
Semantic Query Routing in

Agent-Based P2P Systems

Salman Elahi

Master of Science
(Informatics)

School of Informatics
University of Edinburgh

2005

 i

Abstract

This thesis describes the development and analysis of distributed resource discovery

techniques for use in an agent-based P2P information retrieval system. In a

decentralised distributed environment where no central authority is present, a critical

task is to identify the most suitable agent in the network. Agents have to cooperate to

forward queries among themselves so as to find appropriate agents, return and merge

results in order to fulfil an information retrieval task in a distributed environment. In

our approach we have exploited social metaphors learned from social networks.

Agents are connected through a ‘knows’ relationships maintained by each agent.

Initially agents have knows relationship with agents assigned to them at random. This

initial relationship is known as a random topology. However, we show that such an

approach can be significantly enhanced by memorising network communication in a

lazy learning style. This memorisation constitutes expertise-based knowledge at each

of the agent involved in the query. Agents use this topical knowledge to answer

subsequent queries and improve their resource discovery performance over time. It

also helps agents to evolve a semantic topology from a random one. This semantic

topology creates semantic clusters of agents sharing similar expertise in the network.

Experimental results indicate that our approach improves the performance of an

agent-based P2P system with respect to criteria such as recall, precision and number

of messages over time.

 ii

Acknowledgements

All thanks are due to Allah the most merciful and most generous, who has created this

entire universe, always guides us and gives us the strength that we need in order to

achieve what we strive for in our lives.

I would like to thank our beloved prophet Hazrat Muhammad (P.B.U.H), whose

teachings show us the correct path to follow in our lives.

I would like to gratefully acknowledge the enthusiastic supervision of my project

supervisor, Dr. Dave Robertson, who has been a great source of inspiration for me

throughout my project. He helped me and guided me in every possible way in order to

make this project successful. I would never have been able to achieve what I have

without his help and guidance. Whenever I got stuck in some problem, he gave me

helpful suggestions and ideas to resolve that problem. His creative thinking and

breadth of knowledge inspired me a lot and kept me motivated for striving for more

and better.

I am forever indebted to my parents and sisters for being so supporting and heartening

that I feel very fortunate to have such a family.

I would like to express my gratitude and appreciation to Christoph Tempich for his

continuous support, guidance and encouragement.

Finally I would also like to thank my friends Zeeshan Pervez, Aitezaz Ali, Danish

Najam, and Zahid Khan for their moral support, understanding, encouragement and

endless patience when it was most required.

Thanks to all of you!

 iii

Declaration

I declare that the thesis was composed by me, that the work contained herein is my

own except where explicitly stated otherwise in the text, and this work has not been

submitted for any other degree or professional qualification except as specified.

(Salman Elahi)

 iv

Dedicated to Maan Gee & Abu Gee

Whatever I am today, I owe it to my beloved parents

 v

Table of Contents
Introduction..1

1.1. Problem Statement ...1

1.2. Proposed Solution ..2

1.3. Objectives ..4

1.4. Outline..4

Background and Literature Review...6

2.1. P2P Systems...6

2.2. P2P Architectures...7

2.2.1. Centralised Architecture ..7

2.2.2. Semi-Centralised Architecture...8

2.3. Agents: A Well Suited Paradigm for P2P..8

2.3.1. A Peer with Agent Capabilities ...9

2.4. Limitations of Peers ...9

2.5. Trust and Reputation: An Issue for Agent-Based P2P Systems10

2.6. Literature Review...11

2.6.1. P2P Systems...11

2.6.2. Agent-based P2P Systems ...12

Basic System Concepts ..15

3.1. Learned Paradigms...15

3.1.1. Lazy Learning ..15

3.1.2. Eager Learning...16

3.1.3. Comparison of Lazy and Eager Learners ..18

3.2. ACM Topic Hierarchy ...19

3.3. Semantic Similarity Function ..21

3.3.1. Edge Counting-Based ..21

3.4. Peers/Agents ..23

3.5. Query Routing Mechanism..24

3.5.1. Overt ..24

3.5.2. Covert...25

3.5.3. Hybrid ..26

3.5.4 Comparative Analysis...27

Simulator and User Interface Description...30

 vi

4.1. Simulator..30

4.1.1. Basic Features ..30

4.1.2. Changes and Additional Features to Suit Our System.........................31

4.1.3. New User Interface ..32

4.2. A Stepwise Description of User Interaction ..34

System Description...41

5.1. Social Networks ...41

5.1.1. Social Metaphors ...42

5.2. Some Important Concepts & Terminologies ...43

5.2.1. Agent..43

5.2.2. Common Ontology ..44

5.2.3. Expertise ..44

5.2.4. Queries ...44

5.2.5. Topics...44

5.2.6. Maximum Hop Count Limit ..44

5.2.7. Query Message ..44

5.2.8. Answer Message ..45

5.2.9. Query Routing Mechanism..45

5.2.10. Semantic Similarity Value ...45

5.2.11. Known Agents ...46

5.2.12. Semantic Topology ..46

5.2.13. Discovering New Known Agents ..46

5.2.14. Naïve Base Line Algorithm ...47

5.3. System Overview ...47

5.3.1. Basic Assumptions...50

5.3.2. Chosen scenario ...50

5.3.3. A Sample Execution Scenario ...51

5.3.4. Querying Agent Selection..54

5.3.5. Search Mechanism...54

5.3.6. Duplication Record Filtration ..55

5.4. Network Architecture...56

5.4.1. Content Holder Layer ..57

5.4.2. Counsellor Layer..58

5.4.3. Maintenance of Content Holder and Counsellor Layers59

 vii

5.4.4. Net-workers Layer ...61

5.4.5. Default Network (Lower) Layer ..61

5.5. Algorithms ...62

5.5.1. Protocol Scenario...62

5.5.2. Description of Algorithms ...63

Evaluation...65

6.1. Evaluation Criteria ...65

6.1.1. Input Parameters ..65

6.2. Data Set ..68

6.3. Query Generation...69

6.4. Results and Discussion ..69

6.4.1. Sensitivity Analysis ...70

6.4.2. QUROMIDI vs. Naïve Algorithm ...76

6.4.3. Recall Ratio of Intelligent Networks for New and Similar Queries78

6.4.4. Comparison of Query Routing Algorithms ...78

6.4.5. Effects of Hop Count on Recall ...81

Comparison ..84

7.1. Protocol-Based Agents...84

7.2. Lightweight Coordination Calculus ...85

7.3. Intelligent Agents versus Intelligent Protocols ..86

7.3.1. A brief Overview of Intelligent Protocol System86

7.3.2. Recall Comparison...87

Conclusion ..89

8.1. Evaluation Conclusion and Discussion..89

8.2. Comparison Conclusions and Discussion..90

Future Work...92

9.1. New Directions ..92

9.1.1. Organisational Model ..92

9.1.2. Search Algorithms ...92

9.1.3. Physical Network Issues ..93

9.1.4. Field Experiment..93

 viii

 List of Figures
Figure 1: A simple decision tree ..18

Figure 2: A small fragment from the ACM topic hierarchy ..20

Figure 3: Overt query routing mechanism...25

Figure 4: Covert query routing mechanism .. 26

Figure 5: Hybrid query routing mechanism...26

Figure 6: Overt, Q is for query message and A is for answer message….………….27

Figure 7: Covert, Q is for query message and A is for answer message……………..28

Figure 8: Hybrid, Q is for query message and A is for answer message…...………..28

Figure 9 : User interface for the original simulator ...32

Figure 10: User interface at start up...35

Figure 11: Topic selection from ACM topic hierarchy ...36

Figure 12: Query routing algorithm selection..37

Figure 13: User enters query keywords ...38

Figure 14: Message board shows agent communication ...39

Figure 15: Result details in Bibtex format ...40

Figure 16 : A larger social network consisting of some smaller networks..................42

Figure 17: Social metaphor..42

Figure 18: A simple agent discovery scenario ...47

Figure 19: System overview ..49

Figure 20: A sequence diagram describing the query search53

Figure 21: A layered view of the network ...57

Figure 22: Content holder index creation………………………………………..…...58

Figure 23: A random topology…….…………………………………………………60

Figure 24: A semantic topology evolved over time...60

Figure 25: Sensitivity analysis for relevance threshold ...70

Figure 26: Recall and number of messages comparison for PQ = 474

Figure 27: Recall and number of messages comaprison for of PQ = 275

Figure 28: Recall comaprison for three naïve networks ..76

Figure 29: Recall comparison for three intelligent networks.......................................76

Figure 30: Recall comparison for new and similar queries in intelligent networks78

Figure 31: Recall comparison for three query routing algorithms for 20 agents.........79

Figure 32: Recall comparison for three query routing algorithms for 40 agents.........79

 ix

Figure 33: Recall comaprison for three query routing algorithms for 60 agetns.........80

Figure 34: Hop count effect on recall ..82

Figure 35: Recall comaparison between intelligent proctols and intelligent agents....88

 x

List of Tables
Table 1: Comparison of Query Routing Techniques ...27

Table 2: Standard parameters used in evaluation ..67

Table 3: Summary of results for Figure 2, where PQ = 4..73

Table 4: Summary of results for Figure 3, where PQ = 2..73

Table 5: Recall ratio of naïve networks of 20, 40, and 60 agents................................77

Table 6: Recall ratio of intelligent networks of 20, 40, and 60 agents77

Table 7: Recall in network of different sizes ...80

Table 8: Recall with different hop counts in network of different sizes......................82

 1

1.Chapter 1

Introduction

This chapter gives an overview of the thesis by describing the problem, proposed

solution, objectives and organisation of this report.

1.1. Problem Statement

During the last decade, with the exponential growth of the Internet the number of

information sources available to the users has become extremely large. Though it has

given a handful of resources to search through, it has also stemmed problems in the

effectiveness of the retrieved information as current technologies are not scaling well

with the growing size of the Web. Although it had been anticipated by many active and

vociferous Internet researchers that the growth of the Internet is effectively unbounded.

But unfortunately, this vision could not prove its effectiveness at least in one important

area that is of searching the World Wide Web.

Individual Web servers and Web search engines are two distinct ways to search the Web.

The former approach is practical when one is sure about the server which could contain

the required information and that server should also provide search facility. Otherwise

the later approach, Web search engines, is used. These search engines maintain

centralized indices of the Web by brute force traversal and indexing each page found.

Google1, Altavista2, and Yahoo3 are the big names which provide the facility to search

the Web by maintaining large amount of indices of Web pages spread all across the

Internet. These search engines are the backbone of the Web but statistics (see below)

show there is a very significant drop in the performance of the search engines as

compared to the growth of Internet and the World Wide Web.

1http://www.google.com
2http://www.altavista.com
3http://www.yahoo.com

 2

Recent studies show that there are approximately 600 billion static pages present on the

Web while Google, which claims to have indexed the largest amount of the Web pages,

claims to maintain indices for approximately 3.083 billion web-pages. The Internet is

being populated by 10,000,000 static pages each day while the search engines are

growing by almost 10% of this pace [2]. Another downside along with not being able to

cope with the pace of web growth is growing latency in indexing records, with a typical

wait of several months for new pages to be indexed. This is quite evident from the

number of links pointing to non-existent documents in search results which is almost

25% [2]. One of the main reasons of this is the inability to perform “full” Web traversal

in a reasonable time. This situation clearly depicts that existing solutions are not scaling

well.

1.2. Proposed Solution

However, over the last few years, introduction of the Peer-to-Peer (hereafter P2P) systems

have revolutionised the way of information exchange and information retrieval in

distributed systems. P2P systems are decentralized distributed systems consisting of

logically distinct computing elements called peers. These peers have comparable roles

and responsibilities. They share or consume services and resources amongst each other

[3]. The concept of P2P systems is backed up by the increasing power of PCs in terms of

speed and processing power since late 1990s. This power enabled many server side

software to be deployed on individual PCs. These machines now can easily handle a

direct two-way flow of information between peers on the Web. This paradigm is

particularly well suited for distributed resource sharing and information searching. As

search procedures can be conducted on different peers or locations [4]. It can latently

cover content-related/appropriate resources in reasonable time which is the biggest

problem faced by the Internet search i.e. maintenance of such huge indices etc.

The advent of the Semantic web [16] has enlivened the concept of intelligent agents.

These agents can use intelligent reasoning to search the web which would be containing

ontologically marked up (machine readable metadata) content instead of simple content

present in the current web [16]. The need to attach metadata with resources on the Web

also indicates that current techniques are not scaling well to meet the up coming

 3

challenges. It gives the idea of reducing the granularity of the Web from web-page level

artefacts to entities more akin to the facts in knowledge base of an expert system.

Resource discovery is the task of searching distributed systems for objects with required

characteristics. A solution which could address the problem of scalability of the resource

discovery task depends upon the distributed nature of the system used to share the index-

building load. In the case of the Web, this solution requires each Web server to maintain

its own indices. P2P systems possess such functionalities but they suffer from a lack of

mechanisms for intelligent query evaluation, intelligent query routing, learning, self

organisation and autonomous decision making etc. The basic concepts underlying agent

paradigm and P2P systems are similar. The synthesis of these two paradigms could be

exploited to deal with the challenges being faced by the current Web. Agent paradigm

can offer concepts and techniques to be used in application modelling and design level of

P2P systems (i.e. ontologies to share network resources in a semantically rich manner,

protocols for negotiation etc.). A P2P paradigm can offer a wide range of practical

application domains, state of the art implementation techniques, and core infrastructure

components [3].

To find the appropriate information in such distributed systems, a query must be

evaluated (at least) on each peer. If peers pass a summary of their contents (expertise)

along with the normal communication, next time a peer can locate and query only those

peers which contain relevant answers, a technique known as query routing. This process

can be divided into three distinct sub processes: Peer Selection, identifying the one who

is most likely to contain the answer to the query; Query Evaluation, documents satisfying

the query criteria are identified; and Information Access, documents are retrieved

matching the identifiers. To exploit the query routing mechanism to its full extent, a peer

must have appropriate knowledge about other peers, so that it is able to effectively guide

the queries to their answering destinations.

Agent-based P2P computing is a suitable technique for query routing systems as its

computation model combined with the distributed ad-hoc nature of the problem

resembles the social interactions in a group of autonomous systems. In fact, resource

discovery is quite similar to a service discovery task or a connection task in which agents

in a multi-agent system tries to find other agents which can provide them the required

 4

service [6]. Furthermore, self-organisation is the most desirable feature of such systems.

It is the ability to dynamically adjust with the changes in the environment without any

external support. Systems mimic self-organised behaviour by the execution of several

individual components that interact locally to achieve an overall combined goal. The

main characteristic of self-organised systems is that they achieve complex collective

tasks with relatively simple individual behaviours in a decentralised environment [20].

1.3. Objectives

This thesis work is a part of a joint research study under taken by two MSc students

Salman Elahi and Zeeshan Pervez under the supervision of Dr. Dave Robertson. This

joint research study has various purposes:

 Development of an intelligent self-organising query routing mechanism.

 Evaluation of the synthetic effect of two paradigms; multi-agent systems and P2P

systems in a simulated environment.

 Comparison of two different approaches to multi-agent systems:

 Agents who are intelligent themselves and learn over time (software agents

(see section 2.3 for details))

 Agents with intelligent protocols which evolve over time (protocol-based

agents (see section 7.2 for a summary))

This thesis is about intelligent agents while intelligent protocols have been developed

and studied by Pervez [34] in the other part of this joint research study. This work is

closely related to SWAP [17]. The basic idea of memorising network information has

been picked from [7, 8] but it has been used with several modifications i.e. query

routing, search, indexing mechanisms etc. to suit our simulation requirements.

1.4. Outline

This section describes the outline of this thesis report:

 5

Chapter 2 describes basic concepts behind P2P and multi-agents systems, the possible

performance gains which could be gained by their synthesis. It also describes the related

work done so far in these directions.

Chapter 3 describes basic concepts and techniques, along with their alternates, used in

the development of this system with examples. It gives the basic understanding of those

techniques to the interested readers.

Chapter 4 describes simulator used and the user interface to give a visual feel of the

whole system to the reader before proceeding to the technical details.

Chapter 5 describes the system overview with detailed explanations of system

architecture and mechanisms used for communication, query routing, and searching.

Chapter 6 describes the evaluation criteria with detailed discussion of the results.

Chapter 7 describes the comparison of the two approaches for multi-agent systems,

mentioned above. Intelligent agents versus intelligent protocols

Chapter 8 describes the conclusion of the evaluation and comparison of results.

Chapter 9 describes future work for this project and the related research interests.

 6

2.Chapter 2

Background and Literature Review

This chapter describes the underlying concepts of P2P and agent-oriented computing.

We will also look at the synthetic effect of these two paradigms along with some

related literature review.

2.1. P2P Systems

There is no commonly agreed upon definition of P2P systems. The literature proposes

a wide variety of definitions; however, the following are the most common [35]:

 P2P refers to a class of systems that offer efficient techniques for resource

discovery and sharing in a decentralised manner.

 P2P computing offers a network-based solution for sharing resources and

services via direct exchange.

In a typical client/server architecture, one or more computers are designated as servers

depending upon the network size. The server, typically an unattended system, listens

and responds to the requests of clients (other computers/systems in the network). In

contrast to this dependent approach, in a P2P system every computer, referred to as

peer, acts as a client with a layer of server functionality. This allows the peers to act

as a client as well as a server sharing the network load and resources. P2P systems

introduce an independence culture replacing dependency on central severs. Peers can

perform their tasks independently. They can listen and respond to the requests of other

peers in the network.

 7

2.2. P2P Architectures

P2P systems are generally split into the following two categories with respect to their

architecture [36, 37]:

 Centralised

 Semi-Centralised

2.2.1. Centralised Architecture

These systems that have no central control or authority over each peer and in which

each is considered equally capable and independent are said to have a pure P2P

architecture. They share and consume resources of the network. They can

communicate directly with each other and are aware of each other constantly. The

other way of peer communication is indirect communication where peers

communicate through other intermediate peers. Indirect communication network

could be of two types with respect to the organisation of peers:

Structured networks: in this type of network, peers are organised with a regular

structure. Each peer maintains information about subset of other peers in the network.

This information is maintained as a distributed routing table typically referred to as

Distributed Hash Tables (DHTs). These routing tables are used to provide efficient

lookup and mapping between the resources (e.g. file) and location (e.g. node). CAN

[40], Pastry [41], and Chord [39] are examples of structured systems.

Unstructured networks: in this type of network, peers are not organised according to

some structure. An indirect unstructured architecture no longer needs to enforce a

specific network configuration; however, the focus and work load is shifted towards

resource discovery as network can change without alerting the peers. Napster [43] and

Gnutella [44] are examples of such systems.

 8

2.2.2. Semi-Centralised Architecture

This type of P2P architecture is also known as hybrid architecture. In this architecture

there is at least one central point of control. This control could be for many purposes

e.g. from the implementation of strict control policies to simply provide a central

indexing service to the other peers. The central peer is used for maintaining the

central indices of the resources available in the network as well as providing

processing capabilities. These networks do not need resource discovery services as the

central peer maintains an index. SETI@home is an example of this type of system

[42].

2.3. Agents: A Well Suited Paradigm for P2P

The basic underlying concepts of a peer and an agent are very similar and lead to the

synthetic approach for these two paradigms which could reveal new direction for

distributed computing. The driving force of this approach is based on the concept that

the shortcomings of P2P systems (see section 2.4 for details) can be made up by the

capabilities of agent paradigm which we will discuss in the later sections.According

to the literature there is no agreed upon definition for what is an agent; however, there

are certain numbers of characteristics which are commonly associated with agents by

the research communities [45]:

 Autonomy: Agents can control their operations and internal states without the

intervention of humans or outside computer programs.

 Reactivity: Agents react to the changes in the environment and adjust

accordingly to achieve their goals.

 Social ability: Agents can interact with other agents or humans either to

cooperate or compete. This ability lays the ground for multi-agent system.

 Pro-activity: As agents can react to their environment they can take initiatives

to achieve their goals as well.

 9

 Learning/Adaptation: Agents learn from their previous experiences and

evolve their behaviour accordingly to improve the efficiency and effectiveness

in carrying out their tasks.

 Mobility: Agents can move from one node to another node to in the network.

2.3.1. A Peer with Agent Capabilities

By adapting these characteristics (mentioned above), a peer can also enhance its

performance.

 Autonomy: a peer having the autonomy can decide when to enter and when to

leave the network, whether to answer or reject the query etc.

 Reactivity: a peer can react to the changes in the environment.

 Social ability: can introduce social values in P2P systems like trust and

reputation.

 Pro-activity: can be useful to take initiative to achieve goals and to alert the

users, based upon their interests, of any changes in the network.

 Adaptation and Mobility: can enable peers to implement efficient learning

algorithms for resource discovery in order to improve performance.

2.4. Limitations of Peers

The following are some important limitations of peers with respect to agent

capabilities:

 10

 Communication: languages used, at present, for communication in P2P are

very simple; supporting only well defined concepts rather than complex

semantically rich communication.

 Data Model: peers exchange very simple data models e.g. files and directory

structures only.

 Data Integration: peers operate in well defined environments and do not

tackle the problems of heterogeneity and inconsistency which are inherent

with distributed systems.

 Routing: intelligent routing techniques can play a critical role, especially in

the absence of any centralised authority.

However, these limitations can be improved by the merger of these two paradigms. In

this merger each peer would have an associated agent which employs an efficient

communication language, can exchange complex data structures e.g. in business-to-

business, ecommerce applications, can operate in heterogeneous environments, and

has efficient and intelligent routing algorithms.

2.5. Trust and Reputation: An Issue for Agent-Based P2P Systems

In a P2P network, peers share and consume resources. When a peer issues a service

request it does not know whether it will be granted or will not be granted, by virtue of

autonomy of other peers in the network. Therefore, concepts of trust and reputation

also are applicable to the social behaviour of peers [46, 5, 1]. The concept of trust is

slightly different from that of password based security. Passwords reveal the identity

of an agent but do not guarantee a service. The following are the major challenges to

deal with:

 How an agent can decide when and where it should reveal its identity

 How an agent can trust other agents with whom it has no previous experience

 11

In [1] a mechanism has been described to award prizes and penalties. According to

this mechanism, when a service request is issued only those agents will respond which

are reasonably confident that they can provide a suitable answer. This approach

mimics social behaviour. Agents are ranked e.g. if they provide a wrong answer their

trust level decreases in the community and vice versa. To discourage deceiving

behaviour a good reputation is built slowly but drops rapidly.

2.6. Literature Review

In decentralised unstructured distributed systems, a critical task is to identify the node

which is most likely to contain the answer to the query and pass that query to that

node, considering the number of messages generated on the network for this routing.

Our work relates to two research areas in different ways, we will discuss them in the

following sections:

2.6.1. P2P Systems

In general the emphasis of the research in P2P systems has been on investigating new

possibilities for efficient and effective network topologies or document distribution in

the network.

In [22] an approach based on social network analysis has been discussed named as the

small-world-effect. They have studied the topologies to establish efficient connections

among peers in the network. Their approach exploits the power law link distribution

of naturally occurring networks. In a power law distribution peers show a higher

tendency to connect some particular peers as compared to other peers. In this

distribution few peers will have high degree of connectivity and many peers will have

low degree of connectivity. Their approach introduces a sophisticated change in basic

Gnutella [44] approach (flooding the network). First, they route the query to those

peers which have a high degree of connectivity instead of broadcasting the query to

all known peers. Second, peers exchange their contents with two other known peers

which have lower degree of connectivity in an ascending order. Peers also keep their

known peers updated about their network position (degree of connectivity) by update

 12

messages, in case a peer leaves or joins that peer. Experimental results show that

queries can be answered in less number of hops as compared to basic Gnutella

approach. However, the drawback of this approach is that it generates extra network

traffic because of continuous exchange of contents and update messages between

peers.

In contrast, our approach uses semantic similarity value to select a peer to which to

route the query instead of degree of connectivity of a peer. This approach seems to

work in highly replicated environment. For example, in an mp3 file sharing

environment this approach has higher probability to find the required file by routing

the query to a peer with a high degree of connectivity but in our case if one wants to

search a Bibtex reference related to the hardware field then it is not reasonable to

route the query to a software expert peer which has a high degree of connectivity.

Another approach has been discussed in [23] to identify the resources in least

messages. Each peer holds a subset of a virtual distributed search tree like a

distributed hash table. This tree defines the position of a peer and the content it is

responsible for, in the network in the form of a binary string. The combinations of bits

in the binary string are abstracts for different data items in the network. Queries are

routed to the peers which have the most similar representative string in the tree. In

contrast to our approach they do not propose any solution to find the most relevant

resource in the first place. This direction of research has mostly been investigated by

the other research community which we will discuss in the following section.

2.6.2. Agent-based P2P Systems

The use of schemas and ontologies in P2P systems has revolutionised this field. It has

enabled P2P systems to take advantages and overcome their limitations by adapting

recently developed semantic web technologies. This direction of research is focusing

on synthetic effects and the benefits which could be achieved by the merger of these

two paradigms.

 13

In [28] a similar approach, named as ReferralWeb, with slight differences has been

discussed. They also have taken inspiration from social networks to route the query.

They analyse social networks by mining the public resources available on the Web.

These resources could be of many types such as links to homepages, Internet

directories, list of people, organisational charts etc. They have also used expertise-

based model like us. A peer routes the query to the peer which is most likely to

answer the query, based on the similarity value between peer expertise and query

topic. Like our content holder indices they use referrals to other peers to route the

query. However, they have not used counsellor and net-worker indices. Experimental

results show that better precision could be achieved by using referrals as compared to

the random selection. It also ensures that peers adapt dynamic topology and form

group of peers sharing similar expertise. They contradict with our approach in the way

of learning. We learn by observing and memorising the network communication while

they learn and adapt the topology by mining the Web. They have claimed that the

number of messages also decreases with their approach but no empirical evidence has

been given.

In [27] an expertise based model has been discussed for efficient query routing. It is

similar to our approach in a sense that each query has a ‘focus’ (topic in our case)

associated with it, which is a part of an ontology. When a peer receives a query their

proposed algorithm tires to match the focus of the query with the contents in the

knowledge base of the peer. This matching is done in two ways. First, syntactic

matching which is quite straightforward as the algorithm matches the keywords

associated with the contents in the knowledge base. Second, semantic matching for

which algorithm tries to match the context of the contents with the focus of the query.

If it finds any relevant contents those are sent as answers to the querying peer

otherwise query is routed to the peer which has similar contents to the focus of the

query. In contrast to our approach they do not evolve their learning process by

observing network communication.

Another semantic approach for query routing has been discussed in [9]. They learn the

network by advertising the peer expertise in the network while we learn the network

in a lazy learning style i.e. we observe the network communication and use it later for

responding to new queries instead of advertisement. Like us they also use a flat P2P

 14

network architecture i.e. every peer is equally capable and independent. However,

peers are not considered equal in their knowledge about a particular field. They

simply keep the replier as their known peers but we use complex mechanism to store

and reuse this information later. Experimental results show that our approach

performs well and adapts the semantic topology resulting in the form of semantic

clusters of peers sharing common expertise.

EDUTELLA [24] is a semantic P2P system, its basic functionality is very similar to

that of SWAP [25] project which uses an expertise based model for query routing. In

[26] they have discussed a query routing mechanism. Peers with common expertise

are arranged in hypercube topology which ensures that each peer is contacted exactly

once for a query. This approach is contrary to ours, as we do not consider each peer

equally capable of answering a query. We rank peers according to their knowledge

about a particular field of expertise and also consider their previous performance in

answering the queries related to that particular field. Our experiments show that we

also need fewer queries to reach the most knowledgeable peer.

 15

3.Chapter 3

Basic System Concepts

This chapter has been to provide the reader with basic underlying concepts of the

techniques which have been used in this thesis.

3.1. Learned Paradigms

There are two distinct types of intelligent learning algorithms being practised in the

field of AI:

 Lazy Learning

 Eager Learning

3.1.1. Lazy Learning

They have the following distinguished characteristics which draw a boundary line

between them and the other types of algorithms [11, 12]:

Algorithms based on lazy learning approach defer the compilation of the input data

until an explicit request for a prediction is received.

The input data could be used in a combined way to satisfy the incoming request more

effectively and efficiently.

Case-based reasoning (CBR) and K-nearest neighbours are the most commonly used

examples of lazy learning algorithms. We discuss the characteristics of CBR along

with some exemplar scenarios. CBR uses facts and observations stored in the

knowledge base not the rules encoded out of them. When a new problem comes; it is

matched against the cases stored in the knowledge base and similar cases are retrieved

to suggest a solution which is reused and tested for success. It is repeated until a

 16

successful solution is found. On success the new solution and the problem

encountered are stored in the knowledge base for future reference. Domains suitable

for CBR solutions usually possess the characteristics such as [29]:

 Previous records of instances are kept and maintained carefully

 Acquired experiences are documented in repositories

 Experts explain tasks by examples

Following are exemplar scenarios where CBR is used:

 Diagnosis: Case-based systems are widely used in medical diagnosis domain.

When a new patient comes; its symptoms are matched against the symptom

lists of the previous cases. The retrieved cases are then used to suggest a

diagnosis for the current case.

 Decision Support: In making complex decisions, CBR systems are very

helpful. It is natural to look for similar problems to get a hint for the possible

solution. CBR systems are particularly very helpful in querying structured,

modular and heterogeneous repositories.

3.1.2. Eager Learning

On the other hand, as evident from the name, eager learning algorithms posses the

following characteristics [11, 12]:

 They process the input data immediately which results in the form of some

rule sets, decision trees, or neural networks etc. They store only the results

(which normally are generalisations) and discard the data.

 They satisfy the incoming requests based upon this a priori induced

information.

Decision trees, neural nets and Bayesian classifiers are the most commonly used

examples of the eager learning algorithms. We discuss the characteristics of decision

trees along with a real world problem. A Decision tree is a graph of decisions and

 17

their possible outcomes. It takes the value of an independent attribute (variable, which

at least has two or more than two values) and by following some rules (in the form of

conditions) produces a value for the dependent attribute (variable, which at least has

two or more than two values). Decision trees start with a root node having different

branches leading to other child nodes or leaves (tips at the bottom of the graph) as

shown in Figure 1. These leaves always represent decisions reached by following

certain conditions. We demonstrate this by a standard example [14]:

Suppose, we schedule our weekend for five options depending upon certain social and

environmental factors. The options could be ‘No Outing’, ‘Play Football’, ‘BBQ’,

‘Theatre’, ‘Shopping’ and the social and environmental factors could be Overtime

(Yes, No), Weather (Sunny, Windy, Cloudy), Good Movie (Yes, No). We can plan

considering different possibilities like; if there is overtime then we will not go for

outing. If there is no overtime and it's sunny, then we will play football, but if it's

windy, and there is a good movie, then we will go for theatre. If there is no overtime,

it's windy and no good movie, then we will go to shopping. If there is no overtime and

it's rainy, then we will go for BBQ.

To remember all this, we can draw a flowchart (as shown in Figure.1) for our

convenience which will enable us to quickly reach on the decision. Such diagrams are

called Decision Trees. After having this decision tree, scheduling our weekend will

not be a hectic job. We simply have to follow the graph according to the facts and our

weekend scheduled would be ready.

 18

 Figure 1: A simple decision tree

This decision tree can be drawn manually but there are automated techniques to build

large and complex decision trees by learning from examples. However, we will not go

into their details as that is out of scope of our thesis. Readers can find further

information in [14].

3.1.3. Comparison of Lazy and Eager Learners

To summarise, lazy learners do not process the input data and use the original

information to guide the decision making when needed. On the other hand, eager

learners process the inputs immediately and use the processed results for decision

making.

The most important characteristic of lazy learners is the flexibility of usage of stored

information to answer queries. The basic assumption behind eager learner is that their

learning bias is appropriate for the performance of the task. As far as this assumption

is true, it can yield performance benefits. But it is risky because there is a significant

 19

chance of loosing crucial information during the immediate processing of the input

data which could play a vital role in generating accurate responses to the queries, if

that assumption happens to be wrong. Thus, lazy learners in one sense are more trust

worthy to handle unanticipated queries than eager learners.

The following are some heuristics on advantages and disadvantages of lazy learners

over eager learners and vice versa:

 Lazy learners are well suited for incremental learning tasks because of their

low learning costs.

 Lazy learners can be efficient problem solvers as they store and adapt

solutions for later reuse.

 Lazy learners can generate detailed explanations instead of abstract

explanations, which are preferable for many tasks.

 Lazy learners could be fine tuned by using cached information about

prediction quality.

 Eager learners use fewer resources at the time of problem solving as they save

pre compiled information while the lazy learners do the compilation at the

time when problem comes.

 Eager learners need less storage capacity as they only store abstraction of the

information in the form of rules.

 Eager learners may be more appropriate for time critical decision making tasks

3.2. ACM Topic Hierarchy

The Association for Computing Machinery [33] is the organization which maintains

one of the biggest on-line digital libraries along with other major activities i.e. ACM

Press, ACM Portal etc. ACM also maintains a topic hierarchy for almost all the

computer science related topics known as the ACM topic hierarchy or more formally

as the ACM Computing Classification System (CCS). The benefit of defining this

hierarchy is to ensure accurate categorization of the documents to provide a quick

content reference to the reader. This categorization also facilitates the on-line search

in the ACM digital library or other on-line resources.

 20

The ACM CCS consists of a four-level tree. Three of these levels are coded according

to standard terminology while the fourth one is an uncoded level for subject

description etc. The tree consists of eleven first levels nodes, the number of second

and third level nodes varies with respect to each of the first level nodes. However, on

average second level sparse to four nodes and to maximum it goes to eight nodes,

whereas, third level consists of six to thirteen leaves. At fourth level these are just

uncoded subject descriptions if any. Figure.2 shows a small fragment from the ACM

topic hierarchy down to three levels starting from 0 for ACM root. Where dotted lines

mean there could be more levels to come.

 Figure 2: A small fragment from the ACM topic hierarchy

The ACM CCS covers almost 1287 different topics. First level nodes are labelled with

capital alphabets from A to K and covers topics like General Literature, Hardware,

Computer Systems Architecture to Information Systems and Computing Milieux etc.

while second and third levels are labelled as a combination of alphabets and numeric

[9, 10]. An author has to provide the categorization of her/his writing from the CCS. It

can be explained with a brief example, suppose, there is a paper to be published about

Information Storage and Retrieval which addresses the issues like content analysis,

selection process, information networks etc. This paper has to provide the following

categorization from CCS before submission to the ACM:

 21

“H.3.1 [Information Storage and Retrieval]: Content Analysis and Indexing --

Abstracting methods; H.3.3 [Information Storage and Retrieval]: Information Search

and Retrieval -- Selection process; H.3.4 [Information Storage and Retrieval]:

Systems and Software -- Information networks”

This way it would be published, stored, referred, and reviewed under the selected

categories which facilitate the user to access this paper later on.

3.3. Semantic Similarity Function

Finding semantic similarity between words or concepts has long been studied in

Information Retrieval and Natural Language Processing. It has been a fundamental

issue in a wide variety of applications of computational linguistics and Artificial

Intelligence. The similarity between two words or concepts is measured by the

similarity in concepts underlying the two different words or concepts. Two types of

methods are used to measure similarity between concepts [8]:

3.3.1. Edge Counting-Based

An edge counting-based method is used in tree-like taxonomies, where nodes

represent concepts (ACM topics in our case). The minimum number of edges

separating two topics t1 and t2 is a metric for measuring the conceptual distance of t1

and t2. These hierarchies consist of 'IsA' or 'Is a Kind of' relations. Such relations play

an important role in determining the semantic similarity between two topics.

Sometimes, taxonomies have irregular densities of links among concepts due to their

broad domain. In that case, depth of the topic in the hierarchy with respect to the

common subsumer, along with the minimum number of edges separating the

concepts, is used. It is defined as in the following equation:

 22

where l is the length of the shortest distance between the two topics t1 and t2 in the

graph spanned by the subTopic relation (in our case) and depth h is the level, in the

tree, of the direct common subsumer of t1 and t2 . Parameters α and β are used to

scale the contribution of shortest path l and depth h, respectively. There values have

been set to α = 0.2 and β = 0.6 based upon the benchmark data set given in [8]. There

might be some exceptions to these values but in our case they worked well. According

to [15] it has been proven that the minimum number of edges separating two concepts

con1 and con2 is a metric for measuring the conceptual difference. The reason to

introduce h in the calculation is that the concepts existing at higher levels in

taxonomies are more general and semantically less similar than concepts at lower

levels.

Let’s demonstrate the use of this similarity function with an example: Suppose, we

have to calculate semantic similarity among three topics to decide which pair is the

most similar one. Say for instance, those topics are visual programming, functional

programming, and neural networks. This is graphically represented in Figure.2.

By putting the values of l and h into the above equation for first pair, we get the

similarity value, where l = 6 and h = 1:

 Sim ('visual programming', 'neural networks') = 0.15

For the second pair, we get the similarity value, where l = 2 and h = 3:

 Sim ('visual programming', 'functional programming') = 0.63

For the third pair, we get the similarity value, where l = 6 and h = 1:

 Sim ('functional programming', 'neural networks') = 0.15

These values suggest that the second pair of topics is more similar than the first and

third ones.

 23

3.3.2. Information Theory-Based

An information theory-based method is another approach for calculating similarity

between concepts in taxonomies. This approach is used in large information

repositories to handle the problem of varying link distances encountered by edge-

counting based approach. It calculates similarity between two concepts by capturing

the maximum information content of the concept that commonly subsumes the two

concepts [15]. The information content depends upon the probability of the

occurrences of the concept in taxonomy. The probability of a concept is calculated

upon the number of instances a concept and its sub concept occur in the taxonomy.

The information content is then defined as negative the likelihood of the probability.

It is defined as in the following equation [8]:

 Sim (c1, c2) = Max [-log p (c)]

 c Є S (c1, c2)

Here S(c1,c2) is the set of concepts which subsumes both c1 and c2 . For every c out of

S(c1,c2) a probability would be calculated with negative the likelihood and the

maximum is chosen as the information content of the concept. We shall not

demonstrate this here with an example as we are only dealing with tree like

taxonomies in this system. However, interested readers can find further information in

[15].

3.4. Peers/Agents

A peer is an individual, independent computing process. Our system architecture

proposes that there is an intelligent agent associated with each peer and owns a

complex knowledge base of its own. By combining a peer with an intelligent agent

resources could be used more efficiently and effectively. In this way, peers in P2P

systems become autonomous entities which could now initiate tasks, make intelligent

decisions to pursue their goals, and have effective communication with other peers.

So, from here onwards, peer and agent points to the same thing, preferably we will be

using the word 'agent'.

 24

We assume an agent has the following generic characteristics [13]:

 An agent is independent of other agents.

 An agent has intelligence to take initiatives and timely decisions.

 An agent is acquainted with some other agents.

 A query should not be propagated indefinitely between agents.

 An agent may choose not to respond or forward some queries depending upon

its position in the network.

3.5. Query Routing Mechanism

Query routing is the process of identifying the agent which is most likely to contain

the answer to a query and passing the query to that agent. There are three distinct

types of query routing mechanisms, which we discuss in the following subsections:

3.5.1. Overt

This is the simplest form of query routing. In this mechanism every agent

communicates directly with the querying agent (the one who receives the query from

the user) without the involvement of any intermediate agents (who receives the query

from the querying agent and passes to next known agents). When an agent receives a

query from the user, it evaluates the query against its knowledge base and sends the

query to its known agents (whom it knows in the network). These agents check the

query against their local knowledge base and refer to their known agents, whom they

found appropriate to answer the query, in the answer message to the querying agent.

The querying agent then sends the query to those referred agents. This process keeps

on until maximum hop count limit is reached (see section 4.2.6 for details).

This can be visualised by an example, suppose, there are three agents A, B, and C. A

is querying agent and its known Agent is B. Agent B has E as its known agent. If A

sends query to Agent B, it will check the query against its local knowledge base and

in its answer message, to the querying agent, will refer to its known Agent E. Agent A

 25

will then send query message to Agent E. Agent E will repeat the same process as

Agent B if hop count allows otherwise simply will send answer message to Agent A.

Figure.3 shows the overt routing mechanism where each agent has one known agent.

A red line represents messages handled by the querying agent.

 Figure 3: Overt query routing mechanism

3.5.2. Covert

Covert is a slightly modified form of the overt mechanism. In this approach,

intermediate agents send queries directly to their known agents instead of referring

them to the querying agent in the answer message. On receiving the answer from their

known agents these intermediate agents send the answers to the querying agent. In

this way, intermediate agents get directly involved in the routing process instead of

indirect involvement (in case of overt). This process is repeated until a maximum hop

count limit is reached (see section 4.2.6 for details).

An example communication using covert could be as follows. Suppose Agent A

knows Agent B and Agent B knows Agent C. When Agent A receives a query from

the user it sends it to its known Agent B. Agent B send answer message to Agent A if

it found any and also forward query message to its known Agent C. Agent C send

answer message to Agent B if it found any which is then sent to Agent A by Agent B.

Similarly, Agent C can forward the query message to its known agents if maximum

hop count is not reached yet. Figure.4 shows the covert routing mechanism where

each agent has one known agent. A red line represents messages handled by the

querying agent and blue lines represent messages handled by other agents.

 26

 Figure 4: Covert query routing mechanism

3.5.3. Hybrid

Hybrid is a mixture of both overt and covert approaches. It forwards query messages

covertly while answer messages are sent overtly. When a querying agent receives a

query, it sends the query messages to its known agents. These known agents send

answer messages to the querying agent and forward the query message to their known

agents. These known agents now reply directly to the querying agent instead of

replying to the intermediate agent. They can also forward the query message to their

known agents if maximum hop count limit (see 4.2.6 for details) is not reached yet.

A hybrid approach is exemplified by the following scenario. Suppose Agent A knows

Agent B and Agent B knows Agent C. When Agent A receives a query from the user

it sends it to its known Agent B. Agent B will send answer message to Agent A if it

found any and also forwards the query message to its known Agent C. Now Agent C

will send the answer message directly to Agent A instead of sending to intermediate

Agent B. It can also forward the query message to its known agents if the hop count is

not reached yet. Figure.5 shows the hybrid routing mechanism where each agent has

one known agent. A red line represents messages handled by the querying agent and a

blue line represents messages handled by other agents.

 Figure 5: Hybrid query routing mechanism

 27

3.5.4 Comparative Analysis

In this section, we compare the performance of overt, covert, and hybrid query routing

mechanisms mentioned above. Table 1 presents the statistics in terms of number of

messages generated using each of these query routing mechanisms. Figure 6, 7, 8

shows a communication scenario using these query routing mechanisms where each

agent sends messages to two known agents. A red line represents messages handled

by the querying agent and a blue line (if any) represents messages handled by other

agents.

Routing Mechanism PQ=1 PQ=2 Increment Percentage

 Q O Q O Q O

Overt 4 4 12 12 67% 67%

Covert 3 5 8 16 63% 69%

Hybrid 3 4 8 12 63% 67%

Table 1: PQ represents the number of queried agents (agents whom an agent sends a query
message). Q represents the number of messages handled by the querying agent and O represents
the total number of messages generated over the network in one query session.

 Figure 6: Overt query routing mechanism, Q is for query message and A is for answer message

 28

Figure 7: Covert query routing mechanism, Q is for query message and A is for answer message

Figure 8: Hybrid query routing mechanism, Q is for query message and A is for answer message

From the statistics presented in the table 1 hybrid is the best query routing mechanism

to follow. According to these statistics overt put all the communication load on the

querying agent. Intermediate agents just have to communicate twice in a query

session. Once for receiving the query message and secondly to answer the query while

the querying agent participate in every communication on the network for a particular

query session. As the network size and the number of queried agents increases as the

communication load on the querying agent increases. One queried agent overt

produces 4 messages while in case of two queried agents it produces 12 messages

with an increment of 67%.

 29

Covert is as good as hybrid in putting communication load on the querying agent, as

is evident from the statistics in the table 1 but it generates more messages than hybrid

in terms of total number of messages per query session. It also produces latency in

answer messages as the repliers send answer messages to intermediate agents first and

then intermediate agents forward them to the querying agent. Overt is efficient in this

regard as the answer messages are sent directly to the querying agent. However,

hybrid has best of both of these approaches, lesser communication load on the

querying agent, and lesser overall messages with efficient communication

mechanism.

Based upon these results, we have chosen hybrid as the query routing mechanism for

our system.

 30

4.Chapter 4

Simulator and User Interface
Description

This chapter describes the details of the simulator used to develop this system, and the

user interface used in this system. These details would be helpful to the reader to

visualise the query routing process.

4.1. Simulator

We have used a network simulator developed by Dr. Jane Hilston and her PhD

student Yusuf Abushaban (School of Informatics, University of Edinburgh) to

simulate our agent-based P2P system. It is one of the main contributions of this

project is to use this network simulator to simulate such networks as it has never

before been used for this purpose (hitherto it was used to simulate simple distributed

algorithms in distributed systems course). In P2P environment peers are independent

of each other and process operations locally in parallel. To simulate such behaviours

we required a simulator that can help us in executing operations simultaneously.

Since this simulator is developed in Java which has built-in support for multi-threaded

applications. We chose to use it to simulate our agent-based P2P system.

4.1.1. Basic Features

This simulator has several interesting features which enable a user to simulate a

distributed network in a few mouse clicks. A user can create an agent by a left click

which is displayed as a blue circle with its Id on it. Similarly more agents could be

created. This network is saved in a XML file. This file contains the information about

every agent created in the network regarding their Ids, colour, failed status, x/y-

coordinates of the screen where they were drawn by the user etc. It allows the user to

store the created network and use it any time later by loading it back.

 31

First an agent is always selected by the user. For this purpose, user has to left click on

an already created agent that turn its colour to yellow. Colour is changed to

distinguish the first agent from other agents which have blue colour. A user can make

a communication link between two agents by a right click on each of them. But this

communication would be one way i.e. only first agent can send message to the second

agent not vice versa. For two way communication a user has to repeat the same

process from the second agent to the first agent. A user can also demonstrate fault

tolerant behaviour by setting the failed status of an agent to true. This status is toggled

by clicking the centre button of the mouse. Communication among agents is

demonstrated by a tiny yellow leaflet showing the information about the message type

(query, answer), sender Id, and receiver Id. The features discussed in this section are

the features of the original simulator. However, we have introduced many changes to

suite our requirements which we will discuss in the section below.

4.1.2. Changes and Additional Features to Suit Our System

Various changes and additional features have been introduced in this simulator to suit

our system requirements especially in user interface. Initially the user interface for

this simulator was very simple i.e. just a wide empty screen where user can create

agents, communication links between them etc. to simulate distributed algorithms.

However, to simulate our agent-based P2P system effectively we have embedded

several new components into the user interface. Figure 9 shows the user interface for

the original simulator, where a user has created four agents and communication links

among them. Yellow colour represents the first agent which starts the communication

and the black lines represent communication links.

 32

 Figure 9 : User interface for the original simulator

4.1.3. New User Interface

To simulate our agent-based P2P system effectively, we have embedded the following

components into the existing user interface:

Agent Area (Central Panel): To give a visual representation of agent communication

we added a central panel named as ‘agent area’ (as shown in Figure 10). As we have

the assumption that agents in our system will not leave or join the network during a

query session so the user does not need to create and store networks. He/She can just

load a predefined network. The user also does not need to create communication links

as the agents know with which agents they can communicate (see section 5.2.11,

5.2.12 for details). This communication link is always a two way communication link.

For example if Agent A can communicate with Agent B it is implicit that Agent B can

 33

communicate with Agent A. We have tested our simulation for three different sizes of

networks. Initially we simulated a network of 20 agents and then for scalability tests

we upgraded it to a network of 40 and 60 agents respectively.

Message Board (Right Panel): To show the agent communication and other agent

activities in a log format which could be used later even after the query, we have

added a right panel named as ‘message board’ which displays all available data on

communication among agents in a particular query session. This board displays query

reception messages, local knowledge base look up activity status, answer messages,

query forwarding message and hop count etc (as show in Figure 14).

ACM Topic Hierarchy Tree (Left Panel): We have also added the ACM topic

hierarchy (see section 3.2 for details about ACM topic hierarchy) in a drop down tree

format to enable the user to select the topic of the query which helps to select the first

agent. As a user will no longer be able to select the first agent so there will be no

yellow circles. User does not have to create communication links as well because

agents are assigned random known agents (with whom an agent can communicate)

initially which are changed as they learn the network for similar expertise. No fault

tolerant behaviour is needed as we are dealing with semantic network issues rather

physical network. So, we have the assumption that our network is fault free (see

section 4.3.1 for details).

Algorithm Choice List: We have also added a drop down list which gives a choice to

select an algorithm out of three available algorithms (as shown in Figure 12). These

three algorithms are for evaluation purposes, otherwise in an ideal case user will

always select the third option (QUROMIDI with query relaxation and randomness)

(see section 6.4.4 for details).

Search Fields: We have also added three fields to enable the user to search a

bibliographic reference by title, author, and year (as shown in Figure 13). Each agent

in our simulation has 20 bibliographic references. There are 400 records in a network

of 20 agents. For scalability tests we upgraded the size of knowledge base to 800 and

1200 records for a network of 40 and 60 agents respectively.

 34

Table of Retrieved Records: A table of records have been added to display the

retrieved results. This table shows the record Id, title, authors, year of publication and

its relevance with the keywords of the query entered by the user (as shown in Figure

14). This value could vary in the range of .50 to 1.0.

Pop Up Window: A user can see complete details in a pop up window, in Bibtex

format, of any of the retrieved records by just clicking on it (as shown in Figure 15).

An example of Bibtex record is:

@article{590909,

 author = {Stefan Wermter},

 title = {Knowledge Extraction from Transducer Neural Networks},

 journal = {Applied Intelligence},

 volume = {12},

 number = {1-2},

 year = {2000},

 issn = {0924-669X},

 pages = {27--42},

 publisher = {Kluwer Academic Publishers},

 address = {Hingham, MA, USA},

 }

4.2. A Stepwise Description of User Interaction

This section will enable the user to visually see the changes which have been

discussed in the above section with a stepwise description of how to use the interface.

The user interface consists of the following components:

 Central panel (Agent area)

 Right panel (Message board)

 Left panel (ACT tree)

 Algorithm choice list

 Search Fields

 Table of retrieved records

 Pop Window

 35

When the user loads the system, the following interface is loaded at first, as shown in

Figure 10:

 Figure 10: User interface at start up

 36

To start a search for a bibliographic reference a user has to select a topic from the

ACM tree, that is give in the left panel. This topic is used to select the first agent

when user presses the search button after entering all necessary details for the query.

Figure 11 shows topic selection:

 Figure 11: Topic selection from ACM topic hierarchy

 37

Then user has to select a search algorithm from the drop down list, Figure 12 shows

the algorithm selection:

 Figure 12: Query routing algorithm selection

 38

After algorithm selection the user will enter the keywords of bibliographic reference;

he/she wants to search. We assume that the user is aware of title of main keywords of

the title; he/she is going to search. After entering these keywords, he/she will press

the search button as shown in Figure 13:

 Figure 13: User enters query keywords

 39

The first agent will be selected on the basis of the topic selected in the ACM tree. It

will perform local knowledge base lookup, forward the query to appropriate known

agents, receive answer messages from different agents in the network and display the

results in the results table as shown in Figure 14. All the agent communication will be

displayed in the message board for the user information.

 Figure 14: Results are shown in the table, message board shows agent communication

 40

The user can see details for any retrieved results by clicking on it. When a user clicks

on a particular result a pop up window is opened displaying the complete details for a

bibliographic references in Bibtex format as shown in Figure 15:

 Figure 15: Result details in Bibtex format

 41

5.Chapter 5

System Description

This is a simulation based system which simulates intelligent query routing in an agent-

based P2P system. It has been based on the social metaphors of daily life interactions

among human beings. For learning purposes a Lazy learning approach has been used.

The chosen scenario is searching for Bibtex references. The ACM topic hierarchy has

been used as an ontology among the agents to share the resources semantically. Standard

information retrieval parameters recall, precision, and network load have been used for

evaluation.

5.1. Social Networks

Almost every one of us is a part of some social networks in our daily lives. Our

colleagues, friends, and family members are examples of these social networks. We are

also connected to other networks, directly or indirectly, through these networks. These

smaller networks constitute larger networks which constitute communities (as shown in

Figure 16) [30]. In our daily life social networks [7]:

 We usually know about other’s knowledge.

 Sometimes, we know about other’s knowledge or expertise without having any

direct communication just based on our observation.

 Knowledge about others’ knowledge or expertise is quite flexible, could be

updated any time, adjustable according to the newly found observations.

 Based upon all this information, we can easily find the most appropriate person to

answer a particular query related to her/his expertise.

 42

 Figure 16 : A larger social network consisting of some smaller networks

5.1.1. Social Metaphors

P2P systems are decentralized computer networks which mimic social networks to some

extent. In social networks the most important task is to identify a person, among the poo4l

of several possible choices, who could satisfy our queries with appropriate answers. As

Peter Morville points out [31]:

"We use people to find content. We use content to find people. Success in the former

requires we know what other people know and who other people know. Success in the

later demands good search, navigation and content management systems. We might also

think of the documents themselves as "human surrogates," representing the knowledge

and interests of authors. And of course, we humans also serve as surrogates for one

another." As shown in Figure 17 [31].

 Figure 17: Social metaphor

4 By “Social Networks” we mean group of people who have professional relationships rather recreational.

 43

Our work is based on the algorithmic form QUROMIDI (QUery ROuting by Memorising

Information about Distributed Information) of these social metaphors5 learned from

such social networks [7, 8].

 Usually a question is asked to the person whom one assumes is the most

appropriate to answer or to refer someone else concerned.

 A person is considered as knowledgeable in a certain domain if he/she has

answered previous queries successfully.

 A question is asked to a person, in the absence of a domain expert, whose

expertise is similar to the domain of query.

 It’s very rare that people are knowledgeable in the domains outside of their

domain of expertise.

 There is no absolute scale to measure the performance of others knowledge, rather

it is considered to be relative to one’s own knowledge.

5.2. Some Important Concepts & Terminologies

In this section, we will go through the definitions of some important concepts and

terminologies used in this system. This will help the user to understand the overall

working of the system more effectively.

5.2.1. Agent

Our agent-based P2P network consists of set of agents A. Every agent owns a searchable

knowledge base consisting of Bibtex information and observations about other agents in

the network. In this system we will be using three different terms for an agent depending

upon the activity it is performing. Querying Agent: one who initially receives the query,

Queried Agent: one who has been sent query message from the querying agent. It sends

an answer message if it finds the answer to the query. Intermediate Agent: queried agent

or some other agent who forwards the query to its known agents.

5 These metaphors are not result of an exhaustive observation of social networks, there could be

exceptions as well

 44

5.2.2. Common Ontology

The ACM topic hierarchy has been used as an ontology to give a shared

conceptualization of the domain. It has been used to give a semantic description of the

'agent expertise' and 'query topic'. It has relations like subTopic and seeAlso.

5.2.3. Expertise

An expertise is a semantic description, of the agent’s interest of research, based upon the

common ontology O. An agent is expert in exactly one field. But there could be more

than one agent with the same expertise.

5.2.4. Queries

Queries are initiated by a user. They consist of the keywords about a bibliographic

reference, mainly from the title or related field, a user wants to search for.

5.2.5. Topics

As every agent has a unique expertise, each query has a topic which is a semantic

description of the related field of the query, based upon the common ontology.

5.2.6. Maximum Hop Count Limit

The number of agents through which a query is passed between its source and destination

is known as a hop count. For example, if agent A is the querying agent, it forwards the

query to agent B, this makes hop count = 1. Now agent B forwards the query to agent C,

which will make the hop count = 2. The maximum hop count limit defines that how many

hops a query can be forwarded. The maximum hop count limit in our system is set to 2.

Continuing the above example, agent C can forward the same query to agent D but agent

D cannot forward this query because now hop count = 3.

5.2.7. Query Message

When an agent receives a query from the user, it checks the query against its local

knowledge base and forwards the query to its best two (out of four) known agents. These

 45

known agents repeat the same process but they can only forward the query to their known

agents if the maximum hop count is not reached yet (which is 2 in our system). This type

of message is called a query message. A query message contains the Id of querying agent

(which is used by the replier agent to send the answer message directly to the querying

agent), Id of intermediate agent (this is added after the first hop), message type (query),

query, hop count etc.

5.2.8. Answer Message

When an agent receives a query message from another agent, it searches its local

knowledge base and if it finds the answer it sends an answer message containing the

answer to the querying agent otherwise no message is sent. If the querying agent does not

receive any answer from the queried agent assumes that it has no answer to this query and

ranks it accordingly by invoking index rank algorithm (see algorithms for details).

Answer message contains the Id of querying agent, intermediate agent's Id (if query is not

directly sent to it by querying agent), message type (answer), query, hop count etc.

5.2.9. Query Routing Mechanism

To route the query to the appropriate agents in the network hybrid query routing

mechanism (see section 3.5.3 for details) has been implemented. For each routed query a

query route is built to avoid cycles. Results are retuned directly to the querying agent

(one who initially received the query).

5.2.10. Semantic Similarity Value

The similarity function (see section 3.3 for details) is used to find the similarity value

between the query topic and agents expertise. Similarity value could also be calculated

between the expertises of two agents to judge the similarity of expertise. Its value can

float in the range of zero to one. Zero indicates no similarity at all while one indicates

exact match. The threshold value for this system is 0.50.

 46

5.2.11. Known Agents

In this system we have simulated a twenty agent network. Each agent is acquainted with

four other random agents. This relationship is known as 'knows’ and these agents are

called ‘known agents’. For scalability tests it was upgraded to a network of 40 and 60

agents respectively.

5.2.12. Semantic Topology

This work is not aimed to address the issues of network topologies rather it is focused on

semantic topologies among agents which are independent of the underlying network

topologies. Semantic information about the expertise of other agents is the building block

of the semantic topology. Expertise based selection of known agents along with the

semantic topology lays down the basis for intelligent query routing.

5.2.13. Discovering New Known Agents

Initially agents have randomly assigned known agents. But they can discover new agents

through their known agents' known agents. The agents which succeed in answering the

query are added into the known agent group. For this purpose several factors are

considered. Such as, similarity value of expertise, number of records retuned network

awareness level etc. A simple scenario of agent discovery is shown in Figure 18, where

hop count represents the number of times a query has been forwarded.

 47

 Figure 18: A simple agent discovery scenario

5.2.14. Naïve Base Line Algorithm

A naïve base line algorithm has been used as base line to compare the results with

QUROMIDI. This simply routes the query to its two agents out of its four known agents

selected at random.

5.3. System Overview

Based upon the above mentioned social metaphors and with the objective of conducting a

semantic search in a distributed environment QUROMIDI enables the agents to play the

same role as a person in a social network. In our system each agent is expert on one

subject. This subject is one of the topics in the ACM topic hierarchy which is being used

as an ontology (for details see section 3.2). Every agent maintains its own local

knowledge base consisting of facts about network queries constituting 'expertise-based

knowledge'. This knowledge is used to answer the incoming queries locally or to route

them to appropriate agents in the network.

The facts about the observed network traffic are stored in the form of a 'semantic

reference index'. These indices are created, maintained, and used in a lazy learning style.

As QUROMIDI saves the information about other agents with any processing and uses it

later for decision making when a new query comes (for details see section 3.1). These

 48

semantic reference indices enable an agent to cooperate with other agents in the

following ways:

 On the reception of a query the best agents are selected to route the query to, by

the dynamic agent selection algorithm (see section 5.5.2 for details).

 This algorithm uses the information stored in the form of indices to select those

agents who have successfully answered similar queries previously. Such agents

are called 'content holders' (see section 5.4 for details).

 If no content holders could be identified the best counsellors are selected.

Counsellors are those agents who have been involved in similar queries as

intermediate agents. Now if a query is routed to them they can route it to the

querying agent (the one which issued similar queries last time, not the current

querying agent) who can route it to the appropriate content holders (see section

5.4 for details).

 If neither content holders nor counsellors could be selected then net-worker

agents are selected. These are the agents which have been actively involved in

routing queries on a wide range of similar topics. These agents relax the query

against their indices by invoking query relaxation algorithm. In this process of

query relaxation some agents are selected which have never been encountered for

such queries previously. This involvement of previously unknown agents is called

random contribution or randomness. This randomness is sometimes very helpful

to avoid over fitting in the selection of agents.

To summarise,

 The algorithms select (at most) two best agents based upon the similarity in query

subject and agent expertise along with other performance related facts.

 Route the query.

 Stores and update the facts about the responses of the agents whom queries have

been sent.

Our approach is contrary to the approach of advertising the agent expertise upfront. This

approach has been implemented by the other member of this research study (as

 49

mentioned earlier in chapter 1). In our approach agent expertise is extracted from the

network observations which help to build a dynamic semantic topology by adapting to

user queries. Our algorithm claims the following advantages:

 A more effective and efficient query routing mechanism could be achieved by

adapting to user queries over time.

 Is adjustable with the changes; and yields a dynamic semantic topology.

 It improves the process of resource discovery by the use of previously learned

semantic information.

Figure 19 shows an overview of the system. It presents the architecture of an agent which

is a part of this agent-based P2P system. It shows the overall working of the system i.e.

from receiving the query to displaying the results to the user. The cloud represents other

agents in the system. They also have the same architecture. They search the query into

their local knowledge bases, forward it to their known agents (if hop count allows) and

return the answers to the querying agent.

 Figure 19: System overview

 50

5.3.1. Basic Assumptions

We have used the following assumptions in the development of this system;

 Our users are computer science researchers, they are not naïve users.

 They are well aware of the ACM topic hierarchy and know how to use it.

 First agent will be selected on the basis of the topic, a user selects from the ACM

topic hierarchy (given in the form of drop down tree in the user interface). So user

will not select any topic which is irrelevant to the query entered.

 A query will consist of keywords mainly from the titles of the bibliographic

references stored in the knowledge bases of the agents.

 Users will not enter any irrelevant or misspelled queries.

 The number of agents and size of knowledge base of agents is fixed. Agents

cannot leave or join the network.

 As we were dealing with the issues of dynamic semantic topologies, it has been

assumed that network topology operates perfectly. No network issues have been

discussed.

 Communication medium is safe, no threats of unauthorized access. Agents are

reliable, no threats of system failure.

5.3.2. Chosen scenario

The scenario chosen to test our simulation is to share Bibtex information among

researchers. Bibtex is one the most famous formats of bibliographic references being

used in the research communities. Researchers keep and maintain lists of bibliographic

data. They have to put extra efforts into it and even then they do not have a

comprehensive overview of this collection as there could be hundreds of kilobytes of

information in dozens of Bibtex files. They do want to share it with other researchers but

the hurdle is the time they have to dedicate in doing all the maintenance. This scenario is

very well suited for our simulation. As we assume that each agent represents a researcher

which has its own collection of Bibtex information in the form of local knowledge base.

One can search its own knowledge base as well as over the network in order to get the

 51

required Bibtex information. This scenario has the following features which make it

interesting for further investigations:

 Bibtex data has strictly defined basic fields but is flexible to add new ones

according to the preferences of the user.

 The most interesting thing is that Bibtex data can never be captured fully under a

centralized repository. This is the same issue which we want to address by

decentralized repositories. Like DBLP although is a large repository but still does

not cover all the related fields (e.g. it covers Databases, AI etc., but not

organizational issues of knowledge management)

 Furthermore, it is small enough to be realistic and controllable.

5.3.3. A Sample Execution Scenario

At this point, it would be a good idea to have a feel of the execution of the system before

moving towards the discussion of technical details. We have already seen user interface

details in the previous chapter which would now help the reader to visualise the whole

process (It is recommended, for those who have not seen these details, to see 4.2 before

reading this scenario).

When a researcher wants to search a particular bibliographic reference, first of all, she

will have to select a topic from the ACM topic hierarchy available in the form of a drop

down tree. This selected topic should be an exact or relevant topic to the field of the

query. After selection of topic the user enters the query consisting of keywords mainly

from the title of the articles she is looking for. Then she selects algorithm type from the

drop down list (naïve, QUROMIDI, QUROMIDI with query relaxation and randomness).

Later results will show that the last algorithm gives the best results, so for this example

we assume that user has selected this last option as well and presses the search button.

At this point, query is passed to the first agent (querying agent). Its selection depends

upon the topic selected in the ACM tree so it is important that this topic should be similar

or exactly the same as that of the query. Now the querying agent will search into its local

knowledge base. It also selects the two best agents from its known agents to route the

 52

query to. On receiving query message from the querying agent, they will search their

local knowledge base. They will send answer messages only if they have found some

relevant results otherwise they will not send any message. By now hop count has become

two, which is the maximum limit in our case, so these agents can forward query messages

to their known agents. But these known agents cannot forward query messages to their

known agent as the hop count would be three. These agents will only look into their local

knowledge bases and send answer messages directly to the querying agent if they found

any relevant answers. Figure 20 shows an execution scenario describing query search in a

sequence diagram.

 53

 Figure 20: A sequence diagram describing the query search

 54

5.3.4. Querying Agent Selection

 After the initial steps:

 Selection of a relevant topic from the ACM tree

 Selection of search algorithm

 Entering the query keywords

When a user presses the search button the simulation selects the first agent based upon

the topic selected by the user in the ACM tree in left panel. For this purpose, a semantic

similarity function is used. This function calculates similarity value between the topic

selected by the user and the agents having similar expertise. The agent with the highest

similarity value is selected as querying agent and the query is passed to it. This agent now

will parse the query and search for it in its local knowledge base using the search

mechanism described below. It displays the results to the user if it has found any. It

selects its two best known agents and route the query to them.

5.3.5. Search Mechanism

In this system, we have used very simple search mechanism because the focus of the

system is to explore the area of resource discovery by query routing instead of

implementing an efficient search mechanism in distributed information repositories. Our

search mechanism uses a keyword matching technique. Each agent's knowledge base

contains keywords associated with each of the bibliographic references. These keywords

are matched with keywords from the query. we have the assumption that our users are

computer science researchers, they will use most suitable words as much as possible to

avoid irrelevant results (see section 4.3.3 for details).

When an agent receives a query, the query parser parses the query into individual

keywords and eliminate any propositions, articles like 'for', 'to', 'a', 'an' etc. Furthermore,

we have divided keywords into two different categories I) normal keywords II) weighted

keywords. Normal keywords are those words which are used quite commonly in the titles

and keywords of the bibliographic reference whereas weighted keywords are those words

which do not occur very commonly in the titles or keywords of the published papers.

 55

Consider the following titles which have both normal and weighted words:

 Parallel methods in programming

 A new paradigm for functional programming

 Using finite state automata

 A brief history of cellular automata

Here programming is a normal category words as it is appearing in the titles of first two

records. Similarly ‘automata’ is also a normal word. Whereas, other words like

functional, parallel, new, paradigm, using, finite, state etc. are weighted words. So, we

can say that normal category words mostly represent a particular topic or field like

programming and automata are subtopics of programming techniques and models of

computation respectively. The reason for dividing them into these two categories is that

normal category words occur quite frequently in the titles and keywords of the published

papers, if we do not distinguish these words they can introduce many irrelevant results.

For example, if a query consists of the keywords 'Typecasting in functional

programming'. Using a query mechanism with a 50% relevance threshold (i.e. at least

50% keywords from the query must match the keywords associated with the particular

bibliographic reference to include it as a relevant answer to the query, see section 6.1.2

for details) and without these categories could include irrelevant results like 'Techniques

of parallel programming', 'A new paradigm for functional programming' etc. But by using

our search mechanism with these categories irrelevant results will not be included.

Because an agent will not search its knowledge base for a single normal category word

instead it will search for a normal word in combination with a weighted category word.

This will ensure that no results are being considered as relevant without having weighted

keywords in it.

5.3.6. Duplication Record Filtration

As our system is based on a decentralised framework, there is no single indexing

authority who could index the records to eliminate duplications. In our application every

 56

agent maintains an index of its own knowledge base. The querying agent receives answer

messages from a number of agents in the network. There are fair chances of getting

duplicate results in response to a single query. It is the responsibility of the querying

agent to ensure that no duplicate results are presented to the user.

For this purpose, a querying agent uses a simple mechanism; it compares the title of

every new result with each of the existing results. If any two results have the same title

then those are considered as duplicate results. In our system duplicate results are not

presented to the user, they are simply discarded. Only one result is presented to the user.

However, there could be some exceptions to this procedure such as:

 If two results are exactly the same except a conflicting value in one field. For

example most of the time it is the name of the publisher, as people sometimes use

acronyms instead of full names. So, if the querying agent receives two results

with the title 'Typecasting in functional programming'. One of them has ‘ACM

Press’ and the other one has ‘Association for Computing Machinery Press’ as

publisher. We humans know that these two are the same thing but the agent

cannot know so it counts the number of words and prefers the detailed one.

 In another case, there could be two results with same title but one has some

missing information. In this case both of them will be merged to get one complete

result. For example one result has missing information for its year field while the

other has missing information for its pages field. Both of them will be merged to

produce one complete result. However, if only one of the results is missing some

information while the other is complete the other one is given preference.

5.4. Network Architecture

As mentioned earlier, our system is based upon the metaphors learned from social

networks (see section 5.1.1 for details). These metaphors divide our network into virtual

layers which help to recognise and rank the known agents according to their capabilities

to answer a given query. We are dealing the semantic network not the actual physical

underlying network issues (see section 5.3.1 for details about assumptions). Subsequent

 57

sections will describe these layers in detail. Figure 21 shows graphical view of these

layers [8].

 Figure 21: A layered view of the network

5.4.1. Content Holder Layer

Initially an agent has no information about the performance of other agents who have

been assigned to it randomly. So, it finds its answers by communicating at a lower layer

and flooding the query to the two best known agents. On reception of a successful answer

the querying agent creates a 'semantic content holder reference index' about the replier

agent. This replier could either be one of the already known agents or a remote agent (i.e.

one of the known agents' known agents). This reference index includes (queryId, query,

queryTopic, agentId, queryHits, role, timeStamp).

Where, queryId helps to uniquely identify the query, query is the routed query,

queryTopic is the topic assigned by ontology, agentId is the Id of the replier agent,

queryHits is the number of the returned records, role specifies that this agent is content

holder for this query (the replier agent), timeStamp tells about the time, index was created

or successfully updated. From now onwards, subsequent queries are checked against this

content holder index. If a suitable content holder cannot be found from this collection of

 58

reference indices and other indices are also not present, then the agent again

communicates through lower layers and repeat the whole process to update these indices.

For example, consider the scenario in Figure 22 where agent 6 creates two content holder

reference indices agent 3 and agent 5 as these agents have the answer for the query sent

by agent 6 [8].

Figure 22 : Content holder index creation Figure 23 : Counsellor index creation
where a dotted black line represents content holder index and a solid black line represents counsellor
index creation. Transparent lines represent other messages. Tiny leaflets represent agents which
have the content and the one with a question mark in a leaflet represents the querying agent.

5.4.2. Counsellor Layer

A Semantic counsellor reference index is created at each agent that receives a query from

the querying agent. Counsellors are those agents who have been involved in similar

queries as intermediate agents. Whereas, counsellor reference index is a semantic

reference to the querying agents who have been issuing queries previously. These indices

are used by the intermediate agents to route the queries to the agents who have issued

similar queries previously. Intermediate agents have the assumption that these querying

agents would have received answer for their queries. Now if a query is routed to them

they can route it to the querying agent (the one who issued similar queries last time, not

the current querying agent) who can route it to the appropriate content Holders.

This index includes (queryId, query, queryTopic, agentId, queryHits, role, timeStamp).

Where, queryId helps to uniquely identify the query, query is the routed query,

queryTopic is the topic assigned by ontology, agentId is the Id of the querying agent who

issued this query, queryHits is the number of the returned records but here we put '-1' as

the counsellors cannot get to know that how many records have been sent as replies are

 59

sent directly to the querying agent, role specifies that this agent is counsellor for this

query (this role is not related with the agent Id, rather it specifies who can use this index.

So it means that an intermediate agent can use a counsellor index because it was the one

who received the query from this (agentId) querying agent), timeStamp tells about the

time, index was created or successfully updated.

For example, consider the scenario in Figure 23 where agent 10 creates a counsellor

reference index for agent 6 as the query was routed by agent 6 [8].

5.4.3. Maintenance of Content Holder and Counsellor Layers

An agent cannot store reference indices about every remote agent. We have to set a limit

which is 6 in our system. That means an agent can have information about two new

agents in addition to already known agents. Once this limit is reached, agent has to decide

which indices to keep and which to delete. This process of index maintenance, according

to the criteria mentioned below, ensures the development of a dynamic topology.

Because, by following this procedure, agents will keep indices only for those agents

which return the most suitable answers. So, after a certain time of learning the network

communication, all the agents would be of similar expertise. This will create semantic

clusters of the agents sharing similar expertise in the network. For example consider

Figure 24 and 25 which shows initial random topology and semantic topology evolved

over time respectively. These figures have five different coloured dots. Each dot

represents an agent. Colour represents an expertise. Agents with the same colour are

having same or similar expertise. Initially as in Figure 24 they are arranged in random

order with respect to colour (a random topology). But they evolve a semantic topology

over time and form semantic clusters sharing similar expertise as shown in Figure 25.

 60

 Figure 24: An initial random topology

 Figure 25: A semantic topology evolved over time

The following are the criterion used to maintain the indices:

Similarity Value: Indices are ranked according to the similarity value between the remote

agents' expertise and the expertise of the agent holding the indices. The higher the rank is

the more are the chances to keep an index.

Query Hits: Query hits are also used to rank the indices. An index with a higher query hit

value is preferred over the index with a lower query hit value.

Reach ability: Indices are also ranked according to its index type (i.e. content holder,

counsellor). Content holders can be reached within one hop whereas through counsellor

at least two hops are needed to get the results. Content holders with an exact match are

given a value of 1, with relevant results a value of 1.5 and counsellors are given a value

of 2. They are ranked in ascending order.

 61

Update Interval: Indices are also ranked according to the frequencies of their use. Time

difference between their last use and recent update is used to rank the indices.

5.4.4. Net-workers Layer

A Net-worker reference index is a reference to those agents which have been actively

involved in routing queries on a wide range of similar topics. These agents are known as

net-workers, this capability is known as a level of network-awareness. It is judged on the

basis of the number of incoming-messages and the number of outgoing-messages.

Incoming-messages help to identify the number of distinct sources an agent receives

queries from. By outgoing-messages we measure, how successfully an agent shares its

resources with other agents. By routing query to net-worker agents, there is a higher

probability to find a semantically similar index than to go for the default network.

Each query that is issued in the network contains information about the capability of

network-awareness of the querying agent. Every agent updates its network index based

upon this information. This index is created as (agentId, network-awareness level).

AgentId is the Id of the net-worker agent while network-awareness level indicates the

diversity of the agent's links in the network.

Network-awareness level is calculated using the following equation:

 Network-awareness level = {(1+Incomming) + (1+Outgoing)}

Where incoming is the number of distinct agents who send queries. To get the outgoing

in decentralized setting we compute the number of distinct agents with whom agent

shares its resources. One is added to avoid zero values.

5.4.5. Default Network (Lower) Layer

When an agent is new in the network and has no semantic indices stored in its knowledge

base, it uses the default network indices of agents assigned to it randomly.

 62

5.5. Algorithms

As mentioned before, this system has been implemented on the algorithmic form

(QUROMIDI) of social metaphors learned from the social networks. QUROMIDI is a

collection of algorithms which are used together to achieve the overall goal of efficient

resource discovery. These algorithms are Dynamic agent selection, Query Relaxation,

Index rank etc.

5.5.1. Protocol Scenario

These algorithms include several steps of execution performed locally and over the

network when routing the queries or responding the queries and also while receiving

responses. A user initiates a query which is evaluated:

Locally: On the reception of a query first of all it is evaluated against local knowledge

base. In this process the search mechanism described in section 5.3.5 is used.

Over the Network (Routing the Query): After evaluation of the query against local

knowledge base, Dynamic agent selection algorithm is invoked. Its task is to find the best

N(where N=2) agents out of the content and counsellor indices to which a query should

be routed. If it cannot find any suitable agents, net-workers are selected to relax the query

by invoking query relaxation algorithm. Query relaxation algorithm uses the mechanism

described in section 5.5.2. Original query is routed to the selected N agents.

Over the Network (Responding the Query): As an agent receives a query it tries to answer it

locally and stores an index of counsellor type for the querying agent. An answer is

retuned only if there is one found, otherwise no response is sent. These responses are sent

directly to the querying agent. But the Index rank algorithm is always invoked by the

querying agent for every agent to which the query was sent even if they have retuned no

answers. The process of routing the query continues until the maximum hop (which is 2)

limit is not reached.

Receiving Responses: On reception of the answers at the querying agent an index is

created of the type content holder for every replier agent. The answers are evaluated

 63

according to relevance and duplicate records are filtered. Index rank is invoked for every

response to update the indices of that particular agent.

5.5.2. Description of Algorithms

In this section we will briefly describe of the algorithms used in this system.

Dynamic Agent Selection: The main objective behind keeping index records is to enable

the agents to dynamically adapt the topology of the network which results in the form of

semantic groups, sharing common expertise. This algorithm returns a set of two best

agents to which to route the query. Initially it tries to select the agents from content and

counsellor indices whose expertises have highest similarity value with the topic of the

query. Out of these agents, those agents are selected whose similarity value is above a

certain threshold (which is 0.50). In case two agents have a conflict because of same

similarity value the preference is given to the agent with highest query hits. If no agents

could be found or less than the required number then net-worker(s) is/are selected by

repeating the same process. They invoke query relaxation to broaden the query. The

algorithm has two main tasks I) to ensure the required number of agents have been

selected II) to choose some random agents to avoid over fitting. The algorithm terminates

if the required number of agents have been selected or the maximum hop count has been

reached.

Query Relaxation: This algorithm exploits the assumption that if someone is

knowledgeable in one field, she might have knowledge about other closely related fields

as well. So, as we know that agent's expertise is also a topic from the ACM topic

hierarchy it calculates the semantic similarity between the immediate parent topic or

parent topic's parent topic of the query with agent's expertise successively to find best N

(where N=2) agents. A query is relaxed until suitable agents are found or the ACM root is

reached as it is not possible to further relax the query topic. The selected agents are then

passed the original query. Results discussed in evaluation chapter will show that

QUROMIDI shows best performance with the query relaxation option.

 64

Index Rank: This algorithm is invoked by the querying agent to rank the indices on

reception of an answer. It is also invoked even if an agent has not sent any answer which

has been sent query by the querying agent. This time it is invoked with the assumption

that agent has not the answer to this query. Index rank algorithm uses the criteria

mentioned in section 5.4.3 to rank the indices.

 65

6.Chapter 6

Evaluation

This chapter describes the evaluation and discusses of the results obtained during the

evaluation process. Evaluation is always considered to be the most critical part of any

results oriented task. The following are the two most important objectives of an

evaluation procedure:

 To assess how efficiently and effectively a program achieves its goals.

 To improve the current system by discovering new possible functionalities or

design of the system.

6.1. Evaluation Criteria

This section defines the input/output parameters and the criteria used for the

evaluation of our system.

6.1.1. Input Parameters

The following are the input parameters which are critical to the performance of any

P2P based system [32]:

Number of Agents: This number represents the size of the network i.e. how many

agents are there in an agent-based P2P network. This number is used to access the

scalability of the underlying system. In our system, initially we test the system with

20 agents and then for scalability test it was upgraded to a network of 40 and 60

agents respectively.

Number of Documents: This number represents the number of shared resources

among the agents which are available on the network. This number can also be used

 66

for scalability tests. In our system, we have 400 documents in a 20 agent network, 800

in 40 and 1200 documents in a 60 agent network.

Document Distribution: Document distribution means, how the documents are

distributed among the agents. It could be a random distribution or a selective

distribution. With a random distribution an agent could have documents from

completely different domains as well as from similar domains. In a selective

distribution an agent has the documents mostly from one domain with a small

proportion of documents from closely related domains. It is not realistic to state that

one agent has documents from precisely one domain because it does not make sense

(for example) to state that a document related to Information Retrieval is not relevant

to P2P systems.

In our system, we have used selective distribution so an agent’s knowledge base

mostly consists of the documents from one domain with a small proportion of

documents from closely related domains. We have explicitly added documents in the

knowledge base of an agent’s related field of expertise. This way we make sure that

our approach works well to discover resources in a distributed environment.

Algorithm: Algorithms usually have a very strong influence on the performance of

the network. We have evaluated our system using three different query routing

algorithms.

Number of Queried Agents: This number represents the number of the agents to be

selected by the Agent Selection algorithm. This number has a strong influence on the

network performance as well, because queries forwarded to more agents cause more

network messages to be generated.

Number of Hops: This number determines how many times a query could be

forwarded. A large number causes the network to be flooded. In our case, we have set

it to 2. For scalability tests, we tested it on a value of 0, 1, 2, 3, 4, and 5 subsequently.

 67

Parameter Value

Number of agents 20

Number of documents 400

Document distribution Expertise based

Agent selection algorithm Dynamic Agent Selection

Number of queried agents 2

Number hops 2

 Table 2: Standard parameters used in evaluation

6.1.2. Output Parameters

The following are the output parameters which are critical to evaluate the

performance of our system:

Relevance: Relevance is a measure assigned by the user (who asks the query) to the

retrieved results with respect to the degree of satisfaction of the query. Its value varies

in the range of 0 to 1. Usually, it is determined by the number of keywords in the

query which match the keywords of the bibliographic reference. For example if there

are five words in the query and the two results have been returned. One which has

three matching keywords would be of 66% relevance and the other which has all the

keywords would of 100% relevance.

Recall: This is the most important parameter which has been the focus of this

evaluation procedure. Recall is a standard information retrieval measure. It determines

how many documents have been returned out of all the relevant documents in the

network, it is defined as:

 Recall = (Relevant ∩ Retrieved) /Relevant
 (Where Relevant is the set of relevant documents and Retrieved is the set of retrieved documents)

We use recall to access the effectiveness of our system that to what extent it could be

used to retrieve the documents in a decentralized environment by memorizing the

network communication. Here, a question could be raised that how someone could

 68

know the total number of documents in a decentralized network, the answer is that as

it’s a simulation where we have the control of the system in order to evaluate the

system with respect to a number of variables, so one knows the number of relevant

documents in the network.

Precision: Precision is also a standard information retrieval measure. It is used to

determine the proportion of relevant documents out of the total retrieved documents.

It is defined as:

 Precision = (Relevant ∩ Retrieved) / Retrieved
 (Where Relevant is the set of relevant documents and Retrieved is the set of retrieved documents)

In our system, we are dealing with exact queries so all the results retrieved are always

relevant. So, the precision will always be one in our case.

Network Load: It is determined in terms of messages per query. It indicates to what

extent network is being flooded by each query. Number of maximum hop helps to

determine the efficiency and goal orientation of the query routing algorithm that how

fast an answer could be retrieved.

6.2. Data Set

Each agent contains a knowledge base of twenty Bibtex records. So, we have sets of

400, 800, and 1200 Bibtex records in 20, 40, and 60 agent networks respectively.

These records have been downloaded from the ACM portal [33] under different topics

which have been covered in the ACM topic hierarchy used in our system. As already,

discussed we have used four distinct first level categories each of which has two to

four subtopics and then those subtopics have four to six subtopics. We have selected

records under these third level topics which constitute a topic hierarchy for each of the

downloaded Bibtex record.

 69

6.3. Query Generation

This system has been evaluated against 30 queries for each of the three networks of

20, 40, and 60 agents respectively. The queries consist of keywords mainly from the

title of the documents. The evaluation process has been conducted in three phases:

1. In the first phase, we continuously put queries to the system and took the

readings for over-time learning.

2. In the second phase, the system was presented with the same queries already

answered.

3. Finally, in the third phase, queries were divided into two equal sets. In this

scenario, first set was used to train the network (these queries were divided so

that they covered almost every topic, so both sets had queries from all the

topics). The second set of queries was used to observe the role of net-workers

using query relaxation and the effect of randomness in agent selection.

6.4. Results and Discussion

The results show that QUROMIDI outperforms the naïve base line algorithm. It

acquires a higher recall rate and by using semantically rich agent selection

mechanism. Query relaxation by net-workers and the use of randomness in agent

selection has also improved the results. Before going to the results, the following are

the investigated hypotheses:

 The QUROMIDI algorithm outperforms the naïve algorithm in terms of recall.

 Agents adapt the dynamic topology quickly and adjust according to that.

 Use of net-workers to relax the query can enhance performance.

 Some randomness in agent selection helps to avoid the problem of over fitting.

 Increased hop count effects recall to a certain limit but after that it looses its

effectiveness.

 70

6.4.1. Sensitivity Analysis

First of all, we had the problem of deciding the standards for relevance threshold (the

threshold to declare a result relevant) and the number of queried agents (the number

of agents an agent can route query to). The details and the results are as follows:

Relevance: Relevance is decided by the user (see section 6.1.2 for details). There

could be many complex techniques to set the relevance threshold but as our system is

not for improving search mechanism rather it is to test the effectiveness of resource

discovery in decentralized distributed environments, we used simple keyword

matching technique to set the relevance threshold. For example, If the user enters a

query which consists of four words excluding ‘for’, ‘to’, ‘of’, ‘a’, ‘an’ etc. (as these

would be excluded automatically by the search mechanism) a result could be declared

relevant if it contains two of these words. That means the threshold is set at 50%. To

be more precise it could be set to 75%. In that case, three out of those four words have

to be in the title or keyword list of the retrieved record. Similarly it could be set to

100% requiring matching all the four keywords entered by the user as a query.

Sensitivity Analysis

0.00
0.10
0.20
0.30
0.40
0.50
0.60
0.70
0.80
0.90
1.00

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29
No. of Queries

R
ec

al
l

Relevance = 50% Relevance = 75% Relevance = 100%

 Figure 26: Sensitivity analysis for relevance threshold

 71

Figure 26 shows the results of the experiments we performed to decide on a relevance

threshold. The x-axis shows the number of queries and y-axis shows the recall for

each of the query. We run the experiment three times on the same network for thirty

queries with 50%, 75%, and 100% relevance threshold respectively. Recall level

decreases as the threshold level increases. It decreased from a good average of 62%

for 50% threshold to 54% for 75% threshold and from 54% to 46% for 100%

threshold. This much decrease in recall is not affordable for effective resource

discovery, unless it’s the strict requirement of the user to retrieve just those records

having maximum match. However, for our evaluation purposes, we have set relevance

threshold to 50% in rest of the experiments.

No. of Queried Agents: No. of queried agents (the number of agents to which an

agent should route the query) is a critical issue. It is basically a trade off between

recall and number of messages on the network in terms of network load. The number

of messages increases with the number of agents contacted for a query in the network.

To set a standard for this number we conducted two separate sets of experiments each

with thirty queries run on each set. In each set of experiments, the underlying network

was using QUROMIDI. It was scaled up to 20, 40, and 60 agent networks

respectively. The only difference in these two sets of experiments was the number of

queried agents PQ. In first set it was set to PQ = 4 and in the second set PQ = 2.

Finally, we had six different simulation settings having the information as follows:

Set 1

 Number of messages per query and recall for intelligent network of 20 agents

with PQ = 4.

 Number of messages per query and recall for intelligent network of 40 agents

with PQ = 4.

 Number of messages per query and recall for intelligent network of 60 agents

with PQ = 4.

 72

Set 2

 Number of messages per query and recall for intelligent network of 20 agents

with PQ =2.

 Number of messages per query and recall for intelligent network of 40 agents

with PQ =2.

 Number of messages per query and recall for intelligent network of 60 agents

with PQ =2.

Upon having a critical analysis of the resulting data presented in Table3 and Table 4,

we discovered that recall is almost the same for PQ = 4 and PQ =2 (in networks with

same number of agents) but the average number of messages per query has been

decreased by half or more than half of PQ = 4 in PQ =2. Taking it empirically, recall

drops by just 2% in each of the same networks while the average number of messages

per query drops by 56%. It shows that PQ = 4 has no advantage over PQ = 2, so we

decided to set PQ = 2 for rest of the experiments. The reason why there is no

significant difference in recall, despite of the fact that one set of experiments is

querying double the number of agents, is that it is not guaranteed that all the agents

queried would have similar expertise and would be able to answer the queries. That is

why, PQ = 4 could not outperform PQ = 2 instead of just flooding the network.

Discussing this chart more fully is important as it delivers some other important facts

about the recall. The reader may notice that recall decreases slightly as the networks

are scaled up. The reason behind is that it is quite natural to drop the recall as more

agents get involved. Because there are more chances to query irrelevant agents

resulting in increased number of messages and low recall. However, this difference is

not very significant and could be tolerated; furthermore it has been improved as well,

by using the net-workers (with query relaxation and randomness) mechanism, which

we will see later in this chapter. On the next two pages, we can see the charts in

Figure 27 and Figure 28 showing the results we discussed so far.

 73

PQ = 4 20 Agents 40 Agents 60 Agents

Messages per query 19 18 18

Recall 67% 63% 61%

Table 3: Summary of results for Figure 27, where PQ = 4

PQ = 2 20 Agents 40 Agents 60 Agents

Messages per query 7 8 8

Recall 65% 61% 59%

 Table 4: Summary of results for Figure 28, where PQ = 2

 74

Number of Messages per Query for intelligent Networks with Messages Sent to 4 Agents

0

5

10

15

20

25

30

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

No. of Queries

N
o.

 o
f M

es
sa

ge
s

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

R
ec

al
l

Messages for 20 Agent Network Messages for 40 Agent Network Messages for 60 Agent Network

Recal for 20 Agent Network Recall 40 Agent Network Recall 60 Agent Network

 Figure 27: This figure shows the results of Recall and Number of messages per query for 3 intelligent networks with 20, 40, and 60 agents respectively. While PQ = 4

The x-axis shows the number of queries, left y-axis shows the number of messages per query, and right y-axis shows recall for each query.

 75

Number of Messages per Query for Intelligent Networks with Messages Sent to 2 Agents

0

2

4

6

8

10

12

14

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
No. of Queries

N
o.

 o
f M

es
sa

ge
s

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

R
ec

al
l

Messages for 20 Agent Network Messages for 40 Agent Network Messages for 60 Agent Network
Recall for 20 Agent Network Recall for 40 Agent Network Recall for 60 Agent Network

Figure 28: This figure shows the results of Recall and Number of messages per query for 3 intelligent networks with 20, 40, and 60 agents respectively. While PQ = 2

The x-axis shows the number of queries, left y-axis shows the number of messages per query, and right y-axis shows recall for each query.

 76

6.4.2. QUROMIDI vs. Naïve Algorithm

In this section we compare the results of the naïve base line algorithm with the results

of QUROMIDI to demonstrate that QUROMIDI outperforms the naïve algorithm.

Figure 29 and 30 displays the results in each case.

Recall Comparison

0.00

0.20

0.40

0.60

0.80

1.00

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29

No. of Queries

Re
ca

ll

20 Agent Network 40 Agent Network 60 Agent Network

Figure 29: This figure describes recall comparison for the naïve networks of 20, 40, and 60 agents
respectively. With PQ = 2.

Recall Compaison

0.00

0.20

0.40

0.60

0.80

1.00

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29

No. of Queries

R
ec

al
l

20 Agent Network 40 Agent Network 60 Agent Network

Figure 30: This figure describes recall comparison for intelligent networks of 20, 40, and 60
agents respectively. With PQ = 2.

 77

Summary: The charts above show that QUROMIDI outperforms the naïve algorithm

with the following empirical results:

Naïve Algorithm

20 Agents Network 40 Agents Network 60 Agents Network

59% 55% 47%

 Table 5: Recall ratio of naïve networks of 20, 40, and 60 agents

QUROMIDI

20 Agents Network 40 Agents Network 60 Agents Network

62% 60% 59%

 Table 6: Recall ratio of intelligent networks of 20, 40, and 60 agents

 The recall in naïve networks drops by 12% from a 20 agent network to a 60

agent network. While in intelligent network the drop is only 3%.

 From another view, we see that recall drops significantly in a 40 agent naïve

network as compared to a 40 agent intelligent network and the same is the case

for a 60 agent network.

 But a 20 agent network did not show a significant drop in recall. We will

discuss the reasons in the critical analysis section (see below).

Critical Analysis: Examining the charts in Figure 29 and 30 and the data in Table 6,

one can notice that there is no significant difference in the recall of naïve and

intelligent networks with 20 agents. The reason is that a 20 agent network was very

small. Since each agent knows 4 random agents, so the probability of querying the

right agent was very high. That is why there is no significant difference in the recall

ratio. To support this view, the recall ratio comparisons of the other two networks are

evident.

 78

6.4.3. Recall Ratio of Intelligent Networks for New and Similar Queries

In this section we compare the results and evaluate the performance of the network in

answering new queries vs. answering similar queries which have been asked

previously.

Recall Comparison for New and Same Queries

0.05
0.15
0.25
0.35
0.45
0.55
0.65
0.75

R
ec

al
l

Recall for New
Queries

0.62 0.60 0.59

Recall for Similar
Queries

0.62 0.64 0.64

20 Agent Network 40 Agent Network 60 Agent Network

Figure 31: This figure shows recall ratios for intelligent networks of 20, 40, and 60 agents
respectively for new and previously asked similar queries

A summary of the results is given in Figure 31. It shows the recall comparison for

intelligent networks of 20, 40, and 60 agents each of which has been tested for 30

queries. The results show that recall rate for new queries drops slightly as the network

size increases but on the other hand for similar queries it increases slightly as the

network size increases. It shows that agents have learned and have adapted the

dynamic topology which enables them to enhance their performance. However, for

new queries it is reasonable for the recall rate to drop a little bit as in that case agents

are still in the learning process.

6.4.4. Comparison of Query Routing Algorithms

In this section we discuss and evaluate the results obtained by applying naïve, simple

QUROMIDI, and QUROMIDI (with query relaxation and randomness) query routing

algorithms. These results show that QUROMIDI (with query relaxation and

 79

randomness) outperforms both naïve and simple QURMOMIDI. These algorithms

have been applied to scaled up networks of 40, and 60 agents as well along with the

basic network of 20 agents.

Recall Comparison for Query Routing Algorithms

0.00

0.20

0.40

0.60

0.80

1.00

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29
No. of Queries

Re
ca

ll

Naive Algorithm
QUROMIDI
QUROMIDI (with Query Relaxation and Randomness)

Figure 32: This figure shows recall comparison of the three different query routing algorithms on
a network of 20 agents with 30 queries tested on each

Recall Comparison for Query Routing Algorithms

0.00

0.20

0.40

0.60

0.80

1.00

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29
No. of Queries

R
ec

al
l

Naive Algorithm
QUROMIDI
QUROMIDI (with Query Relaxation and Randomness)

Figure 33: This figure shows recall comparison of the three different query routing algorithms on
a network of 40 agents with 30 queries tested on each

 80

Recall Comparison for Query Routing Algorithms

0.00

0.20

0.40

0.60

0.80

1.00

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29
No. of Queries

R
ec

al
l

Naive Algorithm
QUROMIDI
QUROMIDI (with Query Relaxation and Randomness)

Figure 34: This figure shows recall comparison of the three different query routing algorithms on
a network of 60 agents with 30 queries tested on each

Algorithms 20

Agents

40

Agents

60

Agents

Naïve 59% 55% 47%

QUROMIDI 62% 60% 59%

QUROMIDI (with query relaxation and randomness) 71% 70% 69%

Table 7: This table shows the summary of the results shown in the above charts in the form of

average recall for three different query routing algorithms with different size of agent networks

Figure 32, 33, and 34 and the data in Table 7 demonstrate that QUROMIDI with

query relaxation and use of some randomness in agent selection outperforms the

naïve and the simple QUROMIDI with a significant margin. Results show that with

query relaxation QUROMIDI performs well not only in the same size of networks but

also in the scaled up networks. The average recall rate of QUROMIDI with query

relaxation on three networks of 20, 40, and 60 agents respectively is 70%. By contrast

simple QUROMIDI’ average recall rate on the scaled up networks is 60% and the

naïve has an average recall rate of 53% percent.

 81

In this way, with query relaxation QUROMIDI performs 10% better than the simple

QUROMIDI and 17% better than the naïve one on scaled up networks. If we compare

the results in same size of networks then again it performs well with a clear margin

than simple QUROMIDI and the naïve algorithm. When network size is 20, it

performs 12% better than the naïve and 9% better than the simple QUROMIDI. When

network size is 40 it performs 15% better than the naïve and 10% better than the

simple QUROMIDI and finally when network size is 60 it performs 22% better than

the naïve and 10% better than the simple QUROMIDI.

6.4.5. Effects of Hop Count on Recall

In this section we discuss and evaluate the results to see the effect of hop count on

recall. Deciding maximum hop limit is a critical issue in query routing algorithms; on

one side it guarantees improved recall but on other hand it increases network load

from excessive messages. So there is a trade-off between the rate of recall and the

number of messages generated per query. But after observing the results, it appears

that hop count matters up to a point but after that it makes no difference in the recall.

We tested the network on a value of 0 to 5 for the hop count. The following are the

results:

 82

Effect of Hop count on Recall

0.00
5.00

10.00
15.00
20.00
25.00
30.00
35.00
40.00
45.00
50.00
55.00
60.00
65.00
70.00
75.00

0 1 2 3 4 5
Hop count

N
um

be
r

of
 M

es
sa

ge
s

0.00

0.10
0.20

0.30
0.40

0.50
0.60

0.70
0.80

0.90

R
ec

al
l

Average Number of Messages 20 Agents Network

40 Agents Network 60 Agents Network

Figure 35: This figure shows the effect on recall due to increment in hop count, tested on
networks of 20, 40, and 60 agents with 30 queries on each, using intelligent algorithm with query
relaxation option

Network Size Recall for 2 Hops Recall for 5 Hops

20 Agents Network 71% 84%

40 Agents Network 70% 81%

60 Agents Network 69% 80%

Table 8: This table shows the increment in recall by increasing the hop count, it has been tested

on intelligent networks for network size of 20, 40, and 60 agents using QUROMIDI with query

relaxation option

Summary: The chart in Figure 35 and the data in Table 8 show that there is a

significant improvement in recall approximately of 10%. But the alarming thing to

note is the number of messages increasing dramatically. The number of messages

increased at the rate of 88% from an average of 8 messages per query on a hop count

of 2 to 70 messages per query on a hop count of 5. It shows that the 10% (on average)

improvement in recall rate by increasing the hop count from 2 to 5 on the cost of 88%

increment in number of messages is not sensible.

 83

Critical Analysis: Larger hop count could be beneficial if the number of agents with

similar expertise is also increased (not just by increasing the network size). The basic

idea of hop count is to set the limit on forwarding the query to other agents as well as

to enable the agents to access other agents in the network which are most likely to

answer the queries, in a controlled way. In our simulation, we have four agents with

similar expertise which are known to each agent. As the network learns and adapts the

dynamic semantic topology it forms semantic clusters of agents sharing similar

expertise instead of those agents which are assigned initially (without considering the

similarity in their expertise) (see section 5.5.3 for details).

Now agents know (after a certain period of learning) the most suitable agents to

forward the queries to and they can access them with the already set hop count limit.

Increment in the hop count limit would really not make any improvement in the recall

rate instead of flooding the network with unnecessary query messages unless the

number of known agents is not increased as well. Because in that case, agents would

need a larger hop count limit to access other agents in the network.

 84

7.Chapter 7

Comparison

This chapter describes the comparison between the two agent paradigms mentioned

briefly in the introduction: software agents who have intelligence in themselves versus

protocol-based agents who are not intelligent themselves but use intelligent protocols

for intelligent behaviour. As we have already discussed software agents in detail in

chapter 2. We now briefly discuss the protocol-based agents. However, for a detailed

description, a reader should refer to the thesis of the other member of this joint

research study [34].

7.1. Protocol-Based Agents

As agent based programming paradigm is evolving, more and more complex agents

are being designed and developed. The need for effective coordination among agents

is also growing. They need to provide support for a wide variety of interaction between

businesses and individuals over the Internet. Flexibility, robustness, and extensibility

are critical issues for multi-agent applications to be reliable in open systems. Agent

communication protocols provide a useful framework for conversation among agents.

These protocols consist of agent definitions and the actions agents are required to do.

(see details in the section below)

Distributed dialogue protocols are based upon the Calculus of Communicating System

(CCS). They ensure that the agents are truly autonomous and there is no centralised

agent involved for coordination among agents. Two languages have been developed

on the basis of distributed dialogue protocols Lightweight Coordination Calculus

(LCC) and Multi Agent Protocols (MAP) [18]. LCC has been used as the protocol

language for this comparison study. We will discuss LCC briefly in the next section.

For details about MAP reader can refer to [19].

 85

7.2. Lightweight Coordination Calculus

Lightweight Coordination Calculus (LCC) is a coordination language between agents

in a multi-agent system. “The most basic behaviours are sending a message and

receiving it, where sending a message may be conditional on satisfying a constraint

and receiving the message may constraints on the agent accepting it” [18].

Agents preserve their autonomy property in LCC as there is no centralized agent

involved between two agents for coordination. Lightweight formal methods have been

used to define LCC as shown below [18]:

 Framework := {Clause,....}

 Clause := Agent :: Def

 Agent := a(Type, Id)

 Def := Agent | Message | M => Agent -> C | M <= Agent | C <- M <= Agent

 Message := M => Agent | M => Agent <- C | M <= Agent | C <- M <= Agent

 C:= Term | C ^ C | C V C

 Type := Term

 Id := Constant

 M := Term

An agent A, is defined by a term A::D, where D describes the messages it is allowed

to send. Different operators can be used to construct D. Constraints associated with

messages should be satisfied before sending or receiving a message named as

proactive and reactive constraints respectively. Complex behaviours can be specified

using the connectives then, or and par which denotes sequence, choice and

parallelization respectively. With the help of constraints on messages, an agent can

interact according to given social norms while maintaining as much as possible of

their autonomy [18].

A simple example of a scenario is modelled in the LCC Language below, it describes

the interactions of two agents, agent A in the role of requester given a medicine

 86

name(M) asks the agent P in the role of pharmist to look up the price of the given

medicine M. If the pharmist knows the price of the medicine M then it will send an

answer message to the requester which contains the price Y of medicine M.

 a(requester(M),A) :: ask (price(M)) => a (pharmist,P) then

 answer (price(Y)) <= a (pharmist,P)

 a(pharmist,P) :: ask (price(X)) <= a (requester(M),A) then

 answer (price(Y)) => a (requester(M),A) <-- knowsPrice (M)

In the above protocol => denotes message sending, <= denotes the message receiving

and <-- defines the constraints.

7.3. Intelligent Agents versus Intelligent Protocols

In this section we discuss the issues which have been compared and a brief discussion

of the system developed in the other part of this joint study to give an idea to the user.

For details a reader should refer to [34]

7.3.1. A Brief Overview of Intelligent Protocol System

 When an agent joins a network, it will send advertisement messages to all of

its connected agents (which is set to 4) in the network. The advertisement

message consists of description of expertise of the sender. In this way, every

agent sends advertisement message to all the agents it knows and receive an

advertisement message from each one of them. Agents use this information

when they forward a query to other agents in determining appropriate agents

for the query.

 First an agent is selected on the basis of closest area identified by the user in

the ACM topic tree. This first agent will receive keywords entered by the user.

This agent will perform a local search its knowledge base and retrieve all the

 87

results (if any), it finds relevant to the search.

 The querying agent will select the best agents based upon the advertisements

of its known agents and forward the query to those agents (intermediate

agents). These intermediate agents perform the same steps and forward the

query to their known agents. This process continues until the hop count

reaches its maximum value which is set to 2.

 The answering agent (the agent which initiates the answer message) also sends

its expertise in the answer message to the querying agent. After receiving the

answer message, the querying agent will store the expertise in its local

knowledge base and use this information when it receives same or similar

query next time to forward the query to appropriate agent.

7.3.2. Recall Comparison

Recall is a standard information retrieval measure. It determines how many

documents have been returned out of all the relevant documents. As we mentioned

earlier that recall is the most important factor to be considered in such decentralised

environments. We have compared the overall recall rates achieved by both of these

approaches to assess their effectiveness in resource recovery. Figure 36 shows the

results:

 88

Recall Comparison

0.00

0.20

0.40

0.60

0.80

1.00

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29

No. of Queries

R
ec

al
l

Intelligent Agents Intelligent Protocols

Figure 36: Recall comparison for Intelligent Agents and Intelligent Protocols. On a network of 20
agents with 30 queries tested.

According to these results, intelligent agents achieve an overall recall rate of 71%

while agents with intelligent protocols achieve an overall recall rate of 64%. So,

intelligent agents perform better than agents with intelligent protocols by having an

overall lead of 7%. The reason why agents with intelligent protocols cannot perform

equal or better than intelligent agents is that they do not store information acquired by

network observation for each relevant query. The root cause for not storing the

observed information is that these protocols have to keep themselves lightweight

because if they store all this information then it would again become a complex task.

There is a performance trade off in being lightweight to support flexibility,

robustness, and extensibility. We will discuss the reasons in detail in the conclusion

chapter (see section 8.2 for details).

 89

8.Chapter 8

Conclusion

This chapter describes the conclusions drawn from the evaluation and comparison

chapters along with some discussion.

8.1. Evaluation Conclusion and Discussion

The principle of self-organisation has been under discussion for a long time as a

paradigm for introducing order into complex decentralised distributed systems.

Specifically, the idea of self-organisation is very appealing for resource critical

applications like agent-based P2P systems [7]. Self-organising systems are able to

dynamically adjust with the changing environment without any external support.

These systems gain performance boost over time in a non-linear fashion, until they

reach a certain threshold point and meets the standard requirements. That is why such

systems are called self-organising. Evaluation results show that QUROMIDI (with

query relaxation and randomness) mimics the same behaviour as of self-organising

systems by improving its resource discovery performance over time. It helped to

justify the hypotheses made in section 6.4:

 The QUROMIDI outperforms the naïve base line algorithm in terms of recall.

 Use of the ACM topic hierarchy as an ontology and semantic similarity

function helps to identify most suitable agents parsimoniously.

 Agents adapt the dynamic topology quickly and adjust accordingly, forming

semantic clusters sharing similar expertise in the network.

 These semantic clusters help to increase the recall and decrease the number of

messages over time.

 Use of net-workers to relax the query can enhance the performance of

QUROMIDI which outperforms the simple QUROMIDI as well.

 Some randomness in agent selection helps to avoid the problem of over fitting.

 90

8.2. Comparison Conclusions and Discussion

Intelligent agents perform better than intelligent protocols by 7% but still it is not

straightforward to say that one paradigm outperforms the other. Each of them has its

own advantages and disadvantages.

Protocol-based agents are good for an environment where features like flexibility,

robustness, and extensibility of interactions are of critical importance (e-commerce or

business to business applications etc.). This paradigm is helpful where one knows

little about the details of agents but there is an overriding need for predictable

interactions.

On the other hand, software agents, which have intelligence in themselves, are

suitable for domain specific problems i.e. scientific or mission/decision critical tasks.

In such domains we know what the environment is, which the interacting bodies are

and how it could change. It is better to have intelligent agents in such domains to gain

maximum performance.

The point of balance between these two paradigms is how much sophistication should

be within the agent and how much should be in communication protocols. Protocol-

based proponents believe that the communication protocols should be sophisticated

because they have to interact across the domains and there are fair chances of

encounter with various types of agents having different properties. If they can

understand a common protocol language they can communicate effectively to achieve

an overall goal using their own internal mechanisms. Their internal mechanisms (i.e.

search etc.) would definitely be different from others but it does not make any

difference from the point of view of interactions as long as goal is being achieved

successfully. The practical trade off of this approach is that to give flexibility,

robustness, and extensibility it has to compromise on performance because to keep

protocols lightweight they cannot overwhelm the protocols with the information to

gain maximum intelligent behaviour.

On the other hand, intelligent agents are considered suitable for task-specific, well

aware domains where critical decision power is needed instead of features like

 91

flexibility, robustness, and extensibility. This approach has to compromise on these

issues to gain the maximum sophisticated behaviour capability. In this case, agents

cannot interact easily with the agents in other domains because knowledge of what

communications mean in the context of interaction is encoded privately.

To conclude, we can say that both of these paradigms have their distinct importance.

The choice must be made carefully according to the domain requirements.

 92

9.Chapter 9

Future Work

This chapter describes the shortcomings and improvements identified and suggested

for this thesis work respectively.

9.1. New Directions

In this thesis report, the design principle has been to dynamically adapt the semantic

topology, based on the experiences learned from successful or semantically similar

queries. Experimental results show that our approach outperforms the basic

approaches of random and exact matched based agent selection. However, there is

still room for improvements which we will discuss in the following sections:

9.1.1. Organisational Model

In our simulation, we have used a simple expertise based model representing a

bibliographic scenario. There are many other possibilities where more complex

organisational models would have to be handled. For example in ecommerce or

business-to-business applications. We have also used a simple similarity based

ranking which could be made more complex to achieve better results by not only

measuring the similarity in expertise but also by measuring how much information an

agent contains about a particular topic.

9.1.2. Search Algorithms

In current system, we did not focus on efficient search mechanism with the

assumption that our user will enter right and precise queries. But the precision could

be enhanced by implementing efficient searching mechanisms in complex domains.

 93

9.1.3. Physical Network Issues

We did not address the issues related to underlying physical network topologies. Our

main focus has been on investigation of semantic topologies. It would be an

interesting idea to explore the results of the deployment of semantic topology

approaches on physical network topologies. Like JXTA platform could be used to test

the results of discovery and semantic query routing, by our approach, in extended

networks.

9.1.4. Field Experiment

The results presented here are simulation based. However, it would also be an

interesting idea to test the model in real environment with larger networks and larger

size of real knowledge.

 94

References

[1] Yu, B., Singh, M.P.: A social mechanism of reputation management in electronic

commerce. In: CIA 2000. (2000) 154–165

[2] How Big Is The Internet? http://metamend.com/internet-growth.html

[3] Koubarakis 2003. MultiAgent Systems and PeertoPeer Computing: Methods,

Systems, and Challenges. Invited Talk in 7th Int. Workshop on Coop. Information

Agents, Finland.

[4] Ding, H., Solvberg, I. T., and Lin, Y. 2004. A Vision on Semantic Retrieval in

P2P Network. In Proceedings of the 18th international Conference on Advanced

information Networking and Applications - Volume 2 (March 29 - 31, 2004). AINA.

IEEE Computer Society, Washington, DC, 177

[5] Despotovic, Z., Aberer, K.: Trust -Aware Delivery of Composite Goods.

International Workshop on Agents and Peer-To-Peer Computing, 2002.

.

[6] Faratin, P., N. R. Jennings, P. Buckle, and C. Sierra. (2000). Autonomated

Negotiation for Provisioning Virtual Private Networks Using FIPA-Complaint agents,

in Proceedings of (PAAM-2000). Manchester, UK, 185 202.

[7] Tempich, C., Staab, S., and Wranik, A. 2004. Remindin': semantic query routing

in peer-to-peer networks based on social metaphors. In Proceedings of the 13th

international Conference on World Wide Web (New York, NY, USA, May 17 - 20,

2004). WWW '04. ACM Press, New York, NY, 640-649. DOI=

http://doi.acm.org/10.1145/988672.988759

[8] Li Y., Bandar Z, and McLean D. An approach for measuring semantic similarity

between words using multiple information sources. IEEE Trans. on Knowledge and

Data Eng., 15(4):871--882, 2003.

 95

[9] Haase, P.; Siebes, R.; and van Harmelen, F. 2004. Peer selection in peer-to-peer

networks with semantic topologies. In International Conference on Semantics of a

Networked World: Semantics for Grid Databases, 2004, Paris.

[10] How to Classify Works Using ACM? Computing Classification System

http://acm.org/class/how_to_use.html

[11] Aha, W. 1998. "Feature weighting for lazy learning algorithms." Feature

Extraction, Construction and Selection: a Data Mining Perspective, edited by H. Liu

and H. Motoda. Norwell, MA: Kluwer.

[12] Aha, D. W. (1997) Editorial, Artificial Intelligence Review, Volume 11, Issue 1 -

5, Feb 1997, Page 7 10.

[13] Panti, M., Penserini, L., and Spalazzi, L. A Multi-Agent System based on the

P2P model to Information Integration.In: Autonomous Agents and Multi-Agent

Systems (AAMAS 2002). (Bologna, Italy. July 16, 2002).

[14] Tom Mitchell. Machine Learning. McGraw Hill, 1996

[15] Resnik, P (1995). Using information content to evaluate semantic similarity in a

taxonomy. , Proceedings of the 14th International Joint Conference on Artificial

Intelligence pp 448-453.

[16] Berners-Lee, T., Hendler, J. and Lassila, O. The semantic Web. Scientific

American (May 2001), 28-37.

[17] Ehrig, M., P. Haase, et al. 2003. "The SWAP Data and Metadata Model for

Semantics-Based Peer-to-Peer Systems." Lecture Notes in Computer Science 2831:

144-155.

[18] Robertson D. 2002 Distributed Agent Dialogues. Edinburgh University.

 96

[19] Walton, C. (2004) Multi-Agent Dialogue Protocols. Proceedings of the 8th

International Symposium on Artificial Intelligence and Mathematics

[20] Steels, L. 1990. Cooperation between distributed agents through selforganization.

In Decentralized A.I., Y. Demazeau and J.-P. Muller

(Eds.), Elsevier Science.

[21] Aberer, K., Cudré-Mauroux, P., Datta, A., Despotovic, Z., Hauswirth, M.,

Punceva, M., and Schmidt, R. 2003. P-Grid: a self-organizing structured P2P system.

SIGMOD Rec. 32, 3 (Sep. 2003), 29-33. DOI=

http://doi.acm.org/10.1145/945721.945729

[22] Lada A. Adamic, Rajan M. Lukose, Amit R. Puniyani, and Bernardo A.

Huberman. Search in power-law networks. Physical Review E, 64(46135), 2001.

[23] Aberer, K., Cudré-Mauroux, P., Datta, A., Despotovic, Z., Hauswirth, M.,

Punceva, M., and Schmidt, R. 2003. P-Grid: a self-organizing structured P2P system.

SIGMOD Rec. 32, 3 (Sep. 2003), 29-33. DOI=

http://doi.acm.org/10.1145/945721.945729

[24] Nejdl, W., Wolf, B., Qu, C., Decker, S., Sintek, M., Naeve, A., Nilsson, M.,

Palmér, M., and Risch, T. 2002. EDUTELLA: a P2P networking infrastructure based

on RDF. In Proceedings of the 11th international Conference on World Wide Web

(Honolulu, Hawaii, USA, May 07 - 11, 2002). WWW '02. ACM Press, New York,

NY, 604-615. DOI= http://doi.acm.org/10.1145/511446.511525.

[25] Ehrig, M., P. Haase, et al. 2003. "The SWAP Data and Metadata Model for

Semantics-Based Peer-to-Peer Systems." Lecture Notes in Computer Science 2831:

144-155.

[26] Nejdl, W., Wolpers, M., Siberski, W., Schmitz, C., Schlosser, M., Brunkhorst, I.,

and Löser, A. 2003. Super-peer-based routing and clustering strategies for RDF-based

peer-to-peer networks. In Proceedings of the 12th international Conference on World

 97

Wide Web (Budapest, Hungary, May 20 - 24, 2003). WWW '03. ACM Press, New

York, NY, 536-543. DOI= http://doi.acm.org/10.1145/775152.775229

[27] Balke, W., Nejdl, W., Siberski, W., and Thaden, U. 2005. Progressive

Distributed Top-k Retrieval in Peer-to-Peer Networks. In Proceedings of the 21st

international Conference on Data Engineering (Icde'05) - Volume 00 (April 05 - 08,

2005). ICDE. IEEE Computer Society, Washington, DC, 174-185. DOI=

http://dx.doi.org/10.1109/ICDE.2005.115

[28] Kautz, H., Selman, B., and Shah, M. 1997. Referral Web: combining social

networks and collaborative filtering. Commun. ACM 40, 3 (Mar. 1997), 63-65. DOI=

http://doi.acm.org/10.1145/245108.245123

[29] Althoff, K. and Aamodt, A. 1996. Relating case-based problem solving and

learning methods to task and domain characteristics: towards an analytic framework.

AI Commun. 9, 3 (Sep. 1996), 109-116.

[30] Krackhardt, D., Krebs, V. Kite Network ideas http://www.orgnet.com/sna.html

[31] Morville, P. Social Network Analysis

 http://semanticstudios.com/publications/semantics/000006.php

[32] Ehrig, M., Schmitz, C., Staab, S., Tane, J., Tempich, C. 2003.: Towards

evaluation of peer-to-peer-based distributed knowledge management systems. In:

Proceedings of the AAAI Spring Symposium “Agent-Mediated Knowledge

Management (AMKM-2003)”.

[33] Association of Computing Machinary http://www.acm.org

[34] Pervez Z. 2005. Semantic Query Routing in agent-based P2P systems using LCC

Protocols. Thesis (MSC). University of Edinburgh

 98

[35] Melville, L., Walkerdine, J., Sommerville, I.: Ensuring dependability of P2P

applications at architectural level. Technical Report IST-2001-32708, Lancaster

University, http://polo.lancs.ac.uk/p2p/Documents/PropertiesDeliverable.pdf (2002)

[36] Barkai, D. 2001 Peer-to-Peer Computing: Technologies for Sharing and

Collaborating on the Net. Intel Press

[37] Yang, B., Garcia-Molina, H. Comparing hybrid peer-to-peer systems. In VLDB,

pages 561–570, 2001.

[38] Androutsellis-Theotokis, S. and Spinellis, D. 2004. A survey of peer-to-peer

content distribution technologies. ACM Comput. Surv. 36, 4 (Dec. 2004), 335-371.

DOI= http://doi.acm.org/10.1145/1041680.1041681.

[39] Stoica, I., Morris, R., Karger, D., Kaashoek, M. F., and Balakrishnan, H. 2001.

Chord: A scalable peer-to-peer lookup service for internet applications. In

Proceedings of the 2001 Conference on Applications, Technologies, Architectures,

and Protocols For Computer Communications (San Diego, California, United States).

SIGCOMM '01. ACM Press, New York, NY, 149-160. DOI=

http://doi.acm.org/10.1145/383059.383071

[40] Ratnasamy, S., Francis, P., Handley, M., Karp, R., and Schenker, S. 2001. A

scalable content-addressable network. In Proceedings of the 2001 Conference on

Applications, Technologies, Architectures, and Protocols For Computer

Communications (San Diego, California, United States). SIGCOMM '01. ACM Press,

New York, NY, 161-172. DOI= http://doi.acm.org/10.1145/383059.383072

[41] Rowstron, A., and Druschel, P. Pastry: Scalable, distributed object location and

routing for large-scale peer-to-peer systems. In Proceedings of the 18th IFIP/ACM

Int'l Conf. on Distributed Systems Platforms (Nov. 2001)

[42] Gedye, D., Kasnoff, C.. SETI@home project.

 99

http://setiathome.ssl.berkeley.edu/project.html.

[43] Napster, I.: Napster. http://www.napster.com

[44] Gnutella: (Development home page) http://gnutella.wego.com/.

[45] Russell, S. J. and Norvig, P. 2003 Artificial Intelligence: A Modern Approach. 2.

Pearson Education.

[46] Yolum P, Singh MP(2002)’’Agent-Based Approach for Trustworthy Service

Location’’.Proceedings of the Workshop on Agents and Peer-to-Peer Computing

(AP2PC 2002) at AAMAS2002, Bolgona, Italy.

