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Abstract 
The interactions among agents in a multi-agent system for coordinating a distributed, 

problem solving task can be complex, as the distinct sub-problems of the individual 

agents are interdependent. A distributed protocol provides the necessary framework for 

specifying these interactions. In a model of interactions where the agents’ social norms 

are expressed as the message passing behaviours associated with roles, the dependencies 

among agents can be specified as constraints. The constraints are associated with roles to 

be adopted by agents as dictated by the protocol. These constraints are commonly 

handled using a conventional constraint solving system that only allows two satisfactory 

states to be achieved – completely satisfied or failed. Agent interactions then become 

brittle as the occurrence of an over-constrained state can cause the interaction between 

agents to break prematurely, even though the interacting agents could, in principle, reach 

an agreement. Assuming that the agents are capable of relaxing their individual 

constraints to reach a common goal, the main issue addressed by this thesis is how the 

agents could communicate and coordinate the constraint relaxation process. The 

interaction mechanism for this is obtained by reinterpreting a technique borrowed from 

the constraint satisfaction field, deployed and computed at the protocol level. 

The foundations of this work are the Lightweight Coordination Calculus (LCC) and 

the distributed partial Constraint Satisfaction Problem (CSP). LCC is a distributed 

interaction protocol language, based on process calculus, for specifying and executing 

agents’ social norms in a multi-agent system. Distributed partial CSP is an extension of 

partial CSP, a means for managing the relaxation of distributed, over-constrained, CSPs. 

The research presented in this thesis concerns how distributed partial CSP technique, 

used to address over-constrained problems in the constraint satisfaction field, could be 

adopted and integrated within the LCC to obtain a more flexible means for constraint 

handling during agent interactions. The approach is evaluated against a set of over-

constrained Multi-agent Agreement Problems (MAPs) with different levels of hardness. 

Not only does this thesis explore a flexible and novel approach for handling constraints 

during the interactions of heterogeneous and autonomous agents participating in a 

problem solving task, but it is also grounded in a practical implementation. 
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Chapter 1 
 

Introduction 
 

The work described in the thesis brings together established works from two separate 

research disciplines; the constraint satisfaction and multi-agent system research fields. It 

specifically demonstrates on how an established technique for addressing over-

constrained problem within the constraint satisfaction research field can be specified as a 

distributed agent protocol. This allows for a more flexible interactions among agents 

involved in a distributed problem solving task. The integration of constraint satisfaction 

techniques in multi-agent systems is a growing research area [Calisti and Neagu, '04], and 

this work enriches this expanding research area in the following two general aspects. 

 

1. For the constraint satisfaction research field, it makes the available techniques 

to address over-constrained problem relevant for the peer-to-peer agent 

environment. 

2. For the multi-agent system research field, particularly the distributed agent 

protocol, it addresses the brittleness problem commonly faced by problem 

solving agents during their interactions for finding a solution. 

 

This thesis begins by giving a general overview on multi-agent systems, coordination in 

multi-agent systems, followed by a discussion on how agent interactions provide the 

means to coordinate agents in a distributed problem solving environment. Next, a 

discussion on the motivation and aim of the research work will be provided. A 

description of the thesis’ remaining chapters will conclude this introductory chapter. 

 

1.1 Multi-Agent Systems 
 

A software entity is generally accepted and recognised as an “agent” if it can exhibit an 

autonomous feature, which means it is able to perform an independent computational 

activity and interacts with its surrounding environment [Wooldridge and Jennings, '95]. 
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Its behaviour is directed not only by its own experience (stored knowledge), but by its 

ability to evaluate and combine this with knowledge about the current situation and the 

environment, along with any other pertinent information available to produce an 

autonomous and deliberative decision making process [Chalmers, '04], as illustrated in 

figure 1.1.  

Decision Making Process

Stored
Knowledge

Environment
Information Rules

Information
from Others

 

Figure 1.1: Factors in a program’s decision-making process 
 

An important aspect of the agent-based approach is the principle that agents (like 

humans) can function more effectively in groups that are characterised by cooperation 

and division of labour [Chaib-Draa and Dignum, '02]. In fact, cooperation is often 

presented as one of the key concepts which differentiates multi-agent systems (MAS) 

from other related disciplines such as distributed computing, object-oriented systems, and 

expert systems. The broad view description of cooperation within the context of MAS 

can be illustrated using the topology provided in figure 1.2 [Doran et al., '97; Franklin 

and Graesser, '97]. 

 
Multi-Agent System

Independent

Discrete Emergent 
Cooperation

Cooperative

Communicative
Non-communicative

Deliberative Negotiating  
Figure 1.2: Cooperation topology 
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A MAS is independent if each agent pursues its own agenda independently of the 

others. A system is discrete if it is independent, and if the agendas of the agents bear no 

relation to one another. A system can be described as having emergent cooperation 

behaviour if from an observer’s viewpoint, the agents appear to be working together, but 

from the agent’s viewpoint they are not. They are simply carrying out their own 

individual behaviour. 

The opposite of independent systems are cooperative systems, in which the agendas 

of the agents include cooperating with other agents in some way. Such cooperation can 

be either communicative in that the agents communicate with each other in order to 

cooperate or it can be non-communicative. For the non-communicative form, agents 

coordinate their cooperative activities by each agent observing and reacting to the 

behaviour of the others. On the other hand, communicative cooperation can be in at least 

two forms – deliberative or negotiating. In deliberative systems, agents jointly plan their 

actions in order to cooperate with each other. Negotiating systems are similar to 

deliberative systems, except that they have an added element of competition. 

A more precise and constrained definition emphasised that cooperation occurs when 

the actions of each agent satisfy at least one of the following conditions [Doran et al., 

'97]: 

1. The agents have a (possibly implicit) goal in common (which no agent could 

achieve in isolation) and their actions aim at achieving that goal. 

2. The agents perform actions which enable them to achieve not only their own 

goals, but also the goals of other agents. 

Following these definitions, the scope of the research work reported in the thesis is 

primarily concerned on MAS which can be viewed as a loosely coupled network of 

problem solvers that interact to solve problems that are beyond the individual capabilities 

or knowledge of each problem solver. The problem solvers are autonomous and can be 

heterogeneous in nature [Sycara, '98]. 

One of the biggest concerns in any distributed reasoning system is how the action of 

the individual agents can be coordinated so that they work together effectively [Rich and 
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Knight, '91]. Therefore, in the next section, a general overview of coordination in MAS is 

given. 

 

1.2 Coordination in MAS 
 

A general definition of coordination is provided by the coordination theory introduced in 

[Malone and Crawston, '94]. In this theory, coordination is viewed as a process of 

managing dependencies between activities, and the categorisation of these dependencies 

is provided in figure 1.3. According to this theory, autonomous entities need to 

coordinate their actions in order to manage the dependencies that exist between these 

activities. 
Dependencies

Shared Resource Producer/Consumer 
Relationship Simultaneity Constraint Task/Sub-task

Prerequisite 
constraint

Transfer Usability
 

Figure 1.3: Categorisation of common dependencies among activities 
 

In a definition that focuses specifically on MAS, coordination is viewed as a 

process in which agents engage in order to ensure a community of individual agents acts 

in a coherent manner. Coherence means that the agents’ actions are consistent with each 

other. In other words, coherence refers to how well a system of agents behaves as a unit, 

and these agents need to be coordinated for the reasons described in [Nwana et al., '96]: 

 

 Preventing anarchy or chaos – coordination is necessary or desirable because, with 

decentralisation in agent-based systems, anarchy can set in easily. Agents no longer 

possess a global view of the entire group to which they belong. Consequently, agents 

only have local views, goals and knowledge, which may conflict with others. They 

can enter into all sorts of arrangements with other agents or agencies. Like in any 

society, such haphazard arrangements are prone to anarchy; to achieve common 
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goals, which are a major reason for having multiple agents in the first place, a group 

of agents need to be coordinated 

 Meeting global constraints – there usually exist global constraints which a group of 

agents must satisfy if they are to be deemed successful 

 Distributed expertise, resources or information – agents may have different 

capabilities and specialised knowledge  

 Dependencies between agents’ actions – agents’ goals are frequently interdependent 

 Efficiency – even when individuals can function independently, thereby obviating the 

need for coordination, information discovered by one agent can be of sufficient use to 

another agent that both agents can solve the problem faster 

 

Coordination among agents is accomplished through social interactions, one of the 

fundamental features of MAS. These social interactions are enacted through a variety of 

interaction protocols, here regarded as the public rules or norms for communications of 

the participants of a group when carrying out some social encounter. In this context, the 

protocol ensures that all participants following it can expect certain responses from others 

and can coordinate meaningfully towards a goal [Paurobally et al., '03]. 
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1.3 Agent Interaction for Distributed Problem Solving 
 

As described in [Faratin and Klein, '01], collaborative problem solving task which uses 

the MAS approach is generally composed of the following three stages: pre-interaction, 

interaction and post-interaction. These stages are illustrated using a simplified diagram in 

figure 1.4, which involves two agents (agent a and b). Boxes, ovals and links represent 

processes involved in the decision making, data, and information flow respectively.  

The local problem of the agent is defined in the pre-interaction phase. This stage of 

the collaborative activity, which is non-interactive, can be informally described as the 

stage where the agent “gets to know itself and what it wants”. At this stage the agent 

attempts to not only define its local problem, but it may also attempt to solve the problem 

independently of interactions with other agents. A local solution is a locally consistent 

assignment of values to a set of variables that satisfy some set of domain constraints. Let 

j (j∈{a,b}) represent an agent. Let { }j
n

j
1

j i,...,iI =  represent the local n-dimensional 

variables, or issues, of agent j. Domain constraints are local/endogenous restrictions on 

the local decision making, which include a minimal unary constraint of the domain, or 

reservation value for each of the variable. Another possible constraint are the binary/n-

nary dependencies between the variables. In this research, we restrict ourselves to the 

problems in which both the set and ontology of the variables are shared among the 

agents, that is Ia=Ib. 

Once agents have a consistent assignment of values to each of their local variables, 

they enter the next stage of the collaborative activity which is interaction. This stage is 

specifically concerned on the modification and checking of consistency of the joint set of 

constraints. Conflicting preferences (or interaction constraints) make the achievement of 

a mutually agreed set of values for a variable difficult to achieve. The post-interaction 

stage is essentially a commitment problem where mutual agreement on the values of the 

set of variables achieved during interaction stage must be honoured. 
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Domain 
constraints Variables

Local problem

Domain 
constraints Variables

Local problem

Pre-interaction stage

Solution1

Solutionn

.

.
Interaction
constraints

Agent
decision making 

mechanism

Interaction
constraints

Solution1

Solutionn

.

.

Agent
decision making 

mechanism

Solution1

Solutionn

.

.

Interaction
stage

Agent a Agent b

Post-interaction

 
Figure 1.4: Problem solving stages 

 

Depending on the kind of sub-problem interdependencies, the interaction among 

agents in a multi-agent system for a distributed problem solving task can be complex, 

often requiring a multi-step dialogue. This interaction can be achieved through a protocol 

that provides not only the communication of agents, but also the creation and destruction 

of agents (i.e. agents entering/leaving a MAS), the spatial distribution of agents, as well 

as synchronisation and distribution of actions over time [Bocchi and Ciancarini, '03]. It 

generally involves two important elements – the subjects whose activities need to be 

coordinated (i.e. agents) and the entities between which dependencies arise (i.e. objects of 

coordination), namely sub-problems handled by the individual agents [Omicini and 

Ossowski, '03]. 

The specification of the involved elements and the relationship that exist between 

them are generally mediated and represented by the notion of role. When assuming a 

role, an agent is in charge of the corresponding task or action, and is entitled to all the 
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authorisations and permissions (and limitations as well) pertaining to its role. This can be 

viewed as social norm constraints imposed on the agents upon assuming the roles 

specified in the protocol. The state of the agent interactions is then reflected on the ways 

these constraints are mutually and individually satisfied by the interacting agents. 

The following is a short but (by current standards) complex scenario that deals with 

the purchasing and configuration of a computer between the customer and vendor agents, 

which is borrowed from [Robertson, '04c], to describe agent interactions for a distributed 

problem solving task: 

An internet-based agent acting on behalf of a customer wants to buy a 

computer but doesn’t know how to interact with other agents to achieve this, 

so it contacts a service broker. The broker supplies the customer agent with 

the necessary interaction information. The customer agent then has a 

dialogue with the given computer vendor in which the various configuration 

options and pricing constraints are reconciled before a purchase is finally 

made. 

To simplify the discussion, it is assumed that the interaction between the vendor 

and customer agents is concerned on only four abstract attributes namely V1, V2, V3 and 

V4. Figure 1.5 provides an abstraction of a generic description of the possible problems of 

the agents, which can range from a loosely constrained sub-problem (i.e. P1) where each 

variable is independent of each other and solely constrained by the assigned domain 

values to a densely constrained sub-problems (i.e. P2 and P3) where variables are 

interdependent. P1 is formally known as a unary constrained problem while P2 and P3 can 

be regarded as n-nary constrained problems, with different degrees of hardness [Tsang, 

'93].  
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P1

V3

V2

V1

V4

P2

V3

V2

V1

V4

P3

V3

V2

V1

V4

 
Figure 1.5: Possible sub-problems of interacting agents 

 

The means of communicating and coordinating the problem solving efforts given 

the distinct sub-problems of the customer and vendor agents can be provided through an 

interaction model, as abstractly described in figure 1.6. 

 

Customer 
agent

Vendor
agent

Interaction 
model

Locally defined 
sub-problem

Locally defined 
sub-problem

 
Figure 1.6: Conceptual model of agent interaction 

 

The interaction model provides roles (i.e. customer and vendor) that could be 

assumed by the interacting agents for reconciling their distinct sub-problems in finding 

mutually acceptable values for all the four variables. The interactive states of the agents 

communicating through this model are dependent on the satisfiability of the constraints 

associated with the variables of the problem to be solved. The computation performed on 

an interaction model might involve the execution of the roles contained in the model 

across different machines or agents, therefore satisfaction of constraints by an agent 

associated with a particular role in an interaction model is done in ignorance of 

constraints imposed by other agents in the interaction. Hence, for a successful termination 

of the interaction model in coordinating the agents to achieve the intended objective of 

finding an agreeable solution, we require all constraints associated with the agents’ roles 

to be solvable. For instance, within the given scenario, the agents are in conflict if no 
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compatibility is found between the corresponding variables values defined by the 

interacting agents. This conflict may lead to a failure in the reconciliation process, 

preventing the agents’ progressions in their respective prescribed roles of the interaction 

model for achieving a solvable state. This inconsistent local view of interacting agents, 

which causes interaction failure, can be perceived as an over-constrained problem.  

As such, interaction models are considered brittle, in a sense that the constraints 

imposed on the roles contained in the models must either succeed or fail, and if they fail 

the entire models may fail to achieve the objective of adequately resolving the 

interdependence among the agents’ sub-problems. Consequently, protocol failure can 

cause the interaction between agents to break prematurely, even though the interacting 

agents could in principle reach an agreement.  

This problem will be re-visited again in chapter 3, illustrated in detail via an 

interaction model, formalised and executed using a particular distributed interaction 

protocol language called the Lightweight Coordination Calculus (LCC). 

 

1.4 Scope, Motivation, and Aims 
 
In many constraint satisfaction research works, an extensive use of the terms ‘agent’ and 

‘agent interaction’ can be found [Yokoo, '93; Yokoo et al., '98; Yokoo, '01]. However, it 

should be clearly noted that these two terms have been used in the constraint satisfaction 

and MAS worlds with slightly different meanings [Calisti and Neagu, '04]. 

In the constraint satisfaction research field, an agent is a computational entity acting 

as a decision maker following pre-defined coordination mechanisms (i.e. constraint 

solving mechanisms or algorithms) and sharing an implicit common representation of the 

world with other agents (i.e. no explicit use of structured communication stack and 

ontologies). In contrast, from a MAS perspective, an agent is autonomously deciding 

whether or not to follow specific coordination mechanisms and can communicate with 

other agents by means of structured semantic-grounded exchange of messages.  

Within the constraint satisfaction world, the fundamental issue is on how to obtain a 

consistent assignment of values to a set of variables maintained by distinct agents within 

a distributed environment, with a very little emphasis put on the communication model 
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employed by the agents. The requirement to communicate is mainly driven by the 

algorithm used for finding a solution to a given constrained problem. In a way, the 

definition of agent in the constraint satisfaction world is very much equivalent to the 

‘weak agency’ of MAS. Given the slightly distinct definitions of the terms ‘agent’ and 

‘agent interaction’ as specified in the constraint satisfaction and MAS communities 

respectively, any mentioned of these terms in this thesis is implicitly assumed to be the 

definitions provided by the latter unless it is duly noted otherwise. 

The work presented in this thesis considers a stronger notion of agency. It 

specifically focuses on how an explicit interaction model used in synchronising the 

message-passing behaviour of heterogeneous problem solving agents can be affected by 

failure of any of the agents involved in the interaction process to satisfy the constraints 

imposed on the individual agent roles engineered within the model. Given that the 

participating agents are capable of relaxing their individual constraints to accommodate 

the constraints of others in order to reach a common goal, the main issue this work tries 

to address is how agents could communicate and coordinate the constraint relaxation 

process. This can be achieved by providing agents with some safe envelope of constraint 

bounds across the interaction for reconciling their sub-problem differences. The 

interaction mechanism is obtained by re-interpreting a technique borrowed from the 

constraint community, deployed at the interaction protocol level. 

It is not the aim of this research to provide any new advance in the already mature 

fields of constraint satisfaction. Instead, it attempts to bridge the gap between the worlds 

of constraint satisfaction and MAS by promoting the use of the techniques established by 

the former to solve a class of a distributed interaction problem faced by the latter. It is the 

aim of this research to extend the capability of conceptual and theoretical techniques for 

addressing over-constrained problems within the constraint satisfaction field by 

reinterpreting these techniques from the distributed agent protocol perspective. The study 

is concerned with how existing approaches used to address over-constrained problems in 

constraint satisfaction field can be integrated and adapted within a distributed interaction 

protocol framework to have a more flexible means of constraint handling during agent 

interactions. For this purpose, we focus on a particular interaction protocol language 

called the Lightweight Coordination Calculus (LCC).  
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As described in [Sycara, '98], the use of constraint satisfaction techniques in MAS 

is not new as they have been utilised either as a part of the agents’ problem solving 

apparatus or coordination formalisms as reported in [Macho-Gonzales et al., '00; Aldea et 

al., '01; Meisels and Kaplansky, '02]. However, in these works, the focus is strictly on the 

conventional formalisms of constraint satisfaction which require all constraints to be 

satisfied and do not address over-constrained problems. The few approaches that do 

attempt to integrate the currently available constraint satisfaction techniques for over-

constrained problem with MAS include that of [Luo et al., '03], which proposed a fuzzy 

constraint-based model for bilateral multi-issue negotiations in MAS. The work is applied 

to an accommodation-renting scenario involving a negotiation between a prospective 

tenant and a letting agency. The model is directly engineered as part of the internal 

functionality of the interacting agents. 

This thesis, on the other hand, considers the problem of integrating a particular 

constraint satisfaction technique for solving an over-constrained problem (i.e. distributed 

partial Constraint Satisfaction Problem) as part of the constraint-handling feature of the 

distributed interaction protocol system (i.e. LCC). This is a novel way of providing a 

more flexible approach for handling constraints during the interactions of heterogeneous 

and autonomous agents participating in a distributed problem solving task. The proposed 

approach is not specifically engineered as part of the agency, and its deployment and 

execution does not rely on any centralised mechanism. In this way, the brittleness of 

agent interaction due to the conflicting constraints imposed by the individual agents can 

be addressed by the agents themselves without any third-party intervention.  

The use of a third-party mediator for coordinating the relaxation of an over-

constrained situation might be acceptable if confidentiality is not the main concern; so it 

is acceptable for agents to reveal their internal goals to the third parties. However, in 

some domains (e.g. customer-vendor bargaining interaction), it is not practical for this 

private information to be completely revealed, as it might jeopardise the agents’ 

individual strategies for obtaining an optimal outcome from the interaction process. As 

emphasised in [Pruitt, '81; Rosenschein and Zlotkin, '94], it is important that the agents 

minimise the amount of information they reveal about their preferences since any such 

revelation can weaken their bargaining position. Another reason why the agents need to 
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minimise such information revelation is that humans, depending on the nature of 

interaction, are not always willing to completely disclose private information while 

interacting with each other [Heiskanen et al., '01]. Thus, if we want interacting agents to 

actually represent humans, they must follow the same broad tenet. In addition, heavy 

dependency on a third-party agent to resolve any arising conflicts might lead to 

bottlenecks. It is, hence, more advantageous for the constraint relaxation approach to be 

managed directly by the involved agents themselves.  

 

1.5 Thesis Outline 
 

 Chapter 2 reviews the literature on approaches to agent interaction, and the 

interaction protocol language used in this research (i.e. LCC). It also includes 

a description on the distributed problem solving environment and approaches 

for handling over-constrained problems within the constraint satisfaction 

research field. 

 

 Chapter 3 provides a discussion on the interaction model, formalised and 

executed using LCC for a particular scenario. Using an example, brittleness of 

the interaction model due to an over-constrained problem is described. 

 

 Chapter 4 provides a detailed description of realising a distributed partial CSP 

as an LCC protocol. 

 

 Chapter 5 provides a discussion on the implementation of our approach and 

detailed execution of the constraint relaxation protocol using the scenario of 

chapter 3. 

 

 Chapter 6 provides a description on the test bed used in evaluating the 

protocol. This chapter also provides an analysis on the results obtained from 

the evaluation. 
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 Chapter 7 concludes with a summary and a discussion of future avenues for 

research on this topic. 
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Chapter 2 
 

Related Work 
 

This chapter provides a detailed review on two areas deemed important to the research 

reported in this thesis; agent interaction and distributed, over-constrained, constraint 

satisfaction problems. For the former, this include a review on approaches to agent 

interaction, and the interaction protocol language used in this research (i.e. LCC). A 

description on the distributed problem solving environment and approaches for handling 

over-constrained problems within the constraint satisfaction research field are provided 

for the latter. 

 

2.1 Agent Interaction 
 

Agents populating a MAS can be mainly classified as either benevolent (cooperative) or 

self-interested [Lesser, '99]. Cooperative agents work toward achieving some common 

goals, whereas self-interested agents have distinct goals but may interact to advance their 

own goals. In the latter case, self-interested agents may, by exchanging favours, 

coordinate with other agents in order to get those agents to perform activities that assist in 

the achievement of their own objectives.  

In both classifications, the need for interaction between agents is absolutely 

essential because it enables the MAS to exist. If agents are not able to interact with one 

another, no global behaviour in the MAS is possible, and hence the fundamental benefits 

of using a MAS approach could not be fully gained. Agent interaction becomes a critical 

issue in MAS as it allows interdependency that exists between agents to be coordinated, 

in order for the agents’ overall goals to be achieved [Schumacher and Ossowski, '06]. 

Given this consideration, computational agents require ordered and structured 

interactions [Bond and Gasser, '88]. Such structuring is needed because in the absence of 

any normative rules of public behaviour, interactions lead to chaotic dynamics where 

agents can send messages that cannot be understood or the message is inappropriate 
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given the history of the current interaction [Faratin, '00]. Therefore, in this research, we 

are interested in the interactive aspect of agents particularly for MAS-based distributed 

problem solving systems. This section then provides an introductory overview of aspect 

fundamental to the focus of the research work reported in this thesis: approaches to agent 

interaction and communication in MAS. These are followed by an overview on two 

objective-based approaches to agent interaction; Electronic Institution (EI) and 

Lightweight Coordination Calculus (LCC), in the subsequent section. 

 

2.1.1  Approaches to Agent Interaction 
 

The many diverse approaches to the multi-agent interaction can be categorised in two 

main classes – the subjective and objective approaches [Omicini and Ossowski, '03]. 

In the subjective approach, interaction is encapsulated as part of the intra-agent 

components. Interactions are possible through the specification and development of agent 

languages and architectures, closely integrated with the agent’s internal structure. With 

this approach, each agent is assumed to have an understanding of the basic 

communication elements to enable it to establish interactions. Given its state, it is 

expected to infer the appropriate interaction action. The global behaviour of the system 

emerges from all the individual interactive decisions made by each agent. This allows for 

the greatest amount of autonomy for individual agents but at the risk of disorder or break 

down of the system as the complexity of the interactions increase [McGinnis, '06].  The 

subjective approach is widely used and it includes mentalistic or Belief-Desire-Intention 

(BDI) model [Bratman, '87] of agent interactions based on the speech act theory of 

[Austin, '62; Searle, '69].  

As interactions may occur between similar or different agents within the same 

system or across heterogeneous environments, sole dependency on the subjective 

approach for coordinating agent interactions proved to be inadequate and led to a number 

of problems, including the semantic verification problem [Wooldridge, '00]. This gives 

rise to the objective approach which argues that several aspects of multi-agent systems 

that conceptually do not belong to agents themselves should not be assigned to, or hosted 

inside agents. Examples include infrastructure for communication and coordination, the 
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topology of a spatial domain, and support for the action model [Schumacher and 

Ossowski, '06]. In the objective approach, a MAS is not simply considered as a sum of 

individuals. Instead, a MAS is perceived as a society of agents where a collective social 

behaviour is likely to emerge. This society defines not only the world where agents live, 

but also the laws that permeate the interaction space or the communication media that 

enable agent interactions [Bocchi and Ciancarini, '03]. The society has norms and 

traditions. For agents to participate in a MAS and thus participate in the society, it is the 

responsibility of each individual agent’s engineer to design his/her agents to follow the 

rules of the society. The consequence of this is a more reliable agent interaction. It is also 

more scaleable due to the ability to know the global state of the MAS as interaction 

activities are specified by the society. This comes at the cost of autonomy. Agents are not 

completely free to explore the interaction space, that is the set of all possible meaningful 

sequences of messages given an agent communication language. Agents can only 

converse by following the sequences allowed by the society [McGinnis, '06]. This 

objective approach necessitates a clear identification of the interaction setup in a MAS, 

which naturally calls for a separation between the design of each individual agent and the 

design of their interactions [Schumacher and Ossowski, '06]. Further details with regards 

to the objective-based approaches to agent interactions including the Lightweight 

Coordination Calculus (LCC), an interaction protocol language used in the research 

work, are described in section 2.2. 

 

2.1.2  Communication in Multi-Agent Systems 
 

Regardless of the high-level approaches used to mediate agent interactions, there exist 

some communicative aspects that need to be shared among agents to ensure that a proper 

and smooth interaction can take place. These communicative aspects can be described 

using a generic communication stack [Calisti, '02], which is composed of low-level data-

transport level and abstract components used at the higher communication level, as 

illustrated in figure 2.1.  

At the lowest level, a transport layer consists of basic building blocks responsible 

for transparently routing and delivering agent messages to the final intended recipient(s). 
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On top of the transport infrastructure, agents interoperate by parsing and interpreting 

messages in the context of on-going conversation, achieved through components of the 

communication layer. Brief descriptions of the abstract components of the 

communication layer are as follows: 

Conversational level

Communicative Act

Content Expression

Ontology

Syntactic representation of 
the context 

XML, SQL, DAML

Data exchange protocol
HTTP, GIIOP, SMTP

Transport
Optical fiber, TCP-IP

Sequence of licit messages within a 
specific context

Instance of a single message in a particular 
ACL

Instance of a statement embedded in a 
message expressing states of the world

Description of objects, actions and 
functions in a given domain

TRANSPORT LAYER

C
O

M
M

U
N

IC
ATIO

N
 LA

Y
E

R

 
Figure 2.1: A generic communication stack for agent interaction 

 

Interaction Protocols for Agent Conversations. A conversation is regarded as an 

interaction protocol instance or occurrence [Jouvin and Hassas, '02]. Conversation can be 

defined as a succession of messages (communicative acts) exchange between two or 

more agents following a well defined interaction pattern called protocol. An interaction 

protocol defines several agent roles, which defines the set of responsibilities of one 

interlocutor participating in the conversation. Several roles may be impersonated by a 

single agent. Conversations are the instantiation of interaction protocols in actual 

systems, and are by themselves a basic organisational construct, in that they define a 

relationship between interlocutors, and their roles. 

Interaction protocols are used to specify the set of allowed message types (i.e. 

performatives), message contents and the correct order of messages during the 

conversations between agents [Odell et al., '00; Lind, '01; Odell et al., '03], and they can 

become the basis for agent negotiation and cooperation [Chen and Sadaoui, '03]. 

Interaction protocols can force agents to act correctly in predictable ways. Using the 

protocols, the autonomous behaviours of agents can be predictable because agents are 



Chapter 2. Related Work 

 19

obliged to obey some rules. The interaction protocols can range from complicated 

negotiation schemas to a simple request for a task to be performed. This layer that 

governs whole patterns of interactions, social norms, and communication within MAS is 

the ultimate concern of the research work reported in this thesis. 

 

Agent Communication Language (ACL) and Content Expression. Once the valid 

sequence of possible communicative acts is known, it is necessary that agents parse and 

interpret every message they receive. This requires the adoption of a standard ACL and a 

knowledge representation language that have a precisely defined syntax and semantics. 

The ACL provides an agent with a set of performatives or locutions allowing it to 

communicate and express its intentions in accomplishing some task. These performatives 

or locutions are used to wrap the message content expressed in a knowledge 

representation language. So, the proposition “Reasonable temperature” can have a 

different meaning if it is expressed within a locution that is specified as a query, 

command or statement. 

The first ACL to gain wide recognition is the Knowledge Query and Manipulation 

Language (KQML), which was proposed along with the Knowledge Interchange Format 

(KIF) as a means for knowledge sharing in the early 1990’s [Finin et al., '94; Wooldridge, 

'02]. The development of KQML was an attempt to provide a set of performatives to 

capture the various propositional attitudes an agent might want to express, while KIF 

[Genesereth and Fikes, '92] focused on the representation of knowledge of a certain 

domain.  

A number of limitations associated with the KQML have led to the development of 

FIPA-ACL [FIPA, '01]. FIPA-ACL offers the same functionality as KQML, but with 

improvements like the introduction of formal semantics. 

 

Ontology Definition. The description of the world state that the agents are 

communicating about may contain references to objects, actions and functions (i.e. object 

models) in one or more domains. An ontology provides a vocabulary (class model) for 

representing and communicating domain-dependent knowledge, including a set of 
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relationships and properties that are valid for the elements identified by that vocabulary 

[Chnadrasekaran et al., '99]. 

 The communication language, content language and the ontology must somehow 

be agreed by the participating agents, regardless of the approaches adopted in governing 

the agent interactions. For our work, this assumption is made because without it, little 

progress could be made. 

 

2.2 Objective-based Approaches for Agent Interaction 
 
The rapid evolvement of the field of agency gives rise to the development of a number of 

objective-based approaches to agent interaction. This section describes the existing 

literature in the field, focusing on two approaches namely Electronic Institution (EI) and 

Lightweight Coordination Calculus (LCC). The former is a prominent and popular 

technique for specifying and deploying agent interaction protocols in MAS while the 

latter has evolved due to dissatisfactions attributed to the shortcomings of the former. EI 

has a significant role in the development of LCC, a distributed protocol language that 

provides the foundation for the research work reported in this thesis. As such, the 

following sub-section is dedicated to provide a review on EI and its features before LCC 

is described in details in sub-section 2.2.2. 

 

2.2.1 Electronic Institutions 
 

The objective-based paradigm of agent interactions is largely typified by EI [Noriega, 

'97; Esteva et al., '00] . The underlying concept behind the framework is that human 

interactions are always guided by formal and informal conventions. Human interactions 

are never completely unconstrained; rather such notions as conventions, customs, 

etiquette, and laws control them. EI framework provides a means for controlling the 

interactions of agents in a MAS using formal institutions [Esteva et al., '01]. 

An EI is considered analogous to a theatre production. The agents that are 

coordinated by the institution are analogous to the actors, and each agent takes one or 

more roles in the institution. The interactions are articulated through the use of scenes in 
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which groups of agents directly interact. Within a scene, all the participating agents 

follow a single script which guides their interactions.  

Though there exist a number of EI frameworks which vary in details, their basic 

principles are close to the ISLANDER [Esteva et al., '02]. The ISLANDER framework 

formally defines several core aspects of EIs. Central to ISLANDER are the formal 

definition of roles for agents, a shared dialogical framework, the division of the 

institution into a number of scenes and a performative structure which dictates, via a set 

of normative rules, the relationship between scenes.  

The notion of role is central in the specification of EIs and each role defines a 

pattern of behaviour within the institution. A role can be defined as a finite set of actions, 

intended to represent the capabilities of the role. For instance, an agent assuming the 

buyer role is capable of submitting bids and an agent assuming the auctioneer role can 

offer goods at auction. In order to take part in an EI, an agent is obliged to adopt some 

role(s). Thereafter, an agent playing a given role must conform to the pattern of 

behaviour attached to that particular role. Therefore, all agents adopting similar roles are 

guaranteed to have the same rights, duties and opportunities. 

In order to allow agents to successfully interact with other agents, the fundamental 

issue of having a common language and ontology must be addressed. This guarantees the 

interacting agents to have a shared vocabulary for communication as well as a common 

world-view with which to represent the world they are discussing. For this purpose, EI 

dictates that agents must share a dialogical framework when communicating. By sharing 

a dialogical framework, heterogeneous agents are capable to exchange knowledge and 

information with the other agents. The core of the dialogical framework includes an 

ontology, a content language, and a set of illocutions. The content language allows for the 

encoding of knowledge and information to be exchanged among agents using the 

vocabulary offered by the ontology, and this part makes up the inner language. The 

propositions generated using the inner language need to be embedded into an outer 

language, the communication language which expresses the intentions of the utterance by 

means of the illocutions, before being passed between the agents. The dialogical 

framework, which consists of the ontological elements, is essential for the specification 

of scenes. 
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All interaction between agents occurs within the context of scenes. A scene defines 

a generic pattern of interaction protocol between roles, expressed as the set of valid 

sequences of illocution that agents assuming the role can exchange. Any agent 

participating in a scene has to play one of its roles. A scene is specified as a directed 

graph where the nodes represent the different states of the interaction and the directed 

arcs connecting the nodes are labelled with the actions that make the scene state evolve. 

Each scene has a set of entrance and exit states, and agents participating in the scene must 

satisfy conditions associated with these states before they can enter or exit a scene.  

As agents might be involved in a number of individual scenes, the relationship 

between these scenes needs to be properly formalised. The performative structure defines 

this network of scenes and their inter-relation with each other. It specifies how the agents 

depending on their role can move among different scenes, taking into account the 

relationship among the different scenes. The roles adopted by an agent and the actions 

performed by the agent upon assuming these roles create obligations and affect future 

actions available to the agents. These consequences can either limit or enlarge its 

subsequent possibilities for action, and provide a possible path for an agent within the 

performative structure. These are referred to as normative rules, and can be categorised as 

either intra-scene or inter-scene. Intra-scene dictates actions for each agent role within a 

scene, and inter-scene is concerned with the commitments which extend beyond a 

particular scene and into the performative structure [Esteva et al., '00; Esteva et al., '01]. 

In order to illustrate the concept of institution and scene, an example is provided in 

figure 2.2, which is borrowed from the work reported in [Walton and Robertson, '02]. 

Figure 2.2(a) provides an example of an institution designed for the diagnosis of breast 

cancer and one of the scenes for this institution is illustrated in figure 2.2(b). The 

institution consists of a number of inter-linked scenes. The rectangles represent scenes, 

and the inter-scene connectives represent the performative structure. The scene of figure 

2.2(b) is intended to represent a patient(P) visiting a doctor(D) to obtain a diagnosis of 

breast cancer symptoms. 
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Figure 2.2: Example of El and scene 

 

The specification of EI as defined using the ISLANDER framework is executed 

using AMELI [Esteva et al., '04], the infrastructure and governing agent that mediates 

participating agent’s interactions. Given an ISLANDER EI specification, AMELI ensures 

that agents participating in the institution adhere to all the specified norms. The 

innovative contribution of AMELI is its ability to implement any EI specification defined 

in ISLANDER regardless of domain. 

Although not always described as such, EI is a form of protocol that is intended to 

be globally understood by the agents concerned. It relies on agents being aware of the 

current state of the institution, when and where they are expected to interact. A key issue 

with such a protocol, however, is how the global control is enforced in practice. The 

current enforcement technique (i.e. AMELI) relies on the use of administrative agents, or 

agent proxies to ensure the smooth running of the institution. It is through this central, 

coordinating agent (or “governor”) that all messages associated with the institution are 

routed to. The governor can then enforce sequencing as necessary; prompt agents for 

appropriate messages; and generally keep the interaction coherent. The problem with this 

solution is that the agents are dependent on the governor to provide the necessary 

coordination for effectively interacting with each other. As argued in [Walton and 

Robertson, '02; Robertson, '04a], the use of governor undermines a key principle of 

agency−that each agent can operate autonomously−since governors remove part of that 

autonomy. In addition, the governor can become a bottleneck in agents’ interactions if 

only a small number of governors are available to accommodate a sizeable number of 

interacting agents. 
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These limitations affect EI appropriateness for open heterogeneous MAS, and give 

rise to the development of distributed protocol approach that preserves agents’ autonomy; 

does not rely on the governor, yet provides interaction coordination. 

 

2.2.2 Lightweight Coordination Calculus 
 

Distributed protocols are a new approach to multi-agent interaction. In the common 

practice, an agent’s communicative model is developed by the individual engineers by 

interpreting any formal, graphical or natural language descriptions of a multi-agent 

system’s interactions. The distributed protocol method, however, takes the view that the 

agents themselves can participate in a communication using a given interactive model if 

they are provided with the means to compute their parts in the interaction as specified in 

the model. The advantage of distributed protocols is that agents are not tied to a set of 

predefined protocols that their creator foresaw. A number of existing approaches for 

distributed protocols include [deSilva, '02; Freire and Botelho, '02], however as described 

in [McGinnis, '06], Lightweight Coordination Calculus (LCC) is considered more 

developed since it is readily available in an executable form and can be directly utilised 

for the work presented in this thesis. This does not necessary mean that our work is solely 

dependent on LCC. It is portable to any distributed protocol platform that has the same 

features as LCC, to be described in the remaining of this section, with very minimal 

adjustments. 

The development of LCC is mainly driven by the dissatisfaction with the EI 

approach for agent interactions, especially the ISLANDER approach due to the described 

limitations. A detailed discussion concerning LCC specification and the means to 

compute interaction protocol terms within the LCC are given in the following two sub-

sections. 

 

2.2.2.1 LCC Syntax 
 

LCC borrows the notion of role from agent systems that enforce social norms (e.g. EI) 

but reinterprets this in a formalism based on process calculus. The syntax of the protocol 
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language, taken from [Robertson, '03] is shown in figure 2.3. Social norms in LCC are 

expressed as message-passing behaviours associated with roles. In LCC, the interaction 

framework is composed of a set of clauses, each of which defines how a role in the 

interaction must be performed. Roles are described by the type of role and an identifier 

for the individual agent undertaking that role. The definition of performance of a role is 

constructed using combinations of the sequence operator (‘then’) or choice operator 

(‘or’) to connect messages or changes of role. Messages are either outgoing to another 

agent in a given role (‘⇒’) or incoming from another agent in a given role (‘⇐’). Figure 

2.4 provides a diagrammatical view of these operators. The most basic behaviours are to 

send or receive messages, and more complex ones can be constructed using combinations 

of the sequence and choice operators. A set of such behavioural clauses specifies the 

message passing behaviour expected of a social norm and, in LCC, this is referred to as 

the interaction framework. 

Message input/output or change of role can be governed by a constraint defined 

using the normal logical operators for conjunction, disjunction and negation. Notice that 

there is no commitment made in LCC with regards to the choice of constraint language as 

it depends on the constraint solvers used. However, in the current LCC implementation, 

constraints are specified as first order predicate calculus. The two options provided by 

LCC on how agents can satisfy these constraints are as follows [Robertson, '04c]: 

 

 Internally according to whatever knowledge and reasoning strategies it 

possesses. This is the normal assumption on most MAS, yet it might not always 

be ideal. Sometimes, it might be preferred not to have the knowledge 

specifically used for a social interaction internalised within the agents as 

commonly required (e.g. in cases where knowledge might be inconsistent with 

the agents’ own beliefs). In such cases, LCC offers a second option: 

 

 Externally using a set of Horn clauses defining common knowledge assumed for 

the purpose of the interaction. This common knowledge can be set as public 

(accessible to all agents participate in the interaction) or private (accessible to 

individual or limited set of agents involved in the interaction). Like the LCC 



Chapter 2. Related Work 

 26

protocols themselves, the common knowledge is passed between agents along 

with messages during interaction. Therefore, it is temporary – lasting only as 

long as the interaction. Further description with regards to this option is 

provided in the next sub-section. 

 
Figure 2.3: Syntax of LCC protocol language 

 

THEN
OR

SEND RECEIVE

KEY:

Role/
Message

Flow of 
control

 

Figure 2.4: Diagrammatical view of LCC operators 
 

  
Framework := {Clause,…} 

Clause := Role::Def 
Role := a(Type,Id) 
Def := Role | Message | Def then Def | Def or Def |   

null  C 
Message := M ⇒ Role | M ⇒ Role  C | M ⇐ Role |  

C  M ⇐ Role 
C := Term | ¬C | C ∧ C | C ∨ C 

Type := Term 
M := Term 

 
 
Where null denotes an event, which does not involve message passing; Term is a 
structured term in Prolog’s syntax and Id is either a variable or a unique identifier for the 
agent. The operators ¬, ←, ∧ or ∨ are the normal logical connectives for negation, 
implication, conjunction or disjunction. M ⇒ A denotes that a message, M, is sent out 
to agent A. M ⇐ A denotes that a message, M, from agent A is received. The 
implication operator dominates the message operators, so for example , 
M ⇒ Agent  C is understood as (M ⇒ Agent)  C 
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Coherence of interaction between agents can be ensured by imposing constraints 

relating to the messages they send and receive in their chosen roles (see use of C in 

figure 2.3). Constraints are imposed through the implication operator (marked by ‘ ’), 

which indicate the requirements or consequences for an agent on the performatives or 

roles available to it. The clauses of the protocol are arranged so that, although the 

constraints on each role are independent of others, the ensemble of clauses operates to 

give the desired overall behaviour [Robertson, '04c]. For example, the LCC protocol of 

figure 2.5 places two constraints on the variable X: the first (p(X)) is a condition on the 

agent A1 in role r1 sending the message offer(X) and second (q(X)) is a condition on the 

agent A2 in role r2 sending message accept(X) in reply. By (separately) satisfying p(X) 

and q(X) the agents A1 and A2 mutually constrain the variable X. 

 

 

Figure 2.5: Example of LCC protocol 
 

Although LCC looks different from EI-based framework like ISLANDER, it provides all 

the representational features of one, as described in detail in [Robertson, '04a]. Other 

aspects of LCC are further discussed in [Walton and Robertson, '02; Robertson, '03; 

Robertson, '04c; Robertson, '04b], which are summarised in the following sections of 

2.2.2.2 and 2.2.2.3. A discussion on a variant of LCC called Multi-agent Protocol which 

is implemented in the Java platform is provided in [Walton, '04b; Grando and Walton, 

'06]. A number of other results based on LCC or similar approaches are described in 

[McGinnis et al., '03; McGinnis and Robertson, '04; Walton, '04a; Walton and Barker, 

'04; Lambert and Robertson, '05; McGinnis and Robertson, '05; Grando and Walton, '06; 

Osman et al., '06]. 

 

a(r1,A1)::offer(X) ⇒ a(r2,A2)  p(X) then accept(X) ⇐ a(r2,A2) 
 
a(r2,A2)::offer(X) ⇐ a(r1,A1) then accept(X) ⇒ a(r1,A1)  q(X) 
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2.2.2.2 Coordination Mechanism 
 

In LCC, one of the main concerns is for the mechanism used to provide coordination for 

distributed agent interactions to have as low an impact as possible on the engineering of 

agents. This can be achieved through a modular mechanism, acting as an intermediary 

between the agent and the medium used to transmit messages, as depicted in figure 2.6. 

On the principle, the functionality of the mechanism is similar to the function of governor 

in EI. However, in LCC, the coordination is managed by the agents themselves who have 

full control and access to the mechanism. 

 

Constraint 
solver

Protocol 
expander

Message encoder/decoder

Message passing 
media

Agent

LCC
 

Figure 2.6: Basic architecture of agent interactions in LCC  
 

The module has the following elements: 

 A message encoder/decoder for receiving and transmitting messages via whatever 

message passing media being used to transport messages between agents. For 

example, if the blackboard-based platform like the Linda tuple space [Carrieno 

and Gelernter, '89] is being used for inter-agent communication, then the 

encoder/decoder must be able to read Linda messages and extract the LCC 

protocol expressions contained within; similarly for other platforms. 

 A protocol expander that decides how to expand a protocol received with a 

message. Detailed specification on this part is provided in sub-section 2.2.2.3. 
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 A constraint solver capable of deciding whether constraints passed to it by the 

protocol expander are satisfied. 

The existing Prolog-based mechanism for deploying LCC protocols relies on 

passing the protocol and associated information about the state of the collaboration with 

messages sent between agents [Robertson, '04c]. This means that the interacting agents 

do not retain any protocol clause (or clauses if it has multiple roles) appropriate to it. This 

has the advantage since agents are not required to provide any clause storage, but it works 

only for interactions that are linear, in a sense that at any given time, only one agent alters 

the state of the interaction regardless of how many agents are involved in the interactions. 

An example of a linear interaction is a dialogue between two agents where each agent 

takes alternate turn in the interaction. An example of a non-linear interaction is an auction 

involving a broadcast call for bids. 

This method of coordination is described in figure 2.7. For ease of discussion, the 

diagrams depict an interchange between only two agents (Agent 1 and Agent 2), with a 

message (Message 1) being sent from Agent 1 to Agent 2 and another message (Message 

2) being returned in response. The clauses determining the behaviours of the interacting 

agents are distributed among the agents as the protocol is passed between them. These 

distributed clauses, which are depicted as clause stores in figure 2.7, describe the state of 

agents’ interactions. Upon receipt of a message, the agents look for their clauses in the 

clause store. The agents make the necessary update on the respective clauses once they 

have completed their parts of the protocol. The state of the whole interaction is preserved 

by the message as it passes between agents. 
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Agent 1 Agent 2
Message 1

LCC protocol

Clause store

Clause

Message 2

LCC protocol

Clause store

(1) (2)

(3)

(4)

(5)(6)

KEYS:
(1) – Sending of Message 1
(2) – Receiving of Message 1
(3) – Clauses store look-up
(4) – Updates of clauses
(5) – Sending of Message 2
(6) – Receiving of Message 2

 
Figure 2.7: Message-passing in LCC 

 
In order to support this method of coordination, the format of messages exchanged 

among the agents within the LCC is as follows: 

i. A message must contain (at least) the following information, which can be encoded 

and decoded by the sending and receiving mechanisms attached to each agent: 

 An identifier, I, for the social interaction to which the message belongs. This 

identifier must be unique and is chosen by the agent initiating the social 

interaction. 

 A unique identifier, A, for the agent intended to receive the message. 

 The role, R, assumed of the agent with identifier A with respect to the message. 

 The message content, M, expressed in the dialogical framework shared and 

understood by the interacting agents. 

 The protocol, P, of the form P := 〈T,C,K〉 for continuing the social interaction.  

a. T is the interaction state. This is a record of interactions accomplished so 

far, which indicates the current interaction state for each agent. This is 

achieved by marking the agent interaction clauses as closed or failed 

depending on whether they have been communicated successfully. This 

computational process is performed by the agents themselves after 
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successfully executing their parts in the protocol. Clauses that have been 

communicated are enclosed by a ‘c’, c(M) as illustrated in table 2.1. A 

protocol term is considered closed, meaning that it has been covered by 

the preceding interaction, as follows: 

closed(c(X)). 
closed(A or B)  closed(A) ∨ closed(B). 
closed(A then B)  closed(A) ∧ closed(B). 
closed(X::D)  closed(D). 

b. The second part is a set, C, of LCC clauses defining the interaction 

framework (based on the syntax in figure 2.3). 

c. The final part, a set K, of axioms consisting of common knowledge as 

described earlier. 

ii. The agent must have a mechanism for satisfying any constraints associated with its 

clause in the interaction framework. Where these can be satisfied from common 

knowledge (the set of K above), it is possible to supply standard constraint solvers 

with the protocol. Otherwise, it is the responsibility of the agent. 

 

2.2.2.3 Expansion Engine 
 

Within the LCC, agents themselves are expected to communicate the conventions of the 

interaction protocol. This is accomplished by the participating agents satisfying the 

following two engineering requirements.  

First, agents are required to share a dialogical framework. This is an unavoidable 

necessity in any meaningful agent communication. As such, the individual messages and 

constraints are required to be expressed in an ontology understood by the agents. For the 

constraints, though their specifications need to be understood by all of the agents 

involved in the interactions, how they are satisfied is left to the internal reasoning of each 

individual agent.  

Second, agents are required to provide a means to process the received message and 

its protocol. Given the descriptions about the message format, the basic operation an 

agent must perform when interacting via LCC is to decide what the next steps for its role 
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in the interaction should be, using the information carried with the message it receives 

from some other agent. An agent is capable of conforming to a LCC protocol if it is 

supplied with a way of unpacking any protocol it receives, finding the next moves that it 

is permitted to take, and updating the state of the protocol to describe the new state of the 

interaction. In the current practice, these are achieved by applying rewrite rules of table 

2.1 to expand the protocol terms.  

The nine rules specified in table 2.1 define the expansion of a single interaction 

clause. Full expansion of a clause is achieved through exhaustive application of these 

rules. Rewrite rule 1 expands a protocol clause with head A and body B by expanding B 

to give a new body, E. The other eight rewrite rules are concerned with the operators in 

the clause body. A choice operator is expanded by expanding either side, provided the 

other is not already closed (rewrite rules 2 and 3). A sequence operator is expanded by 

expanding the first term of the sequence or, if that is closed, expanding the next term 

(rewrite rules 4 and 5). A message matching an element of the current set of received 

messages, Mi, expands to a closed message (i.e. marked as c(message)) if the constraint, 

S, attached to that message is satisfied (rewrite rule 6). A message sent out expands 

similarly (rewrite rule 7). A null event can be closed if the constraint associated with it 

can be satisfied (rewrite rule 8). An agent role can be expanded by finding a clause in the 

protocol with a head matching that role and body B – the role being expanded with that 

body (rewrite rule 9). 
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A protocol term is said to be closed, meaning that it has been covered by the preceding 
interaction if the following holds. 
 

closed(D)D)::closed(X                        
closed(B)    closed(A)B)then closed(A                          

closed(B)   closed(A)B)or closed(A                          
) c(X) closed(                        

←
∧←

∨←
  

satisfied(S) is true if S can be solved using the agent’s current knowledge. 
satisfy(S) is true if the satisfaction of S is derivable from the agent’s knowledge. 
clause(P,X) is true if clause X appears in the interaction protocol P. 
 

Table 2.1: Rewrite rules for expansion of a protocol clause 
 

The following describe how the expansion of protocol terms are achieved in LCC: 

 An agent with unique identifier, A, retrieves a message of the form (I,M,R,A,P) 

where: I is a unique identifier for the interaction; M is the message; R is the role 

assumed of the agent when receiving the message; A the agent’s unique identifier; 

and P the attached protocol consisting of T, the dialogue state; a set of dialogue 

clauses, C; and a set of axioms, K, defining knowledge pertaining to the subject 

matter of the interaction. The message is added to the set of messages currently 

under consideration by the agent – yielding the message set Mi∈M. 
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 The agent extracts from P the interaction clause, Ci∈C, determining its part of the 

interaction. 

 The rewrite rules of table 2.1 are applied to give an expansion of Ci in terms of 

protocol P in response to the set of received messages, Mi, producing: a new 

interaction clause Cn, an output message set On and remaining unprocessed 

messages Mn (a subset of Mi). These are produced by applying the protocol rewrite 

rules in table 2.1 exhaustively to produce the sequence: 

 ( )n
O,P,M,M

1n2i
O,P,M,M

1i,1i
O,P,M,M

i CC,...,CCCC 1nn1n1i2i1ii1ii ⎯⎯⎯⎯⎯ →⎯⎯⎯⎯⎯⎯ →⎯⎯⎯⎯⎯ →⎯ −−++++
−+++  

 

 The agent’s original clause, Ci, is then replaced in P by Cn to produce the new 

protocol, Pn. 

 The agent can then send the messages in set On, each accompanied by a copy of the 

new protocol Pn. 

 

2.3 Distributed Problem Solving Environment 
 

In a distributed problem solving environment, sub-problems are interdependent and 

overlapping [Decker et al., '88], so agents working in the environment must carefully 

coordinate their local problem solving actions which can only be achieved through proper 

agent interactions. These interactions allow interdependence of the sub-problems due to 

the relationships that exist between them to be adequately resolved.  These relationships 

can be associated to two basic situations related to the natural decomposition of domain 

problem solving into sub-problems to be solved individually by the agents [Lesser, '99]. 

The descriptions of the situations are as follows: 

 

Similar or Overlapping Sub-problems Situation. In this situation, different agents have 

either alternative methods or data that can be used to generate a solution given a set of 

similar or overlapping sub-problems. For example, in a distributed situation assessment 

application, overlapping sub-problems occur when different agents are interpreting data 
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from different sensors (independent information sources) that have overlapping sensor 

regions (cover similar information). 

 

Sub-problems are Part of a Larger Problem Situation. In this situation, a form of 

interdependence occurs when a number of sub-problems are part of a larger problem in 

which a solution to the larger problem requires that certain constraints exist among the 

solutions to its sub-problems. For example, in a distributed expert system application 

involving the design of an artefact where each agent is responsible for the design of a 

different component (sub-problem), there are constraints among these sub-problems that 

must be adhered to if the individual component designs will mesh together into an 

acceptable overall design. This situation also includes the case where the results of one 

sub-problem are needed to solve another.  

 

Besides these two, there exists another situation where the interdependencies among 

sub-problems are not inherent to the problem domain. This occurs when it is not possible 

to decompose the problem into a set of sub-problems to allow a perfect fit between the 

computational requirements for effectively solving each sub-problem and the agents to 

solve them.  An example of this type of constraint is insufficient local information or 

resources for an agent to completely or accurately solve the assigned sub-problems 

through its own processing. This might lead to the creation of shared agent plans so that 

the use of scarce resources can satisfy multiple objectives of the agents or the 

reconfiguration of resources to better meet the competing needs of agents. 

The sub-problems handled by the distinct agents can be modelled using a 

Distributed Constraint Satisfaction Problem formalism. This formalism, an extension of 

Constraint Satisfaction Problem framework, is developed to accommodate the needs of 

distributed problem solving environments. The definitions for CSP and DCSP are given 

as follows: 
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Definition 2.1: Constraint Satisfaction Problem (CSP)  

A CSP is a problem composed of [Tsang, '93]: 

 a finite set of variables, V={V1,…,Vk}, and each variable Vi∈V is associated with 

o a finite domain of values, D={D1…Dk}, and 

o a set of constraints, C={C1,…,Cm} which restricts the values that the 

variables can simultaneously take 

 

Definition 2.2: Distributed Constraint Satisfaction Problem (DCSP) 

DCSP is defined abstractly as consisting of the following three components [Yokoo 

et al., '98]: 

 an agent set A = {A1, A2,…, An}, finite, non-empty set 

 each agent Ai ∈ A has a finite set of k variables V1, V2,…, Vk, and each variable 

is associated with a finite domain of values D1, D2,…, Dk, that can be assigned 

to the variables 

 there exist two kinds of constraints over the variables among the agents that 

defines the permissible subsets of assignments to the variables: 

o Intra-agent constraints, between variables of the same agent 

o Inter-agent constraints, between variables of different agents 

 

This formalism is further refined in the Multi-agent Agreement Problem (MAP), 

which is a special class of DCSP. The major difference between the two is that the former 

allows a variable to be shared among a set of agents (participants) while the latter assigns 

each variable to a unique agent. As it is specifically intended to model “agreement”, the 

MAP requires the constraints between variables belonging to different agents to be 

limited to equality constraints. DCSP, on the other hand admits general inter-agent 

constraints. 

The motivation for introducing the MAP representation with shared variables is to 

conveniently and explicitly capture problems where multiple agents are involved in a 

joint decision. This is a feature of many distributed problem solving domains where each 

agent brings its own private constraints to bear on the decision, yet agents must come to 

an agreement.  
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Definition 2.3: Multi-Agent Agreement Problem (MAP) 

MAP can be defined as follows [Modi and Veloso, '04; Davin and Modi, '06]: 

 A = {A1,A2,…,An} is a set of agents 

 V = {V1,V2,…,Vm} is a set of variables 

 D = {D1,D2,…,Dk} is a set of values. Each value can be assigned to any variable 

 participants(Vi) ⊆ A is a set of agents assigned the variable Vi. A variable 

assigned to an agent means it has (possibly shared) responsibility for choosing 

its value 

 vars(Ai) ⊆ V is the set of variables assigned to agent Ai 

 For each agent Ai, Ci is an intra-agent constraint that evaluates to true or false. It 

must be defined only over variables in vars(Ai) 

 For each variable Vi, an inter-agent “agreement” constraint is satisfied if and 

only if the same value from D is assigned to Vi by all the agents in 

participants(Vi) 

 

An assignment of values to variables is valid (sound) iff it satisfies both inter-agent 

and intra-agent constraints. An assignment is complete iff every variable in V is assigned 

some value. The goal is to find a valid and complete assignment. For example, figure 2.8 

provides an abstract illustration concerning the interdependency that involves four 

variables (i.e. V1, V2, V3 and V4) and three agents (i.e. agent A, agent B and agent C), in 

which each node represents a variable, and each arc represents a local constraint between 

variables represented by the end points of the arc. The intra-agent constraints of each 

agent are varied in terms of constraint density, in which agent B has a highly constrained 

problem while agent C has a least constrained one. Since agents are distributed in 

different locations or in different processes, each agent only knows the partial problem 

associated with those constraints in which it has variables. A global solution then consists 

of a complete set of the overlapping partial solution of each agent. Interaction among 

agents is necessary and important for solving this problem, since each agent only knows 

its variables, variable domains and related inter-agent and intra-agent constraints. A 
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solution S, is an instantiation for all variables that satisfies all intra-agent and inter-agent 

constraints. 

Agent A Agent B Agent C

V1

V2

V3 V4

V1

V2

V3 V4

V1

V2

V3 V4

 
Figure 2.8: Variable interdependency in distributed problem solving 

 

2.4 Over-Constrained Problems 
 

A CSP consists of a finite number of variables, each having a finite and discrete set of 

possible values, and a set of constraints over these variables. A solution to a CSP is an 

instantiation of all variables for which all the constraints are satisfied. Though powerful, 

the CSP schema presents some limitations. In particular, all constraints are considered 

mandatory and need to be fully satisfied. However, in many real-world problems, it is 

often the case that there exists no consistent instantiation of variables that satisfies all 

constraints. This leads to unsolved problems. These problems are said to be over-

constrained: any complete assignment of variables violates some defined constraint of the 

CSP [Meseguer et al., '03; Zhou et al., '05]. An over-constrained problem is illustrated in 

figure 2.9: the Robot Clothing Problem [Freuder and Wallace, '92]. The nodes in the 

graph represent the three variables – shoes, shirt and slacks – representing the items of 

clothing that must be chosen. Each node is also labelled with a set of values for the 

corresponding variables, i.e. the domain of each variable. The arcs that connect the 

variables are labelled with the legal combinations of values for each of the variables, i.e. 

the constraints between the variables. Since the conventional formulation of CSPs 

requires all constraints to be satisfied, visibly, this problem is over-constrained as it 

admits no solution. 
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shoes

shirt slacks

{red,white} {denims,blue,gray}

{cordovans,sneakers}

{ (cordovans,white) }
{ (cordovans,gray),
(sneakers,denims) }

{ (red,gray),
(white,denims),
(white,blue) }  

Figure 2.9: Example of an over-constrained problem 
 

In practice however, it is sometimes the case that certain constraints can be violated 

occasionally, or weakened to some degree. As conventional CSP techniques lack the 

mechanisms to accommodate such a notion of constraint handling, this gives rise to the 

establishment of a niche research area within the constraint satisfaction research field 

focusing on approaches to solve over-constrained problems. These approaches include: 

 

Extended CSP. Constraints in the conventional CSP scheme are crisp, in which they can 

only be either in two possible states – completely satisfied or completely violated. In 

order to address this rigidity, several models have been devised to extend the existing 

CSP scheme to enable it to accommodate different constraint representations that include 

non-crisp constraint forms like fuzziness, probabilities and weights [Meseguer et al., '03].  

 

 In the fuzzy model, constraints are represented by fuzzy relations [Dubois et al., 

'96]. In this model, constraint satisfaction becomes a matter of degree. The degree 

in which this relation is satisfied is given by a membership function from the 

interval [0, 1], where 1 means complete satisfaction and 0 complete violation. The 

satisfaction degree for each possible value assignment is computed, and a solution 

is the value assignment with maximum satisfaction degree.  
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 In the weighted model, each constraint is labelled with a weight, which represents 

the cost (or penalty) that exists if the constraint is violated. The cost of a complete 

assignment is the addition of costs of all constraints instantiated by that 

assignment. A solution is the value assignment with minimum cost.  

 

 In the probabilistic model, each constraint is labelled with a probability of 

presence, assumed independent of the presence of other constraints. A solution is 

the value assignment with maximum probability of being a solution to the real 

problem. 

 

Partial Constraint Satisfaction Problem. In the partial Constraint Satisfaction Problem 

(partial CSP) model, constraints are represented by crisp relations. The scheme proposed 

in [Freuder and Wallace, '92] is an interesting extension to CSP, which allows the 

relaxation and optimisation of over-constrained problems via the weakening of the 

original CSP. In this scheme, a general model of partial constraint satisfaction is 

proposed that provides comparison with alternative problems rather than alternative 

solutions. It is suggested that partial satisfaction of a problem, P, should be viewed as a 

search through a space of alternative problems for a solvable problem “close enough” to 

P. Freuder and Wallace argue that a full theory of partial satisfaction should consider not 

merely how a partial solution requires us to violate or vitiate constraints, but how the 

entire solution set of the problem with these altered constraints differs from the solution 

set of the problem with which we started. This scheme provides the basis of the proposed 

approach to address distributed over-constrained problems that lead to the brittleness of 

the interaction protocol. Further details with regard to this scheme are provided in the 

next section and the notion of a brittle agent interaction is described using an example in 

chapter 3. 
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Constraint Hierarchies. In this model constraints are divided into a hierarchy of levels, 

according to their relative importance. This model, which only considers crisp 

constraints, provides a framework to define a constraint hierarchy as a finite collection of 

constraints labelled with a level of strength or preference, i.e. hard and soft constraints 

[Borning et al., '92]. While the hard (required) constraints must hold, the soft 

(preferential) constraints should be satisfied as much as possible depending on the criteria 

used. A solution to an over-constrained problem then is an assignment of values to 

variables that best satisfies the constraints and respecting the associated hierarchy. 

  

Though there exist a number of well-established approaches for solving over-

constrained problems, partial CSP is chosen as it fits well for the interaction protocol 

environment – no further assumptions are needed with regards to the formalism and 

criteria used by the heterogeneous and distributed agents concerning the constraints 

communicated between them. In partial CSPs, constraints are represented as crisp 

relations, which have been generally accepted as a natural formalism to specify many 

kinds of real-life problems. As such, agents face an over-constrained situation and fail to 

expand their parts in the protocol led interaction are neither obligated nor required to 

revise the formalisation of their local problems. In addition, partial CSP has also been 

extended to support the solving of distributed, over-constrained problem. This new, 

extended scheme is known as the distributed partial CSP [Hirayama and Yokoo, '97; 

Yokoo, '01]. In the other approaches used to address over-constrained problems (i.e. 

extended CSP or Constraint Hierarchies), there is a need to provide an additional 

formalism to appropriately represent the extended mechanism used in handling the 

constraints (i.e. fuzzy, probability or hierarchy). Integrating these approaches with LCC 

will require a major revision on the current distributed interaction protocol system of 

LCC to accommodate this need. This, however, is a separate research issue that is beyond 

the scope of our current research. We are interested in a mechanism to coordinate and 

compute the weakening of the original CSPs among the interacting agents faced with an 

over-constrained problem which causes an interaction to break. 
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2.5 Partial Constraint Satisfaction Problems  
 

A partial CSP requires the weakening of a problem in order to accept more solutions. 

Essentially, in partial CSP, the focus is on relaxing the original CSP so that a satisfactory 

solution can be found [Freuder, '90]. For a given CSP, one might relax it based on the 

following four options [Freuder and Wallace, '92], and the example of the over-

constrained problem in figure 2.9 is used to illustrate each option: 

1. Enlarging a variable domain (e.g. buying a new shirt) 

2. Enlarging a constraint domain (e.g. deciding that certain shoes do, after all, go with 

a certain shirt). 

3. Removing a variable (e.g. deciding not to wear shoes at all). 

4. Removing a constraint (e.g. ignore clashes between shoes and shirts). 

 

 However, all of these options can be considered in terms of the basic process of 

enlarging constraint domains (i.e. option 2). For instance, option 1 of enlarging a variable 

domain is the same as enlarging the domain of a constraint since a variable domain can 

be defined as a unary constraint. Removing all the constraints on a variable is equivalent 

to removing the variable of option 3, while enlarging a binary constraint until it contains 

all pairs of values in the specified domains for the two variables is tantamount to 

removing the constraint as defined in option 4. 

Formally, a partial CSP can be viewed as a partially ordered set of CSPs, with a 

common root. The root is the original CSP. The rest of the nodes in the graph are CSPs 

obtained from the original one through a sequence of relaxation operations, as illustrated 

in figure 2.10 [Yang and Fong, '92]: 
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Original CSP

CSP1 CSP2 CSP3

CSP4 ……. ……. …….

Relaxation

 
Figure 2.10: The problem space of partial constraint satisfaction 

 

Given two CSPs in the graph, one can measure the distance between them, by 

associating a partial CSP with a metric. The metric might measure the difference in the 

number of solutions, the number of added domain values, or it might measure the number 

of missing (or relaxed) constraints. Solving a partial CSP then becomes a problem of 

finding a solution of a relaxed CSP within the space of partial CSP, so that the distance 

metric between the solution of the relaxed CSP and the ideal solution of the original CSP 

is within some acceptable bound. Two special bounds have been established to ensure the 

space of partial CSPs is restrained. The first is a sufficient bound, which specifies that a 

solution to a relaxed CSP is good enough if the metric distance between the solution and 

the ideal solution is within this bound. The second one is the necessary bound which 

specifies that the space of CSPs under consideration must all contain solutions that are 

within the bound. 

  

Definition 2.4: partial Constraint Satisfaction Problem  

A partial CSP can be formally described as a triple [Freuder and Wallace, '92]: 

〈(P, U), (PS, ≤), (M, (Necs, Suff))〉, where 

 

 P is an original CSP, U is a set of ‘universes’, i.e., a set of potential values for 

each variable in P 

 (PS,≤) is a problem space, where PS is a set of CSPs (including P), and ≤ is a 

partial order over PS 
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 M is a distance function over the problem space, and (Necs,Suff) are necessary 

and sufficient bounds on the distance between P and some solvable member of 

PS 

A solution to a partial CSP is a soluble problem P’ from the problem space and its 

solution, where the distance between P and P’ is less than Necs. Any solution will 

suffice if the distance between P and P’ is not more than Suff, and all search can 

terminate when such a solution is found. An optimal solution to a partial CSP is a 

solution in which the distance between P and P’ is minimal, and this minimal distance 

is called the optimal distance.  

 The partial-order defined over the problem space PS, is defined in terms of the set 

of solutions to problems. Specifically, P1 ≤ P2 iff sols(P1) ⊇ sols(P2), where sols(P1) and 

sols(P2) denotes the set of solutions to problem P1 and P2 respectively. P1 ≤ P2 can be read 

as “P1 is obtained by weakening the constraints in P2”. As the problem is weakened, the 

constraints in the problem allow more consistent assignments and, as a consequence, the 

set of solutions may increase. 

 The manner in which a weakened problem is evaluated depends on the distance 

metric, M, that is used. A number of metrics have been proposed [Bistarelli et al., '04], 

and these include solution subset distance, augmentation distance and Max-CSP distance, 

which are described as follows: 

 Solution subset distance – The distance metric is defined as the number of 

solutions not shared between the problems P and P’. When P’≤ P, this metric 

reflects the number of solutions that have been introduced due to the relaxation 

of the original problem P. 

 

 Augmentation distance – The distance metric is slightly different to solution 

subset distance. It counts the number of constraint values that are not shared by 

problems P and P’. This represents the number of augmentations to the 

constraints in problem P that are required to reach its relaxation P’.  

 

 Max-CSP distance – This is the most well-studied distance metric of the three. 

It involves finding a solution that violates the minimum number of constraints 
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in the problem. The metric is normally defined as the number of constraints that 

are violated. 

 

Considering that the partial CSP approach is applied to resolve the over-constrained 

CSP of figure 2.9, and given that a simple distance function is adopted (i.e. solutions 

involving the smallest number of augmentation is preferred), then figure 2.11 provides 

five equally good weakened problems obtained. For each weakened problem, only one of 

the constraints is chosen to receive one extra pair of values as illustrated in figure 2.11. In 

the figure, the notation Cx,y is used to indicate the constraints between variables x and y, 

that is the legal combination of values for each of the variable. 

The partial CSP scheme has been extended by Hirayama and Yokoo for distributed 

environments and is known as distributed partial CSP.  

 

Definition 2.5: distributed partial Constraint Satisfaction Problem  

A distributed partial CSP consists of [Hirayama and Yokoo, '97; Yokoo, '01]: 

 A set of agents (problem solvers), 1, 2,…, m 

 〈(Pi, Ui), (PSi, ≤), Mi〉 for each agent i 

 (G, (Necs, Suff)), where 

For each agent i, Pi is an original CSP (a part of an original distributed CSP), and Ui is a 

set of universes, i.e. a set of potential values for each variable in Pi. Furthermore, (PSi, ≤) 

is called a problem space, where PSi is a set of (relaxed) CSPs including Pi, and ≤ is a 

partial order over PSi. Also, Mi is a locally-defined distance function over the problem 

space. G is a global distance function over distributed problem spaces, and (Necs, Suff) 

are necessary and sufficient bounds on the global distance between an original distributed 

CSP (a set of Pis of all agents) and some solvable distributed CSP ( a set of solvable 

CSPs of all agents, each of which comes from PSi).  

A solution to a distributed partial CSP is a solvable distributed CSP and its solution, 

where the global distance between an original distributed CSP and the solvable 

distributed CSP is less than Necs. Any solution to a distributed partial CSP will suffice if 
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the global distance between an original distributed CSP and the solvable distributed CSP 

is not more than Suff, and all search can terminate when such a solution is found.  

Given a distributed partial CSP scheme, we are interested in studying on how this 

established theoretical model can be interpreted using the LCC in order to address the 

over-constrainedness problem which causes the brittleness of agent interaction as 

described earlier. 

 

2.6 Chapter Summary 
 

In this chapter, we provided a detailed review on two areas deemed important to our 

research work; agent interaction and distributed, over-constrained CSP. For the former, 

we focused on two objective-based approaches to agent interaction namely EI and LCC, 

described respectively in sections 2.2.1 and 2.2.2. For the latter, we begun by presenting 

an overview on the distributed problem solving environment in section 2.3, that include 

formal definitions of CSP, DCSP and MAP. We then presented a discussion on over-

constrained problem in section 2.4, followed by an overview on three approaches for 

solving the problem; extended CSP, partial CSP and constraint hierarchies. Furthermore, 

we also discussed the reasons of choosing partial CSP instead of the other approaches in 

our research. Finally, in section 2.5, we presented a formal definition of partial CSP and 

distributed partial CSP, including the distance metrics that could be employed by the 

approach. 
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shoes

shirt slacks

{red,white} {denims,blue,gray}

{cordovans,sneakers}

{ (cordovans,white) }
{ (cordovans,gray),
(sneakers,denims) }

{ (red,gray),
(white,denims),
(white,blue) }

Over-constrained problem

Examples of weakened problems (additional pairs are bold and in different font):

1) Cshirt,slack : {(red,gray),(white,denims),(white,blue)}
    Cshoes,slacks: {(sneakers,denims),(cordovans,gray)}
    Cshirt,shoes: {(cordovans,white),(sneakers,white)}        
    Solution: Shirt=white, shoes=sneakers, slacks=denims

                       
2) Cshirt,slack : {(red,gray),(white,denims),(white,blue),(white,gray)}
    Cshoes,slacks: {(sneakers,denims),(cordovans,gray)}
    Cshirt,shoes: {(cordovans,white)}
    Solution: Shirt=white, shoes=cordovans, slacks=gray

3) Cshirt,slack : {(red,gray),(white,denims),(white,blue)}       
    Cshoes,slacks: {(sneakers,denims),(cordovans,gray),(cordovans,blue)}     
    Cshirt,shoes: {(cordovans,white)}                          
    Solution: Shirt=white, shoes=cordovans, slacks=blue       
                      
4) Cshirt,slack : {(red,gray),(white,denims),(white,blue)}
    Cshoes,slacks:{(sneakers,denims),(cordovans,gray),(cordovans,denims)}
    Cshirt,shoes: {(cordovans,white)}
    Solution: Shirt=white, shoes=cordovans, slacks=denims

5) Cshirt,slack : {(red,gray),(white,denims),(white,blue)}
    Cshoes,slacks: {(sneakers,denims),(cordovans,gray)}
    Cshirt,shoes: {(cordovans,white),(cordovans,red)}
    Solution: Shirt=red, shoes=cordovans, slacks=gray                               
Figure 2.11: Example of partial CSP application to solve an over-constrained problem 
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Chapter 3 
 

Interaction Formalisation and Over-Constrained 
Problems 

 

This chapter provides a discussion on the interaction model, formalised and executed 

using the LCC, for the scenario of section 1.3 described in chapter 1. Using this example, 

brittleness of the interaction model due to over-constrained problems will be described in 

detail. This chapter also provides an overview of how constraint relaxation based on the 

distributed partial CSP approach is able to address the problem. 

 

3.1 Customer/Vendor Scenario 
 

The scenario described in chapter 1 involves a series of interactions between two agents 

(i.e. customer and vendor) over a number of computer parts. This interaction can be 

described as bilateral multi-issue negotiations [Fatima et al., '03; Heifetz and Ponsati, 

'04]. There are two ways a multi-issue interaction can be handled – the agents can 

communicate all the issues together (i.e. a bundle) or one after the other (i.e. issue-by-

issue). Assuming that in this particular situation the agents decided on the latter, then the 

problem can be formalised as an incremental Multiagent Agreement Problem (MAP) 

[Modi and Veloso, '05], where the process of reaching a mutual agreement requires each 

attribute (e.g. configuration options and pricing constraints) of the computer to be 

communicated on an attribute-by-attribute basis among the interacting agents.  

A simple LCC-based interaction protocol for the scenario is described in figure 

3.1. There are two types of agent: a vendor agent and a customer agent. No limit is placed 

on the number of interaction instances (i.e. dialogues) that may occur, although each such 

dialogue will be constrained by the LCC protocol.  
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Vendor agent roles

Customer agent roles

buy_item

Selected
attributes

Vendor Negotiating 
vendor
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Customer Negotiating 
customer

(1)

(2)

(3)

(4) (5)

 
Figure 3.1: Roles and interaction diagram 

Assuming that the customer agent has already obtained the necessary interaction 

information from a service broker, the agent (in the role of customer) may send a request 

to buy a computer to a selected vendor agent (1), and then assumes the role of negotiating 

customer (2). On the other hand, upon receipt of a request to buy a computer (1), the 

agent (in the role of vendor) may assume the role of negotiating vendor (3). In these 

roles, the agents take turn to make offering (4) and provide selection (5) on each attribute 

values of the computer to be purchased. 

The interaction protocols between the vendor and customer agents are defined by 

expressions 1-4, in table 3.1. In expression 1, a customer C, can send a request to vendor 

V, to buy an item X that the customer needs and believes the vendor sells. The customer 

can then take the role of negotiator with the vendor. Expression 2 consists of clauses to 

define a negotiating customer with a set S, of negotiated attributes of the desired item X. 

When assuming this role, the agent receives an offer of a new attribute A, and accepts that 

(continuing in the negotiating role with A added to S). In expression 3, a vendor V, 

receives a request from a customer C, to buy an item X; then takes the role of negotiator 

with the customer over the attribute set S, which applies to that item. In expression 4, a 

negotiating vendor with a set S, of negotiable attributes of the desired item X takes the 

KEY:
 
Role 
 
Message 
 
Change of  
Role 
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first element A of S and offers it to the customer for acceptance (continuing then in its 

negotiating role with the remaining attributes, T) until S is empty. A more elaborate 

interaction protocol for the scenario can be obtained in [Robertson, '04c], which also 

provides a comprehensive discussion on the operation of the protocol using concrete 

examples. This part of the thesis, on the other hand, demonstrates how the protocol might 

fail due to over-constrained problems. 

 
a(customer,C):: 
   ask(buy(X)) ⇒ a(vendor,V)  need(X) ∧ sells(X,V) then   
   a(neg_customer(X,V,[]),C) 

(1) 

a(neg_customer(X,V,S),C):: 

   offer(A) ⇐ a(neg_vendor(X,C,_),V) then 
   accept(A) ⇒ a(neg_vendor(X,C,_),V)  acceptable(A) then 
   a(neg_customer(X,V,[att(A)|S]),C) 

 (2) 

a(vendor,V):: 

   ask(buy(X)) ⇐ a(customer,C) then 
   a(neg_vendor(X,C,S),V)  attributes(X,S) 

(3) 

a(neg_vendor(X,C,S),V):: 

  offer(A) ⇒ a(neg_customer(X,V,_),C)  S=[A|T] ∧ available(A) then   
  accept(A) ⇐  a(neg_customer(X,V,_),C) then 
  a(neg_vendor(X,C,T),V) 

 (4)

Table 3.1: LCC protocol for the given scenario 
 

Realising Inter-Agent Constraints. The protocol ensures coherence of interaction 

between agents by imposing constraints relating to the message they send and receive in 

their chosen roles. The clauses of a protocol are arranged so that, although the intra-agent 

constraints on each role are independent of others, the ensemble of clauses operates to 

give the desired overall behaviour, which involves setting the inter-agent constraints.  For 

instance, as defined in expressions 2 and 4, the protocol places two constraints on each 

attribute (A) from the set of attributes (S) of the computer to be purchased: the first 

constraint (available(A)) of expression 4 is a condition on the agent adopting the role of 

negotiating vendor of sending the message offer(A) and the second constraint 
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(acceptable(A)) of expression 2 is a condition on the agent adopting the role of 

negotiating customer sending the message accept(A) in reply. By (separately) satisfying 

these intra-agent constraints imposed on the interaction protocol terms associated with 

the attribute, the agents mutually constrain the attribute A, and consequently realise the 

corresponding inter-agent constraints. 

 

Specifying and Satisfying Intra-Agent Constraints. The agents involved in the 

protocol must be capable of satisfying the constraints that they impose. Though in LCC 

no commitment is made with regards to how the agents satisfy the constraints imposed on 

the assumed roles, for the purpose of this research, the formalisms used in specifying the 

constraints are expected to be standard for all agents, in which case they are shared 

among all agents (and propagated with the protocol). In this work, a finite-domain 

formalism is used to assign a range of valid domain values that can be assigned to the set 

of variables V. This means, that given a set of variables V={V1,..,Vn}, there exists a set of 

domain values D={D1,..,Dn}: where each Di(1 ≤ i ≤ n) is a set of possible finite-domain 

values for variable Vi. This means the value for the variable Vi must be in the given finite-

domain Di [Fruhwirth, '98]. More precisely, if Di is an: 

• Enumeration domain, List={value1,…,valuek}, then the value for Vi is a ground 

term that appears in List. For instance, given a list of Colour={Red, Blue, White}, 

then the value for Vi∈Colour. 

• Interval domain, {Min..Max}, then the value for Vi is a ground term between Min 

and Max inclusive. For instance, given Weight={50..80}, then the value for 

Vi∈Weight. 

These specifications constitute what we call unary constraints. Binary constraints over 

pairs of variables could also be represented using finite-domain constraint specification 

that reflects the dependency relationship between them. For instance, the finite-domain 

constraint imposed on variable Vi can be specified as an equation in the form of 

Vi={1000+((Vi-1/14)*100)+((Vi-2−40)*10)}, which constitutes two parts; a fixed constant 

of 1000, and a non-fixed component that depends on the available finite-domain values of 

variables Vi-1 and Vi-2.  
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Any standard constraint logic programming mechanism could be used for this 

purpose. In our case, since LCC is implemented in SICStus Prolog, the finite-domain 

constraint solver available in SICStus Prolog (i.e. clp(FD)) [SICS, '99] is used to handle 

the finite-domain constraints imposed on variables contained in the protocol. The 

definition of the constraint handling clauses (which typically would be private to each 

agent) imposed on these variables are adopted from the syntax, and the predicates of 

SICStus Prolog clp(FD) library. A subset of the clp(FD) predicates, especially those 

needed for the purpose of specifying the constraints of the given scenario is introduced in 

the following. The examples on how these are utilised by the customer and vendor agents 

in composing their individual finite-domain constraint clauses for the computer attributes 

are given in section 3.2. 

 
 Domains of variables will be set of integers or atoms. The predicate in is used to state 

the domain of a variable, written as Att in Set, where Att is a variable name and Set 

can be: 

 
{Integer1, Integer2,…}  
or  
{Atom1, Atom2, ….} 

Set of enumerated integers or atoms 

Term1..Term2 Set of continuous integers between Term1 and Term2, 
or the constant inf (for lower infinity) or the constant 
sup (for upper infinity) 

Set1 \/ Set2 Union of Set1 and Set2 
Set1 /\ Set2 Intersection of Set1 and Set2 
\ Set Complement of Set 

 

 Finite-domain constraints can also be composed of dependency relationships that 

exist between the variables maintained by the agents. These relationships can be 

represented Att Relation Expr, where Att is a variable name and Expr is an 

arithmetic expression in one of the following forms: 

i. A grounded variable on which Att is dependent. 

ii. A constant (numeric or non-numeric) on which Att is dependent. 

iii. A set of variables and/or constants connected with the mathematical operators *, /, 

- , +, mod, div on which Att is dependent. 
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and Relation can be: 

#= Equal 
#\= Not equal 
#< Less than 
#> Greater than 
#=< Less or equal 
#>= Greater or equal 

 

We chose to limit our research to the finite-domain constraint problem because of 

the following reasons [Schulte and Carlson, '06]: 

 
 Practical relevance – the most common constraint solving problem only involves 

variables that are discrete and have finite domains. 

 
 Existence of known principles and techniques – the research on constraints over finite 

domains is a main-stream research within the constraint satisfaction field. As known 

principles and techniques have been conceived and documented for finite domains, 

they stimulate the development of many tools to support finite-domain constraint 

computation in practice. For instance, in this research, the clp(FD) library of SICStus 

Prolog is utilised in the implementation. 
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Accommodating Distributed Finite-Domain Constraints Solving. The finite-domain 

constraints on variables, individually defined by the distinct agents on the variables of the 

MAP to be solved, are entirely separate from each other and private to each agent. So, 

when an agent locally solves a set of finite-domain constraints pertaining to a variable, it 

will not propagate to the other agents unless carried by the protocol. In order to 

accommodate this requirement, LCC is equipped with means of propagating finite-

domain constraint solving across agents’ interactions. A formal model to describe agent 

interactions for a distributed finite-domain constraint solving, via a LCC-based protocol, 

is provided as follows: 
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This model compactly describes all the protocol handling features provided by LCC as 

described in detail in section 2.2.2, with some additional features to accommodate the 

handling of distributed finite-domain constraint solving, and the means to propagate this 

across agents. The model is composed of components which can be described as follows: 

 p is a unique identifier for an agent and Gp is a goal agent p wants to achieve. 

 

)V,K,P,p(c)K,P,(mSSV,S gg
p

∧∅=∧Ω∈↔∋Ω , where 

 Ω, is the set of all initial interaction states available to agents. An interaction is 

initiated when agent p selects the appropriate initial interaction state, S, pertaining to 

a particular MAP to be solved. S, is a protocol structure consisting of the interaction 

(7) 

(5) 
 
 
 
(6) 
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model used to coordinate the agents (i.e. Pg) in cooperatively solving the MAP; the 

interaction specific knowledge that could either be public – accessible by all 

interacting agents or private – accessible by only selected agents (i.e. K); and a 

description of their current progress in pursuing the interaction, which is null at the 

beginning. V,S
p
∋Ω  selects an interaction model, S, from Ω, and identifies the initial 

set, V, of variables in S for agent p. V is instantiated with the possible set of initial 

value assignments as the agent p made the necessary choice, given Pg and K, which 

can be denoted as c(p,Pg,K,V). In the expression we do not define the mechanism by 

which that choice is made since it varies depending on applications – anything from a 

fully automated choice to a decision made by a human operator.  

 σ(p,Gp) is true when goal Gp is attained by agent p. 

 M is the current set of messages sent by the agents concerning the MAP to be solved. 

The empty set of messages is ∅ . 

 i(S,Mi,Vi,Sf,Vf) is true when a sequence of interactions allows state Sf to be derived 

from S given an initial set of messages Mi and an initial list of variables Vi, and 

consequently producing Vf, a set of variables with solvable finite-domain constraints. 

 kp(S) gives the knowledge visible to agent p contained in state S pertaining to the 

currently solved MAP.  

 

)D::)p,R(aSSS.(D,RSS ppp
s

=∧∈∃↔⊇  

 p
s

SS⊇  selects the state, Sp, concerning agent p, from the interaction state S. Given that 

in LCC, the state of the interaction is always expressed as a term of the form 

m(Ps,Pg,K), the selection of the current state for an agent, p, simply requires the 

selection of the appropriate clause, a(R,p)::D, defining (in D) the interaction state for 

p when performing role R.  

 apply_ranges(Vi,Sp,S’P) is a relation that applies the currently constrained variables of 

Vi in agent’s interaction state Sp to give an agent’s constrained state S’p. 

(8) 
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 p
M,S,M

p SS ni ′′⎯⎯⎯ →⎯′  is a transition of the state of agent p from S’p to S”p provided that 

the current set of inter-agent messages, Mi and any imposed finite-domain constraints 

pertaining to the variables currently discussed at the inter-agent level are solvable, 

and producing a new set of messages Mn. 

 update_ranges(S”p,Vi,Vn) is a relation that identifies each variable in Vi that has 

successfully been constrained in the new agent state S”p and adds the newly 

constrained variables to produce Vn. 

 

{ } { })D::)p,R(a())'D::)p,R(a(S(S)D::)p,R(a(SS
sss

p ∪−=∪↔∪  

 SS
s

p∪  merges the state Sp, concerning agent p, with interaction state S. The 

interaction state S, is a term of the form m(Ps,Pg,K) and the state relevant to an 

individual agent Sp is always a LCC clause of the form a(R,p)::D. Merging Sp with S 

therefore is done simply by replacing in S the (now obsolete) clause in which p plays 

role R with its extended version Sp. 

 Common knowledge in LCC, as described in section 2.2.2.1, is maintained in K, 

which is part of the interaction state m(Ps,Pg,K). pp G|)S(k −  indicates that the 

satisfaction of an agent’s goal, Gp, is derivable from K or through the agent’s own 

internal constraint satisfaction mechanisms. This corresponds to the satisfied relation 

introduced with the rewrite rules of table 2.1 in section 2.2.2.3. 

 Every successful interaction satisfying σ(p,Gp) can then be described by the following 

sequence of relations (obtained by expanding the ‘i’ relation within expression 5 

using expression 6): 

1pf1p32
s

2p
M,S,M

2p
s

21
s

1p
M,S,M

1p
sp

G|)S(kSSSSSSSSS 322211 −=∪′⎯⎯⎯ →⎯⊇=∪′⎯⎯⎯ →⎯⊇∋Ω K  

 

Figure 3.2 provides a general overview on the basic architecture and process flow 

on how the formal model is enacted. As described in section 2.2.2.2, the components of 

the receipt message labelled as (1) in the figure include a protocol P, of the form 

(9) 

(10) 
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P:=〈T,C,K〉. Given this, set V contains the current restriction for each variable in the 

expanded clause of T. Once decoded, the set V is posted to the constraint store of a finite-

domain constraint solver, and the rest of the message will be forwarded to the protocol 

expansion mechanism to determine the agent’s next move in the interaction protocol as 

indicated in labels (2) and (3) of the figure respectively. As described in [Carlsson et al., 

'97; Henz and Muller, '00], the finite-domain constraint solver contains predicates that 

could be used for checking the consistency and entailment of finite-domain constraints, 

as well as solving for solution values of the variables. The domain of all variables gets 

narrower and narrower as more constraints are posted to the constraint store of the solver 

as illustrated in label (4) of the figure. If a domain becomes empty, the accumulated 

constraints are unsatisfied, and the current computation branch fails. At the end of a 

successful computation, the variables are expected to be assigned to a set of possible 

values that the variables can take. This set is called the current domain of the variables. 

The expansion of an agent’s role in a particular round of interaction requires the 

variables associated with the current interaction, to be instantiated with values obtained 

from solving the finite-domain constraints imposed by the agent on the variables, as 

indicated in label (5) of the figure. Successful expansion of the agent’s part in the 

interaction protocol is determined by whether the solution values derived from solving 

these constraints are consistent with the existing solution values contained in set V. This 

allows the distinct finite-domain constraints, individually defined and solved by the 

interacting agents on each variable of the MAP, to be globally consistent. Once 

completed, an updated state of the interaction protocol, a new message content labelled as 

(6), and updated set V’ labelled as (7), are encoded together before being handed-over to 

the message passing media to be retrieved by its intended recipient, as illustrated in label 

(8) of the figure.  
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Figure 3.2: Enacting distributed constraint solving interaction in LCC 
 

3.2 Sources of Brittleness in Interaction Protocols 
 

As described in [Paula et al., '00], in the process of proposal exchange involving 

bilateral MAP solving between two agents (i.e. customer and vendor), each agent has a 

private border proposal, which is the maximum (or minimum) limit that must be 

respected when reaching a deal as illustrated in figure 3.3. The intersection between the 

agents’ border proposals defines what we call the deal range. If the deal range is empty, 

then the deal is impossible. This often leads to interaction failure between the agents. 

 

Deal Range

Initial proposal

Initial proposal

Border proposal

Border proposal

Customer

Vendor

 
Figure 3.3: Bilateral problem solving process 
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An important aspect of the interaction protocol between the customer and vendor 

agents, as defined in table 3.1, is the message passing that communicates the attributes of 

the computer to be purchased. The agents will be able to continue expanding their parts in 

the protocol as along as the individual constraints imposed on the shared variables are 

satisfied. However, if this is not the case, the protocol will break as demonstrated in the 

following example. 

We define below the knowledge private to the customer agent that includes 

specification on the acceptable set of values for the disk space, memory size and price 

attributes of the personal computer, based on the clp(FD) formalism described in section 

3.1. In this example, the customer would accept a disk space of 80 Gb or 120 Gb, a 

memory size of 512 Mb or 1 Gb, with a total price of less than or equal to £ 300. 

need(pc). 
sell(pc,s1). 
acceptable(disk_space(D))  D in {80,120}. 
acceptable(memory_size(M))  M in {512,1000}. 
acceptable(price(_,_,P))  P #=< 300. 

(11)

 

The vendor agent’s local constraints are defined in the similar way as the customer. 

We define the available values for the attributes needed to configure a computer and 

relate these to its price via a simple equation (the aim being to demonstrate the principle 

of relating constraints rather than to have an accurate pricing policy in this example). The 

vendor would be able to offer disk space values of 40 Gb or 120 Gb, a memory size 

values of 256 Mb or 1000 Mb, with a total price that depends on the combination of a 

fixed base-price of £180, and the options selected for the disk space and memory size 

attributes. 

 

attributes(pc,([disk_space(D),memory_size(M),price(D,M,P)])) 
available(disk_space(D))  D in {40,120}. 
available(memory_size(M))  M in {256,1000}. 
available(price(D,M,P))  P #=180 +(( D div 40)*20) 
                              + (( M div 256)*30). 

(12)

 

As illustrated in figure 3.4, constraint graphs can be used to represent the 

individually defined finite-domain constraints, which are imposed on the variables of the 

MAP. Each node in the graph represents a variable, and each arc represents a constraint 
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between variables represented by the end points of the arc. Each individual graph is 

identified as a local constraint graph, established by the interacting agents (private to each 

individual agent) normally prior to the interaction (pre-interaction stage). In addition, 

there exist two types of solution lists (i.e. local and global solution lists).  The local 

solution list is derived by solving the defined constraint graph at the local level. Given a 

solvable constraint graph, its corresponding solution list contains a set of possible 

solution values for the variables acquired by each individual agent. The global solution 

list is basically a solvable and consistent merger of the local solution values pertaining to 

the variables of the MAP. The global solution list is obtained as a result of solving the 

equality constraints of the MAP among the interacting agents. Given that in this example, 

the interactions among agents are handled in an issue-by-issue basis; the global list is 

incrementally updated with a set of satisfied solution values that depict the agreement 

reached by the interacting agents during the distributed problem solving process for each 

of the variable. In other words, the global solution list is incrementally expanded in 

accordance with the progression of the agents’ interaction states as prescribed in the 

protocol.  

Achieving the goal of a solvable MAP state using the protocol requires the finite-

domain constraints defined in the distinct constraint graphs, and held individually by each 

interacting agent, lead to solution values that collectively satisfy equality constraints of 

the MAP. This means that the solution values for the variables, individually generated by 

each agent during its turn of interaction, must be globally consistent. Upon achieving this 

state, the variables in the dynamically expanded global solution list are assigned the set of 

values successfully derived from the distributed constraint solving process.  
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disk_space (D)
{40,120}

memory_size (M) 
{256,1000}

price (P)
{180+((disk_space div 40)*20)
+((memory_size div 256)*30)}

Constraint graph maintained by 
the vendor agent

disk_space (D) 
{80,120}

memory_size (M) 
{512,1000}

price (P)
{=<300}

Constraint graph maintained by 
the customer agent

Communicated via messages passed 
among the interacting agents 

using an agreed 
interaction protocol

Global solution list is updated 
sequentially, upon each successful 
expansion of the agents’ roles in the 

interaction protocol. It is sent together 
with the protocol. Global solution list 
reflects satisfiability at the intra-agent 

and inter-agent levels.

S1=[D=40,M=256,P=230]
S2=[D=40,M=1000,P=290]
S3=[D=120,M=256,P=270]
S4=[D=120,M=1000,P=330]

S1=[D=80,M=512,P=<300]
S2=[D=80,M=1000,P=<300]
S3=[D=120,M=512,P=<300]
S4=[D=120,M=1000,P=<300]

SGlobal:
D=[120],
M=[1000]
P=Uninstantiated

Global solution list

Local solution list generated from 
solving the constraint graph

Local solution list generated from 
solving the constraint graph  

Figure 3.4: Conceptual overview of constraint graphs and solution lists involved in 
agents’ interactions  

 

The constraint store of the finite-domain constraint solver used by the interacting 

agents to provide computation on the expansion of the global solution list is ephemeral – 

lasting only from the period an agent receives a message until it completes its part in a 

particular interaction session. Thus, each time an agent reacts to a received message that 

places a requirement on the agent to satisfy equality constraints on the variables of the 

MAP, the global solution list attached together with the interaction protocol needs to be 

repacked and updated. During an agent’s turn of posting and satisfying its part of the 

equality constraints to the constraint store, it may fail to maintain the consistency of the 

global solution list. The occurrence of this failure will prevent the collective constraint 

solving effort by the interacting agents from achieving a solvable MAP, as prescribed in 

the protocol. This over-constrained problem will cause the protocol to break, which is 

described in detail in the remainder of this section. 

The problem is over-constrained as the possible values for the price attribute of both 

agents are in conflict with each other. The sequence of message passing that follows from 

the protocol expressions is shown in table 3.2. The interaction is between the customer, 

b1, and a vendor, s1. Each illocution shows a numeric illocution identifier for reference 

(i.e. 1..n); the role of the agent sending the message; the message itself; the role of agent 
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to which the message is sent; the variable restrictions applying to the message (the term 

r(V,S) relating the possible set of solution values S, for the variable V, derived from 

satisfying the individually defined finite-domain constraints imposed on the variable). In 

specifying the solution values S, we follow the clp(FD) notation where: 

 [[X1|Xn]] indicates an inclusive range of continuous values from X1 to Xn; 

 [[inf|X]] indicates an inclusive range of continuous values from a lower constant 

infinity, inf, to X; 

 [[X|sup]] indicates an inclusive range of continuous values from X to an upper 

constant infinity, sup; and 

 [[X1|X1]] indicates a discrete value X1. For a set of discrete values, X1…,Xn, it is 

represented as [[X1|X1],….,[Xn|Xn]]. 

 

The first illocution is the customer making initial contact with the vendor. 

Illocutions two to five then are offers of possible values for the disk space and memory 

size attributes, each of which are accepted by the customer as they can be satisfied given 

the customer’s intra-agent constraints. The restrictions in illocution five of 

[r(M,[[1000|1000]]), r(D,[[120|120]])] reflect the solution values pertaining to the 

memory size and disk space attributes currently agreed by the agents. 

 
  
No: 1 
Sender: a(customer,b1) 
Message: ask(buy(pc)) 
Recipient: a(vendor,s1) 
Restrictions: [] 
 
 
No: 2 
Sender: 
 
 
Message: offer(disk_space(D)) 
Recipient: 
a(neg_cust(pc,s1,_),b1) 
Restrictions: 
[r(D,[[40|40],[120|120]])] 
 
 

 
No: 3 
Sender: a(neg_cust(pc,s1,[]),b1) 
Message: accept(disk_space(D)) 
Recipient: 
a(neg_vend(pc,b1,_),s1) 
Restrictions: [r(D,[[120|120]])] 
 
No: 4 
Sender: 
 
 
Message: offer(monitor_size(M)) 
Recipient: 
a(neg_cust(pc,s1,_),b1) 
Restrictions: 
[r(M,[[256|256],[1000|1000]]),
r(D,[[120|120]])] 
 
 

Table 3.2: Sequence of message passing 
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No: 5 
Sender: a(neg_cust(pc,s1, 
[att(disk_space(D))]),b1) 
Message: accept(memory_size(M)) 
Recipient: 
a(neg_vend(pc,b1,_),s1) 
Restrictions:  
[r(M,[[1000|1000]]), 
r(D,[[120|120]])] 

 
No: 6 
Sender: a(neg_vend(pc,b1, 
[price(D,M,P)]),s1) 
Message: offer(price(D,M,P)) 
Recipient: 
a(neg_cust(pc,s1,_),b1) 
Restrictions: 
[r(P,[[330|330]]), 
r(M,[[1000|1000]]), 
r(D,[[120|120]])] 

Table 3.2: Sequence of message passing (continued) 

 

Given the restrictions imposed on memory size and disk space attributes in 

illocution five, the only offer available to be made by the vendor agent pertaining to the 

price attribute is r(P,[[330|330]]), as indicated in illocution six. However, this offer is in 

conflict with the local solution value of r(P,[[inf|300]]), imposed by the customer. This 

causes a failure of the customer to expand the interaction protocol received with the 

message. 

Recall that the means used by each agent to maintain an appropriate role during the 

interaction is by expanding the clause it selects for its initial role (see section 2.2.2.2). 

Figures 3.5 and 3.6 are the partially expanded clauses used by agent b1 in the role of a 

customer and agent s1 in the role of a vendor respectively. Note that the last part of both 

expanded clauses, which are within the parentheses, are still open (i.e. not enclosed by c) 

because this part of interaction between the agents is incomplete. The agents are not able 

to fully expand their part of the protocol due to the over-constrained problem. For the 

customer, this is the case given the agent is not able to satisfy the acceptable(X) 

constraint, where X is the price attribute, imposed on the protocol term associated with 

the role assumed by the agent. For the vendor, the agent will not able to expand its part of 

the protocol until it receives the appropriate message (i.e. accept(X)) from the customer.  
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Figure 3.5: Partially expanded interaction protocol clauses of the customer agent 
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Figure 3.6: Partially expanded interaction protocol clauses of the vendor agent 
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A quick and simple fix to the problem is through the inclusion of new clauses into 

the existing protocol to allow the agents to inform each other of their failure to satisfy the 

imposed constraints on their part of the interaction. This modification is represented in 

figure 3.7. In the figure, the visualisation on the possible sequence of messages sent or 

received when performing a role in the interaction is represented as a graph. Nodes in the 

graph are states in the interaction (from the perspective of the customer and vendor). 

Solid arcs in the figure represent clauses of the existing protocol while dashed arcs 

indicate the new introduced clauses.  

1

2

3 4

offer(A) => 
a(neg_customer(X,V,_),C)

inform(failure(A)) <=
a(neg_customer(X,V,_),C)

accept(A) <=
a(neg_customer(X,V,_),C)

1

2

3 4

offer(A) <= 
a(neg_vendor(X,C,_),V)

inform(failure(A)) =>
a(neg_vendor(X,C,_),V)

accept(A) =>
a(neg_vendor(X,C,_),V)

a) Modified vendor’s protocol b) Modified customer’s protocol  
Figure 3.7: Interaction graphs for customer and vendor 

As illustrated in figure 3.7(b), the customer’s protocol is at state 2 upon receiving an offer 

of attribute value from the vendor. At this state, the customer can either proceed 

accepting this offer if it can satisfy the imposed constraints or it can inform the vendor 

agent of its failure to do so. For the vendor, depending on the message received from the 

customer, at state 2, it can either continue in its role of neg_vendor (i.e. state 3) or 

terminate the interaction (i.e. state 4) as illustrated in figure 3.7(a).  

In the modified protocol, we provide the means for the agents to complete their 

interaction although they do not reach a solvable MAP state upon terminating the 

execution of the prescribed protocol. The extended protocol clauses (i.e. state 4) for both 

agents give an alternative to the expansion engine to continue expanding the agents’ parts 

in the protocol if an unsatisfactory state is encountered, rather then reaching an 

undesirable deadlock state. The problem with this fix is that the completion of the 

protocol does not necessarily indicate attainment of the agents’ goals pertaining to the 
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collective solving of the MAP. In fact, this form of corrective measure only addresses the 

agents’ inability to complete their respective parts as specified in the protocol upon 

reaching an over-constrained state. It, however, does not at all address the over-

constrained state of the MAP faced by the interacting agents. 

The rigid feature of the protocol is inherited from the conventional constraint 

solving system that only allows two satisfactory states to be achieved – completely 

satisfied or completely violated. However, we should realise that when agents interact to 

solve a particular MAP, it is rarely the case that their individual constraints are 

completely acceptable or completely inconsistent to each other. Rather, it is normally the 

case that their respective constraints are partially satisfied. Therefore, given that the 

agents are capable to revise or relax their locally imposed constraints upon encountering 

an over-constrained situation while participating in the distributed constraint solving 

process of the MAP, the described form of corrective measure will definitely not be able 

to accommodate the agents’ computational and interactive needs for addressing the 

problem. Therefore, a more sophisticated solution is required for addressing the problem.  

 

3.3 Addressing Brittleness via Constraint Relaxation 
 

Our approach to address this brittleness problem requires an agent to be able to adapt to 

the constraints on variables established by the other agents, achieved through constraint 

relaxation. The form of constraint relaxation considered in this work is focused on the 

revision of the individually assigned finite-domain constraints by a single or many agents 

towards the achievement of a deal.  

Constraint relaxation is only possible if the agents participating in the interaction 

are cognitively and socially flexible to the degree they can handle (i.e. identify and fully 

or partially satisfy) the constraints that they are confronted with. As further emphasised in 

[Weib, '01], a requirement for applying efficient mechanisms for (joint) constraint 

relaxation and propagation is that agents are able to reason about their constraints and 

involve other agents in this reasoning process. This kind of reasoning must be 

quantitative in nature, because qualitative, purely symbolic reasoning about constraints 

like time and cost can be extremely complex especially in large-scale agent contexts. 
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More specifically, to achieve continuous flexibility through constraint relaxation an agent 

must be able: 

i. To assign quantitative values to the constraints that express the relative 

importance they have to the agents; 

ii. To assign quantitative values to the constraints that express the degrees to which 

the agent is willing to violate them; 

iii. To assign quantitative values to the constraints that express the estimated risk of 

violating them (given the current environmental circumstances and the activity 

sequence the agents intend to execute); and 

iv. To communicate (exchange, negotiate, refine, etc.) the quantities described in 

points i – iii with other agents. 

 

Thus, for the constraint relaxation process to be accomplished, the engineering 

requirements expected from the interacting agents include cognitive and social 

requirements.  

The cognitive requirement concerns the agent’s internal reasoning capability that 

enables it to dynamically modify and redefine its own set of predefined constraints, an 

inherent functionality expected of agents involved in distributed constraint solving 

processes.  This is largely provided by the mechanism to define and compute points i – iii 

described above. The issue of the best computational approach or constraint relaxation 

strategy that an agent might employ to reach to this decision is still open, and its 

discussion is beyond the scope of this thesis. However, a generally accepted notion is that 

the decision taken should be to the agent’s own advantage, leading to the realisation of 

the eventual goal of the agent (i.e. interacting agents reaching an agreement in solving a 

particular MAP).  

The social requirement obliges the participating agents to communicate and 

coordinate the constraint relaxation process with one another. This part is addressed by 

point iv. To achieve continuous flexibility, agents are expected to communicate in order 

to resolve any conflicting constraints on shared variables established by a society of 

agents. Therefore, the focus of the work is largely concerned with providing the agents 

involved with the interactive and computational mechanisms for coordinating the 
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relaxation of conflicting constraints. This process, expected to be handled at the protocol 

level is inspired by the distributed partial CSP scheme.  

 

3.4 Overview of Constraint Relaxation Approach 
 

The proposed constraint relaxation approach is intended to provide a mechanism for 

agent interaction when reconciling an over-constrained problem, and at the same time 

provide the necessary coordination and control to the distributed constraint relaxation 

tasks performed by the distinct agents at the local level. There exists a number of ways on 

how we could establish this approach. One possible option is to extend the current 

protocol so that it explicitly consists of clauses for allowing the agents to interact about 

revising their individual finite-domain constraints and coordinate this act whenever we 

anticipate an over-constrained failure might occur. However, this approach makes the 

existing protocol becomes unnecessary large, complicated and unwieldy. Due to this 

reason, it is more favourable to build it using a modular approach. This allows the 

existing protocol for handling agent interactions concerning the distributed constraint 

solving process to be maintained as it is, and the constraint relaxation protocol is 

developed as a new independent module. Interfacing between these two modules is only 

necessary when an over-constrained problem arises, as described in figure 3.8, which is 

an extended version of expressions 5 and 6 defined in section 3.1. These two modules are 

identified in the figure as S and R respectively. 

The figure provides a general formal description of agent interactions over the 

protocol S, from the view of a single agent, p concerning a distributed problem solving 

process for a MAP. During the expansion of agent clauses as prescribed in the interaction 

model S, agent p needs to satisfy the intra-agent finite-domain constraints and inter-agent 

equality constraints associated with the variables, V of the MAP. However, failure to 

satisfy these constraints will prevent complete expansion of the clauses in the given S. As 

such, in this extended model, we provide a formal description on the necessary measures 

to interface with a constraint relaxation protocol, R, and the execution of R for addressing 

this problem. 
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Figure 3.8: Formal model of constraint relaxation interactions 

The outcome of an expansion process is determined by comparing the agent’s state 

prior to the expansion step (i.e. S’p) with the state obtained after the expansion step has 

been completed (i.e. S”p). The relation complete(S’p,S”p) is true if the agent’s part in state 

S’p is successfully expanded as reflected in state S”p. This allows for the process to 

continue updating each variable in V that has been successfully constrained in the new 

agent state S”p, to produce Vn, and updating of the agent’s part in S. Once this is 

completed, the process continues to the next state as prescribed in S. However, if the 

protocol’s expansion resulted in a failure state, the constraint relaxation protocol R will 

be enacted through the i(R,∅,V,Rf,Vr) relation.  

The relation i(R,∅,V,Rf,Vr) is true when a sequence of constraint relaxation 

processes collectively performed by the interacting agents, allows a solvable and relaxed 

set of variables Vr to be derived, given the following: 

i. V, that specifies the state of the variables of the MAP (i.e. solution values) 

prior to the expansion failure of S by agent p; 

 
(13) 

 
 

 
 

(14) 
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ii. ∅, that specifies an initially empty set of messages. The parameter indicates 

the set of messages sent and received by the agents during the interactions for 

resolving the distributed, over-constrained MAP; 

iii. R, a constraint relaxation protocol which is central to the relation, and the 

expansion on R resulted in Rf, that reflects the agents’ progressions in the 

constraint relaxation process.  

R provides the coordination and control to these relaxation processes, which is 

realised by interpreting the distributed partial CSP scheme using the LCC. Through R, a 

set of a possible space of constraint relaxation and interactive states for the agents 

involved in the relaxation process can be specified. Given that the agent p has failed to 

expand its part in the current prescribed interaction model of S due to an over-constrained 

problem, R can be viewed as a sub-protocol externally provided to p, and the other agents  

involved in the MAP solving, to support joint coordination and handling of locally 

performed constraint relaxation tasks. Once a relaxed set of variables Vr fully solvable by 

all the involved agents is obtained, the expansion of the agent’s part in S prior to the 

occurrence of the described expansion failure will commence. The specification of the R 

component, which is interpreted from the distributed partial CSP scheme, is described in 

detail in chapter 4. In chapter 5, we will revisit our scenario that deals with the 

purchasing and configuration of a computer between the customer and vendor agents, in 

order to explain the detailed working of the constraint relaxation protocol, R. 
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3.5 Chapter Summary 
 

In this chapter, we presented an interaction model for solving an instance of a MAP, 

formalised and computed using the LCC. The MAP involved a scenario that deals with 

the configuration and purchasing of a computer between the customer and vendor agents. 

Through the model, in section 3.2 we showed the impact of over-constrained problem on 

the agents’ interactions. Based on this, we provided a discussion on the failure to achieve 

a solvable MAP state, brittleness of the interaction model, and a possible fix to the 

problem. In section 3.3, we described the means of addressing this problem using a 

constraint relaxation approach. We presented an overview of our constraint relaxation 

approach in section 3.4. 
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Chapter 4 
 

Protocol Specification 
 

As described in [Faratin and Klein, '01], the coordination of a conflict resolution task for 

a MAP among autonomous and heterogeneous agents requires the specification of the 

following two components. First, a protocol, or rules of interaction that coordinate the 

agents at an asocial level (i.e. synchronicity of messages) and social level (i.e. protocols 

that force the selection of a solution that satisfies some criteria). Second, the agent’s 

strategy set, which can be specified as the preferred choices of the individual in how to i) 

generate solutions to the local/global problem and ii) how to evaluate proposals submitted 

by the other interacting agents in resolving the conflicts. 

Within our proposed constraint relaxation approach, the former component is 

derived from the interpretation of the distributed partial CSP scheme, which encapsulates 

both the asocial and social levels. It provides the interacting agents with the mechanism 

for constraint relaxation at both the intra-agent and inter-agent stages. At the intra-agent 

stage, it specifies the computational behaviour that can be assumed by the agents in 

determining the current state of the constraint relaxation process. At the inter-agent stage, 

the synchronisation of message-passing behaviour among agents is established. The 

design and working aspects of the approach is described in detail in the remaining of the 

chapter. The latter component is regarded as a ‘black box’, defined privately by each 

individual designer of the agent, and is beyond the scope of this research. 

Figure 4.1, is a revised version of figure 1.4, provides a general overview on how 

the coordination of constraint relaxation task between agents a and b could fit into the 

problem solving stages. This is accomplished through a constraint relaxation protocol 

depicted as ovals inter-connecting the agents at the interaction stage, and the protocol-

regulated interactions between the agents are highlighted as dashed arrows in the figure. 

The constraint relaxation protocol provides synchronisation at both asocial and social 

levels for the agents to be involved in the relaxation process. This 



Chapter 4. Protocol Specification 

 73

allows the agents to take part in the collaborative task of relaxing their locally defined 

domain constraints (i.e. a set of original CSPs of all agents) in order to generate a relaxed 

set of solvable local problems which can satisfy the inter-agent constraints (i.e. equality 

constraints of the MAP). During the process, the domain constraints defined at the pre-

interaction stage are expected to be revised in accordance with the private constraint 

relaxation strategies adopted by the individual agents. Consequently, through a successful 

completion of a constraint relaxation process, a solvable MAP, which consists of a set of 

mutually agreed solutions for each of the variables is obtained, as depicted at the post-

interaction stage. Further details of this process are provided in the remainder of this 

chapter. 
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Figure 4.1: Problem solving stages and constraint relaxation task 
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We begin this chapter by providing a comprehensive description of how we use the 

distributed partial CSP scheme to implement our constraint relaxation approach. This 

includes a detailed discussion on the following: 

1) The distance metric used (i.e. solution subset distance to compute the degree 

of constraint relaxation attempted by each individual agent). 

2) How to find a solvable MAP among agents involved in the constraint 

relaxation process. 

3) The global distance function for agents to compute the best constraint 

relaxation path to be taken. 

4) Formal specification of the overall constraint relaxation process. 

This is followed by an algorithm to search for a solvable MAP state with minimal 

distances. The algorithm also specifies how coordination among agents should take place. 

The chapter concludes with a description of how the constraint relaxation process is 

encoded into an LCC protocol. This includes a discussion of how the details pertaining to 

the constraint relaxation task can be tied to a set of particular agents’ roles and 

behaviours. 

 

4.1 Application of Distributed Partial CSP for Addressing Over-
Constrained Problem 

 

The general approach of distributed partial CSP described in section 2.5 can be 

specialised in many ways. This is due to the different measures of over-constrainedness 

based on the distinct distance metrics that could be applied between the original 

constrained problems and the relaxed problems. Recall that the distributed partial CSP 

scheme deals with crisp CSPs, with the notion of partial ordering among problems, 

generated in response to a series of relaxations performed on the original, over-

constrained problem. If we relax problem P1, we obtain problem P2 that is strictly better 

with respect to the distance metric used. The measure of “how much” relaxation has been 

attempted on a problem depends on this, and the three available distance metrics are 
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augmentation distance, Max-CSP distance and solution subset distance. Augmentation 

distance counts the number of constraints values that are not shared between P1 and P2, 

while Max-CSP finds a relaxed problem that violates the minimum number of 

constraints. Since the first two metrics are directly concerned with constraint 

computation, adopting them in our constraint relaxation approach has many limitations.  

First, as the agents’ parts in the prescribed interaction protocol cannot be completed 

due to an over-constrained MAP, the required relaxation of the problem involves an 

autonomous application of distinct and private constraint relaxation strategies by one or 

more of the involved agents on their individually defined CSPs to obtain a solvable MAP. 

As such, adopting the augmentation distance and Max-CSP distance metrics 

inadvertently reveals the agents’ strategies as constraint details of the local problems need 

to be publicly and openly shared among the agents. Second, these metrics do not reflect 

the actual outcome of the relaxation action performed by the agents. Max-CSP for 

instance is considered one-dimensional as it only takes into account one form of 

relaxation – the removal of conflicting constraints. Besides removing the conflicting 

constraints and eventually reducing the number of constraints contained in an over-

constrained problem, agents can also choose other available options as described in 

section 2.5. These include enlarging a constraint domain to allow more solutions to be 

available without reducing the number of pre-defined constraints.  

On the other hand, the solution subset distance is computed by looking at the 

cardinality of the solution sets resulted from relaxing the constraints of an over-

constrained problem. By adopting this distance metric in our constraint relaxation 

approach, the issue with how constraints are manipulated internally by the agents in order 

to introduce new assignments in the solution set is no longer a concern. This means 

agents can fully exercise any constraint relaxation strategy that they see fit, and this 

information will not be revealed at the protocol level. In this metric, we are more 

concerned with the changes in the cardinality of solution sets due to the constraint 

relaxations performed by agents. Given an over-constrained MAP, we are interested in 

how a set of new solutions obtained from a constraint relaxation process could contribute 

to the achievement of a solvable MAP. Using a solution subset distance metric, a solvable 
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MAP state is accomplished by searching for a set of relaxed CSPs which are as close as 

possible to their corresponding original CSPs in terms of number of solutions.  

As the focus of this research is on the finite-domain constraint problem, the solution 

space derivable by agents during the constraint relaxation process is guaranteed to be 

finite. As such, by adopting the solution subset distance metric in our approach, it enables 

agents to do an exhaustive search in their distributed, over-constrained problem spaces 

for finding solvable, relaxed CSPs, which are as close as possible to their original CSPs. 

This ensures that our constraint relaxation approach is complete, i.e. it eventually finds a 

sufficient solution or finds that there exists no such solution and terminates. 

 

4.1.1 A Metric for Solution Subset Distance 
 

This research specialises the solution subset distance from [Yokoo, '01] in order to 

address an over-constrained MAP using a distributed partial CSP scheme. Our technique 

finds a solvable MAP with a minimal degree of constraint relaxation, computed based on 

the solution subset distance metric. This is obtained when the agents participating in the 

constraint relaxation task generate individual problem spaces containing a set of relaxed 

CSPs, so that the distance between P2, a relaxed problem selected from the set, and the 

original, un-relaxed problem, P1, is within a certain bound, according to the specified 

distance metric. As described in the abstract distributed partial CSP model of section 2.5, 

the functions to provide distance computation are specified at two separate levels – local 

and global.  

At the local level, we are mainly concerned with the computation of additional 

solutions introduced due to the individual relaxation attempted by the agents. This is 

accomplished by comparing P2 with P1 each time after a relaxation is performed. Given 

P1, and its corresponding relaxed problem P2, the distance metric describes how far the 

solutions for the two local problems are from each other. This is accomplished by 

associating the solutions that are already in the original, un-relaxed problem with the one 

introduced due to relaxation. For instance, the solution subset distance between the two 

comparable problems P1 and P2 is the number of solutions of P2 which are not solutions 

of P1. The relationship between P1, and its relaxation, P2, is better described using Venn 
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diagrams [Edwards, '04; Ruskey and Weston, '05] as illustrated in figure 4.2. In the 

figure, the sets S and S’ respectively represent the solution sets of the original problem, 

P1, and its corresponding relaxation, P2, that is, S=sols(P1) and S’=sols(P2), where sols 

denotes the solutions to the problem. U is a universal set that represents all the possible 

solution values of the MAP. 

The relationship described in figure 4.2(a) is a commonly addressed problem in 

partial CSPs and distributed partial CSPs. In this relationship, the solutions for the 

relaxed problem is a proper superset of those solutions for the original, that is S’ ⊃ S. If 

S’ is a proper superset of S, then the number of elements in S’ is greater than the number 

of element in S (written as |S’| > |S|). Hence, there exists at least one element x of S’ 

which is not an element of S. Though not common, other possible relationships between 

the original and relaxed problems are described in figures 4.2(b) and 4.2(c). For the case 

described in figure 4.2(b), the solution sets for the original and relaxed problems have a 

number of joint elements, S ∩ S’≠∅, and also complements of each other, S – S’≠∅ and 

S’ – S≠∅. The third possible relationship, as described in figure 4.2(c), is the case where 

the solution sets of both problems disjoint, that is S ∩ S’= ∅. This indicates that the 

original problem has undergone a major relaxation process or more likely an extreme 

revision which produces a totally different solution set.  

S’S

S S’

S

S’

(a) (b)

(c)

UU

U

 
Figure 4.2: Possible relationships between the solution sets of the original(S) and the 

relaxed (S’) problems 
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In order to describe the last two cases, the over-constrained scenario involving a 

customer and vendor agents in section 3.2 is referred. Assuming that a soluble agreement 

is achieved by the vendor agent relaxing its pricing policy to meet the customer’s request 

for a lower price, then, such relaxation act will let all possible solution sets derivable 

from the original problem based on the initial restricted price plan to become invalid  

Working example on this is provided in section 5.2. 

Given the three possible relationship patterns described in figure 4.2, computation 

of distance between the two sets (i.e. S and S’) not only needs to consider the new 

additional solutions introduced, but also the existing solutions of the original problem 

that might be eliminated due to the performed constraint relaxation. Therefore, the 

equations in figure 4.3 describe how this is computed, where L is the union of these two 

components, and the distance, d, is then measured as the cardinality of S. 

 

L = (S−S’) ∪ (S’−S) (1)

d = | L | (2)

Figure 4.3: Equations for distance computation 
 

These equations are better illustrated using Venn diagram. In figure 4.4, we 

describe the value of d (highlighted as shaded areas), for each of the Venn diagrams of 

figure 4.2.  
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Figure 4.4: The value of ‘d’ derived from the solution sets of the original and relaxed 

problems 
 

At the global level, we are concerned with the computation of distance of 

distributed problem spaces. This involves two important steps – first, finding a set of 

relaxed CSPs allowing for a solvable MAP state to be achieved and second, computing 

the global distance of the set from their corresponding original problems. Part of the first 

step also includes the specification of two special bounds to ensure the individual 

problem space generated by each agent involved in the constraint relaxation interaction is 

restrained. These two bounds are identified as necessary and sufficient bounds. 

The disruption on agent interactions due to an over-constrained situation will 

normally result in a partially solvable MAP to be obtained. This MAP contains a set of 

fully solvable variables, assigned with solution values mutually agreed by all agents. The 

assignments of these variables are obtained prior to the occurrence of an over-constrained 

state. This is only possible if there exists a set of variables from the MAP that can be 

satisfied locally by each agent involved in the problem solving interaction. This set and 

its assigned solution values are used as the necessary bound. The necessary bound 

specifies that distributed problem spaces under consideration must all contain solutions 

that are within the bound. Assuming that all original problems individually specified by 

the distinct agents at the pre-interaction stage have a set of solutions which has become a 
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fully solvable part of the MAP, then any relaxed problems derived from the originals 

must contain this set of solutions, as illustrated in figure 4.5. This is necessary for 

preventing any relaxed problem from deviating from an already solvable part of the MAP 

and effectively restricts the size of the problem space under consideration. This means 

that any relaxed CSP obtained can only be considered if it satisfies this requirement. In 

the worst case scenario, this set might be empty,  indicating that the interacting agents 

cannot reach a deal range on any of the variables of the MAP.  

S’S
S

S’

(a) (b)

U U

Necessary 
bound

 
Figure 4.5: Necessary bound for restraining the relaxed problems generated by agents 

 

A partially solvable MAP also contains a set of non-solvable variables, due to the 

existence of one or more agents that fail to satisfy their individual constraints concerning 

these variables during the problem solving interactions. This set of non-solvable variables 

is specified in the sufficient bound, which describes what needs to be achieved during the 

constraint relaxation process. Successful value assignments to the set indicates the 

attainment of a solvable MAP state. A set of relaxed CSPs, obtained from the problem 

spaces generated by the interacting agents during a particular constraint relaxation cycle, 

is sufficient if the additional solutions derived from these CSPs allow the initial set of 

non-solvable variables of the MAP to become solvable. 

Both bounds give the required direction to the process of identifying locally relaxed 

CSPs among the agents from which a consistent, solvable MAP with an acceptable 

solution subset distance is derived.   
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4.1.2 Finding a Solvable MAP 
  

In any MAP solving interaction through a specified protocol, there exist two possible 

groups of agents. Though in the actual problem solving interaction it might involve more 

than two agents, all the agents can be identified as belonging to either one of these two 

groups. The first group, J, consists of a set of agents that has completed its part of the 

protocol in solving and constraining a particular set of variables of the MAP. The second 

group, K, on the other hand, represents a set of agents whose part in the protocol is 

incomplete as they cannot satisfy the inter-agent or global constraints imposed on the 

corresponding set of variables of the MAP. Therefore, the task of finding a solvable MAP 

given an over-constrained distributed problem solving state, involves a series of local 

searches on the weakened CSPs provided by these two groups of agents during each 

relaxation cycle. Completion of a particular relaxation cycle can be determined when all 

agents have completed their roles as defined in the protocol, which is normally associated 

with the introduction of new solution values to accommodate the achievement of a 

solvable MAP state. The weakened CSPs must satisfy the necessary bound, but may not 

satisfy the sufficient bound. From the view of these two groups of agents who are 

involved in this collaborative task, the local relaxation process can be thought of as a 

search which starts from an initial node representing the original CSP of the agent, and 

follows a path until a solvable MAP state is achieved, as described in figure 4.6. The 

whole searching process is constrained by the specified necessary bound. The process 

stops when we found a combination of weakened CSPs by the individual agents that 

satisfy the sufficient bound with some acceptable distance between the derived solution 

sets. It is then said that a solvable MAP state has been achieved, and there are three 

possible conditions on how this is accomplished, which are described using agents j and 

k, instances for agent groups J and K respectively, that is j∈J and k∈K : 
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1. Agent k performs the necessary constraint relaxation on its original CSP, 

producing a problem space containing the necessary relaxed CSPs, allowing a 

solvable state to be achieved without the other party, agent j, performing any 

relaxation on its part as illustrated in figure 4.6 (a). 

2. Agent j performs the necessary constraint relaxation on its original CSP, 

producing a problem space containing the necessary relaxed CSPs, allowing a 

solvable state to be achieved without the other party, agent k, performing any 

relaxation on its part as illustrated in figure 4.6 (b). 

3. Both agents j and k perform the necessary relaxation on their respective 

original CSPs, where their combined relaxation produces a corresponding set 

of relaxed CSPs that allow a solvable state to be achieved as illustrated in 

figure 4.6 (c).  

However, it might also be the case that there exists no improvement towards the 

achievement of a solvable MAP state after a number of relaxation cycles have been 

performed as illustrated in figure 4.6 (d). Given this outcome, the relaxation process 

terminates as it simply indicates that the agents cannot reach an agreement in reconciling 

their differences. 
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Figure 4.6: The search for a solvable MAP state 
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4.1.3 Global Distance Computation  
 

In the previous sections, we respectively described the solution subset distance metric 

used to compute the degree of constraint relaxation attempted by each individual agent 

and how to find a solvable MAP among agents involved in a constraint relaxation 

process. The overall degree of constraint relaxation is obtained by aggregating the 

individual measure of distances from all of the involved agents. In this section, we 

describe the computation of a global distance for this purpose. 

A global distance function, G, is used to measure the global distance between an 

original distributed CSP (i.e. a set of original CSPs of all agents) and some solvable 

distributed CSP (i.e. a set of solvable CSPs of all agents, generated by the agents during 

the constraint relaxation process) in reaching a solvable MAP state. The function can be 

specified as the following equation: 

 

∑=
= n

1i iTotal dG   

 

This function provides the computation for the summation of local distances of all 

agents participating in the constraint relaxation task, where n is the number of agents 

involved in the task; di is the local distance for each agent i as specified in expression 2 of 

figure 4.3, which is the number of additional solutions introduced and existing solutions 

eliminated due to the relaxation individually performed by each agent on its privately 

defined finite-domain constraints of the MAP. We search for a combination of relaxed 

problems generated by the agents that minimise GTotal. 

In order to explain a sample computation using the function, a simple example 

involving a relaxation process between the agents k and j are given in Table 4.1. The 

table provides three distinct instances of constraint relaxation cycle (i.e. 1-3) involving 

agents k and j, in which all produces a solvable MAP state with a different value of GTotal. 

Based on the value of GTotal, we can identify the best instance, which is the one with the 

minimum value (i.e. GTotal=5). 

(3) 
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 d of agents  
Relaxation No. Agent k Agent j GTotal 
1. 1 5 6 
2. 2 3 5 
3. 5 5 10 

Table 4.1: Distance metric computation for achieving a MAP solvable state 
 

However, in some circumstances, the global distance function is inadequate to 

provide the necessary guidance for the selection of the best combination of relaxed 

problems with minimal distances over agents. For instance, table 4.2 provides a different 

scenario which involves three distinct instances of constraint relaxation cycle that 

produce a solvable MAP state. In this example, a number of solvable states are achieved 

with the same GTotal value, where the global distance function gives an equivalent rank 

for each instance (i.e. GTotal=5). Given this situation, a more refined global distance 

function is needed to provide a better comparative measure. 

 

 d of agents  
Relaxation No. Agent k Agent j GTotal 
1. 1 4 5 
2. 2 3 5 
3. 5 0 5 

Table 4.2: Distance metric computation for achieving a MAP solvable state 
 

In order to address this limitation, our approach integrates the distributed maximal 

scheme as described in [Yokoo and Hirayama, '93; Ando et al., '03] in the computation of 

the global distance function. This scheme is originally intended to search for a solution 

that minimises the maximal number of violated constraints over agents. However, in our 

approach, the number of violated constraints is substituted with the solution subset 

distance metric. The specification of G within this approach is as follows: 
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)dmax( iMaxG =  

 

The function provides the computation to find the maximum local distance GMax, 

given a set of distances, di, for each agent i participating in the constraint relaxation task. 

We search for a combination of relaxed problems generated by the agents with the lowest 

GMax.  

As described by the example of table 4.2, relying solely on a global distance 

function, GTotal, might leave us with a final solution that contains a set of sizeable 

combinations of relaxed problems; each is equivalent in terms of distance. Therefore, in 

our work a hybrid global distance computation combining GTotal and GMax is developed to 

perform a better search for the best combination of relaxed problems provided by the 

agents.  

In our hybrid model, a two-stage system is employed. In the first stage, we search 

for a combination of relaxed problems among the agents that produces a minimal GTotal. 

For a search resulting of more than one solution, the system proceeds to the second stage. 

In the second stage, the GMax for each remaining solution is computed and a solution with 

the lowest GMax is selected. 

Given the similar scenario as described in table 4.2, the example of table 4.3 shows 

a computation using both GTotal and GMax to determine the best combination of relaxed 

problems to be selected. While GTotal gives the same rank for each instance (i.e. GTotal=5), 

GMax identifies the combination of relaxed problems instances among agents with the 

lowest maximum local distance (i.e. GMax=3). 

 

 d of agents Computation of solution subset 
distance, G 

Relaxation No. Agent k Agent j GTotal GMax 
1. 1 4 5 4 
2. 2 3 5 3 
3. 5 0 5 5 

Table 4.3: Distance metric computation for achieving a MAP solvable state 
 

(4) 
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4.1.4 Constraint Relaxation  

The following is a detailed description of the constraint relaxation process that has been 

described so far: 

Given a set of agents X={1,…,n} solving a particular MAP via an interaction protocol S, 

specified in expression 5 of section 3.1, then; 

 For each agent i∈X, Pi is a solvable CSP defined by the agent concerning its part of 

the MAP at the pre-interaction stage. 

 As the MAP is progressively solved by X, a set of variables, V of the MAP is 

incrementally instantiated with mutually agreed set of solution values, as each agent 

i∈X propagates its Pi that is part of the MAP concerning V via S, as described in 

expression 6 of section 3.1. The MAP is said to be over-constrained if it consists of a 

set of variables, V, of which: 

o VS ⊆ V, is a subset of variables that is fully solvable, in which all i∈X agreed 

on the value assignments to VS. That is, given i∈X, the value assignments to 

VS is derivable from Pi. It is also possible for VS to be empty, which means 

the agents cannot agree on the value assignments for any of the variable. In 

our work, this set of variables is specified in the necessary bound, Necs, as 

described in section 4.1.1. 

o VF ⊆ V, is a set of variables that is partially solvable, in which given j ∈ X, 

the value assignments to VF is derivable from Pj, where agent j has already 

completed its part as prescribed in S concerning the solving of VF. However, 

there is agent k ∈ X that cannot complete its part in S to solve VF, as its 

constraints as specified in Pk concerning VF cannot be satisfied. In our work, 

this set of variables is specified in the sufficient bound, Suff, as described in 

section 4.1.1.  

 Given the over-constrained MAP, agent k ∈ X initiates the constraint relaxation 

process by assuming its role as prescribed in the constraint relaxation protocol R, 

supplied to the interacting agents, as described in figure 3.9 of section 3.4.  
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 For each agent i ∈ X involved in the constraint relaxation process, problem spaces, 

PSi are made up of a number of possible weakened CSPs, generated and provided by 

the agents during a particular constraint relaxation cycle, in which agents relax their 

original CSPs (i.e. Pi) by applying constraint relaxation strategies privately held by 

the agents and not accessible at the interaction protocol level. 

 For each agent i ∈ X, a solution subset distance metric is applied to compute the 

distance between each relaxed CSP, P’i, selected from the problem space, PSi, of 

agent i (i.e. P’i ∈ PSi), with its original, Pi, defined at the pre-interaction stage. Using 

this metric we identify Ni, the set of solutions not shared between the two problems, 

Pi and P’i. Ni is derived by computing the union of the following two components; 1) 

a set of additional solutions introduced due to the selection of P’i, and 2) a set of 

existing solutions of the original problem Pi, that is eliminated due to the selection of 

P’i. The number of solutions identified by this union is computed as di = |Ni|, where 

di is the cardinality of Ni.  

 The relaxation process involves agents k, j ∈ X assuming their respective roles as 

specified in R to perform the relaxation on their Pk and Pj respectively for attaining a 

solvable state. A solvable state of the MAP is said to be achieved if any of the 

following is satisfied: 

o Agent k fully relaxes its original local problem Pk, and produces a relaxed 

problem, P’k, which satisfies the necessary bound, sols(P’k)⊇sols(Necs). 

There exists at least a solution, Nk, from the set of solutions derivable from 

P’k, Nk∈sols(P’k), which is consistent with the existing solutions derivable 

from the original local problem of agent j, sols(Pj). That is, Nk ∩ sols(Pj). 

Attainment of this state indicates the satisfaction of sufficient bound, Suff. 

This is illustrated in figure 4.6(a). Alternatively, a similar result is achieved by 

agent j performing a constraint relaxation that meets the described 

requirements, as illustrated in figure 4.6(b). 

o Both agents k, j ∈ X partially relax their original problems Pk and Pj 

respectively, and produce the respective relaxed problems P’k, and P’j. Both 
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relaxed problems satisfy the necessary bound, sols(P’k)⊇sols(Necs) and 

sols(P’j)⊇sols(Necs), and their combined constraint relaxations introduce new 

solutions Nk and Nj, where Nk ∩ Nj. Attainment of this state indicates the 

satisfaction of sufficient bound, Suff. This is illustrated in figure 4.6(c). 

o If no combination of relaxed problems, P’k and P’j, that produces a solvable 

MAP state is found after an exhaustive search has been performed on the 

problem spaces, PSk and PSj, of the agents k, j∈X respectively, then the 

constraint relaxation process involving the agents k and j over the protocol R 

is terminated. This indicates that the agents cannot reach an agreement in 

reconciling their differences. This is illustrated in figure 4.6(d). 

 Obtaining a solvable MAP state with the least number of constraint relaxations 

performed over agents k, j∈X requires a search for the combinations of P’k,j ∈ PSk,j 

which results in a solvable state to be achieved with a minimal ∑(dk,j). Given that the 

search produces a number of equally ranked possible solutions, the solution with the 

minimal max(dk,j) is selected.  

 

4.2 Algorithms for Finding Relaxed Problems that Achieve 
Solvable State with Minimal Distance 

 

In this section, we describe the algorithms for finding a combination of relaxed problems 

provided by the agents that achieve a MAP solvable state. The state is achieve with a 

minimal distance from the originals among the agents. The algorithms also provide the 

necessary coordination for the agents to organise the constraint relaxation task. Details of 

the algorithms are shown in figures 4.7 − 4.10. 

 

 The agent, k, who is faced with an over-constrained problem starts the algorithm by 

sending a relax? message that contains the necessary and sufficient bounds to agent 

J={1,…,n} that have already constrained their part of the MAP. The sufficient bound 

is instantiated with the relevant solution values from the agent’s original problem. 

These are described in figure 4.7. 
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 When receiving the relax? message, agent j∈J tries to find a relaxed problem from its 

generated problem space that satisfies both the necessary and sufficient bounds, with 

the minimal distance from the agent’s original problem. The set of solutions derivable 

from the relaxed problem, which is consistent with the sufficient bound, and its 

corresponding distance are returned with the relaxed message, if one exists. 

Otherwise, null values are returned. These are described in figure 4.9. 

 Upon receiving all relaxed messages from agent J, agent k checks whether a solvable 

MAP state has been achieved. If it has, then the accumulated local distances, t, to 

reach the solvable state by this particular relaxation_path is computed. If the t 

produced by the relaxation_path is less than the t of the existing_path, then the 

existing_path is assigned with the value of the relaxation_path. However, if the value 

of t for both the relaxation-path and existing_path is equal, further computation using 

the maximum local distance, g, is required. The path with the minimal g is selected, if 

one exists. If g of both relaxation_path and existing_path is equal, then the value of 

relaxation_path is added to existing_path. Otherwise, no update is made on 

existing_path. These are described in figure 4.8 and the definitions for 

relaxation_path and existing_path are provided in figure 4.7. 

 The agents will continue to the next round of relaxation cycle if the generated 

problem space of agent k contains relaxed problems with a distance of less then or 

equal to the t of the existing_path, and these relaxed problems have not been selected 

yet in any of the previous constraint relaxation cycles. The sufficient bound is revised 

with the solution values introduced with this selected relaxed problem and a relaxed? 

message containing the updated sufficient and necessary bounds are sent to all the 

other agents. These are described in figure 4.8. 

 Upon completion of the constraint relaxation process among the interacting agents, 

the value of the existing_path is returned. If existing_path = null, this indicates that 

the agents failed to individually produce any relaxed problem that reaches a solvable 

MAP state. These are described in figure 4.10. 
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procedure initiate /* done by agent k for starting the algorithm */ 

 
necs; /* the necessary bound, containing variables with associated solution values agreed by all 

agents prior to the occurrence of an over-constrained state */ 
 
pk;         /* original problem of agent k */ 

 
suff=sols(pk); /* the sufficient bound, containing all possible set of solution values for the 

variables of the MAP. Initially assigned with the set of solution values derived 
from pk. That is sols(pk) */ 

 
relaxation_path=null; /* record of achieved relaxation path for a particular constraint relaxation 

cycle, initially assigned to null. relaxation_path is in the form of [(n,d)i], 
where n and d are respectively the set of solutions derived by each 
individual agent i from the attempted constraint relaxation and the 
solution subset distance required by the individual agent for achieving it 
*/ 

 
t=0; /* the summation of local distances from all agents in a particular constraint relaxation 

cycle to reach a solvable MAP state, initially assigned to 0 */ 
 
g=0; /* the maximum local distance selected from the list of local distances provided by all 

agents in a particular constraint relaxation cycle to reach a solvable MAP state, initially 
assigned to 0 */ 

 
existing_path=null; /* record of selected relaxation path so far, initially assigned to null. 

existing_path is in the form of [(relaxation_path, t, g)r], where t and g 
are for the relaxation_path achieved in the constraint relaxation cycle r*/ 

 
counter =0; /* to keep track the number of receipt messages for a particular constraint 

relaxation cycle from each member of J agent, that is j∈J, so far. Initially 
assigned to 0 */ 

 
history_list=sols(pk); /* to record the set of solution values derivable from the constraint 

relaxation attempted by agent for each relaxation cycle. Initially assigned 
with the set of solution values derived from pk. That is sols(pk) */  

 

send (relax?, suff, necs) to each member of J agent, that is j∈J; 
 
goto relaxation_progression mode; 
 

Figure 4.7: Algorithm for constraint relaxation (i) 
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relaxation_progression mode 

when agent k receives (relaxed, nj, dj) message from agent j∈J do 
     add 1 to counter;   add (nj,dj) to relaxation_path; 
     if counter = total number of J agent 
          if ∀(ni,di) in relaxation_path, (ni≠null,di≠null) and ∀(ni) is consistent, then 
                    t = ∑ di;   /* the accumulated local distances to reach a solvable MAP state */ 

       g = max(di); /* the maximum local distance to reach a solvable MAP state */ 
               if existing_path ≠ null then 
                    if t < t of existing_path then assign (relaxation_path, t, g) to existing_path; 
                    else if t = t of existing_path then 
                         if g < g of existing_path then 
                              assign (relaxation_path, t, g) to existing_path; 
 else if g = g of existing_path then 
  add (relaxation_path, t, g) to existing_path; 
                    end if; end if; 
               else 
                    assign (relaxation_path, t, g) to existing_path;   
           end if; end if; 
         set relaxation_path to null; set counter to 0; let psk be problem space obtained from agent k; 
          for all p’k of psk do 
               if sols(p’k) ∈ history_list then 
                   remove p’k from psk; 
               else 
                    if t ≠0 then 
                         if compute_distance(p’k, pk) > t then remove p’k from psk; 
                         end if; end if; end if; 
          end do; 
 
          if psk is not empty, then 
               for all p’k of psk do 
                    select a relaxed problem, prelaxed, from all p’k contained in psk, which produces the 

minimal solution subset distance. That is, compute_distance(prelaxed, pk) is the 
minimal; 

               end for; 
               suff =sols( prelaxed) ; 
               add sols( prelaxed) to history_list; 
               add (_ ,compute_distance(prelaxed, pk)) to relaxation_path; 
               send (relax?, suff, necs) to each member of J agent, that is j∈J; 
               goto relaxation_progression mode; 
          else 
               goto relaxation_completion mode; 
          end if; 
     else 
          goto relaxation_progression mode; 
    end if;      
end do; 
 

Figure 4.8: Algorithm for constraint relaxation (ii) 
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when agent j∈J received (relax?, suff, necs) from agent k do 
let psj  be problem space obtained from agent j;  let pj be original problem of agent j; 
     solvable_problem=find_solvable(psj, pj, necs, suff); 
     if solvable_problem ≠ null then 
          for all p’ in solvable_problem do 
               select a solvable problem, psolvable, from all p’ contained in solvable_problem, which 

produces the minimal solution subset distance. That is, compute_distance(psolvable, pj) 
is minimal; 

          end do; 
        nmin= sols(psolvable) which is consistent with suff;  dmin= compute_distance(p’solvable, pj); 
     else 
        nmin= null; dmin= null; 
     end if; 
     send (relaxed, nmin, dmin); 
end do; 
 
/***************************************************************/ 
 
procedure find_solvable (psj, pj, necs, suff) 
solvable_list; /* to keep track of solvable problem contained in the problem space provided by 

the agents, initialised to null */ 
     if psj = null then 
          return null; 
     else 
          do until psj is empty 
               let p’j  be a problem obtained from psj; 
               if solvable(p’j, suff, necs) then 
                    add (p’j) to solvable_list; 
               end if; 
               remove p’j from psj; 
          end do; 
          return solvable_list; 
     end if; 
 
procedure solvable(p’j, suff, necs) 
     if ((sols(p’j) ⊇ necs) ∧ (sols(p’j) is consistent with suff)) then 
          return true; 
     else 
          return false; 
 
procedure compute_distance(p’j, pj) 
nj ← (sols(p’j) − sols(pj)) ∪ (sols(pj) − sols(p’j)); 
dj ← | nj |; 
return (dj); 
 
procedure sols(p’j) 
return all set of solutions derivable from problem p’j; 
 

Figure 4.9: Algorithm for constraint relaxation (iii) 



Chapter 4. Protocol Specification 

 94

 
relaxation_completion mode 
      
     if existing_path = null then 
          terminate algorithm with unsuccessful constraint relaxation; 
     else 
          terminate algorithm by returning existing_path value; 
     end if; 
 

Figure 4.10: Algorithm for constraint relaxation (iv) 
 

Since in this research we are solely focused on the finite-domain constraint 

problem, the space of solution sets that the agents could derive during the constraint 

relaxation process of the MAP is guaranteed to be finite regardless of the constraint 

relaxation strategies that the agents might employ or how they specify the constraints for 

their individual problems at the pre-interaction stage. This ensures that our algorithms are 

complete, i.e. the algorithms eventually find a sufficient solution (i.e. a combination of 

relaxed problems that achieve a solvable state with minimal distance) or find that there 

exists no such solution and terminate. In the algorithms, the set of solutions obtained in a 

particular constraint relaxation cycle is recorded in the history_list to ensure that the 

possible combination of relaxed problems selected from the agents’ problem spaces in 

each and every relaxation cycle are not duplicated in terms of solution sets. This means, 

for each distinct constraint relaxation cycle, the obtained result consists of a different set 

of relaxed problems from which a different solution set could be derived. The number of 

constraint relaxation cycle taken by the algorithms to terminate depends on the problem 

spaces provided by each individual agent during the constraint relaxation process. At a 

very minimum, it might take only a constraint relaxation cycle before termination is 

reached. At a very maximum, the number of constraint relaxation cycle taken by the 

algorithms to terminate is equivalent to the total number of possible solution sets 

derivable from the MAP.  
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4.3 Implementing Constraint Relaxation Approach in LCC 
 

As LCC is a role-based language, it is necessary for our developed constraint relaxation 

approach described in detail in the previous section to be defined within the context of 

roles. As discussed in [Cabri et al., '02; Cabri et al., '04], there generally exist two distinct 

roles in any interaction protocol: that of initiator and that of responder. Both agents know 

when their portion of conversation is over because they had this notion of whether they 

initiated or responded to the conversation. For a smooth ongoing interaction between the 

agents participating in the constraint relaxation task, they are required to assume the 

designated roles as specified in the protocol. Each role in the interaction is modelled to 

encapsulate a set of conversation rules and behaviours applicable to the agents assuming 

the role. A role defines on how an agent in a given state receives a message of specified 

type, performs local actions, sends out messages, and switches to another state. The 

descriptions on the intra-agent and inter-agent interactions between the agents’ major 

roles are given in figure 4.11, and detailed specifications with regards on how LCC is 

used to encode these roles and other function-specific roles expandable from these roles 

are given in clauses 5-13 of figures 4.12−4.14. In addition, we provide detailed 

definitions of the relevant parameters, which are encapsulated within the roles and passed 

among the interacting agents as described in clauses 14-28. 

The agent faced with an over-constrained problem needs to assume the role of 

initiator, defined as clause (5) in figure 4.12, to begin the constraint relaxation process. 

Contained within this initial role are three major roles namely relaxation_initiation, 

relaxation_progression and relaxation_completion that reflects the stages involved in the 

overall constraint relaxation process. These major roles are incrementally expanded in a 

sequential order as illustrated by the direction of the intra-agent arrows highlighted in 

figure 4.11. In the relaxation_initiation and relaxation_progression agent roles, we 

define the following two kinds of capabilities – message passing behaviours and 

constraint relaxation computations. For the message-passing behaviours, we allow inter-

agent interactions concerning the sending and receiving of constraint relaxation related 

messages between the agents to be established, maintained and coordinated. This part is 
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depicted as dashed arrows in figure 4.11, and detailed specifications of the behaviours are 

encapsulated within the coordinator role, defined as clause (10) in figure 4.13.  

The constraint relaxation computations ensure that local actions like performing a 

solution subset distance given a relaxed and original CSP problems, searching for a 

solvable relaxed problem with a minimal distance or revising the sufficient bound after 

the completion of a constraint relaxation cycle, are made available and accessible to the 

relevant agents. This allows the involved agents to effectively participate in the constraint 

relaxation process of the MAP. The sets of computations, described in details in figures 

4.14−4.15, are defined within two specific-function agent roles, namely select_submit 

and ps_filteration, identified as clause (9), and clause (11) in figure 4.13. These roles 

provide some ordering on the sequence of necessary actions to be performed at the local 

level. Eventually, the relaxation_completion role, defined as clause (8) in figure 4.12, 

marks the end of the constraint relaxation task. It allows smooth termination of the 

protocol that guarantees a revised set of constrained variables is properly returned if a 

solvable relaxed MAP state is achieved or a null value is returned if there exists none. 

An agent needs to assume the role of a responder to become the recipient of a 

request message to relax its part of the over-constrained MAP. Upon receipt of the 

message, contained within the necessary and sufficient bounds, the responder assumes 

the relaxation_computation role. Within this role, the necessary computational process of 

finding a solvable relaxed CSP with a minimal distance given the original problem is 

performed. The inter-agent interactions between this role and the other roles of the 

initiator are illustrated as dashed arrows in figure 4.11. Further details with regards to the 

defined protocol clauses for these roles can be found in clause (12) and clause (13) of 

figure 4.13. 
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Figure 4.11: Interaction between agent roles 
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In LCC, the point of contact between the agents’ knowledge and the defined 

protocol clauses of 5−13 described in figures 4.12−4.14, is provided by the following 

constraint clauses. These constraint clauses are associated with messages and roles of the 

defined protocol clauses. The knowledge to which these connections are made are 

obtained from two different sources: 

 

1) Devolved to the appropriate agent – so that the choice of which axioms and 

inference procedures used to satisfy a specified constraint clause (e.g. generate a 

problem space consisting of relaxed CSPs) is an issue that is private and internal to 

the agent concerned. The constraint clauses which fall into this category are 

described as follows: 

 original(O) returns the original problem, O, specified by the initiator/responder 

at the pre-interaction stage concerning its part of the MAP, which is formalised 

as CSP. 

 problem_space(PS) returns a problem space, PS, consisting of relaxed 

problem(s) generated by the agents by applying their individual and private 

constraint relaxation strategies. 

 recipient(Resp) returns a list of agents, Resp, normally neighbours to the 

initiator, that have already completed and satisfied parts of their protocol 

concerning the currently solved MAP. 

 

2) Retained with the LCC protocol – so that the axioms used to satisfy a specified 

constraint clause are visible at the same level as the protocol and the inference 

procedures may also be standardised and retained with the protocol (e.g. 

computation on distance function). The constraint clauses which fall into this 

category are described as follows and further details on the specification of these 

constraint clauses are provided in clauses 14−28 of figures 4.14−4.15. 

 add(L1,L2,NList) returns a list, NList, consisting the concatenation of two lists, 

L1 and L2. 
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 assign(Suff,P) returns Suff, consisting of the set of solutions, sols(P) for the 

selected relaxed problem P. 

 better(NRPath,NRPath’) is true if NRPath is better compared to NRPath’ in 

terms of distance. 

 distance(P,O,D) returns the distance, D, which is the cardinality of set U, where 

U is the union of additional solutions introduced  and existing solutions 

eliminated due to the constraint relaxation performed on the original problem, 

O, for obtaining the relaxed problem P. 

 distance_computation(TPS,O,DisTPS) returns DisTPS, contained within a list of  

dis(P1,D1),…,dis(Pn,Dn) where for i=1..n, Pi∈TPS, that is the relaxed problems 

selected from the problem space, TPS, together with their solution subset 

distances, Di, from the original, O. 

 find_solvable(PS,Necs,Suff,SL) returns a set of relaxed problems, SL, selected 

from the problem space, PS, that satisfy the necessary bound, Necs, and also the 

sufficient bound, Suff. 

 g_distance(RPath,NRPath) returns a computed distance values, NRPath, in the 

form of gdis(RPath,T,G) in which T is the total number of additional solutions 

and G is the maximum number of additional solutions, introduced over agents 

due to the performed relaxations, as indicated by the obtained constraint 

relaxation path, RPath. 

 g_solvable(RPath) denotes that a globally solvable constraint relaxation state 

for the MAP is achieved, which is true if the obtained constraint relaxation path, 

RPath, consists a fully solvable set of solution values provided by all agents 

pertaining to the over-constrained variables. 

 invalid_dist_removal(DisTPS,NEPath,FPS) returns FPS, contained within a set 

of relaxed problems, selected from DisTPS, that have a better or equally 

comparable distance if compared to the existing relaxation path, NEPath, 

obtained by the agents so far. 
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 invalid_spec_removal(PS,Necs,NHList,TPS) returns TPS, contained within a set 

of relaxed problems selected from PS, that generate solutions which satisfy the 

necessary bound, Necs, and do not yet exist in the history list, NHList. 

 locally_better(P,NEPath) is true if the distance of a local problem P, is equal or 

better compared to the existing constraint relaxation path of the agents, NEPath. 

 path_computation(RPath,EPath,NEPath) returns the constraint relaxation path, 

NEPath with a better distance, given the existing path so far, EPath and a newly 

obtained constraint relaxation path, RPath. 

 select_minimal(FPS,Minimal) returns a relaxed problem, Minimal, selected 

from FPS that produces the most minimal distance. 

 select_path(NRPath,EPath,NEPath) instantiates NEPath with the existing path, 

EPath if the existing path is better than the newly obtained NRPath, or 

otherwise NEPath is instantiated to NRPath. 

 solvable(A,Necs,Suff) is true if the CSP formalised problem A produces a set of 

solutions that satisfy the necessary bound, Necs and sufficient bound, Suff. 

 sel({(dis1(P,D),…,disn(P’,D’))|min(D,…,D’)}) selects a solvable problem in the 

form of disi(P,D), where P is a CSP-formalised problem, and D is the distance. 

The problem with the minimal distance, min(D) is selected. 

 sols(P) returns the set of solutions derivable from a CSP-formalised problem P. 
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Figure 4.12: Encoding of constraint relaxation as a LCC protocol (i) 
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Figure 4.13: Encoding of constraint relaxation as a LCC protocol (ii) 
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Figure 4.14: Encoding of constraint relaxation as a LCC protocol (iii) 



Chapter 4. Protocol Specification 

 104

 
).GDTD()TD())G,T,Path(gdis),D,P(dis(tterlocally_be ≤∧=∨<←  

 
(24)

NEPath).EPath,h(NRPath,select_pat                                                                         
NRPath)(RPath,g_distanceNEPath)EPath,th,tation(RPapath_compu

∧
←

 

 

(25)

EPath.NEPath                                                                  
                                                                               

EPath)ath,better(NRP if     
NRPathNEPath

)NEPath,EPath,NRPath(path_select

=
∨

⎥
⎦

⎤
⎢
⎣

⎡ =
←

 

 

(26)

.)})D,...,Dmin(|))D,P(dis),...,D,P(dis({selMinimal     
)Minimal,FPS(imalselect_min

n1 ′′′=
←

 

 

(27)

Suff.SNecsSsols(A)SSuff)Nesc,,solvable(A ∩∧⊇∧=←  
 

(28)

Figure 4.15: Encoding of constraint relaxation as a LCC protocol (vi) 
 

4.4 Chapter Summary 
 

In this chapter, we provided a detailed specification of the constraint relaxation protocol, 

which is realised from the distributed partial CSP. In section 4.1, we presented an 

approach, based on the distributed partial CSP, for allowing individual and distinct agents 

to take part in the interactive task of solving an over-constrained MAP. In the approach, 

the solution subset distance metric is used to compute the degree of constraint relaxation 

attempted by each individual agent as described in section 4.1.1. The mechanism for 

finding a solvable MAP among the distributed agents involved in the constraint 

relaxation process is described in section 4.1.2. Furthermore, we also introduced two 

special bounds for restraining the individual problem space generated by each agent 

during the constraint relaxation process; necessary and sufficient bounds. A global 

distance function is specified for computing the best constraint relaxation path generated 

by agents as described in section 4.1.3. Subsequently, a detailed description of the 

constraint relaxation process is provided in section 4.1.4. We showed the algorithms for 

finding a combination of relaxed problems that achieve a solvable state with minimal 

distance in section 4.2 and, in section 4.3, a detailed description on how our constraint 

relaxation approach is encoded into an LCC protocol is provided. 
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Chapter 5 
 

Implementation and Working Example 
 

This chapter describes the implementation aspects of our approach, followed by a 

discussion on the execution of the approach using the over-constrained MAP scenario of 

chapter 3. 

 

5.1 Implementation 
 

An important contribution of this thesis is not only developing the ideas of integrating 

distributed partial CSP with LCC, but also providing a practical and executable solution. 

In order to achieve this, our approach, which consists of inference procedures for 

performing constraint relaxation computations, needs to be implemented in a high level 

declarative language. As described in chapter 3, in the LCC framework, the protocol 

language and the expansion engine are written in SICStus Prolog [SICS, '99] and the 

message passing system is implemented in Linda [Carrieno and Gelernter, '89]. 

Therefore, we choose to implement our approach in SICStus Prolog to take advantage of 

the existing code for the LCC basic framework and expansion engine, and ensure smooth 

interfacing with these components. In addition, a finite-domain constraint solver available 

in SICStus Prolog (i.e. clp(FD)) is used to accommodate the computations on the solution 

subset distance, necessary and sufficient bounds for the set of problems contained in the 

agents’ problem spaces.  

Figure 5.1 provides a diagrammatical overview on the architecture and process 

flow, describing how the protocol for distributed constraint relaxation interactions is 

enacted in LCC. The inference procedures for performing constraint relaxation 

computations are defined in the constraint relaxation computational engine. The figure 

focuses on the execution of the protocol from the view of a single agent. 
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Figure 5.1: Architecture for distributed constraint relaxation interactions 
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Interaction via the protocol is initiated by an agent with a bootstrapping mechanism 

which requires a unique agent identifier, a role, and the name of a file which contains the 

protocol to be enacted. This will allow the file to be read and loaded into memory for the 

agent to use. In addition to the protocol, defined in terms of LCC agents’ clauses, the file 

also contains a set of constraint relaxation specific knowledge pertaining to the agent (i.e. 

the agent’s original problem and generated problem space). Once this step is completed, 

the agent needs to identify the appropriate clause for its role and perform the prescribed 

actions for that role to proceed to the next stage. This is achieved through an expansion 

engine that applies the set of rewrite-rules described in table 2.1 of chapter 2, onto the 

protocol. Each time the expansion engine finds inference procedures for performing 

constraint relaxation computations, a transfer of control is made to the constraint 

relaxation computational engine for the specific task to be executed. This process may 

require interfacing with a constraint solver especially for computations involving solution 

subset distance, necessary and sufficient bounds. If an expansion of the protocol resulted 

in a locution to be sent to another agent, or received from another agent, the 

corresponding portions of the protocol’s interaction state are marked to reflect those 

occurring (i.e. enclosed in ‘c’ as described in table 2.1 of chapter 2 to indicate that the 

protocol clauses are already closed). 

The agent clauses, the constraint relaxation knowledge base of agent, the marked 

agent clauses that reflect the current state of  the interaction, and the locution, are merged 

together into a message before being sent to the Linda tuple space. A message 

encoder/decoder is used for receiving and transmitting messages via the tuple space. This 

enables messages residing in the Linda tuple space to be read, and the LCC protocol 

expressions contained within the messages to be extracted. The Linda tuple space uses a 

blackboard approach to facilitate distributed communication. In this approach, a message 

addressed to a specific agent as specified by the protocol is left on the space to be 

retrieved by the intended recipient. 

The process continues with the agent checking the Linda tuple space for the 

messages addressed to its identifier. Once the message has been retrieved from the tuple 

space and decoded, the agent applies the expansion process again on the extracted LCC 

protocol expressions contained within the received message. The locutions received with 



Chapter 5. Implementation and Working Example 

 108

the message are then processed by the agent, and the agent clauses which specify the 

receipt of the locutions are accordingly marked to reflect the current state of the 

interaction. The expansion process continues for finding a suitable reply to the locutions 

as prescribed in the protocol, which includes satisfying any constraint attached to the 

agent clauses. This sequence of interaction between agents will continue until all agents 

have completed the expansion of their respective parts in the protocol.  

For a detailed SICStus Prolog coding on these described components, please refer 

to appendix A. 

 

5.2 Working Example 
 

In order to explain a detailed expansion of the constraint relaxation protocol, we will re-

visit our over-constrained scenario of chapter 3 that deals with the purchasing and 

configuration of a computer between a customer and vendor agents. Assuming that the 

universal domain values for the disk space and memory size attributes are set as 

D={40,80,120} Gb and M={256,512,1000} Mb respectively, then figure 5.2 and figure 

5.3 provide the possible problem spaces to be obtained by the customer and vendor 

agents which are compatible with the necessary bound (i.e. Necs) of D=120 and M=1000. 

Contained within the problem spaces are the original CSPs (i.e. CSPc1 and CSPv1) and the 

possible relaxed CSPs derived from the original CSPs (i.e. CSPc2, CSPc3, CSPc4 and 

CSPv2, CSPv3, CSPv4). The forms of relaxations applied by the agents on the original 

CSPs are highlighted in bold, as indicated in each relaxed CSP. The individual relaxation 

performed on the constraints of the original problems are described as follows: 

 CSPc2 – Enlarging of the unary constraint imposed on the disk space attribute 

to include a value of 40 Gb. 

 CSPc3 – Enlarging of the unary constraint imposed on the memory size 

attribute to include a value of 256 Mb. 

 CSPc4 – Enlarging of the unary constraint imposed on the price attribute from 

less than or equal to £300 (i.e. =< 300) to less than or equal to £350 (i.e. 

=<350). 
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 CSPv2 – Enlarging of the unary constraint imposed on the disk space attribute 

to include a value of 80 Gb. 

 CSPv3 – Enlarging of the unary constraint imposed on the memory size 

attribute to include a value of 512 Mb. 

 CSPv4 – Revising the constraint equation imposed on the price attribute where 

a fixed constant part of £180 is lowered to £150. 

In figures 5.2 and 5.3, the set of solutions generated from these CSPs are shown in 

shadowed boxes, where any new solution introduced due to a performed relaxation is 

labelled accordingly and highlighted in bold. 
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S1=[D=80,M=512,P=<300]
S2=[D=80,M=1000,P=<300]
S3=[D=120,M=512,P=<300]
S4=[D=120,M=1000,P=<300]
SNew_1=[D=40,M=512,P=<300]
SNew_2=[D=40,M=1000,P=<300]

S1=[D=80,M=512,P=<300]
S2=[D=80,M=1000,P=<300]
S3=[D=120,M=512,P=<300]
S4=[D=120,M=1000,P=<300]

S1=[D=80,M=512,P=<300]
S2=[D=80,M=1000,P=<300]
S3=[D=120,M=512,P=<300]
S4=[D=120,M=1000,P=<300]
SNew_1=[D=80,M=256,P=<300]
SNew_2=[D=120,M=256,P=<300]

SNew_1=[D=80,M=512,P=<350]
SNew_2=[D=80,M=1000,P=<350]
SNew_3=[D=120,M=512,P=<350]
SNew_4=[D=120,M=1000,P=<350]
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problem

Original 
problem

Constraint
relaxation 
action

Constraint 
solving 
action

KEYS:

Generated
solution

disk_space (D) 
{80,120}

memory_size (M) 
{512,1000}

price (P)
{=<300}

disk_space (D) 
{40,80,120}

memory_size (M) 
{512,1000}

price (P)
{=<300}

disk_space (D) 
{80,120}

memory_size (M) 
{256,512,1000}

price (P)
{=<300}

disk_space (D) 
{80,120}

memory_size (M) 
{512,1000}

price (P)
{=<350}
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CSPC2 CSPC3 CSPC4

 
Figure 5.2: Problem space of the customer agent 

 



Chapter 5. Implementation and Working Example 

 111

disk_space (D)
{40,120}

memory_size (M) 
{256,1000}

price (P)
{180+((disk_space div 40)*20)
+((memory_size div 256)*30)}

disk_space (D)
{40,80,120}

memory_size (M) 
{256,1000}

price (P)
{180+((disk_space div 40)*20)
+((memory_size div 256)*30)}

disk_space (D)
{40,120}

memory_size (M) 
{256,512,1000}

price (P)
{180+((disk_space div 40)*20)
+((memory_size div 256)*30)}

disk_space (D)
{40,120}

memory_size (M) 
{256,1000}

price (P)
{150+((disk_space div 40)*20)
+((memory_size div 256)*30)}

S1=[D=40,M=256,P=230]
S2=[D=40,M=1000,P=290]
S3=[D=120,M=256,P=270]
S4=[D=120,M=1000,P=330]
SNew_1=[D=80,M=256,P=250]
SNew_2=[D=80,M=1000,P=310]

S1=[D=40,M=256,P=230]
S2=[D=40,M=1000,P=290]
S3=[D=120,M=256,P=270]
S4=[D=120,M=1000,P=330]

S1=[D=40,M=256,P=230]
S2=[D=40,M=1000,P=290]
S3=[D=120,M=256,P=270]
S4=[D=120,M=1000,P=330]
SNew_1=[D=40,M=512,P=260]
SNew_2=[D=120,M=512,P=300]

SNew_1=[D=40,M=256,P=200]
SNew_2=[D=40,M=1000,P=260]
SNew_3=[D=120,M=256,P=240]
SNew_4=[D=120,M=1000,P=300]

Relaxed 
problem

Original 
problem

Constraint
relaxation 
action

Constraint 
solving 
action

KEYS:

Generated
Solution

CSPv1

CSPv2 CSPv3 CSPv4

 
Figure 5.3: Problem space of the vendor agent 

 

As described in section 4.3, the constraint relaxation protocol defines two kinds of 

capabilities to be coordinated among the interacting agents for achieving a solvable MAP 

state – message passing behaviours and constraint relaxation computations. The message 

passing behaviours are concerned with the sending and receiving of constraint relaxation 

related messages that follow from the protocol expressions 5−13 of figures 4.12−4.14. 

These are illustrated in detail in figure 5.4. The direction and flow of message passing 

between the customer and vendor agents are depicted using arrows. Each relax message 

sent by the customer to the vendor consists of instantiated values for the necessary (i.e. 
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Necs) and sufficient (i.e. Suff) bounds. Each relaxed message sent by the vendor in reply 

consists of a set of solution values (i.e. N) for allowing a solvable MAP state to be 

achieved among these two agents, and a solution subset distance value (i.e. D) on the 

vendor’s part for obtaining this state. The term r(V,S) is used to indicate the possible set 

of solution values S, for the variable V, derived from the respective agents during the 

constraint relaxation process. An instance regarding the aggregation of possible solution 

values, Si, for the respective set of variables under consideration, Vi, is represented by the 

term s([r(V1,S1),…,r(Vn,Sn)]). 

Constraint relaxation computations ensure local actions like searching for a solvable 

relaxed problem with a minimal distance or updating of parameters’ values after the 

completion of each constraint relaxation cycle, are performed by the relevant agents as 

they assume their roles in the constraint relaxation interaction. These are shown in figure 

5.4, where we describe the selected CSPs, and the values of history_list, existing_path 

and relaxation_path during the pre-relaxation interaction and post-relaxation interaction 

stages. The process of searching and selecting a CSP from the respective problem spaces 

of the customer and vendor agents during each constraint relaxation cycle are illustrated 

in figure 5.5. In the remainder of the section, we provide a detailed discussion on the 

execution of the protocol by the agents as illustrated in figure 5.4 and 5.5. 

The customer agent, who is faced with an over-constrained problem for satisfying 

its part in the constraint solving interaction, starts the constraint relaxation process by 

assuming an initiator role as prescribed in the protocol. In order to begin an inter-agent 

interaction, the customer needs to assume a coordinator role, where all the message-

passing behaviours for the initiator are specified. The customer agent begins the 

interaction by sending a message that contains the necessary and sufficient bounds to the 

vendor agent that assumes a responder role. The sufficient bound is instantiated with the 

relevant solution values from the agent’s selected CSP, that is CSPc1 in the initial 

constraint relaxation cycle. Upon receipt of this message, the vendor agent expands its 

responder role to assume the relaxation computation role for searching a relaxed problem 

from its generated problem space that 1) satisfies both the necessary and sufficient 

bounds, with 2) the most minimal distance from the agent’s original problem. As 

illustrated in figure 5.5, there exists two problems in the agent’s problem space that meet 
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the first requirement; CSPv3 and CSPv4. However, CSPv3 is selected since its solution 

subset distance of two (i.e. D=2) is lower than CSPv4 that has a distance of eight (i.e. 

D=8). Given CSPv3, N is instantiated with a set of solutions derived from this CSP which 

matches the current solutions contained in Suff.  

The instantiated value of N and the solution subset distance, D, of CSPv3, are 

returned with the message sends to the customer agent. Upon receipt of this message, the 

global distance values, t and g, for reaching a solvable MAP state in a particular 

constraint relaxation cycle is computed. The global distance value t is the summation of 

local distances of all agents participating in the constraint relaxation task, and the global 

distance value g is the maximum local distance selected from the list of local distances 

provided by all agents. In the first cycle, the values of t=2 and g=2 are obtained. A 

relaxation_path is generated once the computation on t and g are completed. It consists 

of solution values, N, mutually agreed by both agents in reaching a solvable MAP state, 

and its associated global distance values, t and g. These are instantiated to existing_path, 

which is null at the initial stage.  

A new cycle of constraint relaxation interaction will be initiated until both agents 

can no longer find a set of relaxed problems from their problem spaces that has a global 

distance which is better or equal to the global distance of the currently recorded 

existing_path. In this example, the agents are involved in three cycles of constraint 

relaxation interaction before a completion state is achieved. Each relaxation cycle 

produces a different set of relaxed problem for achieving a solvable MAP state, all with 

the global distance values of two (i.e. t=2 and g=2) . These are the best global distance 

values obtainable by the agents for solving their over-constrained MAP. 
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relax(Necs,Suff)

INITIATOR
(Customer)

RESPONDER
(Vendor)

Necs = [r(M,[[1000|1000]]), r(D,[[120|120]])].
Suff = [s([r(P,[[inf|300]]),r(M,[[512|512]]),r(D,[[80|80]])]),
            s([r(P,[[inf|300]]),r(M,[[1000|1000]]),r(D,[[80|80]])]),

 s([r(P,[[inf|300]]),r(M,[[512|512]]),r(D,[[120|120]])]),
 s([r(P,[[inf|300]]),r(M,[[1000|1000]]),r(D,[[120|120]])])].

Relaxation cycle 1:

Pre-relaxation interaction:
history_list: CSPc1
existing_path: Null
relaxation_path: Null

relaxed(N,D)
N = s([r(P,[[300|300]]),r(M,[[512|512]]),r(D,[[120|120]])]).
D = 2.

Selected CSP:
CSPv2

Post-relaxation interaction:
history_list: CSPc1

existing_path: 
N = s([r(P,[[300|300]]),
           r(M,[[512|512]]),
           r(D,[[120|120]])]),
t = 2, g = 2.

relaxation_path:
N = s([r(P,[[300|300]]),
           r(M,[[512|512]]),
           r(D,[[120|120]])]),
t = 2, g = 2.

Selected CSP:
CSPc1

 
Figure 5.4: Flow of inter-agent interactions 
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INITIATOR
(Customer)

RESPONDER
(Vendor)

Relaxation cycle 2:

Pre-relaxation interaction:
history_list: CSPc1, CSPc2

existing_path: 
N = s([r(P,[[300|300]]),
           r(M,[[512|512]]),
           r(D,[[120|120]])]),
t = 2, g = 2.

relaxation_path: Null

relax(Necs,Suff)

relaxed(N,D)
N = s([r(P,[[290|290]]),r(M,[[1000|1000]]),r(D,[[40|40]])]).
D = 0.

Selected CSP:
CSPv1

Selected CSP:
CSPc2 Necs = [r(M,[[1000|1000]]), r(D,[[120|120]])].

Suff = [s([r(P,[[inf|300]]),r(M,[[512|512]]),r(D,[[80|80]])]),
            s([r(P,[[inf|300]]),r(M,[[1000|1000]]),r(D,[[80|80]])]),

 s([r(P,[[inf|300]]),r(M,[[512|512]]),r(D,[[120|120]])]),
 s([r(P,[[inf|300]]),r(M,[[1000|1000]]),r(D,[[120|120]])]),

            s([r(P,[[inf|300]]),r(M,[[512|512]]),r(D,[[40|40]])]),
  s([r(P,[[inf|300]]),r(M,[[1000|1000]]),r(D,[[40|40]])])].

Post-relaxation interaction:
history_list: CSPc1, CSPc2

existing_path: 
[(N = s([r(P,[[300|300]]),
           r(M,[[512|512]]),
           r(D,[[120|120]])]),
  t = 2, g = 2),
(N = s([r(P,[[290|290]]),
            r(M,[[1000|1000]]),
            r(D,[[40|40]])]), 
  t = 2, g = 2)].

relaxation_path:
N = s([r(P,[[290|290]]),
            r(M,[[1000|1000]]),
            r(D,[[40|40]])]), 
 t = 2, g = 2.

 
Figure 5.4: Flow of inter-agent interactions 

(continuation from previous page) 
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INITIATOR
(Customer)

RESPONDER
(Vendor)

Relaxation cycle 3:

Selected CSP:
CSPv1

Post-relaxation interaction:
history_list: CSPc1, CSPc2, 
CSPc3

existing_path: 
[(N = s([r(P,[[300|300]]),
           r(M,[[512|512]]),
           r(D,[[120|120]])]),
  t = 2, g = 2),
(N = s([r(P,[[290|290]]),
            r(M,[[1000|1000]]),
            r(D,[[40|40]])]), 
  t = 2, g = 2),
(N = s([r(P,[[270|270]]),
           r(M,[[256|256]]),
           r(D,[[120|120]])]),
  t = 2, g = 2)].

relaxation_path:
N = s([r(P,[[270|270]]),
           r(M,[[256|256]]),
           r(D,[[120|120]])]),
t = 2, g = 2.

Selected CSP:
CSPc3

Necs = [r(M,[[1000|1000]]), r(D,[[120|120]])].
Suff = [s([r(P,[[inf|300]]),r(M,[[512|512]]),r(D,[[80|80]])]),
            s([r(P,[[inf|300]]),r(M,[[1000|1000]]),r(D,[[80|80]])]),

 s([r(P,[[inf|300]]),r(M,[[512|512]]),r(D,[[120|120]])]),
 s([r(P,[[inf|300]]),r(M,[[1000|1000]]),r(D,[[120|120]])]),

            s([r(P,[[inf|300]]),r(M,[[256|256]]),r(D,[[80|80]])]),
 s([r(P,[[inf|300]]),r(M,[[256|256]]),r(D,[[120|120]])])].

relax(Necs,Suff)

Pre-relaxation interaction:
history_list: CSPc1, CSPc2, 
CSPc3

existing_path: 
[(N = s([r(P,[[300|300]]),
           r(M,[[512|512]]),
           r(D,[[120|120]])]),
  t = 2, g = 2),
(N = s([r(P,[[290|290]]),
            r(M,[[1000|1000]]),
            r(D,[[40|40]])]), 
  t = 2, g = 2)].

relaxation_path: Null

relaxed(N,D)

N = s([r(P,[[270|270]]),r(M,[[256|256]]),r(D,[[120|120]])]).
D = 0.

 
Figure 5.4: Flow of inter-agent interactions 

(continuation from previous page) 
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Figure 5.5: Selection of agents’ CSPs during constraint relaxation computations 
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5.3 Chapter Summary 
 

In this chapter, we provided a discussion on the implementation aspects of our approach. 

As described in section 5.1, we introduced a constraint relaxation computational engine, 

which consists of inference procedures for performing constraint relaxation 

computations. This component, which provides the necessary interface with the finite-

domain constraint solver, is implemented in SICStus Prolog. Furthermore, we also 

described how the protocol for distributed constraint relaxation interactions is enacted. In 

section 5.2, we showed a detailed execution of our constraint relaxation protocol using an 

over-constrained scenario of chapter 3 that deals with the purchasing and configuration of 

a computer between customer and vendor agents. 
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Chapter 6 
 

Evaluation 
 

In this chapter we elaborate on the measures used for evaluating the constraint relaxation 

protocol, the set-up of the experimental test bed, the experimental results obtained from 

running the protocol against a set of over-constrained MAPs with different levels of 

hardness, and the analyses performed on these results. 

 

6.1 Measures Used 
 

Central to the constraint relaxation protocol is a search procedure for finding a consistent 

value assignment to each variable of the over-constrained MAP by all agents taking part 

in the process. All agents cooperate in search for a globally solvable relaxed MAP with a 

minimal solution subset distance. Within the distributed CSP research field, the two most 

common performance measurements that have been adopted to evaluate distributed 

search algorithms are:  

 

1. Time. This measurement is motivated by the need to estimate the duration 

between the starting time of the algorithm and the time it returns a satisfying 

solution. The time performance of the algorithms has traditionally been measured 

in terms of computational effort, usually in the form of the number of 

computation cycles or steps taken by the distributed problem solvers to find a 

consistent solution [Davin and Modi, '05; Jung and Tambe, '05]. 

 

2. Communication load. Measuring the communication load poses a much simpler 

task, and it is generally measured by counting the total number of messages 

exchanged during search [Meisels, '04]. 
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Though not perfect, the time-based measurement is a widely used method for estimating 

the performance of distributed search algorithms [Meisels et al., '02; Brito et al., '04], and 

it has also been generally accepted as a machine (and implementation) independent 

measure [Meisels et al., '02]. Given these considerations, we choose to adopt the time-

based measurement for the purpose of evaluating the performance of our constraint 

relaxation protocol. As this form of evaluation method is machine independent, it is no 

longer necessary to run the constraint relaxation protocol in a fully distributed manner 

across a cluster of many computers, which is often non-trivial and impractical. 

Alternatively, we opt to run the protocol on a single computer using multiple threads of 

execution. 

As the execution of the constraint relaxation protocol can be divided into a 

sequence of cycles, the time-based measurement is performed by analysing the number of 

cycles taken by the agents to complete their respective parts in the protocol. A cycle is 

defined as one unit of protocol progress in which all agents, in their respective roles as 

specified in the constraint relaxation protocol, enacted the following three behaviours: 

i. Agents receive messages sent to them from the neighbouring agents to whom 

the equality constraints on the over-constrained MAP are shared; 

ii. Agents generate the necessary problem space contained within a set of relaxed 

problem(s) and perform the necessary computation for finding a relaxed 

problem with a minimal solution subset distance; 

iii. Agents send messages to the corresponding neighbouring agents together with 

the solvable values the meet the distance specification, if there exist one. 

 

In a cycle-based execution as described in figure 6.1, all involved agents perform 

their parts as prescribed in the protocol – starting with the agent in the role of an initiator 

sending a message contained within the current necessary and sufficient bounds  (i.e. 

m(Necs,Suff)) to the agent(s) assuming the role of a responder. Upon receipt of this 

message, the agent in the role of a responder performs local computations that include 

finding a relaxed problem from the locally generated problem space which satisfies the 

necessary and sufficient bounds, with a minimal solution subset distance. Once this is 

complete, a reply message contained within the agent’s solution subset distance and 
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additional solutions derived from the selected relaxed problem (i.e. 

m(Distance,Add_sols)) which are compatible with the sufficient bound, is sent to the 

initiator, if the relaxed problem is found. Otherwise, a failure message (i.e. m(nil,nil)) is 

sent. On the initiator part, upon receipt of this message, a computation is performed to 

determine on whether a solvable MAP state with a minimal accumulated solution subset 

distance has been achieved, and if it does, the constraint relaxation path obtained so far is 

accordingly updated. An agent does not move to the next cycle until all the other agents, 

whom the agent is currently interacting with, have fulfilled their roles as prescribed in the 

protocol for a particular constraint relaxation cycle. A complete cycle is realised when 

each of the involved agents has completed its assigned part. 

ResponderInitiator

m(Distance, Add_sols)
or

m(nil,nil)

m(Necs,Suff)

 Local
computation

Local
computation

BEGIN

END

 
Figure 6.1: A complete relaxation cycle 

The use of cycles as an evaluation metric gives a number of advantages. First, it is 

hardware independent. Hence, the evaluation is not affected by the different machines use 

in the protocol execution. Other forms of measure like the duration of time (either 

physical or CPU) taken to reach a solution do not necessarily corresponds to the 

performance evaluation of the protocol since they are dependent on the expected diverse 

and independent machine architecture upon which the protocol might be deployed. 

Second, the metric is also independent of the interaction forms held by the agents. 

Irrespective of the interaction method (i.e. parallel or linear) used by the agents, the 

number of relaxation cycles will remain the same. 
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6.2 Experimental Test Bed 
 

The performance of many distributed constraint satisfaction techniques is evaluated 

primarily on satisfiable instances, where the biggest concern is on how they perform 

given a different set of constraints complexity. Within the distributed problem solving 

context, the focus is on the different difficulty and complexity level of the problem 

spaces to be solved, signified by the number of variables involved, intra-agent and inter-

agent constraints. Therefore, in our experiment, we evaluate the constraint relaxation 

protocol using a set of over-constrained MAPs with different levels of hardness. Each 

MAP to be solved by the agents via the protocol is set to consist of five variables. Though 

the size of this problem is in an absolute sense small, it is complex enough to be 

representative of the normal type of problem solved by agents in a distributed 

environment. This size is feasible considering that the problem spaces generated by the 

agents during the constraint relaxation process are simulated using an exhaustive, 

distance-guided approach, to be described in the next section. Adding more variables will 

only means more works to be done as the problem spaces of the agents are expanding, 

but without any new insight into the observations that have already been obtained. In our 

case, each agent needs to provide value assignments to these multiple variables for 

satisfying its part in the MAP. In the experiment, each variable of the MAP is allocated a 

distinct set of universal domain values, which is of the same size. This is considered more 

difficult than the assumption normally held in many distributed problem solving related 

works, where one agent only handles a single variable [Yokoo, '01].  

The experiment consists of two phases, a) a problem generation phase of the over-

constrained MAPs and, b) a distributed constraint relaxation phase of the over-

constrained MAPs via the protocol. We describe each phase in the following sub-

sections. 
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6.2.1 Problem Generation Phase 
 

In the problem generation phase, we provide various problem settings controlled by two 

important parameters – domain size and constraint compatibility. Systematic changes in 

these parameters generate a wide variety of problem settings, and enable us to evaluate 

how the protocol will perform given these different set-ups. In this work, parameter 

selection for the MAP is motivated by the experimental investigation in the CSP/DCSP 

literature, which is accordingly revised from the work reported in [Yokoo, '01; Jung and 

Tambe, '05] to accommodate our needs.  

First, we vary the domain sizes from 4 to 7 (4, 5, 6, and 7). The purpose of this is to 

check the impact of having different domain sizes on the performance of the constraint 

relaxation protocol. 

Second, we make variations in the constraint compatibility which has shown great 

impact on the hardness of the MAP. We distinguish external constraints from local 

constraints in defining the constraint tightness to analyse the effect from each class of 

constraints on the performance of the protocol. 

 

Compatibility of external constraints: Compatibility of external constraints (i.e. 

equality constraints) is one of the primary factors that determines the hardness of over-

constrained MAPs to be solved by agents via the protocol. As a MAP is composed of a 

set of variables, compatibility level indicates the number of variables from this set that 

the agents could agree on their value assignments. A low compatibility level reflects the 

existence of sizeable number of variables with conflicting value assignments, and vice 

versa.  

Given a set of problems locally defined by each of the interacting agents, we require 

the external constraints imposed on each of the corresponding variables to be compatible 

for a globally solvable MAP to be derived. The compatibility of external constraints (i.e. 

equality constraints of the MAP) is computed based on the number of variables contained 

in a MAP to be solved by the agents. For instance, given that the MAP consists of five 

variables, the 20% compatibility level of external constraints reflects the agents’ 

agreement only on the values of a single variable, and the 80% compatibility level of 
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external constraints reflects the agents’ agreement on the values of four out of five 

variables. Given the size of our problem, we vary the compatibility level of external 

constraints from 20% to 80% with intervals of 20%. Note that 0% and 100% cases are 

not tried since the MAP doesn’t have any solution for the 0% case (i.e. interaction agents 

cannot find an agreement on the assigned values for any of the variable) and every value 

assignment is a solution for 100% case (i.e. interacting agents mutually agree on the 

assigned values for all of the variables). 

 

Compatibility of local constraints: As described earlier, the specification of local 

constraints is private. In an actual setting, given a distinct set of universal domains 

containing a different set of values, the agents have complete autonomy to construct 

appropriate local constraints for the assignment of these values on each variable of the 

MAP. Though the agents are autonomous to decide on constraint types and density for 

their parts of the MAP, for the purpose of this evaluation, we set a uniform constraint 

setting at the local level across agents. In the setting, the number of domain values that 

could be assigned to each variable is fixed based on a predetermined scale. With this 

form of construct, we could safely omit any factor attributed to the diverse types of 

constraints established by each individual agent that might influence the results obtained 

in the evaluation. 

In assigning domain values to a variable, the number of ways of selecting r values 

from n distinct values contained in a universal domain can be computed using the 

equation specified in figure 6.2: 

.
r
n n0,1,2,...,rfor 

r)!r!(n
n!C  , =
−

=  

Figure 6.2: Number of combination of r values from n possible values 

In combinatorial mathematics, a combination, r
nC , is formally defined as the total 

number of subset of r values, without regard to order and without repetition, that can be 

selected from a set of n distinct values. The number of combinations equals the number 
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of permutations, n!, divided by the number of orderings. The number of ways a pool of r 

values can be ordered equals r!. The size of r
nC  for a discrete set of r=0,1,2,..,n is 

symmetrical as described in figure 6.3. In the case when n is even, the maximal size of 

r
nC  is at ⎥⎦

⎤
⎢⎣
⎡=
2
nr , however, when n is odd, the maximal size of r

nC  is at ⎥⎦
⎥

⎢⎣
⎢=
2
nr  and 

⎥⎥
⎤

⎢⎢
⎡=
2
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Figure 6.3: The size of combinations for different values of r 
 

For the experiment, the portion of allowed domain values is set to either 25% or 

50% of a given domain size. In the case where compatibility levels of local constraints  

are equivalent to a decimal-point value, it will be rounded-off to the nearest integer. 

These two compatibility levels of local constraints can be described as follows, using a 

universal domain consisting of four distinct values: 

 At the 25% compatibility level of local constraints, only a single value is allowed to 

be assigned to each variable at a time. Given r=1, then 1
4C =4, which means that 

there exists four possible distinct set of values that could be used for value 

assignments. 
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 At the 50% compatibility level of local constraints, two values are allowed to be 

assigned to each variable at a time. Given r=2, then 2
4C =6, which means that there 

exists six possible distinct set of values that could be used for value assignments. 

The 25% compatibility level of local constraints is considered a strict measure 

compared to the 50% compatibility level, as more combinations of values are able to be 

produced in the latter as compared in the former. In our experiment, the 0%, 75% and 

100% compatibility levels are not tried since 0% gives agents empty domain and 100% 

has the effect of not having a local constraint. For a set of local constraints with a 75% 

compatibility level, the agents will agree on at least a single solution value for each 

variable of the MAP, as such, it is not possible to obtain an over-constrained state with 

this level of compatibility. 

Based on these parameters, a total of 32 possible problem classes can be derived as 

described in the first column of tables 6.1 and 6.2. Each problem class is instantiated with 

an over-constrained MAP which consists of arbitrarily chosen CSPs, set to be 

inconsistent at the specified problem settings. For instance, a problem class of (25,80,4) 

indicates an over-constrained MAP which consists of a set of conflicting CSPs with a 

domain size of 4, where each CSP is prescribed to an individual agent. The conflict 

involves one variable and only a single solution value is allowable for each variable at a 

time.  

During the execution of the protocol, each individual agent is required to provide a 

problem space, contained within a set of relaxed problems for solving the over-

constrained MAP. Though the constraint relaxation strategies applied by each agent are 

private, for the purpose of this evaluation, we make a sensible assumption that each agent 

will generate a set of relaxed problems with a solution subset distance close to its 

original. There are various approaches we could adopt for simulating the generation of 

problem spaces by the agents. One basic approach is to randomly generate a set of 

relaxed problems given a required distance from the original CSPs. However, as 

emphasised in [Edvardson, '99; Belinfante et al., '05], a random generation approach 

lacks coverage and realism, i.e., most relaxed problems which are within the target 

distance are not generated since they unlikely happen at random. As such, we employ an 
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exhaustive, distance-guided approach for generating the problem spaces. In this 

approach, the set of relaxed problems contained in the agents’ problem spaces are 

exhaustively generated for each distance level, beginning with the one having the closest 

distance to the originals. This will continue until the protocol reaches a completion state. 

The use of distance-guided technique is to ensure that the exhaustive means of problem 

generation is feasible, and to avoid the problem spaces from becoming explosively large 

and difficult to handle. 

 

6.2.2 Distributed Constraint Relaxation Phase 
 

The constraint relaxation process takes place among agents assuming the two roles 

prescribed in the protocol – initiator and responder. As described in chapter 3, there are 

two ways an interaction concerning multi-issue problem could be handled – the agents 

assuming these two roles can communicate all the variables together (i.e. batch 

processing) or one after the other (i.e. issue-by-issue processing). In the issue-by-issue 

processing, at any one time, only one variable is communicated between the agents. As 

such, testing against various external constraint compatibility percentages might not be 

possible in this construct. Therefore, to obtain a complete evaluation on how the 

protocol’s fare given the prescribed settings, the over-constrained MAP is resolved using 

the batch processing. 
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6.3 Experimental Results 
 

Tables 6.1 and 6.2 provide a summary on the results obtained from testing the protocol 

against different problem classes. Each problem class is described in the first column of 

the tables using parameters of (LC, EC, DS) where; 

 LC – Compatibility level of local constraints  (i.e. 25 and 50). 

 EC – Compatibility level of external constraints  (i.e. 20, 40, 60, and 80). 

 DS – Domain size (i.e. 4, 5, 6, and 7). 

The results are grouped based on the 25% and 50% compatibility levels of local 

constraints. These are described in tables 6.1 and 6.2 respectively. Given a different set of 

problem classes as shown in the first column, the tables provide the following in the 

subsequent columns: 

 Second column – The number of relaxation cycles needed by the agents to 

reach a completion state of the protocol. 

 Third column − The cardinality of the relaxation_path at the completion of the 

protocol execution. This cardinality indicates the number of relaxation cycles 

of the second column which are reachable to solution. A relaxation cycle is 

considered has achieved a reachable to solution state if the set of relaxed 

problems generated by the interacting agents in that particular cycle are MAP 

solvable and are obtained with the minimal solution subset distance of the 

fourth column. 

 Fourth column – The minimal solution subset distance required for reaching a 

solvable MAP state. This is further classified into two sub-columns, namely 

GTotal and GMax. 
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Solution subset distance Problem 

class 
Relaxation cycles 

for completing 
the protocol 

Cardinality of 
relaxation_path GTotal GMax 

(25,80,4) 4 2 2 2 

(25,60,4) 7 3 4 2 

(25,40,4) 37 6 6 4 

(25,20,4) 67 6 8 4 

(25,80,5) 5 2 2 2 

(25,60,5) 9 3 4 2 

(25,40,5) 61 6 6 4 

(25,20,5) 113 6 8 4 

(25,80,6) 9 5 2 2 

(25,60,6) 17 9 4 2 

(25,40,6) 235 60 6 4 

(25,20,6) 441 96 8 4 

(25,80,7) 11 5 2 2 

(25,60,7) 21 9 4 2 

(25,40,7) 361 60 6 4 

(25,20,7) 681 96 8 4 

Table 6.1: Protocol’s performance against over-constrained MAPs with 25% 
compatibility level of local constraints 
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Solution subset distance Problem 
class 

Relaxation cycles 
for completing 

the protocol 

Cardinality of 
relaxation_path  GTotal GMax 

(50,80,4) 5 5 2 2 

(50,60,4) 9 9 4 2 

(50,40,4) 64 60 6 4 

(50,20,4) 117 96 8 4 

(50,80,5) 7 5 2 2 

(50,60,5) 13 9 4 2 

(50,40,5) 136 60 6 4 

(50,20,5) 253 96 8 4 

(50,80,6) 10 10 2 2 

(50,60,6) 19 19 4 2 

(50,40,6) 298 270 6 4 

(50,20,6) 554 486 8 4 

(50,80,7) 13 10 2 2 

(50,60,7) 25 19 4 2 

(50,40,7) 523 270 6 4 

(50,20,7) 985 486 8 4 

Table 6.2: Protocol’s performance against over-constrained MAPs with 50% 
compatibility level of local constraints 
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6.4 Analysis of Results 
 

Though there already exists a number of works which integrate constraint satisfaction 

techniques (i.e. CSP/DCSP) within the multi-agent systems as described in the 

introductory chapter of this thesis, many of these works are either: 

 Do not address the over-constrained problem; or 

 They are based on the subjective-based coordination approach. 

 

As far as we know of, the research reported in the thesis is the first to realise the 

distributed partial CSP technique for addressing an over-constrained problem using the 

objective-based coordination approach for multi-agent systems (i.e. LCC). Since there 

exists no standard benchmark to provide an empirical, vis-à-vis comparative study on the 

performance of our approach against other existing agent-based works for solving 

distributed, over-constrained problems, one of the feasible options is to empirically 

evaluate our approach using a set of generated problem instances with different hardness 

levels. Based on the results obtained in the evaluation, it can be generally concluded that 

our approach exhibits the common characteristics similar with the CSP/DCSP techniques 

used for addressing an over-constrained problem within the distributed problem solving 

environment − an increase in the hardness level of a problem requires more time for 

reaching a solution. 

For a detailed discussion on the obtained results, we provide macro-level and 

micro-level analyses in sub-sections 6.4.1 and 6.4.2 respectively. In the macro-level 

analysis, the focus is on the overall view concerning the interactions between the 

different problem settings. In addition, we also view the results from a case-by-case 

perspective, focusing on different domain sizes for the micro-level analysis. 
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6.4.1 Macro-level Analysis 
 

As illustrated in figures 6.4 and 6.5, there is an overall decrease in the number of 

relaxation cycles required by agents to fully complete their parts of the protocol as the 

compatibility level of external constraints is gradually increased from 20% to 80% in all 

classes of domain size. An over-constrained problem with a low compatibility level of 

external constraints (i.e. 20%) consists of more variables to be satisfied compared to 

those with a high compatibility level (i.e. 30% and above). As such, the former involves 

more relaxation cycles for reaching a completion state compared to the latter since a 

higher number of unsatisfied variables contained in an over-constrained MAP requires 

more relaxation interactions and computations to be performed by the agents before a 

solvable state is achieved.  

The graphs illustrated in both figures (i.e. 6.4 and 6.5) describe an identical pattern, 

that is, an overall decrease of relaxation cycles in accordance to an increase in the 

compatibility level of external constraints. However, the class of over-constrained MAPs 

with a 50% compatibility level of local constraints described in figure 6.5 records more 

relaxation cycles. This is due to an increase in the number of relaxed problems that the 

agents are able to generate in their respective problem spaces as we expand the 

compatibility level of local constraints from 25% to 50%. As more relaxed problems are 

available in the problem spaces of the agents, it provides more options for obtaining a set 

of solvable MAPs with a minimal solution subset distance. A larger problem space means 

that more interactions and computations are required from the agents for finding all 

possible combinations of relaxed problems which are MAP solvable, and at the same 

time, produce a minimal solution subset distance at the global level.  

Across the different domain sizes, over-constrained MAPs with a bigger domain 

size (e.g. 7) require more relaxation cycles for reaching a completion state as compared to 

those with a smaller domain size (e.g. 4). This is due to a higher number of relaxed 

problems available in the former, which increases the scale of interaction and 

computational processes across agents.  
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The overall general relationships between the three parameters and the number of 

relaxation cycles obtained from the protocol’s execution are described by graphs (a), (b) 

and (c) in figure 6.6. Assuming other parameters remain fixed, the following conclusions 

are made with regard to each parameter: 

 As described in figure 6.6(a), a higher number of relaxation cycles is required 

when the protocol is tested against a class of over-constrained MAPs with a low 

compatibility level of external constraints. The opposite is true when the test is 

conducted using over-constrained MAPs with a high compatibility level. At a 

low compatibility level, an increase in the number of external constraints 

agreeable by all agents allows a significant improvement in the number of 

relaxation cycles taken to reach a completion state. However, at a higher 

compatibility level, an increase in the number of external constraints agreeable 

by all agents only provides a small improvement. This can be attributed to the 

fact that the difficulty level of an over-constrained MAP is inversely related to 

the compatibility level of external constraints. The problem becomes 

significantly harder as the number of external constraints in conflict grows 

higher, and vice versa. The former requires a higher number of relaxation cycles 

for reaching a completion state as compared to the latter. 

 As described in figure 6.6(b), the protocol requires a higher number of 

relaxation cycle for achieving a completion state at the 50% compatibility level 

of internal constraints, as compared to the 25% compatibility level. Given a 

distinct set of universal domains in which each contains a different set of 

domain values, a higher compatibility level means more combinations of 

domain values are available to be assigned to the over-constrained variables. 

Due to this, the agents’ problem spaces, contained within all possible 

combinations of relaxed problem are increased in size. The exploration on these 

expanded problem spaces for finding a set of solvable MAPs with a minimal 

solution subset distance requires extensive interactions and computations. This 

is reflected by an increased number of relaxation cycles required for solving 
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over-constrained problems with a higher compatibility level of internal 

constraints. 

 As described in figure 6.6(c), there is a direct relationship between the number 

of relaxation cycles required by the protocol for achieving a completion state 

and the distinct domain sizes of the over-constrained MAP. An increase in the 

domain size of the MAP is followed by an increase in the number of relaxation 

cycles required for solving the problem among agents. A bigger domain size 

means more possible combinations of domain values are available to be 

assigned to the variables of the MAP. This will increase the size of the agents’ 

problem spaces, which will accordingly increase the scale of interaction and 

computational processes across agents. This means more relaxation cycles are 

required for the constraint relaxation process of an over-constrained MAP with 

a bigger sized domain values. 
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Figure 6.6: Relationship between the parameters and number of relaxation cycles 

obtained 
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6.4.2 Micro-level Analysis 
 

In the micro-level analysis, the focus is on the following two aspects. 

 

6.4.2.1 Margin of Difference for the Required Relaxation Cycles 
 

In figures 6.7−6.10, we compare the total number of relaxation cycles obtained from 

executing the protocol against a set of over-constrained MAPs with different 

compatibility levels of local constraints. The comparison is made for each class of 

domain size where the 25% and 50% compatibility levels of local constraints are labelled 

as RC-25% and RC-50% respectively. As realised from the bar graphs in figures 

6.7−6.10, the total number of relaxation cycles required by both problem classes is 

compounded inversely with the different levels of external constraints. Across each 

different compatibility level of external constraints (i.e. 20%−80%), RC-50% is always 

higher than RC-25%. However, there is a steep decrease in the margin of difference 

between the total relaxation cycles of these two levels as we gradually increase the 

compatibility level of external constraints from 20% to 80%. At the 20% and 40% 

external constraint compatibility levels, the differences are highly significant, however, at 

the 60% and 80% external constraint compatibility levels, the differences between RC-

50% and RC-25% become negligible.  This can be attributed to the following combined 

factors: 

 RC-50% is regarded as a less stringent measure of the two, as such, it produces 

a more dense problem spaces compared to RC-25%. For both class of problems, 

as we gradually increase the compatibility level of external constraints from 

20% to 80%, there is an acute decrease in the density of agents’ problem spaces. 

In much harder problem settings (i.e. 20% and 40% external constraint 

compatibility levels), the problem space size of RC-50% is enormously large in 

comparison to RC-25%. However, as the problem settings become easier (i.e. 

80% and 60% external constraint compatibility levels), the problem space size 
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of these two problem classes no longer has a significant difference. This will 

require fewer relaxation cycles to reach a termination state. 

 The search for a solvable MAP state begins with relaxed problems nearest to the 

original CSPs. If no solution with a low global solution subset distance is found, 

explorations will proceed on relaxed problems further away from the originals. 

This means the task of deriving a solvable MAP state with a low solution subset 

distance value requires less computational and interactive efforts, compared to 

the one with a higher distance value. The correlation between the described 

cases (i.e. RC-25% and RC-50%) and the solution subset distance values (i.e. 

GTotal and GMax) are shown in the fourth column of tables 6.1 and 6.2. The 

solution subset distance value for reaching a solvable MAP state decreases as 

the compatibility levels of external constraints increases across the different 

domain sizes. Furthermore, these distance values are consistent with the number 

of relaxation cycles obtained by both class of problems across the different 

compatibility levels of external constraints. An increase in the number of 

relaxation cycles needed for reaching a completion state is related with an 

increase in the solution subset distance values required for obtaining a solvable 

MAP given the different difficulty levels of over-constrained problems.  

 

6.4.2.2 Ratio of Solvable Problems 
 

In this experiment, we divide the relaxation cycles into two classes: cycles that are 

reachable to solutions, and cycles that are unreachable to solutions because either the 

relaxed problems obtained from the agents in a particular constraint relaxation cycle are 

non-solvable or the global solution subset distance derived from the relaxation process is 

higher than the existing one. The cardinality of relaxation_path is used to identify the 

relaxation cycles that are reachable to solutions, and this information is provided in the 

third column of tables 6.1 and 6.2. Based on this information, a pair of line graphs, 

labelled as Car−25% and Car−50%, are generated in figures 6.7−6.10 to respectively 

illustrate the protocol’s performance against a class of over-constrained MAPs with 25% 

and 50% compatibility levels of local constraints. These graphs could be utilised to 
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determine the relationship and trend of change between 1) the number of relaxation 

cycles which are reachable to solutions; and 2) the total number of relaxation cycles 

required for reaching a protocol’s completion state. This relationship, termed as the ratio 

of solvable problems, is achieved by comparing RC−25% with Car−25%, and RC−50% 

with Car−50%, for different compatibility levels of local constraints and across different 

classes of domain sizes. Based on the relationships shown by these bar and line graphs, 

the following observations can be made: 

 At the 60% and 80% compatibility levels of external constraints, the ratio of 

solvable problems is significantly high. 

 At the 20% and 40% compatibility levels of external constraints, the following 

are true: 

o There is a large increase in Car−50%, which consistently follows a 

steep increase in RC−50% for all problem classes. This indicates a 

relatively high ratio of solvable problems, which is particularly 

evident in problem classes of figures 6.7 and 6.9. 

o A large increase in RC−25% has no significant impact on the size of 

Car−25%. This is particularly evident in problem classes of figures 

6.7, and 6.8. In figures 6.9 and 6.10, there is relatively a small 

increase in Car−25%, in response to a steep increase in RC−25%. 

These indicate that the ratio of solvable problems at the 25% 

compatibility level of internal constraints is relatively low. 

o Overall, the ratio of solvable problems at the 50% compatibility level 

of internal constraints is relatively high in comparison to the ratio of 

solvable problems at the 25% compatibility level for all problem 

classes. 

In addition, as realised in the graphs and also in tables 6.1 and 6.2, a recurring pattern of 

identical Car−25% and Car−50% sizes are obtained for different problem classes that 

have the same number of allowable value assignments for each variable at the 25% and 

50% compatibility levels of local constraints. This behaviour is expected given the 
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problem spaces generated by the interacting agents during the constraint relaxation 

process are simulated using an exhaustive, distance-guided approach. For instance, for 

the problem classes with a domain size of 4 and 5, at the 25% compatibility level of local 

constraints, only a single value is allowed to be assigned to each variable at a time. 

Having the similar number of allowable value assignments for each variable, the 

computation based on the solution subset distance heuristic on these problem classes 

within our current testing and evaluation construct will generate the relaxation_path of 

the same cardinality, given that the solution subset distance derived from the performed 

constraint relaxation is also the same. 
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6.5 Chapter Summary 
 

In this chapter, we described the evaluation of the constraint relaxation protocol. For this 

purpose, in section 6.1, we provided a discussion on the adopted time-based 

measurement, and its advantages over other forms of measurement. In section 6.2, we 

presented the experimental test bed which consists of two phases; a) a problem 

generation phase of the over-constrained MAPs, and, b) a distributed constraint 

relaxation phase of the over-constrained MAPs via the protocol. We showed the results 

obtained from testing the protocol against different problem classes in section 6.3. 

Finally, in section 6.4, we provided macro-level and micro-level analyses on the obtained 

results. 
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Chapter 7 
 

Conclusions and Future Works 
 

This chapter provides the conclusions for the thesis and outlines areas which merit further 

investigations. 

 

7.1 Conclusions 
 

The thesis has shown that our primary goal is fulfilled; to address the brittleness of 

protocol-led agent interaction for solving distributed problems. As the distinct sub-

problems of the individual agents are interdependent, the existence of an over-constrained 

state becomes the source of this brittleness. We have shown how a constraint relaxation 

approach can adopted, by realising the distributed partial CSP as an interaction protocol 

using the LCC. This allows heterogeneous agents, assumed to have the cognitive 

capability of relaxing their individual constraints, to take part in the interaction and 

coordination of distributed constraint relaxation process for obtaining a solvable state, if 

there exists one.  

An important contribution of this thesis is not only realising the ideas of integrating 

distributed partial CSP with LCC, but also providing a practical and executable solution. 

The specification and execution of the protocol is achieved in a completely modular way, 

without needing to modify the LCC language or expansion engine. The only minimal 

requirement is to expand the existing LCC framework to include a constraint relaxation 

computational engine, which consists of axioms and inference procedures for performing 

constraint relaxation computations across agents. This additional component, which 

provides the necessary interface with a finite-domain constraint solver, is implemented in 

SICStus Prolog. 

The time-based measurement is used to determine the protocol’s performance, and 

this is achieved by analysing the number of cycles taken by the agents to complete their 
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respective parts in the protocol. For the experimental test bed, a set of over-constrained 

MAPs with different levels of hardness are generated to be tested against the protocol. 

The results have shown that a harder problem generally requires a higher number of 

cycles for reaching a completion state. 

Not only does this thesis explore a flexible and novel approach of handling 

constraints within the interaction domain of heterogeneous and autonomous agents, but it 

is also grounded in a practical implementation. We have shown that our approach is not 

specifically engineered as part of the agents’ internal reasoning mechanisms, and its 

deployment and execution does not rely on any centralised mechanism. In this way, the 

brittleness of agent interactions due to the conflicting constraints imposed by the 

individual agents can be addressed by the agents themselves without any third-party 

intervention. As such, any limitation associated with the third-party mediator approach 

could be safely avoided.  

In addition, the research reported in the thesis has bridged the gap between 

established works from two separate research disciplines; the constraint satisfaction and 

distributed protocol for multi-agent systems. It has shown on how we could utilise the 

available technique in one research field to solve the problem of another. It benefits both 

disciplines in the following two general aspects. 

 

1) For the constraint satisfaction research field, it makes the available techniques to 

address over-constrained problem relevant for the peer-to-peer agent 

environment. 

2) For the multi-agent system research field, particularly the distributed agent 

protocol, it addresses the brittleness problem commonly faced by problem solving 

agents during their interactions for finding a solution. 

 

Though this work is far from complete, it will pave a way for the integration of other 

available constraint satisfaction techniques based on fuzzy or probabilistic with the 

objective-based coordination approach of MAS (e.g. LCC) to allow agents to have 

flexible interactions in solving distributed, constrained problem. 
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7.2 Future Works 
 

In this section, we describe possible improvements to the research work presented in the 

thesis. These improvements do not change the fundamental premise of the thesis – 

addressing the brittleness of protocol-led agent interaction for distributed problem 

solving, but rather provide additional means to expand upon the work completed and 

further areas of experimentation that are beyond the current work. 

 

7.2.1 Employing Constraint Relaxation Strategies 
 

The strategies employed by each agent during the constraint relaxation process is 

considered private. Given an over-constrained problem, the issue of the best 

computational approach or constraint relaxation strategy that an agent might employ for 

reaching a solvable state is still open, and its discussion extends beyond the scope of this 

thesis. Though the issue is not fully explored here, we fully acknowledge that one of the 

important experimentations is to evaluate the protocol against all possible constraint 

relaxation strategies that may be employed by the interacting agents during the constraint 

relaxation process. For this purpose, one of the possible future research work is to utilise 

the constraint relaxation strategies described in [Norlander et al., '03; Norlander, '04] for 

simulating the generation of problem spaces by the interacting agents. We could set the 

constraint relaxation strategies to be either uniform or varied across agents. A 

comprehensive and extensive system of experimentation concerning the relationship of 

the constraint relaxation strategies and the protocol performance could be established. 

Consequently, a general conclusion associating the protocol’s performance and the 

specific constraint relaxation strategies employed by the agents could be drawn. 

 

7.2.2 Utilising Different Distance Metrics 
 

The degree of constraint relaxation performed by each agent for reaching a solvable state 

is computed based on the comparison made between its original, over-constrained CSP 

with the set of relaxed CSPs that allow this state to be achieved. Besides solution subset 
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distance, a number of other distance metrics that could be employed for this purpose 

include augmentation and Max-CSP [Bistarelli et al., '04]. These metrics differ in terms 

of the aspects used for the comparison.  

As described in chapter 4, augmentation and Max-CSP fundamentally focus on the 

agents’ manipulations on their local constraints for obtaining a solvable state. One of the 

major disadvantages with this approach is that it inadvertently reveals the agents’ 

strategies as constraint details of the local problems need to be publicly and openly 

shared between the distributed agents. However, if the agents are working in the 

environment which regards privacy as non-critical and allows details concerning the local 

constraint specifications of each individual agent to be openly shared, then the 

augmentation and Max-CSP provide good alternatives to the currently utilised solution 

subset distance. Employing these constraint-based distance metrics opens up other 

interesting research issues. One particular concern is on the level of detail to be 

communicated among agents during the constraint relaxation process. Do we allow only 

a certain aspect of the constraints (e.g. number of violated constraints, degree of 

violation, etc.) to be carried and propagated with the protocol, or, can the individually 

defined constraint graph of each agent become public knowledge accessible by all agents 

at the protocol level? This depends on the level of trust [Ramchurn et al., '04] that the 

agents have towards their interacting partners. This becomes more complex when the 

level of trust across agents is conflicting with each other. How the different level of 

constraint details concerning the different levels of trust are modelled at the protocol 

level is an interesting research question to be explored. 

 

7.2.3 Handling of Non-Crisp Constraints 
 
Within the constraint community, a lot of effort has been devoted to extending the 

conventional notion of constraint, whose truth value is computed in a boolean (true/false) 

algebra, to be able to model features like fuzziness, uncertainty, optimisation, probability, 

and partial satisfaction. As described in [Rudova and Matyska, '99], various types of 

preferences, priorities, satisfaction degrees or weights were proposed to find solutions of 

over-constrained problems where some kind of relaxation have to be involved to get 
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feasible solutions. Two of these methods are possibilistic CSP [Schiex, '92] and fuzzy 

CSP [Dubois et al., '96], which support the representation of constraints as non-crisp 

relations. Possibilistic CSP assigns to each constraint some preference degree, which 

expresses necessity of its satisfaction. Fuzzy CSP considers each constraint as a relation, 

with different levels of preferences. Preference degrees in both methods are designed 

based on fuzzy sets, possibility theory and possibilistic logic. Assuming that the 

interacting agents are equipped with the described non-crisp form of formalisations at the 

local level, then it opens up a possibility for possibilistic CSP and fuzzy CSP techniques 

to be realised as LCC-based interaction protocols for addressing any over-constrained 

problem among agents. For this to work, it requires the interaction framework to be 

expanded to include mechanisms for accommodating the propagation of these forms of 

constraint formalisms across agents. This would enable us to support agent interaction for 

solving distributed problems of this nature. 

 

7.2.4 Evaluation Based on Real-Life Applications 
 

Within the constraint satisfaction research field, it is a common practice for constraint 

satisfaction techniques to be evaluated empirically using a set of generated problem 

instances with different difficulty levels. For evaluating our approach, we employed a 

similar method by developing a domain independent test bed that consists of features 

common to many distributed constraint solving problems regardless of domain. For 

future enhancement, the test bed could be expanded to include real-life applications, 

particularly in domains where exact solutions might be hard to find and partial solutions 

are tolerable. One of the possible options is to evaluate our approach using the distributed 

cooperative scheduling domain. Existing works within this domain that focus on the 

over-constrained problem include that of [Luo et al., '00], which proposed a fuzzy-based 

model and [Tsuruta and Shintani, '00], which employed a distributed values constraint 

satisfaction. 
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Appendix A 
 

Prolog Code 
 

A.1  interface.pl 
 
This is the code that provides the interface between the loaded protocol, the expansion 
engine and the constraint relaxation computational engine. The code also specifies on 
how the message and protocol is loaded to/from the Linda. This code is adapted from the 
basic LCC framework. 
 
/**************************************************************************** 
institution/3 is used to load the constraint relaxation scene specified in the institution file. 
Given that protocol for the scene is specified in the institution file of relaxation.inst, the agent 
who is currently faced with an over-constrained state needs to assume the specified role of an 
initiator, with some specified Id (e.g. b1). The following is typed at the command line to enact the 
protocol: 
 
institution(relaxation,initiator,b1). 
 
Prot - The content of the LCC constraint relaxation protocol loaded from the institution file of 
relaxation.inst is divided into 3 lists with a syntactical form of def([],[],[]): 
 

1st list - initially empty, later used to keep tracked of completed protocol state between 
agents, proc is closed (i.e. c(proc)) if the agents’ part as specified in the protocol is 
complete 

2nd list -  loaded protocol 
3rd list -  loaded common knowledge 

     
react/1 is a predicate used to achieve the following goals: 
1) Retrieve the intended message and protocol for the agent of given Id from the Linda 
2) Display the retrieved message on the screen 
3) Call to postit/3 
 
Thus, to retrieve and process message intended for the responder agent (i.e. of Id s1) the 
following is typed at the command line: 
 
react(s1). 
 
postit/3 is a predicate used to achieve the following goals: 
1)  Expand the received message and protocol using the rewrite rules 
2)  Display the message obtained from (1) on the screen, to response to the message received 

from the other interacting agents 
3)  Post the intended message for the other agents in the utilised Linda. 
*****************************************************************************/ 
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%**************************************************************************** 
 
institution(I, Role, Id) :- 
    load_institution(I, Prot),!, 
    postit(a(Role,Id), [], Prot). 
 
react(Id) :- 
    retrieve_message(_, Id, Dialogue), 
    Dialogue = protocol(m(Af,M => At),Prot),!, 
    postit(At, [m(At,M <= Af)], Prot). 
 
postit(Role, IMessages, Prot) :- 
    expansion(Role, IMessages, [], Prot, RMessages, Messages, EProt), 
    RMessages = [],!, 
    send_protocol_messages(Messages, EProt). 
 
%**************************************************************************** 
 
agent_id_from_role(a(_,Id), Id). 
  
send_protocol_messages([m(Af,M => At)], Prot) :- 
    agent_id_from_role(Af, From), nonvar(From), 
    agent_id_from_role(At, To), nonvar(To), 
    send_message(From, To, protocol(m(Af,M => At),Prot)),!, 
    react(To). 
 
send_protocol_messages([],_). 
 
send_message(From, To, Message) :- 
    find_server(Server, PID), 
    add_message(Server, PID, From, To, Message), 
    Message = protocol(m(_,M => _),_), 
    write('Outgoing msg: '), portray_clause(M), nl,!.  
 
retrieve_message(From, To, Message) :- 
    find_server(Server, PID), 
    read_message(Server, PID, From, To, Message), 
    Message = protocol(m(_,M => _),_), 
    write('Incoming msg: '), portray_clause(M), nl,!.  
 
%**************************************************************************** 
 
load_institution(Institution, InstDef) :- 
    concat(Institution,'.inst',File), 
    see(File), 
    read_institution(InstDef), 
    seen. 
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%**************************************************************************** 
 
read_institution(InstDef) :- 
    read_institution1(def([],[],[]), InstDef). 
  
read_institution1(InstDef, FinalInstDef) :- 
    read(Clause), 
    \+ Clause = end_of_file, !, 
    add_to_institution_def(Clause, InstDef, NewInstDef), 
    read_institution1(NewInstDef, FinalInstDef). 
read_institution1(InstDef, InstDef). 
 
add_to_institution_def((Head ::= Body), 
                       def(I,D,K), 
                       def(I,D1,K)) :- 
    append(D, [(Head ::= Body)], D1). 
add_to_institution_def(known(Agent,Clause), 
                       def(I,D,K), 
                       def(I,D,K1)) :- 
    append(K, [known(Agent,Clause)], K1). 
 
%**************************************************************************** 
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A.2 expansion_engine.pl 
 
This is the code in which the expansion engine is specified. Built-in predicates are 
imported from the SICStus Prolog library of terms, lists and finite-domain constraint 
solver whenever necessary. The code is fundamentally adapted from the basic framework 
of LCC. 
 
%**************************************************************************** 
 
:- op(900, xfx, '::='), 
   op(900, xfx, '::'), 
   op(900, xfx, '>>'), 
   op(800, xfx, '=>'), 
   op(800, xfx, '<='), 
   op(830, xfx, '<--'), 
   op(820, xfy, and), 
   op(850, xfy, par), 
   op(850, xfy, then), 
   op(850, xfy, or). 
 
%**************************************************************************** 
%Starting the expansion process. 
%**************************************************************************** 
 
 
expansion(Agent, Ms, Os, P, FinalMs, FinalOs, FinalP, FDRange) :- 
    expansion_step(Agent, Ms, Os, P, NewMs, NewOs, NewP, FDRange), 
    expansion(Agent, NewMs, NewOs ,NewP, FinalMs, FinalOs, FinalP,  

FDRange). 
 
expansion(Agent, Ms, Os, P, Ms, Os, P,FDRange) :- 
    \+ expansion_step(Agent, Ms, Os, P, _, _, _, FDRange). 
 
%**************************************************************************** 
%Selecting the protocol clause to expand and saving it after expansion. 
%**************************************************************************** 
 
expansion_step(a(Role,Id), Ms, Os, P, NewMs, NewOs, NewP, FDRange) :- 
    protocol_select(agent, P, (a(ARole,Id) ::= Def), P1), 
    expand_protocol((a(ARole,Id) ::= Def), Role, Id, Ms, Os, P1, NewA, 

NewMs, NewOs, P2,  FDRange), 
    protocol_add(agent, P2, NewA, NewP). 
 
expansion_step(a(Role,Id), Ms, Os, P, NewMs, NewOs, NewP, FDRange) :- 
    \+ protocol_select(agent, P, (a(_,Id) ::= _), _), 
    protocol_member(dialogue, P, Clause), 
    Clause = (a(Role,Id) ::= Def), 
    expand_protocol((a(Role,Id) ::= Def), Role, Id, Ms, Os, P, 
                    NewA, NewMs, NewOs, P2, FDRange), 
    protocol_add(agent, P2, NewA, NewP). 
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%**************************************************************************** 
%The rewrite rules 
%**************************************************************************** 
 
expand_protocol(Var, _, _, Ms, Os, P, Var, Ms, Os, P, FDRange) :- 
    var(Var), !. 
 
expand_protocol(Role ::= Def, _, Id, Ms, Os, P, Role ::= E, Mf, Of, Pf, 

FDRange) :- 
    expand_protocol(Def, Role, Id, Ms, Os, P, E, Mf, Of, Pf, FDRange). 
 
expand_protocol(A or _, Role, Id, Ms, Os, P, E, Mf, Of, Pf, FDRange) :- 
    expand_protocol(A, Role, Id, Ms, Os, P, E, Mf, Of, Pf, FDRange). 
 
expand_protocol(_ or B, Role, Id, Ms, Os, P, E, Mf, Of, Pf, FDRange) :- 
    expand_protocol(B, Role, Id, Ms, Os, P, E, Mf, Of, Pf, FDRange). 
 
expand_protocol(A then B, Role, Id, Ms, Os, P, EA then B, Mf, Of, Pf, 

FDRange) :- 
    expand_protocol(A, Role, Id, Ms, Os, P, EA, Mf, Of, Pf, FDRange). 
 
expand_protocol(A then B, Role, Id, Ms, Os, P, A then EB, Mf, Of, Pf, 

FDRange) :- 
    closed(A), 
    expand_protocol(B, Role, Id, Ms, Os, P, EB, Mf, Of, Pf, FDRange). 
 
expand_protocol(C <-- M <= A, Role, Id, Ms, Os, P, c(M <= A), Mf, Os, 

Pf, FDRange) :- 
    select(m(Role,M <= A), Ms, Mf), 
    satisfied(Id, P, C, Pf). 
 
expand_protocol(M => A <-- C, Role, Id, Ms, Os, P, c(M => A), Ms, 

[m(Role,M => A) | Os], Pf, C):- 
satisfied(Id, P, C, Pf). 

  
expand_protocol(M <= A, Role, _, Ms, Os, P, c(M <= A), Mf, Os, P, 

FDRange) :- 
    select(m(Role,M <= A), Ms, Mf). 
 
expand_protocol(M => A, Role, _, Ms, Os, P, c(M => A), Ms,  

[m(Role,M => A) | Os], P, FDRange). 
 
expand_protocol(Role <-- C, _, Id, Ms, Os, P, Role ::= Def, Ms, Os, Pf, 

FDRange) :- 
    Role = a(_,_), 
    satisfied(Id, P, C, Pf), 
    protocol_member(dialogue, P, (Role ::= Def)). 
 
expand_protocol(Role, _, _, Ms, Os, P, Role ::= Def, Ms, Os, P, 

FDRange) :- 
    Role = a(_,_), 
    protocol_member(dialogue, P, (Role ::= Def)). 
 
expand_protocol(null <-- C, _, Id, Ms, Os, P, c(null), Ms, Os, Pf, 

FDRange) :- 
    satisfied(Id, P, C, Pf). 
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expand_protocol(null, _, _, Ms, Os, P, c(null), Ms, Os, P, FDRange). 
 
%**************************************************************************** 
%Testing for closed or failed clauses 
%**************************************************************************** 
 
closed(Var) :- 
    var(Var), !, fail. 
closed(c(_)). 
closed(A or _) :- 
    closed(A). 
closed(_ or B) :- 
    closed(B). 
closed(A then B) :- 
    closed(A), 
    closed(B). 
closed(A par B) :- 
    closed(A), 
    closed(B). 
closed(_ ::= Def) :- 
    closed(Def). 
 
%**************************************************************************** 
%Testing for satisfied constraints predicates 
%**************************************************************************** 
 
satisfied(Id, P, A and B, Pf) :- !, 
    satisfied(Id,  P, A, Pn), 
    satisfied(Id,  Pn, B, Pf). 
 
satisfied(Id, P, X, Pf) :- 
    meta_pred(Id, X, P, Pf, Call), !, 
    Call. 
 
satisfied(Id, P, absorb_protocol(P1,Role,Clause), Pf) :- 
    disjoint_protocols(P, P1), 
    protocol_member(dialogue, P1, Clause), 
    Clause = (a(Role,Id) ::= _), 
    merge_protocols(P, P1, Pf). 
 
satisfied(Id, P, X, P) :- 
    \+ meta_pred(Id, X, P, _, _), 
    call_direct(X), 
    X. 
  
satisfied(Id,  P, X, P) :- 
    protocol_member(common_knowledge, P, known(Id, X)). 
 
satisfied(Id, P, X, Pf) :- 
    protocol_member(common_knowledge, P, known(Id, X <-- C)), 
    satisfied(Id, P, C, Pf). 
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call_direct(X) :- 
    (predicate_property(X, built_in) ; 
     predicate_property(X, interpreted) ; 
     predicate_property(X, imported_from(_))), !. 
 
meta_pred(Id, not(X), P, P, \+ satisfied(Id,P,X,_)). 
meta_pred(Id, retract(X), P, Pf, 
          protocol_remove(common_knowledge,P,known(Id,X),Pf)). 
meta_pred(Id, assert(X), P, Pf, 
          protocol_add(common_knowledge,P,known(Id,X),Pf)). 
 
%Meta-predicate concerning the specification of computational process for constraint relaxation 
%to be taken by agents. Detailed specifications of the called predicates are provided in the 
%constraint_handling.pl 
 
meta_pred(_,assign(Suff,Prob,NSuff),P,P,assign(Suff,Prob,NSuff)). 
meta_pred(_,add(Existing,Selected,HList),P,P, 
   add(Existing,Selected,HList)). 
meta_pred(_,g_solvable(RPath),P,P,g_solvable(RPath)). 
meta_pred(_,g_distance(RPath,NEPath),P,P, 
   g_distance(RPath,NEPath)). 
meta_pred(_,find_solvable(PS,Suff,Sl),P,P, 
   find_solvable(PS,Suff,Sl)). 
meta_pred(_,distance_computation(Sl,O,Dl),P,P, 
   distance_computation(Sl,O,Dl)). 
meta_pred(_,select_minimal(DisTPS,Minimal,Agent),P,P, 
   select_minimal(DisTPS,Minimal,Agent)). 
meta_pred(_,response_composition(Minimal,Suff,Is,D),P,P, 
   response_composition(Minimal,Suff,Is,D)). 
meta_pred(_,revised_suff(NSuff,Respond,USuff),P,P, 
   revised_suff(NSuff,Respond,USuff)). 
meta_pred(_,invalid_spec_removal(PS,NHList,TPS),P,P, 
   invalid_spec_removal(PS,NHList,TPS)). 
meta_pred(_,path_computation(RPath,Minimal,TSuff,NEPath,TEPath), 
   P,P,path_computation(RPath,Minimal,TSuff,NEPath,TEPath)). 
 
%**************************************************************************** 
%Managing the protocol predicates 
%**************************************************************************** 
 
closed_dialogue(Role, Prot) :- 
    \+ ( protocol_member(agent, Prot, a(Role,_) ::= Def), 
         \+ closed(Def) ). 
 
disjoint_protocols(P1, P2) :- 
    \+ ( protocol_member(dialogue, P1, a(Role1,_) ::= _), 
         protocol_member(dialogue, P2, a(Role2,_) ::= _), 
         functor(Role1, F, A), 
         functor(Role2, F, A) ). 
 
merge_protocols(def(A1,D1,K1), def(A2,D2,K2), def(A3,D3,K3)) :- 
    append(A1, A2, A3), 
    append(D1, D2, D3), 
    append(K1, K2, K3). 
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protocol_component(agents, def(Clauses, _, _), Clauses). 
protocol_component(dialogue, def(_, Clauses, _), Clauses). 
protocol_component(common_knowledge, def(_, _, Clauses), Clauses). 
 
protocol_member(agent, def(Clauses,_,_), Clause) :- 
    member(Clause, Clauses). 
protocol_member(dialogue, def(_,Clauses,_), ClauseCopy) :- 
    member(Clause, Clauses), 
    copy_term(Clause, ClauseCopy). 
protocol_member(common_knowledge, def(_,_,Clauses), ClauseCopy) :- 
    member(Clause, Clauses), 
    copy_term(Clause, ClauseCopy). 
 
protocol_select(agent, def(Clauses,A,B), Clause, def(R,A,B)) :- 
    select(Clause, Clauses, R). 
protocol_select(dialogue, def(A,Clauses,B), ClauseCopy, def(A,R,B)) :- 
    select(Clause, Clauses, R), 
    copy_term(Clause, ClauseCopy). 
protocol_select(common_knowledge, def(A,B,Clauses), ClauseCopy, 

def(A,B,R)) :- 
    select(Clause, Clauses, R), 
    copy_term(Clause, ClauseCopy). 
 
protocol_remove(agent, def(Clauses,A,B), Clause, def(R,A,B)) :- 
    select(Clause, Clauses, R). 
protocol_remove(dialogue, def(A,Clauses,B), Clause, def(A,R,B)) :- 
    select(Clause, Clauses, R). 
protocol_remove(common_knowledge, def(A,B,Clauses), Clause, def(A,B,R)) 

:- 
    select(Clause, Clauses, R). 
 
protocol_add(agent, def(Clauses,A,B), X, def([X|Clauses],A,B)). 
protocol_add(dialogue, def(A,Clauses,B), X, def(A,[X|Clauses],B)). 
protocol_add(common_knowledge, def(A,B,Clauses), X, 

def(A,B,[X|Clauses])). 
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A.3 constraint_handling.pl 
 
Prolog code for the detailed specification of constraint handling functionality. A number 
of predicates are imported from the pre-defined libraries of finite-domain constraint 
solver and list operations that come with SICStus Prolog. 
 
 
%****************************************************************************
% Assignment & revision of sufficient bound after each relaxation cycle 
 
assign(Suff,csp(_,SolSet),NSuff):- 
 suff_assign(Suff,SolSet,NSuff),!. 
 
assign(Suff,csp(_,SolSet,_),NSuff):- 
 suff_assign(Suff,SolSet,NSuff),!. 
 
suff_assign([],_,[]). 
suff_assign([fd_term(Att,_)|T],SolSet,NSuff):- 
 member(Sol,SolSet), 
 Sol=fd_term(SAtt,SS), 
 similar_term(Att,SAtt),!, 
 NSuff=[fd_term(Att,SS)|R], 
 select(Sol,SolSet,Next), 
 suff_assign(T,Next,R). 
 
similar_term(Att,PAtt):- 
 Att=PAtt. 
 
%**************************************************************************** 
%Updates on history list of an already selected problem. Selected problem in form of 
%csp(Problem, SolutionSet) 
 
add(Existing,Selected,HList):- 
 append(Existing,Selected,HList). 
 
%**************************************************************************** 
%To determine whether constraint relaxation path obtained so far is solvable or not - A path is 
%solvable if the respond received by the initiator does not consist of any nil values, and the 
%solutions for the sufficient bound variables produced by the agents intersect with each %other 
(non-intersection is indicated by nil in-receipt response) 
 
g_solvable(RPath):- 
 \+ member(r(nil,nil),RPath),!. 
 
%**************************************************************************** 
%To determine the global distance of the constraint relaxation path obtained so far 
 
g_distance(RPath,NEPath):- 
 distance_list(RPath,DL),!, 
 sum_list(DL,Sum), 
 max_list(DL,Max), 
 NEPath=gdis(RPath,Sum,Max). 
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distance_list([],[]). 
distance_list([r(_,D)|T],DL):- 
 DL=[D|R], 
 distance_list(T,R). 
 
%**************************************************************************** 
%To determine whether the relaxed problem produced by the agents is solvable or not - within 
%the necessary & sufficient bound 
 
find_solvable([],_,[]). 
find_solvable([CSP|Rest],Suff,Sl):- 
 ( 
   (solvable(CSP,Suff),Sl=[CSP|R]); 
   (\+ solvable(CSP,Suff),Sl=R) 
 ), 
 find_solvable(Rest,Suff,R). 
 
solvable(csp(_,Sol,_),Suff):- 
 is_intersect(Suff,Sol). 
 
%**************************************************************************** 
%Checking on whether each similar variables of the relaxed problem & the sufficient %bound 
intersect with each other 
 
is_intersect([],_). 
is_intersect([fd_term(Att,S)|R],PFd_Set):- 
 member(Fd_Term,PFd_Set), 
 Fd_Term=fd_term(PAtt,PS), 
 similar_term(Att,PAtt),!, 
 fdset_intersect(S,PS), 
 select(Fd_Term, PFd_Set, PFd_SetRest), 
 is_intersect(R,PFd_SetRest). 
 
%**************************************************************************** 
%To select the most minimal relaxed problem in terms of solution subset distance from the 
%original 
 
select_minimal(DisTPS,Minimal,Agent):- 
 acc_distance(DisTPS,DL),!, 
 ( 
   (\+ DL=[], 
       min_list(DL,Min), 
       nth(Pos,DL,Min),!, 
       nth(Pos,DisTPS,Minimal)); 
 
   ( DL=[], Minimal=[]) 
 ). 
 
acc_distance([],[]). 
acc_distance([csp(_,_,D)|Rest],Dl):- 
 Dl=[D|Next], 
 acc_distance(Rest,Next). 
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%**************************************************************************** 
%Composition of the constraint relaxation message 
 
response_composition(Minimal,Suff,Is,D):- 
 ( 
   Minimal=csp(_,Sol,D), 
   suff_int_sols(Suff,Sol,Is)); 
 
 (Minimal=[], 
  Is=nil,D=nil). 
 
suff_int_sols([],_,[]). 
suff_int_sols([fd_term(Att,S)|R],Sol,Is):- 
 member(Fd_Term,Sol), 
 Fd_Term=fd_term(PAtt,PS), 
 similar_term(Att,PAtt),!, 
 fdset_intersection(S,PS,Int), 
 Is=[fd_term(Att,Int)|Next], 
 select(Fd_Term,Sol,NSol), 
 suff_int_sols(R,NSol,Next). 
 
%**************************************************************************** 
%Revision of the necessary bound upon receipt of response from neighbouring agents 
 
revised_suff(NSuff,Respond,USuff):- 
 Respond=r(IntSol,_), 
 ( 
   (IntSol=nil, 
    USuff=NSuff); 
 
  (\+ IntSol=nil, 
      USuff=IntSol) 
 ). 
 
%**************************************************************************** 
%Pruning of the problem space generated through systematic elimination of  relaxed problem that 
%has already been visited or not comply with the necessary bound 
 
invalid_spec_removal([],_,[]). 
invalid_spec_removal([CSP|R],NHList,TPS):- 
 ( 
   ( \+ member(CSP,NHList), 
               TPS=[CSP|Next]); 
   ( TPS=Next)), 
 invalid_spec_removal(R,NHList,Next). 
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%**************************************************************************** 
%Elimination of any relaxed problem from an already pruned problem  space that has a computed 
%solution subset distance of more than the distance of an the currently selected relaxation path 
 
invalid_dist_removal([],_,[]). 
invalid_dist_removal([csp(_,S,D)|R],NEPath,FPS):- 
 ( 
   ( locally_better_or_equal(D,NEPath), 
     FPS=[csp(_,S,D)|Next]); 
 
     FPS=Next), 
 invalid_dist_removal(R,NEPath,Next). 
 
locally_better_or_equal(D,gdis(_,T,G)):- 
 (D<T);(D=:=G,D=<G). 
 
%**************************************************************************** 
%Perform computation on the obtained relaxation path to determine whether the newly acquired 
%path is better than the current path in store 
 
path_computation(RPath,Minimal,NSuff,ESuff,TSuff,NEPath,TEPath):- 
 response_composition(Minimal,ESuff,Is,D), 
 append([r(Is,D)],RPath,UPath), 
 g_distance(UPath,NRPath), 
 ( 
   (\+ var(NEPath), 
       select_path(NSuff,ESuff,TSuff,NRPath,NEPath,TEPath)); 
 
   ( var(NEPath), 
     TEPath=NRPath, 
     TSuff=ESuff) 
 ). 
 
select_path(NSuff,ESuff,TSuff,NRPath,NEPath,TEPath):- 
 ( 
   ( better(NRPath,NEPath), 
     TEPath=NRPath, 
     TSuff=ESuff, 
     print_progress(TEPath,TSuff)); 
 
   (TEPath=NEPath, 
    TSuff=NSuff, 
    print_progress)). 
 
better(gdis(_,Tn,Gn),gdis(_,T,G)):- 
 (Tn < T); 
 (Tn=:=T,Gn=<G). 
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