where PS is a set of CSPs (including P), and ≤ is a

partial order over PS

Chapter 2. Related Work

 44

 M is a distance function over the problem space, and (Necs,Suff) are necessary

and sufficient bounds on the distance between P and some solvable member of

PS

A solution to a partial CSP is a soluble problem P’ from the problem space and its

solution, where the distance between P and P’ is less than Necs. Any solution will

suffice if the distance between P and P’ is not more than Suff, and all search can

terminate when such a solution is found. An optimal solution to a partial CSP is a

solution in which the distance between P and P’ is minimal, and this minimal distance

is called the optimal distance.

 The partial-order defined over the problem space PS, is defined in terms of the set

of solutions to problems. Specifically, P1 ≤ P2 iff sols(P1) ⊇ sols(P2), where sols(P1) and

sols(P2) denotes the set of solutions to problem P1 and P2 respectively. P1 ≤ P2 can be read

as “P1 is obtained by weakening the constraints in P2”. As the problem is weakened, the

constraints in the problem allow more consistent assignments and, as a consequence, the

set of solutions may increase.

 The manner in which a weakened problem is evaluated depends on the distance

metric, M, that is used. A number of metrics have been proposed [Bistarelli et al., '04],

and these include solution subset distance, augmentation distance and Max-CSP distance,

which are described as follows:

 Solution subset distance – The distance metric is defined as the number of

solutions not shared between the problems P and P’. When P’≤ P, this metric

reflects the number of solutions that have been introduced due to the relaxation

of the original problem P.

 Augmentation distance – The distance metric is slightly different to solution

subset distance. It counts the number of constraint values that are not shared by

problems P and P’. This represents the number of augmentations to the

constraints in problem P that are required to reach its relaxation P’.

 Max-CSP distance – This is the most well-studied distance metric of the three.

It involves finding a solution that violates the minimum number of constraints

Chapter 2. Related Work

 45

in the problem. The metric is normally defined as the number of constraints that

are violated.

Considering that the partial CSP approach is applied to resolve the over-constrained

CSP of figure 2.9, and given that a simple distance function is adopted (i.e. solutions

involving the smallest number of augmentation is preferred), then figure 2.11 provides

five equally good weakened problems obtained. For each weakened problem, only one of

the constraints is chosen to receive one extra pair of values as illustrated in figure 2.11. In

the figure, the notation Cx,y is used to indicate the constraints between variables x and y,

that is the legal combination of values for each of the variable.

The partial CSP scheme has been extended by Hirayama and Yokoo for distributed

environments and is known as distributed partial CSP.

Definition 2.5: distributed partial Constraint Satisfaction Problem

A distributed partial CSP consists of [Hirayama and Yokoo, '97; Yokoo, '01]:

 A set of agents (problem solvers), 1, 2,…, m

 〈(Pi, Ui), (PSi, ≤), Mi〉 for each agent i

 (G, (Necs, Suff)), where

For each agent i, Pi is an original CSP (a part of an original distributed CSP), and Ui is a

set of universes, i.e. a set of potential values for each variable in Pi. Furthermore, (PSi, ≤)

is called a problem space, where PSi is a set of (relaxed) CSPs including Pi, and ≤ is a

partial order over PSi. Also, Mi is a locally-defined distance function over the problem

space. G is a global distance function over distributed problem spaces, and (Necs, Suff)

are necessary and sufficient bounds on the global distance between an original distributed

CSP (a set of Pis of all agents) and some solvable distributed CSP (a set of solvable

CSPs of all agents, each of which comes from PSi).

A solution to a distributed partial CSP is a solvable distributed CSP and its solution,

where the global distance between an original distributed CSP and the solvable

distributed CSP is less than Necs. Any solution to a distributed partial CSP will suffice if

Chapter 2. Related Work

 46

the global distance between an original distributed CSP and the solvable distributed CSP

is not more than Suff, and all search can terminate when such a solution is found.

Given a distributed partial CSP scheme, we are interested in studying on how this

established theoretical model can be interpreted using the LCC in order to address the

over-constrainedness problem which causes the brittleness of agent interaction as

described earlier.

2.6 Chapter Summary

In this chapter, we provided a detailed review on two areas deemed important to our

research work; agent interaction and distributed, over-constrained CSP. For the former,

we focused on two objective-based approaches to agent interaction namely EI and LCC,

described respectively in sections 2.2.1 and 2.2.2. For the latter, we begun by presenting

an overview on the distributed problem solving environment in section 2.3, that include

formal definitions of CSP, DCSP and MAP. We then presented a discussion on over-

constrained problem in section 2.4, followed by an overview on three approaches for

solving the problem; extended CSP, partial CSP and constraint hierarchies. Furthermore,

we also discussed the reasons of choosing partial CSP instead of the other approaches in

our research. Finally, in section 2.5, we presented a formal definition of partial CSP and

distributed partial CSP, including the distance metrics that could be employed by the

approach.

Chapter 2. Related Work

 47

shoes

shirt slacks

{red,white} {denims,blue,gray}

{cordovans,sneakers}

{ (cordovans,white) }
{ (cordovans,gray),
(sneakers,denims) }

{ (red,gray),
(white,denims),
(white,blue) }

Over-constrained problem

Examples of weakened problems (additional pairs are bold and in different font):

1) Cshirt,slack : {(red,gray),(white,denims),(white,blue)}
 Cshoes,slacks: {(sneakers,denims),(cordovans,gray)}
 Cshirt,shoes: {(cordovans,white),(sneakers,white)}
 Solution: Shirt=white, shoes=sneakers, slacks=denims

2) Cshirt,slack : {(red,gray),(white,denims),(white,blue),(white,gray)}
 Cshoes,slacks: {(sneakers,denims),(cordovans,gray)}
 Cshirt,shoes: {(cordovans,white)}
 Solution: Shirt=white, shoes=cordovans, slacks=gray

3) Cshirt,slack : {(red,gray),(white,denims),(white,blue)}
 Cshoes,slacks: {(sneakers,denims),(cordovans,gray),(cordovans,blue)}
 Cshirt,shoes: {(cordovans,white)}
 Solution: Shirt=white, shoes=cordovans, slacks=blue

4) Cshirt,slack : {(red,gray),(white,denims),(white,blue)}
 Cshoes,slacks:{(sneakers,denims),(cordovans,gray),(cordovans,denims)}
 Cshirt,shoes: {(cordovans,white)}
 Solution: Shirt=white, shoes=cordovans, slacks=denims

5) Cshirt,slack : {(red,gray),(white,denims),(white,blue)}
 Cshoes,slacks: {(sneakers,denims),(cordovans,gray)}
 Cshirt,shoes: {(cordovans,white),(cordovans,red)}
 Solution: Shirt=red, shoes=cordovans, slacks=gray
Figure 2.11: Example of partial CSP application to solve an over-constrained problem

 48

Chapter 3

Interaction Formalisation and Over-Constrained
Problems

This chapter provides a discussion on the interaction model, formalised and executed

using the LCC, for the scenario of section 1.3 described in chapter 1. Using this example,

brittleness of the interaction model due to over-constrained problems will be described in

detail. This chapter also provides an overview of how constraint relaxation based on the

distributed partial CSP approach is able to address the problem.

3.1 Customer/Vendor Scenario

The scenario described in chapter 1 involves a series of interactions between two agents

(i.e. customer and vendor) over a number of computer parts. This interaction can be

described as bilateral multi-issue negotiations [Fatima et al., '03; Heifetz and Ponsati,

'04]. There are two ways a multi-issue interaction can be handled – the agents can

communicate all the issues together (i.e. a bundle) or one after the other (i.e. issue-by-

issue). Assuming that in this particular situation the agents decided on the latter, then the

problem can be formalised as an incremental Multiagent Agreement Problem (MAP)

[Modi and Veloso, '05], where the process of reaching a mutual agreement requires each

attribute (e.g. configuration options and pricing constraints) of the computer to be

communicated on an attribute-by-attribute basis among the interacting agents.

A simple LCC-based interaction protocol for the scenario is described in figure

3.1. There are two types of agent: a vendor agent and a customer agent. No limit is placed

on the number of interaction instances (i.e. dialogues) that may occur, although each such

dialogue will be constrained by the LCC protocol.

Chapter 3. Interaction Formalisation and Over-Constrained Problems

 49

Vendor agent roles

Customer agent roles

buy_item

Selected
attributes

Vendor Negotiating
vendor

O
ffe

r a
ttr

ib
ut

es

Customer Negotiating
customer

(1)

(2)

(3)

(4) (5)

Figure 3.1: Roles and interaction diagram

Assuming that the customer agent has already obtained the necessary interaction

information from a service broker, the agent (in the role of customer) may send a request

to buy a computer to a selected vendor agent (1), and then assumes the role of negotiating

customer (2). On the other hand, upon receipt of a request to buy a computer (1), the

agent (in the role of vendor) may assume the role of negotiating vendor (3). In these

roles, the agents take turn to make offering (4) and provide selection (5) on each attribute

values of the computer to be purchased.

The interaction protocols between the vendor and customer agents are defined by

expressions 1-4, in table 3.1. In expression 1, a customer C, can send a request to vendor

V, to buy an item X that the customer needs and believes the vendor sells. The customer

can then take the role of negotiator with the vendor. Expression 2 consists of clauses to

define a negotiating customer with a set S, of negotiated attributes of the desired item X.

When assuming this role, the agent receives an offer of a new attribute A, and accepts that

(continuing in the negotiating role with A added to S). In expression 3, a vendor V,

receives a request from a customer C, to buy an item X; then takes the role of negotiator

with the customer over the attribute set S, which applies to that item. In expression 4, a

negotiating vendor with a set S, of negotiable attributes of the desired item X takes the

KEY:

Role

Message

Change of
Role

Chapter 3. Interaction Formalisation and Over-Constrained Problems

 50

first element A of S and offers it to the customer for acceptance (continuing then in its

negotiating role with the remaining attributes, T) until S is empty. A more elaborate

interaction protocol for the scenario can be obtained in [Robertson, '04c], which also

provides a comprehensive discussion on the operation of the protocol using concrete

examples. This part of the thesis, on the other hand, demonstrates how the protocol might

fail due to over-constrained problems.

a(customer,C)::
 ask(buy(X)) ⇒ a(vendor,V) need(X) ∧ sells(X,V) then
 a(neg_customer(X,V,[]),C)

(1)

a(neg_customer(X,V,S),C)::

 offer(A) ⇐ a(neg_vendor(X,C,_),V) then
 accept(A) ⇒ a(neg_vendor(X,C,_),V) acceptable(A) then
 a(neg_customer(X,V,[att(A)|S]),C)

 (2)

a(vendor,V)::

 ask(buy(X)) ⇐ a(customer,C) then
 a(neg_vendor(X,C,S),V) attributes(X,S)

(3)

a(neg_vendor(X,C,S),V)::

 offer(A) ⇒ a(neg_customer(X,V,_),C) S=[A|T] ∧ available(A) then
 accept(A) ⇐ a(neg_customer(X,V,_),C) then
 a(neg_vendor(X,C,T),V)

 (4)

Table 3.1: LCC protocol for the given scenario

Realising Inter-Agent Constraints. The protocol ensures coherence of interaction

between agents by imposing constraints relating to the message they send and receive in

their chosen roles. The clauses of a protocol are arranged so that, although the intra-agent

constraints on each role are independent of others, the ensemble of clauses operates to

give the desired overall behaviour, which involves setting the inter-agent constraints. For

instance, as defined in expressions 2 and 4, the protocol places two constraints on each

attribute (A) from the set of attributes (S) of the computer to be purchased: the first

constraint (available(A)) of expression 4 is a condition on the agent adopting the role of

negotiating vendor of sending the message offer(A) and the second constraint

Chapter 3. Interaction Formalisation and Over-Constrained Problems

 51

(acceptable(A)) of expression 2 is a condition on the agent adopting the role of

negotiating customer sending the message accept(A) in reply. By (separately) satisfying

these intra-agent constraints imposed on the interaction protocol terms associated with

the attribute, the agents mutually constrain the attribute A, and consequently realise the

corresponding inter-agent constraints.

Specifying and Satisfying Intra-Agent Constraints. The agents involved in the

protocol must be capable of satisfying the constraints that they impose. Though in LCC

no commitment is made with regards to how the agents satisfy the constraints imposed on

the assumed roles, for the purpose of this research, the formalisms used in specifying the

constraints are expected to be standard for all agents, in which case they are shared

among all agents (and propagated with the protocol). In this work, a finite-domain

formalism is used to assign a range of valid domain values that can be assigned to the set

of variables V. This means, that given a set of variables V={V1,..,Vn}, there exists a set of

domain values D={D1,..,Dn}: where each Di(1 ≤ i ≤ n) is a set of possible finite-domain

values for variable Vi. This means the value for the variable Vi must be in the given finite-

domain Di [Fruhwirth, '98]. More precisely, if Di is an:

• Enumeration domain, List={value1,…,valuek}, then the value for Vi is a ground

term that appears in List. For instance, given a list of Colour={Red, Blue, White},

then the value for Vi∈Colour.

• Interval domain, {Min..Max}, then the value for Vi is a ground term between Min

and Max inclusive. For instance, given Weight={50..80}, then the value for

Vi∈Weight.

These specifications constitute what we call unary constraints. Binary constraints over

pairs of variables could also be represented using finite-domain constraint specification

that reflects the dependency relationship between them. For instance, the finite-domain

constraint imposed on variable Vi can be specified as an equation in the form of

Vi={1000+((Vi-1/14)*100)+((Vi-2−40)*10)}, which constitutes two parts; a fixed constant

of 1000, and a non-fixed component that depends on the available finite-domain values of

variables Vi-1 and Vi-2.

Chapter 3. Interaction Formalisation and Over-Constrained Problems

 52

Any standard constraint logic programming mechanism could be used for this

purpose. In our case, since LCC is implemented in SICStus Prolog, the finite-domain

constraint solver available in SICStus Prolog (i.e. clp(FD)) [SICS, '99] is used to handle

the finite-domain constraints imposed on variables contained in the protocol. The

definition of the constraint handling clauses (which typically would be private to each

agent) imposed on these variables are adopted from the syntax, and the predicates of

SICStus Prolog clp(FD) library. A subset of the clp(FD) predicates, especially those

needed for the purpose of specifying the constraints of the given scenario is introduced in

the following. The examples on how these are utilised by the customer and vendor agents

in composing their individual finite-domain constraint clauses for the computer attributes

are given in section 3.2.

 Domains of variables will be set of integers or atoms. The predicate in is used to state

the domain of a variable, written as Att in Set, where Att is a variable name and Set

can be:

{Integer1, Integer2,…}
or
{Atom1, Atom2, ….}

Set of enumerated integers or atoms

Term1..Term2 Set of continuous integers between Term1 and Term2,
or the constant inf (for lower infinity) or the constant
sup (for upper infinity)

Set1 \/ Set2 Union of Set1 and Set2
Set1 /\ Set2 Intersection of Set1 and Set2
\ Set Complement of Set

 Finite-domain constraints can also be composed of dependency relationships that

exist between the variables maintained by the agents. These relationships can be

represented Att Relation Expr, where Att is a variable name and Expr is an

arithmetic expression in one of the following forms:

i. A grounded variable on which Att is dependent.

ii. A constant (numeric or non-numeric) on which Att is dependent.

iii. A set of variables and/or constants connected with the mathematical operators *, /,

- , +, mod, div on which Att is dependent.

Chapter 3. Interaction Formalisation and Over-Constrained Problems

 53

and Relation can be:

#= Equal
#\= Not equal
#< Less than
#> Greater than
#=< Less or equal
#>= Greater or equal

We chose to limit our research to the finite-domain constraint problem because of

the following reasons [Schulte and Carlson, '06]:

 Practical relevance – the most common constraint solving problem only involves

variables that are discrete and have finite domains.

 Existence of known principles and techniques – the research on constraints over finite

domains is a main-stream research within the constraint satisfaction field. As known

principles and techniques have been conceived and documented for finite domains,

they stimulate the development of many tools to support finite-domain constraint

computation in practice. For instance, in this research, the clp(FD) library of SICStus

Prolog is utilised in the implementation.

Chapter 3. Interaction Formalisation and Over-Constrained Problems

 54

Accommodating Distributed Finite-Domain Constraints Solving. The finite-domain

constraints on variables, individually defined by the distinct agents on the variables of the

MAP to be solved, are entirely separate from each other and private to each agent. So,

when an agent locally solves a set of finite-domain constraints pertaining to a variable, it

will not propagate to the other agents unless carried by the protocol. In order to

accommodate this requirement, LCC is equipped with means of propagating finite-

domain constraint solving across agents’ interactions. A formal model to describe agent

interactions for a distributed finite-domain constraint solving, via a LCC-based protocol,

is provided as follows:

()

⎟⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

′
∧′=′′

∧′′
∧′′⎯⎯ →⎯′

∧′
∧⊇

∨=↔

⎥⎦
⎤

⎢⎣
⎡ −∧∅∧〉〈∋Ω↔σ

)V,S,V,M,S(i
SSS

)V,V,S(sgeupdate_ran
SS

)S,,S(Vseapply_rang
SS

SS)VS,V,M,S(i

G|)S(k)V,S,V,,S(iV,S)G,p(

ffnn

s

p

nip

p
M,S,M

p

ppi

p

s

ff,fii

pfpff

p

p

ni

U

This model compactly describes all the protocol handling features provided by LCC as

described in detail in section 2.2.2, with some additional features to accommodate the

handling of distributed finite-domain constraint solving, and the means to propagate this

across agents. The model is composed of components which can be described as follows:

 p is a unique identifier for an agent and Gp is a goal agent p wants to achieve.

)V,K,P,p(c)K,P,(mSSV,S gg
p

∧∅=∧Ω∈↔∋Ω , where

 Ω, is the set of all initial interaction states available to agents. An interaction is

initiated when agent p selects the appropriate initial interaction state, S, pertaining to

a particular MAP to be solved. S, is a protocol structure consisting of the interaction

(7)

(5)

(6)

Chapter 3. Interaction Formalisation and Over-Constrained Problems

 55

model used to coordinate the agents (i.e. Pg) in cooperatively solving the MAP; the

interaction specific knowledge that could either be public – accessible by all

interacting agents or private – accessible by only selected agents (i.e. K); and a

description of their current progress in pursuing the interaction, which is null at the

beginning. V,S
p
∋Ω selects an interaction model, S, from Ω, and identifies the initial

set, V, of variables in S for agent p. V is instantiated with the possible set of initial

value assignments as the agent p made the necessary choice, given Pg and K, which

can be denoted as c(p,Pg,K,V). In the expression we do not define the mechanism by

which that choice is made since it varies depending on applications – anything from a

fully automated choice to a decision made by a human operator.

 σ(p,Gp) is true when goal Gp is attained by agent p.

 M is the current set of messages sent by the agents concerning the MAP to be solved.

The empty set of messages is ∅ .

 i(S,Mi,Vi,Sf,Vf) is true when a sequence of interactions allows state Sf to be derived

from S given an initial set of messages Mi and an initial list of variables Vi, and

consequently producing Vf, a set of variables with solvable finite-domain constraints.

 kp(S) gives the knowledge visible to agent p contained in state S pertaining to the

currently solved MAP.

)D::)p,R(aSSS.(D,RSS ppp
s

=∧∈∃↔⊇

 p
s

SS⊇ selects the state, Sp, concerning agent p, from the interaction state S. Given that

in LCC, the state of the interaction is always expressed as a term of the form

m(Ps,Pg,K), the selection of the current state for an agent, p, simply requires the

selection of the appropriate clause, a(R,p)::D, defining (in D) the interaction state for

p when performing role R.

 apply_ranges(Vi,Sp,S’P) is a relation that applies the currently constrained variables of

Vi in agent’s interaction state Sp to give an agent’s constrained state S’p.

(8)

Chapter 3. Interaction Formalisation and Over-Constrained Problems

 56

 p
M,S,M

p SS ni ′′⎯⎯⎯ →⎯′ is a transition of the state of agent p from S’p to S”p provided that

the current set of inter-agent messages, Mi and any imposed finite-domain constraints

pertaining to the variables currently discussed at the inter-agent level are solvable,

and producing a new set of messages Mn.

 update_ranges(S”p,Vi,Vn) is a relation that identifies each variable in Vi that has

successfully been constrained in the new agent state S”p and adds the newly

constrained variables to produce Vn.

{ } { })D::)p,R(a())'D::)p,R(a(S(S)D::)p,R(a(SS
sss

p ∪−=∪↔∪

 SS
s

p∪ merges the state Sp, concerning agent p, with interaction state S. The

interaction state S, is a term of the form m(Ps,Pg,K) and the state relevant to an

individual agent Sp is always a LCC clause of the form a(R,p)::D. Merging Sp with S

therefore is done simply by replacing in S the (now obsolete) clause in which p plays

role R with its extended version Sp.

 Common knowledge in LCC, as described in section 2.2.2.1, is maintained in K,

which is part of the interaction state m(Ps,Pg,K). pp G|)S(k − indicates that the

satisfaction of an agent’s goal, Gp, is derivable from K or through the agent’s own

internal constraint satisfaction mechanisms. This corresponds to the satisfied relation

introduced with the rewrite rules of table 2.1 in section 2.2.2.3.

 Every successful interaction satisfying σ(p,Gp) can then be described by the following

sequence of relations (obtained by expanding the ‘i’ relation within expression 5

using expression 6):

1pf1p32
s

2p
M,S,M

2p
s

21
s

1p
M,S,M

1p
sp

G|)S(kSSSSSSSSS 322211 −=∪′⎯⎯⎯ →⎯⊇=∪′⎯⎯⎯ →⎯⊇∋Ω K

Figure 3.2 provides a general overview on the basic architecture and process flow

on how the formal model is enacted. As described in section 2.2.2.2, the components of

the receipt message labelled as (1) in the figure include a protocol P, of the form

(9)

(10)

Chapter 3. Interaction Formalisation and Over-Constrained Problems

 57

P:=〈T,C,K〉. Given this, set V contains the current restriction for each variable in the

expanded clause of T. Once decoded, the set V is posted to the constraint store of a finite-

domain constraint solver, and the rest of the message will be forwarded to the protocol

expansion mechanism to determine the agent’s next move in the interaction protocol as

indicated in labels (2) and (3) of the figure respectively. As described in [Carlsson et al.,

'97; Henz and Muller, '00], the finite-domain constraint solver contains predicates that

could be used for checking the consistency and entailment of finite-domain constraints,

as well as solving for solution values of the variables. The domain of all variables gets

narrower and narrower as more constraints are posted to the constraint store of the solver

as illustrated in label (4) of the figure. If a domain becomes empty, the accumulated

constraints are unsatisfied, and the current computation branch fails. At the end of a

successful computation, the variables are expected to be assigned to a set of possible

values that the variables can take. This set is called the current domain of the variables.

The expansion of an agent’s role in a particular round of interaction requires the

variables associated with the current interaction, to be instantiated with values obtained

from solving the finite-domain constraints imposed by the agent on the variables, as

indicated in label (5) of the figure. Successful expansion of the agent’s part in the

interaction protocol is determined by whether the solution values derived from solving

these constraints are consistent with the existing solution values contained in set V. This

allows the distinct finite-domain constraints, individually defined and solved by the

interacting agents on each variable of the MAP, to be globally consistent. Once

completed, an updated state of the interaction protocol, a new message content labelled as

(6), and updated set V’ labelled as (7), are encoded together before being handed-over to

the message passing media to be retrieved by its intended recipient, as illustrated in label

(8) of the figure.

Chapter 3. Interaction Formalisation and Over-Constrained Problems

 58

Message
passing media

(e.g. Linda server)

Message
encoder/decoder

Finite
domain

constraint
solver

(2) Variable
restriction

list, V

(7) Updated
variable

restriction
list, V’

Protocol
expander(6) New

message

(3) Rest of
message

Agent(5) Finite-domain
constraints

(1) Message received LCC interaction protocol layer

(4) Posting of new
finite-domain constraints

in relation to protocol’s expansion
and instantiation of variable

contained in the protocol

(8
) M

es
sa

ge

se
nt

START

END

Figure 3.2: Enacting distributed constraint solving interaction in LCC

3.2 Sources of Brittleness in Interaction Protocols

As described in [Paula et al., '00], in the process of proposal exchange involving

bilateral MAP solving between two agents (i.e. customer and vendor), each agent has a

private border proposal, which is the maximum (or minimum) limit that must be

respected when reaching a deal as illustrated in figure 3.3. The intersection between the

agents’ border proposals defines what we call the deal range. If the deal range is empty,

then the deal is impossible. This often leads to interaction failure between the agents.

Deal Range

Initial proposal

Initial proposal

Border proposal

Border proposal

Customer

Vendor

Figure 3.3: Bilateral problem solving process

Chapter 3. Interaction Formalisation and Over-Constrained Problems

 59

An important aspect of the interaction protocol between the customer and vendor

agents, as defined in table 3.1, is the message passing that communicates the attributes of

the computer to be purchased. The agents will be able to continue expanding their parts in

the protocol as along as the individual constraints imposed on the shared variables are

satisfied. However, if this is not the case, the protocol will break as demonstrated in the

following example.

We define below the knowledge private to the customer agent that includes

specification on the acceptable set of values for the disk space, memory size and price

attributes of the personal computer, based on the clp(FD) formalism described in section

3.1. In this example, the customer would accept a disk space of 80 Gb or 120 Gb, a

memory size of 512 Mb or 1 Gb, with a total price of less than or equal to £ 300.

need(pc).
sell(pc,s1).
acceptable(disk_space(D)) D in {80,120}.
acceptable(memory_size(M)) M in {512,1000}.
acceptable(price(_,_,P)) P #=< 300.

(11)

The vendor agent’s local constraints are defined in the similar way as the customer.

We define the available values for the attributes needed to configure a computer and

relate these to its price via a simple equation (the aim being to demonstrate the principle

of relating constraints rather than to have an accurate pricing policy in this example). The

vendor would be able to offer disk space values of 40 Gb or 120 Gb, a memory size

values of 256 Mb or 1000 Mb, with a total price that depends on the combination of a

fixed base-price of £180, and the options selected for the disk space and memory size

attributes.

attributes(pc,([disk_space(D),memory_size(M),price(D,M,P)]))
available(disk_space(D)) D in {40,120}.
available(memory_size(M)) M in {256,1000}.
available(price(D,M,P)) P #=180 +((D div 40)*20)
 + ((M div 256)*30).

(12)

As illustrated in figure 3.4, constraint graphs can be used to represent the

individually defined finite-domain constraints, which are imposed on the variables of the

MAP. Each node in the graph represents a variable, and each arc represents a constraint

Chapter 3. Interaction Formalisation and Over-Constrained Problems

 60

between variables represented by the end points of the arc. Each individual graph is

identified as a local constraint graph, established by the interacting agents (private to each

individual agent) normally prior to the interaction (pre-interaction stage). In addition,

there exist two types of solution lists (i.e. local and global solution lists). The local

solution list is derived by solving the defined constraint graph at the local level. Given a

solvable constraint graph, its corresponding solution list contains a set of possible

solution values for the variables acquired by each individual agent. The global solution

list is basically a solvable and consistent merger of the local solution values pertaining to

the variables of the MAP. The global solution list is obtained as a result of solving the

equality constraints of the MAP among the interacting agents. Given that in this example,

the interactions among agents are handled in an issue-by-issue basis; the global list is

incrementally updated with a set of satisfied solution values that depict the agreement

reached by the interacting agents during the distributed problem solving process for each

of the variable. In other words, the global solution list is incrementally expanded in

accordance with the progression of the agents’ interaction states as prescribed in the

protocol.

Achieving the goal of a solvable MAP state using the protocol requires the finite-

domain constraints defined in the distinct constraint graphs, and held individually by each

interacting agent, lead to solution values that collectively satisfy equality constraints of

the MAP. This means that the solution values for the variables, individually generated by

each agent during its turn of interaction, must be globally consistent. Upon achieving this

state, the variables in the dynamically expanded global solution list are assigned the set of

values successfully derived from the distributed constraint solving process.

Chapter 3. Interaction Formalisation and Over-Constrained Problems

 61

disk_space (D)
{40,120}

memory_size (M)
{256,1000}

price (P)
{180+((disk_space div 40)*20)
+((memory_size div 256)*30)}

Constraint graph maintained by
the vendor agent

disk_space (D)
{80,120}

memory_size (M)
{512,1000}

price (P)
{=<300}

Constraint graph maintained by
the customer agent

Communicated via messages passed
among the interacting agents

using an agreed
interaction protocol

Global solution list is updated
sequentially, upon each successful
expansion of the agents’ roles in the

interaction protocol. It is sent together
with the protocol. Global solution list
reflects satisfiability at the intra-agent

and inter-agent levels.

S1=[D=40,M=256,P=230]
S2=[D=40,M=1000,P=290]
S3=[D=120,M=256,P=270]
S4=[D=120,M=1000,P=330]

S1=[D=80,M=512,P=<300]
S2=[D=80,M=1000,P=<300]
S3=[D=120,M=512,P=<300]
S4=[D=120,M=1000,P=<300]

SGlobal:
D=[120],
M=[1000]
P=Uninstantiated

Global solution list

Local solution list generated from
solving the constraint graph

Local solution list generated from
solving the constraint graph

Figure 3.4: Conceptual overview of constraint graphs and solution lists involved in
agents’ interactions

The constraint store of the finite-domain constraint solver used by the interacting

agents to provide computation on the expansion of the global solution list is ephemeral –

lasting only from the period an agent receives a message until it completes its part in a

particular interaction session. Thus, each time an agent reacts to a received message that

places a requirement on the agent to satisfy equality constraints on the variables of the

MAP, the global solution list attached together with the interaction protocol needs to be

repacked and updated. During an agent’s turn of posting and satisfying its part of the

equality constraints to the constraint store, it may fail to maintain the consistency of the

global solution list. The occurrence of this failure will prevent the collective constraint

solving effort by the interacting agents from achieving a solvable MAP, as prescribed in

the protocol. This over-constrained problem will cause the protocol to break, which is

described in detail in the remainder of this section.

The problem is over-constrained as the possible values for the price attribute of both

agents are in conflict with each other. The sequence of message passing that follows from

the protocol expressions is shown in table 3.2. The interaction is between the customer,

b1, and a vendor, s1. Each illocution shows a numeric illocution identifier for reference

(i.e. 1..n); the role of the agent sending the message; the message itself; the role of agent

Chapter 3. Interaction Formalisation and Over-Constrained Problems

 62

to which the message is sent; the variable restrictions applying to the message (the term

r(V,S) relating the possible set of solution values S, for the variable V, derived from

satisfying the individually defined finite-domain constraints imposed on the variable). In

specifying the solution values S, we follow the clp(FD) notation where:

 [[X1|Xn]] indicates an inclusive range of continuous values from X1 to Xn;

 [[inf|X]] indicates an inclusive range of continuous values from a lower constant

infinity, inf, to X;

 [[X|sup]] indicates an inclusive range of continuous values from X to an upper

constant infinity, sup; and

 [[X1|X1]] indicates a discrete value X1. For a set of discrete values, X1…,Xn, it is

represented as [[X1|X1],….,[Xn|Xn]].

The first illocution is the customer making initial contact with the vendor.

Illocutions two to five then are offers of possible values for the disk space and memory

size attributes, each of which are accepted by the customer as they can be satisfied given

the customer’s intra-agent constraints. The restrictions in illocution five of

[r(M,[[1000|1000]]), r(D,[[120|120]])] reflect the solution values pertaining to the

memory size and disk space attributes currently agreed by the agents.

No: 1
Sender: a(customer,b1)
Message: ask(buy(pc))
Recipient: a(vendor,s1)
Restrictions: []

No: 2
Sender:

Message: offer(disk_space(D))
Recipient:
a(neg_cust(pc,s1,_),b1)
Restrictions:
[r(D,[[40|40],[120|120]])]

No: 3
Sender: a(neg_cust(pc,s1,[]),b1)
Message: accept(disk_space(D))
Recipient:
a(neg_vend(pc,b1,_),s1)
Restrictions: [r(D,[[120|120]])]

No: 4
Sender:

Message: offer(monitor_size(M))
Recipient:
a(neg_cust(pc,s1,_),b1)
Restrictions:
[r(M,[[256|256],[1000|1000]]),
r(D,[[120|120]])]

Table 3.2: Sequence of message passing

)s, 1
P)M,price(D,

e(M)memory_siz
b1,pc,a(neg_vend ⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛
⎥
⎦

⎤
⎢
⎣

⎡
)s, 1

P)M,price(D,

e(M)memory_siz

(D),disk_space

b1,pc,a(neg_vend
⎟⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜

⎝

⎛

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

Chapter 3. Interaction Formalisation and Over-Constrained Problems

 63

No: 5
Sender: a(neg_cust(pc,s1,
[att(disk_space(D))]),b1)
Message: accept(memory_size(M))
Recipient:
a(neg_vend(pc,b1,_),s1)
Restrictions:
[r(M,[[1000|1000]]),
r(D,[[120|120]])]

No: 6
Sender: a(neg_vend(pc,b1,
[price(D,M,P)]),s1)
Message: offer(price(D,M,P))
Recipient:
a(neg_cust(pc,s1,_),b1)
Restrictions:
[r(P,[[330|330]]),
r(M,[[1000|1000]]),
r(D,[[120|120]])]

Table 3.2: Sequence of message passing (continued)

Given the restrictions imposed on memory size and disk space attributes in

illocution five, the only offer available to be made by the vendor agent pertaining to the

price attribute is r(P,[[330|330]]), as indicated in illocution six. However, this offer is in

conflict with the local solution value of r(P,[[inf|300]]), imposed by the customer. This

causes a failure of the customer to expand the interaction protocol received with the

message.

Recall that the means used by each agent to maintain an appropriate role during the

interaction is by expanding the clause it selects for its initial role (see section 2.2.2.2).

Figures 3.5 and 3.6 are the partially expanded clauses used by agent b1 in the role of a

customer and agent s1 in the role of a vendor respectively. Note that the last part of both

expanded clauses, which are within the parentheses, are still open (i.e. not enclosed by c)

because this part of interaction between the agents is incomplete. The agents are not able

to fully expand their part of the protocol due to the over-constrained problem. For the

customer, this is the case given the agent is not able to satisfy the acceptable(X)

constraint, where X is the price attribute, imposed on the protocol term associated with

the role assumed by the agent. For the vendor, the agent will not able to expand its part of

the protocol until it receives the appropriate message (i.e. accept(X)) from the customer.

Chapter 3. Interaction Formalisation and Over-Constrained Problems

 64

⎪
⎪
⎪

⎭

⎪
⎪
⎪

⎬

⎫

⎪
⎪
⎪

⎩

⎪
⎪
⎪

⎨

⎧

⎥
⎦

⎤
⎢
⎣

⎡

←

⇒

⇐

⎥
⎦

⎤
⎢
⎣

⎡

⎥
⎦

⎤
⎢
⎣

⎡
⇒

⎥
⎦

⎤
⎢
⎣

⎡
⇐

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
⇒

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
⇐

⇒

b1)),
pace(A))att(disk_s

_size(B)),att(memory
s1,omer(pc,a(neg_cust

 then B,180))(price(A,acceptable

s1)_),b1,or(pc,a(neg_vendB,180))ce(A,accept(pri

then s1))B,180)]),[price(A,b1,or(pc,a(neg_vendB,180))ice(A,c(offer(pr

::b1)),
pace(A))att(disk_s

_size(B)),att(memory
s1,omer(pc,a(neg_cust

then s1))),
B,180)price(A,

e(B),memory_siz
b1,or(pc,a(neg_vend(B))emory_sizec(accept(m

then s1))),
B,180)price(A,

e(B),memory_siz
b1,or(pc,a(neg_vendB))mory_size(c(offer(me

::b1)),space(A))][att(disk_s1,omer(pc,a(neg_cust

then s1))),

B,180)price(A,

e(B),memory_siz

(A),disk_space

b1,or(pc,a(neg_vendA))isk_space(c(accept(d

then s1))),

B,180)price(A,

e(B),memory_siz

(A),disk_space

b1,or(pc,a(neg_vend))sk_space(Ac(offer(di

::b1)[]),s1,tomer(pc,(a(neg_cus

then s1))a(vendor,pc))c(ask(buy(

::b1),a(customer

Figure 3.5: Partially expanded interaction protocol clauses of the customer agent

⎪
⎭

⎪
⎬

⎫

⎪
⎩

⎪
⎨

⎧
⎥
⎦

⎤
⎢
⎣

⎡
⇐

⎥
⎦

⎤
⎢
⎣

⎡
⇒

⇐

⇒

⎥
⎦

⎤
⎢
⎣

⎡

⇐

⇒

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

⇐

s1))[]),b1,or(pc,a(neg_vend then

b1)),
pace(A))att(disk_s

_size(B)),att(memory
s1,omer(pc,a(neg_custB,180))ce(A,accept(pri

then b1)),
pace(A))att(disk_s

_size(B)),att(memory
s1,omer(pc,a(neg_custB,180))ice(A,c(offer(pr

:: s1))B,180)]),[price(A,b1,or(pc,a(neg_vend

b1)then),space(A))][att(disk_s1,omer(pc,a(neg_cust(B))emory_sizec(accept(m

b1)then),space(A))][att(disk_s1,omer(pc,a(neg_custB))mory_size(c(offer(me

:: s1))),
B,180)price(A,

e(B),memory_siz
b1,or(pc,a(neg_vend

b1)then[]),s1,tomer(pc,(a(neg_cus A))isk_space(c(accept(d

b1)then[]),s1,tomer(pc,(a(neg_cus))sk_space(Ac(offer(di

::s1))),

B,180)price(A,

e(B),memory_siz

(A),disk_space

b1,or(pc,a(neg_vend

then b1)),a(customerpc))c(ask(buy(

::s1)a(vendor,

Figure 3.6: Partially expanded interaction protocol clauses of the vendor agent

Chapter 3. Interaction Formalisation and Over-Constrained Problems

 65

A quick and simple fix to the problem is through the inclusion of new clauses into

the existing protocol to allow the agents to inform each other of their failure to satisfy the

imposed constraints on their part of the interaction. This modification is represented in

figure 3.7. In the figure, the visualisation on the possible sequence of messages sent or

received when performing a role in the interaction is represented as a graph. Nodes in the

graph are states in the interaction (from the perspective of the customer and vendor).

Solid arcs in the figure represent clauses of the existing protocol while dashed arcs

indicate the new introduced clauses.

1

2

3 4

offer(A) =>
a(neg_customer(X,V,_),C)

inform(failure(A)) <=
a(neg_customer(X,V,_),C)

accept(A) <=
a(neg_customer(X,V,_),C)

1

2

3 4

offer(A) <=
a(neg_vendor(X,C,_),V)

inform(failure(A)) =>
a(neg_vendor(X,C,_),V)

accept(A) =>
a(neg_vendor(X,C,_),V)

a) Modified vendor’s protocol b) Modified customer’s protocol
Figure 3.7: Interaction graphs for customer and vendor

As illustrated in figure 3.7(b), the customer’s protocol is at state 2 upon receiving an offer

of attribute value from the vendor. At this state, the customer can either proceed

accepting this offer if it can satisfy the imposed constraints or it can inform the vendor

agent of its failure to do so. For the vendor, depending on the message received from the

customer, at state 2, it can either continue in its role of neg_vendor (i.e. state 3) or

terminate the interaction (i.e. state 4) as illustrated in figure 3.7(a).

In the modified protocol, we provide the means for the agents to complete their

interaction although they do not reach a solvable MAP state upon terminating the

execution of the prescribed protocol. The extended protocol clauses (i.e. state 4) for both

agents give an alternative to the expansion engine to continue expanding the agents’ parts

in the protocol if an unsatisfactory state is encountered, rather then reaching an

undesirable deadlock state. The problem with this fix is that the completion of the

protocol does not necessarily indicate attainment of the agents’ goals pertaining to the

Chapter 3. Interaction Formalisation and Over-Constrained Problems

 66

collective solving of the MAP. In fact, this form of corrective measure only addresses the

agents’ inability to complete their respective parts as specified in the protocol upon

reaching an over-constrained state. It, however, does not at all address the over-

constrained state of the MAP faced by the interacting agents.

The rigid feature of the protocol is inherited from the conventional constraint

solving system that only allows two satisfactory states to be achieved – completely

satisfied or completely violated. However, we should realise that when agents interact to

solve a particular MAP, it is rarely the case that their individual constraints are

completely acceptable or completely inconsistent to each other. Rather, it is normally the

case that their respective constraints are partially satisfied. Therefore, given that the

agents are capable to revise or relax their locally imposed constraints upon encountering

an over-constrained situation while participating in the distributed constraint solving

process of the MAP, the described form of corrective measure will definitely not be able

to accommodate the agents’ computational and interactive needs for addressing the

problem. Therefore, a more sophisticated solution is required for addressing the problem.

3.3 Addressing Brittleness via Constraint Relaxation

Our approach to address this brittleness problem requires an agent to be able to adapt to

the constraints on variables established by the other agents, achieved through constraint

relaxation. The form of constraint relaxation considered in this work is focused on the

revision of the individually assigned finite-domain constraints by a single or many agents

towards the achievement of a deal.

Constraint relaxation is only possible if the agents participating in the interaction

are cognitively and socially flexible to the degree they can handle (i.e. identify and fully

or partially satisfy) the constraints that they are confronted with. As further emphasised in

[Weib, '01], a requirement for applying efficient mechanisms for (joint) constraint

relaxation and propagation is that agents are able to reason about their constraints and

involve other agents in this reasoning process. This kind of reasoning must be

quantitative in nature, because qualitative, purely symbolic reasoning about constraints

like time and cost can be extremely complex especially in large-scale agent contexts.

Chapter 3. Interaction Formalisation and Over-Constrained Problems

 67

More specifically, to achieve continuous flexibility through constraint relaxation an agent

must be able:

i. To assign quantitative values to the constraints that express the relative

importance they have to the agents;

ii. To assign quantitative values to the constraints that express the degrees to which

the agent is willing to violate them;

iii. To assign quantitative values to the constraints that express the estimated risk of

violating them (given the current environmental circumstances and the activity

sequence the agents intend to execute); and

iv. To communicate (exchange, negotiate, refine, etc.) the quantities described in

points i – iii with other agents.

Thus, for the constraint relaxation process to be accomplished, the engineering

requirements expected from the interacting agents include cognitive and social

requirements.

The cognitive requirement concerns the agent’s internal reasoning capability that

enables it to dynamically modify and redefine its own set of predefined constraints, an

inherent functionality expected of agents involved in distributed constraint solving

processes. This is largely provided by the mechanism to define and compute points i – iii

described above. The issue of the best computational approach or constraint relaxation

strategy that an agent might employ to reach to this decision is still open, and its

discussion is beyond the scope of this thesis. However, a generally accepted notion is that

the decision taken should be to the agent’s own advantage, leading to the realisation of

the eventual goal of the agent (i.e. interacting agents reaching an agreement in solving a

particular MAP).

The social requirement obliges the participating agents to communicate and

coordinate the constraint relaxation process with one another. This part is addressed by

point iv. To achieve continuous flexibility, agents are expected to communicate in order

to resolve any conflicting constraints on shared variables established by a society of

agents. Therefore, the focus of the work is largely concerned with providing the agents

involved with the interactive and computational mechanisms for coordinating the

Chapter 3. Interaction Formalisation and Over-Constrained Problems

 68

relaxation of conflicting constraints. This process, expected to be handled at the protocol

level is inspired by the distributed partial CSP scheme.

3.4 Overview of Constraint Relaxation Approach

The proposed constraint relaxation approach is intended to provide a mechanism for

agent interaction when reconciling an over-constrained problem, and at the same time

provide the necessary coordination and control to the distributed constraint relaxation

tasks performed by the distinct agents at the local level. There exists a number of ways on

how we could establish this approach. One possible option is to extend the current

protocol so that it explicitly consists of clauses for allowing the agents to interact about

revising their individual finite-domain constraints and coordinate this act whenever we

anticipate an over-constrained failure might occur. However, this approach makes the

existing protocol becomes unnecessary large, complicated and unwieldy. Due to this

reason, it is more favourable to build it using a modular approach. This allows the

existing protocol for handling agent interactions concerning the distributed constraint

solving process to be maintained as it is, and the constraint relaxation protocol is

developed as a new independent module. Interfacing between these two modules is only

necessary when an over-constrained problem arises, as described in figure 3.8, which is

an extended version of expressions 5 and 6 defined in section 3.1. These two modules are

identified in the figure as S and R respectively.

The figure provides a general formal description of agent interactions over the

protocol S, from the view of a single agent, p concerning a distributed problem solving

process for a MAP. During the expansion of agent clauses as prescribed in the interaction

model S, agent p needs to satisfy the intra-agent finite-domain constraints and inter-agent

equality constraints associated with the variables, V of the MAP. However, failure to

satisfy these constraints will prevent complete expansion of the clauses in the given S. As

such, in this extended model, we provide a formal description on the necessary measures

to interface with a constraint relaxation protocol, R, and the execution of R for addressing

this problem.

Chapter 3. Interaction Formalisation and Over-Constrained Problems

 69

()

[]

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

⎥
⎦

⎤
⎢
⎣

⎡ ∧∅
→′′′¬

∨
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

′
∧′=′′

∧′′

→′′′

∧′′⎯⎯ →⎯′
∧′

∧⊇

∨
=↔

⎥⎦
⎤

⎢⎣
⎡ −∧∅∧〉〈∋Ω↔σ

)V,S,V,M,S(i
)V,R,V,,R(i

)S,Scomplete(

)V,S,V,M,S(i
SSS

)V,V,S(ranges_update

)S,Scomplete(

SS
)S,S,V(ranges_apply

SS

SS)VS,V,M,S(i

G|)S(k)V,S,V,,S(iV,S)G,p(

ffri

rf
pp

ffnn

s

p

np

pp

p
M,S,M

p

pp

p

s

ff,fi

pfpff

p

p

ni

U

Figure 3.8: Formal model of constraint relaxation interactions

The outcome of an expansion process is determined by comparing the agent’s state

prior to the expansion step (i.e. S’p) with the state obtained after the expansion step has

been completed (i.e. S”p). The relation complete(S’p,S”p) is true if the agent’s part in state

S’p is successfully expanded as reflected in state S”p. This allows for the process to

continue updating each variable in V that has been successfully constrained in the new

agent state S”p, to produce Vn, and updating of the agent’s part in S. Once this is

completed, the process continues to the next state as prescribed in S. However, if the

protocol’s expansion resulted in a failure state, the constraint relaxation protocol R will

be enacted through the i(R,∅,V,Rf,Vr) relation.

The relation i(R,∅,V,Rf,Vr) is true when a sequence of constraint relaxation

processes collectively performed by the interacting agents, allows a solvable and relaxed

set of variables Vr to be derived, given the following:

i. V, that specifies the state of the variables of the MAP (i.e. solution values)

prior to the expansion failure of S by agent p;

(13)

(14)

Chapter 3. Interaction Formalisation and Over-Constrained Problems

 70

ii. ∅, that specifies an initially empty set of messages. The parameter indicates

the set of messages sent and received by the agents during the interactions for

resolving the distributed, over-constrained MAP;

iii. R, a constraint relaxation protocol which is central to the relation, and the

expansion on R resulted in Rf, that reflects the agents’ progressions in the

constraint relaxation process.

R provides the coordination and control to these relaxation processes, which is

realised by interpreting the distributed partial CSP scheme using the LCC. Through R, a

set of a possible space of constraint relaxation and interactive states for the agents

involved in the relaxation process can be specified. Given that the agent p has failed to

expand its part in the current prescribed interaction model of S due to an over-constrained

problem, R can be viewed as a sub-protocol externally provided to p, and the other agents

involved in the MAP solving, to support joint coordination and handling of locally

performed constraint relaxation tasks. Once a relaxed set of variables Vr fully solvable by

all the involved agents is obtained, the expansion of the agent’s part in S prior to the

occurrence of the described expansion failure will commence. The specification of the R

component, which is interpreted from the distributed partial CSP scheme, is described in

detail in chapter 4. In chapter 5, we will revisit our scenario that deals with the

purchasing and configuration of a computer between the customer and vendor agents, in

order to explain the detailed working of the constraint relaxation protocol, R.

Chapter 3. Interaction Formalisation and Over-Constrained Problems

 71

3.5 Chapter Summary

In this chapter, we presented an interaction model for solving an instance of a MAP,

formalised and computed using the LCC. The MAP involved a scenario that deals with

the configuration and purchasing of a computer between the customer and vendor agents.

Through the model, in section 3.2 we showed the impact of over-constrained problem on

the agents’ interactions. Based on this, we provided a discussion on the failure to achieve

a solvable MAP state, brittleness of the interaction model, and a possible fix to the

problem. In section 3.3, we described the means of addressing this problem using a

constraint relaxation approach. We presented an overview of our constraint relaxation

approach in section 3.4.

 72

Chapter 4

Protocol Specification

As described in [Faratin and Klein, '01], the coordination of a conflict resolution task for

a MAP among autonomous and heterogeneous agents requires the specification of the

following two components. First, a protocol, or rules of interaction that coordinate the

agents at an asocial level (i.e. synchronicity of messages) and social level (i.e. protocols

that force the selection of a solution that satisfies some criteria). Second, the agent’s

strategy set, which can be specified as the preferred choices of the individual in how to i)

generate solutions to the local/global problem and ii) how to evaluate proposals submitted

by the other interacting agents in resolving the conflicts.

Within our proposed constraint relaxation approach, the former component is

derived from the interpretation of the distributed partial CSP scheme, which encapsulates

both the asocial and social levels. It provides the interacting agents with the mechanism

for constraint relaxation at both the intra-agent and inter-agent stages. At the intra-agent

stage, it specifies the computational behaviour that can be assumed by the agents in

determining the current state of the constraint relaxation process. At the inter-agent stage,

the synchronisation of message-passing behaviour among agents is established. The

design and working aspects of the approach is described in detail in the remaining of the

chapter. The latter component is regarded as a ‘black box’, defined privately by each

individual designer of the agent, and is beyond the scope of this research.

Figure 4.1, is a revised version of figure 1.4, provides a general overview on how

the coordination of constraint relaxation task between agents a and b could fit into the

problem solving stages. This is accomplished through a constraint relaxation protocol

depicted as ovals inter-connecting the agents at the interaction stage, and the protocol-

regulated interactions between the agents are highlighted as dashed arrows in the figure.

The constraint relaxation protocol provides synchronisation at both asocial and social

levels for the agents to be involved in the relaxation process. This

Chapter 4. Protocol Specification

 73

allows the agents to take part in the collaborative task of relaxing their locally defined

domain constraints (i.e. a set of original CSPs of all agents) in order to generate a relaxed

set of solvable local problems which can satisfy the inter-agent constraints (i.e. equality

constraints of the MAP). During the process, the domain constraints defined at the pre-

interaction stage are expected to be revised in accordance with the private constraint

relaxation strategies adopted by the individual agents. Consequently, through a successful

completion of a constraint relaxation process, a solvable MAP, which consists of a set of

mutually agreed solutions for each of the variables is obtained, as depicted at the post-

interaction stage. Further details of this process are provided in the remainder of this

chapter.

Domain
constraints Variables

Local problem

Domain
constraints Variables

Local problem

Pre-interaction stage

Relaxed
solution

Relaxed
solution

.

. Constraint
relaxation
protocol

Agent’s
constraint
relaxation
strategies

Constraint
relaxation
protocol

Relaxed
solution

Relaxed
solution

.

.

Agent’s
constraint
relaxation
strategies

Interaction
stage

Agent a Agent b

Post-interaction

Relaxed domain
constraints

Relaxed domain
constraints

Solution1
.
.

Solutionn

Figure 4.1: Problem solving stages and constraint relaxation task

Chapter 4. Protocol Specification

 74

We begin this chapter by providing a comprehensive description of how we use the

distributed partial CSP scheme to implement our constraint relaxation approach. This

includes a detailed discussion on the following:

1) The distance metric used (i.e. solution subset distance to compute the degree

of constraint relaxation attempted by each individual agent).

2) How to find a solvable MAP among agents involved in the constraint

relaxation process.

3) The global distance function for agents to compute the best constraint

relaxation path to be taken.

4) Formal specification of the overall constraint relaxation process.

This is followed by an algorithm to search for a solvable MAP state with minimal

distances. The algorithm also specifies how coordination among agents should take place.

The chapter concludes with a description of how the constraint relaxation process is

encoded into an LCC protocol. This includes a discussion of how the details pertaining to

the constraint relaxation task can be tied to a set of particular agents’ roles and

behaviours.

4.1 Application of Distributed Partial CSP for Addressing Over-
Constrained Problem

The general approach of distributed partial CSP described in section 2.5 can be

specialised in many ways. This is due to the different measures of over-constrainedness

based on the distinct distance metrics that could be applied between the original

constrained problems and the relaxed problems. Recall that the distributed partial CSP

scheme deals with crisp CSPs, with the notion of partial ordering among problems,

generated in response to a series of relaxations performed on the original, over-

constrained problem. If we relax problem P1, we obtain problem P2 that is strictly better

with respect to the distance metric used. The measure of “how much” relaxation has been

attempted on a problem depends on this, and the three available distance metrics are

Chapter 4. Protocol Specification

 75

augmentation distance, Max-CSP distance and solution subset distance. Augmentation

distance counts the number of constraints values that are not shared between P1 and P2,

while Max-CSP finds a relaxed problem that violates the minimum number of

constraints. Since the first two metrics are directly concerned with constraint

computation, adopting them in our constraint relaxation approach has many limitations.

First, as the agents’ parts in the prescribed interaction protocol cannot be completed

due to an over-constrained MAP, the required relaxation of the problem involves an

autonomous application of distinct and private constraint relaxation strategies by one or

more of the involved agents on their individually defined CSPs to obtain a solvable MAP.

As such, adopting the augmentation distance and Max-CSP distance metrics

inadvertently reveals the agents’ strategies as constraint details of the local problems need

to be publicly and openly shared among the agents. Second, these metrics do not reflect

the actual outcome of the relaxation action performed by the agents. Max-CSP for

instance is considered one-dimensional as it only takes into account one form of

relaxation – the removal of conflicting constraints. Besides removing the conflicting

constraints and eventually reducing the number of constraints contained in an over-

constrained problem, agents can also choose other available options as described in

section 2.5. These include enlarging a constraint domain to allow more solutions to be

available without reducing the number of pre-defined constraints.

On the other hand, the solution subset distance is computed by looking at the

cardinality of the solution sets resulted from relaxing the constraints of an over-

constrained problem. By adopting this distance metric in our constraint relaxation

approach, the issue with how constraints are manipulated internally by the agents in order

to introduce new assignments in the solution set is no longer a concern. This means

agents can fully exercise any constraint relaxation strategy that they see fit, and this

information will not be revealed at the protocol level. In this metric, we are more

concerned with the changes in the cardinality of solution sets due to the constraint

relaxations performed by agents. Given an over-constrained MAP, we are interested in

how a set of new solutions obtained from a constraint relaxation process could contribute

to the achievement of a solvable MAP. Using a solution subset distance metric, a solvable

Chapter 4. Protocol Specification

 76

MAP state is accomplished by searching for a set of relaxed CSPs which are as close as

possible to their corresponding original CSPs in terms of number of solutions.

As the focus of this research is on the finite-domain constraint problem, the solution

space derivable by agents during the constraint relaxation process is guaranteed to be

finite. As such, by adopting the solution subset distance metric in our approach, it enables

agents to do an exhaustive search in their distributed, over-constrained problem spaces

for finding solvable, relaxed CSPs, which are as close as possible to their original CSPs.

This ensures that our constraint relaxation approach is complete, i.e. it eventually finds a

sufficient solution or finds that there exists no such solution and terminates.

4.1.1 A Metric for Solution Subset Distance

This research specialises the solution subset distance from [Yokoo, '01] in order to

address an over-constrained MAP using a distributed partial CSP scheme. Our technique

finds a solvable MAP with a minimal degree of constraint relaxation, computed based on

the solution subset distance metric. This is obtained when the agents participating in the

constraint relaxation task generate individual problem spaces containing a set of relaxed

CSPs, so that the distance between P2, a relaxed problem selected from the set, and the

original, un-relaxed problem, P1, is within a certain bound, according to the specified

distance metric. As described in the abstract distributed partial CSP model of section 2.5,

the functions to provide distance computation are specified at two separate levels – local

and global.

At the local level, we are mainly concerned with the computation of additional

solutions introduced due to the individual relaxation attempted by the agents. This is

accomplished by comparing P2 with P1 each time after a relaxation is performed. Given

P1, and its corresponding relaxed problem P2, the distance metric describes how far the

solutions for the two local problems are from each other. This is accomplished by

associating the solutions that are already in the original, un-relaxed problem with the one

introduced due to relaxation. For instance, the solution subset distance between the two

comparable problems P1 and P2 is the number of solutions of P2 which are not solutions

of P1. The relationship between P1, and its relaxation, P2, is better described using Venn

Chapter 4. Protocol Specification

 77

diagrams [Edwards, '04; Ruskey and Weston, '05] as illustrated in figure 4.2. In the

figure, the sets S and S’ respectively represent the solution sets of the original problem,

P1, and its corresponding relaxation, P2, that is, S=sols(P1) and S’=sols(P2), where sols

denotes the solutions to the problem. U is a universal set that represents all the possible

solution values of the MAP.

The relationship described in figure 4.2(a) is a commonly addressed problem in

partial CSPs and distributed partial CSPs. In this relationship, the solutions for the

relaxed problem is a proper superset of those solutions for the original, that is S’ ⊃ S. If

S’ is a proper superset of S, then the number of elements in S’ is greater than the number

of element in S (written as |S’| > |S|). Hence, there exists at least one element x of S’

which is not an element of S. Though not common, other possible relationships between

the original and relaxed problems are described in figures 4.2(b) and 4.2(c). For the case

described in figure 4.2(b), the solution sets for the original and relaxed problems have a

number of joint elements, S ∩ S’≠∅, and also complements of each other, S – S’≠∅ and

S’ – S≠∅. The third possible relationship, as described in figure 4.2(c), is the case where

the solution sets of both problems disjoint, that is S ∩ S’= ∅. This indicates that the

original problem has undergone a major relaxation process or more likely an extreme

revision which produces a totally different solution set.

S’S

S S’

S

S’

(a) (b)

(c)

UU

U

Figure 4.2: Possible relationships between the solution sets of the original(S) and the

relaxed (S’) problems

Chapter 4. Protocol Specification

 78

In order to describe the last two cases, the over-constrained scenario involving a

customer and vendor agents in section 3.2 is referred. Assuming that a soluble agreement

is achieved by the vendor agent relaxing its pricing policy to meet the customer’s request

for a lower price, then, such relaxation act will let all possible solution sets derivable

from the original problem based on the initial restricted price plan to become invalid

Working example on this is provided in section 5.2.

Given the three possible relationship patterns described in figure 4.2, computation

of distance between the two sets (i.e. S and S’) not only needs to consider the new

additional solutions introduced, but also the existing solutions of the original problem

that might be eliminated due to the performed constraint relaxation. Therefore, the

equations in figure 4.3 describe how this is computed, where L is the union of these two

components, and the distance, d, is then measured as the cardinality of S.

L = (S−S’) ∪ (S’−S) (1)

d = | L | (2)

Figure 4.3: Equations for distance computation

These equations are better illustrated using Venn diagram. In figure 4.4, we

describe the value of d (highlighted as shaded areas), for each of the Venn diagrams of

figure 4.2.

Chapter 4. Protocol Specification

 79

S’

S S’

S

S’

(a) (b)

(c)

UU

U

S

Figure 4.4: The value of ‘d’ derived from the solution sets of the original and relaxed

problems

At the global level, we are concerned with the computation of distance of

distributed problem spaces. This involves two important steps – first, finding a set of

relaxed CSPs allowing for a solvable MAP state to be achieved and second, computing

the global distance of the set from their corresponding original problems. Part of the first

step also includes the specification of two special bounds to ensure the individual

problem space generated by each agent involved in the constraint relaxation interaction is

restrained. These two bounds are identified as necessary and sufficient bounds.

The disruption on agent interactions due to an over-constrained situation will

normally result in a partially solvable MAP to be obtained. This MAP contains a set of

fully solvable variables, assigned with solution values mutually agreed by all agents. The

assignments of these variables are obtained prior to the occurrence of an over-constrained

state. This is only possible if there exists a set of variables from the MAP that can be

satisfied locally by each agent involved in the problem solving interaction. This set and

its assigned solution values are used as the necessary bound. The necessary bound

specifies that distributed problem spaces under consideration must all contain solutions

that are within the bound. Assuming that all original problems individually specified by

the distinct agents at the pre-interaction stage have a set of solutions which has become a

Chapter 4. Protocol Specification

 80

fully solvable part of the MAP, then any relaxed problems derived from the originals

must contain this set of solutions, as illustrated in figure 4.5. This is necessary for

preventing any relaxed problem from deviating from an already solvable part of the MAP

and effectively restricts the size of the problem space under consideration. This means

that any relaxed CSP obtained can only be considered if it satisfies this requirement. In

the worst case scenario, this set might be empty, indicating that the interacting agents

cannot reach a deal range on any of the variables of the MAP.

S’S
S

S’

(a) (b)

U U

Necessary
bound

Figure 4.5: Necessary bound for restraining the relaxed problems generated by agents

A partially solvable MAP also contains a set of non-solvable variables, due to the

existence of one or more agents that fail to satisfy their individual constraints concerning

these variables during the problem solving interactions. This set of non-solvable variables

is specified in the sufficient bound, which describes what needs to be achieved during the

constraint relaxation process. Successful value assignments to the set indicates the

attainment of a solvable MAP state. A set of relaxed CSPs, obtained from the problem

spaces generated by the interacting agents during a particular constraint relaxation cycle,

is sufficient if the additional solutions derived from these CSPs allow the initial set of

non-solvable variables of the MAP to become solvable.

Both bounds give the required direction to the process of identifying locally relaxed

CSPs among the agents from which a consistent, solvable MAP with an acceptable

solution subset distance is derived.

Chapter 4. Protocol Specification

 81

4.1.2 Finding a Solvable MAP

In any MAP solving interaction through a specified protocol, there exist two possible

groups of agents. Though in the actual problem solving interaction it might involve more

than two agents, all the agents can be identified as belonging to either one of these two

groups. The first group, J, consists of a set of agents that has completed its part of the

protocol in solving and constraining a particular set of variables of the MAP. The second

group, K, on the other hand, represents a set of agents whose part in the protocol is

incomplete as they cannot satisfy the inter-agent or global constraints imposed on the

corresponding set of variables of the MAP. Therefore, the task of finding a solvable MAP

given an over-constrained distributed problem solving state, involves a series of local

searches on the weakened CSPs provided by these two groups of agents during each

relaxation cycle. Completion of a particular relaxation cycle can be determined when all

agents have completed their roles as defined in the protocol, which is normally associated

with the introduction of new solution values to accommodate the achievement of a

solvable MAP state. The weakened CSPs must satisfy the necessary bound, but may not

satisfy the sufficient bound. From the view of these two groups of agents who are

involved in this collaborative task, the local relaxation process can be thought of as a

search which starts from an initial node representing the original CSP of the agent, and

follows a path until a solvable MAP state is achieved, as described in figure 4.6. The

whole searching process is constrained by the specified necessary bound. The process

stops when we found a combination of weakened CSPs by the individual agents that

satisfy the sufficient bound with some acceptable distance between the derived solution

sets. It is then said that a solvable MAP state has been achieved, and there are three

possible conditions on how this is accomplished, which are described using agents j and

k, instances for agent groups J and K respectively, that is j∈J and k∈K :

Chapter 4. Protocol Specification

 82

1. Agent k performs the necessary constraint relaxation on its original CSP,

producing a problem space containing the necessary relaxed CSPs, allowing a

solvable state to be achieved without the other party, agent j, performing any

relaxation on its part as illustrated in figure 4.6 (a).

2. Agent j performs the necessary constraint relaxation on its original CSP,

producing a problem space containing the necessary relaxed CSPs, allowing a

solvable state to be achieved without the other party, agent k, performing any

relaxation on its part as illustrated in figure 4.6 (b).

3. Both agents j and k perform the necessary relaxation on their respective

original CSPs, where their combined relaxation produces a corresponding set

of relaxed CSPs that allow a solvable state to be achieved as illustrated in

figure 4.6 (c).

However, it might also be the case that there exists no improvement towards the

achievement of a solvable MAP state after a number of relaxation cycles have been

performed as illustrated in figure 4.6 (d). Given this outcome, the relaxation process

terminates as it simply indicates that the agents cannot reach an agreement in reconciling

their differences.

Chapter 4. Protocol Specification

 83

Non-solvable

Non-solvable

Start node

Non-solvable

Non-solvable

Non-solvable

Solvable

Solution within Suff

Start node

Solution within Suff

Problem space of agent j

Problem space of
agent k

Solvable MAP state

Start node

Solution within Suff

Solvable

Start node

Non-solvable

Non-solvable

Non-solvable
Solution within Suff

Problem space of
agent j

Problem space of agent k

Solvable MAP state

Non-solvable

Non-solvable

Start node

Non-solvable

Non-solvable

Non-solvable

Non-solvable Non-solvable

Start node

Non-solvable

Non-solvable

Non-solvable

Problem space of agent j Problem space of agent k

Non-solvable MAP state

Case (b)

Case (a)

Case (d)

Non-solvable

Non-solvable

Start node

Non-solvable

Non-solvable

Non-solvable

Solvable

Solution within Suff

Solvable

Start node

Non-solvable

Non-solvable

Non-solvable
Solution within Suff

Problem space of agent j Problem space of agent k

Solvable MAP state Case (c)

Figure 4.6: The search for a solvable MAP state

Chapter 4. Protocol Specification

 84

4.1.3 Global Distance Computation

In the previous sections, we respectively described the solution subset distance metric

used to compute the degree of constraint relaxation attempted by each individual agent

and how to find a solvable MAP among agents involved in a constraint relaxation

process. The overall degree of constraint relaxation is obtained by aggregating the

individual measure of distances from all of the involved agents. In this section, we

describe the computation of a global distance for this purpose.

A global distance function, G, is used to measure the global distance between an

original distributed CSP (i.e. a set of original CSPs of all agents) and some solvable

distributed CSP (i.e. a set of solvable CSPs of all agents, generated by the agents during

the constraint relaxation process) in reaching a solvable MAP state. The function can be

specified as the following equation:

∑=
= n

1i iTotal dG

This function provides the computation for the summation of local distances of all

agents participating in the constraint relaxation task, where n is the number of agents

involved in the task; di is the local distance for each agent i as specified in expression 2 of

figure 4.3, which is the number of additional solutions introduced and existing solutions

eliminated due to the relaxation individually performed by each agent on its privately

defined finite-domain constraints of the MAP. We search for a combination of relaxed

problems generated by the agents that minimise GTotal.

In order to explain a sample computation using the function, a simple example

involving a relaxation process between the agents k and j are given in Table 4.1. The

table provides three distinct instances of constraint relaxation cycle (i.e. 1-3) involving

agents k and j, in which all produces a solvable MAP state with a different value of GTotal.

Based on the value of GTotal, we can identify the best instance, which is the one with the

minimum value (i.e. GTotal=5).

(3)

Chapter 4. Protocol Specification

 85

 d of agents
Relaxation No. Agent k Agent j GTotal
1. 1 5 6
2. 2 3 5
3. 5 5 10

Table 4.1: Distance metric computation for achieving a MAP solvable state

However, in some circumstances, the global distance function is inadequate to

provide the necessary guidance for the selection of the best combination of relaxed

problems with minimal distances over agents. For instance, table 4.2 provides a different

scenario which involves three distinct instances of constraint relaxation cycle that

produce a solvable MAP state. In this example, a number of solvable states are achieved

with the same GTotal value, where the global distance function gives an equivalent rank

for each instance (i.e. GTotal=5). Given this situation, a more refined global distance

function is needed to provide a better comparative measure.

 d of agents
Relaxation No. Agent k Agent j GTotal
1. 1 4 5
2. 2 3 5
3. 5 0 5

Table 4.2: Distance metric computation for achieving a MAP solvable state

In order to address this limitation, our approach integrates the distributed maximal

scheme as described in [Yokoo and Hirayama, '93; Ando et al., '03] in the computation of

the global distance function. This scheme is originally intended to search for a solution

that minimises the maximal number of violated constraints over agents. However, in our

approach, the number of violated constraints is substituted with the solution subset

distance metric. The specification of G within this approach is as follows:

Chapter 4. Protocol Specification

 86

)dmax(iMaxG =

The function provides the computation to find the maximum local distance GMax,

given a set of distances, di, for each agent i participating in the constraint relaxation task.

We search for a combination of relaxed problems generated by the agents with the lowest

GMax.

As described by the example of table 4.2, relying solely on a global distance

function, GTotal, might leave us with a final solution that contains a set of sizeable

combinations of relaxed problems; each is equivalent in terms of distance. Therefore, in

our work a hybrid global distance computation combining GTotal and GMax is developed to

perform a better search for the best combination of relaxed problems provided by the

agents.

In our hybrid model, a two-stage system is employed. In the first stage, we search

for a combination of relaxed problems among the agents that produces a minimal GTotal.

For a search resulting of more than one solution, the system proceeds to the second stage.

In the second stage, the GMax for each remaining solution is computed and a solution with

the lowest GMax is selected.

Given the similar scenario as described in table 4.2, the example of table 4.3 shows

a computation using both GTotal and GMax to determine the best combination of relaxed

problems to be selected. While GTotal gives the same rank for each instance (i.e. GTotal=5),

GMax identifies the combination of relaxed problems instances among agents with the

lowest maximum local distance (i.e. GMax=3).

 d of agents Computation of solution subset
distance, G

Relaxation No. Agent k Agent j GTotal GMax
1. 1 4 5 4
2. 2 3 5 3
3. 5 0 5 5

Table 4.3: Distance metric computation for achieving a MAP solvable state

(4)

Chapter 4. Protocol Specification

 87

4.1.4 Constraint Relaxation

The following is a detailed description of the constraint relaxation process that has been

described so far:

Given a set of agents X={1,…,n} solving a particular MAP via an interaction protocol S,

specified in expression 5 of section 3.1, then;

 For each agent i∈X, Pi is a solvable CSP defined by the agent concerning its part of

the MAP at the pre-interaction stage.

 As the MAP is progressively solved by X, a set of variables, V of the MAP is

incrementally instantiated with mutually agreed set of solution values, as each agent

i∈X propagates its Pi that is part of the MAP concerning V via S, as described in

expression 6 of section 3.1. The MAP is said to be over-constrained if it consists of a

set of variables, V, of which:

o VS ⊆ V, is a subset of variables that is fully solvable, in which all i∈X agreed

on the value assignments to VS. That is, given i∈X, the value assignments to

VS is derivable from Pi. It is also possible for VS to be empty, which means

the agents cannot agree on the value assignments for any of the variable. In

our work, this set of variables is specified in the necessary bound, Necs, as

described in section 4.1.1.

o VF ⊆ V, is a set of variables that is partially solvable, in which given j ∈ X,

the value assignments to VF is derivable from Pj, where agent j has already

completed its part as prescribed in S concerning the solving of VF. However,

there is agent k ∈ X that cannot complete its part in S to solve VF, as its

constraints as specified in Pk concerning VF cannot be satisfied. In our work,

this set of variables is specified in the sufficient bound, Suff, as described in

section 4.1.1.

 Given the over-constrained MAP, agent k ∈ X initiates the constraint relaxation

process by assuming its role as prescribed in the constraint relaxation protocol R,

supplied to the interacting agents, as described in figure 3.9 of section 3.4.

Chapter 4. Protocol Specification

 88

 For each agent i ∈ X involved in the constraint relaxation process, problem spaces,

PSi are made up of a number of possible weakened CSPs, generated and provided by

the agents during a particular constraint relaxation cycle, in which agents relax their

original CSPs (i.e. Pi) by applying constraint relaxation strategies privately held by

the agents and not accessible at the interaction protocol level.

 For each agent i ∈ X, a solution subset distance metric is applied to compute the

distance between each relaxed CSP, P’i, selected from the problem space, PSi, of

agent i (i.e. P’i ∈ PSi), with its original, Pi, defined at the pre-interaction stage. Using

this metric we identify Ni, the set of solutions not shared between the two problems,

Pi and P’i. Ni is derived by computing the union of the following two components; 1)

a set of additional solutions introduced due to the selection of P’i, and 2) a set of

existing solutions of the original problem Pi, that is eliminated due to the selection of

P’i. The number of solutions identified by this union is computed as di = |Ni|, where

di is the cardinality of Ni.

 The relaxation process involves agents k, j ∈ X assuming their respective roles as

specified in R to perform the relaxation on their Pk and Pj respectively for attaining a

solvable state. A solvable state of the MAP is said to be achieved if any of the

following is satisfied:

o Agent k fully relaxes its original local problem Pk, and produces a relaxed

problem, P’k, which satisfies the necessary bound, sols(P’k)⊇sols(Necs).

There exists at least a solution, Nk, from the set of solutions derivable from

P’k, Nk∈sols(P’k), which is consistent with the existing solutions derivable

from the original local problem of agent j, sols(Pj). That is, Nk ∩ sols(Pj).

Attainment of this state indicates the satisfaction of sufficient bound, Suff.

This is illustrated in figure 4.6(a). Alternatively, a similar result is achieved by

agent j performing a constraint relaxation that meets the described

requirements, as illustrated in figure 4.6(b).

o Both agents k, j ∈ X partially relax their original problems Pk and Pj

respectively, and produce the respective relaxed problems P’k, and P’j. Both

Chapter 4. Protocol Specification

 89

relaxed problems satisfy the necessary bound, sols(P’k)⊇sols(Necs) and

sols(P’j)⊇sols(Necs), and their combined constraint relaxations introduce new

solutions Nk and Nj, where Nk ∩ Nj. Attainment of this state indicates the

satisfaction of sufficient bound, Suff. This is illustrated in figure 4.6(c).

o If no combination of relaxed problems, P’k and P’j, that produces a solvable

MAP state is found after an exhaustive search has been performed on the

problem spaces, PSk and PSj, of the agents k, j∈X respectively, then the

constraint relaxation process involving the agents k and j over the protocol R

is terminated. This indicates that the agents cannot reach an agreement in

reconciling their differences. This is illustrated in figure 4.6(d).

 Obtaining a solvable MAP state with the least number of constraint relaxations

performed over agents k, j∈X requires a search for the combinations of P’k,j ∈ PSk,j

which results in a solvable state to be achieved with a minimal ∑(dk,j). Given that the

search produces a number of equally ranked possible solutions, the solution with the

minimal max(dk,j) is selected.

4.2 Algorithms for Finding Relaxed Problems that Achieve
Solvable State with Minimal Distance

In this section, we describe the algorithms for finding a combination of relaxed problems

provided by the agents that achieve a MAP solvable state. The state is achieve with a

minimal distance from the originals among the agents. The algorithms also provide the

necessary coordination for the agents to organise the constraint relaxation task. Details of

the algorithms are shown in figures 4.7 − 4.10.

 The agent, k, who is faced with an over-constrained problem starts the algorithm by

sending a relax? message that contains the necessary and sufficient bounds to agent

J={1,…,n} that have already constrained their part of the MAP. The sufficient bound

is instantiated with the relevant solution values from the agent’s original problem.

These are described in figure 4.7.

Chapter 4. Protocol Specification

 90

 When receiving the relax? message, agent j∈J tries to find a relaxed problem from its

generated problem space that satisfies both the necessary and sufficient bounds, with

the minimal distance from the agent’s original problem. The set of solutions derivable

from the relaxed problem, which is consistent with the sufficient bound, and its

corresponding distance are returned with the relaxed message, if one exists.

Otherwise, null values are returned. These are described in figure 4.9.

 Upon receiving all relaxed messages from agent J, agent k checks whether a solvable

MAP state has been achieved. If it has, then the accumulated local distances, t, to

reach the solvable state by this particular relaxation_path is computed. If the t

produced by the relaxation_path is less than the t of the existing_path, then the

existing_path is assigned with the value of the relaxation_path. However, if the value

of t for both the relaxation-path and existing_path is equal, further computation using

the maximum local distance, g, is required. The path with the minimal g is selected, if

one exists. If g of both relaxation_path and existing_path is equal, then the value of

relaxation_path is added to existing_path. Otherwise, no update is made on

existing_path. These are described in figure 4.8 and the definitions for

relaxation_path and existing_path are provided in figure 4.7.

 The agents will continue to the next round of relaxation cycle if the generated

problem space of agent k contains relaxed problems with a distance of less then or

equal to the t of the existing_path, and these relaxed problems have not been selected

yet in any of the previous constraint relaxation cycles. The sufficient bound is revised

with the solution values introduced with this selected relaxed problem and a relaxed?

message containing the updated sufficient and necessary bounds are sent to all the

other agents. These are described in figure 4.8.

 Upon completion of the constraint relaxation process among the interacting agents,

the value of the existing_path is returned. If existing_path = null, this indicates that

the agents failed to individually produce any relaxed problem that reaches a solvable

MAP state. These are described in figure 4.10.

Chapter 4. Protocol Specification

 91

procedure initiate /* done by agent k for starting the algorithm */

necs; /* the necessary bound, containing variables with associated solution values agreed by all

agents prior to the occurrence of an over-constrained state */

pk; /* original problem of agent k */

suff=sols(pk); /* the sufficient bound, containing all possible set of solution values for the

variables of the MAP. Initially assigned with the set of solution values derived
from pk. That is sols(pk) */

relaxation_path=null; /* record of achieved relaxation path for a particular constraint relaxation

cycle, initially assigned to null. relaxation_path is in the form of [(n,d)i],
where n and d are respectively the set of solutions derived by each
individual agent i from the attempted constraint relaxation and the
solution subset distance required by the individual agent for achieving it
*/

t=0; /* the summation of local distances from all agents in a particular constraint relaxation

cycle to reach a solvable MAP state, initially assigned to 0 */

g=0; /* the maximum local distance selected from the list of local distances provided by all

agents in a particular constraint relaxation cycle to reach a solvable MAP state, initially
assigned to 0 */

existing_path=null; /* record of selected relaxation path so far, initially assigned to null.

existing_path is in the form of [(relaxation_path, t, g)r], where t and g
are for the relaxation_path achieved in the constraint relaxation cycle r*/

counter =0; /* to keep track the number of receipt messages for a particular constraint

relaxation cycle from each member of J agent, that is j∈J, so far. Initially
assigned to 0 */

history_list=sols(pk); /* to record the set of solution values derivable from the constraint

relaxation attempted by agent for each relaxation cycle. Initially assigned
with the set of solution values derived from pk. That is sols(pk) */

send (relax?, suff, necs) to each member of J agent, that is j∈J;

goto relaxation_progression mode;

Figure 4.7: Algorithm for constraint relaxation (i)

Chapter 4. Protocol Specification

 92

relaxation_progression mode

when agent k receives (relaxed, nj, dj) message from agent j∈J do
 add 1 to counter; add (nj,dj) to relaxation_path;
 if counter = total number of J agent
 if ∀(ni,di) in relaxation_path, (ni≠null,di≠null) and ∀(ni) is consistent, then
 t = ∑ di; /* the accumulated local distances to reach a solvable MAP state */

 g = max(di); /* the maximum local distance to reach a solvable MAP state */
 if existing_path ≠ null then
 if t < t of existing_path then assign (relaxation_path, t, g) to existing_path;
 else if t = t of existing_path then
 if g < g of existing_path then
 assign (relaxation_path, t, g) to existing_path;
 else if g = g of existing_path then
 add (relaxation_path, t, g) to existing_path;
 end if; end if;
 else
 assign (relaxation_path, t, g) to existing_path;
 end if; end if;
 set relaxation_path to null; set counter to 0; let psk be problem space obtained from agent k;
 for all p’k of psk do
 if sols(p’k) ∈ history_list then
 remove p’k from psk;
 else
 if t ≠0 then
 if compute_distance(p’k, pk) > t then remove p’k from psk;
 end if; end if; end if;
 end do;

 if psk is not empty, then
 for all p’k of psk do
 select a relaxed problem, prelaxed, from all p’k contained in psk, which produces the

minimal solution subset distance. That is, compute_distance(prelaxed, pk) is the
minimal;

 end for;
 suff =sols(prelaxed) ;
 add sols(prelaxed) to history_list;
 add (_ ,compute_distance(prelaxed, pk)) to relaxation_path;
 send (relax?, suff, necs) to each member of J agent, that is j∈J;
 goto relaxation_progression mode;
 else
 goto relaxation_completion mode;
 end if;
 else
 goto relaxation_progression mode;
 end if;
end do;

Figure 4.8: Algorithm for constraint relaxation (ii)

Chapter 4. Protocol Specification

 93

when agent j∈J received (relax?, suff, necs) from agent k do
let psj be problem space obtained from agent j; let pj be original problem of agent j;
 solvable_problem=find_solvable(psj, pj, necs, suff);
 if solvable_problem ≠ null then
 for all p’ in solvable_problem do
 select a solvable problem, psolvable, from all p’ contained in solvable_problem, which

produces the minimal solution subset distance. That is, compute_distance(psolvable, pj)
is minimal;

 end do;
 nmin= sols(psolvable) which is consistent with suff; dmin= compute_distance(p’solvable, pj);
 else
 nmin= null; dmin= null;
 end if;
 send (relaxed, nmin, dmin);
end do;

/***/

procedure find_solvable (psj, pj, necs, suff)
solvable_list; /* to keep track of solvable problem contained in the problem space provided by

the agents, initialised to null */
 if psj = null then
 return null;
 else
 do until psj is empty
 let p’j be a problem obtained from psj;
 if solvable(p’j, suff, necs) then
 add (p’j) to solvable_list;
 end if;
 remove p’j from psj;
 end do;
 return solvable_list;
 end if;

procedure solvable(p’j, suff, necs)
 if ((sols(p’j) ⊇ necs) ∧ (sols(p’j) is consistent with suff)) then
 return true;
 else
 return false;

procedure compute_distance(p’j, pj)
nj ← (sols(p’j) − sols(pj)) ∪ (sols(pj) − sols(p’j));
dj ← | nj |;
return (dj);

procedure sols(p’j)
return all set of solutions derivable from problem p’j;

Figure 4.9: Algorithm for constraint relaxation (iii)

Chapter 4. Protocol Specification

 94

relaxation_completion mode

 if existing_path = null then
 terminate algorithm with unsuccessful constraint relaxation;
 else
 terminate algorithm by returning existing_path value;
 end if;

Figure 4.10: Algorithm for constraint relaxation (iv)

Since in this research we are solely focused on the finite-domain constraint

problem, the space of solution sets that the agents could derive during the constraint

relaxation process of the MAP is guaranteed to be finite regardless of the constraint

relaxation strategies that the agents might employ or how they specify the constraints for

their individual problems at the pre-interaction stage. This ensures that our algorithms are

complete, i.e. the algorithms eventually find a sufficient solution (i.e. a combination of

relaxed problems that achieve a solvable state with minimal distance) or find that there

exists no such solution and terminate. In the algorithms, the set of solutions obtained in a

particular constraint relaxation cycle is recorded in the history_list to ensure that the

possible combination of relaxed problems selected from the agents’ problem spaces in

each and every relaxation cycle are not duplicated in terms of solution sets. This means,

for each distinct constraint relaxation cycle, the obtained result consists of a different set

of relaxed problems from which a different solution set could be derived. The number of

constraint relaxation cycle taken by the algorithms to terminate depends on the problem

spaces provided by each individual agent during the constraint relaxation process. At a

very minimum, it might take only a constraint relaxation cycle before termination is

reached. At a very maximum, the number of constraint relaxation cycle taken by the

algorithms to terminate is equivalent to the total number of possible solution sets

derivable from the MAP.

Chapter 4. Protocol Specification

 95

4.3 Implementing Constraint Relaxation Approach in LCC

As LCC is a role-based language, it is necessary for our developed constraint relaxation

approach described in detail in the previous section to be defined within the context of

roles. As discussed in [Cabri et al., '02; Cabri et al., '04], there generally exist two distinct

roles in any interaction protocol: that of initiator and that of responder. Both agents know

when their portion of conversation is over because they had this notion of whether they

initiated or responded to the conversation. For a smooth ongoing interaction between the

agents participating in the constraint relaxation task, they are required to assume the

designated roles as specified in the protocol. Each role in the interaction is modelled to

encapsulate a set of conversation rules and behaviours applicable to the agents assuming

the role. A role defines on how an agent in a given state receives a message of specified

type, performs local actions, sends out messages, and switches to another state. The

descriptions on the intra-agent and inter-agent interactions between the agents’ major

roles are given in figure 4.11, and detailed specifications with regards on how LCC is

used to encode these roles and other function-specific roles expandable from these roles

are given in clauses 5-13 of figures 4.12−4.14. In addition, we provide detailed

definitions of the relevant parameters, which are encapsulated within the roles and passed

among the interacting agents as described in clauses 14-28.

The agent faced with an over-constrained problem needs to assume the role of

initiator, defined as clause (5) in figure 4.12, to begin the constraint relaxation process.

Contained within this initial role are three major roles namely relaxation_initiation,

relaxation_progression and relaxation_completion that reflects the stages involved in the

overall constraint relaxation process. These major roles are incrementally expanded in a

sequential order as illustrated by the direction of the intra-agent arrows highlighted in

figure 4.11. In the relaxation_initiation and relaxation_progression agent roles, we

define the following two kinds of capabilities – message passing behaviours and

constraint relaxation computations. For the message-passing behaviours, we allow inter-

agent interactions concerning the sending and receiving of constraint relaxation related

messages between the agents to be established, maintained and coordinated. This part is

Chapter 4. Protocol Specification

 96

depicted as dashed arrows in figure 4.11, and detailed specifications of the behaviours are

encapsulated within the coordinator role, defined as clause (10) in figure 4.13.

The constraint relaxation computations ensure that local actions like performing a

solution subset distance given a relaxed and original CSP problems, searching for a

solvable relaxed problem with a minimal distance or revising the sufficient bound after

the completion of a constraint relaxation cycle, are made available and accessible to the

relevant agents. This allows the involved agents to effectively participate in the constraint

relaxation process of the MAP. The sets of computations, described in details in figures

4.14−4.15, are defined within two specific-function agent roles, namely select_submit

and ps_filteration, identified as clause (9), and clause (11) in figure 4.13. These roles

provide some ordering on the sequence of necessary actions to be performed at the local

level. Eventually, the relaxation_completion role, defined as clause (8) in figure 4.12,

marks the end of the constraint relaxation task. It allows smooth termination of the

protocol that guarantees a revised set of constrained variables is properly returned if a

solvable relaxed MAP state is achieved or a null value is returned if there exists none.

An agent needs to assume the role of a responder to become the recipient of a

request message to relax its part of the over-constrained MAP. Upon receipt of the

message, contained within the necessary and sufficient bounds, the responder assumes

the relaxation_computation role. Within this role, the necessary computational process of

finding a solvable relaxed CSP with a minimal distance given the original problem is

performed. The inter-agent interactions between this role and the other roles of the

initiator are illustrated as dashed arrows in figure 4.11. Further details with regards to the

defined protocol clauses for these roles can be found in clause (12) and clause (13) of

figure 4.13.

Chapter 4. Protocol Specification

 97

relaxation
initiation

relaxation
progression

relaxation
completion

relaxation
computation

initiator

responder

initial rolesother roles

intra-agent
role
interaction

inter-agent
role
interaction

KEYS:

Figure 4.11: Interaction between agent roles

Chapter 4. Protocol Specification

 98

In LCC, the point of contact between the agents’ knowledge and the defined

protocol clauses of 5−13 described in figures 4.12−4.14, is provided by the following

constraint clauses. These constraint clauses are associated with messages and roles of the

defined protocol clauses. The knowledge to which these connections are made are

obtained from two different sources:

1) Devolved to the appropriate agent – so that the choice of which axioms and

inference procedures used to satisfy a specified constraint clause (e.g. generate a

problem space consisting of relaxed CSPs) is an issue that is private and internal to

the agent concerned. The constraint clauses which fall into this category are

described as follows:

 original(O) returns the original problem, O, specified by the initiator/responder

at the pre-interaction stage concerning its part of the MAP, which is formalised

as CSP.

 problem_space(PS) returns a problem space, PS, consisting of relaxed

problem(s) generated by the agents by applying their individual and private

constraint relaxation strategies.

 recipient(Resp) returns a list of agents, Resp, normally neighbours to the

initiator, that have already completed and satisfied parts of their protocol

concerning the currently solved MAP.

2) Retained with the LCC protocol – so that the axioms used to satisfy a specified

constraint clause are visible at the same level as the protocol and the inference

procedures may also be standardised and retained with the protocol (e.g.

computation on distance function). The constraint clauses which fall into this

category are described as follows and further details on the specification of these

constraint clauses are provided in clauses 14−28 of figures 4.14−4.15.

 add(L1,L2,NList) returns a list, NList, consisting the concatenation of two lists,

L1 and L2.

Chapter 4. Protocol Specification

 99

 assign(Suff,P) returns Suff, consisting of the set of solutions, sols(P) for the

selected relaxed problem P.

 better(NRPath,NRPath’) is true if NRPath is better compared to NRPath’ in

terms of distance.

 distance(P,O,D) returns the distance, D, which is the cardinality of set U, where

U is the union of additional solutions introduced and existing solutions

eliminated due to the constraint relaxation performed on the original problem,

O, for obtaining the relaxed problem P.

 distance_computation(TPS,O,DisTPS) returns DisTPS, contained within a list of

dis(P1,D1),…,dis(Pn,Dn) where for i=1..n, Pi∈TPS, that is the relaxed problems

selected from the problem space, TPS, together with their solution subset

distances, Di, from the original, O.

 find_solvable(PS,Necs,Suff,SL) returns a set of relaxed problems, SL, selected

from the problem space, PS, that satisfy the necessary bound, Necs, and also the

sufficient bound, Suff.

 g_distance(RPath,NRPath) returns a computed distance values, NRPath, in the

form of gdis(RPath,T,G) in which T is the total number of additional solutions

and G is the maximum number of additional solutions, introduced over agents

due to the performed relaxations, as indicated by the obtained constraint

relaxation path, RPath.

 g_solvable(RPath) denotes that a globally solvable constraint relaxation state

for the MAP is achieved, which is true if the obtained constraint relaxation path,

RPath, consists a fully solvable set of solution values provided by all agents

pertaining to the over-constrained variables.

 invalid_dist_removal(DisTPS,NEPath,FPS) returns FPS, contained within a set

of relaxed problems, selected from DisTPS, that have a better or equally

comparable distance if compared to the existing relaxation path, NEPath,

obtained by the agents so far.

Chapter 4. Protocol Specification

 100

 invalid_spec_removal(PS,Necs,NHList,TPS) returns TPS, contained within a set

of relaxed problems selected from PS, that generate solutions which satisfy the

necessary bound, Necs, and do not yet exist in the history list, NHList.

 locally_better(P,NEPath) is true if the distance of a local problem P, is equal or

better compared to the existing constraint relaxation path of the agents, NEPath.

 path_computation(RPath,EPath,NEPath) returns the constraint relaxation path,

NEPath with a better distance, given the existing path so far, EPath and a newly

obtained constraint relaxation path, RPath.

 select_minimal(FPS,Minimal) returns a relaxed problem, Minimal, selected

from FPS that produces the most minimal distance.

 select_path(NRPath,EPath,NEPath) instantiates NEPath with the existing path,

EPath if the existing path is better than the newly obtained NRPath, or

otherwise NEPath is instantiated to NRPath.

 solvable(A,Necs,Suff) is true if the CSP formalised problem A produces a set of

solutions that satisfy the necessary bound, Necs and sufficient bound, Suff.

 sel({(dis1(P,D),…,disn(P’,D’))|min(D,…,D’)}) selects a solvable problem in the

form of disi(P,D), where P is a CSP-formalised problem, and D is the distance.

The problem with the minimal distance, min(D) is selected.

 sols(P) returns the set of solutions derivable from a CSP-formalised problem P.

Chapter 4. Protocol Specification

 101

K).h),RelaxedPatath,mplete(FEPa(relax_co
 thenK)FEPath),FHList,NEPath,NHList,O,NSuff,s,ogress(Neca(relax_pr

 then
NHList) O, add(_,

and Suff) assign(O,
and)original(O

 K)NEPath),NHList,Suff,O,s,itiate(Neca(relax_in

::K)(Necs),a(initiate

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛
←

=

(5)

.
null

or
NEPath)_,th,tation(RPapath_compu

 and (RPath)g_solvable
 null

 thenResp)recipient(K)RPath),Resp,Suff,tor(Necs,a(coordina
::K)NEPath),NHList,Suff,O,s,itiate(Neca(relax_in

⎟⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
←

←
=

(6)

.

NEPathFEPath
andNHList FHList

null

or
K)FEPath),FHList,TEPath,THList,O,TSuff,s,ogress(Neca(relax_pr

 then]) [not(FPS
K)TEPath),THList,NEPath,NHList,O,NSuff,ubmit(FPS,a(select_s

 thenace(PS)problem_sp K)FPS),NEPath,NHList,O,Necs,ration(PS,a(ps_filte
::K)FEPath),FHList,NEPath,NHList,O,NSuff,s,ogress(Neca(relax_pr

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=
=

←

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛
=←

←
=

(7)

.
thObtainedPa null

or

FEPaththObtainedPa

 and Path))not(var(FE
null

::K)th),ObtainedPaath,mplete(FEPa(relax_co

⎟⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

∅=←

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

←

=

(8)

Figure 4.12: Encoding of constraint relaxation as a LCC protocol (i)

Chapter 4. Protocol Specification

 102

.
NEPathTEPath null

or

TEPath)NEPath,th,tation(RPapath_compu

 and (RPath)g_solvable
 null

 thenResp)recipient(K)RPath),Resp,NSuff,tor(Necs,a(coordina

 then
THList)Minimal,add(HList,

and Minimal)ff,assign(NSu
and Minimal)imal(FPS,select_min

null

::K)TEPath),THList,NEPath,NHList,O,NSuff,ubmit(FPS,a(select_s

⎟⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

=←

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
←

←

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛
←

=

(9)

.
] [RPath

 and] [Resp
null

or
K)Rest),Vr,NSuff,tor(Necs,a(coordina

 thenV)r,a(respondespond)relaxed(ReRest]|[RespondRPath
 thenVr]|[VRespV)r,a(respondeNSuff),relax(Necs

::K)RPath),Resp,NSuff,tor(Necs,a(coordina

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=
=

←

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛
⇐←=

=←⇒

=

(10)

.
DisTPSFPSnull

or
)FPS NEPath, DisTPS,al(dist_removinvalid_

and)(NEPath)var(
null

 then
DisTPS) O, (TPS,omputationdistance_c

and)TPS NHList, Necs, PS,al(spec_removinvalid_
 null

::K) FPS), NEPath, NHList, O, Necs, ration(PS,a(ps_filte

⎟⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

=←

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛¬
←

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
←

=

(11)

.
)original(O and

 ace(PS)problem_sp
J)K), SL, DL, Suff, Necs, O, mpute(PS,a(relax_co

 thenK)),_,_,_,tor(_,a(coordinaSuff) ,relax(Necs
::J) r,a(responde

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
←

⇐
=

(12)

Figure 4.13: Encoding of constraint relaxation as a LCC protocol (ii)

Chapter 4. Protocol Specification

 103

.
Suffsols(P)N

and D) dis(P,Minimal
 K)),_,_,_,tor(_,a(coordinaD)relaxed(N,

then
Minimal) L,_minimal(Dselect

and DL) O, (SL,ncomputatiodistance_
and SL) Suff, Necs, (PS,solvablefind_

null

::J) K), SL, DL, Suff, Necs, O, mpute(PS,a(relax_co

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∩=

=
←⇒

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛
←

=

(13)

L1].|[L2NListNList)L2,add(L1, =←

(14)

).P(solsSuff_)),P(dis,Suff(assign)P,Suff(assign =←∨

(15)

).GG T(T)T(T))G,T,hgdis(Pat,T,G)gdis(Path,better(′≤∧′=∨′<←′′′

(16)

.|U| D sols(A))(sols(O)sols(O))((sols(A)UD)O,,distance(A =∧−∪−=←

(17)

Di).dis(Pi,DP
)DO,,distance(P
 TPSP 1..r,ifor

 where)DP,...,(DPDisTPS DisTPS)O,(TPS,omputationdistance_c

i

ii

i

r1

=∧
∧

∈=
=←

(18)

Suff).Necs,,Psolvable(PSP 1..t,ifor
 where)P,...,P(SLSL)Suff,Necs,(PS,solvablefind_

ii

t1

′∧∈′=

′′=←

(19)

G).T,,gdis(RPathNRPath
RPath)Dmax(G

RPath)D(T
)var(NRPathNRPath)(RPath,g_distance

=∧
∈∀=∧

∈∀∑=∧
←

(20)

other.each with consistent is N
 True is)D,(NRPath,D)(N,(RPath)g_solvable

∧
∅≠∅≠∈∀←

(21)

NEPath).,tter(DisPlocally_be
DisTPSDisP 1..q,ifor

 where)DisP,...,(DisPFPSFPS)NEPath,isTPS,_removal(Ddistinvalid_

i

i

q1

∧
∈=

=←

(22)

Necs.)sols(P
NHListP

PSP 1..n,ifor
 where)P,...,P(TPS)TPS,NHList,Necs,PS(_removalspecinvalid_

i

i

i

n1

⊇∧
∉∧

∈=
=←

(23)

Figure 4.14: Encoding of constraint relaxation as a LCC protocol (iii)

Chapter 4. Protocol Specification

 104

).GDTD()TD())G,T,Path(gdis),D,P(dis(tterlocally_be ≤∧=∨<←

(24)

NEPath).EPath,h(NRPath,select_pat
NRPath)(RPath,g_distanceNEPath)EPath,th,tation(RPapath_compu

∧
←

(25)

EPath.NEPath

EPath)ath,better(NRP if
NRPathNEPath

)NEPath,EPath,NRPath(path_select

=
∨

⎥
⎦

⎤
⎢
⎣

⎡ =
←

(26)

.)})D,...,Dmin(|))D,P(dis),...,D,P(dis({selMinimal
)Minimal,FPS(imalselect_min

n1 ′′′=
←

(27)

Suff.SNecsSsols(A)SSuff)Nesc,,solvable(A ∩∧⊇∧=←

(28)

Figure 4.15: Encoding of constraint relaxation as a LCC protocol (vi)

4.4 Chapter Summary

In this chapter, we provided a detailed specification of the constraint relaxation protocol,

which is realised from the distributed partial CSP. In section 4.1, we presented an

approach, based on the distributed partial CSP, for allowing individual and distinct agents

to take part in the interactive task of solving an over-constrained MAP. In the approach,

the solution subset distance metric is used to compute the degree of constraint relaxation

attempted by each individual agent as described in section 4.1.1. The mechanism for

finding a solvable MAP among the distributed agents involved in the constraint

relaxation process is described in section 4.1.2. Furthermore, we also introduced two

special bounds for restraining the individual problem space generated by each agent

during the constraint relaxation process; necessary and sufficient bounds. A global

distance function is specified for computing the best constraint relaxation path generated

by agents as described in section 4.1.3. Subsequently, a detailed description of the

constraint relaxation process is provided in section 4.1.4. We showed the algorithms for

finding a combination of relaxed problems that achieve a solvable state with minimal

distance in section 4.2 and, in section 4.3, a detailed description on how our constraint

relaxation approach is encoded into an LCC protocol is provided.

 105

Chapter 5

Implementation and Working Example

This chapter describes the implementation aspects of our approach, followed by a

discussion on the execution of the approach using the over-constrained MAP scenario of

chapter 3.

5.1 Implementation

An important contribution of this thesis is not only developing the ideas of integrating

distributed partial CSP with LCC, but also providing a practical and executable solution.

In order to achieve this, our approach, which consists of inference procedures for

performing constraint relaxation computations, needs to be implemented in a high level

declarative language. As described in chapter 3, in the LCC framework, the protocol

language and the expansion engine are written in SICStus Prolog [SICS, '99] and the

message passing system is implemented in Linda [Carrieno and Gelernter, '89].

Therefore, we choose to implement our approach in SICStus Prolog to take advantage of

the existing code for the LCC basic framework and expansion engine, and ensure smooth

interfacing with these components. In addition, a finite-domain constraint solver available

in SICStus Prolog (i.e. clp(FD)) is used to accommodate the computations on the solution

subset distance, necessary and sufficient bounds for the set of problems contained in the

agents’ problem spaces.

Figure 5.1 provides a diagrammatical overview on the architecture and process

flow, describing how the protocol for distributed constraint relaxation interactions is

enacted in LCC. The inference procedures for performing constraint relaxation

computations are defined in the constraint relaxation computational engine. The figure

focuses on the execution of the protocol from the view of a single agent.

Chapter 5. Implementation and Working Example

 106

Message
encoder/decoder

Protocol
expander

Constraint relaxation
computational engine

Finite-domain
constraint solver

Message passing media
(i.e. Linda)

Agent

Message
sent

Message
received

Returns protocol
and message

(to be sent)

Sends protocol
for expansion

Agent’s
actions

Constraint
relaxation

computations
Solution subset distance,
necessary and sufficient
bounds computations

LCC interaction protocol layer

LCC interaction
protocol layer

Agent
Agent

Agent
LCC interaction
protocol layer

LCC interaction
protocol layer

Figure 5.1: Architecture for distributed constraint relaxation interactions

Chapter 5. Implementation and Working Example

 107

Interaction via the protocol is initiated by an agent with a bootstrapping mechanism

which requires a unique agent identifier, a role, and the name of a file which contains the

protocol to be enacted. This will allow the file to be read and loaded into memory for the

agent to use. In addition to the protocol, defined in terms of LCC agents’ clauses, the file

also contains a set of constraint relaxation specific knowledge pertaining to the agent (i.e.

the agent’s original problem and generated problem space). Once this step is completed,

the agent needs to identify the appropriate clause for its role and perform the prescribed

actions for that role to proceed to the next stage. This is achieved through an expansion

engine that applies the set of rewrite-rules described in table 2.1 of chapter 2, onto the

protocol. Each time the expansion engine finds inference procedures for performing

constraint relaxation computations, a transfer of control is made to the constraint

relaxation computational engine for the specific task to be executed. This process may

require interfacing with a constraint solver especially for computations involving solution

subset distance, necessary and sufficient bounds. If an expansion of the protocol resulted

in a locution to be sent to another agent, or received from another agent, the

corresponding portions of the protocol’s interaction state are marked to reflect those

occurring (i.e. enclosed in ‘c’ as described in table 2.1 of chapter 2 to indicate that the

protocol clauses are already closed).

The agent clauses, the constraint relaxation knowledge base of agent, the marked

agent clauses that reflect the current state of the interaction, and the locution, are merged

together into a message before being sent to the Linda tuple space. A message

encoder/decoder is used for receiving and transmitting messages via the tuple space. This

enables messages residing in the Linda tuple space to be read, and the LCC protocol

expressions contained within the messages to be extracted. The Linda tuple space uses a

blackboard approach to facilitate distributed communication. In this approach, a message

addressed to a specific agent as specified by the protocol is left on the space to be

retrieved by the intended recipient.

The process continues with the agent checking the Linda tuple space for the

messages addressed to its identifier. Once the message has been retrieved from the tuple

space and decoded, the agent applies the expansion process again on the extracted LCC

protocol expressions contained within the received message. The locutions received with

Chapter 5. Implementation and Working Example

 108

the message are then processed by the agent, and the agent clauses which specify the

receipt of the locutions are accordingly marked to reflect the current state of the

interaction. The expansion process continues for finding a suitable reply to the locutions

as prescribed in the protocol, which includes satisfying any constraint attached to the

agent clauses. This sequence of interaction between agents will continue until all agents

have completed the expansion of their respective parts in the protocol.

For a detailed SICStus Prolog coding on these described components, please refer

to appendix A.

5.2 Working Example

In order to explain a detailed expansion of the constraint relaxation protocol, we will re-

visit our over-constrained scenario of chapter 3 that deals with the purchasing and

configuration of a computer between a customer and vendor agents. Assuming that the

universal domain values for the disk space and memory size attributes are set as

D={40,80,120} Gb and M={256,512,1000} Mb respectively, then figure 5.2 and figure

5.3 provide the possible problem spaces to be obtained by the customer and vendor

agents which are compatible with the necessary bound (i.e. Necs) of D=120 and M=1000.

Contained within the problem spaces are the original CSPs (i.e. CSPc1 and CSPv1) and the

possible relaxed CSPs derived from the original CSPs (i.e. CSPc2, CSPc3, CSPc4 and

CSPv2, CSPv3, CSPv4). The forms of relaxations applied by the agents on the original

CSPs are highlighted in bold, as indicated in each relaxed CSP. The individual relaxation

performed on the constraints of the original problems are described as follows:

 CSPc2 – Enlarging of the unary constraint imposed on the disk space attribute

to include a value of 40 Gb.

 CSPc3 – Enlarging of the unary constraint imposed on the memory size

attribute to include a value of 256 Mb.

 CSPc4 – Enlarging of the unary constraint imposed on the price attribute from

less than or equal to £300 (i.e. =< 300) to less than or equal to £350 (i.e.

=<350).

Chapter 5. Implementation and Working Example

 109

 CSPv2 – Enlarging of the unary constraint imposed on the disk space attribute

to include a value of 80 Gb.

 CSPv3 – Enlarging of the unary constraint imposed on the memory size

attribute to include a value of 512 Mb.

 CSPv4 – Revising the constraint equation imposed on the price attribute where

a fixed constant part of £180 is lowered to £150.

In figures 5.2 and 5.3, the set of solutions generated from these CSPs are shown in

shadowed boxes, where any new solution introduced due to a performed relaxation is

labelled accordingly and highlighted in bold.

Chapter 5. Implementation and Working Example

 110

S1=[D=80,M=512,P=<300]
S2=[D=80,M=1000,P=<300]
S3=[D=120,M=512,P=<300]
S4=[D=120,M=1000,P=<300]
SNew_1=[D=40,M=512,P=<300]
SNew_2=[D=40,M=1000,P=<300]

S1=[D=80,M=512,P=<300]
S2=[D=80,M=1000,P=<300]
S3=[D=120,M=512,P=<300]
S4=[D=120,M=1000,P=<300]

S1=[D=80,M=512,P=<300]
S2=[D=80,M=1000,P=<300]
S3=[D=120,M=512,P=<300]
S4=[D=120,M=1000,P=<300]
SNew_1=[D=80,M=256,P=<300]
SNew_2=[D=120,M=256,P=<300]

SNew_1=[D=80,M=512,P=<350]
SNew_2=[D=80,M=1000,P=<350]
SNew_3=[D=120,M=512,P=<350]
SNew_4=[D=120,M=1000,P=<350]

Relaxed
problem

Original
problem

Constraint
relaxation
action

Constraint
solving
action

KEYS:

Generated
solution

disk_space (D)
{80,120}

memory_size (M)
{512,1000}

price (P)
{=<300}

disk_space (D)
{40,80,120}

memory_size (M)
{512,1000}

price (P)
{=<300}

disk_space (D)
{80,120}

memory_size (M)
{256,512,1000}

price (P)
{=<300}

disk_space (D)
{80,120}

memory_size (M)
{512,1000}

price (P)
{=<350}

CSPC1

CSPC2 CSPC3 CSPC4

Figure 5.2: Problem space of the customer agent

Chapter 5. Implementation and Working Example

 111

disk_space (D)
{40,120}

memory_size (M)
{256,1000}

price (P)
{180+((disk_space div 40)*20)
+((memory_size div 256)*30)}

disk_space (D)
{40,80,120}

memory_size (M)
{256,1000}

price (P)
{180+((disk_space div 40)*20)
+((memory_size div 256)*30)}

disk_space (D)
{40,120}

memory_size (M)
{256,512,1000}

price (P)
{180+((disk_space div 40)*20)
+((memory_size div 256)*30)}

disk_space (D)
{40,120}

memory_size (M)
{256,1000}

price (P)
{150+((disk_space div 40)*20)
+((memory_size div 256)*30)}

S1=[D=40,M=256,P=230]
S2=[D=40,M=1000,P=290]
S3=[D=120,M=256,P=270]
S4=[D=120,M=1000,P=330]
SNew_1=[D=80,M=256,P=250]
SNew_2=[D=80,M=1000,P=310]

S1=[D=40,M=256,P=230]
S2=[D=40,M=1000,P=290]
S3=[D=120,M=256,P=270]
S4=[D=120,M=1000,P=330]

S1=[D=40,M=256,P=230]
S2=[D=40,M=1000,P=290]
S3=[D=120,M=256,P=270]
S4=[D=120,M=1000,P=330]
SNew_1=[D=40,M=512,P=260]
SNew_2=[D=120,M=512,P=300]

SNew_1=[D=40,M=256,P=200]
SNew_2=[D=40,M=1000,P=260]
SNew_3=[D=120,M=256,P=240]
SNew_4=[D=120,M=1000,P=300]

Relaxed
problem

Original
problem

Constraint
relaxation
action

Constraint
solving
action

KEYS:

Generated
Solution

CSPv1

CSPv2 CSPv3 CSPv4

Figure 5.3: Problem space of the vendor agent

As described in section 4.3, the constraint relaxation protocol defines two kinds of

capabilities to be coordinated among the interacting agents for achieving a solvable MAP

state – message passing behaviours and constraint relaxation computations. The message

passing behaviours are concerned with the sending and receiving of constraint relaxation

related messages that follow from the protocol expressions 5−13 of figures 4.12−4.14.

These are illustrated in detail in figure 5.4. The direction and flow of message passing

between the customer and vendor agents are depicted using arrows. Each relax message

sent by the customer to the vendor consists of instantiated values for the necessary (i.e.

Chapter 5. Implementation and Working Example

 112

Necs) and sufficient (i.e. Suff) bounds. Each relaxed message sent by the vendor in reply

consists of a set of solution values (i.e. N) for allowing a solvable MAP state to be

achieved among these two agents, and a solution subset distance value (i.e. D) on the

vendor’s part for obtaining this state. The term r(V,S) is used to indicate the possible set

of solution values S, for the variable V, derived from the respective agents during the

constraint relaxation process. An instance regarding the aggregation of possible solution

values, Si, for the respective set of variables under consideration, Vi, is represented by the

term s([r(V1,S1),…,r(Vn,Sn)]).

Constraint relaxation computations ensure local actions like searching for a solvable

relaxed problem with a minimal distance or updating of parameters’ values after the

completion of each constraint relaxation cycle, are performed by the relevant agents as

they assume their roles in the constraint relaxation interaction. These are shown in figure

5.4, where we describe the selected CSPs, and the values of history_list, existing_path

and relaxation_path during the pre-relaxation interaction and post-relaxation interaction

stages. The process of searching and selecting a CSP from the respective problem spaces

of the customer and vendor agents during each constraint relaxation cycle are illustrated

in figure 5.5. In the remainder of the section, we provide a detailed discussion on the

execution of the protocol by the agents as illustrated in figure 5.4 and 5.5.

The customer agent, who is faced with an over-constrained problem for satisfying

its part in the constraint solving interaction, starts the constraint relaxation process by

assuming an initiator role as prescribed in the protocol. In order to begin an inter-agent

interaction, the customer needs to assume a coordinator role, where all the message-

passing behaviours for the initiator are specified. The customer agent begins the

interaction by sending a message that contains the necessary and sufficient bounds to the

vendor agent that assumes a responder role. The sufficient bound is instantiated with the

relevant solution values from the agent’s selected CSP, that is CSPc1 in the initial

constraint relaxation cycle. Upon receipt of this message, the vendor agent expands its

responder role to assume the relaxation computation role for searching a relaxed problem

from its generated problem space that 1) satisfies both the necessary and sufficient

bounds, with 2) the most minimal distance from the agent’s original problem. As

illustrated in figure 5.5, there exists two problems in the agent’s problem space that meet

Chapter 5. Implementation and Working Example

 113

the first requirement; CSPv3 and CSPv4. However, CSPv3 is selected since its solution

subset distance of two (i.e. D=2) is lower than CSPv4 that has a distance of eight (i.e.

D=8). Given CSPv3, N is instantiated with a set of solutions derived from this CSP which

matches the current solutions contained in Suff.

The instantiated value of N and the solution subset distance, D, of CSPv3, are

returned with the message sends to the customer agent. Upon receipt of this message, the

global distance values, t and g, for reaching a solvable MAP state in a particular

constraint relaxation cycle is computed. The global distance value t is the summation of

local distances of all agents participating in the constraint relaxation task, and the global

distance value g is the maximum local distance selected from the list of local distances

provided by all agents. In the first cycle, the values of t=2 and g=2 are obtained. A

relaxation_path is generated once the computation on t and g are completed. It consists

of solution values, N, mutually agreed by both agents in reaching a solvable MAP state,

and its associated global distance values, t and g. These are instantiated to existing_path,

which is null at the initial stage.

A new cycle of constraint relaxation interaction will be initiated until both agents

can no longer find a set of relaxed problems from their problem spaces that has a global

distance which is better or equal to the global distance of the currently recorded

existing_path. In this example, the agents are involved in three cycles of constraint

relaxation interaction before a completion state is achieved. Each relaxation cycle

produces a different set of relaxed problem for achieving a solvable MAP state, all with

the global distance values of two (i.e. t=2 and g=2) . These are the best global distance

values obtainable by the agents for solving their over-constrained MAP.

Chapter 5. Implementation and Working Example

 114

relax(Necs,Suff)

INITIATOR
(Customer)

RESPONDER
(Vendor)

Necs = [r(M,[[1000|1000]]), r(D,[[120|120]])].
Suff = [s([r(P,[[inf|300]]),r(M,[[512|512]]),r(D,[[80|80]])]),
 s([r(P,[[inf|300]]),r(M,[[1000|1000]]),r(D,[[80|80]])]),

 s([r(P,[[inf|300]]),r(M,[[512|512]]),r(D,[[120|120]])]),
 s([r(P,[[inf|300]]),r(M,[[1000|1000]]),r(D,[[120|120]])])].

Relaxation cycle 1:

Pre-relaxation interaction:
history_list: CSPc1
existing_path: Null
relaxation_path: Null

relaxed(N,D)
N = s([r(P,[[300|300]]),r(M,[[512|512]]),r(D,[[120|120]])]).
D = 2.

Selected CSP:
CSPv2

Post-relaxation interaction:
history_list: CSPc1

existing_path:
N = s([r(P,[[300|300]]),
 r(M,[[512|512]]),
 r(D,[[120|120]])]),
t = 2, g = 2.

relaxation_path:
N = s([r(P,[[300|300]]),
 r(M,[[512|512]]),
 r(D,[[120|120]])]),
t = 2, g = 2.

Selected CSP:
CSPc1

Figure 5.4: Flow of inter-agent interactions

Chapter 5. Implementation and Working Example

 115

INITIATOR
(Customer)

RESPONDER
(Vendor)

Relaxation cycle 2:

Pre-relaxation interaction:
history_list: CSPc1, CSPc2

existing_path:
N = s([r(P,[[300|300]]),
 r(M,[[512|512]]),
 r(D,[[120|120]])]),
t = 2, g = 2.

relaxation_path: Null

relax(Necs,Suff)

relaxed(N,D)
N = s([r(P,[[290|290]]),r(M,[[1000|1000]]),r(D,[[40|40]])]).
D = 0.

Selected CSP:
CSPv1

Selected CSP:
CSPc2 Necs = [r(M,[[1000|1000]]), r(D,[[120|120]])].

Suff = [s([r(P,[[inf|300]]),r(M,[[512|512]]),r(D,[[80|80]])]),
 s([r(P,[[inf|300]]),r(M,[[1000|1000]]),r(D,[[80|80]])]),

 s([r(P,[[inf|300]]),r(M,[[512|512]]),r(D,[[120|120]])]),
 s([r(P,[[inf|300]]),r(M,[[1000|1000]]),r(D,[[120|120]])]),

 s([r(P,[[inf|300]]),r(M,[[512|512]]),r(D,[[40|40]])]),
 s([r(P,[[inf|300]]),r(M,[[1000|1000]]),r(D,[[40|40]])])].

Post-relaxation interaction:
history_list: CSPc1, CSPc2

existing_path:
[(N = s([r(P,[[300|300]]),
 r(M,[[512|512]]),
 r(D,[[120|120]])]),
 t = 2, g = 2),
(N = s([r(P,[[290|290]]),
 r(M,[[1000|1000]]),
 r(D,[[40|40]])]),
 t = 2, g = 2)].

relaxation_path:
N = s([r(P,[[290|290]]),
 r(M,[[1000|1000]]),
 r(D,[[40|40]])]),
 t = 2, g = 2.

Figure 5.4: Flow of inter-agent interactions

(continuation from previous page)

Chapter 5. Implementation and Working Example

 116

INITIATOR
(Customer)

RESPONDER
(Vendor)

Relaxation cycle 3:

Selected CSP:
CSPv1

Post-relaxation interaction:
history_list: CSPc1, CSPc2,
CSPc3

existing_path:
[(N = s([r(P,[[300|300]]),
 r(M,[[512|512]]),
 r(D,[[120|120]])]),
 t = 2, g = 2),
(N = s([r(P,[[290|290]]),
 r(M,[[1000|1000]]),
 r(D,[[40|40]])]),
 t = 2, g = 2),
(N = s([r(P,[[270|270]]),
 r(M,[[256|256]]),
 r(D,[[120|120]])]),
 t = 2, g = 2)].

relaxation_path:
N = s([r(P,[[270|270]]),
 r(M,[[256|256]]),
 r(D,[[120|120]])]),
t = 2, g = 2.

Selected CSP:
CSPc3

Necs = [r(M,[[1000|1000]]), r(D,[[120|120]])].
Suff = [s([r(P,[[inf|300]]),r(M,[[512|512]]),r(D,[[80|80]])]),
 s([r(P,[[inf|300]]),r(M,[[1000|1000]]),r(D,[[80|80]])]),

 s([r(P,[[inf|300]]),r(M,[[512|512]]),r(D,[[120|120]])]),
 s([r(P,[[inf|300]]),r(M,[[1000|1000]]),r(D,[[120|120]])]),

 s([r(P,[[inf|300]]),r(M,[[256|256]]),r(D,[[80|80]])]),
 s([r(P,[[inf|300]]),r(M,[[256|256]]),r(D,[[120|120]])])].

relax(Necs,Suff)

Pre-relaxation interaction:
history_list: CSPc1, CSPc2,
CSPc3

existing_path:
[(N = s([r(P,[[300|300]]),
 r(M,[[512|512]]),
 r(D,[[120|120]])]),
 t = 2, g = 2),
(N = s([r(P,[[290|290]]),
 r(M,[[1000|1000]]),
 r(D,[[40|40]])]),
 t = 2, g = 2)].

relaxation_path: Null

relaxed(N,D)

N = s([r(P,[[270|270]]),r(M,[[256|256]]),r(D,[[120|120]])]).
D = 0.

Figure 5.4: Flow of inter-agent interactions

(continuation from previous page)

Chapter 5. Implementation and Working Example

 117

CSPv1
D=0

CSPv2
D=2

CSPv3
D=2

CSPv4
D=8

CSPc1
D=0

CSPc2
D=2

CSPc3
D=2

CSPc4
D=8

CSPc1
D=0

CSPc2
D=2

CSPc3
D=2

CSPc4
D=8

CSPv1
D=0

CSPv2
D=2

CSPv3
D=2

CSPv4
D=8

CSPc1
D=0

CSPc2
D=2

CSPc3
D=2

CSPc4
D=8

CSPv2
D=2

CSPv3
D=2

CSPv4
D=8

CSPv1
D=0

Inter-agent interaction
Problem space of
customer agent

Problem space
of vendor agent

KEYS:

Solvable
problem(s)

Selected
problem

1) Constraint Relaxation Cycle 1

Inter-agent interaction

Problem space of
customer agent

Problem space
of vendor agent

2) Constraint Relaxation Cycle 2

Inter-agent interaction

Problem space of
customer agent

Problem space
of vendor agent

3) Constraint Relaxation Cycle 3

D Solution subset
distance

Figure 5.5: Selection of agents’ CSPs during constraint relaxation computations

Chapter 5. Implementation and Working Example

 118

5.3 Chapter Summary

In this chapter, we provided a discussion on the implementation aspects of our approach.

As described in section 5.1, we introduced a constraint relaxation computational engine,

which consists of inference procedures for performing constraint relaxation

computations. This component, which provides the necessary interface with the finite-

domain constraint solver, is implemented in SICStus Prolog. Furthermore, we also

described how the protocol for distributed constraint relaxation interactions is enacted. In

section 5.2, we showed a detailed execution of our constraint relaxation protocol using an

over-constrained scenario of chapter 3 that deals with the purchasing and configuration of

a computer between customer and vendor agents.

 119

Chapter 6

Evaluation

In this chapter we elaborate on the measures used for evaluating the constraint relaxation

protocol, the set-up of the experimental test bed, the experimental results obtained from

running the protocol against a set of over-constrained MAPs with different levels of

hardness, and the analyses performed on these results.

6.1 Measures Used

Central to the constraint relaxation protocol is a search procedure for finding a consistent

value assignment to each variable of the over-constrained MAP by all agents taking part

in the process. All agents cooperate in search for a globally solvable relaxed MAP with a

minimal solution subset distance. Within the distributed CSP research field, the two most

common performance measurements that have been adopted to evaluate distributed

search algorithms are:

1. Time. This measurement is motivated by the need to estimate the duration

between the starting time of the algorithm and the time it returns a satisfying

solution. The time performance of the algorithms has traditionally been measured

in terms of computational effort, usually in the form of the number of

computation cycles or steps taken by the distributed problem solvers to find a

consistent solution [Davin and Modi, '05; Jung and Tambe, '05].

2. Communication load. Measuring the communication load poses a much simpler

task, and it is generally measured by counting the total number of messages

exchanged during search [Meisels, '04].

Chapter 6. Evaluation

 120

Though not perfect, the time-based measurement is a widely used method for estimating

the performance of distributed search algorithms [Meisels et al., '02; Brito et al., '04], and

it has also been generally accepted as a machine (and implementation) independent

measure [Meisels et al., '02]. Given these considerations, we choose to adopt the time-

based measurement for the purpose of evaluating the performance of our constraint

relaxation protocol. As this form of evaluation method is machine independent, it is no

longer necessary to run the constraint relaxation protocol in a fully distributed manner

across a cluster of many computers, which is often non-trivial and impractical.

Alternatively, we opt to run the protocol on a single computer using multiple threads of

execution.

As the execution of the constraint relaxation protocol can be divided into a

sequence of cycles, the time-based measurement is performed by analysing the number of

cycles taken by the agents to complete their respective parts in the protocol. A cycle is

defined as one unit of protocol progress in which all agents, in their respective roles as

specified in the constraint relaxation protocol, enacted the following three behaviours:

i. Agents receive messages sent to them from the neighbouring agents to whom

the equality constraints on the over-constrained MAP are shared;

ii. Agents generate the necessary problem space contained within a set of relaxed

problem(s) and perform the necessary computation for finding a relaxed

problem with a minimal solution subset distance;

iii. Agents send messages to the corresponding neighbouring agents together with

the solvable values the meet the distance specification, if there exist one.

In a cycle-based execution as described in figure 6.1, all involved agents perform

their parts as prescribed in the protocol – starting with the agent in the role of an initiator

sending a message contained within the current necessary and sufficient bounds (i.e.

m(Necs,Suff)) to the agent(s) assuming the role of a responder. Upon receipt of this

message, the agent in the role of a responder performs local computations that include

finding a relaxed problem from the locally generated problem space which satisfies the

necessary and sufficient bounds, with a minimal solution subset distance. Once this is

complete, a reply message contained within the agent’s solution subset distance and

Chapter 6. Evaluation

 121

additional solutions derived from the selected relaxed problem (i.e.

m(Distance,Add_sols)) which are compatible with the sufficient bound, is sent to the

initiator, if the relaxed problem is found. Otherwise, a failure message (i.e. m(nil,nil)) is

sent. On the initiator part, upon receipt of this message, a computation is performed to

determine on whether a solvable MAP state with a minimal accumulated solution subset

distance has been achieved, and if it does, the constraint relaxation path obtained so far is

accordingly updated. An agent does not move to the next cycle until all the other agents,

whom the agent is currently interacting with, have fulfilled their roles as prescribed in the

protocol for a particular constraint relaxation cycle. A complete cycle is realised when

each of the involved agents has completed its assigned part.

ResponderInitiator

m(Distance, Add_sols)
or

m(nil,nil)

m(Necs,Suff)

 Local
computation

Local
computation

BEGIN

END

Figure 6.1: A complete relaxation cycle

The use of cycles as an evaluation metric gives a number of advantages. First, it is

hardware independent. Hence, the evaluation is not affected by the different machines use

in the protocol execution. Other forms of measure like the duration of time (either

physical or CPU) taken to reach a solution do not necessarily corresponds to the

performance evaluation of the protocol since they are dependent on the expected diverse

and independent machine architecture upon which the protocol might be deployed.

Second, the metric is also independent of the interaction forms held by the agents.

Irrespective of the interaction method (i.e. parallel or linear) used by the agents, the

number of relaxation cycles will remain the same.

Chapter 6. Evaluation

 122

6.2 Experimental Test Bed

The performance of many distributed constraint satisfaction techniques is evaluated

primarily on satisfiable instances, where the biggest concern is on how they perform

given a different set of constraints complexity. Within the distributed problem solving

context, the focus is on the different difficulty and complexity level of the problem

spaces to be solved, signified by the number of variables involved, intra-agent and inter-

agent constraints. Therefore, in our experiment, we evaluate the constraint relaxation

protocol using a set of over-constrained MAPs with different levels of hardness. Each

MAP to be solved by the agents via the protocol is set to consist of five variables. Though

the size of this problem is in an absolute sense small, it is complex enough to be

representative of the normal type of problem solved by agents in a distributed

environment. This size is feasible considering that the problem spaces generated by the

agents during the constraint relaxation process are simulated using an exhaustive,

distance-guided approach, to be described in the next section. Adding more variables will

only means more works to be done as the problem spaces of the agents are expanding,

but without any new insight into the observations that have already been obtained. In our

case, each agent needs to provide value assignments to these multiple variables for

satisfying its part in the MAP. In the experiment, each variable of the MAP is allocated a

distinct set of universal domain values, which is of the same size. This is considered more

difficult than the assumption normally held in many distributed problem solving related

works, where one agent only handles a single variable [Yokoo, '01].

The experiment consists of two phases, a) a problem generation phase of the over-

constrained MAPs and, b) a distributed constraint relaxation phase of the over-

constrained MAPs via the protocol. We describe each phase in the following sub-

sections.

Chapter 6. Evaluation

 123

6.2.1 Problem Generation Phase

In the problem generation phase, we provide various problem settings controlled by two

important parameters – domain size and constraint compatibility. Systematic changes in

these parameters generate a wide variety of problem settings, and enable us to evaluate

how the protocol will perform given these different set-ups. In this work, parameter

selection for the MAP is motivated by the experimental investigation in the CSP/DCSP

literature, which is accordingly revised from the work reported in [Yokoo, '01; Jung and

Tambe, '05] to accommodate our needs.

First, we vary the domain sizes from 4 to 7 (4, 5, 6, and 7). The purpose of this is to

check the impact of having different domain sizes on the performance of the constraint

relaxation protocol.

Second, we make variations in the constraint compatibility which has shown great

impact on the hardness of the MAP. We distinguish external constraints from local

constraints in defining the constraint tightness to analyse the effect from each class of

constraints on the performance of the protocol.

Compatibility of external constraints: Compatibility of external constraints (i.e.

equality constraints) is one of the primary factors that determines the hardness of over-

constrained MAPs to be solved by agents via the protocol. As a MAP is composed of a

set of variables, compatibility level indicates the number of variables from this set that

the agents could agree on their value assignments. A low compatibility level reflects the

existence of sizeable number of variables with conflicting value assignments, and vice

versa.

Given a set of problems locally defined by each of the interacting agents, we require

the external constraints imposed on each of the corresponding variables to be compatible

for a globally solvable MAP to be derived. The compatibility of external constraints (i.e.

equality constraints of the MAP) is computed based on the number of variables contained

in a MAP to be solved by the agents. For instance, given that the MAP consists of five

variables, the 20% compatibility level of external constraints reflects the agents’

agreement only on the values of a single variable, and the 80% compatibility level of

Chapter 6. Evaluation

 124

external constraints reflects the agents’ agreement on the values of four out of five

variables. Given the size of our problem, we vary the compatibility level of external

constraints from 20% to 80% with intervals of 20%. Note that 0% and 100% cases are

not tried since the MAP doesn’t have any solution for the 0% case (i.e. interaction agents

cannot find an agreement on the assigned values for any of the variable) and every value

assignment is a solution for 100% case (i.e. interacting agents mutually agree on the

assigned values for all of the variables).

Compatibility of local constraints: As described earlier, the specification of local

constraints is private. In an actual setting, given a distinct set of universal domains

containing a different set of values, the agents have complete autonomy to construct

appropriate local constraints for the assignment of these values on each variable of the

MAP. Though the agents are autonomous to decide on constraint types and density for

their parts of the MAP, for the purpose of this evaluation, we set a uniform constraint

setting at the local level across agents. In the setting, the number of domain values that

could be assigned to each variable is fixed based on a predetermined scale. With this

form of construct, we could safely omit any factor attributed to the diverse types of

constraints established by each individual agent that might influence the results obtained

in the evaluation.

In assigning domain values to a variable, the number of ways of selecting r values

from n distinct values contained in a universal domain can be computed using the

equation specified in figure 6.2:

.
r
n n0,1,2,...,rfor

r)!r!(n
n!C , =
−

=

Figure 6.2: Number of combination of r values from n possible values

In combinatorial mathematics, a combination, r
nC , is formally defined as the total

number of subset of r values, without regard to order and without repetition, that can be

selected from a set of n distinct values. The number of combinations equals the number

Chapter 6. Evaluation

 125

of permutations, n!, divided by the number of orderings. The number of ways a pool of r

values can be ordered equals r!. The size of r
nC for a discrete set of r=0,1,2,..,n is

symmetrical as described in figure 6.3. In the case when n is even, the maximal size of

r
nC is at ⎥⎦

⎤
⎢⎣
⎡=
2
nr , however, when n is odd, the maximal size of r

nC is at ⎥⎦
⎥

⎢⎣
⎢=
2
nr and

⎥⎥
⎤

⎢⎢
⎡=
2
nr .

 Size of r,
where r = 0,1,2,…,n/2,…,n-2,n-1,n

Si
ze

 o
f c

om
bi

na
tio

ns

...r =
 0

...

r =
 1

r =
 2

r =
 n

/2

r =
 n

-2

r =
 n

-1

r =
 n

Figure 6.3: The size of combinations for different values of r

For the experiment, the portion of allowed domain values is set to either 25% or

50% of a given domain size. In the case where compatibility levels of local constraints

are equivalent to a decimal-point value, it will be rounded-off to the nearest integer.

These two compatibility levels of local constraints can be described as follows, using a

universal domain consisting of four distinct values:

 At the 25% compatibility level of local constraints, only a single value is allowed to

be assigned to each variable at a time. Given r=1, then 1
4C =4, which means that

there exists four possible distinct set of values that could be used for value

assignments.

Chapter 6. Evaluation

 126

 At the 50% compatibility level of local constraints, two values are allowed to be

assigned to each variable at a time. Given r=2, then 2
4C =6, which means that there

exists six possible distinct set of values that could be used for value assignments.

The 25% compatibility level of local constraints is considered a strict measure

compared to the 50% compatibility level, as more combinations of values are able to be

produced in the latter as compared in the former. In our experiment, the 0%, 75% and

100% compatibility levels are not tried since 0% gives agents empty domain and 100%

has the effect of not having a local constraint. For a set of local constraints with a 75%

compatibility level, the agents will agree on at least a single solution value for each

variable of the MAP, as such, it is not possible to obtain an over-constrained state with

this level of compatibility.

Based on these parameters, a total of 32 possible problem classes can be derived as

described in the first column of tables 6.1 and 6.2. Each problem class is instantiated with

an over-constrained MAP which consists of arbitrarily chosen CSPs, set to be

inconsistent at the specified problem settings. For instance, a problem class of (25,80,4)

indicates an over-constrained MAP which consists of a set of conflicting CSPs with a

domain size of 4, where each CSP is prescribed to an individual agent. The conflict

involves one variable and only a single solution value is allowable for each variable at a

time.

During the execution of the protocol, each individual agent is required to provide a

problem space, contained within a set of relaxed problems for solving the over-

constrained MAP. Though the constraint relaxation strategies applied by each agent are

private, for the purpose of this evaluation, we make a sensible assumption that each agent

will generate a set of relaxed problems with a solution subset distance close to its

original. There are various approaches we could adopt for simulating the generation of

problem spaces by the agents. One basic approach is to randomly generate a set of

relaxed problems given a required distance from the original CSPs. However, as

emphasised in [Edvardson, '99; Belinfante et al., '05], a random generation approach

lacks coverage and realism, i.e., most relaxed problems which are within the target

distance are not generated since they unlikely happen at random. As such, we employ an

Chapter 6. Evaluation

 127

exhaustive, distance-guided approach for generating the problem spaces. In this

approach, the set of relaxed problems contained in the agents’ problem spaces are

exhaustively generated for each distance level, beginning with the one having the closest

distance to the originals. This will continue until the protocol reaches a completion state.

The use of distance-guided technique is to ensure that the exhaustive means of problem

generation is feasible, and to avoid the problem spaces from becoming explosively large

and difficult to handle.

6.2.2 Distributed Constraint Relaxation Phase

The constraint relaxation process takes place among agents assuming the two roles

prescribed in the protocol – initiator and responder. As described in chapter 3, there are

two ways an interaction concerning multi-issue problem could be handled – the agents

assuming these two roles can communicate all the variables together (i.e. batch

processing) or one after the other (i.e. issue-by-issue processing). In the issue-by-issue

processing, at any one time, only one variable is communicated between the agents. As

such, testing against various external constraint compatibility percentages might not be

possible in this construct. Therefore, to obtain a complete evaluation on how the

protocol’s fare given the prescribed settings, the over-constrained MAP is resolved using

the batch processing.

Chapter 6. Evaluation

 128

6.3 Experimental Results

Tables 6.1 and 6.2 provide a summary on the results obtained from testing the protocol

against different problem classes. Each problem class is described in the first column of

the tables using parameters of (LC, EC, DS) where;

 LC – Compatibility level of local constraints (i.e. 25 and 50).

 EC – Compatibility level of external constraints (i.e. 20, 40, 60, and 80).

 DS – Domain size (i.e. 4, 5, 6, and 7).

The results are grouped based on the 25% and 50% compatibility levels of local

constraints. These are described in tables 6.1 and 6.2 respectively. Given a different set of

problem classes as shown in the first column, the tables provide the following in the

subsequent columns:

 Second column – The number of relaxation cycles needed by the agents to

reach a completion state of the protocol.

 Third column − The cardinality of the relaxation_path at the completion of the

protocol execution. This cardinality indicates the number of relaxation cycles

of the second column which are reachable to solution. A relaxation cycle is

considered has achieved a reachable to solution state if the set of relaxed

problems generated by the interacting agents in that particular cycle are MAP

solvable and are obtained with the minimal solution subset distance of the

fourth column.

 Fourth column – The minimal solution subset distance required for reaching a

solvable MAP state. This is further classified into two sub-columns, namely

GTotal and GMax.

Chapter 6. Evaluation

 129

Solution subset distance Problem

class
Relaxation cycles

for completing
the protocol

Cardinality of
relaxation_path GTotal GMax

(25,80,4) 4 2 2 2

(25,60,4) 7 3 4 2

(25,40,4) 37 6 6 4

(25,20,4) 67 6 8 4

(25,80,5) 5 2 2 2

(25,60,5) 9 3 4 2

(25,40,5) 61 6 6 4

(25,20,5) 113 6 8 4

(25,80,6) 9 5 2 2

(25,60,6) 17 9 4 2

(25,40,6) 235 60 6 4

(25,20,6) 441 96 8 4

(25,80,7) 11 5 2 2

(25,60,7) 21 9 4 2

(25,40,7) 361 60 6 4

(25,20,7) 681 96 8 4

Table 6.1: Protocol’s performance against over-constrained MAPs with 25%
compatibility level of local constraints

Chapter 6. Evaluation

 130

Solution subset distance Problem
class

Relaxation cycles
for completing

the protocol

Cardinality of
relaxation_path GTotal GMax

(50,80,4) 5 5 2 2

(50,60,4) 9 9 4 2

(50,40,4) 64 60 6 4

(50,20,4) 117 96 8 4

(50,80,5) 7 5 2 2

(50,60,5) 13 9 4 2

(50,40,5) 136 60 6 4

(50,20,5) 253 96 8 4

(50,80,6) 10 10 2 2

(50,60,6) 19 19 4 2

(50,40,6) 298 270 6 4

(50,20,6) 554 486 8 4

(50,80,7) 13 10 2 2

(50,60,7) 25 19 4 2

(50,40,7) 523 270 6 4

(50,20,7) 985 486 8 4

Table 6.2: Protocol’s performance against over-constrained MAPs with 50%
compatibility level of local constraints

Chapter 6. Evaluation

 131

6.4 Analysis of Results

Though there already exists a number of works which integrate constraint satisfaction

techniques (i.e. CSP/DCSP) within the multi-agent systems as described in the

introductory chapter of this thesis, many of these works are either:

 Do not address the over-constrained problem; or

 They are based on the subjective-based coordination approach.

As far as we know of, the research reported in the thesis is the first to realise the

distributed partial CSP technique for addressing an over-constrained problem using the

objective-based coordination approach for multi-agent systems (i.e. LCC). Since there

exists no standard benchmark to provide an empirical, vis-à-vis comparative study on the

performance of our approach against other existing agent-based works for solving

distributed, over-constrained problems, one of the feasible options is to empirically

evaluate our approach using a set of generated problem instances with different hardness

levels. Based on the results obtained in the evaluation, it can be generally concluded that

our approach exhibits the common characteristics similar with the CSP/DCSP techniques

used for addressing an over-constrained problem within the distributed problem solving

environment − an increase in the hardness level of a problem requires more time for

reaching a solution.

For a detailed discussion on the obtained results, we provide macro-level and

micro-level analyses in sub-sections 6.4.1 and 6.4.2 respectively. In the macro-level

analysis, the focus is on the overall view concerning the interactions between the

different problem settings. In addition, we also view the results from a case-by-case

perspective, focusing on different domain sizes for the micro-level analysis.

Chapter 6. Evaluation

 132

6.4.1 Macro-level Analysis

As illustrated in figures 6.4 and 6.5, there is an overall decrease in the number of

relaxation cycles required by agents to fully complete their parts of the protocol as the

compatibility level of external constraints is gradually increased from 20% to 80% in all

classes of domain size. An over-constrained problem with a low compatibility level of

external constraints (i.e. 20%) consists of more variables to be satisfied compared to

those with a high compatibility level (i.e. 30% and above). As such, the former involves

more relaxation cycles for reaching a completion state compared to the latter since a

higher number of unsatisfied variables contained in an over-constrained MAP requires

more relaxation interactions and computations to be performed by the agents before a

solvable state is achieved.

The graphs illustrated in both figures (i.e. 6.4 and 6.5) describe an identical pattern,

that is, an overall decrease of relaxation cycles in accordance to an increase in the

compatibility level of external constraints. However, the class of over-constrained MAPs

with a 50% compatibility level of local constraints described in figure 6.5 records more

relaxation cycles. This is due to an increase in the number of relaxed problems that the

agents are able to generate in their respective problem spaces as we expand the

compatibility level of local constraints from 25% to 50%. As more relaxed problems are

available in the problem spaces of the agents, it provides more options for obtaining a set

of solvable MAPs with a minimal solution subset distance. A larger problem space means

that more interactions and computations are required from the agents for finding all

possible combinations of relaxed problems which are MAP solvable, and at the same

time, produce a minimal solution subset distance at the global level.

Across the different domain sizes, over-constrained MAPs with a bigger domain

size (e.g. 7) require more relaxation cycles for reaching a completion state as compared to

those with a smaller domain size (e.g. 4). This is due to a higher number of relaxed

problems available in the former, which increases the scale of interaction and

computational processes across agents.

Chapter 6. Evaluation

 133

67

113

441

681

37
61

235

361

7 9 17 21
4 5 9 11

0

100

200

300

400

500

600

700

Relaxation
cycles

20% 40% 60% 80%
External constraint compatibility

Domain size 4 Domain size 5 Domain size 6 Domain size 7
Figure 6.4: Relaxation cycles for over-constrained MAPs with 25% compatibility level of

local constraints.

117

253

554

985

64

136

298

523

9 13 19 25
5 7 10 13

0

100

200

300

400

500

600

700

800

900

1000

Relaxation
cycles

20% 40% 60% 80%
Internal constraint compatibility

Domain size 4 Domain size 5 Domain size 6 Domain size 7
Figure 6.5: Relaxation cycles for over-constrained MAPs with 50% compatibility level of

local constraints.

Chapter 6. Evaluation

 134

The overall general relationships between the three parameters and the number of

relaxation cycles obtained from the protocol’s execution are described by graphs (a), (b)

and (c) in figure 6.6. Assuming other parameters remain fixed, the following conclusions

are made with regard to each parameter:

 As described in figure 6.6(a), a higher number of relaxation cycles is required

when the protocol is tested against a class of over-constrained MAPs with a low

compatibility level of external constraints. The opposite is true when the test is

conducted using over-constrained MAPs with a high compatibility level. At a

low compatibility level, an increase in the number of external constraints

agreeable by all agents allows a significant improvement in the number of

relaxation cycles taken to reach a completion state. However, at a higher

compatibility level, an increase in the number of external constraints agreeable

by all agents only provides a small improvement. This can be attributed to the

fact that the difficulty level of an over-constrained MAP is inversely related to

the compatibility level of external constraints. The problem becomes

significantly harder as the number of external constraints in conflict grows

higher, and vice versa. The former requires a higher number of relaxation cycles

for reaching a completion state as compared to the latter.

 As described in figure 6.6(b), the protocol requires a higher number of

relaxation cycle for achieving a completion state at the 50% compatibility level

of internal constraints, as compared to the 25% compatibility level. Given a

distinct set of universal domains in which each contains a different set of

domain values, a higher compatibility level means more combinations of

domain values are available to be assigned to the over-constrained variables.

Due to this, the agents’ problem spaces, contained within all possible

combinations of relaxed problem are increased in size. The exploration on these

expanded problem spaces for finding a set of solvable MAPs with a minimal

solution subset distance requires extensive interactions and computations. This

is reflected by an increased number of relaxation cycles required for solving

Chapter 6. Evaluation

 135

over-constrained problems with a higher compatibility level of internal

constraints.

 As described in figure 6.6(c), there is a direct relationship between the number

of relaxation cycles required by the protocol for achieving a completion state

and the distinct domain sizes of the over-constrained MAP. An increase in the

domain size of the MAP is followed by an increase in the number of relaxation

cycles required for solving the problem among agents. A bigger domain size

means more possible combinations of domain values are available to be

assigned to the variables of the MAP. This will increase the size of the agents’

problem spaces, which will accordingly increase the scale of interaction and

computational processes across agents. This means more relaxation cycles are

required for the constraint relaxation process of an over-constrained MAP with

a bigger sized domain values.

R
el

ax
at

io
n

cy
cl

es

R
el

ax
at

io
n

cy
cl

es

Domain size

External constraint
compatibility level

R
el

ax
at

io
n

cy
cl

es

Internal constraint
compatibility level

25%

50%

(a) (b)

(c)

Figure 6.6: Relationship between the parameters and number of relaxation cycles

obtained

Chapter 6. Evaluation

 136

6.4.2 Micro-level Analysis

In the micro-level analysis, the focus is on the following two aspects.

6.4.2.1 Margin of Difference for the Required Relaxation Cycles

In figures 6.7−6.10, we compare the total number of relaxation cycles obtained from

executing the protocol against a set of over-constrained MAPs with different

compatibility levels of local constraints. The comparison is made for each class of

domain size where the 25% and 50% compatibility levels of local constraints are labelled

as RC-25% and RC-50% respectively. As realised from the bar graphs in figures

6.7−6.10, the total number of relaxation cycles required by both problem classes is

compounded inversely with the different levels of external constraints. Across each

different compatibility level of external constraints (i.e. 20%−80%), RC-50% is always

higher than RC-25%. However, there is a steep decrease in the margin of difference

between the total relaxation cycles of these two levels as we gradually increase the

compatibility level of external constraints from 20% to 80%. At the 20% and 40%

external constraint compatibility levels, the differences are highly significant, however, at

the 60% and 80% external constraint compatibility levels, the differences between RC-

50% and RC-25% become negligible. This can be attributed to the following combined

factors:

 RC-50% is regarded as a less stringent measure of the two, as such, it produces

a more dense problem spaces compared to RC-25%. For both class of problems,

as we gradually increase the compatibility level of external constraints from

20% to 80%, there is an acute decrease in the density of agents’ problem spaces.

In much harder problem settings (i.e. 20% and 40% external constraint

compatibility levels), the problem space size of RC-50% is enormously large in

comparison to RC-25%. However, as the problem settings become easier (i.e.

80% and 60% external constraint compatibility levels), the problem space size

Chapter 6. Evaluation

 137

of these two problem classes no longer has a significant difference. This will

require fewer relaxation cycles to reach a termination state.

 The search for a solvable MAP state begins with relaxed problems nearest to the

original CSPs. If no solution with a low global solution subset distance is found,

explorations will proceed on relaxed problems further away from the originals.

This means the task of deriving a solvable MAP state with a low solution subset

distance value requires less computational and interactive efforts, compared to

the one with a higher distance value. The correlation between the described

cases (i.e. RC-25% and RC-50%) and the solution subset distance values (i.e.

GTotal and GMax) are shown in the fourth column of tables 6.1 and 6.2. The

solution subset distance value for reaching a solvable MAP state decreases as

the compatibility levels of external constraints increases across the different

domain sizes. Furthermore, these distance values are consistent with the number

of relaxation cycles obtained by both class of problems across the different

compatibility levels of external constraints. An increase in the number of

relaxation cycles needed for reaching a completion state is related with an

increase in the solution subset distance values required for obtaining a solvable

MAP given the different difficulty levels of over-constrained problems.

6.4.2.2 Ratio of Solvable Problems

In this experiment, we divide the relaxation cycles into two classes: cycles that are

reachable to solutions, and cycles that are unreachable to solutions because either the

relaxed problems obtained from the agents in a particular constraint relaxation cycle are

non-solvable or the global solution subset distance derived from the relaxation process is

higher than the existing one. The cardinality of relaxation_path is used to identify the

relaxation cycles that are reachable to solutions, and this information is provided in the

third column of tables 6.1 and 6.2. Based on this information, a pair of line graphs,

labelled as Car−25% and Car−50%, are generated in figures 6.7−6.10 to respectively

illustrate the protocol’s performance against a class of over-constrained MAPs with 25%

and 50% compatibility levels of local constraints. These graphs could be utilised to

Chapter 6. Evaluation

 138

determine the relationship and trend of change between 1) the number of relaxation

cycles which are reachable to solutions; and 2) the total number of relaxation cycles

required for reaching a protocol’s completion state. This relationship, termed as the ratio

of solvable problems, is achieved by comparing RC−25% with Car−25%, and RC−50%

with Car−50%, for different compatibility levels of local constraints and across different

classes of domain sizes. Based on the relationships shown by these bar and line graphs,

the following observations can be made:

 At the 60% and 80% compatibility levels of external constraints, the ratio of

solvable problems is significantly high.

 At the 20% and 40% compatibility levels of external constraints, the following

are true:

o There is a large increase in Car−50%, which consistently follows a

steep increase in RC−50% for all problem classes. This indicates a

relatively high ratio of solvable problems, which is particularly

evident in problem classes of figures 6.7 and 6.9.

o A large increase in RC−25% has no significant impact on the size of

Car−25%. This is particularly evident in problem classes of figures

6.7, and 6.8. In figures 6.9 and 6.10, there is relatively a small

increase in Car−25%, in response to a steep increase in RC−25%.

These indicate that the ratio of solvable problems at the 25%

compatibility level of internal constraints is relatively low.

o Overall, the ratio of solvable problems at the 50% compatibility level

of internal constraints is relatively high in comparison to the ratio of

solvable problems at the 25% compatibility level for all problem

classes.

In addition, as realised in the graphs and also in tables 6.1 and 6.2, a recurring pattern of

identical Car−25% and Car−50% sizes are obtained for different problem classes that

have the same number of allowable value assignments for each variable at the 25% and

50% compatibility levels of local constraints. This behaviour is expected given the

Chapter 6. Evaluation

 139

problem spaces generated by the interacting agents during the constraint relaxation

process are simulated using an exhaustive, distance-guided approach. For instance, for

the problem classes with a domain size of 4 and 5, at the 25% compatibility level of local

constraints, only a single value is allowed to be assigned to each variable at a time.

Having the similar number of allowable value assignments for each variable, the

computation based on the solution subset distance heuristic on these problem classes

within our current testing and evaluation construct will generate the relaxation_path of

the same cardinality, given that the solution subset distance derived from the performed

constraint relaxation is also the same.

0

20

40

60

80

100

120

140

20% 40% 60% 80%

External constraint compatibility

R
el

ax
at

io
n

cy
cl

es

RC-25% RC-50% Car-25% Car-50%
Figure 6.7: Comparison between 25% and 50% compatibility levels of local constraints–

Over-constrained problem with a domain size of 4

Chapter 6. Evaluation

 140

0

50

100

150

200

250

300

20% 40% 60% 80%

External constraint compatibility

R
el

ax
at

io
n

cy
cl

es

RC-25% RC-50% Car-25% Car-50%
Figure 6.8: Comparison between 25% and 50% compatibility levels of local constraints−

Over-constrained problem with a domain size of 5

0

100

200

300

400

500

600

20% 40% 60% 80%

External compatibility constraint

R
el

ax
at

io
n

cy
cl

es

RC-25% RC-50% Car-25% Car-50%
Figure 6.9: Comparison between 25% and 50% compatibility levels of local constraints−

Over-constrained problem with a domain size of 6

Chapter 6. Evaluation

 141

0

200

400

600

800

1000

1200

20% 40% 60% 80%

External compatibility constraint

R
el

ax
at

io
n

cy
cl

es

RC-25% RC-50% Car-25% Car-50%
Figure 6.10: Comparison between 25% and 50% compatibility levels of local constraints

–Over-constrained problem with a domain size of 7

6.5 Chapter Summary

In this chapter, we described the evaluation of the constraint relaxation protocol. For this

purpose, in section 6.1, we provided a discussion on the adopted time-based

measurement, and its advantages over other forms of measurement. In section 6.2, we

presented the experimental test bed which consists of two phases; a) a problem

generation phase of the over-constrained MAPs, and, b) a distributed constraint

relaxation phase of the over-constrained MAPs via the protocol. We showed the results

obtained from testing the protocol against different problem classes in section 6.3.

Finally, in section 6.4, we provided macro-level and micro-level analyses on the obtained

results.

 142

Chapter 7

Conclusions and Future Works

This chapter provides the conclusions for the thesis and outlines areas which merit further

investigations.

7.1 Conclusions

The thesis has shown that our primary goal is fulfilled; to address the brittleness of

protocol-led agent interaction for solving distributed problems. As the distinct sub-

problems of the individual agents are interdependent, the existence of an over-constrained

state becomes the source of this brittleness. We have shown how a constraint relaxation

approach can adopted, by realising the distributed partial CSP as an interaction protocol

using the LCC. This allows heterogeneous agents, assumed to have the cognitive

capability of relaxing their individual constraints, to take part in the interaction and

coordination of distributed constraint relaxation process for obtaining a solvable state, if

there exists one.

An important contribution of this thesis is not only realising the ideas of integrating

distributed partial CSP with LCC, but also providing a practical and executable solution.

The specification and execution of the protocol is achieved in a completely modular way,

without needing to modify the LCC language or expansion engine. The only minimal

requirement is to expand the existing LCC framework to include a constraint relaxation

computational engine, which consists of axioms and inference procedures for performing

constraint relaxation computations across agents. This additional component, which

provides the necessary interface with a finite-domain constraint solver, is implemented in

SICStus Prolog.

The time-based measurement is used to determine the protocol’s performance, and

this is achieved by analysing the number of cycles taken by the agents to complete their

 143

respective parts in the protocol. For the experimental test bed, a set of over-constrained

MAPs with different levels of hardness are generated to be tested against the protocol.

The results have shown that a harder problem generally requires a higher number of

cycles for reaching a completion state.

Not only does this thesis explore a flexible and novel approach of handling

constraints within the interaction domain of heterogeneous and autonomous agents, but it

is also grounded in a practical implementation. We have shown that our approach is not

specifically engineered as part of the agents’ internal reasoning mechanisms, and its

deployment and execution does not rely on any centralised mechanism. In this way, the

brittleness of agent interactions due to the conflicting constraints imposed by the

individual agents can be addressed by the agents themselves without any third-party

intervention. As such, any limitation associated with the third-party mediator approach

could be safely avoided.

In addition, the research reported in the thesis has bridged the gap between

established works from two separate research disciplines; the constraint satisfaction and

distributed protocol for multi-agent systems. It has shown on how we could utilise the

available technique in one research field to solve the problem of another. It benefits both

disciplines in the following two general aspects.

1) For the constraint satisfaction research field, it makes the available techniques to

address over-constrained problem relevant for the peer-to-peer agent

environment.

2) For the multi-agent system research field, particularly the distributed agent

protocol, it addresses the brittleness problem commonly faced by problem solving

agents during their interactions for finding a solution.

Though this work is far from complete, it will pave a way for the integration of other

available constraint satisfaction techniques based on fuzzy or probabilistic with the

objective-based coordination approach of MAS (e.g. LCC) to allow agents to have

flexible interactions in solving distributed, constrained problem.

Chapter 7. Conclusions and Future Works

 144

7.2 Future Works

In this section, we describe possible improvements to the research work presented in the

thesis. These improvements do not change the fundamental premise of the thesis –

addressing the brittleness of protocol-led agent interaction for distributed problem

solving, but rather provide additional means to expand upon the work completed and

further areas of experimentation that are beyond the current work.

7.2.1 Employing Constraint Relaxation Strategies

The strategies employed by each agent during the constraint relaxation process is

considered private. Given an over-constrained problem, the issue of the best

computational approach or constraint relaxation strategy that an agent might employ for

reaching a solvable state is still open, and its discussion extends beyond the scope of this

thesis. Though the issue is not fully explored here, we fully acknowledge that one of the

important experimentations is to evaluate the protocol against all possible constraint

relaxation strategies that may be employed by the interacting agents during the constraint

relaxation process. For this purpose, one of the possible future research work is to utilise

the constraint relaxation strategies described in [Norlander et al., '03; Norlander, '04] for

simulating the generation of problem spaces by the interacting agents. We could set the

constraint relaxation strategies to be either uniform or varied across agents. A

comprehensive and extensive system of experimentation concerning the relationship of

the constraint relaxation strategies and the protocol performance could be established.

Consequently, a general conclusion associating the protocol’s performance and the

specific constraint relaxation strategies employed by the agents could be drawn.

7.2.2 Utilising Different Distance Metrics

The degree of constraint relaxation performed by each agent for reaching a solvable state

is computed based on the comparison made between its original, over-constrained CSP

with the set of relaxed CSPs that allow this state to be achieved. Besides solution subset

Chapter 7. Conclusions and Future Works

 145

distance, a number of other distance metrics that could be employed for this purpose

include augmentation and Max-CSP [Bistarelli et al., '04]. These metrics differ in terms

of the aspects used for the comparison.

As described in chapter 4, augmentation and Max-CSP fundamentally focus on the

agents’ manipulations on their local constraints for obtaining a solvable state. One of the

major disadvantages with this approach is that it inadvertently reveals the agents’

strategies as constraint details of the local problems need to be publicly and openly

shared between the distributed agents. However, if the agents are working in the

environment which regards privacy as non-critical and allows details concerning the local

constraint specifications of each individual agent to be openly shared, then the

augmentation and Max-CSP provide good alternatives to the currently utilised solution

subset distance. Employing these constraint-based distance metrics opens up other

interesting research issues. One particular concern is on the level of detail to be

communicated among agents during the constraint relaxation process. Do we allow only

a certain aspect of the constraints (e.g. number of violated constraints, degree of

violation, etc.) to be carried and propagated with the protocol, or, can the individually

defined constraint graph of each agent become public knowledge accessible by all agents

at the protocol level? This depends on the level of trust [Ramchurn et al., '04] that the

agents have towards their interacting partners. This becomes more complex when the

level of trust across agents is conflicting with each other. How the different level of

constraint details concerning the different levels of trust are modelled at the protocol

level is an interesting research question to be explored.

7.2.3 Handling of Non-Crisp Constraints

Within the constraint community, a lot of effort has been devoted to extending the

conventional notion of constraint, whose truth value is computed in a boolean (true/false)

algebra, to be able to model features like fuzziness, uncertainty, optimisation, probability,

and partial satisfaction. As described in [Rudova and Matyska, '99], various types of

preferences, priorities, satisfaction degrees or weights were proposed to find solutions of

over-constrained problems where some kind of relaxation have to be involved to get

Chapter 7. Conclusions and Future Works

 146

feasible solutions. Two of these methods are possibilistic CSP [Schiex, '92] and fuzzy

CSP [Dubois et al., '96], which support the representation of constraints as non-crisp

relations. Possibilistic CSP assigns to each constraint some preference degree, which

expresses necessity of its satisfaction. Fuzzy CSP considers each constraint as a relation,

with different levels of preferences. Preference degrees in both methods are designed

based on fuzzy sets, possibility theory and possibilistic logic. Assuming that the

interacting agents are equipped with the described non-crisp form of formalisations at the

local level, then it opens up a possibility for possibilistic CSP and fuzzy CSP techniques

to be realised as LCC-based interaction protocols for addressing any over-constrained

problem among agents. For this to work, it requires the interaction framework to be

expanded to include mechanisms for accommodating the propagation of these forms of

constraint formalisms across agents. This would enable us to support agent interaction for

solving distributed problems of this nature.

7.2.4 Evaluation Based on Real-Life Applications

Within the constraint satisfaction research field, it is a common practice for constraint

satisfaction techniques to be evaluated empirically using a set of generated problem

instances with different difficulty levels. For evaluating our approach, we employed a

similar method by developing a domain independent test bed that consists of features

common to many distributed constraint solving problems regardless of domain. For

future enhancement, the test bed could be expanded to include real-life applications,

particularly in domains where exact solutions might be hard to find and partial solutions

are tolerable. One of the possible options is to evaluate our approach using the distributed

cooperative scheduling domain. Existing works within this domain that focus on the

over-constrained problem include that of [Luo et al., '00], which proposed a fuzzy-based

model and [Tsuruta and Shintani, '00], which employed a distributed values constraint

satisfaction.

 147

Appendix A

Prolog Code

A.1 interface.pl

This is the code that provides the interface between the loaded protocol, the expansion
engine and the constraint relaxation computational engine. The code also specifies on
how the message and protocol is loaded to/from the Linda. This code is adapted from the
basic LCC framework.

/**
institution/3 is used to load the constraint relaxation scene specified in the institution file.
Given that protocol for the scene is specified in the institution file of relaxation.inst, the agent
who is currently faced with an over-constrained state needs to assume the specified role of an
initiator, with some specified Id (e.g. b1). The following is typed at the command line to enact the
protocol:

institution(relaxation,initiator,b1).

Prot - The content of the LCC constraint relaxation protocol loaded from the institution file of
relaxation.inst is divided into 3 lists with a syntactical form of def([],[],[]):

1st list - initially empty, later used to keep tracked of completed protocol state between
agents, proc is closed (i.e. c(proc)) if the agents’ part as specified in the protocol is
complete

2nd list - loaded protocol
3rd list - loaded common knowledge

react/1 is a predicate used to achieve the following goals:
1) Retrieve the intended message and protocol for the agent of given Id from the Linda
2) Display the retrieved message on the screen
3) Call to postit/3

Thus, to retrieve and process message intended for the responder agent (i.e. of Id s1) the
following is typed at the command line:

react(s1).

postit/3 is a predicate used to achieve the following goals:
1) Expand the received message and protocol using the rewrite rules
2) Display the message obtained from (1) on the screen, to response to the message received

from the other interacting agents
3) Post the intended message for the other agents in the utilised Linda.
***/

Appendix A. Prolog Code

 148

%**

institution(I, Role, Id) :-
 load_institution(I, Prot),!,
 postit(a(Role,Id), [], Prot).

react(Id) :-
 retrieve_message(_, Id, Dialogue),
 Dialogue = protocol(m(Af,M => At),Prot),!,
 postit(At, [m(At,M <= Af)], Prot).

postit(Role, IMessages, Prot) :-
 expansion(Role, IMessages, [], Prot, RMessages, Messages, EProt),
 RMessages = [],!,
 send_protocol_messages(Messages, EProt).

%**

agent_id_from_role(a(_,Id), Id).

send_protocol_messages([m(Af,M => At)], Prot) :-
 agent_id_from_role(Af, From), nonvar(From),
 agent_id_from_role(At, To), nonvar(To),
 send_message(From, To, protocol(m(Af,M => At),Prot)),!,
 react(To).

send_protocol_messages([],_).

send_message(From, To, Message) :-
 find_server(Server, PID),
 add_message(Server, PID, From, To, Message),
 Message = protocol(m(_,M => _),_),
 write('Outgoing msg: '), portray_clause(M), nl,!.

retrieve_message(From, To, Message) :-
 find_server(Server, PID),
 read_message(Server, PID, From, To, Message),
 Message = protocol(m(_,M => _),_),
 write('Incoming msg: '), portray_clause(M), nl,!.

%**

load_institution(Institution, InstDef) :-
 concat(Institution,'.inst',File),
 see(File),
 read_institution(InstDef),
 seen.

Appendix A. Prolog Code

 149

%**

read_institution(InstDef) :-
 read_institution1(def([],[],[]), InstDef).

read_institution1(InstDef, FinalInstDef) :-
 read(Clause),
 \+ Clause = end_of_file, !,
 add_to_institution_def(Clause, InstDef, NewInstDef),
 read_institution1(NewInstDef, FinalInstDef).
read_institution1(InstDef, InstDef).

add_to_institution_def((Head ::= Body),
 def(I,D,K),
 def(I,D1,K)) :-
 append(D, [(Head ::= Body)], D1).
add_to_institution_def(known(Agent,Clause),
 def(I,D,K),
 def(I,D,K1)) :-
 append(K, [known(Agent,Clause)], K1).

%**

Appendix A. Prolog Code

 150

A.2 expansion_engine.pl

This is the code in which the expansion engine is specified. Built-in predicates are
imported from the SICStus Prolog library of terms, lists and finite-domain constraint
solver whenever necessary. The code is fundamentally adapted from the basic framework
of LCC.

%**

:- op(900, xfx, '::='),
 op(900, xfx, '::'),
 op(900, xfx, '>>'),
 op(800, xfx, '=>'),
 op(800, xfx, '<='),
 op(830, xfx, '<--'),
 op(820, xfy, and),
 op(850, xfy, par),
 op(850, xfy, then),
 op(850, xfy, or).

%**
%Starting the expansion process.
%**

expansion(Agent, Ms, Os, P, FinalMs, FinalOs, FinalP, FDRange) :-
 expansion_step(Agent, Ms, Os, P, NewMs, NewOs, NewP, FDRange),
 expansion(Agent, NewMs, NewOs ,NewP, FinalMs, FinalOs, FinalP,

FDRange).

expansion(Agent, Ms, Os, P, Ms, Os, P,FDRange) :-
 \+ expansion_step(Agent, Ms, Os, P, _, _, _, FDRange).

%**
%Selecting the protocol clause to expand and saving it after expansion.
%**

expansion_step(a(Role,Id), Ms, Os, P, NewMs, NewOs, NewP, FDRange) :-
 protocol_select(agent, P, (a(ARole,Id) ::= Def), P1),
 expand_protocol((a(ARole,Id) ::= Def), Role, Id, Ms, Os, P1, NewA,

NewMs, NewOs, P2, FDRange),
 protocol_add(agent, P2, NewA, NewP).

expansion_step(a(Role,Id), Ms, Os, P, NewMs, NewOs, NewP, FDRange) :-
 \+ protocol_select(agent, P, (a(_,Id) ::= _), _),
 protocol_member(dialogue, P, Clause),
 Clause = (a(Role,Id) ::= Def),
 expand_protocol((a(Role,Id) ::= Def), Role, Id, Ms, Os, P,
 NewA, NewMs, NewOs, P2, FDRange),
 protocol_add(agent, P2, NewA, NewP).

Appendix A. Prolog Code

 151

%**
%The rewrite rules
%**

expand_protocol(Var, _, _, Ms, Os, P, Var, Ms, Os, P, FDRange) :-
 var(Var), !.

expand_protocol(Role ::= Def, _, Id, Ms, Os, P, Role ::= E, Mf, Of, Pf,

FDRange) :-
 expand_protocol(Def, Role, Id, Ms, Os, P, E, Mf, Of, Pf, FDRange).

expand_protocol(A or _, Role, Id, Ms, Os, P, E, Mf, Of, Pf, FDRange) :-
 expand_protocol(A, Role, Id, Ms, Os, P, E, Mf, Of, Pf, FDRange).

expand_protocol(_ or B, Role, Id, Ms, Os, P, E, Mf, Of, Pf, FDRange) :-
 expand_protocol(B, Role, Id, Ms, Os, P, E, Mf, Of, Pf, FDRange).

expand_protocol(A then B, Role, Id, Ms, Os, P, EA then B, Mf, Of, Pf,

FDRange) :-
 expand_protocol(A, Role, Id, Ms, Os, P, EA, Mf, Of, Pf, FDRange).

expand_protocol(A then B, Role, Id, Ms, Os, P, A then EB, Mf, Of, Pf,

FDRange) :-
 closed(A),
 expand_protocol(B, Role, Id, Ms, Os, P, EB, Mf, Of, Pf, FDRange).

expand_protocol(C <-- M <= A, Role, Id, Ms, Os, P, c(M <= A), Mf, Os,

Pf, FDRange) :-
 select(m(Role,M <= A), Ms, Mf),
 satisfied(Id, P, C, Pf).

expand_protocol(M => A <-- C, Role, Id, Ms, Os, P, c(M => A), Ms,

[m(Role,M => A) | Os], Pf, C):-
satisfied(Id, P, C, Pf).

expand_protocol(M <= A, Role, _, Ms, Os, P, c(M <= A), Mf, Os, P,

FDRange) :-
 select(m(Role,M <= A), Ms, Mf).

expand_protocol(M => A, Role, _, Ms, Os, P, c(M => A), Ms,

[m(Role,M => A) | Os], P, FDRange).

expand_protocol(Role <-- C, _, Id, Ms, Os, P, Role ::= Def, Ms, Os, Pf,

FDRange) :-
 Role = a(_,_),
 satisfied(Id, P, C, Pf),
 protocol_member(dialogue, P, (Role ::= Def)).

expand_protocol(Role, _, _, Ms, Os, P, Role ::= Def, Ms, Os, P,

FDRange) :-
 Role = a(_,_),
 protocol_member(dialogue, P, (Role ::= Def)).

expand_protocol(null <-- C, _, Id, Ms, Os, P, c(null), Ms, Os, Pf,

FDRange) :-
 satisfied(Id, P, C, Pf).

Appendix A. Prolog Code

 152

expand_protocol(null, _, _, Ms, Os, P, c(null), Ms, Os, P, FDRange).

%**
%Testing for closed or failed clauses
%**

closed(Var) :-
 var(Var), !, fail.
closed(c(_)).
closed(A or _) :-
 closed(A).
closed(_ or B) :-
 closed(B).
closed(A then B) :-
 closed(A),
 closed(B).
closed(A par B) :-
 closed(A),
 closed(B).
closed(_ ::= Def) :-
 closed(Def).

%**
%Testing for satisfied constraints predicates
%**

satisfied(Id, P, A and B, Pf) :- !,
 satisfied(Id, P, A, Pn),
 satisfied(Id, Pn, B, Pf).

satisfied(Id, P, X, Pf) :-
 meta_pred(Id, X, P, Pf, Call), !,
 Call.

satisfied(Id, P, absorb_protocol(P1,Role,Clause), Pf) :-
 disjoint_protocols(P, P1),
 protocol_member(dialogue, P1, Clause),
 Clause = (a(Role,Id) ::= _),
 merge_protocols(P, P1, Pf).

satisfied(Id, P, X, P) :-
 \+ meta_pred(Id, X, P, _, _),
 call_direct(X),
 X.

satisfied(Id, P, X, P) :-
 protocol_member(common_knowledge, P, known(Id, X)).

satisfied(Id, P, X, Pf) :-
 protocol_member(common_knowledge, P, known(Id, X <-- C)),
 satisfied(Id, P, C, Pf).

Appendix A. Prolog Code

 153

call_direct(X) :-
 (predicate_property(X, built_in) ;
 predicate_property(X, interpreted) ;
 predicate_property(X, imported_from(_))), !.

meta_pred(Id, not(X), P, P, \+ satisfied(Id,P,X,_)).
meta_pred(Id, retract(X), P, Pf,
 protocol_remove(common_knowledge,P,known(Id,X),Pf)).
meta_pred(Id, assert(X), P, Pf,
 protocol_add(common_knowledge,P,known(Id,X),Pf)).

%Meta-predicate concerning the specification of computational process for constraint relaxation
%to be taken by agents. Detailed specifications of the called predicates are provided in the
%constraint_handling.pl

meta_pred(_,assign(Suff,Prob,NSuff),P,P,assign(Suff,Prob,NSuff)).
meta_pred(_,add(Existing,Selected,HList),P,P,
 add(Existing,Selected,HList)).
meta_pred(_,g_solvable(RPath),P,P,g_solvable(RPath)).
meta_pred(_,g_distance(RPath,NEPath),P,P,
 g_distance(RPath,NEPath)).
meta_pred(_,find_solvable(PS,Suff,Sl),P,P,
 find_solvable(PS,Suff,Sl)).
meta_pred(_,distance_computation(Sl,O,Dl),P,P,
 distance_computation(Sl,O,Dl)).
meta_pred(_,select_minimal(DisTPS,Minimal,Agent),P,P,
 select_minimal(DisTPS,Minimal,Agent)).
meta_pred(_,response_composition(Minimal,Suff,Is,D),P,P,
 response_composition(Minimal,Suff,Is,D)).
meta_pred(_,revised_suff(NSuff,Respond,USuff),P,P,
 revised_suff(NSuff,Respond,USuff)).
meta_pred(_,invalid_spec_removal(PS,NHList,TPS),P,P,
 invalid_spec_removal(PS,NHList,TPS)).
meta_pred(_,path_computation(RPath,Minimal,TSuff,NEPath,TEPath),
 P,P,path_computation(RPath,Minimal,TSuff,NEPath,TEPath)).

%**
%Managing the protocol predicates
%**

closed_dialogue(Role, Prot) :-
 \+ (protocol_member(agent, Prot, a(Role,_) ::= Def),
 \+ closed(Def)).

disjoint_protocols(P1, P2) :-
 \+ (protocol_member(dialogue, P1, a(Role1,_) ::= _),
 protocol_member(dialogue, P2, a(Role2,_) ::= _),
 functor(Role1, F, A),
 functor(Role2, F, A)).

merge_protocols(def(A1,D1,K1), def(A2,D2,K2), def(A3,D3,K3)) :-
 append(A1, A2, A3),
 append(D1, D2, D3),
 append(K1, K2, K3).

Appendix A. Prolog Code

 154

protocol_component(agents, def(Clauses, _, _), Clauses).
protocol_component(dialogue, def(_, Clauses, _), Clauses).
protocol_component(common_knowledge, def(_, _, Clauses), Clauses).

protocol_member(agent, def(Clauses,_,_), Clause) :-
 member(Clause, Clauses).
protocol_member(dialogue, def(_,Clauses,_), ClauseCopy) :-
 member(Clause, Clauses),
 copy_term(Clause, ClauseCopy).
protocol_member(common_knowledge, def(_,_,Clauses), ClauseCopy) :-
 member(Clause, Clauses),
 copy_term(Clause, ClauseCopy).

protocol_select(agent, def(Clauses,A,B), Clause, def(R,A,B)) :-
 select(Clause, Clauses, R).
protocol_select(dialogue, def(A,Clauses,B), ClauseCopy, def(A,R,B)) :-
 select(Clause, Clauses, R),
 copy_term(Clause, ClauseCopy).
protocol_select(common_knowledge, def(A,B,Clauses), ClauseCopy,

def(A,B,R)) :-
 select(Clause, Clauses, R),
 copy_term(Clause, ClauseCopy).

protocol_remove(agent, def(Clauses,A,B), Clause, def(R,A,B)) :-
 select(Clause, Clauses, R).
protocol_remove(dialogue, def(A,Clauses,B), Clause, def(A,R,B)) :-
 select(Clause, Clauses, R).
protocol_remove(common_knowledge, def(A,B,Clauses), Clause, def(A,B,R))

:-
 select(Clause, Clauses, R).

protocol_add(agent, def(Clauses,A,B), X, def([X|Clauses],A,B)).
protocol_add(dialogue, def(A,Clauses,B), X, def(A,[X|Clauses],B)).
protocol_add(common_knowledge, def(A,B,Clauses), X,

def(A,B,[X|Clauses])).

Appendix A. Prolog Code

 155

A.3 constraint_handling.pl

Prolog code for the detailed specification of constraint handling functionality. A number
of predicates are imported from the pre-defined libraries of finite-domain constraint
solver and list operations that come with SICStus Prolog.

%**
% Assignment & revision of sufficient bound after each relaxation cycle

assign(Suff,csp(_,SolSet),NSuff):-
 suff_assign(Suff,SolSet,NSuff),!.

assign(Suff,csp(_,SolSet,_),NSuff):-
 suff_assign(Suff,SolSet,NSuff),!.

suff_assign([],_,[]).
suff_assign([fd_term(Att,_)|T],SolSet,NSuff):-
 member(Sol,SolSet),
 Sol=fd_term(SAtt,SS),
 similar_term(Att,SAtt),!,
 NSuff=[fd_term(Att,SS)|R],
 select(Sol,SolSet,Next),
 suff_assign(T,Next,R).

similar_term(Att,PAtt):-
 Att=PAtt.

%**
%Updates on history list of an already selected problem. Selected problem in form of
%csp(Problem, SolutionSet)

add(Existing,Selected,HList):-
 append(Existing,Selected,HList).

%**
%To determine whether constraint relaxation path obtained so far is solvable or not - A path is
%solvable if the respond received by the initiator does not consist of any nil values, and the
%solutions for the sufficient bound variables produced by the agents intersect with each %other
(non-intersection is indicated by nil in-receipt response)

g_solvable(RPath):-
 \+ member(r(nil,nil),RPath),!.

%**
%To determine the global distance of the constraint relaxation path obtained so far

g_distance(RPath,NEPath):-
 distance_list(RPath,DL),!,
 sum_list(DL,Sum),
 max_list(DL,Max),
 NEPath=gdis(RPath,Sum,Max).

Appendix A. Prolog Code

 156

distance_list([],[]).
distance_list([r(_,D)|T],DL):-
 DL=[D|R],
 distance_list(T,R).

%**
%To determine whether the relaxed problem produced by the agents is solvable or not - within
%the necessary & sufficient bound

find_solvable([],_,[]).
find_solvable([CSP|Rest],Suff,Sl):-
 (
 (solvable(CSP,Suff),Sl=[CSP|R]);
 (\+ solvable(CSP,Suff),Sl=R)
),
 find_solvable(Rest,Suff,R).

solvable(csp(_,Sol,_),Suff):-
 is_intersect(Suff,Sol).

%**
%Checking on whether each similar variables of the relaxed problem & the sufficient %bound
intersect with each other

is_intersect([],_).
is_intersect([fd_term(Att,S)|R],PFd_Set):-
 member(Fd_Term,PFd_Set),
 Fd_Term=fd_term(PAtt,PS),
 similar_term(Att,PAtt),!,
 fdset_intersect(S,PS),
 select(Fd_Term, PFd_Set, PFd_SetRest),
 is_intersect(R,PFd_SetRest).

%**
%To select the most minimal relaxed problem in terms of solution subset distance from the
%original

select_minimal(DisTPS,Minimal,Agent):-
 acc_distance(DisTPS,DL),!,
 (
 (\+ DL=[],
 min_list(DL,Min),
 nth(Pos,DL,Min),!,
 nth(Pos,DisTPS,Minimal));

 (DL=[], Minimal=[])
).

acc_distance([],[]).
acc_distance([csp(_,_,D)|Rest],Dl):-
 Dl=[D|Next],
 acc_distance(Rest,Next).

Appendix A. Prolog Code

 157

%**
%Composition of the constraint relaxation message

response_composition(Minimal,Suff,Is,D):-
 (
 Minimal=csp(_,Sol,D),
 suff_int_sols(Suff,Sol,Is));

 (Minimal=[],
 Is=nil,D=nil).

suff_int_sols([],_,[]).
suff_int_sols([fd_term(Att,S)|R],Sol,Is):-
 member(Fd_Term,Sol),
 Fd_Term=fd_term(PAtt,PS),
 similar_term(Att,PAtt),!,
 fdset_intersection(S,PS,Int),
 Is=[fd_term(Att,Int)|Next],
 select(Fd_Term,Sol,NSol),
 suff_int_sols(R,NSol,Next).

%**
%Revision of the necessary bound upon receipt of response from neighbouring agents

revised_suff(NSuff,Respond,USuff):-
 Respond=r(IntSol,_),
 (
 (IntSol=nil,
 USuff=NSuff);

 (\+ IntSol=nil,
 USuff=IntSol)
).

%**
%Pruning of the problem space generated through systematic elimination of relaxed problem that
%has already been visited or not comply with the necessary bound

invalid_spec_removal([],_,[]).
invalid_spec_removal([CSP|R],NHList,TPS):-
 (
 (\+ member(CSP,NHList),
 TPS=[CSP|Next]);
 (TPS=Next)),
 invalid_spec_removal(R,NHList,Next).

Appendix A. Prolog Code

 158

%**
%Elimination of any relaxed problem from an already pruned problem space that has a computed
%solution subset distance of more than the distance of an the currently selected relaxation path

invalid_dist_removal([],_,[]).
invalid_dist_removal([csp(_,S,D)|R],NEPath,FPS):-
 (
 (locally_better_or_equal(D,NEPath),
 FPS=[csp(_,S,D)|Next]);

 FPS=Next),
 invalid_dist_removal(R,NEPath,Next).

locally_better_or_equal(D,gdis(_,T,G)):-
 (D<T);(D=:=G,D=<G).

%**
%Perform computation on the obtained relaxation path to determine whether the newly acquired
%path is better than the current path in store

path_computation(RPath,Minimal,NSuff,ESuff,TSuff,NEPath,TEPath):-
 response_composition(Minimal,ESuff,Is,D),
 append([r(Is,D)],RPath,UPath),
 g_distance(UPath,NRPath),
 (
 (\+ var(NEPath),
 select_path(NSuff,ESuff,TSuff,NRPath,NEPath,TEPath));

 (var(NEPath),
 TEPath=NRPath,
 TSuff=ESuff)
).

select_path(NSuff,ESuff,TSuff,NRPath,NEPath,TEPath):-
 (
 (better(NRPath,NEPath),
 TEPath=NRPath,
 TSuff=ESuff,
 print_progress(TEPath,TSuff));

 (TEPath=NEPath,
 TSuff=NSuff,
 print_progress)).

better(gdis(_,Tn,Gn),gdis(_,T,G)):-
 (Tn < T);
 (Tn=:=T,Gn=<G).

Bibliography

 159

Bibliography

[Aldea et al., '01] Aldea, A., Lopez, B., Moreno, A., Riano, D. and Valls, A. A multi-
agent system for organ transplant coordination. In Proceedings of the VIII
European Conference on AI in Medicine, Carcais, Portugal, LNCS (2101), 413-
416, Springer Verlag, 2001.

[Ando et al., '03] Ando, M., Nato, M. and Toyoshima, H. Empirical evaluation of

distributed maximal constraint satisfaction method. In Proceedings of the IEEE
International Conference on Systems, Man and Cybernetics, Washington DC,
USA, 4672-4677, 2003.

[Austin, '62] Austin, J. L. How to do things with words. Oxford University Press,

Oxford, 1962.

[Belinfante et al., '05] Belinfante, A., Frantzen, L. and Schallhart, C. Tools for test case

generation. Model-based testing of reactive systems. M. Broy, B. Jonsson et al,
Eds., LNCS (3472): 391-438, Springer Verlag, 2005.

[Bistarelli et al., '04] Bistarelli, S., Freuder, E. C. and O'Sullivan, B. Encoding partial

constraint satisfaction in the semiring-based framework for soft constraints. In
Proceedings of the 16th IEEE International Conference on Tools with Artificial
Intelligence (ICTAI'04), Boca Raton, FL, USA, 2004.

[Bocchi and Ciancarini, '03] Bocchi, L. and Ciancarini, P. A perspective on multiagent

coordination models. Communications in Multiagent System. M.-P. Huget, Ed.,
LNAI (2650): 146-163, Springer Verlag, 2003.

[Bond and Gasser, '88] Bond, A. and Gasser, L. Readings in distributed artificial

intelligence. Morgan Kauffman, San Mateo, California, 1988.

[Borning et al., '92] Borning, A., Freeman-Benson, B. and Wilson, M. Constraint

hierarchies. Lisp and Symbolic Computation. 5: 223-270, 1992.

[Bratman, '87] Bratman, M. E. Intentions, plans and practical reason. Harvard

University Press, Cambridge, MA, 1987.

[Brito et al., '04] Brito, I., Herrero, F. and Meseguer, P. On the evaluation of DisCSP

algorithms. In Proceedings of the Workshop on Distributed Constraint Reasoning,
at the 10th International Conference on Principles and Practice of Constraint
Programming (CP'04), Toronto, Canada, 2004.

[Cabri et al., '04] Cabri, G., Ferrari, L. and Zambonelli, F. Role-based approaches for

engineering interactions in large-scale multi-agent systems. Software Engineering

Bibliography

 160

for Multi-Agent Systems III. P. d. Lucena, Garcia et al, Eds., LNCS (2940): 243-
263, Springer Verlag, 2004.

[Cabri et al., '02] Cabri, G., Leonardi, L. and Zambonelli, F. Modelling role-based

interactions for agents. In Proceedings of the Workshop on Agent-Oriented
Methodologies, at OOPSLA'02, Seattle, USA, 2002.

[Calisti, '02] Calisti, M. Abstracting communication in distributed agent-based systems.

In Proceedings of the Concrete Communication Abstractions of the Next
Distributed Object Systems Workshop, at the 16th European Conference on
Object-Oriented Programming (ECOOP'02), Malaga, Spain, 2002.

[Calisti and Neagu, '04] Calisti, M. and Neagu, N. Constraint satisfaction techniques and

software agents. In Proceedings of the AIIA 2004 Workshop on Agents and
Constraints, Perugia, Italy, 2004.

[Carlsson et al., '97] Carlsson, M., Ottoson, G. and Carlson, B. An open-ended finite

domain constraint solver. In Proceedings of the 9th International Symposium of
Programming Languages, Implementations, Logics, and Programs (PLILP'97),
Southampton, UK, H. Glaser, P. Hartel et al, Eds., LNCS (1292), Springer
Verlag, 1997.

[Carrieno and Gelernter, '89] Carrieno, N. and Gelernter, D. Linda in context.

Communications of the ACM. 32(4): 444-458, 1989.

[Chaib-Draa and Dignum, '02] Chaib-Draa, B. and Dignum, F. Trends in agent

communication language. Computational Intelligence. 18(2): 89-101, 2002.

[Chalmers, '04] Chalmers, S. S. Agents and constraint logic. PhD Thesis, Department of

Computing, University of Aberdeen, 2004.

[Chen and Sadaoui, '03] Chen, B. and Sadaoui, S. A generic formal framework for

multi-agent interaction protocols. Technical Report TR 2003-05, University of
Regina, Canada, 2003.

[Chnadrasekaran et al., '99] Chnadrasekaran, B., Josephson, R. and Richard, V. What

are ontologies and why do we need them? IEEE Intelligent Systems. 14(1): 20-
26, 1999.

[Davin and Modi, '05] Davin, J. and Modi, P. J. Impact of problem centralization in

distributed constraint optimization algorithms. In Proceedings of the Fourth
International Joint Conference on Autonomous Agents and Multiagent Systems,
Netherlands, 2005.

[Davin and Modi, '06] Davin, J. and Modi, P. J. Hierarchical variable ordering for

multiagent agreement problem. In Proceedings of the Seventh International

Bibliography

 161

Workshop on Distributed Constraint Reasoning, at AAMAS'06, Hakodate, Japan,
2006.

[Decker et al., '88] Decker, K. S., Durfee, E. H. and Lesser, V. Evaluating research in

cooperative distributed problem solving. Computer Science Technical Report 88-
99, University of Massachusetts at Amherst, 1988.

[deSilva, '02] deSilva, L. P. Extending agents by transmitting protocols in open systems.

Honours Thesis, RMIT University, Melbourne, 2002.

[Doran et al., '97] Doran, J. E., Franklin, S., Jennings, N. R. and Norman, T. J. On

cooperation in multi-agent systems. The Knowledge Engineering Review. 12(3):
309-314, 1997.

[Dubois et al., '96] Dubois, D., Fargier, H. and Prade, H. Possibility theory in constraint

satisfaction problems: Handling priority, preference and uncertainty. Applied
Intelligence. 6: 287-309, 1996.

[Edvardson, '99] Edvardson, J. A survey on automatic test data generation. In

Proceedings of the Second Conference on Computer Science and Engineering,
Linkoping, Sweden, 21-28, 1999.

[Edwards, '04] Edwards, A. W. F. Cogwheels of the mind: The story of Venn diagram.

John Hopkins University Press, Baltimore & London, 2004.

[Esteva et al., '02] Esteva, M., Padget, J. and Sierra, C. Formalizing a language for

institutions and norms. Intelligent Agents VIII, LNAI. 2333: 348-366, 2002.

[Esteva et al., '00] Esteva, M., Rodrigez-Aguilar, J. A., Arcos, J. L., Sierra, C. and

Garcia, P. Institutionalising open multi-agent systems. In Proceedings of the
Fourth International Conference on Multiagent Systems (ICMAS'2000), Boston,
USA, 381-383, 2000.

[Esteva et al., '01] Esteva, M., Rodriguez, J. A., Sierra, C., Garcia, P. and Arcos, J. L.

On the formal specifications of electronic institutions. Agent Mediated Electronic
Commerce, The European AgentLink Perspective. F. Dignum and C. Sierra, Eds.,
LNCS (1991): 126-147, Springer Verlag, 2001.

[Esteva et al., '04] Esteva, M., Rosell, B., Rodriguez-Aguilar, J. A. and Acros, J. L.

Ameli: an agent-based middleware for electronic institutions. In Proceedings of
the Third International Joint Conference on Autonomous Agents and Multiagent
Systems, New York, USA, 236-243, IEEE Computer Society, 2004.

[Faratin, '00] Faratin, P. Automated service negotiation between autonomous

computational agents. PhD Thesis, Dept. of Electronic Engineering, Queen Mary
and Westfield College, University of London, 2000.

Bibliography

 162

[Faratin and Klein, '01] Faratin, P. and Klein, M. Automated contract negotiation and

execution as a system of constraints. In Proceedings of the Workshop on
Distributed Constraint Reasoning, at IJCAI'01, Seattle, USA, 2001.

[Fatima et al., '03] Fatima, S., Wooldridge, M. and Jennings, N. R. Optimal agendas for

multi-issue negotiation. In Proceedings of the Second International Joint
Conference on Autonomous Agents and Multiagent Systems (AAMAS'03),
Melbourne, Australia, 2003.

[Finin et al., '94] Finin, T., Fritzson, R., McKay, D. and McEntire, R. KQML as an

agent communication language. In Proceedings of the 3rd International
Conference on Information and Knowledge Management (CIKM'94),
Gaithersburg, USA, N. Adam, B. Bhargava et al, Eds., 456-463, ACM Press,
1994.

[FIPA, '01] FIPA. Agent communication language specification. The Foundation for

Intelligent Physical Agents (www.fipa.org), 2001.

[Franklin and Graesser, '97] Franklin, S. and Graesser, A. Is it an agent, or just a

program?: A taxonomy for autonomous agents. In Proceedings of the Workshop
on Intelligent Agents III, Agent Theories, Architectures and Languages, at
ECAI'96, Budapest, Hungary, J. Muller, M. Wooldridge et al, Eds., LNCS (1193),
21-35, Springer Verlag, 1997.

[Freire and Botelho, '02] Freire, J. and Botelho, L. Executing explicitly represented

protocols. In Proceedings of the Workshop on Challenges in Open Systems at
AAMAS'02, Bologna, Italy, 2002.

[Freuder, '90] Freuder, E. C. Partial constraint satisfaction. In Proceedings of the 8th

AAAI Conference, Boston, USA, 278-283, 1990.

[Freuder and Wallace, '92] Freuder, E. C. and Wallace, R. J. Partial constraint

satisfaction. Artificial Intelligence. 58(1-3): 21-70, 1992.

[Fruhwirth, '98] Fruhwirth, T. Theory and practice of constraint handling rules. The

Journal of Logic Programming. 37: 95-137, 1998.

[Genesereth and Fikes, '92] Genesereth, M. R. and Fikes, R. E. Knowledge interchange

format, version 3.0 reference manual. Technical Report Logic-92-1, Standford
University, 1992.

[Grando and Walton, '06] Grando, A. and Walton, C. Mapa: a language for modelling

conversations in agent environments. In Proceedings of the Intelligent
Information Processing and Web Mining Conference 2006 (IIPWM'06), Ustron,
Poland, 2006.

Bibliography

 163

[Heifetz and Ponsati, '04] Heifetz, A. and Ponsati, C. All in good time. Working Paper,

Department of Economics and Management, The Open University of Israel, 2004.

[Heiskanen et al., '01] Heiskanen, P., Ehtamo, H. and R.P.Hamalainen. Constraint

proposal method for computing pareto solutions in multi-party negotiations.
European Joint Operation Research. 133(1): 44-61, 2001.

[Henz and Muller, '00] Henz, M. and Muller, T. An overview of finite domain constraint

programming. In Proceedings of the Fifth Conference of the Association of Asia-
Pacific Operational Research Societies, Singapore, 2000.

[Hirayama and Yokoo, '97] Hirayama, K. and Yokoo, M. Distributed partial constraint

satisfaction problem. In Proceedings of the Third International Conference on
Principles and Practice of Constraint Programming (CP'97), Linz, Austria, G.
Smolka, Ed., LNCS (1330), 222-236, Springer Verlag, 1997.

[Jouvin and Hassas, '02] Jouvin, D. and Hassas, S. Role delegation as multi-agent

oriented dynamic composition. In Proceedings of the Net Object Days (NOD),
AgeS Workshop, Erfurt, Germany, 2002.

[Jung and Tambe, '05] Jung, H. and Tambe, M. On communication in solving

distributed constraint satisfaction problems. In Proceedings of the 4th
International Central and Eastern European Conference on Multi-Agent Systems
(CEEMAS'05), Budapest, Hungary, M. Pechouchek, P. Petta et al, Eds., LNAI
(3690), 418-429, Springer Verlag, 2005.

[Lambert and Robertson, '05] Lambert, D. and Robertson, D. Matchmaking multi-party

interactions using historical performance data. In Proceedings of the Fourth
International Joint Conference on Autonomous Agents and Multiagent Systems
(AAMAS), Utrecht, The Netherlands, 611-617, 2005.

[Lesser, '99] Lesser, V. R. Cooperative Multiagent systems: A personal view of the state

of the art. IEEE Transactions on Knowledge and Data Engineering. 11(1), 1999.

[Lind, '01] Lind, J. Specifying agent interaction protocols with standard UML. In

Proceedings of the 2nd International Workshop on Agent-Oriented Software
Engineering (AOSE-2001), Montreal, Canada, M. Wooldridge, G. Weib et al,
Eds., LNCS (2222), 136-147, Springer Verlag, 2001.

[Luo et al., '03] Luo, X., Jennings, N. R., Shadbolt, N., Leung, H. F. and Lee, J. A fuzzy

constraint based model for bilateral, multi-issue negotiations in semi-competitive
environments. Artificial Intelligence. 148: 53-102, 2003.

Bibliography

 164

[Luo et al., '00] Luo, X., Leung, H. and Lee, J. H. A multi-agent framework for meeting
scheduling using fuzzy constraints. In Proceedings of the Fourth International
Conference on Multi-Agent Systems (ICMAS-2000), 2000.

[Macho-Gonzales et al., '00] Macho-Gonzales, S., Torrens, M. and Faltings, B. A multi-

agent recommender system for planning meetings. In Proceedings of the
Workshop on Agent-based Recommender Systems (WARS' 2000), Barcelona,
Spain, 2000.

[Malone and Crawston, '94] Malone, T. W. and Crawston, K. The interdisciplinary

study of coordination. ACM Computing Surveys (CSUR). 26(1): 87-119, 1994.

[McGinnis and Robertson, '04] McGinnis, J. and Robertson, D. Realising agent

dialogues with distributed protocols. In Proceedings of the International
Workshop on Agent Communication (AC'04), New York, USA, R. M. v. Eijk, M.-
P. Huget et al, Eds., LNCS (3396), 106-119, Springer, 2004.

[McGinnis and Robertson, '05] McGinnis, J. and Robertson, D. Dynamic and distributed

interaction protocols. Adaptive Agents and Multi-Agent Systems II: Adaptation
and Multi-Agent Learning. D. Kudenko, D. Kazakov et al, Eds., LNCS (3394):
167-184, Springer, 2005.

[McGinnis et al., '03] McGinnis, J., Robertson, D. and Walton, C. Using distributed

protocols as an implementation of dialogue games. In Proceedings of the First
European Workshop on Multi-Agent Systems (EUMAS'03), Oxford, UK, 2003.

[McGinnis, '06] McGinnis, J. P. On the mutability of protocols. PhD Thesis, CISA,

School of Informatics, University of Edinburgh, 2006.

[Meisels, '04] Meisels, A. Distributed constraints satisfaction algorithms, performance,

communication. In Proceedings of the 10th International Conference on
Principles and Practice of Constraint Programming (CP'04), Toronto, Canada,
2004.

[Meisels and Kaplansky, '02] Meisels, A. and Kaplansky, E. Distributed timetabling

problems (DisTTP). In Proceedings of the 4th International Conference on
Practice and Theory of Automated Timetabling, Gent, Belgium, E. K. Burke and
P. D. Causmaecker, Eds., LNCS (2740), Springer, 2002.

[Meisels et al., '02] Meisels, A., Kaplansky, E., Razgon, I. and Zivan, R. Comparing

performance of distributed constraints processing algorithms. In Proceedings of
the Workshop on Distributed Constraint Reasoning, at AAMAS'02, Bologna, Italy,
2002.

Bibliography

 165

[Meseguer et al., '03] Meseguer, P., Bouhmala, N., Bouzoubaa, T., Irgens, M. and
Sanchez, M. Current approaches for solving over-constrained problems.
Constraints. 8: 9-39, 2003.

[Modi and Veloso, '04] Modi, P. J. and Veloso, M. Multiagent meeting scheduling with

rescheduling. In Proceedings of the Fifth Workshop on Distributed Constraint
Reasoning (DCR), 2004.

[Modi and Veloso, '05] Modi, P. J. and Veloso, M. Bumping strategies for the

multiagent agreement problem. In Proceedings of the Fourth International Joint
Conference on Autonomous Agents and Multiagent Systems (AAMAS'05), Utrecht,
The Netherlands, 2005.

[Noriega, '97] Noriega, P. Agent-mediated auctions: The fishmarket metaphor. PhD

Thesis, Institut d'Investigacio en Intelligencia Artificial (IIIA), Spain, 1997.

[Norlander, '04] Norlander, T. E. Constraint relaxation techniques and knowledge base

reuse. PhD Thesis, University of Aberdeen, UK, 2004.

[Norlander et al., '03] Norlander, T. E., Brown, K. N. and Sleman, D. Constraint

relaxation techniques to aid the reuse of knowledge bases and problem solvers. In
Proceedings of the 23rd SGAI International Conference on Innovative Techniques
and Applications of Artificial Intelligence, Cambridge, UK, pg. 323-335, 2003.

[Nwana et al., '96] Nwana, H. S., Lee, L. and Jennings, N. R. Co-ordination in software

agent systems. BT Technology Journal. 14(4): 79-88, 1996.

[Odell et al., '00] Odell, J., Parunak, H. and Bauer, B. Extending uml for agents. In

Proceedings of the Agent-Oriented Information Systems Workshop, at the 17th
National Conference on Artificial Intelligence, Austin, TX, USA, 2000.

[Odell et al., '03] Odell, J., Parunak, H. V. D. and Fleischer, M. Modeling agents and

their environment: the communication environment. Journal of Object
Technology. 2(3): 39-52, 2003.

[Omicini and Ossowski, '03] Omicini, A. and Ossowski, S. Objective versus subjective

coordination in the engineering of agent systems. Intelligent Information Agents.
M. Klusch, Ed., LNAI (2586): 179-202, Springer Verlag, 2003.

[Osman et al., '06] Osman, N., Robertson, D. and Walton, C. D. Run-time model

checking of interaction and deontic models for multi-agent systems. In
Proceedings of the Fifth International Joint Conference on Autonomous Agents
and Multi Agent Systems (AAMAS'06), Hakodate, Japan, 2006.

[Paula et al., '00] Paula, G. E. d., Ramos, F. S. and Ramalho, G. L. Bilateral negotiation

model for agent-mediated electronic commerce. In Proceedings of the Agent-

Bibliography

 166

Mediated Electronic Commerce Workshop (AMEC'00), Barcelona, Spain, F.
Dignum and U. Cortes, Eds., LNAI (2003), 1-14, Springer Verlag, 2000.

[Paurobally et al., '03] Paurobally, S., Cunningham, J. and Jennings, N. R. Ensuring

consistency in the joint beliefs of interacting agents. In Proceedings of the Second
International Joint Conference on Autonomous Agents and Multiagent Systems
(AAMAS'03), Melbourne, Australia, 2003.

[Pruitt, '81] Pruitt, D. Negotiation behaviour. Academic Press, New York, 1981.

[Ramchurn et al., '04] Ramchurn, S. D., Huynh, D. and Jennings, N. R. Trust in multi-

agent systems. The Knowledge Engineering Review. 19(1): 1-25, 2004.

[Rich and Knight, '91] Rich, E. and Knight, K. Artificial Intelligence (2nd edition).

McGraw-Hill, 1991.

[Robertson, '03] Robertson, D. Distributed agent protocols. Technical Report (contact

author for details: dr@inf.ed.ac.uk), University of Edinburgh, 2003.

[Robertson, '04a] Robertson, D. A lightweight coordination calculus for agent social

norms. In Proceedings of the Declarative Agent Languages and Technologies at
AAMAS'04, New York, USA, J. Leite, A. Omini et al, Eds., LNCS (3476),
Springer Verlag, 2004a.

[Robertson, '04b] Robertson, D. A lightweight method for coordination of agent

oriented web services. In Proceedings of the AAAI Spring Symposium on Semantic
Web Services, California, USA, 2004b.

[Robertson, '04c] Robertson, D. Multi-agent coordination as distributed logic

programming. In Proceedings of the 20th International Conference on Logic
Programming, Saint-Malo, France, B. Demoen and V. Lifschitz, Eds., LNCS
(3132), Springer Verlag, 2004c.

[Rosenschein and Zlotkin, '94] Rosenschein, J. S. and Zlotkin, G. Rules of encounter:

Desigining conventions for automated negotiation among computers. MIT Press,
Cambridge, MA, 1994.

[Rudova and Matyska, '99] Rudova, H. and Matyska, L. Uniform framework for solving

over-constrained and optimisation problems. In Proceedings of the Post-
Conference Workshop on Modelling and Solving Soft Constraints, Alexandria,
Virginia, USA, 1999.

[Ruskey and Weston, '05] Ruskey, F. and Weston, M. A survey of Venn diagrams:

generalizations and extensions. The Electronic Journal of Combinatorics,
www.combinatorics.org/Surveys/ds5/VennOtherEJC.html, 2005.

Bibliography

 167

[Schiex, '92] Schiex, T. Possibilistic constraint satisfaction problem or "How to handle
soft constraints?" In Proceedings of the 8th International Conference on
Uncertainty in Artificial Intelligence, Stanford, California, 268-275, 1992.

[Schulte and Carlson, '06] Schulte, C. and Carlson, M. Finite domain constraint

Programming systems. Handbook of constraint programming. F. Rossi, P. V.
Beek et al, Eds., Elsevier, 2006.

[Schumacher and Ossowski, '06] Schumacher, M. and Ossowski, S. The governing

environment. In Proceedings of the 2nd International Workshop on Environments
for Multiagent Systems (E4MAS'05), at AAMAS'05, Utrecht, The Netherlands, D.
Weyns, H. V. D. Parunak et al, Eds., LNAI (3830), 88-104, Springer Verlag,
2006.

[Searle, '69] Searle, J. Speech acts. Cambridge University Press, Cambridge, 1969.

[SICS, '99] SICS. SICStus Prolog User's Manual. Swedish Institute of Computer

Science (SICS) (http://www.sics.se/sicstus.html), Stockholm, 1999.

[Sycara, '98] Sycara, K. P. Multiagent systems. AI Magazine. 19(2): 79-92, 1998.

[Tsang, '93] Tsang, E. Foundations of constraint satisfaction. Academic Press, 1993.

[Tsuruta and Shintani, '00] Tsuruta, T. and Shintani, T. Scheduling meetings using

distributed values constraint satisfaction. In Proceedings of the European
Conference on Artificial Intelligence (ECAI), Germany, 2000.

[Walton, '04a] Walton, C. D. Model checking multi-agent web services. In Proceedings

of the AAAI Spring Symposium on Semantic Web Services, Stanford, California,
USA, 2004a.

[Walton, '04b] Walton, C. D. Multi-agent dialogue protocols. In Proceedings of the 8th

International Symposium on Artificial Intelligence and Mathematics, Ft.
Lauderdale, Florida, 2004b.

[Walton and Barker, '04] Walton, C. D. and Barker, A. An agent-based e-science

experiment builder. In Proceedings of the First International Workshop on
Semantic Intelligent Middleware for the Web and the Grid, at ECAI'04, Valencia,
Spain, 2004.

[Walton and Robertson, '02] Walton, C. D. and Robertson, D. Flexible multi-agent

protocols. Technical Report EDI-INF-RR-0164, University of Edinburgh, 2002.

[Weib, '01] Weib, G. Congnition, sociability, and constraints. Balancing Reactivity and

Social Deliberation in Multi-Agent Systems: From RoboCup to Real-World

Bibliography

 168

Applications. M. Hannebauer, J. Wendler et al, Eds., LNCS (2103), Springer
Verlag, 2001.

[Wooldridge, '00] Wooldridge, M. Semantic issues in the verification of agent

communication languages. Autonomous Agents and Multi-Agent Systems. 3(1):
9-31, 2000.

[Wooldridge, '02] Wooldridge, M. An introduction to multiagent systems. MIT Press,

2002.

[Wooldridge and Jennings, '95] Wooldridge, M. and Jennings, N. R. Intelligent agents:

Theory and practice. The Knowledge Engineering Review. 10: 115-152, 1995.

[Yang and Fong, '92] Yang, Q. and Fong, P. Solving partial constraint satisfaction

problems using local search and abstraction. Technical Report CS-92-50,
University of Waterloo, Canada, 1992.

[Yokoo, '93] Yokoo, M. Dynamic variable/value ordering heuristics for solving large-

scale distributed constraint satisfaction problems. In Proceedings of the 12th
International Workshop on Distributed Artificial Intelligence, Hidden Valley,
Pennsylvania, USA, 407-422, 1993.

[Yokoo, '01] Yokoo, M. Distributed constraint satisfaction: foundations of cooperation

in multi-agent systems. Springer Verlag, 2001.

[Yokoo et al., '98] Yokoo, M., Durfee, E. H., Ishida, T. and Kubawara, K. The

distributed constraint satisfaction problem: formalization and algorithm. IEEE
Transactions on Knowledge and Data Engineering. 10(5): 673-685, 1998.

[Yokoo and Hirayama, '93] Yokoo, M. and Hirayama, K. Distributed partial constraint

satisfaction problem. In Proceedings of the Third International Conference on
Principles and Practice of Constraint Programming, LNCS (1330), 222-236,
Springer Verlag, 1993.

[Zhou et al., '05] Zhou, L., Sattar, A. and Goodwin, S. Handling over-constrained

problems in distributed multi-agent systems. In Proceedings of the 18th
Conference of the Canadian Society for Computational Studies of Intelligence
(Canadian AI 2005), Victoria, Canada, B. Kegl and G. Lapalme, Eds., LNAI
(3501), 13-24, Springer Verlag, 2005.

