
 

 

 

 

 

 

 

Securing Open Multi-agent Systems Governed by 

Electronic Institutions  

 

 
Shahriar Bijani 

 

 

 

 

 
 

 

 

 

Doctor of Philosophy 

Centre for Intelligent Systems and their Applications 

School of Informatics 

University of Edinburgh 

2013 



 

ii 

 

  



 

iii 

 

Abstract 

One way to build large-scale autonomous systems is to develop an open multi-agent system 

using peer-to-peer architectures in which agents are not pre-engineered to work together and in 

which agents themselves determine the social norms that govern collective behaviour. The social 

norms and the agent interaction models can be described by Electronic Institutions such as those 

expressed in the Lightweight Coordination Calculus (LCC), a compact executable specification 

language based on logic programming and pi-calculus. Open multi-agent systems have 

experienced growing popularity in the multi-agent community and are expected to have many 

applications in the near future as large scale distributed systems become more widespread, e.g. 

in emergency response, electronic commerce and cloud computing. A major practical limitation 

to such systems is security, because the very openness of such systems opens the doors to 

adversaries for exploit existing vulnerabilities.  

This thesis addresses the security of open multi-agent systems governed by electronic 

institutions. First, the main forms of attack on open multi-agent systems are introduced and 

classified in the proposed attack taxonomy. Then, various security techniques from the literature 

are surveyed and analysed. These techniques are categorised as either prevention or detection 

approaches. Appropriate countermeasures to each class of attack are also suggested.  

A fundamental limitation of conventional security mechanisms (e.g. access control and 

encryption) is the inability to prevent information from being propagated. Focusing on 

information leakage in choreography systems using LCC, we then suggest two frameworks to 

detect insecure information flows: conceptual modeling of interaction models and language-

based information flow analysis. A novel security-typed LCC language is proposed to address 

the latter approach.  

Both static (design-time) and dynamic (run-time) security type checking are employed to 

guarantee no information leakage can occur in annotated LCC interaction models. The proposed 

security type system is then formally evaluated by proving its properties. A limitation of both 

conceptual modeling and language-based frameworks is difficulty of formalising realistic 

policies using annotations. 



 

iv 

 

Finally, the proposed security-typed LCC is applied to a cloud computing configuration case 

study, in which virtual machine migration is managed. The secrecy of LCC interaction models 

for virtual machine management is analysed and information leaks are discussed. 

  



 

v 

 

Acknowledgement 

I am especially grateful to my supervisor David Robertson for his insight, supervision, time and 

support throughout my PhD study; even though he has been extremely busy as the Head of the 

School of Informatics. He has shown me qualities beyond that of academic nature, which I 

aspire to. I would like to thank David Aspinall, my second supervisor, for sharing his technical 

virtuosity and his valuable feedback to my work. Thanks to my examiners Michael Rovatsos and 

Maurizio Marchese for their valuable suggestions, especially to Michael for his detailed 

comments, which were really helpful. I would also like to thank my wife, for the constant source 

of unwavering support and her patience throughout the duration of my Ph.D, without her this 

thesis would not have been possible. Finally, thanks to my parents for supporting me spiritually 

throughout my life and nurturing me in the right trajectory.  

 

 

 

  



 

vi 

 

Declarations 

I declare that this thesis was composed by myself, that the work contained herein is my own 

except where explicitly stated otherwise in the text, and that this work has not been submitted for 

any other degree or professional qualification except as specified. Some of the material used in 

this thesis has been published in the following papers: 

• S. Bijani, D. Robertson, D. Aspinall, “Probing Attacks on Multi-agent Systems using 

Electronic Institutions”, AAMAS 2011: Declarative Agent Languages and Technologies 

Workshop (DALT), Taipei, Taiwan, 2-3 May 2011. 

• S. Bijani, D. Robertson, "Intrusion Detection in Open Peer-to-Peer Multi-agent 

Systems", 5th International Conference on Autonomous Infrastructure, Management 

and Security (AIMS 2011), Nancy, France, June 13-17, 2011. 

• S. Bijani, D. Robertson, “A Review of Attacks and Security Approaches in Open Multi-

agent Systems”, Artificial Intelligence Review Journal, pp. 1-30, Springer, May 2012. 

• P. Anderson, S. Bijani, A. Vichos, “Multi-Agent Negotiation of Virtual Machine 

Migration Using the Lightweight Coordination Calculus”, 6th International KES 

Conference on Agents and Multi-agent Systems, Technologies and Applications, KES 

AMSTA 2012, June 2012. 

• P. Anderson, S. Bijani, H. Herry, “Multi-agent Virtual Machine Management Using the 

Lightweight Coordination Calculus”, Transactions on Computational Collective 

Intelligence (TCCI), Springer, 2013. 

 (Shahriar Bijani) 

  



 

vii 

 

Table of Contents 

1. Introduction ................................................................................................................ 12 

1.1 The Problem ............................................................................................................ 13 

1.2 The Proposed Approach ........................................................................................... 14 

1.3 Contributions ........................................................................................................... 15 

1.4 Structure of the Thesis ............................................................................................. 16 

1.5 Summary ................................................................................................................. 17 

2. Background ................................................................................................................. 18 

2.1 Introduction ............................................................................................................ 18 

2.2 Electronic Institutions .............................................................................................. 18 

2.3 Lightweight Coordination Calculus (LCC) .................................................................. 19 

2.4 The OpenKnowledge System ................................................................................... 22 

3. Attacks on MAS ........................................................................................................... 24 

3.1 Introduction ............................................................................................................ 24 

3.2 Attack Taxonomy ..................................................................................................... 25 

3.3 Disclosure ................................................................................................................ 27 

3.4 Modification ............................................................................................................ 30 

3.5 Denial of Service (DoS) ............................................................................................. 32 

3.6 Fake Identity ............................................................................................................ 33 

3.7 Risk Assessment ...................................................................................................... 35 

3.8 Summary ................................................................................................................. 38 

4. A Review of Methods to Secure Open MASs ................................................................ 39 

4.1 Introduction ............................................................................................................ 39 

4.2 Prevention Approach ............................................................................................... 41 

4.2.1 Encryption and Certificates .................................................................................. 41 

4.2.2 Policy-based Methods .......................................................................................... 46 

4.2.3 Secure Agent Development .................................................................................. 51 

4.3 Detection Approach ................................................................................................. 55 

4.3.1 Monitoring ........................................................................................................... 55 



 

viii 

 

4.3.2 Attack Modelling .................................................................................................. 58 

4.4 Conclusions ............................................................................................................. 60 

5. Information Leakage in Agent Interactions .................................................................. 63 

5.1 Introduction ............................................................................................................ 63 

5.2 Security Levels ......................................................................................................... 63 

5.3 Insecure Information Flows ..................................................................................... 64 

5.3.1 Explicit flows ........................................................................................................ 64 

5.3.2 Implicit Flows ....................................................................................................... 66 

5.3.3 Summary ............................................................................................................. 68 

5.4 Solutions.................................................................................................................. 70 

5.4.1 Conceptual Modelling .......................................................................................... 71 

5.4.2 Language-based Information Flow Analysis .......................................................... 79 

5.5 Conclusions ............................................................................................................. 81 

6. Information Flow Analysis in Lightweight Coordination Calculus ................................. 82 

6.1 Introduction ............................................................................................................ 82 

6.2 Security Type System for LCC ................................................................................... 82 

6.2.1 Security Types ...................................................................................................... 83 

6.2.2 Type Inference for LCC ......................................................................................... 84 

6.3 Evaluation of the Type System ................................................................................. 88 

6.4 Dynamic Information Flow Analysis ......................................................................... 93 

6.4.1 Drawbacks of Dynamic Type Checking .................................................................. 99 

6.5 Static Information Flow Analysis ............................................................................ 100 

6.5.1 Drawbacks of Static Type Checking .................................................................... 102 

6.6 Non-interference ................................................................................................... 104 

6.7 Declassification ...................................................................................................... 107 

6.8 Extensions to the Typing Rules ............................................................................... 107 

6.9 Implementation ..................................................................................................... 110 

6.10 Conclusions ........................................................................................................... 112 

7. A Case Study in Cloud Computing .............................................................................. 115 

7.1 Introduction .......................................................................................................... 115 



 

ix 

 

7.2 Autonomous Cloud Configuration Management .................................................... 118 

7.2.1 Live Virtual Machine Management ..................................................................... 118 

7.2.2 Virtual Machine Migration between Datacentres ............................................... 122 

7.3 Information Flow Analysis of Virtual Machine Management .................................. 126 

7.4 Summary ............................................................................................................... 132 

8. Conclusions ............................................................................................................... 133 

8.1 Summary ............................................................................................................... 133 

8.2 Future Work .......................................................................................................... 135 

Bibliography ......................................................................................................................... 138 

Appendix .............................................................................................................................. 151 

 

  



 

x 

 

List of Figures 

Fig.  2-1: LCC language syntax .................................................................................................. 19 

Fig.  2-2: The LCC rewrite rules for  expansion of one clause P in an interaction model. ............ 21 

Fig.  2-3: definition of a trace through an LCC interaction model S. ........................................... 22 

Fig.  2-4: An OpenKnowledge peer architecture ....................................................................... 23 

Fig.  3-1: Taxonomy of potential attacks on open MASs. ........................................................... 26 

Fig.  3-2: An example of an interception attack using an implicit query ..................................... 28 

Fig.  3-3: An interaction model to support specialists meetings ................................................ 29 

Fig.  3-4: A sample interaction model of an ontology attack ..................................................... 30 

Fig.  3-5: An example of a simple interaction model for logical DoS .......................................... 32 

Fig.  3-6: Another example of a simple interaction model for logical DoS ................................. 33 

Fig. 4-1: Chronological order of proposed security approaches to secure MASs.. ...................... 61 

Fig.  5-1: The three steps to information leakage analysis using LCC conceptual modelling. ...... 71 

Fig.  5-2: An example of interaction modelling using the Counterdog tool. ............................... 74 

Fig.  5-3: The Updated LCC rewrite rules for  expansion of one clause ...................................... 77 

Fig.  5-3: Revised definition of a trace through an LCC interaction model ................................. 78 

Fig.  5-4: Three steps of information flow analysis using a security type system........................ 80 

Fig.  6-1: The security typing rules for LCC ................................................................................ 86 

Fig.  6-2: Subtyping rules .......................................................................................................... 87 

Fig.  6-3: Upgrading the LCC interpreter ................................................................................... 94 

Fig.  6-4: The amended LCC rewrite rules, which include security-related information ............. 96 

Fig.  6-5:  A basic security type checking algorithm of typeCkh(X,Δ) .......................................... 98 

Fig.  6-6:  The updated security type checking algorithm of typeCkh(X,Δ) ................................. 98 

Fig.  6-7: Static analysis of an LCC clause by expansion of an LCC clause. ................................ 102 

Fig.  6-8: The control flow stack .............................................................................................. 109 

Fig.  6-9: The user interface of the information flow analysis program for LCC codes .............. 111 

Fig.  6-10: Annotation of an LCC interaction model ................................................................. 112 

Fig. 7-1: Vulnerable information flow in cloud computing ...................................................... 117 

Fig. 7-2: A simple Interaction diagram of a policy ................................................................... 119 

Fig. 7-3: The LCC interaction model of the live virtual machine migration. .............................. 121 

Fig. 7-4: The workflow of offline virtual machine migration .................................................... 123 

Fig. 7-5: The interaction diagram of an LCC interaction model for offline VM migration ......... 124 

Fig. 7-6: One of the LCC clauses of the virtual machine migration between datacentres. ........ 125 

Fig. 7-7: Security label assignment to the LCC terms as annotations of the LCC code .............. 126 

Fig. 7-8: Security label assignment to the LCC terms as annotations of the LCC code .............. 128 

 

  



 

xi 

 

List of Tables 

Table  3-1: A sample DREAD risk assessment for an open MAS. ................................................ 37 

Table  4-1. Examples of encryption and certificate based methods to securing MASs ............... 42 

Table  4-2. Examples of policy-based methods ......................................................................... 48 

Table  4-3. Examples of adding security to agent-oriented software engineering...................... 52 

Table  4-4: Summary of security mechanisms to countermeasure attacks on open MASs ......... 62 

Table  5-1. Permissible and impermissible information flows in sending a message .................. 69 

Table  5-2. Permissible information flows in the LCC role definition ......................................... 69 

Table  5-3. Permissible and impermissible information flows in LCC conditional expressions .... 70 

Table  6-1: Different reaction policy modes in security type checking ....................................... 97 

Table  7-1: An example of the dynamic type checking using Fig. 7-8 annotations .................... 129 

Table  7-2: The static type checking (using Fig. 7-7 annotations) ............................................. 130 

 

  



Chapter 1: Introduction 

12 

 

 

 

Chapter 1 

1. Introduction 

Open Multi-agent Systems (MASs) are experiencing growing popularity in the Multi-agent 

Systems community and are expected to have many applications in the near future, e.g. in 

emergency response, electronic commerce and cloud computing. An open system is a system 

that allows new components, which may have been created by different parties or for different 

objectives, and are not known at design time, to interact at run-time with existing components 

(Poslad and Calisti 2000). An open multi-agent system (MAS) is an open system in which agents 

can join and leave freely (Demazeau and Rocha Costa 1996). We focus on open MASs with 

dynamic interactions, in which electronic institutions (Esteva, et al. 2001) are used to form the 

interaction environment by defining social norms for group behaviour. 

Considering the agents’ interaction model, open MASs can be divided into three types, each 

with different security issues. In the first category it is assumed that agents are completely 

autonomous and that there is no assumption about protocols except that messages are passed 

(maximum autonomy and flexibility). In this case, since neither information is available about 

protocols nor about agents, we cannot ensure the security of interactions beyond assuming that 

agents individually may manage or just rely on the security of lower layers.  

In the second type, there is one fixed protocol (an electronic institution) for agent 

communication. This is closer to traditional security models than the first type and is more likely 

to be standardised by means of conventional security mechanisms and reasoning about protocol 

security properties but is too rigid for many applications of knowledge sharing in MASs, e.g. in 

emergency response  and distributed healthcare protocols. This is because of the necessity of 

global semantic agreement between agents. 



Chapter 1: Introduction 

13 

 

The third class of MASs utilises multiple protocols for different applications so that agents 

may play roles in various electronic institutions. In the most general case, agents may invent the 

protocols themselves and share them with others or use other (unknown) agents’ protocols; e.g. 

the OpenKnowledge system (Robertson, Giunchiglia, et al. 2008). If the first and second types 

are assumed as two extremes, the third type will be a solution somewhere in the middle that is 

quite flexible. We refer to this type as open MAS governed by electronic institutions or open 

MAS with dynamic interactions. In this thesis, henceforth, the notion of open MAS is taken to 

stand for open MAS governed by electronic institutions.  

This thesis investigates security issues in these open MASs and proposes a security analysis 

framework for open MASs with dynamic interactions. The reminder of this chapter introduces 

the problem, lists the contributions of this work and describes the overall structure of the thesis. 

 

1.1 The Problem 

Security is a major practical limitation to the advancement of open MAS. Although openness in 

open MASs makes them attractive for different new applications, new problems emerge, among 

which security is a key issue. The more these systems are used in the real world, the more the 

importance of their security requirements will be obvious to users and system designers. 

Unfortunately there remain many potential gaps in the security of open MASs and little research 

has been done in this area, leaving systems vulnerable.  

A MAS could be defined as a subcategory of a software system, a high level application on 

top of the OSI1 networking model; therefore the security of MASs is not a completely different 

and new concept; it is a sub-category of computing security. However, some traditional security 

mechanisms resist use in MAS directly, because of the social nature of MASs and the 

consequent special security needs (Robles 2008). In open MASs the autonomy, openness and 

independence of agents from human users brings about new threats, undetectable using 

traditional security mechanisms that consider the lower network layers. Open MASs are 

particularly difficult to protect, because we can provide only minimum guarantees about the 

identity and behaviour of agents.  

                                                           
1 Open Systems Interconnection 



Chapter 1: Introduction 

14 

 

Moreover, many traditional security solutions may not be completely appropriate for open 

MAS without further adaptations. Conventional security mechanisms such as access control and 

encryption do not provide end-to-end security for agents’ interactions and are at best a small 

(though necessary) part of the solution.  

Confidentiality is one of the main features of a secure system that is challenging (to be 

assured) in open MAS. Open MASs are convenient platforms to share knowledge and 

information, however usually there exists some sensitive information that we want to protect. 

The openness of these systems increases the potential for unintentional leaking of sensitive 

information. Thus, it is crucial to have mechanisms that guarantee confidentiality and to assure 

that the publicly accessible information during the interactions is what we deliberately want to 

share. 

Cloud Computing is an emerging application of open MAS that is a common target for 

confidentiality attacks. Clouds raise new privacy and confidentiality concerns as data are usually 

managed by external parties on remote data centres and various services have access to them. 

These concerns grows in new cloud computing paradigms such as hybrid and community clouds, 

which enlarge their capabilities through engaging different parties through employing non-

centralised approaches and peer-to-peer technologies. Information leakage in cloud computing is 

a vulnerability that may cause serious privacy issues. 

The following section provides a brief introduction to the proposed approach. 

 

1.2 The Proposed Approach 

We have completed a programme of research that addresses security of open MASs governed by 

electronic institution by analysing potential attacks against such systems, reviewing possible 

security countermeasures and proposing a formal framework for deploying end-to-end security 

policies. The proposed security framework of this thesis is aimed primarily at addressing the 

information leakage problem by analysing information flows in agents’ interactions. Secure 

information flow is an end-to-end security policy, where not only access to information is 

restricted, but also the use of information. We have also investigated this issue in a cloud 

configuration management example used as a case study. 



Chapter 1: Introduction 

15 

 

We use the OpenKnowledge architecture (Dupplaw, Kotoulas and Siebes 2007) as a portable 

platform of electronic institutions, whenever our security analysis depends on the infrastructure. 

To illustrate agents’ interactions, we use the Lightweight Coordination Calculus (LCC), a 

suitable language to implement social norms. Our security analysis focus is on general aspects of 

the OpenKnowledge system and the LCC language (as much as possible), so it is inclusive 

enough to be generalised to other open MASs governed by electronic institutions. 

 

1.3 Contributions 

The main contribution of this thesis is proposing a formal framework for analysing information 

flow in open MASs governed by electronic institutions through proposing the security-typed 

LCC language. This framework provides end-to-end confidentiality in open MASs according to 

the defined security policy; i.e. an open MAS prevents information leaks through the agents’ 

interactions by employing security-typed LCC. Confidentiality is guaranteed by proofing 

security properties of the security-typed LCC language.  

Other contributions of this thesis are as follows: 

• Categorising potential attacks against open MASs governed by electronic 

institutions and presenting a three-layer taxonomy of attacks, which helps 

understand the implications of attacks and the potential defence mechanisms against 

them. 

• Reviewing security countermeasures to the attacks and classifying security solutions 

that follow detection and prevention approaches.  

• Proposing a framework for information leakage analysis using the conceptual 

modeling approach, in which LCC interaction models are converted into another 

formalisation, and then an existing tool analyses the new formalism to find 

information leaks.  

• Implementing a prototypical LCC interpreter that employs dynamic information 

flow analysis to protect confidential information at run-time. This demonstrates that 

the proposed framework is feasible and can be automated. 



Chapter 1: Introduction 

16 

 

• Evaluation of the proposed security-typed LCC by proofing progress and 

preservation of the security type system. This guarantees type safety in the security 

typed LCC. 

• Formal definition of non-interference for the security-typed LCC. Non-interference 

is a popular information flow property, which enforces all executions of an 

interaction model look identical to an observer (adversary) and guarantees absence 

of any information flow between secret and public systems activities in well-typed 

LCC interaction models.  

• Applying the language-based security framework to cloud management scenarios 

for information flow analysis in a cloud computing case study. Insecure information 

flows in two scenarios of virtual machine migration management using the LCC 

interaction models are analysed. 

 

1.4 Structure of the Thesis 

This thesis is organised as follows:  

Chapter 2 provides the background needed to obtain a better understanding of the 

discussions and techniques presented in the next chapters. It introduces the OpenKnowledge 

system and the LCC language. 

Chapter 3 explores potential attacks against open MASs and defines a taxonomy of attacks. 

It also applies a risk assessment technique on these attacks, in order to facilitate prioritising 

response or preventive measures against them. This chapter is based on the work published in 

(Bijani and Robertson 2012) and (Bijani, Robertson and Aspinall 2011). 

Chapter 4 surveys and analyses various techniques to secure open MASs and suggests 

appropriate prevention and detection techniques for the attacks introduced in Chapter 3. This 

chapter is mainly based on the work published in (Bijani and Robertson 2012) . 

Chapter 5 addresses the information leakage problem in open MAS and develops two 

secrecy analysis frameworks for LCC interaction models: conceptual modeling and language-

based information flow analysis. This chapter is partially based on the work published in (Bijani, 

Robertson and Aspinall 2011) 



Chapter 1: Introduction 

17 

 

Chapter 6 develops a novel security type system for the LCC language as a language-based 

information flow analysis technique. This security-typed LCC avoids the information leaks 

problem by static or dynamic security checking. Several properties of this security type system 

are proven and some extensions to the proposed technique are discussed. 

Chapter 7 investigates information leakage analysis in an application of open MAS in cloud 

computing using the security framework proposed in Chapter 6. Some of this chapter’s material 

has been published in the following papers:  (Anderson, Bijani and Vichos 2012) and (Anderson, 

Bijani and Herry 2013). 

Chapter 8 finally, concludes this thesis by providing a summary of the contributions and 

discussing some future directions for research. 

 

1.5 Summary 

This chapter has introduced this thesis by presenting the problem, briefly describing the overall 

approach, listing the contributions and outlining the structure of the thesis. The next chapter 

provides a short introduction to the OpenKnowledge framework and describes the LCC 

language used throughout this thesis. 



Chapter 2: Background 

18 

 

 

 

Chapter 2 

2. Background 

 

2.1 Introduction 

This chapter provides the background needed to obtain a better understanding of the discussions 

and techniques presented in the next chapters. It briefly introduces the LCC language and the 

OpenKnowledge system. 

 

2.2 Electronic Institutions 

An electronic institution (Esteva, et al. 2001) is an organisation model for multi-agent systems 

that provides a framework to describe, specify and deploy agent interaction environments 

(Joseph, et al. 2006). It is a formalism which defines agents’ interaction rules and their permitted 

and prohibited actions. Lightweight Coordination Calculus, LCC (Robertson 2005), is a 

declarative language to execute electronic institutions in a peer to peer style. In LCC, electronic 

institutions are called interaction models. While electronic institutions can be used to implement 

security requirements of a multi-agent system, they also can be turned against agents to breach 

their security in a variety of ways, as this chapter shows.  In this thesis, the terms electronic 

institutions and interaction models are used interchangeably. 

 



Chapter 2: Background 

19 

 

2.3 Lightweight Coordination Calculus (LCC) 

In our security analysis, Lightweight Coordination Calculus (LCC) is used to implement 

interaction models and formulate attacks. LCC is a compact executable specification language 

used to describe the notion of social norms and is based on logic programming.  

An interaction model in LCC is defined as a set of clauses, each of which specifies a role 

and its process of execution and message passing. The LCC syntax is shown in Fig.  2-1. 

Interaction Model := {Clause,...} 

Clause := Role::Def 

Role := a(Type, Id) 

Def := Role | Message | Def then Def | Def or Def | null<- C | Role <- C 

Message := M => Role  |  M => Role <- C  |  M <= Role  | C <- M <= Role  

C:= Constant | P(Term,...) | ¬ C | C ∧ C | C ∨ C 

Type := Term 

Id := Constant | Variable 

M:= Term 

Term:= Constant | Variable | P(Term,...) 

Constant:= lower case character sequence or number 

Variable := upper case character sequence or number 

Fig.     2-1: LCC language syntax; principal operators are: messages (and), conditional 

(<-), sequence (then) and committed choice (or)   

Each role definition specifies all of the information needed to perform that role. The 

definition of a role starts with: a(roleName,PeerID). The principal operators are outgoing 

message (=>), incoming message (<=), conditional (<-), sequence (then) and committed choice 

(or). Constants start with lower case characters and variables (which are local to a clause) start 

with upper case characters. LCC terms are similar to Prolog terms, including support for list 

expressions. Matching of input/output messages is achieved by structure matching, as in Prolog.  

The right-hand side of a conditional statement is a constraint. Constraints provide the 

interface between the IM and the internal state of the agent. These would typically be 



Chapter 2: Background 

20 

 

implemented as a Java component which may be private to the peer, or a shared component 

registered with a discovery service. 

Role definitions in LCC can be recursive and the language supports structured terms in 

addition to variables and constants so that, although its syntax is simple, it can represent 

sophisticated interactions.  Notice also that role definitions are “stand alone” in the sense that 

each role definition specifies all the information needed to complete that role.  This means that 

definitions for roles can be distributed across a network of computers and (assuming the LCC 

definition is well engineered) will synchronise through message passing while otherwise 

operating independently.  

Robertson (2005) defined the following clause expansion mechanism for agents to unpack 

any LCC interaction model they receive and suggested applying rewrite rules to expand the 

interaction state: 

�� 	��,	���	,
,���







� ����, … , ���� 	���	,	��,
,���








� �� 

where Cn is an expansion of the original LCC clause Ci in terms of the interaction model P and 

in response to the set of received messages Mi, On is an output message set, Mn is a remaining 

unprocessed set of messages. 

 The rewrite rules allow an agent to conform to the interaction model by unpacking clauses, 

finding the next step and updating the interaction state. The rewrite rules are defined in the LCC 

interpreter, which should be installed on each agent running LCC codes. For more information 

about the LCC expansion algorithm see (Robertson 2005) and (Robertson, Barker, et al. 2009). 

The LCC rewrite rules are in the form of � ��,	��,�,��





� �, where Y is the expansion of X, Mi is 

the initial set of messages, O is the output message set, and Mo is the subset of Mi, which is not 

yet processed and S is the interaction model. As the result of the thirteen rewrite rules in 

Fig.  2-2, one clause of an interaction model is expanded. The first rule starts unpacking a clause 

by expanding the body of it (B) and the rules (2) to (13) expand different parts of the clause 

body. c(X) is the notion of closing an LCC term X and based on the closed rules (10) to (19), an 

LCC term X is decided to be closed. 

  



Chapter 2: Background 

21 

 

���, �� ∷  	 !�,�� ,	��,
,�		�







� ���, �� ∷ "																																	#$		 	 !�,�� ,	��,
,�		�







� "	    (1) 

%�	&'	%( !� ,��,	��,
,�		�







� "																																																									#$	¬*+&,-.�%(� 	∧ 		%� !�,��,	��,
,�		�







�" (2) 

%�	&'	%( !� ,��,	��,
,�		�







� "																																																								#$	¬*+&,-.�%�� 	∧ 	%( !�,��,	��,
,�		�







� " (3) 

%�	0ℎ-2	%( !�,��,	��,
,�		�







� 	"	0ℎ-2	%(																																		#$	%� !�,�� ,	��,
,�		�







� "   (4) 

%�	0ℎ-2	%( !�,��,	��,
,�		�







� %�	0ℎ-2	"																																			#$	*+&,-.�%�� 	∧ 	%( !�,�� ,	��,
,�		�







� "  (5) 

%�	3�'	%( !� ,��,	��,
,�	∪�5	�











�"�	3�'	"(																															#$	%� !�,��,	�� ,
,�	 		�








�"� 	∧ 	%( !� ,�� ,	��,
,�5 		�








�"( (6) 

� ← 7 ⇐ % !� ,�� ,	���9�⇐:;,
,∅		�













� *�� ← 7 ⇐ %�	  #$	�7 ⇐ %� ∈ 7� ∧ ,�0#,$>���  (7) 

7 ⇐ % !�,�� ,	���9�⇐:;,
,∅		�













� *�7 ⇐ %�																															#$	�7 ⇐ %� ∈ 7�		   (8) 

7 ⇒ % ← �	 !�,��,	��,
,9�⇒:;�











� *�7 ⇒ % ← ��																	#$	,�0#,$#-.���     (9) 

7 ⇒ %	 !�,��,	��,
,9�⇒:;�











� *�7 ⇒ %	�					       (10) 

2@++ ← �	 !�,�� ,	��,
,∅,�







� 	*�2@++ ← ��																																			#$	,�0#,$#-.���	   (11) 

���, �� ← � !�,�� ,	��,
,∅		�







����, �� ∷  	  #$	*+�@,-�A, ���, �� ∷  � ∧ ,�0#,$#-.���	 (12) 

���, �� !�,��,	��,
,∅		�







� ���, �� ∷  				    #$	*+�@,-�A, ���, �� ∷  �	   (13) 

 

*+&,-.B*���C          (14) *+&,-.�$�+,-�          (15) *+&,-.�%	&'	 � ← *+&,-.�%�	∨ 	*+&,-.� �       (16) *+&,-.�%	3�'	 � ← *+&,-.�%� 	∧ 	*+&,-.� �      (17) *+&,-.�%	0ℎ-2	 � ← *+&,-.�%� 	∧ 	*+&,-.� �      (18) *+&,-.�� ∷  � ← *+&,-.� �        (19) 

 ,�0#,$#-.�¬��� ← ¬,�0#,$#-.����       (20) ,�0#,$#-.��� ∨ �(� ← ,�0#,$#-.���� 	∨ 	,�0#,$#-.��(�     (21) ,�0#,$#-.��� ∧ �(� ← ,�0#,$#-.���� 	∧ 	,�0#,$#-.��(�     (22) ,�0#,$>�¬��� ← ¬,�0#,$>����        (23) ,�0#,$>��� ∨ �(� ← ,�0#,$>���� 	∨ 	,�0#,$>��(�      (24) ,�0#,$>��� ∧ �(� ← ,�0#,$>���� 	∧ 	,�0#,$>��(�      (25) 

 

Fig.     2-2: The LCC rewrite rules for  expansion of one clause P in an interaction model. 

 



Chapter 2: Background 

22 

 

In the rewriting rules (Fig.  6-4), ,�0#,$>��� is true if the agent’s state of knowledge can be made 

such that C is satisfied and ,�0#,$#-.��� is true if C can be solved from the agent’s current state of 

knowledge. Whenever the condition of each rule is not fulfilled, it returns false; e.g. in the rule 8, 

if no message is received, 7 ⇐ % !�,��,	�� ,
,∅		�







� $�+,-. Similarly in the rule 9, if the condition 

,�0#,$#-.��� is false, then 7 ⇒ % ← �	 !�,�� ,	��,
,∅�






� $�+,-.  

In (Robertson, Barker, et al. 2009) the behaviour of agents coordinated through LCC 

definitions is defined in terms of traces produced via application of rewrites to LCC clauses. 

Here, S is the state of an interaction, Mi is the initial set of messages, p is a unique identifier 

for a peer. i(S, Mi, Sf) is true when the sequence of interactions and an initial set of messages Mi 

change the initial state of the interaction model S and security environment ∆ to the state Sf and 

the security environment ∆′. E ⊇G EH (26) selects a clause Sp from the interaction state S. EH ∪G E 

merges specific clause Sp to S and generates a new interaction state S′. 

#BE,7� , EIC 	↔ 	 BE = EIC 	∨
L
MMN
E ⊇G EH 																				∧EH ��,	�� ,�,��




�EOH 						∧EH ∪G E = EO 													 ∧	#BEO,7P, EIC												 Q

RRS    (26) 

E ⊇G EH 	↔ 	∃	�,  . �EH ∈ E				 ∧ 			EH = ���, �� ∷  �	         (27) 

 Fig.     2-3: definition of a trace through an LCC interaction model S.  

 

 

2.4 The OpenKnowledge System 

As part of our security analysis, we have studied security of the OpenKnowledge (OK) system 

as a portable engineering style of electronic institutions. OpenKnowledge can also be considered 

as a multi-agent system in which agents can interact without any prior agreements or knowledge 

of other agents or interactions. OK, which has a strong peer-to- peer capability, is a knowledge 

sharing method based on sharing knowledge in the context of the interactions, in which the 

knowledge plays a role. OK interprets transmitting knowledge between peers in a similar way to 

electronic institutions in multi-agent systems (Robertson, Giunchiglia, et al. 2008). Agents must 

have the OK kernel to be a member of the OK system. 



Chapter 2: Background 

23 

 

 

Fig.     2-4: An OpenKnowledge peer architecture 

 

The OK kernel, which is shared amongst autonomous peers (agents), is responsible for 

interpreting and executing the specifications of interactions. It includes an interpreter, a 

coordination unit (which is only active in coordinator peers) and some service modules 

(Fig.  2-4). Two basic modules of the OK system are interaction model (IM) and OK component 

(OKC). IM is a formal specification of roles and interactions between them and OKCs 

implement roles and contain methods to solve the IM's constrains. The interpreter interprets and 

executes the IM and when it reaches a constraint, it uses the assigned OKC to fulfil it. A 

coordinator is a randomly selected peer who coordinates all the interacting peers, allocates the 

roles to the peers and simulates all message passing locally within the current interaction to find 

and assign the appropriate OKCs. OK also has a main service called Discovery and Team 

Formation (DTS), and two optional services: Trust and Reputation service (a symmetric 

reputation system which determines trustfulness of the OKCs and peers) and Mapping Service 

(ontology mapping for the IMs and OKCs). The main responsibilities of the DTS are the 

following (Dupplaw, Kotoulas and Siebes 2007): publishes, discovers, retrieves and stores IMs 

and OKCs, subscribes peer roles when the peers request, selects and initiates the coordinator 

peer. 

OK components provide a way to extend an interaction’s functionality to include more 

sophisticated tasks. The use of components is integrated in the LCC interaction models in the 

form of constraints. This makes LCC a powerful and flexible tool to implement many 

applications and to integrate easily with existing systems.  

Interpreter 

Uses 

Interaction Model 

 Co ordinates 

 

Coordinator  

OK Components 

Role 

Constraint 

Solver 

 

Mapping Service 

Trust Service 

Discovery Service 

The OK Kernel 



Chapter 3: Attacks on MAS 

24 

 

 

 

Chapter 3 

3. Attacks on MAS 

 

3.1 Introduction 

This chapter introduces and classifies important attacks on open MASs governed by electronic 

institutions. In our investigation, the attacker model, which describes the attacker’s capabilities, 

is built on the assumption that the interpreter of the interaction models and the machines that run 

them are trusted. The attacker model also does not include attacks against the physical machine, 

where the agent run on. The adversary may perform an attack by creating or publishing a 

malicious interaction model. 

Studying all possible attacks on such systems is too broad an area, so the scope of the topic 

needs to be limited. In this study, we do not emphasise dealing security issues that are specific to 

the mobility of mobile agents i.e. attacks from hosts on agents and vice versa. We assume that 

the interface between the agent platform and the agent is secure to focus on attacks by agents on 

other agents rather than on the infrastructure. Moreover, we assume that some confidential and 

important information exists in the open MAS, in order for some attacks to be worthwhile.  

In this chapter, we first introduce an attack taxonomy, then discuss each attack, next propose 

a risk analysis of the attacks and finally summarise this chapter. The LCC language is used to 

formulate attacks in this study. 

 



Chapter 3: Attacks on MAS 

25 

 

3.2 Attack Taxonomy 

As a part of our security analysis, we categorised various attacks on open MAS. Attack or 

vulnerability taxonomies are designed for different purposes (Igure and Williams 2008): 1) to 

develop automated tools for performing security assessment, 2) to provide a way to explore 

unknown attacks and 3) to understand the attacks’ implications and the defence mechanism 

against them. The latter is the main goal of our attack classification, which is valuable for the 

prevention, detection and response to potential attacks.  

Attacks on (open) MASs can be categorised in different ways, however we suggest a three-

layer taxonomy as illustrated in Fig.  3-1. The first level of our classification is based on 

violations against the four main security properties i.e. confidentiality, integrity, availability and 

accountability. In the second level we categorise attacks based on the novelty of the technique 

used to run an attack, namely, traditional and modern attack techniques. The third level of attack 

classification is grounded on the attack target, which could be sender agents, recipient agents and 

transferred information.  

Some dimensions to attack classification might be to some extent fuzzy, for example, in the 

second level, some modern methods could be categorised as traditional. However it does not 

affect our classification objective. We do not intend to have mutually exclusive attack classes, so 

there might be some attacks that could be categorised in more than one class. This taxonomy 

might be tailored for each open MAS with regards to its implementation and application. 

The four classes in the first level of taxonomy are: 1) disclosure attack, 2) modification 

attack, 3) denial of service attack and 4) fake identity attack. We describe the main forms of 

attack introduced in the taxonomy in the following sub-sections. 

 

  



Chapter 3: Attacks on MAS 

26 

 

 

Fig.     3-1: Taxonomy of potential attacks on open MASs. The first level corresponds to 

confidentiality, integrity, availability and accountability respectively. The second level 

represent the traditional (the top box) and the modern (the bottom box) techniques in 

the attacks. The third level is grounded on the attack target: sender agents, recipient 

agents and transferred information. 



Chapter 3: Attacks on MAS 

27 

 

 

3.3 Disclosure 

Although open MASs are usually open to all, this does not mean that there is no confidential 

information in which malevolent people are interested. In the disclosure attack, the attacker tries 

to access confidential information. These attacks are of two types: Firstly, conventional read 

attacks similar to those in the traditional computer security literature. Based on the attacker 

target we have various read attacks:  

(a) Interception: unauthorised access to confidential interaction information; e.g. exploiting 

information leakage in message passing in agents interactions (Fig.  3-2), which is 

described below. 

(b) Unauthorised access to agent: the agent’s information (including its state and code) and 

the agent’s local knowledge could be disclosed to an adversary. In mobile agent systems 

there are threats from the host like reverse engineering and theft of mobile agent 

information (Bierman and Cloete 2002). 

(c) Provenance attack: attack on provenance information of agents and their 

communications. An example of attack on provenance information is when agent A 

sends message M1 to receiver B in an open interaction, maybe A, B and M1 were not 

private to a malicious agent, who is monitoring the interaction, but probably the history 

of the sent messages from A or the agents' names who has interacted with A would be 

confidential information. Disclosure of a mobile agents’ itinerary information to an 

adversary is another example of threat against open MAS. 

 

Fig.  3-2 shows an example of information disclosure in a simple proteomics lab interaction 

model. This is a modified version of the DNA sequencing interaction model (Abian, et al. 2008) 

in the OpenKowledge project and it is used for knowledge sharing between researchers and 

proteomics labs. In this scenario a query is passed on to each laboratory in a list of proteomics 

labs and the results are sent back to the researcher to be analysed. It could be a case that 

proteomics labs may not wish to share all information related to DNA sequencing with 

researchers. An adversary could share the interaction model, in which he/she (in the role of 



Chapter 3: Attacks on MAS 

28 

 

researcher) could ask an implicit query from a proteomics lab agent (omicslab) to access 

commercially important information.   

 

1. a(researcher(LabList), R) :: 

2.  ( ask(X)=>a(omicslab, H) <-  LabList=[H|T]  then 

3.    tell(Y)<= a(omicslab,H) then 

4.    null <- processResult(X,Y,H) 

5.    then a( researcher(T), R) 

6.  ) or 

7.  null <- LabList = [] 

 

8. a(omicslab, O) :: 

9.   ask(X)<= a(researcher,R)then 

10.   tell(Y)=> a(researcher,R)<- Combine(X,Y) 

11.   then a(omicslab, O) 

 

Fig.     3-2: An example of an interception attack using an implicit query, in which a 

malicious researcher could access confidential information of proteomics lab agents. 

An implicit query Combine(X,Y) is asked as a constraint in the omicslab clause (line 

10), receiving the tell(Y) message by the researcher agent informs it that the 

constraint holds. 

 

An implicit query could be asked by placing a query as a constraint in LCC, rather than 

sending a message. In other words, an adversary could not only infer information directly from a 

received message, but also from analysing the constraints in an interaction model. An example 

of confidential information in proteomics lab could be the combination (binding potential) of 

two publicly known proteins that activate a particular gene. In Fig.  3-2, the relation between two 

pieces of public information is confidential; i.e. X and Y are not confidential but a malicious 

researcher, R, could recognise whether proteins X and Y could combine by putting a 

combine(X,Y) constraint in line 10. When O sends the non-confidential tell(Y) message to R it 

will implicitly inform R that X and Y could combine together because R knows that combine(X, 

Y) had to be satisfied before the tell(Y) message could be sent. 

Another example of an unauthorised access to confidential information is illustrated in 

Fig.  3-3. This is a modified fragment of an interaction model in the MIAKT project (Hu, et al. 



Chapter 3: Attacks on MAS 

29 

 

2009), which aims to support multidisciplinary meetings for the diagnosis and management of 

breast cancers. The dataHandler retrieves a patient’s private data based on a request submitted 

by an authorised domain specialist (line 3) and sends it to the specialist. The specialist 

then forwards this information to a nurse, who is not authorised to access the information, 

without any permission check (line 5). 

1. a(dataHandler,H) :: 

2.   credentials(SID,Pass,PID) <= a(specialist,E)   then 

3.   authorised => a(specialist,E) <- is_authorised(E,SID,Pass,PID) then 

4.   request_patient_record(Patient) <= a(specialist,E)   then 

5.   inform(Patient,Record) => a(specialist,E) <-  

6.                     get_patient_record(Patient,ID, Record) then 

7.   ... 

8. a(specialist,E) :: 

9.   credentials(SID,Pass,PID) => a(dataHandler,H)   then 

10.   authorised <= a(dataHandler,H) then 

11.   request_patient_record(Patient) => a(dataHandler,H) then 

12.   process(Record) <- inform(Patient,Record) <= a(dataHandler,H) then ... 

13.   request_patient_record(Patient) <=  a(nurse, N) then  

14.   inform(Patient,Record) => a(nurse, N)  ... 

Fig.     3-3: An interaction model to support specialists meetings for the diagnosis and 

management of breast cancer. The confidential patient’s Record is propagated to an 

unauthorised nurse agent by a specialist agent (line 14).  

 

Secondly, probing attacks, in which an adversary accesses confidential information by 

analysing the results of the sent queries. Whether the attacker target is an ontology of a MAS or 

not, we can classify the probing attack into two types:  (a) ontology attack and (b) active probing 

attack. 

Use of ontologies in MASs is currently popular especially in knowledge-intensive 

applications. In an ontology attack, the attacker accesses the whole ontology by sending many 

queries to a semi-open ontology-based system. In the latter attack, it is assumed that the whole 

ontology is confidential but it is also open to questions about small parts of itself. The attacker 

may find the entire information and relations by asking intelligent and complementary queries 

based on its knowledge of the semantics of the ontology representation language being used by 

the attacked agent (Fig.  3-4). 



Chapter 3: Attacks on MAS 

30 

 

a(ontologyAttacker(S, Os, Of), A) :: 

( ask(subclasses(C)) => a(ontologyService, O) <- S = [C|Sr] then 

tell(subclasses(C,Sc)) <= a(ontologyService, B) then 

a(ontologyAttacker(Sn,On,Of),A) <-  

merge(Sr, Sc, Sn)and merge(Os, Sc, On) 

or 

null <- S = [] and Of = Os 

 

a(ontologyService, B) :: 

ask(subclasses(C)) <= a(ontologyAttacker(_,_,_), A) then  

tell(subclasses(C,Sc)) => a(ontologyAttacker(_,_,_), A) <- 

known_subclasses(C, Sc) then  

a(ontologyService, B) 

Fig.     3-4: A sample interaction model of an ontology attack: an attacker A starts from 

the ontology root (S) and rebuilds the ontology (Of) by asking for subclasses of each 

node from the ontology service B. Initially S = Os = the ontology root. The merge 

function merges the two first arguments and into the third argument. Finally, the 

copied ontology Os will save into Of. 

 

Another type of probing attack is active probing attack, in which an adversary accesses the 

private local knowledge (e.g. decision rules and policies) of the victim agent. The active probing 

happens by injection of some facts into the agent’s knowledge-base, asking queries before and 

after the injection and analysing results. We described an example attack on an LCC interaction 

model in (Bijani, Robertson and Aspinall 2011). 

 

 

3.4 Modification 

This class of attack is against the integrity of the system. An integrated system guarantees that 

information has not been tampered with during handling (Mitchell 2003). A modification attack 

on an open MAS happens when a malevolent agent modifies a piece of information in the 



Chapter 3: Attacks on MAS 

31 

 

system. Based on the novelty of the attack technique, the modification attack on open MASs 

could be classified as an altering and injection attack.  

We classified altering attacks based on the attack target, which could be the interaction, the 

agent itself, or the agent’s log files, into: (a) modification of the agents’ interactions by altering 

the transferring information (e.g. messages), (b) altering the agent code (e.g. interaction model), 

data and configuration and (c) altering the event logging system of a MAS. A malicious agent 

can exploit general vulnerabilities like buffer overflow to perform the attack. In buffer overflow 

attacks, an adversary tries to corrupt the execution stack of the agent code in order to take over 

the agent controller and to run arbitrary code. 

An example of an interaction modification attack is similar to the one in peer to peer 

systems called the colluded truncation attack (Yue, et al. 2009) in which two or more malicious 

agents, who surround a sender agent, collude to modify a sent message. Silei et al. (2008) 

explained the same idea in an attack from a host to mobile agent’s code. Modification attacks are 

usually dependent upon intruding on low level network communication layers.  

Another type of modification attack is the injection attack, which is similar to active probing 

attack. The objective of the adversary in injection attack is twofold: to infuse forged information 

into MAS and to inject some facts into the system to be able to infer confidential information. 

Injection attack is classified into message injection and knowledge injection. In the message 

injection attack, an adversary injects fake messages or malicious interaction models into an open 

MAS to change or control the interaction between agents while in knowledge injection untruthful 

facts are added into an agent’s knowledge base to affect the agent decisions (Bijani, Robertson 

and Aspinall 2011).  

There also could be an active probing attack on an open MAS that use ontology merging, 

e.g. an intelligent adversary can build a well-designed ontology and add (inject) it to a 

confidential ontology during the ontology merging procedure. As a result of merging, a new 

ontology emerges that may leak confidential information. This is because the adversary knows 

some parts of the new ontology, so he/she can access confidential parts of it by sending carefully 

crafted queries.  

 



Chapter 3: Attacks on MAS 

32 

 

3.5 Denial of Service (DoS) 

In a denial of service attack on MASs the attacker attempts to prevent the system to provide the 

intended services to its legitimate users. The goal of DoS may be wasting other agents' resources, 

delaying the service, making real users forsake the system or ruining the system’s reputation. A 

malicious agent may attack just one agent or a group of agents. When more than one attacker 

collaborates in a DoS attack, this is called a distributed denial of service (DDoS). As in 

computer networks (but here, with a different meaning) a DoS attack can be divided into two 

types (Traynor, McDaniel and Porta 2008): flooding and logical attacks. 

Flooding DoS happens when too many messages are sent to one or more agents to 

overwhelm the victim agent or the connection to an agent by consuming the agent or network 

resources (e.g.: the agent's message buffer or the communication bandwidth).  

a (attacker(PeerList), A) :: 

       null <- PeerList = [] 

  or ( 

         m(PeerList) =>  a(zombie,Z) <-PeerList=[H|T]  

          then  a(attacker(T), A)   

     ) 

a(zombie, Z):: 

       m(PeerList)<= a(attacker(_), A) then 

a(attacker(PeerList),Z) 

Fig.     3-5: An example of a simple interaction model for logical DoS: An attacker sends 

a message ‘m’ including the list of agents to all agents. Each agent who receives this 

message changes its role to an attacker and starts sending messages to others.  

 

While flooding is almost a blind attack, a logical DoS uses more sophisticated methods to 

exploit software or system bugs. In open MASs with dynamic interaction models, any user can 

publicise an interaction model, a malevolent agent may publish an interaction model to make 

other agents send many messages to each other (Fig.  3-5), do worthless tasks (Fig.  3-6) or 

remain in infinite loops. Another kind of logical DoS is that one hostile agent does not play its 

role correctly to terminate or interrupt a popular interaction. In (Sit and Morris 2002) a similar 

attack called store and retrieve is introduced in peer to peer systems. Inconsistent behaviour (Sit 



Chapter 3: Attacks on MAS 

33 

 

and Morris 2002) of a malicious peer in behaving with other peers also can be categorised as a 

logical DoS attack. 

 

a (attacker(PeerList, K), A) :: 

       null <- PeerList = [] 

  or ( 

        trigger(K) =>  a(zombie, Z) <- PeerList=[H|T]  

        then  a(attacker(T,K), A)   

     ) 

 

a(zombie, Z):: 

      trigger(K) <= a(attacker(_), A) then  a(in-loop(K),Z) 

a(in_loop(K),Z):: 

null<- K = []      or 

  a(in_loop(K1),Z) <- K1 =[a|L]  

Fig.     3-6: Another example of a simple interaction model for logical DoS: An attacker 

sends a trigger message including a number ‘K’ to all agents. Each agent who receives 

this message, starts looping for ‘K’ times (‘K’ may be a very large number).  

 

These malicious behaviours could be camouflaged as part of a real interaction model in a 

way that zombie peers cannot be guaranteed to detect them via static analysis of the interaction 

(even when the specification of this interaction is explicit, as in our examples) 

 

3.6 Fake Identity 

Fake identity is a reinterpretation of a Sybil attack (Douceur 2002)  in open MAS. In peer to peer 

networks, a Sybil attack is an attack in which an attacker subverts the reputation system by 

generating a huge number of pseudonymous peers to abuse the resources or to affect the system 

in a way that he/she wants. The fake identity attack is divided into two classes: deception and 

repudiation attacks. 

Different versions of the deception attack are as follows: 



Chapter 3: Attacks on MAS 

34 

 

a) Fake messages: Having a fake identity makes it easy for an attacker to send deceptive 

information to others. An example of the sort of system exposed to this vulnerability is the 

OKOmics system (Sierra, et al. 2008), by which proteomic researchers can send queries to 

different laboratories and compare the results. If an attacker could pretend to be a legitimate 

proteomics laboratory, then it could deceive researches by returning wrong answers to their 

queries about sequence identification. 

 

b) Fake agents: An attacker plays many roles in a genuine interaction. e.g.: in an auction, many 

fake bidder agents may be created by an attacker to demolish the auction. 

 

c) Fake services: An attacker creates an entirely fake interaction with fake agents for deception 

or fraudulence. e.g.: a completely fake auction interaction with a pseudo auctioneer and bidders 

to attract real agents and deceive them. 

 

d) Reputation attack: A group of attackers combine to deceive the reputation mechanism; e.g. 

many malicious agents may collude to increase their own rank and thus deceive a trust service 

into believing that they are trusted agents. 

 

Another class of fake identity attack is repudiation, which may be a result of an attack on the 

trust service in an open MAS. When benign agents believe in the reliability of a malicious agent 

by relying on a deceived trust service, they will probably interact with it. Then the malicious 

agent may send requests (e.g.: buying) to others (e.g.: resellers), but then repudiate its requests at 

the final stages (e.g. by logging wrong data to log files) to reach its goal (e.g.: to bring the 

resellers into disrepute amongst sellers or to defame the whole system to all benign users). An 

attacker may also deny its pervious actions by repudiation of its identity and changing the 

authoring information of his/her actions.  

It is mainly the responsibility of the trust service of the MAS to prevent the fake identity 

attacks, but most trust services are based on a symmetric reputation algorithm, which is proven 

not to be Sybil-proof (Cheng and Friedman 2005), so cannot guarantee against these  attacks.  



Chapter 3: Attacks on MAS 

35 

 

 

3.7 Risk Assessment 

Attacks bring about risks that have to be studied and modelled to determine and prioritise 

effective countermeasures against them.  To have a better understanding of potential attack risks 

in an open MAS we present an example of the DREAD risk assessment methodology (Microsoft 

2010). In DREAD the threat (attack) is approached and weighed from the different aspects of 

Damage, Reproducibility, Exploitability, Affected users and Discoverability. The weights 

indicating the risk level of each category are then averaged to calculate an overall risk 

assessment of the threat. The categories of risk in DREAD are: 

• Damage potential indicates the damage caused if an attack occurs,  

• Reproducibility is the ease of attack reproduction, 

• Exploitability shows the simplicity of the attack exploitation, 

• Affected users is a rough estimate of the number of affected agents, 

• Discoverability points out the ease of discovering the vulnerability exploited in the 

attack.  

It has to be noted that each open MAS has a different set of risks with regard to its 

implementation and application, so the weighing mechanism has to be customised accordingly to 

achieve more precise results. To give a sense of this risk assessment technique an example of a 

generic MAS is presented that utilise the following risk levels: high (3), medium (2), and low (1) 

(Table  3-1). The values are based on the reported attacks in the surveyed literature and our 

experience of real world security attacks.    

In our risk analysis, each DREAD category is evaluated as low, medium or high with regard 

to the following explanation. In Damage potential, high may indicate the risk of an adversary 

getting full trust authorisation (e.g. become an administrator), medium could mean the leak of 

sensitive information and low risk might be in revealing unimportant information. In 

Reproducibility, high risk is where attacks are reproduced easily, medium reproducibility is 

when the attack is confined to specific conditions and low reproducibility means the attack is 

very hard to replicate. The Exploitability risk would be rated high if an amateur can take 

advantage of the vulnerability of the system, low if it takes a highly skilled and experienced 



Chapter 3: Attacks on MAS 

36 

 

adversary to carry out the attack. The percentage of affected agents in a MAS would denote the 

risk level of the Affected users category. The Discoverability of an attack would consider the 

information available on the vulnerability: a highly discoverable attack has published 

information about it, while an obscured vulnerability would claim a low risk assessment.   

According to the risk analysis in Table  3-1, interception, link flooding, fake services and 

reputation attacks are the highest risked threats, while message injection has the lowest risks. 

  



Chapter 3: Attacks on MAS 

37 

 

Table     3-1: A sample DREAD risk assessment for an open MAS. 3: high risk, 2: 

medium risk, 1: low risk.  

                        

                           DREAD risk 

   Attack 

D
a
m

a
g
e 

P
o
te

n
ti

a
l 

R
ep

ro
d

u
ci

b
il

it
y

 

E
x

p
lo

it
a
b

il
it

y
 

A
ff

ec
te

d
 U

se
rs

 

D
is

co
v
er

a
b

il
it

y
 

 

Risk 

(Max=3) 

R
ea

d
 a

tt
a

ck
 Interception 3 3 2 2 3 2.6 

Access to agents 3 2 2 1 2 2 

Provenance 1 2 2 1 2 1.6 

P
r
o

b
in

g
 

Ontology attack 1 2 2 1 2 1.6 

Active probing 2 2 1 2 3 2 

A
lt

er
in

g
 

Interaction modification 3 2 2 2 2 2.2 

Agent code modification 3 2 2 2 2 2.2 

Agent log modification 1 2 1 1 3 1.6 

In
je

ct
io

n
 

Message injection 1 2 1 1 1 1.2 

Knowledge injection 3 2 1 2 1 1.8 

F
lo

o
d

in
g
 

Link flooding 2 3 3 3 2 2.6 

Agent flooding 2 3 2 2 2 2.2 

D
o

S
 

Logical DoS 2 2 2 3 2 2.2 

 Repudiation 2 2 2 2 2 2 

D
ec

e
p

ti
o

n
 Fake agents 1 3 2 1 2 1.8 

Fake services 3 3 2 2 2 2.4 

Reputation attack 2 3 3 2 2 2.4 

 

 



Chapter 3: Attacks on MAS 

38 

 

3.8 Summary 

In this chapter, we have introduced and categorised the main forms of attack on open MASs. A 

three-layer attack taxonomy has been proposed to help understand the implications of attacks 

and the defence mechanisms against them. In the first layer of our taxonomy we have classified 

attacks based on violations against confidentiality, integrity, availability and accountability. In 

the second and third layer we have categorised attacks based on the novelty of the attack 

technique and the attack target. In total, we have introduced sixteen attack classes and described 

a number of them, which were independent of the MAS’s platform, in LCC code. A few simple 

examples have been given to clarify the attack concepts. In addition, we have performed a risk 

assessment using the DREAD technique on the attacks, as an example to facilitate prioritising 

response or preventive measures against them. The next chapter discusses potential 

countermeasure to these attacks.  



Chapter 4: A Review of Methods to Secure Open MASs 

39 

 

 

 

Chapter 4 

4. A Review of Methods to Secure Open MASs 

 

 

4.1 Introduction 

In this chapter, we survey and analyse various techniques to prevent and detect the attacks 

introduced in Chapter  3 to secure open MASs. To the best of our knowledge, this is the first 

review of security solutions for open MASs, which has been published in (Bijani and Robertson 

2012). We first categorise security solutions following prevention and detection approaches. 

Then, we suggest which security technique is an appropriate countermeasure for which classes 

of attack introduced in Chapter  3. 

This chapter presents research relevant to the security of open MASs, without focusing on 

security issues specific to the mobility of mobile agents i.e. attacks from hosts on agents and 

vice versa. Security of open MAS has been explored greatly in the literature, although only a few 

have focused on open MAS itself and most research has dealt with mobile agents security issues 

either directly or indirectly; so, many of the security solutions have been proposed for threats 

from agents to hosts or from hosts to agents. 

There have been many attempts to protect mobile agents from the host platform in the 

literature (Bierman and Cloete 2002) (Jansen and Karygiannis 2000) and (Oey, Warnier and 

Brazier 2010); some are based on cryptography while others are not; e.g. code obfuscation 

(Majumdar and Thomborson 2005), function encryption (Lee, Alves-Foss and Harrison 2004), 

environmental key generation (Riordan and Schneier 1998), execution tracing (Tan and Moreau 

2002), and agent monitoring (Page, Zaslavsky and Indrawan 2005). Another important security 

issue in mobile agent systems is protecting the agent platform from mobile agents. Some 



Chapter 4: A Review of Methods to Secure Open MASs 

40 

 

example techniques are: Proof Carrying Code (Necula and Lee 1998), sandboxing (Wahbe, 

Lucco and Anderson 1993) and code signing (Jansen and Karygiannis 2000). However, the 

importance of the security issues coming from the mobility of agents should not diminish the 

importance of many other security threats in open MASs and we will not concentrate on them 

any further. 

Security approaches in the multi-agent security domain can be divided into two parts; the 

first approach is prevention, in which usually encryption-based techniques and authentication 

methods (e.g.: certificates and PKI
1
) are used. Most research on secure MASs follows this 

approach. (Poslad and Calisti 2000), (Wong and Sycara 1999), (Wang, Varadharajan and Zhang 

1999) and (Poslad, Charlton and Calisti 2002) are some examples of using encryption to prevent 

MASs from malicious attacks. For instance, (Poslad and Calisti 2000), (Wang, Varadharajan and 

Zhang 1999) and (Odubiyi and Choudhary 2007) suggest security architectures for the IEEE 

FIPA agent standard by means of authentication, PKI and VPN
2
. Other prevention methods for 

secure MASs are: policy driven and secure development methodologies, e.g. (Mouratidis, 

Giorgini and Weiss 2003). Policy driven methodologies are based on applying security policies, 

which may be used for access control, e.g. (Quillinan, et al. 2008), definition of acceptable 

behaviour, e.g. (Vazquez-Salceda, et al. 2003) or policy randomisation to prevent adversaries 

guess the next agent action, e.g. (Tan, Poslad and Xi 2004). 

The second approach is detection, which tries to detect attacks on MASs and then respond to 

them. Little research has been done in this area and the focus of the work has been on attacks 

and countermeasures in mobile agents, e.g., (Endsuleit and Wagner 2004), (Page, Zaslavsky and 

Indrawan 2005), (Jansen and Karygiannis 2000) and (Bierman and Cloete 2002). The main 

problems in mobile agent systems, which are not in the scope of our review, are threats from 

agents to hosts and vice versa. 

In the following, we describe the contributions of related work to security of open MAS. 

Some of the systems described, although appropriate to open MAS, were developed with other 

architectures in mind. Therefore, the shortcomings we identify for them might not be flaws in 

those other applications. 

                                                           
1 Public Key Infrastructure 

2 Virtual Private Network 



Chapter 4: A Review of Methods to Secure Open MASs 

41 

 

 

4.2 Prevention Approach 

“Prevention is better than cure”, so the first step against security threats is trying to avoid 

attacks using prevention methods. Various prevention methods with different attitudes, at 

different levels of abstraction and for different goals have been proposed and implemented in the 

literature of MAS security. As one possible way of classification, we have categorised these 

prevention methods as follows: encryption and certificate driven systems, policy-based methods 

and secure agent development techniques. 

 

4.2.1 Encryption and Certificates 

Most existing security solutions for MASs suggest the use of encryption to fulfil confidentiality, 

integrity and non-repudiation in these systems. Symmetric encryption1, public key (or 

asymmetric) encryption2, digital signature and certificate management are the popular methods 

in communication security (Table  4-1).  We discuss specific elements of Table  4-1 below. 

Wang et al. in (1999) have suggested an asymmetric encryption scheme, which is simple and 

lightweight compared to well-known encryption algorithms such as DES and RSA. The 

encryption algorithm consists of compressing the message, N-bit grouping, subtracting from the 

secret key saved in the secret code file and ungrouping. The authors have argued that to guess 

the secret codes, hackers face a combinational explosion problem and also the compression adds 

another security layer. The disadvantages of this method, as the authors indicate, are the 

weakness of the algorithm for short messages and secret key management difficulties, which 

includes producing, transferring and saving large secret files in agents. 

 

 

                                                           
1 In symmetric cryptography, a secret key, shared between both parties, is used for encryption and decryption. Some 

examples of common symmetric encryption algorithms are AES, DES, Triple DES, RC6 and Blowfish. 

2 In asymmetric cryptography a pair of public key and private key are used and everything that encrypted by a public 

key can be decrypted by private key and vice versa. To send a secret message, the sender codes it by the public key of 

receiver and the receiver can decode the message by their private key. Diffie-Hellman, RSA are ElGamal are some 

examples of well-regarded asymmetric encryption schema. 



Chapter 4: A Review of Methods to Secure Open MASs 

42 

 

Table     4-1. Examples of encryption and certificate based methods to securing MASs 

References Description Agent Platform 

Foner (1996) PGP-based solution using symmetric and public key 

encryption 

Yenta 

He et al. (1998) Security agents as certificate authorities (CAs) and 

public key cryptography 

KQML 

Wang et al. (1999) A lightweight asymmetric encryption scheme  - 

Wong & Sycara (1999) Unique agent IDs and SSL to provide agent 

communication security. 

Agent Certification Authority (ACA) to certify the binding 

of agents' ids to their public keys and DCA for deployer 

keys (for authentication) 

RETSINA 

Poslad & Calisti 

(2000) 

Symmetric and public key encryption and Simple Public 

Key Infrastructure for authentication 

FIPA model 

Karnik & Tripathi 

(2001) 

El-Gamal public key for encryption  (and a DSA public 

key for digital signatures). 

Signed certificates using the agent owner’s private key 

Ajanta 

Novak et al. (2003) Symmetric and public key encryption and Security 

Certification Authority (SCA) for authentication 

FIPA model 

Borselius and Mitchell  

(2003) 

XML encryption service to secure ACL messages using 

Open PGP 

FIPA model 

van 't Noordende et al. 

(2004) 

SSL encryption for agent communication and an encoded 

SHA-1 hash of a public RSA key called Self-certifying 

Identifier  (ScID) 

Mansion 

Park et al. (2006) ID-based cryptography and Local PKI - 

Vila et al. (2007) TLS/SSL for agent communication security. 

IMTPoverSSL certificates to provide confidentiality, data 

integrity and mutual authentication 

JADE-S 

van 't Noordende et al. 

(2009) 

Public key encryption and Self-certifying Identifiers 

(ScIDs) for end-to-end authentication 

Agent Operating 

System (AOS)  

 

  Broadly speaking, the two important problems of using symmetric cryptographic 

algorithms in open MASs are the need of a separate secret key for each pair (or group) of agents 

and sharing secret keys. The first problem may lead to a scaling hurdle for a large number of 



Chapter 4: A Review of Methods to Secure Open MASs 

43 

 

agents and the second problem particularly affects symmetric cryptosystems in some open MAS, 

in which unknown agents appear and re-appear frequently. In other words, in open MASs with 

large (possibly unbounded) number of agents it seems impractical to allocate a separate 

encryption key for each pair of agents and manage them. The secret key is the security basis of 

symmetric encryption methods, because if it is discovered, all messages can be decrypted, so it 

should be protected securely. A common solution to these problems is combining a public key 

cryptography schema with the symmetric encryption which many, such as Foner (1996), Wong 

and Sycara (1999), and Borselius and Mitchell (2003) have done. 

Wong and Sycara (1999) have proposed a security infrastructure to address the security and 

trust of the RETSINA framework (Sycara, et al. 2003), a reusable multi-agent infrastructure, and 

provide solutions for secure communication, integrity of system level services (such as naming 

and matchmaking services) and accountability. They have used unique agent IDs and the Secure 

Socket Layer (SSL)1 protocol, beneath their agent communication layer, to provide agent 

communication security. Use of SSL encryption is based on the assumption that agents’ 

deployers have public and private keys binding their physical identities and they should be made 

responsible for the actions of their agents. The authors also suppose that ANSs2 and 

Matchmakers are trusted. In a different research with a similar approach, Vila et al. (2007) have 

introduced various security services for the JADE framework by integrating existing JADE-S 

security features into their own mechanism, IMTPoverSSL. IMTPoverSSL provides 

confidentiality, data integrity and mutual authentication using a certificate-based container-to-

container structure. In this framework, each container (group of agents) securely stores other 

containers' certificates and the above security features are provided using the TLS/SSL 

protocols. In both methods agent communication security relies on the security of TLS and SSL. 

Broadly speaking, relying on widely-used existing security mechanisms has two sides. The 

disadvantage is that various hackers from different communities (network, web, etc.) are able to 

exploit its vulnerabilities. In the case of TLS/SSL, there is a reported TLS Renegotiation attack 

(Ray 2009), in which an attacker may be able to tamper with messages3, and even in some 

                                                           
1 SSL and its successor, TLS (Transport Layer Security), run on layers beneath application protocols such as HTTP 

and SMTP and above the TCP transport protocol 

2 Agent Name Servers 

3 A plaintext injection attack against SSL and all current versions of TLS 



Chapter 4: A Review of Methods to Secure Open MASs 

44 

 

situations might break the encryption, which is a man-in-the-middle attack. On the other hand, 

the positive points are: (1) implementation of security protocols is not the responsibility of MAS 

developers meaning that implementation security flaws will be avoided; (2) it is a feasible 

resolution in some open MAS where agent platforms are created by different authorities; (3) 

these mechanisms are widely used and tested, so they are more reliable; (4) corresponding 

organisations will eliminate security vulnerabilities e.g. for the TLS Renegotiation attack, IETF1 

suggested a solution (E. Rescorla Feb. 2010). 

Although using public key cryptography solves the problem of secret key management, 

authenticity and integrity of the other agents’ public keys are still an open question. The question 

is how an agent X can be confident that the claimed public key of agent Y belongs to Y and the 

key has not been tampered with or replaced by a malevolent agent. Generally, applying a public 

key cryptosystem without using an authentication mechanism may amount to man-in-the-middle 

attacks. Using a certificate-based schema i.e. Public Key Infrastructure (PKI) and Web of Trust 

in Open-PGP (a defacto public key encryption system) are common solutions to this. Douceur 

(2002) proves that trusted certification is the only approach to prevent Sybil attack (or fake 

identity attacks in case of MASs) and without a logically centralised authority, there is no 

solution to Sybil attacks. 

The following are some examples of approaches using certificate-based encryption. 

• In (Foner 1996), in which the main concern is privacy, security issues of Yenta (a 

decentralised, p2p matchmaking agent) such as gathering other agents’ private data and 

discovering users’ profiles from their agents have been addressed. The author has 

implemented a security system to protect the integrity of MASs and has suggested a 

PGP-based solution using symmetric and asymmetric encryption for the agents’ 

communications. 

• He et al. (1998), have nominated autonomous agents, called security agents, as 

certificate authorities (CA) in PKI (instead of static hierarchy) to scheme an 

authentication foundation for MAS security, design scalable authentication systems and 

make certificate management customisation possible. They have suggested adding new 

                                                           
1 Internet Engineering Task Force 



Chapter 4: A Review of Methods to Secure Open MASs 

45 

 

speech acts to KQML to publish various certificates including apply-certificate, issue 

certificate, renew-certificate, update-certificate and revoke-certificate. 

• Wong and Sycara (1999) have proposed a PKI-based solution for the RETSINA model 

of MAS. There are two certification authorities in their security infrastructure: Agent 

Certification Authority (ACA) for agent keys as a part of their security infrastructure and 

Deployer Key Certificates (DCA), a certification authority for deployer keys which lies 

outside their infrastructure. 

• Borselius and Mitchell (2003) have developed an approach for secure agent 

communication based on using Open PGP to encrypt and sign ACL
1
 messages. They 

have also recommended using the XML encryption service to secure ACL messages. 

• Novak et al. (2003) proposed the X-Security package to secure the agent communication 

layer of FIPA based agent systems. X-Security supplies a secure model for inter-

platform communication and agent activities even in the case of inaccessibility of a CA. 

A Security Certification Authority (SCA) is introduced as an independent agent who can 

renew, suspend and withdraw agents’ digital certificates. 

• Park et al. (2006) have proposed an algorithm to enhance the security of MASs in 

distributed computing environments through using ID-based Cryptography (ID-C) to 

solve the scalability problem of PKI in such a way that no infrastructure is necessary to 

authenticate public keys and manage directories to store certificates. They have 

suggested an ID-based threshold decryption method without key escrow
2
 providing a 

key recovery scheme and key update strategy for dynamic group membership. 

Unfortunately, using public key cryptography infrastructure, like PKI and Open PGP, does 

not completely solve the underlying problem of public key authenticity in open systems. In other 

words, correctly identifying the public key of the user (agent owner) and ensuring that this key 

belongs to the real one is still a problem. In an open system, in which there is no previously 

established contact to legally commit the agent owners, repudiation of the signature and keys is 

possible. A malicious user may also pretend to be a famous organisation so as to gain the 

                                                           
1Agent Communication Language 

2 In the key escrow schema, private keys are stored in an escrow for key recovery under certain circumstances by an 

authorized third party. 



Chapter 4: A Review of Methods to Secure Open MASs 

46 

 

confidence of users in accepting its certificate. Furthermore, some general security challenges of 

using PKI are mentioned in (C. E. Schneier 2000). Additionally, in some applications of open 

MASs (for example in emergency response or crisis management), applying certificates, which 

requires pre-negotiation or physical contact between agent owners and the certificate authorities, 

may not be very helpful. Furthermore, almost all the proposed solutions using encryption and 

certificate-based methods have focused on securing agent communications in low level 

transactions, securing agent messages only at platform level, while the issue of security in MASs 

extends to higher levels of system architecture. 

A fundamental limitation of encryption-base techniques is that they may guarantee the 

origin, confidentiality and integrity of information, but not its behaviour. They just prevent 

information from being released, not from being propagated. 

Generally, cryptography and certificate-based solutions are suggested to prevent read and 

altering attacks, although openness in MASs might cause some difficulties in practice. 

Encryption of sensitive data and authentication are the first and most effective steps toward 

countering interception, unauthorised access to agents, provenance attacks and agent log 

modifications. To avoid interaction modification attacks, besides encryption, SSL, digital 

signatures (which are not content-aware) and integrity checking (e.g. based on SHA-1 and MD5) 

are also necessary. There is still more need to impede interaction modification attack by 

avoiding a single point of responsibility; not relying on just one (even trusted) agent information,  

which is the responsibility of the trust service in a MAS. To prevent agent modification attacks, 

employing encrypted function and other code security mechanisms are recommended.  As an 

additional level of protection, proof-carrying code (G. C. Necula 2002) is a promising technique 

to detect any modification in agent code. 

 

4.2.2 Policy-based Methods 

Policy-driven mechanisms have been applied widely in a variety of security applications. 

Security policies, as a prevention approach to secure MAS, can be used for access control, 

definition of acceptable behaviour or confidentiality in adversary environments. Some examples 

of these methods are shown in Table  4-2. 



Chapter 4: A Review of Methods to Secure Open MASs 

47 

 

Access control using security policy is quite common in computer systems and MASs are no 

exception. Wagner (1997) has shown how the database concept of multi-level security can be 

applied to inter-agent communication in order to protect confidential information. A knowledge 

system of MSL1 databases and some basic inter-agent communication rules have been defined. 

The communication rules implement security classifications and the MSL database assigns a 

security classification (e.g.: unclassified, confidential, secret and top secret) to all information 

items and allocates an authorisation policy to all users. The whole system then enables agents to 

comply with a defined security policy. 

In (Quillinan, et al. 2008), it is argued that well defined and easily configurable security 

policies better address the security of MAS. Several agent middleware systems provide access 

control architectures such as JADE-S, SeMoA and AgentScape. JADE-S supplies a style of 

decentralised access control that is not flexible enough to define default security policies. SeMoA 

has a centralised access control and does not allow users to define their own policies. 

AgentScape provides a hybrid access control method, a combination of centralised and 

decentralised policy enforcement. The architecture used in the AgentScape middleware uses 

Role Based Access Control2 (RBAC) and while it has a set of default security policies, it also 

allows users to customise them (Quillinan, et al. 2008). Vitabile et al. (2008) extended the 

JADE-S framework with strong user authentication, a reputation-based trust system and an 

access control mechanism based on policy files. In the proposed framework, FPGA biometric 

sensors provide secure and fast authentication of the agent owner in a MAS. 

 

  

                                                           
1Multi-level secure 

2Role-based Access Control or role-based security (Ferraiolo, Kuhn and Chandramouli 2007)  is a predominant 

access control mechanism, in which all access is through roles (collections of permissions). 



Chapter 4: A Review of Methods to Secure Open MASs 

48 

 

Table     4-2. Examples of policy-based methods 

References Type Description 

(Wagner 1997) Access Control Use of multi-level security concept 

(Quillinan, et al. 2008) Access Control Role Based Access Control  

(Tekbacak, Tuglular and 

Dikenelli 2009) 

Access Control Decentralised ontology and XACML   

(Tan, Poslad and Xi 

2004) 

Definition of acceptable 

behaviour 

Profile-based reasoning  model (for dynamic 

security reconfiguration) 

(Vazquez-Salceda, et al. 

2003). 

Definition of acceptable 

behaviour 

Electronic institutions as police norms 

(Paruchuri, Tambe, et al. 

2006) 

Policy randomisation Linear and non-linear programming 

algorithms to randomise single-agent 

policies to avoid an agent’s action being 

easily predictable 

(Paruchuri, Pearce, et al. 

2009) 

Policy randomisation A non-linear program with non-convex 

constraints ensuring the communication 

constraints are met 

(Tekbacak, Tuglular and 

Dikenelli 2011) 

Role-based Policy A policy model for agents when ontologies 

in the environment can change 

 

Although access control is necessary in many systems, defining a suitable security policy, 

which does not cramp users and is not very open is non-trivial, especially when there are 

heterogeneous agent systems with different ontologies. Malicious agents may also exploit 

vulnerabilities in access governance systems by masquerading. A common issue in many access 

control mechanisms for MASs is that they are usually applied at the level of agent middleware 

and concern access to low-level objects (e.g. files and IP address). This could be considered a 

weakness, because they might not be able to detect high-level access violations (such as probing 

attacks and fake identity attacks).   



Chapter 4: A Review of Methods to Secure Open MASs 

49 

 

In (Tekbacak, Tuglular and Dikenelli 2009), a decentralised ontology and XACML1-based 

access control architecture for MASs has been proposed. The agent domain ontology and access 

control parameters in the agent security ontology have been combined within a common 

XACML policy document that is used through different MAS applications through translation of 

XACML and OWL to description logic (DL) concepts. This formalisation using DL concepts 

allows defining and effectively implementing an array of policy analysis services and helps the 

verification of policies under a common point. One limitation of this approach is that it is not 

completely compatible with open MASs without further upgrades in their implementation and 

this is mainly because of the centralised architecture of this model. 

The second type of policy driven methods is more general than just controlling access to 

information and defines acceptable behaviour of the system. An example is (Tan, Poslad and Xi 

2004), in which Tan et al. have proposed a policy-based infrastructure for dynamic security 

reconfiguration in open and heterogeneous systems to address the end-to-end security 

interoperability problem. They have developed a profile-based reasoning model for a dynamic 

security reconfiguration system, which detects and analyses policy conflicts and the need for 

security reconfiguration and then resolve them at a meta-level without the changing underlying 

systems’ implementation. A similar approach may be used to detect attacks at run-time and 

automatically reconfigure the system for a suitable response. 

Definition of acceptable behaviour for an agent by means of electronic institution is another 

way of attack prevention in MAS. An electronic institution provides a set of rules that define 

what agents are permitted and forbidden to do and the consequences of their actions (M. Esteva, 

et al. 2004). An electronic institution, as a collection of norms implemented by security policies, 

can be devised as a framework to define police norms that guide, control and regulate behaviour 

of other agents in an open MAS (Vazquez-Salceda, et al. 2003). 

The third approach in policy-based methods utilises policy randomisation to prevent 

adversaries guessing the agents’ next actions (Paruchuri, Tambe, et al. 2006) and (Paruchuri, 

Pearce, et al. 2009). The worst-case assumptions here are; first, agents act in an adversarial 

environment which cannot be modelled (because there may be unseen adversaries whose actions 

and capabilities are unknown); second, the adversary can observe the agent's state; third, the 

adversary knows the agent policy; forth, there is no or limited communication among agents. 

                                                           
1XACML is a declarative access control policy language implemented in XML. 



Chapter 4: A Review of Methods to Secure Open MASs 

50 

 

The authors have introduced a randomised policy making to avoid an agent’s action being easily 

predictable, using a decision-theoretic model based on the Multi-agent Constrained Markov 

Decision Problem (MCMDP). 

Paruchuri et al. (2006) have provided three linear and non-linear programming algorithms, 

to randomise single-agent policies. They also have implemented a new algorithm, Rolling Down 

Randomisation (RDR), which efficiently generates randomised policies via the single-agent 

linear programming method. With similar assumptions in their prior work, the authors in 

(Paruchuri, Pearce, et al. 2009), have developed a non-linear program with non-convex 

constraints that randomises agent team policies while ensuring that the communication 

constraints of the team are met and the miscoordination arising due to randomised policies is 

countered.  

Although preventing adversaries from guessing an agent’s next actions can be useful in 

some applications, in open MAS with shared interaction models, we might not always be 

interested in randomised behaviour with all peers. In scenarios where we can group the 

counterpart agents into trusted and untrusted, the policy randomisation will be a countermeasure 

against untrusted agents.  

Loulou et al. (2007) have proposed a formal approach to prevent attacks on MASs by 

verifying security policies. They proved theorems describing in which circumstances security 

policies are successful and could overcome a given kind of attack on mobile agents. They used 

Z-Eves tools for type checking and theorem proving. In a different study on credential-based 

authorisation policies, Becker (2010) has introduced a formal framework to analyse secrecy of 

policy languages. Becker redefined two information flow properties (non-interference and 

detectability) in credential systems and proposed an inference system that informs us what an 

adversary can detect from our system. Although his work is not directly related to MASs, his 

formal approach can be used to protect MASs against probing attacks (Bijani, Robertson and 

Aspinall 2011). 

The security policy approach, especially using low-level and high-level access control 

methods, can help the prevention of read attacks (interception, unauthorised access to agents, 

provenance attack). Defining acceptable behaviour (e.g. limit the number of queries from one 

agent) can assist counter denial of service and ontology attacks. 



Chapter 4: A Review of Methods to Secure Open MASs 

51 

 

Generally, access control mechanisms on their own are insufficient to ensure the secrecy of 

computational systems, because they cannot prevent the propagation of confidential information 

after it has been released. 

 

4.2.3 Secure Agent Development 

Considering security concerns during the development and implementation of MASs is another 

method to prevent security threats. To fulfil this goal, we consider two approaches: agent-

oriented software engineering and language-based security for agents. 

 

4.2.3.1 Agent-oriented Software Engineering 

Adding security to agent-oriented software engineering (AOSE) has become an important area 

within the agent research community (Mouratidis, Giorgini and Manson 2003). (Liu, Yu and 

Mylopoulos 2002) and (Yu and Cysneiros 2002) are examples of addressing security issues 

within the requirements engineering process and (Mouratidis and Giorgini 2009), (Xiao 2009) 

and (Rojas and Mahdy 2011) are examples of integrating security throughout the agent 

development process (Table  4-3). We can also benefit from UML extensions as generic tools for 

secure software development e.g. UMLsec (Jurjens 2002) that incorporate security requirement 

analysis in software design. 

Many efforts have been made to provide appropriate methods for integrating functional 

requirements and non-functional security requirements during the whole software development 

stages using Tropos, an agent-oriented software development methodology (Bresciani, Perini, et 

al. 2004); e.g. (Mouratidis, Giorgini and Manson 2003), (Mouratidis 2007), (Mouratidis and 

Giorgini 2009), (Massacci, Mylopoulos and Zannone 2010). Mouratidis et al. (2003) have 

extended Tropos by adding security concepts into the design methodology, with concepts such 

as Security Diagrams, Security Constraints, Secure Entities and Secure Capabilities, that enable 

MAS developers to describe security requirements. They illustrate their new methodology using 

a case study from the health care sector. In (Bresciani, Giorgini, et al. 2004) the degree of 

criticality and complexity of the parts of the agent system has been analysed to identify possible 

security bottlenecks of the system. This analysis facilitates decision making of agent system 

developers, about probable trade-offs between functional requirements and security. The authors 



Chapter 4: A Review of Methods to Secure Open MASs 

52 

 

also have suggested an algorithm to reduce the complexity or criticality of the security 

requirement analysis process. Other efforts to suggest a methodology for integrating functional 

and security requirements in Tropos are (Mouratidis, Giorgini and Weiss 2003), (Mouratidis and 

Giorgini 2009) and (Rojas and Mahdy 2011). Massacci et al. (2010) have proposed the use of 

Secure Tropos methodology with SI*, a modelling language to deal with security and trust. 

Their goal was to derive privacy policies from requirements to bridge the gap between policy 

specification and requirements analysis. 

Xiao (Xiao 2009) has merged the concept of agent role in AOSE and in Role Based Access 

Control to produce a model-driven architecture for building adaptive and secure MAS. The idea 

is that interaction models, containing the agent’s role, obligations and security policy rules, 

which define constraints derived from agent social roles, identify rights of agent. Therefore, 

functional requirements and security constraints are connected by the notion of role. This 

method aims to deal with a complete MAS development process from requirements analysis and 

the early design phase to the implementation phase. The proposed methodology is compatible 

with open multi-agent systems. 

Xiao et al (2008) have proposed multilevel secure LCC interaction models for health care 

multi-agent systems. A security architecture for the HealthAgents system and a security policy 

set using LCC have been suggested in (Xiao, Lewis and Dasmahapatra 2008). Hu et al. (2009) 

have also developed a system to support data integration and decision making in the breast 

cancer domain using LCC and briefly addressed some security issues. They have all used 

constraints and message passing in LCC interaction models to implement security solutions for 

access control and secure data transfer, but they have not addressed confidentiality issues such as 

information leakage. 

 

Table     4-3. Examples of adding security to agent-oriented software engineering 

References Phase Description 

(Liu, Yu and 

Mylopoulos 2002) 

Requirements engineering  Modelling of relationships among strategic 

actors in order to extract, identify and analyse 

security requirements 

(Yu and Cysneiros 

2002) 

Requirements engineering A framework to model the way agents interact 

to achieve privacy 



Chapter 4: A Review of Methods to Secure Open MASs 

53 

 

(Mouratidis, 

Giorgini and 

Weiss 2003) 

Throughout the development 

process 

Adds security concepts into the design 

methodology in Tropos 

(Bresciani, 

Giorgini, et al. 

2004) 

Requirements engineering An algorithm to reduce the complexity or 

criticality of security requirement analysis 

(Mouratidis and 

Giorgini 2009) 

Throughout the development 

process 

A methodology for integrating functional and 

security requirements in Tropos 

(Xiao, An 

adaptive security 

model using 

agent-oriented 

MDA 2009) 

Throughout the development 

process 

A model-driven architecture by merging the 

concept of agent role in AOSE and Role Based 

Access Control 

(Massacci, 

Mylopoulos and 

Zannone 2010) 

Requirements engineering An attempt to bridge the gap between policy 

specification and requirements analysis by 

deriving privacy policies from requirements 

(Rojas and Mahdy 

2011) 

Throughout the development 

process 

An extension to Tropos methodology by 

integrating threat modelling in software 

application development 

 

Attack modelling, during the design phase, allows software engineers to clearly understand 

and analyse design flaws and mitigate security vulnerabilities. As a result, various security attack 

modelling techniques and tools have been introduced in the computer security literature. We 

could name attack trees (B. Schneier 1999), attack graphs (Lippmann and Ingols 2005), 

statecharts (El Ariss and Xu 2011) and Petri Net-based attack nets (McDermott 2000) as a few of 

these techniques. These techniques can also be customised and applied to agent-oriented 

software engineering to prevent known attacks on open MASs. For example in (Rojas and 

Mahdy 2011), the Tropos methodology is extended by integrating threat modelling in software 

application development.   

 



Chapter 4: A Review of Methods to Secure Open MASs 

54 

 

4.2.3.2 Language-based Security 

Access control is insufficient for the secrecy of computational systems because it does not 

prevent the propagation of confidential information and is not suitable for encrypted 

information. Encryption and digital signature also cannot prevent attacks that exploit 

information flow (e.g. injection attack). Information flow analysis is a complement to those 

approaches to ensure some security properties hold. 

Using information flow theory for software security analysis is an old idea e.g. by tagging 

confidential data and analysing tagged data propagation (D. E. Denning 1976). Sabelfeld and 

Myers (2003) argue, in their survey of language-based information flow security, that sound type 

systems could be a promising language-based technique to specify and enforce an information 

flow policy. 

Two lines of work on static program certification initiated by Denning (1976) and security 

specification by Cohen (1977) are merged and pursued by Volpano and Smith (1997) proposing 

a security type system that enforces security specifications. In recent years, there has been a 

great deal of research into secure information flow analysis. Type-based secrecy has been 

studied in the context of imperative programming languages e.g. (Heintze and Riecke 1998), 

functional programming e.g. (Austin, Flanagan and Abadi 2012) and process calculi e.g. 

(Honda, Vasconcelos and Yoshida 2000) and (Focardi, Rossi and Sabelfeld 2005). 

There are two approaches to analysing information flow security: static and dynamic (run-

time) analysis. Static techniques prove program correctness with reasonable computation cost, 

conservatively detect implicit and explicit information flows and provide stronger security 

assurance than the dynamic techniques (Sabelfeld and Myers 2003). 

Information flow techniques can also be applied to MAS. Halpern and O’Neil (2008) 

provided a general framework for analysing the secrecy of MASs that can handle probability and 

non-determinism in synchronous or asynchronous systems. In their approach, a logic that 

includes modal operators for reasoning about knowledge and probability is used to syntactically 

characterise secrecy. However their approach is very abstract and theoretical and needs 

adaptation and redefinition of security properties for any MAS. 

To avoid active probing and injection attacks in an open MAS, we advocate the 

implementation of static and dynamic language-based security systems that use security types to 

prevent information leakage. For this purpose, the agent needs to be implemented by a language 



Chapter 4: A Review of Methods to Secure Open MASs 

55 

 

that supports information flow analysis. Not much research has been done on applying language-

based security techniques to agent development languages. We will discuss this approach in 

Chapters 5 and Chapter 6 in detail. 

 

4.3 Detection Approach 

Although prevention methods usually take precedence over detection methods, it is not always 

possible or feasible to impede all kind of attacks. In practice, there is a continual battle between 

defenders and attackers struggling to break the security defences. Hence, the design and 

implementation of powerful detection and response mechanisms against possible attacks as a 

second stage of defence are essential. In the detection approach, the sooner an attack is detected, 

the less the impact of the attack on the victim agents would be. In the case of open MAS, in 

which there is a minimum guarantee about the agent’s identity and behaviour, detection seems to 

be at least as important as prevention. 

 

4.3.1 Monitoring 

Monitoring is a general method of attack detection in hostile environments. The goal of 

monitoring-based techniques in an open MAS is to detect the misbehaviour of agents or to find 

anomalies in the system. For misbehaviour detection, we need to define the specifications of 

agent communication protocol in order to detect interactions that exploit it. As agent 

communications do not follow a common consented standard, misbehaviour should be defined 

separately for each type of MAS. 

In the anomaly detection approach, patterns in data that do not conform to the expected 

behaviour are detected (Chandola, Banerjee and Kumar 2009).  Classification, clustering or 

statistical methods are a few examples of anomaly detection techniques that can be applied in 

open MASs for attack detection. Anomalies are detected when the current MAS state differs 

from the trained model (classifier). The openness in open MASs might hinder successful 

anomaly detection.  Openness in the sense that new agents can freely join the system is not a 

problem, but when the open MAS allows new component to be added to the system at run-time, 

e.g. the OpenKnowledge system (Robertson, Giunchiglia, et al. 2008), this leads to a dynamic 



Chapter 4: A Review of Methods to Secure Open MASs 

56 

 

behaviour that resists anomaly detection. In these more dynamic systems, anomaly detection 

techniques generate many false positives rendering the techniques ineffective. 

We will now discuss peer monitoring, information monitoring and policy monitoring as 

three misbehaviour detection monitoring techniques and activity monitoring as an anomaly 

detection technique. 

 

4.3.1.1 Peer Monitoring 

Page et al. (2005) have extended their previous research on the Buddy model to a more general 

security mechanism for mobile agent systems. This model adds a separate security layer to the 

agents’ business functionality. In the proposed centralised system, agents who monitor others are 

called Buddy and the others who are monitored are called protected agents (PA). A PA might 

also be Buddy of another PA. There are three basic rules ensuring the uniformity of the model:  

first, each PA has two Buddy agents; second, PA and Buddy agents must never be the same; and 

three, an agent can be a Buddy of only one protected agent. The home base host manage security 

of the whole MAS and in case of any malicious activity; it receives alerts from the monitoring 

system. 

While the Buddy model has been designed for mobile agents, with minor changes it can be 

applied to non-mobile agent systems as well. The centralised nature of this model may be a 

limitation for scalability of open multi-agent systems, although use of local monitoring 

subsystems may overcome this shortcoming. 

 

4.3.1.2 Information Monitoring 

Monitoring published information in agent communications and keeping track of transferred 

messages facilitate the detection of some information-centred attacks: provenance, active 

probing and ontology attacks. For example, in the case of the ontology attack, monitoring users’ 

queries to the ontology and defining some thresholds for the number and the scope of the queries 

may impede the attack. The information monitoring technique helps us to at least find what other 

agents (adversaries) have already found out about the agents and be more cautious in future 

communication with the suspected agents.  

 



Chapter 4: A Review of Methods to Secure Open MASs 

57 

 

4.3.1.3 Policy Monitoring 

Implementing agents on top of web services has been introduced as a potential market for agent 

systems and as approach to make them more popular (Petrie and Bussler 2003) and (Xiao 2009), 

so security solutions from the Web Service community may be helpful in open MAS. Clark et al. 

(2010) have introduced a framework for secure monitoring of a specific Service Level 

Agreement (SLA) and have implemented it in AgentScape system. The authors have modified 

WS-Agreement, an SLA specification for establishing agreement between parties in Web 

Services, for effective monitoring. They have designed a model for secure and reliable violation 

monitoring of SLAs and a method for specifying violation policies in a hostile environment. A 

centralised and a decentralised monitoring of contraventions were tested and the results showed 

slightly better performance in the decentralised version.  As an intrusion can be considered a 

kind of violation, this system might also be applied to detect attacks, at least for those attacks for 

which we could specify their features. 

 

4.3.1.4 Activity Monitoring 

Activity monitoring is similar to the concept of activity profiling (Carl, et al. 2006) to detect the 

denial of service attacks in computer network literature. This is based on the calculation of the 

average traffic rate for the whole interaction between two agents. Each agent can measure the 

average traffic rate and whenever any counterpart agent behaves very differently, it can react by 

raising an alarm, decreasing the rank of that agent or filtering possible malicious agent. In a 

MAS with centralised management approach, the total MAS communication activities and the 

average rate of all inbound and outbound flows can be measured and be used to detect suspicious 

communications. To avoid the high-dimensionality problem1, a MAS can be clustered into 

different classes, each of which has a monitoring agent.  

To detect DoS and DDoS attacks, especially flooding attacks, change-point detection 

methods and wavelet analysis of agent traffic are recommended (Carl, et al. 2006). We can also 

employ existing anomaly detection techniques; i.e. Classification Based, Clustering Based, 

                                                           
1 If each communication activity is considered as an attribute (a dimension), analysing all MAS communication flows 

will be a high-dimensional problem that often leads to large-scale computations. 



Chapter 4: A Review of Methods to Secure Open MASs 

58 

 

Nearest-Neighbour-Based, Statistical, Information-Theoretic and Spectral techniques (Chandola, 

Banerjee and Kumar 2009).  

 

4.3.2 Attack Modelling 

Modelling attacks or attackers is a useful technique to detect some attacks on MASs. In the 

security literature one can find several formal/informal attack(er) modelling strategies for 

different purposes. Security modelling, in general, is an approach to analyse various aspects of 

security (e.g. confidentiality and integrity) in a system. While security modelling is more likely 

to be categorised as a prevention method (such as a number of attack modelling techniques in 

section  4.2.3.1), online modelling can also be considered as a detection appraoch. 

In the following sub-sections, two attack modelling approaches to attack detection in open 

MASs are introduced: coordination graphs and statistical modelling.   

 

4.3.2.1 Coordination Graphs 

Given that some attacks on agent systems are taking advantage of social behaviour between 

attackers, Braynov and Jadliwala (2004) have studied detection of coordinated attacks on MAS. 

A group of attacker agents may collude to stage a large attack on the victim agent system by 

dividing the tasks into separate subtasks among themselves. Conventional intrusion detection 

systems just detect the last section of the attack chain, not the attacker assistants who prepare 

attack prerequisites. Assuming that there is a security mechanism to detect a single malicious 

action, the authors have defined formal metrics on the coordination graph to discover main and 

peripheral attacker agents. They have introduced a formal model of distributed monitoring and a 

formal method and an algorithm to detect maximal malicious group of attackers using a 

coordination graph (nodes are states and arcs are attacks) of all users.  

The proposed methods can be applied to detect attacks at an early stage and is capable of 

being used online (for attack detection) or offline (for forensic analysis). The suggested method 

is a useful defence against many coordinated attacks, but the assumption that every single 

malicious action can be detected may not be valid in some attacks, such as an ontology attack, so 

it may not be appropriate for them. 



Chapter 4: A Review of Methods to Secure Open MASs 

59 

 

Dove (2009) has proposed a platform for unmanned autonomous system testing (UAST) 

based on a socially aware team of autonomous agents. His platform can be merged with the 

attack detection method of Braynov and Jadliwala (2004) to employ socially aware security 

agents as a community watch in an open MAS. Both methods can be used to detect coordinated 

attacks such as distributed denial of service. 

Khan et al. (2009) have taken a different approach and have suggested a technique that 

models malicious hosts behaviour against mobile agents. They have also proposed the Mobile 

Agent Graph Head Sealing (MAGHS) method to grantee the integrity of mobile agent system. 

MAGHS uses symmetric encryption algorithms with a shared secret key between every host and 

the home platform. It is assumed that a dynamic data structure like a graph can represent the 

resultant of mobile agents’ execution on a host. The attacker behaviour is modelled as a time 

function, in which long time means unsuccessful attack, and in the case of any possible 

modification in the agent state, it can be detected by the agent owner. MAGHS is a solution to 

truncation and repudiation attacks in mobile agent systems. 

 

4.3.2.2 Statistical Modelling 

Statistical modelling is another approach, in which anomaly of an open MAS can be detected. In 

statistical anomaly detection techniques, it is assumed that anomalies occur in the low 

probability regions of the stochastic model (Chandola, Banerjee and Kumar 2009). There are 

two types of statistical anomaly modelling: (1) parametric techniques such as the Gaussian 

model (Aggarwal and Yu 2008) or regression model methods (Kadota, et al. 2003) and (2) non-

parametric techniques such as histogram-based methods e.g. (Dasgupta and Majumdar 2002).  

In both modelling techniques, a statistical model of the training data is generated and a 

statistical test is applied to the new data set. Anomalies are the resultant instances with low 

probability. Parametric techniques assume an underlying distribution in the statistical 

population, while non-parametric techniques do not assume any distribution and the number and 

nature of the parameters are not fixed in advance. These anomaly detection methods can be used 

to detect some probing attacks, ontology attacks and denial of service attacks on open MAS. A 

disadvantage of statistical techniques is the assumption that the data is generated from a 

particular distribution and it often does not hold for high-dimensional real data sets (Chandola, 

Banerjee and Kumar 2009). 



Chapter 4: A Review of Methods to Secure Open MASs 

60 

 

 

4.4 Conclusions 

In this chapter, we have reviewed and categorised security solutions intended to provide security 

in MASs and have suggested some solutions from network security literature as 

countermeasures to attacks against open MASs. The presented security solutions can be divided 

into prevention and detection approaches; Encryption and certification, policy-based methods 

and secure agent development are three prevention mechanisms, and monitoring and modelling 

are two detection approaches. Some of the presented security techniques did not aim at securing 

open MASs or even MASs, but they were found to be applicable to open MASs. 

To illustrate links between various techniques a visual summary of security approaches in 

the literature proposed to secure MASs is provided as a chronological tree in Fig. 4-1. This might 

not be a comprehensive phylogenetic tree but it shows key relations amongst different 

approaches from 1995 to 2012. This does not include approaches to security issues that are 

specific to the mobility of mobile agents; i.e. threats from mobile agent to platforms and from 

the platforms to agents. 

  



Chapter 4: A Review of Methods to Secure Open MASs 

61 

 

1995 

1996 

1997 

1998 

1999 

2000 

2001 

2002 

2003 

2004 

2005 

2006 

2007 

2008 

2009 

2010 

2011 

 

 

Thirunavukkarasu et al (1995) 

         Foner (1996)  

 

 He et al. (1998) 

Wong & Sycara (1999) Wang et. al (1999) 

Poslad & Calisti (2000)    Jansen & Karygiannis (2000) 

 

Finin et. al (2002)      Liuet al. (2002) 

      Novak  (2003) Borselius & Mitchell (2003)   Mouratidis et. al (2003) 

Zaslavsky (2004)       Braynov & Jadliwala (2004)        Bresciani et. al (2004) 

Page et. al (2005) 

Park et al. (2006)  Paruchuri et al. (2006)  

Vila et al. (2007)    Loulou et al. (2007)   Mouratidis (2007) 

    Quillinan et al. (2008)   Beydoun et al (2009) 

Noordende et al. (2009)  Paruchuri et al. (2009) Dove (2009)    Xiao (2009)      Mouratidis (2009) 

Botelho (2009)             Clark et al (2010)          Massacci et al. (2010) 

Sun & Chen (2011)  Tekbacak et al. (2011)   Rojas & Mahdy (2011) 

Fig.    4-1: Chronological order of proposed security approaches to secure MASs. ‘E&C’ 

means encryption and certificate-based methods, ‘Po’ is policy-based methods, ‘SAD’ 

stands for secure agent development, ‘Mon’ is for monitoring approach and ‘Md’ 

means modelling technique. 

The proposed appropriate security techniques for each attack category are summarised in 

Table  4-4. In this table, � indicates an effective and feasible security technique to counter an 

attack, which is strongly recommended, although it may not completely solve the problem.  

means that the attack cannot be prevented or detected with the specified security countermeasure 

and � shows that the security technique does not solve the problem, but helps us make the attack 

harder or discourage attackers. The feasibility and effectiveness of suggested solutions are 

imprecise because of variations in security sub-techniques and their dependency on the 

application and implementation of the open MAS. For example, variety access-control 

mechanisms have different capabilities in the prevention of ontology attacks, however in 

SAD 

Po 

E&C 

Mon 

Noordende et al. (2004) 

[Md] 

[Md] 



Chapter 4: A Review of Methods to Secure Open MASs 

62 

 

Table  4-4, it is assumed that the most effective mechanism will be used to countermeasure each 

attack. 

Table     4-4: Summary of security mechanisms to countermeasure different attacks on open MASs 

 Prevention Detection 

      Countermeasures 

 

 

 Attacks 

E
n

cr
y

p
ti

o
n

  
a

n
d

 

C
er

ti
fi

ca
te

s 

P
o

li
cy

-b
a

se
d

 

(A
cc

es
s 

C
o

n
tr

o
l)

 

P
o

li
cy

-b
a

se
d

 

(B
eh

a
v

io
u

r 
d

e
fi

n
.)

 

A
g

en
t-

o
ri

e
n

te
d

 

S
o

ft
w

a
re

  
E

n
g

. 

L
a

n
g
u

a
g

e-
b

a
se

d
  

S
ec

u
ri

ty
 

P
e
er

  
M

o
n

it
o

ri
n

g
 

In
fo

rm
a

ti
o

n
 

M
o

n
it

o
r
in

g
 

P
o

li
cy

  
M

o
n

it
o

ri
n

g
 

A
ct

iv
it

y
 

M
o

n
it

o
r
in

g
 

A
tt

ac
k

 M
o

d
el

li
n
g
 

R
ea

d
 a

tt
a
c
k
 Interception � �  � �   �   

Access to agents � �  � �   �   

Provenance � �  � �  � � �  

P
r
o

b
in

g
 

Ontology attack � � � � �  � � � ���� 

Active probing 

 
� � �  �  � � � ���� 

A
lt

er
in

g
 

Interaction 

modification 
� �  � � �  �   

Agent code 

modification 
� �  � � �  �   

Agent log 

modification 
� �  �  �  �   

In
je

ct
io

n
 

Message injection � �   �  � � � ���� 

Knowledge 

injection 
� �   �  � � � ���� 

F
lo

o
d

in
g
 

Link flooding   � �  �   � � 

Agent flooding   � �  �   � � 

D
o

S
 

Logical DoS   � �  �   � � 

 Repudiation �   �    �  � 

D
ec

ep
ti

o
n
 Fake agents � � � �     � ���� 

Fake services � � � �  �   � ���� 

Reputation attack �  � �     � � 

 

In this thesis, hereafter, the term security refers to confidentiality and secrecy, unless 

otherwise stated. The next chapter deals with information leakage problem in open MASs.  



Chapter 5: Information Leakage in Agent Interactions 

63 

 

 

 

Chapter 5 

5. Information Leakage in Agent Interactions 

 

5.1 Introduction 

Information leakage denotes disclosure of secret information to unauthorised parties via insecure 

information flows. Information leaks in agent interactions occur when secret data are revealed 

through message transfers, constraints or assigning roles to agents. Revealing information may 

also help an adversary learn about the MAS and form a plan of attack. 

Common security techniques such as conventional access control, encryption, digital 

signatures, virus signature detection and information filtering are necessary but they do not 

address the fundamental problem of tracking information flow in information systems, therefore, 

they cannot prevent all information leaks. Access control mechanisms only prevent illegal access 

to information resources and cannot be a substitute for information flow control (Sabelfeld and 

Myers 2003). Encryption-based techniques guarantee the origin and integrity of information, but 

not its behaviour.  

In this chapter, different types of insecure information flows in open MAS governed by LCC 

interaction models are introduced. Then, two approaches to avoid information leaks through 

insecure flows are proposed. 

 

5.2 Security Levels 

The first step in secure information flow analysis for LCC interaction models is defining security 

levels for LCC terms and components. A set of security levels is a finite lattice i.e. a partially 

ordered set with a top element H and a bottom element L, ordered by ≤. Lower in the lattice 

denotes “less secure” and higher in the lattice indicates “more secure”. Without loss of 



Chapter 5: Information Leakage in Agent Interactions 

64 

 

generality, a two-element security lattice is assumed with levels l, for low security (public 

information), and h, for high security (secret information). The following definition characterises 

the concept of security levels in this thesis.  

 

Definition  5-1 (Security Levels): 

We consider a simple lattice L with two security levels, low l and high h, security level l ∈ (L, ≤), 

where l ≤ h and ≤ is a partial order relation.  

 

We need to ensure that information flows only upwards in the lattice (D. E. Denning 1976) 

e.g. when l ≤ h, permissible information flows are from l to l, from l to h and from h to h, but 

flow from h to l is not allowed.   

 

5.3 Insecure Information Flows  

A MAS keeps secrets confidential during agents’ interaction if it only allows secure information 

flow. There are two types of information flows: explicit flow and implicit flow. Distinctions 

between explicit and implicit flows in LCC interaction models are shown with the following 

examples. It is assumed that all the LCC terms in the given examples are public information 

(which have security level l ), except for the following secret variables (which have security 

level h ) 

SecretMessage, SecretID, S, PrivateAgent, secretAgent. 

 

5.3.1 Explicit flows 

Insecure explicit information flow denotes direct sending or assigning of secrets. Explicit flows 

in LCC interaction models may occur in three situations: (a) message passing, (b) invoking a 

constraint and (c) assigning a role to an agent. In explicit information flows, the operations are 

performed independently of the value of their terms (Denning and Denning 1977), e.g. the 

content of an LCC message does not affect the sending operation. Insecure explicit flow may 

cause secret information to be leaked to a publicly observable term. Consider the following LCC 

codes as examples of explicit information flows: 



Chapter 5: Information Leakage in Agent Interactions 

65 

 

 

a) Message passing 

The following explicit flow, in which the instance of a variable SecretMessage is sent 

to a low level agent P with the risk of secret information leakage: 

SecretMessage => a(publicAgent, P)   

The secret message can also be received by another agent: 

SecretMessage <= a(publicAgent, P) 

This breach of security can occur in an LCC clause, when a public agent P sends the 

SecretMessage to any (public or secret) receiver agent R: 

a(publicAgent, P):: 

... 

SecretMessage => a(receiver, R) 

...  

On the other hand, a message passing pattern can occur without a security breach. 

The following explicit flows that sends (receives) a PublicMessage variable to (from) a 

secretAgent S is permissible. 

PublicMessage => a(secretAgent, S) 

and 

PublicMessage <= a(secretAgent, S) 

 

b) Invoking a constraint 

An example of an explicit flow that discloses the value of a secret variable to a publicly 

observed variable is assigning SecretID to a PublicVariable in an LCC constraint:  

null <- assign(PublicVariable, SecretID) 

Any constraint that updates the value of a public term using a secret term causes an 

unacceptable information flow. The constraints in LCC play an important role, although 

the implementation details of constraint solvers are invisible to LCC clauses and the 

constraint solver might even be a remote web service. However, it is the responsibility 



Chapter 5: Information Leakage in Agent Interactions 

66 

 

of the LCC programmer to prevent any illegal information flow caused by invoking a 

constraint.   

 

c) Assigning a role to an agent 

When a role is assigned to an agent in the definition of an LCC clause, the security level 

of the role and the agent identifier need to be compatible. The following role definition 

is not a permissible flow, because it assigns a secret role secretAgent to a low security 

agent PublicAgent.   

a(secretAgent, PublicAgent)::  

  ... 

On the other hand, a publicAgent role (or a secretAgent role) can be assigned to a 

PrivateAgent: 

a(publicAgent, PrivateAgent)::   ... 

 

5.3.2 Implicit Flows 

Insecure implicit flows disclose some information through the program control flow. In other 

words, based on a definition from Denning and Denning (1977), we can define an implicit 

information flow from term T1 to term T2, when a performed operation causes a flow from 

some arbitrary T3 to T2, based on the value of T1. Thus, conditional LCC expressions are the 

sources of insecure flows. 

The following example is a conditional statement, in which a public message is sent to a 

public agent P, if the constraint is satisfied (SecretID ≤ 10). The explicit flow in sending the 

message is permitted, but the implicit flow from the constraint to the public agent P that leaks 

information about the range of SecretID variable is illegal. If a public message is sent to agent 

P, it reveals that the SecretID is less than or equal to 10 and if it is not sent, the SecretID is 

greater than 10.  

PublicMessage => a(publicAgent,P) <- lessOrEqual(SecretID, 10) 

In another example below, the public agent P can guess the range of SecretID, by receiving 

a public message containing a public variable X, although the message passing part does not 



Chapter 5: Information Leakage in Agent Interactions 

67 

 

explicitly disclose any information. Either the public agent receives publicMsg(X) or 

publicMsg(1), knowing the value of X, some information about SecretID is leaked.    

publicMsg(X) => a(publicAgent,P) <- lessOrEqual(SecretID,X) 

or 

publicMsg(1) => a(publicAgent,P) 

 

The above example might leak information about SecretID, but not the exact value of it. 

The following example discloses the value of SecretID; assuming SecretID is not negative, the 

initial value of X is set to 0 and the constraint increase(X1,X,1) means X1=X+1. In the recursive 

clause below, if SecretID is not equal to 0, the value of X1 is X+1 and the clause is called again 

with the updated X1; i.e. a(myAgent(X1),Q). Finally, when X equals to SecretID+1, 

publicMsg(X) reveals the value of SecretID to the public agent P. 

a(myAgent1(X), Q):: ... 

( 

   a(myAgent1(X1), Q) <- lessOrEqual(SecretID,X) ∧ increase(X1,X,1)  
   or 

   publicMsg(X)=>a(publicAgent,P)        % when X equals SecretID +1 

 ) 

In a similar example, the following LCC clause binds R to the precise value of SecretID if 

the role completes successfully. So, it discloses the value of SecretID to the public agent P by 

sending publicMsg(R) message. In this example, even if R is not sent as a message parameter 

(i.e. publicMsg instead of publicMsg(R)), the public agent P can discover the value of 

SecretID by counting the number of received messages. 

 

a(myAgent2(X,R), Q):: 

 ... 

 ( 

   publicMsg(R)=>a(publicAgent,P) <- lessOrEqual(SecretID,X) ∧ increase(X1,X,1)  
   then a(myAgent2(X1,R), Q)  



Chapter 5: Information Leakage in Agent Interactions 

68 

 

 )  or 

   a(myAgent2(X,X), Q) <- equals(SecretID,X)  

  

Information may leak because of the termination behaviour of the interaction model1. 

Recursion is the key to this type of leaks. In the following sample LCC clause, the adversary 

learns that the value of the SecretID is 0 if the interaction model terminates. 

a(myAgent3, Q):: 

   a(myAgent3, Q) <- ¬equals(SecretID,0)  

 

Adversaries can exploit explicit or implicit information flows to perform attacks such as the 

illustrated examples of interception and probing attacks in Chapter 3. We need to prevent both 

explicit and implicit insecure information flows in order to ensure no information leaks to 

unauthorised parties.   

 

5.3.3 Summary 

Table  5-1 to Table  5-3 summarise the acceptable and unacceptable explicit and implicit 

information flows in message passing, role assignment and conditional statements in LCC codes. 

It is assumed that a secret LCC term and a public LCC term are shown by h and l, respectively.  

In Table  5-1, permissible and impermissible information flows in sending a message, based 

on the security levels of the sender, the receiver and the message are shown. The three 

undesirable flows are: 1) sending a high security message by a low security sender to a low 

security receiver, 2) sending a high security message by a low security sender to a high security 

receiver and 3) sending a high security message by a high security sender to a low security 

receiver. 

 

 

                                                           
1 This is also called information leaks via the termination channel. 



Chapter 5: Information Leakage in Agent Interactions 

69 

 

Table     5-1. Permissible and impermissible information flows in sending a message 

based on the security levels of the sender, the receiver and the message   

Sender Receiver Message Permissible Flow 

L L L Yes 

L L H No 

L H L Yes 

L H H No 

H L L Yes 

H L H No 

H H L Yes 

H H H Yes 

 

Table  5-2 shows different combinations of role allocation (without arguments) to agent 

identifiers, in which the only illegal flow is from a high security role to a low security agent. 

 

 

 Table     5-2. Permissible information flows in the LCC role definition regarding the 

security levels of the role and the agent identifier   

Agent Identifier Role Permissible Flow 

L L Yes 

L H No 

H L Yes 

H H Yes 

 

The sources of implicit information flows are conditional operations. Table  5-3 summarises 

secure and insecure information flows in LCC via conditional expressions in the form of 

(Operation1 <- Constraint) or Operation2. There is one generic insecure flow from 



Chapter 5: Information Leakage in Agent Interactions 

70 

 

constraints to operations, when the operation is public but the constraint is secret. In Table  5-3, 

Max_Operation is the maximum security level of Operation1 and Operation2.  

 

Table     5-3. Permissible and impermissible information flows in LCC conditional 

expressions regarding the security levels of the operations and the constraint. 

Max_Operation = max (Operation1 level, Operation2 level). 

Constraint Max_Operation Permissible Flow 

L L Yes 

L H Yes 

H L No 

H H Yes 

 

The next section suggests countermeasures against insecure information leakage in LCC 

interaction models. It worth noting that, depending on the attack scenario or the type of the 

vulnerability, we sometimes investigate the whole interaction model and sometimes analyse a 

few clauses within it. 

   

5.4 Solutions 

Two approaches to address information flow problems in MASs governed by LCC interaction 

models are conceptual modelling by analysing the abstract models of LCC code and language-

based information flow analysis. In the first approach, an LCC interaction model is translated 

into an abstract model, in which information leakage is investigated using an existing reasoning 

tool. In language-based analysis of LCC code, we employ security types for LCC terms and 

enforce a security policy by type checking. 

 



Chapter 5: Information Leakage in Agent Interactions 

71 

 

5.4.1 Conceptual Modelling 

In conceptual modelling, the idea is to convert LCC interaction models into another 

formalisation (e.g. pi-calculus or propositional logic) and use an existing information leakage 

analysis tool for the new representation (e.g. Counterdog1, Secure Session2, etc.).  

In (Bijani, Robertson and Aspinall 2011), we have suggested a framework to detect active 

probing attacks that use electronic institutions to attack MASs. Although this example does not 

address all the information flow problems directly, it can describe the three main steps to 

conceptual modelling illustrated in Fig.  5-1. We have used conceptual representation to 

formulate LCC interaction models into a logical form and employed Counterdog as the analysis 

tool. In active probing attacks, a malicious interaction model designed by an adversary is 

deployed on a MAS. The adversary might then infer confidential facts about the agents by 

analysing the results of smart queries during interactions.  

 

 

Fig.     5-1: The three steps to information leakage analysis using LCC conceptual 

modelling. 

 

5.4.1.1 Annotation 

The first step in analysing the secrecy of an LCC interaction model is defining the security 

policy through adding security labels to LCC terms. In the original LCC syntax there are no 

means of assigning security levels to information. Variables, constants and constraints are 

ultimately the most elementary causes of the described information leaks, so when we receive 

(e.g. download) an LCC interaction model, we need to annotate it to reflect the confidentiality 

level of the information.  

                                                           
1 Becker, et al., Foundations of Trust Management (2012). 

2 Corin, et al., Secure Implementations for Typed Session Abstractions (2007). 

Annotation Abstraction 
Information Leakage 

Analysis Tool 

The interaction 
model with 

security labels 

Conceptual 
representation 

Download/create 
an LCC interaction 

models 



Chapter 5: Information Leakage in Agent Interactions 

72 

 

We define the following annotation format:  

label(Term, Level). 

in which label is a keyword,  Term  is any LCC term and Level is the security label (e.g. 

Fig.  5-2 (b)). Without loss of generality, security labels are defined as having two levels: high 

(h) or low (l). l Means low security or public information and h means high security or secret 

information. The default security level for a term without a label would be high security.  

 

Definition  5-2 (Security Environment): 

A security environment Π is a finite map from LCC terms to security levels and is defined by 

Π		::=		empty		|	Π,	T:	9l,	h;,     ( 5-1) 

in which Π is empty (with no binding) or an updated environment that contains a mapping of the 

LCC term T to the level l or h.	 	As defined in section  2.3, an LCC term is either a constant, a 

variable or a structured Prolog term. 

 

5.4.1.2 Abstraction 

The next step in the security analysis is converting the annotated interaction models to simpler 

logical representations, which we call the conceptual representation, in order to identify only 

those parts of the LCC code related to the secrecy evaluation. In this conceptual representation, a 

more minimal interpretation of LCC code is represented, which reflects information leaks or 

helps to find information leakage. The conceptual representation may vary in different 

applications and scenarios. Hence, we cannot define a general-purpose conceptual representation 

that reflects all information leakages and can be perform automatically without need of manual 

supervision. 

As an example, for the detection of active probing attacks, in (Bijani, Robertson and 

Aspinall 2011) we define the following conceptual representation: the then operator in LCC is 

translated in this case to a logical conjunction. That is because we use non-temporal logic and 

we ignore the effect of the actions’ sequence on the information inferred by the adversary. LCC 

constraints are interpreted as queries or injections from the counterpart agent (an adversary). 

Hence the conditional operator (<-) is used only to find queries and injections and it does not 



Chapter 5: Information Leakage in Agent Interactions 

73 

 

appear in the representation. The sent message in the left of <- (if one exists), could be an 

answer to the query. The received message’s parameters are also considered as new information 

for the receiver agent. We can legitimately interpret LCC interaction models in this way because 

we are not defining the semantics of the LCC specification but, instead, we are describing 

information that can be inferred to be true, as the result of our analysis. The abstractions of three 

simple LCC clauses are illustrated in Fig.  5-2(c). 

 



Chapter 5: Information Leakage in Agent Interactions 

74 

 

 

Fig.     5-2: An example of interaction modelling using the Counterdog tool to detect 

potential information leakage in an active probing attack. Finally, it shows that an 

adversary could infer that secret holds. 

 

 (d) Information  

      leakage  

      analysis 

 

 
IN

3
 ={ 

fact1 ���� fact2, 
secret(x) ���� fact1 
} 
q
1
 = decide 

ok is sent: 
Query result= true 

 Clause 3 
a(victim3, V)::  
  null <-( ¬fact1() ∨∨∨∨ fact2() ) then  
  null <- ( ¬secret() ∨∨∨∨ fact1() )then    
  ( ok => a(attacker, A) <- decide() 
  or 
   notOk => a(attacker, A) 
  ) 

  Clause 2  
a(victim2, V):: 
  null <- fact2() then  
  ( ok => a(attacker, A) <- decide() 
  or 
    notOk => a(attacker, A) 
  ) 
  a(victim3, V) 
  

(a) Interaction models 

 Clause 1 
a(victim1, V):: 
  null <- fact1() then   

  ( ok => a(attacker, A) <- decide() 
  or 
    notOk => a(attacker, A) 
  ) 
 then a(victim2, V) 

 

 
IN

1
 = {fact1} 

 q
1
 = decide 

  
notOk is sent: 
Query result= false 

 

A
b

stra
ctio

n 

(c) Conceptual representations 

 
label(fact1,l).     label(fact2,l).  
label(ok,l).            label(notOk,l).    

label(decide,l).  label(secret,h).  

(b) Annotations 

IN
2
 = {fact2} 

q
2
 = decide 

  
notOk is sent: 
Query result= false 

 que
ry 

 que
ry 

 que
ry 



Chapter 5: Information Leakage in Agent Interactions 

75 

 

5.4.1.3 Information Leakage Analysis 

After the conceptual representation of interaction models, in which injections and queries are 

defined, we analyse them to detect the possibility of information leakage. A leakage happens 

when a malicious agent infers any confidential fact about its counterpart’s local knowledge.  

In potential active probing attacks, we want to know when an agent plays a role in an 

interaction model designed by an adversary, in which some queries are asked,	what secret 

information the adversary can infer. We then use a theorem prover such as Counterdog (Becker 

and Sultana 2012). Counterdog is an automated reasoning tool by Microsoft Research for a 

counterfactual meta-logic on propositional Datalog1 programs. Counterdog is complete for this 

logic (i.e. can prove or disprove counterfactual statements) and accepts classical propositional 

logic statements as input. This prover employs an inference system for detectability2 (Bryans, 

Koutny, et al. 2008) of a specific property in the input statements.  

In Fig.  5-2 (a), a simple template of an active probing attack scenario is illustrated. The 

victim agent interacts with an attacker agent using three clauses of an interaction model 

published by an adversary. The constraints fact1 and fact2 and their combinations, which we call 

injections, are placed in the indication model. The same query (about the decision of the agent) 

is asked in the three interactions. In this attack, the assumption is that the injection could change 

the agent’s knowledge state, which affects the agent’s decisions. In other words, these 

constraints are information added to the knowledge-base of the vendor agent and could shape its 

decisions. If the attacker’s query is unsuccessful the first two times (notOk message is sent) and 

successful for the third time (ok message is sent back to the attacker), after some analysis, the 

adversary can infer that the secret (which is a confidential fact) holds.  

To check whether an adversary can deduce secret information form the interaction, we can 

formulate the attack in the following format accepted by the Counterdog prover: 

|-  [fact1] ~ok  &  [fact2] ~ok  &  [fact1] ok  -->  secret 

                                                           
1 Propositional Datalog is similar to Prolog, but all predicate parameters are constants and it does not have the 

“impure” features (such as cut, not, etc.) commonly presented in Prolog implementation.  

2 Detectability or non-opacity is an information flow property that denotes the ability to infer a specific predicate from 

a set of rules. 



Chapter 5: Information Leakage in Agent Interactions 

76 

 

In this formula, the facts that hold (injections) are in bracket and the query result comes after 

that. The secret term to be investigated is placed after the --> operator. The prover determines if 

the formula is a valid theorem or a non-theorem. 

As revealing secret information is important to us, we need to check the detectability of each 

secret LCC term to ensure high security information does not leak.  

 

5.4.1.4 Updating the LCC Rewrite Rules 

The proposed information leakage analysis can be performed before running the interaction 

model or at run-time. If we perform information leakage analysis before run-time, we need to 

check all possibilities of the query result.  In the run-time analysis, the analyser is executed at 

each step of the LCC clause expansion, and if no leakage is detected, it allows the interaction to 

continue; so we would need an automatic translation of LCC code into the conceptual 

representation. 

In order to integrate the automatic abstraction phase into the LCC interpreter, we upgrade 

the LCC clause expansion mechanism (as explained in Chapter 2) to detect probing attacks.  The 

general format of the new rewrite rules is as following: 

s(∆, ReW, ∆′), 

in which s is the notion of the new rewrite rules, ∆ is the current security context, ReW is an 

LCC rewrite rule in Fig.  2-2 (page 21), and ∆′ is the updated security context after expanding the 

rewrite rule. ∆= (Π, R, K), where Π is the mapping between LCC terms and security labels, R is 

the conceptual representation of interaction models and contains the set of injections and queries 

and K is the agents’ current state of knowledge.  

, `7 ⇒ % ← �	 ��,	��,�,9�⇒:;�








� 	*�7 ⇒ %�, Δ, ΔOa 							#$			-b0'�*0_'-3BΔ,Δ′, �C ∧ 	,�0#,$#-.��,Δ′� 
where 

C = the constraint to be satisfied  

∆ = security context before abstraction of C,  

∆′ = security context after abstraction of C, 



Chapter 5: Information Leakage in Agent Interactions 

77 

 

and extract_rep function extracts the conceptual representation of an LCC term. The updated 

LCC rewrite rules are shown in Fig.  5-3. 

 

, e% ∷  	 ��,	��,�,��




� 	% ∷ ", Δ, ΔOf 													#$		, e 	 �� ,	��,�,��




� 	", Δ, ΔOf                         (1) 

, e%�	&'	%( �� ,	��,�,��




� 	", Δ, ΔOf 																#$	¬*+&,-.�%(� ∧ 	, e%� �� ,	��,�,��




� 	", Δ, ΔOf          (2) 

, e%�	&'	%( �� ,	��,�,��




� 	", Δ, ΔOf 																#$	¬*+&,-.�%�� 	∧ 	,�%( ��,	��,�,��




� 	", Δ, ΔO�          (3) 

, e%�	0ℎ-2	%( �� ,	��,�,��




� 	"	0ℎ-2	%(, Δ, ΔOf 								#$	,�%� ��,	��,�,��




� 	", Δ, ΔO�	          (4) 

, e%�	0ℎ-2	%( �� ,	��,�,��




� %�	0ℎ-2	", Δ, ΔOf 								#$	*+&,-.�%�� 	∧ 	,�%( �� ,	��,�,��




� 	", Δ, ΔO�     (5) 

, `� ← 7 ⇐ % �� ,	���9�⇐:;,�,∅		�











� 	*�7 ⇐ %�, Δ, ΔOa		 
	#$	�7 ⇐ %� ∈ 7� 	∧ 	-b0'�*0_'-3BΔ,Δ′, �C ∧ 	,�0#,$#-.��,Δ′�     (6) 

, `7 ⇒ % ← �	 ��,	��,�,9�⇒:;�








� 	*�7 ⇒ %�, Δ, ΔOa 						#$	-b0'�*0_'-3BΔ,Δ′, �C ∧ 	,�0#,$#-.��,Δ′�     (7) 

, e2@++ ← �	 �� ,	��,�,∅		�





� 	*�7 ⇒ %�, Δ, ΔOf 																			#$			-b0'�*0_'-3BΔ,Δ′, �C ∧ 	,�0#,$#-.��,Δ′�  (8) 

, e���, �� ← � �� ,	��,�,∅		�





� ���, �� ∷  , Δ, ΔOf				 
      #$	*+&,-.�A, ���, �� ∷  � ∧ 	-b0'�*0_'-3BΔ,Δ′, �C ∧ 	,�0#,$#-.B�,Δ′C   (9) 

*+&,-.B*���C         (10) 

*+&,-.�%	&'	 � ← *+&,-.�%�	∨ 	*+&,-.� � 
*+&,-.�%	0ℎ-2	 � ← *+&,-.�%� 	∧ 	*+&,-.� � 
*+&,-.�� ∷  � ← *+&,-.� � 

Fig.     5-3: The Updated LCC rewrite rules for  expansion of one clause P in an 

interaction model. 

 

The definition of LCC traces (Robertson, Barker, et al. 2009) is extended to include secrecy 

analysis (Fig.  2-3). As described in Chapter 2, S is the state of an interaction, Mi is the initial set 



Chapter 5: Information Leakage in Agent Interactions 

78 

 

of messages, p is a unique identifier for an agent. The ⊇G  operator in E ⊇G EH	selects a clause Sp 

from the interaction state S. EH ∪G E merges specific clause Sp to S and generate a new interaction 

state S′. i(S, Mi, Sf, ∆, ∆′) is true when the sequence of interactions and an initial set of messages 

Mi change the initial state of the interaction model S and security context ∆ to the state Sf and the 

security context ∆′. LA is responsible for the information leakage analysis, described in 

section  5.4.1.3, through calling the Counterdog theorem prover. Counterdog can also be called 

as a web service, as it has a web interface. If it detects an attack, it will prevent the expansion of 

the rest of the interaction model and will generate an alert.   

#BE, 7� , EI,∆,∆IC 	↔ 	gE = EI∧
∆ = ∆Ih	∨ L

MMN
E ⊇G EH 																															 ∧,�EH �� ,	��,�,��




�EOH,∆,∆O� 	∧ i%�∆O, 3� 	∧EH ∪G E = EO 																							∧#BEO,7P, EI,∆,∆IC														 Q

RRS 

E ⊇G EH 	↔ 	 ∃	�,  . �EH ∈ E				 ∧ 			EH = ���, �� ∷  � 
 Fig.     5-4: Revised definition of a trace through an LCC interaction model S that 

supports secrecy analysis. The LA function calls the Counterdog prover.  

 

 

5.4.1.5 Discussion 

Conceptual modelling of the agent’s interaction models as a countermeasure to information 

leakage vulnerabilities has been described by an example addressing active probing attacks on 

LCC protocols. 

The main advantages of this approach are its independence from the LCC implementation 

and the flexibility in using existing secrecy analysis tools.  Conceptual modelling is not depend 

on the LCC interpreter, which might have been implemented in Prolog, Java, etc., as the model 

of the LCC interactions are analysed not the LCC codes. We employed Counterdog, while other 

automated reasoning tools such as ProVerif (Blanchet 2001) can be used to prevent information 

leakage.  

The main drawback of the conceptual modelling approach is that we check the encoded LCC 

protocols, rather than the LCC code itself. Hence, it might be difficult to pin-point the exact 

cause of the found leakages in the original LCC code. Furthermore, automatic abstraction, which 



Chapter 5: Information Leakage in Agent Interactions 

79 

 

is the key to implement an automatic information leakage analysis in the conceptual modelling 

method, is not easy to generalise. This is because there is no unique way to abstract different 

exploitation scenarios. In the given example, in the process of defining queries, a proper result is 

very much dependant on user opinion. 

It is important to note that the suggested detection example is intended to detect only one 

type of information leakage, i.e. as a result of active probing attacks. To detect all insecure 

information flows, the abstraction and analysis phases need to be extended.  

If we want to prevent information leakage, it is necessary to simulate the interactions that an 

agent undertakes, before run-time, and to know the security level of each term, the constraints 

that hold and the query results in advance. This simulation might not be accurate, undermining 

the analysis based on it. In a more cautious approach, ambiguous interaction models may be 

rejected. In run-time analysis we cannot guarantee to prevent a leak before it happens and we 

may only detect it when it has already occurred, which would be too late.  

As free variables in formulas are disallowed in Counterdog, conceptual representations with 

variables need to be bound to a quantifier or converted to ground expressions. Nevertheless, if 

the detection happens at run-time, finding a ground substitute might not cause loss of generality 

in practice. This is because variables normally have been replaced with constants, before the 

conceptual representation phase.  

Language-based information flow analysis of LCC codes is another countermeasure for 

information leakage in open MAS that overcome most of the weaknesses. The next section 

describes this approach. 

 

 

5.4.2 Language-based Information Flow Analysis 

Information flow analysis is one of the main techniques for studying confidentiality (Gorrieri, 

Martinelli and Matteucci 2009). Conventional security mechanisms usually target the operating 

system or low-level network communications and treat programs as black boxes, so they do not 

guarantee end to end security. Secure information flow analysis restrains both access to 

information and use of information by enforcing an end-to-end security policy. 

Sound type systems are a promising language-based technique to specify and implement an 

information flow policy (Sabelfeld and Myers 2003). This is because security type checkers can 



Chapter 5: Information Leakage in Agent Interactions 

80 

 

automatically enforce security rules in programmes. In the security type checking approach, 

every LCC term has a security type and security is enforced by type checking. 

 

 

 

Fig.     5-5: Three steps of information flow analysis using a security type system. 

 

We propose a language-based information flow analysis framework for agent interaction 

models designed using the LCC language. In this framework, a security type system is designed 

for the LCC language to apply information flow controls on interaction models. The three steps 

for analysing information flow using the security type checking technique are shown in Fig.  5-5. 

To perform the secrecy analysis, the first step is defining the security policy (confidentiality 

policy) by annotation of the LCC code with security labels. This is similar to the annotation step 

in section  5.4.1.1. Security labels can be saved in the LCC interaction model file or as a separate 

file. So, the confidentiality policy can be created by the designer, programmer or the user of the 

interaction model.  

The next step is automatic assignment of security types to LCC terms based on the syntactic 

structure of the terms. If there is any constraint that accepts different kinds of arguments (i.e. 

read-only, write-only, read-write) the annotation process is semi-automatic, i.e. the argument 

types need to be identified manually. This is due to the fact that the difference of arguments 

cannot be inferred from the syntax of the constraints.The third step is running the type checker 

against the code. We argue that type checking is a promising approach to prevent explicit and 

implicit insecure flows in order to guarantee secrecy. In the next chapter, this approach will be 

described in detail; both static and dynamic security type checking will be discussed. 

 

Annotation Type Assignment 
Security Type 

Checking 

The interaction model 

with security labels 
Download/create 

an LCC interaction 
models 



Chapter 5: Information Leakage in Agent Interactions 

81 

 

5.5 Conclusions 

In this chapter, we have addressed the information leakage problem in open MAS governed by 

electronic institutions and developed secrecy analysis frameworks for LCC interaction models. 

Explicit and implicit insecure information flows have been explained using a number of LCC 

examples. The two approaches to detect and prevent insecure information flows in choreography 

systems using the LCC language are conceptual modeling of interaction models and language-

based information flow analysis. 

The conceptual modeling method includes three steps namely: annotation, abstraction and 

information leakage analysis. In an example on the detection of active probing attack against 

LCC protocols, we have described these steps. In the annotation phase, we label LCC interaction 

models to reflect the secrecy level (high or low) of each term. For each interaction model, the 

abstraction generates a conceptual (logical) representation that helps to find information leaks. 

In the information leakage analysis phase, we have used the Counterdog theorem prover to 

detect the possibility of private information disclosure by an adversary. The exemplar 

information leakage analysis tells us whether an adversary could infer some facts from the local 

knowledge of an agent, by placing some constraints in an interaction model and asking some 

queries. The suggested attack detection system can be deployed on each agent as a part of the 

LCC interpreter. Hence, we have updated the LCC rewrite rules in the LCC interpreter to 

perform the abstraction and information leakage analysis.   

The second approach is language-based information flow analysis using security types. 

Augmenting LCC terms with security types is a promising technique because then the security 

type checkers can automatically enforce security policies in agent interactions. The next chapter 

proposes the security-typed LCC and explains this approach. 



Chapter 6: Information Flow Analysis in LCC 

82 

 

 

 

Chapter 6 

6. Information Flow Analysis in Lightweight 

Coordination Calculus 

 

6.1 Introduction  

In this chapter, we introduce the security-typed LCC language. We propose a language-based 

information flow analysis technique for the LCC language to prevent information leaks problem 

by introducing a novel security type system. The proposed framework is inspired by the security 

type system of Volpano and Smith (1997).  

This chapter is laid out as follows. First, a security type system is proposed by defining the 

security levels, which represent the confidentiality policy, security types and the type inference 

rules. Then, this security type system is evaluated by proving some properties of it such as type 

soundness, simple security and confinement. Next, the dynamic and the static approaches in type 

checking are reviewed and the LCC rewrite rules are upgraded to support security types. 

Furthermore, two more information flow properties (i.e. non-interference and declassification) 

and some extensions to the type system are discussed. Then, the implementation of the dynamic 

approach is briefly described. Finally, the Conclusions section summarises the content of this 

chapter. 

 

6.2 Security Type System for LCC  

A security type system is defined by a set of type definitions and typing rules to determine if an 

interaction model is well-typed.  



Chapter 6: Information Flow Analysis in LCC 

83 

 

 

6.2.1 Security Types 

The type rules are judgments of the form: ΓΓΓΓ				⊢				TTTT				 :	:	:	:	ϕϕϕϕ, where Γ is a type environment that maps 

term T to type ϕ. Here are some definitions: 

 

Definition  6-1 (Security Type Environment):  

A security type environment (context) Γ is a finite map from LCC terms to security types and is 

defined by 

Γ		::=		empty		|	Γ,	T:	ϕ,     ( 6-1) 

in which Γ is empty (with no binding) or an updated environment that contains a mapping of the 

term T to the type ϕ. If there exists a ϕ that Γ ⊢	T	 :	ϕ,	 then	 T	 is called a well-typed  LCC 

expression under the security context of	Γ.			
 

Definition  6-2 (Security Types): 

The security types of our system are defined as following: 

ϕ = τ | uTrm τ | agent τ | con τ | op τ,     (    6-2) 

where τ ranges over elements of security levels, agent identifiers have only type “uTrm τ”, 

agents have only type “agent τ”, constraint expressions have only type “con τ”, operational 

commands1 have only type “op τ” and messages, Constraint arguments have type “uTrm τ” or τ. 

role names and other terms (variables, constants and structures) have only type τ.  

To have a better understanding of the meanings of the security types, the following 

description explains the intuition behind them:   

                                                           
1 Operational commands are the Def keyword in the LCC syntax (Fig.  2-1): Def := Role | Message | Def then 

Def | Def or Def | null<- C | Role <- C 



Chapter 6: Information Flow Analysis in LCC 

84 

 

a. Γ⊢	X:	uTrm	τ  means that an updated agent identifier in a role assignment or message 

passing operation or an updated argument in a constraint has a security level higher 

than or equal to τ in context Γ. 

b. Γ⊢	T	:	τ  means that an identifier, a role name, or a message T  (with every identifier 

inside it) has a security level lower than or equal to τ in context Γ. 

c. Γ⊢	a(Role,Id):	agent	τ  means in the agent definition, agent identifier Id, to which a 

role is assigned has a security level τ or higher in context Γ. 

d. Γ⊢	C	 :	 con τ  means that the constraint name and every arguments within C has a 

security level τ or lower  in context Γ.  

e. Γ⊢D:	 op τ  means that every receiver of a message or any updated identifier in an 

operational command (i.e. Def) has a security level τ or higher  in context Γ. 

 

Γ (T) denotes the security level of the term T, e.g. if we have t1 : h   and  f1 : con l, then 

Γ (t1) = h   and Γ (f1) = l. 

Security levels are directly assigned to LCC terms by annotations of the LCC code (similar 

to section  5.4.1.1) with the following format:   

label(Term, Level). 

in which label is a keyword,  Term is any LCC term and Level is the security levels high (h) or 

low (l). The security types then assigned based on the term definitions. All security types can be 

inferred from the term structure automatically, except constraints’ arguments that need to be 

defined explicitly (by the user). By default, a constraint’s arguments are assumed to be non-

updatable and security type τ is assigned to them.  

 

6.2.2 Type Inference for LCC 

The proposed security type system for LCC programs is described by two sets of typing rules 

(Fig.  6-1) and subtyping rules (Fig.1-2). Each rule is read from bottom left and is applied 

recursively, e.g. rule Agnt states that in order to assign a role to an agent in form of a(R, ID) 

that has security type of agent τ, we must first check whether the security type of the role R is τ 

and then whether the security type of the agent identifier is uTrm τ.	 It guarantees that a high 

level role will not be assigned to a low agent. 



Chapter 6: Information Flow Analysis in LCC 

85 

 

The security typing rules id and uId explain if an LCC identifier (a constant or a variable) is 

defined in the environment Γ, security types τ or uTrm τ  may be assigned to it. Selection of τ or 

uTrm τ is based on the structure of the LCC expression. The security label of the current clause 

(this) is important while message passing and calling a constraint. This is created and added to 

the security environment Γ by the Init rule. 

  



Chapter 6: Information Flow Analysis in LCC 

86 

 

	y:	z	{	|| ⊢ y:	z �.																																									 	y:	z	{	|| ⊢ y:	@y'}	z @�.		 
	 	| ⊢ 	2@++: &3	ℎ ~@++																							 	| ⊢ $�+,-: &3	ℎ ��+,-							 
	 	| ⊢ y:	�| ⊢ *�y�:	� �+&,-																									 | ⊢ �:	z, | ⊢ ��:	@y'}	z		| ⊢ ���, ���:	��-20	z %�20					 

| ⊢ ���, ���:	��-20	z	|, 0ℎ#,: ��-20	z ⊢ ���, ��� ∷ ��-20	z �2#0∗ 
| ⊢ 0ℎ#,:	��-20	z, | ⊢ 7:	z, | ⊢ % ∶ ��-20	z| ⊢ 7 ⇒ % ∶ &3	z		 E2.	 
	| ⊢ 0ℎ#,: ��-20	z, | ⊢ 7: z, | ⊢ % ∶ ��-20	z| ⊢ 7 ⇐ %:	&3	z	 �,� 

| ⊢ 0ℎ#,:	��-20	z, | ⊢ $:	z, | ⊢ y�:	�| ⊢ $�y��:	*&2	z ��++			� = z|	@y'}	z, # = 1,… , 2 

| ⊢ $:	z, | ⊢ y�:	z| ⊢ $�y��:	z E0'@*0				# = 1,… , 2									 | ⊢ �: *&2	z		|¬�:	*&2	z	 ~&0		 
| ⊢ ��: *&2	z, | ⊢ �(: *&2	z| ⊢ �� ∧ �(	:	*&2	z %2.																				 | ⊢ ��: *&2	z, | ⊢ �(: *&2	z| ⊢ �� ∨ �(	:	*&2	z �' 

| ⊢ �:	*&2	z, | ⊢ 7 ⇒ %: &3	z	| ⊢ 	7 ⇒ % ← �:	&3	z		 �$1						 | ⊢ �: *&2	z, | ⊢ 7 ⇐ %: &3	z	| ⊢ � ← 7 ⇐ %:	&3	z	 �$2 

| ⊢ 2@++:	&3	z	, | ⊢ �: &3	z	| ⊢ 2@++ ← �:	&3	z		 �$3						 | ⊢ ���, ��:	��-20	z	, | ⊢ �: *&2	z	| ⊢ ���, �� ← �: &3	z		 �$4 

| ⊢ %�:	&3	z	, | ⊢ %(:	&3	z	| ⊢ %�	0ℎ-2	%(:	&3	z			 E-�														 | ⊢ %�:	&3	z	, | ⊢ %(:	&3	z	| ⊢ %�	3�'	%(:	&3	z			 A�' 

	| ⊢ %�:	&3	z	,			|, *&2,0'�#20[%�] ⊢ %(:	&3	z		| ⊢ %�	&'	%(:	&3	z	 �ℎ&#*- 

| ⊢ ���, ���:	��-20	z, | ⊢ �-$	&3	z	|, ⊢ ���, ��� ∷ �-$: &3	z �&+- 

Fig.     6-1: The security typing rules for LCC 

 



Chapter 6: Information Flow Analysis in LCC 

87 

 

� ≤ �			�-$+-b							 	Γ ⊢ y:	�, � ≤ �OΓ ⊢ y:	�O E@�							 	�� ≤ �(	, �( ≤ ��	�� ≤ �� 		y'�2, 

	z′ ≤ z	��-20	z ≤ ��-20	zO 	%�-20�@+-																								 	z ≤ z′	*&2	z ≤ *&2	zO 	�&2�@+- 

	z′ ≤ z	@y'}	z ≤ @y'}	zO 	@y'}�@+-																											 	zO ≤ z	&3	z ≤ &3	zO 	�3�@+-						 
Fig.     6-2: Subtyping rules 

 

The rule Snd expresses that if the sender (this), the receiver A and the message M have 

security level τ, then the sending operation (M ⇒ A) can have the security type op τ. The rule 

Rsv is the same as Snd. We need to assure that no high security message is accessed and sent by 

a low security agent; checking the security level of the sender along with the security level of the 

massage in Snd and Rsv rules guarantees this. Sending and receiving operations in LCC are 

dual, so if there exists a leakage in message sending in one clause, the same leakage will be 

detected in receiving the message in the counterpart clause. The rules Agnt, Snd and Rsv in 

conjunction with subtyping rules prevent explicit flows; they imply that assigning or sending 

public information to secret agents is possible, but not vice versa. It is similar to the concepts of 

“write up is possible” and “write down is forbidden” in the security type system for imperative 

programming languages, e.g. (Volpano and Smith 1997). 

The Call rule states that when we call a constraint, the security level of its functor1, the 

security level of the current clause (this) and the security level of either read-only arguments 

(Ti: τ	) or write-only arguments (Ti: uTrm τ	) have to be the same. This ensures us that a public 

agent can not access secret constraints and a public constraint may not reveal secret information 

to a public agent. The Struct rule denotes that in structured non-updatable terms (such as 

messages, role names and read-only arguments) the security types and levels of the functor f and 

the arguments Ti must be the same. The rules And, Or and Not are regulating the composition of 

constraints in LCC. The rule If1 states that the security type of constraint C and the message 

sending operation (M ⇒ A) needs to be matched so that the conditional expression is allowed. 

Security typing of other conditional expressions (If2 to If4) is performed in a similar way to If1.  

                                                           
1 Non-numeric constant 



Chapter 6: Information Flow Analysis in LCC 

88 

 

The rule Seq say that if two LCC expressions have the same security level, their composition 

has also that security level. The Choice rule functions in the same way, only it also considers the 

security level of the constraint of the first part A1 to prevent implicit information flow from the 

constraint in A2. The rule Role checks whether the role definition a(R,ID) agrees with the body 

of the LCC clause. The remaining rules of the security type system are subtyping rules in 

Fig.  6-2. The subtyping rules AgentRule, uTrmRule and opRule are contravariant1 and the 

conRule is covariant2.  

 

6.3 Evaluation of the Type System  

Two approaches to evaluate the proposed system are the analytical method using proofs and the 

experimental method by running the type system on several LCC interaction models. We choose 

the former approach and prove some of the type system properties. This is because proofs give 

stronger guarantee of the correctness of the type system and do not need large number of LCC 

interaction models with known security issues.  

Type soundness (or type safety) is the most basic feature of a type system (Pierce 2002). Two 

properties that show the type soundness in a type system are progress and preservation. In our 

security type system, preservation means that expansion of a well-typed term by the LCC 

rewrite rules is a well-typed term (clause expansion preserves well-typedness). Progress 

guarantees that a well-typed LCC expression does not get stuck in the execution of LCC clauses, 

assuming that agents can evaluate (satisfy/dissatisfy) the constraints and the necessary 

input/output messages are generated. 

 

Definition  6-3 (Final Step): An LCC expression is in its final step when either it can be 

marked as a closed expression by an LCC rewrite rule or it is a constraint that is evaluated 

by a satisfy or satisfied rule.  

 

                                                           
1 Contravariant denotes the possibility of converting from a narrower type to a wider type, e.g. from h to l.  
2 Covariant means the possibility of converting from a wider type to a narrower type, e.g. from l to h. 



Chapter 6: Information Flow Analysis in LCC 

89 

 

Definition  6-4 (Transition L	⇝L’	): transition of L⇝L’	means L’  is an expansion of LCC 

expression L,	either as a result of an LCC rewrite rule i	 !�,��,	��,
,��







� i′ (page 21, Fig.  2-2, 

rules 1-13) or as a structural expansion of a compound constraint using rules 20-25 in 

Fig.  2-2. 
 

This is an example of a compound constraint expansion: assume L	 is null	←C	 and the 

compound constraint C  is C1	∧	C2 , when C  is unfolded into C1	∧	C2		then L’	is null	←	C1	∧	C2 and 

we can write L	⇝L’. 
 

Theorem  6-1 (Progress): 

If Γ	⊢	L	:	ϕ, i.e. L is a well-typed LCC expression, then either L is a final step or else there 

exists some L’  that L⇝L’.	
Proof: By induction on the structure of Γ	⊢	L	 :	ϕ	; we apply the induction on the smaller 

derivations of typing rules assuming this property holds for all of these sub-derivations 

(above the line in typing rules) and proceed by case analysis.  

Case Seq: i = %�	0ℎ-2	%( and i: &3	z, so %�:	&3	z,			%(:	&3	z	
By the induction hypothesis	either A1 is a final step or else some A1’ exists that A1⇝ A1’.	Similarly,	either A2 is a final step or else some A2’ exists that A2⇝A2’. If both A1 and A2 
are final steps (closed), based on the following LCC rewriting rule in Fig 2-2: 

*+&,-.�%	0ℎ-2	 � ← *+&,-.�%�	∧ 	*+&,-.� � 
A1 then A2 is a final step.  If A1 is a final step and A2⇝A2’, according to the following 

rewrite rule: 

%�	0ℎ-2	%( !� ,��,	��,
,�		�








� %�	0ℎ-2	"													#$	*+&,-.�%��	∧ 	%( !�,��,	��,
,�		�








� " 

 A1 then A2 ⇝	 A2’. If both A1 and A2 are not final steps, which means A1⇝A1’ and A2⇝A2’, based on the following LCC rewriting rule: 

%�	0ℎ-2	%( !�,��,	��,
,�		�








� 	"	0ℎ-2	%(																																		#$	%� !� ,��,	��,
,�		�








� " 



Chapter 6: Information Flow Analysis in LCC 

90 

 

A1 then A2 ⇝	A1’.  If A1⇝A1’	and  A2 is a final step, it is not an acceptable state in LCC, 

so the result is false: A1 then A2 ⇝false. 
Case If1:  i = 7 ⇒ % ← � and i: &3	z, so 7 ⇒ %: &3	z and �: *&2		z,	

By the induction hypothesis	either C is a final step or else some C’ exists that C⇝C’. If C 

is a final step, in the following LCC rewriting rule in Fig 2-2: 

7 ⇒ % ← �	 !�,��,	��,
,9�⇒:;�











� *�7 ⇒ % ← ��																	#$	,�0#,$#-.���, 
either the evaluation of satisfied(C) is true, so 7 ⇒ % ← �	 !� ,��,	��,
,9�⇒:;�











� *�7 ⇒ % ←
��  or else it returns false, which indicates 7 ⇒ % ← � !� ,��,	��,
,∅		�







�$�+,-. In either case, L ends up in a closed state which means a final step.   

If C⇝C’, it means that C	is a compound constraint C’‘ that is equal to ¬C1,  C1	∧	C2 or C1	∨	C2, so based on one of the following rewrite rules in Fig 2-2: 

,�0#,$#-.�¬��� ← ¬,�0#,$#-.����, 
,�0#,$#-.��� ∨ �(� ← ,�0#,$#-.���� 	∨ 	,�0#,$#-.��(� , 
,�0#,$#-.��� ∧ �(� ← ,�0#,$#-.���� 	∧ 	,�0#,$#-.��(� , 
then we have i ⇝ 7 ⇒ % ← �′. 
We showed only a subset of the cases; other cases are discussed in Appendix A. □ 

 

Theorem  6-2 (Preservation): 

If Γ	⊢	L:	ϕ, i.e. L is a well-typed LCC expression and L⇝L’, then Γ	⊢	L’	:	ϕ’. 	
Proof: By induction on the structure of Γ	⊢	L	:	ϕ	and proceed by case analysis  (similar to the 

proof of Theorem  6-1). 

Case Seq: i = %�	0ℎ-2	%( and i: &3	z	
We know that L is well-typed, so we have	%�:	&3	τ	�2.	%(:	&3	τ. According to the 

following rewrite rules: 

%�	0ℎ-2	%( !�,��,	��,
,�		�








� 	"	0ℎ-2	%(												#$	%� !� ,��,	��,
,�		�








� ") 



Chapter 6: Information Flow Analysis in LCC 

91 

 

%�	0ℎ-2	%( !�,��,	��,
,�		�








� %�	0ℎ-2	"												#$	*+&,-.�%��	∧ 	%( !�,��,	��,
,�		�








� "      

the transition L⇝L’ happens either by %� !�,��,	��,
,�		�








� " or when A1 is a final step 

(closed(A1)), by %( !�,��,	��,
,�		�








� ". 

If ¬closed(A1), the %� !�,�� ,	��,
,�		�








� " can be derived by any of the clause expansion 

rewrite rules, some of the cases are shown; others are similar: 

1) Subcase %� = ���, �� ← � 

By the induction hypothesis, we have ���, �� ← �: &3	z, A1⇝A1’ and %�′: &3	z. The 

following rewrite rule, which deals with recursion in LCC, is the only rule that expands A1:  
 ���, �� ← � !�,��,	��,
,∅		�







����, �� ∷   #$	*+�@,-�A, ���, �� ∷  � ∧ ,�0#,$#-.���. 
So we have  %�O = ���, �� ∷ B. Consequently, %�	0ℎ-2	%( ⇝ 	���, �� ∷ B	0ℎ-2	%( and %�	0ℎ-2	%(: op τ. 

2) Subcase %� = 7 ⇒ % 

By the induction hypothesis, we have 7 ⇒ %: &3	z, A1⇝A1’ and %�′: &3	z. The rewrite 

rule that handles A1 is only 7 ⇒ %	 !�,��,	��,
,9�⇒:;�











� *�7 ⇒ %�. So we have %�O =*�7 ⇒ %�. Consequently, %�	0ℎ-2	%( ⇝ 	7 ⇒ %	0ℎ-2	%( and %�	0ℎ-2	%(: op τ. 
Other subcases are similar. 

 

Case If1:  

We know that i ≡ 7 ⇒ % ← � is well-typed; i: &3	z, so 7 ⇒ %: &3	z and �: *&2		z, we 

also have L⇝L’.	
Based on the LCC rewriting rule (9) in Fig 2-2 and the definition of transition ⇝, the 

possible expansions of L to L’ are: 

1) If C⇝C’, it means that C	is equal to a compound constraint C’‘ that might be ¬C1,  C1	∧	 C2 or C1	∨	 C2	. Then we have i′ ≡ 7 ⇒ % ← �′. By the induction hypothesis, �′: *&2		z, hence, based on the type rule If1,   7 ⇒ % ← �′:	&3	z. 



Chapter 6: Information Flow Analysis in LCC 

92 

 

2) If satisfied �C� returns true, then it is a final step: 

7 ⇒ % ← �	 !�,��,	��,
,9�⇒:;�











� *�7 ⇒ % ← �� and based on the type rule Close, the 

typing of the LCC expression will not be changed: 

	| ⊢ 7 ⇒ % ← �:	&3	z| ⊢ *�7 ⇒ % ← ��:	&3	z �+&,- 

3) If satisfied	 �C� returns false which means: 7 ⇒ % ← �	 !�,��,	��,
,,∅�







�$�+,- , then 

based on the type rule False we have: false: op h, i.e. L’: op h     

We showed only a subset of the cases; other cases are discussed in Appendix B. □ 

 

Two important properties of a security type system are ‘No Read Up’ and ‘No Write Down’ 

or ‘simple security’ and ‘confinement’ as referred to by (Smith and Volpano 1998). No Read Up 

means that identifiers within a message or a constraint can not have security level higher than the 

massage level or the constraint level. In other words, when a message (or a constraint) has a 

security level τ, it assures us that it will not reveal any information with security level more than τ. 

‘No Write Down’ means having an operational command with the security level of op τ	(any 

operational command), any updatable identifier within it has a security level higher than or equal 

to τ. By updatable identifier, we mean an agent when a role is assigned to it or a message is sent 

to it. We also mean an argument in a constraint whose value is updated. E.g. this denotes that it 

is not possible to assign (send) a higher role (higher message) to a lower agent.  

 

Proposition  6-3 (No Read Up): 

If T		is a well-typed LCC constraint, message or identifier with security type τ;	i.e.	Γ	⊢T:	τ		or	Γ	⊢T:	con	τ, then T  contains only identifiers with security level not higher than τ. 	
It can be proved by induction on derivation of Γ	⊢	T	:	τ	and	Γ	⊢	T	:	con	τ;	i.e.	induction 

on the smaller derivations that are used to derive Γ	⊢	 T	 :	 τ and	Γ	⊢	T	 :	 con	τ, then 

proceeding by case analysis on the typing rule that was applied last in the proof of Γ	⊢	T. 



Chapter 6: Information Flow Analysis in LCC 

93 

 

 

Proposition  6-4 (Confinement): 

If T	is a well-typed agent definition or LCC operation; i.e.	Γ	⊢T:	agent	τ	 	or	Γ	⊢T:	op	τ, 
then any agent identifier in the agent definition, any receiver of a message, or any updated 

term in an operation, has a security level equal or higher than τ. 

 

It can be Proved by case analysis on the rule that was applied last in the proof of Γ	⊢	T	:	
ϕ and by induction on the type rules that are used to derive Γ	⊢	T	:	ϕ.  

 

In the next section, we show how the security type system can be used by the LCC 

interpreter at run-time to verify whether an interaction model is secure. 

 

6.4 Dynamic Information Flow Analysis 

Dynamic (run-time) information flow analysis can appropriately be added to LCC language 

because of the dynamic nature of LCC language. Dynamic security checks may be accomplished 

via two similar approaches: monitors (Russo and Sabelfeld 2010) or dynamic security typing 

(Hennigan, Kerschbaumer, et al. 2011). We select the latter approach to use the proposed type 

system (section  6.9). 

Based on the reaction policy, type checking could result in termination of the execution or 

breach detection and continuation of the clause expansion (Fig.  6-3).   



Chapter 6: Information Flow Analysis in LCC 

94 

 

 

Fig.     6-3: Upgrading the LCC interpreter (a) LCC interpreter executes LCC codes (b) 

Amended LCC interpreter performs the security type checking and executes the 

secrecy annotated LCC codes  

 

LCC clauses are well-typed by ensuring that every expansion of them is performed 

according the corresponding security typing rule. Security type checking is performed using the 

proposed formal type system which ensures that the security types of LCC terms are used 

consistently. 

In order to integrate dynamic information flow analysis into the LCC interpreter and to 

detect or prevent information leakage, the LCC clause expansion mechanism (Robertson 2005) 

(explained in section  2.3) has been upgraded by amending the LCC rewrite rules.  

The extended LCC rewrite rules augmented with dynamic type checking are shown in 

Fig.  6-4. The updated rewrite rules in Fig.  6-4 are of the form �	 !�,��,	��,
,��







�∆ 	�, where Y is the 

expansion of X performing role Ri, Mi is the initial set of messages, O is the output message set, 

and Mo is the subset of Mi which is not yet processed and P is the interaction model. ∆ is the 

current security environment. Δ=�Γ,	K,	Π,	L,	Σ	�, where Γ is the mapping between LCC terms 

and secrecy labels (the confidentiality policy), K is the agents’ current state of knowledge, Π is 

the reaction policy defining the desired behaviour when an unacceptable information flow is 

found and L is the set of possible information leakages found. Σ is an optional part of Δ that 

LCC 

Interpreter 

LCC 

Code 

Execution 

LCC Interpreter +  

Security Type Checker 

LCC 

Code 

Successful 

execution 

(guarantees 

secrecy) 

Annotations 

(confidentiality 

policy Γ ) 

Execution 

failure 
(information 

leakage) 

 Reaction 

policy (Π) 



Chapter 6: Information Flow Analysis in LCC 

95 

 

keeps a record of provenance information about the agent’s counterparts, who have interacted 

with the current agent. Elements of Δ	could be denoted as	Δ�member�; e.g. Δ�Γ	�	is	Γ or Δ�Π	�	is	Π. Consequently, the LCC expansion of the initial clause Ci to the final clause Cn under the 

security environment ∆ is as follows.  

�� 	��,	���	,
,���







�∆ ����, … , ���� 	���	,	��,
,���








�∆ �� 

 

typeChk(X,Δ) is in charge of checking the possibility of information leakage from LCC 

expression X using the security type system introduced in section  6.2. Type checking is 

performed when the other conditions for rewriting an expression are met. E.g. only if �7 ⇐ %� ∈7� in (8) or satisfied(C) in (9) return true, then typeChk(X,Δ) is called.  

As a result of rewrite rules in Fig.  6-4, the clause of the interaction model appropriate to the 

given role is expanded. The first rule starts unpacking a clause by expanding its body (B) and the 

rules (2) to (12) expand different parts of the clause body. Based on the closed rules in (13) to 

(18), an interaction rule is decided to be closed.   

The interpreter tries to find a matching rewrite rule for each LCC expression, if no match is 

found, it means that there is a syntax error in the LCC code. If a match is found but the 

conditions of the rewrite rule are not fulfilled, it returns false and continues to find another 

rewrite rule that matches the expression. 

���, �� ∷  	 !�,�� ,	��,
,�		�







�∆ ���, �� ∷ "									#$		 	 !� ,�� ,	��,
,�		�







�∆ " ∧ 	0>3-�ℎ¢����, ��: :	", ∆�	     (28) 

%�	&'	%( !� ,��,	��,
,�		�







�∆ "																																	#$	¬*+&,-.�%(� 	∧ 		%� !�,�� ,	��,
,�		�







�∆ "      (29) 

%�	&'	%( !�,�� ,	��,
,�		�







�∆ "																																		#$	¬*+&,-.�%�� 	∧ 	%( !�,��,	��,
,�		�







�∆ "       (30) 



Chapter 6: Information Flow Analysis in LCC 

96 

 

%�	0ℎ-2	%( !�,��,	��,
,�		�







� 	"	0ℎ-2	%(										#$	%� £�,¤�,	¤�,¥,¦		�







�∆ "         (31) 

%�	0ℎ-2	%( !� ,��,	��,
,�		�







�∆ %�	0ℎ-2	"					#$	*+&,-.�%�� 	∧ 	%( £�,¤�,	¤�,¥,¦		�







�∆ " ∧ 	0>3-�ℎ¢�%�	0ℎ-2	", ∆� (32) 

%�	3�'	%( !� ,��,	��,
,�	∪�5	�











�∆ "�	3�'	"(	  
		#$	%� !�,�� ,	�� ,
,�			�








�∆ "� 	∧ 	%( !�,��,	��,
,�5		�








�∆ "( ∧ 	0>3-�ℎ¢�"�	3�'	"(, ∆� (33) 

� ← 7 ⇐ % !� ,�� ,	���9�⇐:;,
,∅		�













�∆ *B� ← 7 ⇐ %, ∆�i�C	  
#$	�7 ⇐ %� ∈ 7� ∧ 0>3-�ℎ¢�� ← 7 ⇐ %, ∆� ∧ ,�0#,$>���  (34) 

7 ⇐ % !�,�� ,	���9�⇐:;,
,∅		�













�∆ *�7 ⇐ %,∆�i��																		#$	�7 ⇐ %� ∈ 7� ∧ 0>3-�ℎ¢�7 ⇐ %, ∆�       (35) 

7 ⇒ % ← �	 !�,��,	��,
,9�⇒:;�











�∆ *�7 ⇒ % ← �, ∆�i��				#$	,�0#,$#-.��� ∧ 0>3-�ℎ¢�7 ⇒ % ← �, ∆�    (36) 

7 ⇒ %	 !�,��,	��,
,9�⇒:;�











�∆ *�7 ⇒ %, ∆�i��																									#$	0>3-�ℎ¢�7 ⇒ %, ∆�         (37) 

2@++ ← �	 !� ,��,	��,
,∅,�







�∆ 	*�2@++ ← �, ∆�i��						#$	,�0#,$#-.��� 	∧ 0>3-�ℎ¢�2@++ ← �, ∆�	           (38) 

���, �� ← � !� ,�� ,	��,
,∅		�







�∆ ���, �� ∷  				  											#$	*+�@,-�A, ���, �� ∷  � ∧ ,�0#,$#-.��� 	∧ 0>3-�ℎ¢����, �� ← �, ∆� (39) 

���, �� !�,��,	��,
,∅		�







�∆ ���, �� ∷  				    #$	*+�@,-�A, ���, �� ∷  �         (40) 

 

*+&,-.B*��, i�C                (41) *+&,-.�%	&'	 � ← *+&,-.�%�	∨ 	*+&,-.� �             (42) *+&,-.�%	3�'	 � ← *+&,-.�%� 	∧ 	*+&,-.� �            (43) *+&,-.�%	0ℎ-2	 � ← *+&,-.�%� 	∧ 	*+&,-.� �            (44) *+&,-.�� ∷  � ← *+&,-.� �              (45) 

Fig.     6-4: The amended LCC rewrite rules, which include security-related information 

and security type checking, for expansion of one clause in an interaction model in the 

LCC interpreter.  

 

It is the agents’ responsibility to satisfy the constraints in the clause and it is assumed that 

agents have a mechanism to fulfil the constraints. satisfied(C) is true if C can be satisfied from 

the current knowledge state K	of the agent and satisfy(C) is true when K can be made to fulfil the 

constraint C. clause (P, X) is true if clause X exists in the interaction model P.  



Chapter 6: Information Flow Analysis in LCC 

97 

 

The algorithm for a simple type checking (typeChk) is defined in Fig.  6-5. In Fig.  6-6, an 

updated typeChk algorithm is defined, in which based on the result of the type checking and the 

reaction policy Π, true or false is returned.  

In this version of LCC clause expansion, three secrecy policies affect the behaviour of the 

LCC interpreter: prevention, detection and no-detection. The default policy is prevention 

(prevMode) that averts expansion of the current expression when a leakage is found. If the 

detection policy (detectMode) is selected in Π, the interpreter only keeps a record of the 

confidentiality breaches and continues to expand the expression X. Selection of the no-detection 

policy (noChkMode) bypass the information flow analysis and the LCC interpreter do not 

perform the type checking procedure. The false result from typeChk(X,Δ) shows that a breach is 

found and the true result means either the type checking option is off, no leakage is found, or a 

leakage is found but the detection mode is on.  

 

Table     6-1: Different reaction policy modes in security type checking: prevention, 

detection and no-detection modes. 

Reaction Policy 

modes 

Priority (Pre, Det, NoCk) Type checking typeChk result 

when a leakage is found 

prevMode 1 1 0 0 Yes False 

detectMode 2 0 1 0 Yes True 

noChkMode 3 0 0 1 No True 

  



Chapter 6: Information Flow Analysis in LCC 

98 

 

 

typeChk(X, ∆) { 

TR = findTypeRule(X);  // find a security typing rule that matches 

X  

Br = checkBreach(X, TR, ∆);      // type check to find a breach   

if ( Br ≠ null ) {      // if a leakage is found 

Update (∆(L), ∆(Σ), Br, X); // save the new leakage info in L 
and Σ 
Continue = FALSE;           // prevent the clause expansion  

} else   Continue = TRUE;      // no information leaks   

return Continue; 

}  

Fig.     6-5:  A basic security type checking algorithm of typeCkh(X,ΔΔΔΔ)  

 

typeChk(X, ∆) { 

  if( ¬noChkMode(∆) ){  // perform the information flow analysis 

TR = findTypeRule(X);  // find a security typing rule that matches 

X  

Br = checkBreach(X, TR, ∆);      // type check to find a breach   

if ( Br ≠ null ) {      // if a leakage is found 

Update (∆(L), ∆(Σ), Br, X); // save the new breach in L and Σ 
if ( prevMode(∆) )   

   Continue = FALSE;       // prevent the clause expansion  

else         // detectMode(∆) 

     Continue = TRUE;      // detect and continue 

} 

} else   Continue = TRUE;      // no information leaks   

} else Continue = TRUE;           // no information flow analysis 

return Continue; 

}  

Fig.     6-6:  The updated security type checking algorithm of typeCkh(X,ΔΔΔΔ)  



Chapter 6: Information Flow Analysis in LCC 

99 

 

 

When a leakage is found, there might be cases in which the clause expansion failure itself 

leaks some information to the adversary and informs them that some high level information is 

blocked from them.  

To minimise this kind of information leakage and to have more flexible secrecy policies, 

new options forming the type checking strategy can be defined in Π. In Table  6-1, the following 

three reaction policy modes and their priorities are shown: prevention (prevMode), detection 

(detectMode) and no-detection (noChkMode). The new secrecy policy is defined as the 

following: 

Π	= (Pre, Det, NoCk), 

in which users can choose a policy by selecting one of the Boolean values Pre, Det and 

NoCk (Table  6-1). Only one policy may be activated at a time; which means if more than one 

option is chosen, based on the defined priorities they may be overridden. E.g. both Π=(1,0,1) and 

(1,0,0) have the same effect, as Pre overrides Det and NoChk values and results in prevention 

mode. 

 

6.4.1 Drawbacks of Dynamic Type Checking 

The main disadvantage of purely run-time information flow analysis similar to the one discussed 

above, is their false negative result as they cannot detect implicit information flows. This is 

because in dynamic security analysis of LCC, all execution paths of the program are not 

checked. The following simple example show when the dynamic analysis can go wrong. All 

terms are low security and the only terms with high security levels are Secret and this (i.e. the 

current clause environment). 

( publicMessage1 => a(publicAgent, P) <- check(Secret) ) 

or   

 publicMessage2 => a(publicAgent, P)  

 

The following rewrite rule handles the first part of the code: 

7 ⇒ % ← �	 !�,��,	��,
,9�⇒:;�











�∆ *�7 ⇒ % ← �, ∆�i��							#$	,�0#,$#-.��� ∧ 0>3-�ℎ¢�7 ⇒ % ← �, ∆�  



Chapter 6: Information Flow Analysis in LCC 

100 

 

Let us assume the constraint does not hold; i.e. satisfied (check(Secret)) return false, 

so the first part of the conditional statement fails and the second part is processed by this rewrite 

rule: 

7 ⇒ %	 !�,�� ,	��,
,9�⇒:;�











�∆ *�7 ⇒ %, ∆�i��																									#$	0>3-�ℎ¢�7 ⇒ %, ∆�,  
then the type checking is as below: 

  

	 0ℎ#,: ��-20	ℎ	{	|| ⊢ A��2: @y'}	ℎ �., ��-20	ℎ ≤ ��-20	+| ⊢ 0ℎ#,: ��-20	+	§ E@�,																																																																															
																																									3@�+#*7-,,��-2 ∶ +	{	|	| ⊢ 3@�+#*7-,,��-2 ∶ + �., 		

3@�+#*%�-20: +	{	|	| ⊢ 3@�+#*%�-20: +	§ �., A: +	{	|| ⊢ A: @y'}	+ �.| ⊢ ��3@�+#*%�-20, A�:	��-20	+ %�20| ⊢ 3@�+#*7-,,��-2	 => 	��3@�+#*%�-20, A�: &3	+	 E2. 

This is detected as a well-typed LCC command, which is wrong! This is because based on a 

high security constraint as described in section  5.3.3. 

Another possible problem is late detection of the insecure flow in run-time security checking 

of LCC interaction models. This may result in the rewriting of some illegal LCC expressions and 

changing the state of the agent before finding the breach, for example; detection of the breach 

after a high security message is sent to a low security agent is too late. 

Generally, dynamic checking (in the best case), may assure that the current execution of an 

interaction model does not leak information, but does not tell us that the code is safe and will 

never reveal any confidential information in future, because it does not check all possible 

execution paths of the LCC program. In other words, if no breach occurs in dynamic checking, it 

means that there exists a secure execution path in the LCC interaction model. This is a Liveness 

property, which specifies that eventually "good things" do happen versus a Safety property, 

which states that no "bad things" occur during program execution (Halpern and Schneider 1987).  

 

6.5 Static Information Flow Analysis 

In static information flow analysis, LCC interaction modes are validated before being run. Static 

analysis of programmes using security type systems conservatively detects implicit and explicit 



Chapter 6: Information Flow Analysis in LCC 

101 

 

information flows and provides stronger security assurance (Sabelfeld and Myers 2003). We can 

perform static analysis to overcome the drawbacks of dynamic methods.   

The static checking explores all execution paths in LCC interaction models, hence it 

guarantees that detection of any insecure flow based on the defined type system. To perform a 

static type check, we can modify the LCC rewrite rules for the static type check, in a way that 

the whole expansion tree of an LCC clause is explored. In recursions, the clause is expanded if it 

has not already been expanded (Fig.  6-7).  

More examples of security type checking are given in the cloud computing case study in 

Chapter  7. 

 

  



Chapter 6: Information Flow Analysis in LCC 

102 

 

���, �� ∷  	 	!�,
,∆			�


�∆ ���, �� ∷ "												#$		 	 	!�,
,∆			�


�∆ "	 ∧ 	0>3-�ℎ¢����, ��: :	", ∆�  (46) 

%�	&'	%( 	!�,
,∆			�


�∆ "																																				#$	%� 	!�,
,∆			�


�∆ "     (47) 

%�	&'	%( 	!� ,
,∆			�


�∆ "																																				#$	*+&,-.�%�� 	∧ 	%( 	!�,
,∆			�


�∆ " ∧ 	0>3-�ℎ¢�%�	&'	", ∆� (48) 

%�	0ℎ-2	%( 	!�,
,∆			�


�∆ 	"	0ℎ-2	%(															#$	%� 	!� ,
,∆			�


�∆ "     (49) 

%�	0ℎ-2	%( 	!�,
,∆			�


�∆ %�	0ℎ-2	"												#$	*+&,-.�%�� 	∧ 	%( 	!�,
,∆			�


�∆ " ∧ 	0>3-�ℎ¢�%�	0ℎ-2	", ∆� (50) 

%�	3�'	%( 	!�,
,∆			�


�∆ "�	3�'	"(	          		#$	%� 	!�,
,∆			�


�∆ "� 	∧ 	%( 	!�,
,∆			�


�∆ "( ∧ 	0>3-�ℎ¢�"�	3�'	"(, ∆� (51) 

� ← 7 ⇐ % 	!�,
,∆			�


�∆ *B� ← 7 ⇐ %, ∆�i�C									#$	0>3-�ℎ¢�� ← 7 ⇐ %, ∆�    (52) 

7 ⇐ % 	!� ,
,∆			�


�∆ *�7 ⇐ %, ∆�i��																													#$	0>3-�ℎ¢�7 ⇐ %, ∆�		   (53) 

7 ⇒ % ← �	 	!�,
,∆			�


�∆ *�7 ⇒ % ← �, ∆�i��							#$	0>3-�ℎ¢�7 ⇒ % ← �, ∆�   (54) 

7 ⇒ %	 	!�,
,∆			�


�∆ *�7 ⇒ %, ∆�i��																										#$	0>3-�ℎ¢�7 ⇒ %, ∆�    (55) 

2@++ ← �	 	!�,
,∆			�


�∆ 	*�2@++ ← �, ∆�i��																#$		0>3-�ℎ¢�2@++ ← �, ∆�	       (56) 

���, �� ← � 	!�,
,∆			�


�∆ ���, �� ∷  							#$	2-©�+�@,-�A, ���, �� ∷  � 	∧ 0>3-�ℎ¢����, �� ← �, ∆�  (57) 

���, �� 	!�,
,∆			�


�∆ ���, �� ∷  				          	#$	2-©�+�@,-�A, ���, �� ∷  � 	∧ 0>3-�ℎ¢����, �� ← �, ∆�	   (58) 

*+&,-.B*��, i�C          (59) *+&,-.�%	&'	 � ← *+&,-.�%�	∧ *+&,-.� �       (60) *+&,-.�%	3�'	 � ← *+&,-.�%� 	∧ 	*+&,-.� �         (61) *+&,-.�%	0ℎ-2	 � ← *+&,-.�%� 	∧ 	*+&,-.� �         (62) *+&,-.�� ∷  � ← *+&,-.� �          (63) 

Fig.     6-7: Static analysis of an LCC clause by expansion of an LCC clause.  

 

6.5.1 Drawbacks of Static Type Checking  

Static type checking to prevent insecure information flows conservatively detects implicit and 

explicit information flows, provides stronger security assurance and proves program correctness 

with reasonable computation cost (Sabelfeld and Myers 2003) and (Huang, et al. 2004), but it 

has some drawbacks. The main disadvantages of static type checking are: 

1) False positive results: non-permissiveness of some secure information flows; static type 

checks suffer from over-approximation and may prevent genuine interaction models.   



Chapter 6: Information Flow Analysis in LCC 

103 

 

2) Lack of information in static checking; we may not know the security level of all peers 

and components of the program, especially in an open MAS we may not know who will 

join the system during the interactions. In practice, security policies cannot be 

determined at the time of program analysis and may vary dynamically.  

 

3) The proposed type system which is based on Denning's work ignores leaks via the 

termination behaviour of programs. Therefore they satisfy only termination-insensitive 

non-interference (Sabelfeld and Russo 2010), which is defined in the next section.  

4) Exhaustive checking of every possible path in the execution tree of the LCC code is 

time-consuming, while dynamic checking is faster, because it concerns only one 

execution path of the program. 

 

Some role names, constraints, variables and the security level of the terms may not be 

available to our static analysis. The LCC programmer or the expert who annotate the code by 

security levels may not know about the behaviour of some constraints and other variables, which 

will be available at run-time. E.g. in the cloud configuration case study, some general patterns 

are used and some constraints and roles’ arguments are defined at execution time by the 

counterpart agent. 

The following codes presents some examples that the static type checking rejects, while they 

do not cause any information leakage: 

SecretMessage => a(publicAgent, P)<- smallerThan(PublicVar, PublicVar)  

in which the constraint is never satisfied (because the public variable PublicVar cannot be 

smaller than itself), so under no circumstances will the secret message be sent to the public agent 

P. In a similar example bellow, the constraint is always satisfied, therefore the second part of the 

conditional statement, in which a secret message leaks, never runs and no message is sent. 

( null <- equals(PublicVar, PublicVar)  

 or  

 SecretMessage => a(publicAgent, P) ) 

 

In general, any LCC code containing a low security expression within a high security 

constraint, which does not hold at run-time is rejected by static type checking, even though it is 



Chapter 6: Information Flow Analysis in LCC 

104 

 

permissible. This is due to the fact that the security checker cannot know whether or not a 

constraint holds at the time the interaction model is checked, so it conservatively rejects the 

interaction model.  

As mentioned before, information might also leak via termination behaviour of the program, 

e.g. in the following code: 

a(secretAgent, S):: 

null <- notEqual(SecretID, 0) then 

a(secretAgent, S) 

 

The adversary learns that SecretID was 0, by observing the termination of the clause.  

 

6.6 Non-interference 

Non-interference is a popular information flow property that guarantees secrecy of information 

flow and tells us whether there is any information leakage in the information system. Non-

interference was introduced by Goguen and Meseguer (1982), but its concept goes back to the 

notion of strong dependency introduced by Cohen (1977).  

The intuition behind the non-interference property is that high-security input to the program 

must never affect low-security output. In other words, public outputs are not dependent on secret 

inputs. In the following secrecy analysis of the LCC interaction models, we consider received 

messages, role arguments, and sometimes constraint arguments as input and the sent messages as 

output. There are formulations of non-interference. In this section, we define the notion of non-

interference for the LCC interaction models inspired by the definitions of Hedin and Sabelfeld 

(2011) and Becker (2010).  

Before defining non-interference, we need to define visibility, alikeness, and observational 

equivalence as prerequisites: 

Definition  6-5 (Visibility): The set visiblei (Γ) denotes the LCC terms in the context Γ that 

can be observed by other agents (or adversaries) with the security level l or higher:  

visiblel (Γ) = { T ∈ Γ | Γ (T) ≤ l } 



Chapter 6: Information Flow Analysis in LCC 

105 

 

Definition  6-6 (Alikeness1)  

Γ1Γ1Γ1Γ1 ≈l Γ2Γ2Γ2Γ2: Two security contexts Γ1 and Γ2 are alike up to the level l iff: 

visiblel (Γ1) = visiblel (Γ2).  

 

For example, if we have the following two contexts: Γ1= { m1: l, m2: l, m3: h } and Γ2= { 

m1: l, m2: l, m3: h , m4: h }, then: visiblel (Γ1)={m1, m2} and visiblel (Γ2)={m1, m2}, which 

means other agents with security level of at least l can see these information. We also have 

Γ1 ≈l Γ2. 

Recall the LCC clause expansion mechanism of an original LCC clause Ci into Cn in terms 

of the interaction model P (introduced in section  6.4):  

�� 	��,	���	,
,���







�∆ ����, … , ���� 	���	,	��,
,���








�∆ �� 

where security environment Δ=�Γ,	K,	Π,	L,	Σ	�	and On is an output message set that can expresse 

the observable behaviour of an agent by its counterpart agents. We now define the 

Observational Equivalence relation on behaviour as follows.   

Definition  6-7 (Observational Equivalence2)  

On1≡≡≡≡l    On2: The observable behaviours of two clause expansions in terms of the interaction 

model P are observationally equivalent up to level l, if an adversary of level l cannot 

distinguish between On1 and On2. 

Observational equivalence of On1 and On2 can (imprecisely) be interpreted as two runs of an 

interaction model that are the same from the adversary’s point of view. Alikeness and 

observational equivalence are then used to define the notion of non-interference for the LCC 

interaction models. In the following, for the sake of clarity, the notion of the security context Γ is 

used instead of the security environment ∆. This is safe to do, because in our investigation, Γ 

only changes within ∆. 

 

                                                           
1 Alikeness up to level l is known as low equivalence in the literature. 

2 Observational Equivalence is also called indistinguishability. 



Chapter 6: Information Flow Analysis in LCC 

106 

 

Definition  6-8 (Non-interference)  

∀ Γ1, Γ2. (Γ1≈l Γ2)  ∧		�� 	��,	��	,
,ª«¬�







�ΓΓΓΓ¬ ���		∧		�� 	��,	��5,
,ª«­�







�ΓΓΓΓ­ ��(	⇒  (On1≡l On2) 

 

This states that for any two contexts Γ1 and Γ2 which are alike up to level of l, a successful 

expansion of the LCC clause Ci in one of the contexts with behaviour On1 and a successful 

expansion in the other context with behaviour On1 guarantee that the behaviours are 

observationally equivalent. 

Informally, if two clauses look the same to an adversary, they also behave the same. In other 

words, low output (the sent messages to an adversary) depends on low inputs (the immutable 

visible parts of the contexts).  

The proposed security type system in section  6.2 supports non-interference; Suppose Ci is a 

message sending operation 7 ⇒ %. If the type of the agent A is agent	h, the typing rule Snd 

allows sending a message (with any security level) to the high security agent A, in either case, an 

adversary of level l cannot observe any output message.  If the type of A is agent	l , then the type 

system requires that M : l , then any the observable output of the LCC rewrite rule for an 

adversary of level l will be message M. The other cases of Ci that can have an observable 

behaviour are similar. 

 

This definition of non-interference is termination-insensitive, which denotes it disregards 

information leaks due to the termination of the program (e.g. the last example in section  5.3.2). 

Thus, our type system cannot detect this type of insecure flows. 

Although the notion of non-interference is a popular and natural way of describing 

confidentiality and integrity, it may be too restrictive for many applications (Hedin and 

Sabelfeld 2011). The next section addresses this issue. 

 



Chapter 6: Information Flow Analysis in LCC 

107 

 

6.7 Declassification 

Declassification is intentional release of secret information by lowering security levels of 

information (Zdancewic and Myers 2001). Sometimes, we need a way of information 

declassification in our security system.  

A typical example is any system that asks the user credentials for authentication. Consider 

the access request to a patient record by a specialist (e.g. interaction model in Fig.  3-3). 

Rejection of a wrong password violates non-interference, because of the dependency between 

high input (i.e. password) and low output (i.e. rejection message). That implies the system leaks 

partial information about the password (i.e. incorrectness of the password) to a potential attacker. 

However, this leakage does not give valuable information to the attacker.  

To support declassification in our security type system, we can deliberately downgrade the 

security classification of information by adding the following rule: 

declassify(h) = l 

 This violates non-interference, but it may be necessary for some applications. We should 

carefully declassify information. In (Sabelfeld and Sands 2005) the principles and dimensions of 

declassification are described by identifying what can be declassified, who controls the 

declassification, where the declassification happens and when the declassification can occur 

relative to other events in the program. 

 

6.8 Extensions to the Typing Rules 

The proposed type system may be extended to be more general, flexible, or fulfil different 

requirements. In this section we discuss some extensions to the typing rules that can expand the 

information flow analysis mechanism.  

In the proposed security typing rules (Fig.  6-1), uTrm can only support variables, not 

structured terms; e.g. Only variables can be updated, not lists. This seems a reasonable 

assumption, if the term is an agent identifier but not for an argument in a constraint. To support 

data structures (such as lists) as updatable arguments in a constraint we need to add another 

typing rule:   



Chapter 6: Information Flow Analysis in LCC 

108 

 

	| ⊢ $: @y'}		z, | ⊢ y�:	@y'}	z| ⊢ $�y��:	@y'}	z @E0'@*0				# = 1,… , 2 

This helps the Call rule to guarantee that no low security list can be updated by high security 

information (no write down). 

Another important issue in LCC are constraints. Constraints in LCC may have three 

functionalities: (1) conditions for other LCC operations (i.e. message passing and recursion) 

based on their returned value, (2) performing an action (e.g. doing intended jobs) and (3) 

updating some LCC terms (variables and structures). 

The proposed type system supports these functionalities. As a condition, the main issue is 

the secrecy of the functor (the constraint’s name) which is linked to the secrecy of readable 

arguments (τ type not  uTrm τ type). So even if the secrecy level of the functor is not defined by 

the user, it can be inferred from these arguments (if any exist). As an action, we need to ensure 

that the performed operation has security less than or equal to the defined level of the functor.  

In the proposed typing rules, we introduce the type rule Call for handling constraints, but we 

can extend it as below to support the updating functionality that accept read-write arguments; the 

type system needs to be modified slightly. 

| ⊢ 0ℎ#,:	��-20	z, | ⊢ $:	z, | ⊢ y�:	�| ⊢ $�y��:	*&2	z ��++2			� = z|	@y'}	z|'©y'}	z						# = 1,… , 2 

Γ⊢	T:	 rwTrm τ is a new type that means the read-write (input-ourput) identifier T in a 

constraint has a security level τ .This argument behaves as both a read-only identifier (type τ) 

and a write-only identifier (type uTrm τ), hence, the subtyping in rwTrm types is neither 

covariant nor contravariant and the security level of this argument can not be changed during 

type inference. 

As LCC makes no commitment to the method of solving constraints, different agents might 

use different constraint solvers locally or a remotely.  Hence, the assigned security types to the 

constraints limit the behaviour of (the external) constraint solver. We assume that the 

implementation of the constraint does not leak information. 

The proposed type system can be merged with the security type system of the constraint 

solver to achieve a comprehensive information flow analysis; if a constraint is implemented by a 



Chapter 6: Information Flow Analysis in LCC 

109 

 

version of Java that supports information flow, e.g. JIF (Myers, et al. 1997), security types and 

levels of the constraint’s arguments can be translated to the equivalent types and values.  

 

• Extension of the Dynamic Approach 

The proposed dynamic security analysis can be extended to detect and prevent implicit flow. As 

discussed in section  6.4.1, the main problem of the dynamic approach is inability to prevent 

implicit flows due to ignoring some execution paths of the LCC program. The LCC interpreter 

selects one of the branches whenever it reaches to a committed choice operator. This problem 

can be solved by adding a run-time control flow stack (Hennigan, Kerschbaumer, et al. 2011). 

The control flow stack is implemented as a run-time shadow stack that records the history of 

stack labels attached to a controller at each control flow branch. 

 

SL ⋃ CL 

SL 

… 

Fig.     6-8: The control flow stack. SL is the old stack label, CL is the security level of the 

constraint, the newly pushed stack label is SL ⋃ CL.  

   

The control flow stack is illustrated in Fig.  6-8; the newly pushed stack label when the 

control flow diverges is SL ⋃ CL, where SL is the old stack label and CL is the security level of 

the constraint. The following two rules in a control flow stack, detects implicit flow: 

1. If control flow diverges due to a conditional statement, a stack label is pushed onto 

the top of the control flow stack to indicate entry into the secure region. 

2. If a control flow merges, the top of the control flow stack is popped and the previous 

stack label is restored to the level it had before the branch in control flow occurred. 

 

We then need to merge the control flow stack mechanism with the Choice typing rule in 

Fig.  6-1. The following updated Choice rule incorporates the stack level SL in order to track the 

(nested) branches and detect implicit information flow.   



Chapter 6: Information Flow Analysis in LCC 

110 

 

|, Ei ⊢ %�:	&3	z	,			|, Ei ⊢ %(:	&3	z	, z ≥ Ei		| ⊢ %�	&'	%(:	&3	z	 �ℎ&#*- 

 

Example: the following piece of LCC code leak secret information (the result of 

secretCondition) using implicit information flow: 

1.  (  

2.     publicInfo1 ⇒ a(publicAgent, p)   % security type of this line is op l. 

3.                                              � secretCondition()   % security type: con h.  

4.                 or 

5.     publicInfo2 ⇒ a(publicAgent, p)   % security type of this line is op l. 

6. ) 

Let us assume the current stack label before running this code is l. CL is the security level of 

the constraint, so it is h.  The control flow of diverges in line 1 (start of a choice operator), thus 

based on the rule 1, the new SL is SL ⋃ CL, which is h, is pushed onto the top of control flow 

stack. Now, neither line 2, nor line 5 is allowed because in the typing rule we need z ≥ Ei 

(l ≥	h). Without using the control flow stack technique, line 5 is allowed in dynamic type 

checking, which is a security breach. 

The next section briefly describes implementation of a prototype security-typed LCC.  

 

6.9 Implementation 

The security type system and a prototype of dynamic security checking application have been 

implemented to demonstrate that the proposed framework is feasible and can be automated. 

There are several implementations of the LCC interpreter. However, the original version 

implemented in Prolog has been extended to support dynamic security type checking. The 

security type system is implemented in SICStus Prolog and a user interface for security analysis 

of LCC codes is designed in C#.NET. This tool is designed for annotation of LCC interaction 

models with security labels and performing the security type checking.    

  



Chapter 6: Information Flow Analysis in LCC 

111 

 

 

 

 

Fig.     6-9: The user interface of the information flow analysis program for LCC codes 

 

Fig.  6-9 illustrates the user interface of the security-typed LCC prototype program. The user 

can write an LCC interaction model or import an existing one from a file.  In this first version of 

the security-typed LCC, security levels are defined manually by the user and terms which are not 

annotated are assigned to the highest security level (i.e. h). As a next step annotation may be 

done (semi)automatically by the matchmaker (at run-time).  



Chapter 6: Information Flow Analysis in LCC 

112 

 

An example annotation of an LCC interaction model that assigns security levels to LCC 

terms is shown in Fig.  6-10. 

  

 a(buyer, B) :: 

ask(X) => a(Seller, S)    then    price(X,P) ⇐ a(Seller, S)   then 

buy(X,P) => a(Seller, S) <- afford(X, P)   then 

sold(X, P) <= a(Seller, S) 

 

 a(Seller, S) :: 

ask(X) <= a(buyer, B) then  price(X,P)=>a(buyer, B)<-in_stock(X,P) then 

buy(X,P) <= a(buyer, B) then sold(X, P) => a(buyer, B) 

 

label(buyer, l).    label(B, l).      label(ask, l).    label(X, l). 

label(Seller, h).   label(S, h).      label(price, l).  label(P, l).      

label(buy, l).      label(afford, l). label(sold, l).   label(P, l).      

Fig.     6-10: Annotation of an LCC interaction model 

 

6.10 Conclusions 

In this chapter, we have proposed a language-based information flow framework to analyse 

information leaks in LCC interaction models. The security-typed LCC has been introduced by 

inventing a security type system, which formally defines security levels, security types and the 

type inference rules. Next, the proposed type system has been evaluated and proven to hold basic 

and important properties; i.e. type soundness, simple security and confinement.  

We have discussed two approaches for applying the security type system on the LCC 

interaction models; dynamic (run-time) and static type checking. The LCC rewrite rules in the 

LCC interpreter have then been updated to support information flow analysis.  

Two disadvantages of dynamic information flow analysis are its inability to detect implicit 

information flows and late detection of insecure flow. All execution paths of the program are not 



Chapter 6: Information Flow Analysis in LCC 

113 

 

checked in dynamic analysis and some paths are disregarded, which could lead to implicit 

information flows. To overcome this problem we provide the following options: 

a) Extending the dynamic approach with the control flow stack mechanism described in 

section  6.8. 

b) Using the static approach instead of dynamic analysis:  

The static approach is a promising method that prevents insecure implicit and explicit 

flows, but it suffers mainly from non-permissiveness, so it may also reject genuine 

flows. Another drawback of the static analysis problem is that due to the dynamic 

behaviour of open MAS, there is a lack of information about the security classification 

of agents, constraints, etc. before run-time. 

c)  The combined approach: using both static and dynamic methods 

In this approach, static analysis is performed on an interaction model and if it is rejected, 

the system informs the user. The user then can decide to continue with the interaction 

model and perform dynamic checking at run-time. There is also a hybrid approach 

(Russo and Sabelfeld 2010), in which static and dynamic analysis are merged to take the 

best of both worlds. This is especially useful in flow sensitive analysis. In flow 

sensitivity, variables may store values of different sensitivity (low and high) over the 

course of the interaction. We leave flow-sensitivity analysis in LCC interaction models 

as a topic for future research.   

A drawback of the proposed security type-checking approach is its dependency on the LCC 

language which makes hard to apply on other MAS platforms. However, adaptation of the 

proposed security type system for similar first-class agent protocol languages such as MAP1 and 

RASA2 is straightforward.   

In this chapter, we have also formally defined the notion of non-interference in LCC 

interaction models and have shown that the proposed type system maintains this information 

flow property. The non-interference property guarantees that if an interaction model is run with 

                                                           
1 MAP: Multi-Agent Protocol language (Walton 2004) 

2 RASA (Miller and McBurney 2007) 



Chapter 6: Information Flow Analysis in LCC 

114 

 

different secret inputs, while holding the public values fixed, the public output (outgoing 

messages), which is observable by the adversary, must not change.  

Non-interference is considered as a restrictive property that may reject harmless interaction 

models for applications involving tasks such as authentication and data aggregation. Thus, 

sometimes we need declassification in order to release some secret information not worthwhile 

for the adversary. Another practical limitation of the language-based approach is difficulty to 

formalise intuitive policies using annotations. Realistic policies are complex and involve many 

stakeholders which makes hard to define conditions under which declassification may occur. 

In the next chapter, as a case study, the proposed security type system is applied to cloud 

management scenarios governed by LCC interaction models. 



Chapter 7: A Case Study in Cloud Computing 

115 

 

 

 

Chapter 7 

7. A Case Study in Cloud Computing 

 

7.1 Introduction 

In this chapter, we present an application of open MAS in cloud computing, i.e. cloud 

configuration management, and investigate information leakage analysis using the proposed 

security type system in this case study. 

The cloud computing paradigm is a new class of network-based computing developed 

rapidly in the last few years to reduce administration and infrastructure costs. Cloud computing 

is predicted to revolutionise computing through reforming the management model of computing 

resource. It is also expected to be even more popular in the research community as well as 

industry in near future. Clouds can be viewed as a new generation of datacentres. 

Virtualisation technology is the core to most cloud computing models and has transformed 

the availability and management of computer resources. In a cloud, each physical machine (PM) 

is capable of hosting several virtual machines (VMs). VMs can be migrated without 

considerable interruption to the running services or any noticeable impact on performance of 

running applications. As a result, we can have highly available services through dynamic load 

balancing on clouds. 

The increasing popularity of clouds leads to new models and ideas for cloud computing; 

some examples are: “hybrid clouds”, in which some resources are in-house and others provided 

externally by different providers, “community clouds”, where resources are offered collectively 

using P2P technology, or “inter-cloud” (Bernstein, et al. 2009) as an interconnected global cloud 

of clouds. The above cloud paradigms enlarge their capabilities through engaging different 

parties.  



Chapter 7: A Case Study in Cloud Computing 

116 

 

Existing commercial tools for VM management are usually based on centralised control, in 

which performance information is collected from all of the VMs by a central service. The more 

the size and the complexity of clouds increase, the less attractive is the centralised management 

architecture. In the case of hybrid clouds, community clouds or inter-cloud there may no longer 

be a single organisation with ultimate authority over the entire sources. Hence, the centralised 

approach is no longer appropriate. 

This makes the MAS approach an appropriate solution to the problem of automatic cloud 

configuration management, especially where a globally optimal solution is not necessary or 

feasible. In this regard, we proposed a multi-agent VM management framework using LCC and 

the OpenKnowledge system in (Anderson, Bijani and Vichos 2012) and (Anderson, Bijani and 

Herry 2013). In this framework, agents negotiate to decide on VMs migration between 

themselves, without any need for a centralised authority. 

Security is a challenging problem in cloud computing, especially when the number of 

interconnected and composed services increases. Clouds raise new privacy and confidentiality 

concerns as data are usually managed by external parties on remote data centres and various 

services have access to them. It is vital to deal with privacy and confidentiality issues of cloud 

users as one of the most important security concerns to encourage them to migrate from 

traditional local data centres to the cloud computing paradigm. Otherwise, users should either 

deprive themselves from the advantages of could-based services or take the risk of exposing 

their confidentiality. 

Information leakage in cloud computing is a vulnerability that may cause serious privacy 

and confidentiality issues. This may happen in the scenario of virtual machine migration within a 

cloud (datacentre) or between clouds (datacentres). A case in which customers’ sensitive 

information is leaked in a cloud when a service provider can access multiple virtual machines is 

discussed by Wu et al. (2010). Another example of potential information leakage is when a 

virtual machine of a high risk organisation (such as a bank) is hosted on a same physical 

machine that the adversary’s virtual machine is resided. (Fig. 7-1). Ristenpart et al. (2009) 

describe cross-VM side-channel attacks to extract information from a target virtual machine on 

the same physical machine. 

 



Chapter 7: A Case Study in Cloud Computing 

117 

 

 

Fig.    7-1: Vulnerable information flow in cloud computing caused by insecure virtual 

machine migration workflow 

 

In this chapter, the information leakage problem in cloud management is addressed using the 

proposed information flow analysis in Chapter 6. As mentioned before, information flow 

analysis can be a complement to traditional security mechanisms, not an alternative. Encryption 

may be considered as a countermeasure to explicit leakage via message passing, not to other 

implicit or explicit information leaks. Access control mechanisms can also prevent some 

insecure explicit information flows, nevertheless they are not able to detect and prevent implicit 

flows.  

Some of this chapter’s material related to VM management using LCC has been published in 

(Anderson, Bijani and Vichos 2012) and (Anderson, Bijani and Herry 2013). The VM 

management scenario presented in this chapter has been simplified to maintain clarity in our 

explanation. 

 

 

Hacker 

Bank B Data Centre 2 

VM12 

Service3  Service1  Service2 
Service1  VM11 

Service3  Service1  Service6 
Service5  VM10 

Service3  Service1  Service2 
Service1  

Data Centre 1 
Data Centre 1 

Data Centre 1 

VM3 

Service3  Service1  Service2 
Service1  VM2 

Service3  Service1  Service6 
Service5  VM1 

Service3  Service1  Service2 
Service1  

Bank A 

Company A 



Chapter 7: A Case Study in Cloud Computing 

118 

 

7.2 Autonomous Cloud Configuration Management 

In this section our multi-agent solution to the VM management problem proposed in (Anderson, 

Bijani and Vichos 2012) and (Anderson, Bijani and Herry 2013), is briefly introduced. The 

agents use the OpenKnowledge system to find suitable LCC interaction models and to identify 

appropriate peers. The Interaction models define the behaviour of agents located on the physical 

or virtual machines. The agents make autonomous decision on VM migration based on local 

capabilities, free computing resources, the financial relationship of both parties, etc. The 

migration may be either live, which is transparent to the cloud service users and occurs within a 

datacentre, or offline, in which a more complex workflow handles cloning the VMs and services 

between different datacentres, and involves notifying clients.  

 

7.2.1 Live Virtual Machine Management 

An example of the LCC interaction model for managing the negotiation and transfer of virtual 

machines between two physical machines in the same datacentre (i.e. where live migration is 

possible) is shown in Fig. 7-3. 

 In the first instance, we implement a policy which aims to migrate VMs from busy peers to 

underloaded peers in order to balance the load of each peer. There are three states: idle, 

overloaded and underloaded. The idle state is the initial and the goal state, in which the peer is 

balanced. Each peer is assumed to be balanced at the beginning of the interaction. It may then 

change state based on its load, or other factors. Fig. 7-2 shows the corresponding state diagram, 

in which single-corner rectangles, diamonds and dashed-arrows represent agent roles, 

constraints, and message passing between agents, respectively.  



Chapter 7: A Case Study in Cloud Computing 

119 

 

 

Fig.    7-2: A simple Interaction diagram of a policy; unbalanced peers interact to balance 

their load 

 

In this scenario, once a peer becomes unbalanced, it advertises its status to the discovery 

service where it will be matched with potential candidates for a transfer. The peer then 

negotiates with these candidates to find one which is prepared to participate in the transfer. The 

conditions for acceptance of the transfer and the complexity of the negotiation are completely 

determined by the interaction models of the individual peers - these may depend on, for 

example, security policies or cost considerations as well as the capabilities of the physical 

machine (processing power, network bandwidth, memory, etc.). 

Fig. 7-3 shows the interaction diagram of a simple implementation of the live migration 

scenario. The constraint getPeerState(Status) checks the state of the agent and selects the next 

state based on the agent’s status. The constraint isMigrationPossible compares the Need of the 

virtual machine being migrated with the Capacity of the potential recipient. In our 

implementation we use a simple metric and a numerical comparison. In practice, this decision 

may be arbitrarily complex, and may be based on a number of parameters such as the available 

memory and load, or other characteristics. After an exchange of VMs, both agents revert to the 



Chapter 7: A Case Study in Cloud Computing 

120 

 

idle role. If they are balanced, no further action takes place; otherwise, they continue to interact 

as an underloaded or an overloaded peer. This interaction model makes a single decision to 

accept or reject the proposed transfer. In practice, a more complex negotiation may be involved 

to find the most appropriate recipient. 



Chapter 7: A Case Study in Cloud Computing 

121 

 

1. 

2. 

3. 

4. 

5. 

6. 

7. 

8. 

9. 

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

% Definition of the “idle” role. Here, “idle” means the “balanced” state 

a(idle, PeerID) ::  

  null <- getPeerState(Status) then %constraint to check the peer state  

%select the next state based on the peer's status 

( % if peer is overloaded, change its role to “overloaded”& pass the status 

    a(overloaded(Status), PeerID)<- isOverLoaded()  

  ) or  

  ( % if the peer is underloaded, change its role to “underloaded” 

    a(underloaded(Status), PeerID) <- isUnderLoaded()  

  ) or   

  a(idle, PeerID) % otherwise, remain in the idle role (recursion) 

% “overloaded” role Definition. “Need” is the amount of required resources  

a(overloaded(Need), PID1) :: 

  % send the “readyToMigrate(Need)” message to an underloaded peer 

readyToMigrate(Need) => a(underloaded, PID2) then 

  % wait to receive “migration(ok)” from the underloaded peer 

  migration(ok)<= a(underloaded, PID2) then 

  % live migration: send VMs from this peer to the underloaded peer 

  null <- migrateTo(PID2) then 

  a(idle, PID1) % change the peer's role to “idle” 

% “underloaded” role Definition. “Capacity”is the amount of free resources 

a(underloaded(Capacity), PID2) ::  

  % receive the “readyToMigrate(Need)” message from an overloaded peer 

readyToMigrate(Need)<= a(overloaded, PID1) then 

% send back the “migration(ok)” message, if the migration is possible, e.g. 

% free “Capacity” of this peer >“Need” of the overloaded peer  

(migration(ok)=> a(overloaded, PID1) <- isMigrationPossible(Capacity, Need))  

then null <- waitForMigration() ) 

    or  migration(notOk) => a(overloaded, PID1)  then 

  a(idle, PID1) % change the peer's role to “idle” 

Fig.    7-3: The LCC interaction model of the live virtual machine migration. 



Chapter 7: A Case Study in Cloud Computing 

122 

 

 

7.2.2 Virtual Machine Migration between Datacentres 

Virtual machine migration within a datacentre (cloud) is not always possible, due to lack of 

resources, system support or cost.  

Moving virtual machines between datacentres presents further challenges: in general it is not 

possible to perform a live migration, and a new virtual machine must be started in the target 

datacentre, and the services transferred, before stopping the original virtual machine. The new 

machine will also have a different IP address, and possibly other differences, which mean that 

the migration may not be transparent to clients of the service. In this case, the clients will need to 

be notified about the change, and a comparatively complex workflow may be needed to avoid 

any break in the service. Once again, there may be no obvious central authority to sequence this 

workflow, and this motivates an agent-based approach to the workflow execution. Fig. 7-4  

illustrates the workflow of offline virtual machine migration. For detailed information of 

workflow-based virtual machine migration and relevant LCC codes see (Anderson, Bijani and 

Herry 2013).  

 

 
(a) 

(1) 

(2) 

(3) 



Chapter 7: A Case Study in Cloud Computing 

123 

 

 
(b) 

Fig.    7-4: The workflow of offline virtual machine migration (Anderson, Bijani and 

Herry 2013); (a) the initial state and negotiations (dashed lines) between agents. (b) the 

final state where the VM has moved.  

 

In the interaction diagram (Fig. 7-5) of the LCC interaction model for offline virtual machine 

migration between datacentres, PID1 and PID2 are physical machine agents. PID1 starts with 

"initial" role, then by checking whether its VMs need to migrate, performs "emigrant" role. 

Similarly, PID2 changes its role from "initial" to "host", when it has enough resources, then if it 

is in a different datacentre, the offline migration process starts, by cloning new VMs.  The next 

step is changing its role to "manage-services" and asking all new "service" agents (SID2s) to 

start the service. PID2 then informs PID1 that the destination is ready by sending 

"migration(ok)" message.  Then, PID1 also changes its role to "manage-services" to stop current 

running services on datacentre1 by sending "do(shutdown)" message to  SID1 service agents.  

Consequently, SID1 agents ask client agent CID to redirect from this services to newly lunched 

services on new VMs by sending "do(redirect)" message. ClD then double check whether all 

necessary services are running in the new VMs by asking "check(running)" from each service 

agent SID2, then redirects to it. 



Chapter 7: A Case Study in Cloud Computing 

124 

 

 

Fig.    7-5: The interaction diagram of an LCC interaction model for offline virtual 

machine migration between datacentres. 

 



Chapter 7: A Case Study in Cloud Computing 

125 

 

Fig. 7-6 illustrates some parts of the interaction model for offline virtual machine migration 

between datacentres. This is a simplified clause of an interaction model, in which some 

implementation details are omitted. The complete interaction model deals with exceptions and 

other practical issues. 

 

1. 

2. 

3. 

4. 

5. 

6. 

7. 

8. 

9. 

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

% Definition of the "emigrant" role. 

a(emigrant, PID1) :: 

% acquire the migrating virtual machine info and the list of services on it. 

null <- getVMprofile(VID1,V_Profile)and getServiceList(VID,SID_List) then 

% send a message to check availability of the required resources 

requiredResources(Load) => a(host, PID2) <- getPeerState(Load) then 

% receive the answer about the required services 

requiredResources(ok) <= a(host, PID2) then 

% send a message to check availability of the required services 

readyToMigrate(V_Profile, SID_List) => a(host, PID2) then 

% wait to receive "migration(ok)" from the host peer 

migration( ok ) <= a(host, PID2) then 

% VM migration from this peer (emigrant) to a "host" peer 

(null <-same_location(PID1, PID2) then  

null <- live_migration(PID2, PID1, VID1) 

) or 

% next step of the offline migration 

(a(manage_services(SID_List, VID,  shutdown ), PID1) <- 

     not(same_location(PID1, PID2)) then 

   null <- destroy(VID) 

) then 

a(shutdown, PID1).   % change the peer's role to "shutdown" 

Fig.    7-6: One of the LCC clauses of the virtual machine migration between datacentres. 

 



Chapter 7: A Case Study in Cloud Computing 

126 

 

7.3 Information Flow Analysis of Virtual Machine Management 

The proposed security type system prevents and detects the information leaks. Having the 

security typing rules (section  6.2.2), the overloaded role definition in the LCC interaction model 

(Fig. 7-3, lines 12 to 20) and the security annotations in Fig. 7-7, we start our analysis. The 

security environment Γ	corresponding to the annotations is as follows: 

idle: l,PeerID: l,overloaded: l,PID1: l, underloaded: l, PID2:h, 

readyToMigrate: l,ok: l,notOk: l,migrateTo: l, …. 

 

Label(idle, l). 

label(PeerID, l). 

label(PID1, l). 

label(overloaded, l). 

label(PID2, h). 

label(underloaded, l). 

label(readyToMigrate, l). 

label(Capacity, h). 

label(ok, l). 

label(notOk, l). 

label(migrateTo, l). 

label(migration, l). 

label(isMigrationPossible, l). 

Fig.    7-7: Security label assignment to the LCC terms as annotations of the LCC code 

for the static security type check 

 

Let us also assume the amount of resource shortage in the overloaded virtual machines is a 

secret piece of information; i.e. Need: h.  

By static analysis of the role declaration in Fig. 7-3, line 13;a(overloaded(Need), PID1), 

we can prove that assigning the role overloaded to an agent PID1 and passing the high argument 

Need to this role is not a permissible information flow: 

&�-'+&�.-.: +	{	|	| ⊢ &�-'+&�.-.: + �., + ≤ ℎ| ⊢ &�-'+&�.-.: ℎ E@�, ~--.: ℎ	{	|| ⊢ ~--.: ℎ �.| ⊢ &�-'+&�.-.�~--.�: ℎ E0'@*0, A��1: +	{	|	| ⊢ A��1: @y'}	+ �., + ≠ ℎ| ⊢ ��&�-'+&�.-.�~--.�, A��1�: ��-20	? %�20 
 



Chapter 7: A Case Study in Cloud Computing 

127 

 

Based on the annotations in Fig. 7-7, PID2 is a high security term; all the underloaded agents 

are assumed to be secret agents. Nevertheless, this is not always the case: e.g. a public physical 

machine in the datacentre with free resources for new virtual machines. If the secrecy level of 

PID2 is set to low; level(PID2, l), the secret term Need in line 15, reveals to a public agent 

PID2 as a part of the sent message. This is an illegal information flow from agent PID1 to agent 

PID2 that must not be allowed. 

This illustrates one of the limitations of the static approach (discussed in chapter 6) that does 

not have flexibility regarding run-time changes and can not handle variables having a different 

security label in each interaction. So, the security level of each term needs to be known and fixed 

before execution of the interaction model. 

To solve the problem we may either revise the annotation or change the code. If Need has the 

low secrecy level; i.e. label(Need, l),then line 13 will be a permissible flow: 

&�-'+&�.-.: +	{	|	| ⊢ &�-'+&�.-.: + �., ~--.: +	{	|| ⊢ ~--.: + �.| ⊢ &�-'+&�.-.�~--.�: + E0'@*0, A��1: +	{	|	| ⊢ A��1: @y'}	+ �.	| ⊢ ��&�-'+&�.-.�~--.�, A��1�: ��-20	+ %�20 
The next step is sending a message to the counterpart agent (line 16): 

readyToMigrate(Need) =>a(underloaded, PID2), 

in which the requirements of the overloaded agent PID1 is sent to an underloaded high agent 

PID2, using the readyToMigrate message. This is a flow from low to high, which is allowed:  

| ⊢ 0ℎ#,:	��-20	+,			 '-�.>y&7#�'�0-: +	{	|	| ⊢ '-�.>y&7#�'�0-: + �., ~--.: +	{	|| ⊢ ~--.: + �.| ⊢ '-�.>y&7#�'�0-�~--.�: + E0'@*0,																																																																									
@2.-'+&�.-.: +	{	|	| ⊢ @2.-'+&�.-.: +	§ �.,

A��2: ℎ	{	|| ⊢ A��2: @y'}	ℎ �., @y'}	ℎ ≤ @y'}	+| ⊢ A��2: @y'}	+§ E@�| ⊢ ��@2.-'+&�.-., A��2�:	��-20	+ %�20| ⊢ '-�.>y&7#�'�0-�~--.� ⇒ ��@2.-'+&�.-., A��2�: &3	+ E2. 

 

Label(idle, l). 

label(peerID, l). 

label(pid, l). 

label(overloaded, l). 

label(capacity, h). 

label(need, l). 

label(ok, l). 

label(notOk, l). 



Chapter 7: A Case Study in Cloud Computing 

128 

 

label(pid2, h). 

label(underloaded, l). 

label(readyToMigrate, l). 

 

label(migrateTo, l). 

label(migration, l). 

label(isMigrationPossible, l). 

Fig.    7-8: Security label assignment to the LCC terms as annotations of the LCC code 

for the dynamic security type check 

 

To have a clearer overview of the steps in the static and dynamic security checks, Table  7-1 

shows an example that the dynamic checking fails to detect an illegal information flow, while 

the static checking prevents it (Table  7-2).  

  



Chapter 7: A Case Study in Cloud Computing 

129 

 

Table     7-1: An example of the dynamic type checking using Fig.    7-8 annotations that 

ignores an illegal implicit information flow in the live virtual machine migration 

interaction model 

The LCC code The Action in the 

LCC Interpreter 

 Security Type Rules 

R
e

su
l

t

a(underloaded(capacity),pid2):: 

ready <= a(overload,pid1) then  

 ( migrate(ok) =>a(overload, pid1) 

<- migratPossible(capacity,need) 

  then  null <- wait()  

 ) or (    

  migrate(notOk)=>a(overload,pid1) 

 ) 

typeChk(a(underl

oaded(capacity

),pid2)::, ∆) 

@2.-'+&�.-.:	+, + ≤ ℎ| ⊢ @2.-'+&�.-.: ℎ E@�,																														| ⊢ *�3�*#0>: ℎ| ⊢ @2.-'+&�.-.�*�3�*#0>�:ℎ E0'@*0, | ⊢ 3#.2:	@y'}	ℎ| ⊢ ��@2.-'+&�.-.�*�3�*#0>�, 3#.2�:	��-20	ℎ %�20|, 0ℎ#,: ��-20	ℎ ⊢ ��@2.-'+&�.-.�*�3�*#0>�, 3#.2�: ��-20	ℎ �2#0
 

OK 

a(underloaded(capacity),pid2):: 

ready <= a(overload,pid1)then  

 ( migrate(ok) =>a(overload, pid1) 

<- migratPossible(capacity,need) 

  then  null <- wait()  

 ) or (    

  migrate(notOk)=>a(overload,pid1) 

 ) 

if (ready <= 

a(overload,pid

1))∈	∈	∈	∈	
Mi∧∧∧∧typeChk(ready 

<= 

a(overload,pid

1),∆) 

 | ⊢ 0ℎ#,: ��-20	ℎ, ��-20	ℎ ≤ 	��-20	+| ⊢ 0ℎ#,: ��-20	+ E@�,								| ⊢ '-�.>: +, | ⊢ 	2--.: +| ⊢ '-�.>�2--.�: + E0'@*0,																																																											| ⊢ &�-'+&�.-.: +, | ⊢ 3#.1:	@y'}	+| ⊢ ��&�-'+&�.-., 3#.1�:	��-20	+ %�20| ⊢ '-�.>�2--.� <= ��&�-'+&�., 3#.1�: &3	+	 �,� 

OK 

a(underloaded(capacity),pid2):: 

ready <= a(overload,pid1) then  

 ( migrate(ok) =>a(overload, pid1) 

<- migratPossible(capacity,need) 

then  null <- wait()  

 ) or (    

  migrate(notOk)=>a(overload,pid1) 

 ) 

If ¬closed(migrate

(notOk)=>a(ove

rload,pid1) ) 

satisfy(migratPos

sible(capacity

,need)) 

returns FALSE 

   -- 

 

OK 

a(underloaded(capacity),pid2):: 

ready <= a(overload,pid1) then  

 ( migrate(ok) =>a(overload, pid1) 

<- migratPossible(capacity,need) 

  then  null <- wait()  

 ) or (    

migrate(notOk)=>a(overload,pid1) 

) 

If ¬closed( migrate 

(ok)=>a(overlo

ad, pid1) <- 

migratPossible

(…)then null<-

wait() )  ∧∧∧∧ 

typeChk(migrate(

notOk)=>a(over

load,pid1), ∆) 

 | ⊢ 0ℎ#,: ��-20	ℎ, ��-20	ℎ ≤ 	��-20	+| ⊢ 0ℎ#,: ��-20	+ E@�,																																			| ⊢ &�-'+&�.: +, 			| ⊢ 3#.1:@0'}	+	| ⊢ ��&�-'+&�., 3#.1�: 	��-20	+	 %�20, 																																					| ⊢ }#�'�0-: +, 		| ⊢ 2&0�¢: +	| ⊢ }#�'�0-�2&0�¢�: 	+	 E0'@*0| ⊢ }#�'�0-�2&0�¢� => ��&�-'+&�., 3#.1�: &3	+	 E2. 

OK 

a(underloaded(capacity),pid2):: 

ready <= a(overload,pid1) then 

 ( migrate(ok) =>a(overload, pid1) 

<- migratPossible(capacity,need) 

  then  null <- wait()  

 ) or (    

  migrate(notOk)=>a(overload,pid1) 

) 

if closed(ready <= 

a(overload,pid

1)) ∧	∧	∧	∧	
typeChk(ready <= 

a(overload,pid

1) then 

migrate(notOk)

=>a(overload,p

id1), ∆) 

 | ⊢ '-�.>�2--.� ≤ ��&�-'+&�., 3#.1�: &3	+,| ⊢ }#�'�0-�2&0�¢� => ��&�-'+&�., 3#.1�: &3	+| ⊢ '-�.> <= ��&�-'+&�., 3#.1�0ℎ-2	}#�'�0-�2&0�¢� => ��&�-'+&�., 3#.1�:	&3	+		 E-� 

OK 



Chapter 7: A Case Study in Cloud Computing 

130 

 

a(underloaded(capacity),pid2):: 

ready <= a(overload,pid1) then  

 ( migrate(ok) =>a(overload, pid1) 

<- migratPossible(capacity,need) 

  then  null <- wait()  

 ) or (    

  migrate(notOk)=>a(overload,pid1) 

 ) 

typeChk(a(underl

oaded(capacity

),pid2):: Def, 

∆) 

@2.-'+&�.:	+, + ≤ ℎ| ⊢ @2.-'+&�.: ℎ E@�,																																						| ⊢ *�3�*#0>: ℎ| ⊢ @2.-'+&�.�*�3�*#0>�: ℎ E0'@*0, | ⊢ 3#.2:	@y'}	ℎ
| ⊢ ��@2.-'+&�.�*�3�*#0>�, 3#.2�:��-20	ℎ ≤ ��-20	+| ⊢ ��@2.-'+&�.�*�3�*#0>�, 3#.2�:	��-20	+ E@� %�20,| ⊢ '-�.> <= ��&�-'+&�., 3#.1�	0ℎ-2}#�'�0-�2&0�¢� => ��&�-'+&�., 3#.1�:	&3	+| ⊢ ���, ��� ∷ �-$ ∶ 	&3	+ �&+-

OK 

 

One possible implicit information leakage is in line 27 of the interaction model (Fig. 7-3), in 

which a low message is sent to a low agent (migrate(ok)=>a(overload,pid1)), based on a 

high constraint (migratPossible(Capacity,Need)). Here, Some information about available 

resources of the physical machine 2 (pid2) may be revealed to an adversary (pid1). Another 

similar implicit leakage based on the same high constraint is in line 29: 

migrate(notOk)=>a(overload,pid1). 

The following static security type checking detects and prevents the illegal implicit 

information flows (Table  7-2). Then an alarm is raised that determines the corresponding line of 

the code. 

 

Table     7-2: The static type checking (using Fig.    7-7 annotations) detects and prevents 

implicit information flows in the live virtual machine migration interaction model 

The LCC code  Security Type Rules 

R
e

su
lt 

a(underloaded(Capacity),PID2):: 

ready <= a(overload,PID1) then  

 ( migrate(ok) =>a(overload, PID1) 

<- migratPossible(Capacity,Need) 

  then  null <- wait()  

 ) or (    

  migrate(notOk)=>a(overload,PID1) 

 ) 

	@2.-'+&�.-.:	+, + ≤ ℎ| ⊢ @2.-'+&�.-.: ℎ E@�,																																						| ⊢ ��3�*#0>: ℎ| ⊢ @2.-'+&�.-.���3�*#0>�: ℎ E0'@*0, | ⊢ A��2:	@y'}	ℎ| ⊢ ��@2.-'+&�.-.���3�*#0>�, A��2�:	��-20	ℎ %�20|, 0ℎ#,: ��-20	ℎ ⊢ ��@2.-'+&�.-.���3�*#0>�, A��2�: ��-20	ℎ �2#0
 

OK 

a(underloaded(Capacity),PID2):: 

ready <= a(overload,PID1) then 

( migrate(ok) =>a(overload, PID1) 

<- migratPossible(Capacity,Need) 

  then  null <- wait()  

) or (  

migrate(notOk)=>a(overload,PID1) 

) 

  | ⊢ 0ℎ#,: ��-20	ℎ, ��-20	ℎ ≤ 	��-20	+| ⊢ 0ℎ#,: ��-20	+ E@�,| ⊢ '-�.>: +, | ⊢ 	~--.: +| ⊢ '-�.>�~--.�: + E0'@*0, | ⊢ &�-'+&�.-.: +, | ⊢ A��1:	@y'}	+| ⊢ ��&�-'+&�.-., A��1�:	��-20	+ %�20	| ⊢ '-�.>�~--.� <= ��&�-'+&�.,A��1�: &3	+	 �,� 

OK 



Chapter 7: A Case Study in Cloud Computing 

131 

 

a(underloaded(Capacity),PID2):: 

 ready <= a(overload,PID1) then  

( migrate(ok) =>a(overload, PID1) 

<- migratPossible(Capacity,Need) 

  then  null <- wait()  

) or (  

migrate(notOk)=>a(overload,PID1) 

) 

| ⊢ 0ℎ#,: ��-20	ℎ, ��-20	ℎ ≤ 	��-20	+| ⊢ 0ℎ#,: ��-20	+ E@�,						| ⊢ &�-'+&�.: +, 			| ⊢ A��1: @y'}	+	| ⊢ ��&�-'+&�., A��1�: 	��-20	+	 %�20, | ⊢ }#�'�0-: +, 		| ⊢ &¢: +	| ⊢ }#�'�0-�&¢�: +	 E0'@*0| ⊢ }#�'�0-�&¢� => ��&�-'+&�., A��1�: &3	+	 E2.,| ⊢ ~--.: +, + ≤ ℎ| ⊢ ~--.:	+ E@�, | ⊢ 0ℎ#,: ��-20	ℎ,| ⊢ }#�'�0A&,,#�+-: ℎ, | ⊢ ��3�*#0>: ℎ| ⊢ }#�'�0A&,,#�+-���3�*#0>, ~--.�:	*&2	ℎ ��++| ⊢ }#�'�0-�&¢� => ��&�-'+&�., A��1� < −}#�'�0A&,,#�+-���3�*#0>, ~--.�: &3	?	 �$2 

×××× 

 

 

The possibility of information leakage in the scenario of virtual machine migration between 

datacentres (clouds) is more than migration within a (known) datacentre. This is because of the 

complexity of the migration workflow and the enormous number of agents representing different 

parties. Most of the above mentioned insecure flows in live migration are also possible in the 

offline migration setting. An example of revealing some information to an adversary is in 

Fig. 7-6, Line 10: 

readyToMigrate(V_Profile, SID_List) => a(host, PID2) 

in which information of a migrating virtual machine on PID1 and all of the required services 

running on it, are passed to any potential agent on another datacentre, probably on another cloud. 

Either the PID2 agent may itself be an adversary or it might send this information to a malicious 

agent, intentionally or unintentionally.  

Let us assume the following security levels for the above piece of LLC code:  

this: agent h, readyToMigrate:l,V_Profile: h, SID_List:h, host:lPID2: l, 

so the bellow static type rule detect and prevent any direct or indirect disclosure of 

information: 

'-�.>y&7#�'�0-: +	{	|	| ⊢ '-�.>y&7#�'�0-: + �., + ≤ ℎ| ⊢ '-�.>y&7#�'�0-: ℎ E@�, ¶_A'&$#+-: ℎ	{	|| ⊢ ¶_A'&$#+-: ℎ �., E��_i#,0: ℎ	{	|| ⊢ E��_i#,0: ℎ �.| ⊢ '-�.>y&7#�'�0-�¶_A'&$#+-, E��_i#,0�: ℎ E0'@*0,
	| ⊢ 0ℎ#,:	��-20	ℎ, ℎ&,0: +	{	|	| ⊢ ℎ&,0: +	§ �., A��2: +	{	|| ⊢ A��2: @y'}	+ �.| ⊢ ��ℎ&,0, A��2�:	��-20	+ %�20	| ⊢ '-�.>y&7#�'�0-�¶_A'&$#+-, E��_i#,0� ⇒ ��ℎ&,0, A��2�: &3	? E2. 

 



Chapter 7: A Case Study in Cloud Computing 

132 

 

7.4 Summary 

In this chapter, we have applied the proposed security-typed LCC to a cloud computing 

configuration case study, in which virtual machine migration is managed. The cloud computing 

paradigm is developed rapidly in the last few years and virtualisation technology is the core to 

most cloud computing models. Using MAS is an appropriate solution to the problem of 

automatic cloud configuration management, especially where a globally optimal solution is not 

necessary or feasible. Cloud security is one of the most important challenges of development of 

cloud computing. In cloud computing and consequently in applications such as VM 

management, information leakage is a vulnerability that may cause serious privacy and 

confidentiality issues.  

We have analysed the secrecy of LCC interaction models for live and offline VM migration 

and discussed information leaks. We have also shown the differences between dynamic and 

static security type checking in preventing insecure information flows by looking at different 

scenarios. 

Examples of information leakage in the cloud load balancing scenario are the amount of 

resource shortage in the overloaded VMs or the amount of free resources in the underloaded 

VMs. It is shown that this information may leak explicitly or implicitly. Both the dynamic and 

static security type checking techniques can detect explicit information flow, while the static 

approach can also prevent implicit leakage. 

Applying the proposed language-based security framework on the live and the offline 

migration scenarios resulted in rejection of inappropriate security policies and approval of secure 

policies in the VM configuration management.         

 



Chapter 8: Conclusions 

133 

 

 

 

Chapter 8 

8. Conclusions 

Open MASs are growing in popularity in the Multi-agent Systems community, while there still 

remain many potential gaps in their security. The limitations in protecting open MASs, in 

particular minimal information on the identity and behaviour of agents, make them particularly 

difficult to protect, but their openness attracts new applications, making new problems emerge. 

These vulnerabilities have many effects rendering security issues indispensible and further 

research necessary. Information leakage is an important vulnerability in open MAS that 

threatens confidentiality of information. 

A large body of work on information flow analysis has been developed in the area of 

information security, but the multi-agent community has not utilised it much. This research, 

therefore, represents an important step toward filling this security gap and equipping open MAS 

with techniques for preventing and diagnosing attacks.  

This chapter summarises the contributions of this work and ends with some potential future 

directions. 

 

8.1 Summary 

This thesis investigates security issues of open MASs governed by electronic institutions 

through finding and categorising potential attacks and security countermeasures and proposing 

formal frameworks for information flow analysis.  

This thesis proposes a taxonomy of attacks against open MASs, which can help understand 

the implications of attacks and their countermeasures. It also describes the various attacks 

possible in open MAS, some of which entail new concepts that cannot be found in conventional 



Chapter 8: Conclusions 

134 

 

computer networks (e.g. ontology attack). Then, the methods to secure open MAS against the 

defined attacks are reviewed and classified.  

Having focused on information leakage vulnerabilities in choreography systems using LCC, 

this thesis suggests two approaches to detect insecure information flows, conceptual modeling of 

interaction models and language-based information flow analysis. In conceptual modeling, 

interaction models are converted into another formalisation, then an existing tool analyses the 

new formalism to find information leaks. 

The main advantages of conceptual modelling over language-based approach are the 

independence of modeling approach from the LCC implementation and its flexibility in using 

existing secrecy analysis tools. This modelling approach is not depend on the implementation of 

the LCC interpreter (i.e. in Prolog or Java), as the model of the interactions are analysed not the 

LCC codes. Existing automated reasoning tools can be used to prevent information leakage, 

however we employed Counterdog. 

This thesis shows that the language-based security approach using static and dynamic type 

systems is applicable to open MAS. The static and dynamic analysis of LCC interaction models 

can detect insecurity and reveal where in the code it might arise. This thesis also introduces a 

prototype LCC interpreter that implements dynamic information flow analysis to protect 

confidentiality of a MAS.  

In the proposed frameworks, the confidentiality policy is specified by annotations of the 

LCC interaction models. Integration of the security policy descriptions into the LCC interaction 

models potentially enforces a richer set of security policies than conventional access control 

mechanisms. However, the annotations are separate from the main LCC code and can be in a 

different file. The advantage of this separation is that the security policy can be decided upon 

either by the designer, the implementer (who creates and shares the interaction model) or the 

customer (who downloads and uses the interaction model). 

Intuitively, a program is secure if all program runs look identical to an adversary. This well-

studied notion of security is known as non-interference that guarantees absence of any 

information flow between secret and public systems activities. In this thesis, non-interference is 

extended to be applicable to LCC interaction models. The contribution is a formal definition of 

non-interference in terms of the LCC clause expansion mechanism that guarantees high-security 

input to the program never affects low-security output. The proposed security-typed LCC 



Chapter 8: Conclusions 

135 

 

provides end-to-end confidentiality in open MAS. It means that it guarantees no insecure 

information flow through the agents’ interaction based on the defined security policy. The 

proposed security type system is then formally evaluated by proving progress and preservation 

properties to guarantee type soundness. 

The proposed security framework can be used by the designer, programmer or user of LCC 

interaction models without the need of any security expertise. Their main role would be defining 

the policy upon the detection of any leakage and specifying public and secret data, i.e. 

annotation of the LCC interaction model by identifying labels for LCC terms. Terms that have 

not been assigned any label have the default security label, which could also be defined by the 

user. However, inaccurate annotation may yield false positive results and wrong annotation may 

produce false negative outcomes.   

The main limitation of the language-based approach is its dependency on the specific 

language i.e. LCC which makes hard to apply on other MAS platforms. However, adaptation of 

the proposed security type system for similar first-class agent protocol languages (such as MAP 

and RASA) is straightforward.   

The proposed security frameworks focus on confidentiality to prevent information leakage, 

so they do not address security problems related to data integrity. Another practical limitation of 

both language-based and conceptual modeling approaches is difficulty to formalise intuitive 

policies using annotations; Realistic policies are complex and involve many stakeholders which 

makes hard to define conditions under which declassification may occur.    

This thesis also applies the information flow analysis framework to cloud management 

scenarios to make the type-based security approach more comprehensible. Two scenarios of 

virtual machine migration management using the LCC interaction models are introduced, in 

which insecure information flows are analysed.   

 

 

8.2 Future Work 

The work in this thesis has yielded some insight into the security issues and solutions in open 

MASs, but there is still much room for improvement. The following are some suggestions for 

research: 



Chapter 8: Conclusions 

136 

 

 

• Study of other Languages 

We focused on LCC as the language for designing electronic institutions in a MAS. This work 

can be extended to other languages such as Multi-Agent Protocol language (MAP) and RASA. 

MAP (Walton 2004) is a variant of LCC developed on the basis of distributed dialogue protocols 

and RASA (Miller and McBurney 2007) is an extended version of LCC, in which the 

relationship between the protocol specification language and the underlying constraint language 

is taken into consideration. We would suggest applying information flow analysis techniques to 

these languages. 

 

• Extending the Interaction Modelling Approach  

The abstraction module in the conceptual representation for other information leakage analysis 

can be adapted to be more general. We suggest the conversion of LCC code to a process 

calculus, i.e. pi-calculus, because information flow analysis of process calculus is a well-studied 

area and there are plenty of frameworks for this purpose. 

 

Another direction for future research is the improvement of the proposed LCC-typed 

language: 

 

• Constraint Type Checking 

One possible extension of information flow analysis in LCC is combining the proposed security 

analysis of interaction models with security type checking of LCC constraints.  Different tasks 

(e.g. the virtual machine migration policy in the cloud management case study) may be defined 

either in the LCC code or within the constraints, or in the combination of both. The choice here 

depends on whichever is most appropriate in each individual case. However in this study the 

focus of our security analysis is on LCC interaction models, not on the constraints, which 

usually are implemented in another programming language (e.g. Java in the OpenKnowledge 

system).  To have thorough information flow analysis in LCC code and within constraints, our 

security analysis could be merged with an existing security Type system for Java components, 

e.g. Jif (Myers, et al. 1997).  



Chapter 8: Conclusions 

137 

 

 

• Other Information Flow Properties 

Non-interference is too restrictive for many applications. It is also too coarse for some 

applications. Other information security properties such as opacity (Bryans, Koutny, et al., 

Opacity Generalised to Transition Systems 2008) can be investigated. Opacity (or non-

detectability) is an information flow property that shows the inability of an adversary to infer the 

truth of a specific piece of information from the interactions. 

This thesis has focused on one aspect of security, i.e. confidentiality. The other important 

aspect of security is integrity. In an information flow security approach, both confidentiality and 

integrity of information can be protected. In the case of integrity, instead of the notions of public 

and private information, we have trusted and untrusted information. In information flow 

analysis, integrity can be interpreted as trusted output does not depend on untrusted input. This 

implies that integrity is a dual to confidentiality (Hedin and Sabelfeld 2011). We would suggest 

defining security properties that guarantee integrity and studying agent’s interactions in this 

regards. 

  

• Automatic Annotation and Variable Security Levels 

It is not easy to annotate all terms in interaction models manually, especially in larger pieces of 

code. Human mistakes in manual annotations also are likely to occur. It might be the case where 

the security levels of different clauses in an interaction model are annotated by different users; 

here, there is a high probability of mismatch in security labels. 

Using variable security levels instead of constants is a solution to (semi)automatic 

annotation. In this method, the security levels are inferred from the structure of LCC terms in the 

form of constraints. The result of the annotation is a set of constraints showing the relationship 

between security levels. Regarding the automated annotation of constraints, as arguments in a 

constraint can be of different types, security types and levels can not be inferred from the 

structure of the constraint. So, the full automation of assigning types (and levels) to constraints is 

not possible and the user needs to be involved in the annotation process. 

Flow sensitivity requires storing values of different sensitivity (low and high) over the course of 

interaction by the LCC terms. We leave the automatic annotation and flow-sensitivity analysis in 

LCC interaction models as topics for future research.  



 

138 

 

Bibliography 

Abian, Joaquim, et al. “Deliverable 6.3: Bioinformatics Interaction Models.” the 

OpenKnowledge Project, 2008. 

Aggarwal, C. C., and P. S. Yu. “Outlier Detection with Uncertain Data.” SIAM International 

Conference on Data Mining (SDM). 2008. 483-493. 

Anderson, P., S. Bijani, and A. Vichos. “Multi-agent Negotiation of Virtual Machine Migration 

Using the Lightweight Coordination Calculus.” Agent and Multi-Agent 

Systems.Technologies and Applications- 6th KES International Conference, KES-AMSTA 

2012,. Dubrovnik, Croatia, 2012. 124-133. 

Anderson, P., S. Bijani, and H. Herry. “Multi-agent Virtual Machine Management Using the 

Lightweight Coordination Calculus.” Transactions on Computational Collective 

Intelligence, 2013. 

Artikis, Alexander, Marek Sergot, and Jeremy Pitt. “Specifying norm-governed computational 

societies.” ACM Trans. Comput. Logic (ACM) 10 (2009): 1--42. 

Austin, ThomasH., Cormac Flanagan, and Martín Abadi. “A Functional View of Imperative 

Information Flow.” In Programming Languages and Systems, 34-49. Springer Berlin 

Heidelberg, 2012. 

Becker, Moritz Y. “Information Flow in Credential Systems.” Computer Security Foundations 

Symposium, IEEE (IEEE Computer Society) 0 (2010): 171-185. 

Becker, Moritz Y., Alessandra Russo, and Nik Sultana. “Foundations of Trust Management.” IEEE 

Symposium on Security and Privacy. 2012. 

Becker, Moritz Y., and Nik Sultana. Counterdog. Microsoft Research. 2012. 

Bernstein, D., E. Ludvigson, K. Sankar, S. Diamond, and M. Morrow. “Blueprint for the 

InterCloud - Protocols and Formats for Cloud Computing Interoperability.” the Fourth 

International Conf on Internet and Web Applications and Services. 2009. 

Beydoun, G, G Low, H Mouratidis, and B Henderson-Sellers. “A security-aware metamodel for 

multi-agent systems (MAS).” Inf. Softw. Technol. (Butterworth-Heinemann) 51 (2009): 

832--845. 

Bierman, Elmarie, and Elsabe Cloete. “Classification of Malicious Host Threats in Mobile Agent 

Computing.” SAICSIT '02: Proceedings of the 2002 annual research conference of the 

South African institute of computer scientists and information technologists on 



 

139 

 

Enablement through technology. South Africa: South African Institute for Computer 

Scientists and Information Technologists, 2002. 141-148. 

Bijani, S., D. Robertson, and D. Aspinall. “Probing Attacks on Multi-agent Systems using 

Electronic Institutions.” Declarative Agent Languages and Technologies Workshop 

(DALT), AAMAS 2011. 2011. 

Bijani, Shahriar, and David Robertson. “A Review of Attacks and Security Approaches in Open 

Multi-agent Systems.” Artificial Intelligence Review (Springer), 2012: 1-30. 

Blanchet, Bruno. “ProVerif: Cryptographic Protocol Verifier in the Formal Model.” Inria, 2001. 

Borselius, Niklas, and Chris J. Mitchell. “Securing FIPA Agent Communication.” Security and 

Management. 2003. 

Borselius, Niklas, and Chris Mitchell. “Securing FIPA Agent Communication.” Security and 

Management, 2003: 135–141. 

Botelho, V., F. Enembreck, B.C. Avila, H. de Azevedo, and E.E. Scalabrin. “Encrypted Certified 

Trust in Multi-agent System.” the 13th International Conference on Computer 

Supported Cooperative Work in Design. 2009. 227-232. 

Braynov, Sviatoslav, and Murtuza Jadliwala. “Detecting Malicious Groups of Agents.” 

Proceedings of the 1st IEEE Symposium on Multi-Agent Security and Survivability 

(MAS&S) 2004. Philadelphia, PA, USA: IEEE Computer Society, 2004. 90-99. 

Bresciani, Paolo, Anna Perini, Paolo Giorgini, Fausto Giunchiglia, and John Mylopoulos. 

“TROPOS: An Agent-Oriented Software Development Methodology.” Autonomous 

Agents and Multi-Agent Systems (Springer) 8 (2004): 203--236. 

Bresciani, Paolo, Paolo Giorgini, Gordon Manson, and Haralambos Mouratidis. “Multi-Agent 

Systems and Security Requirements Analysis.” In Lecture Notes in Computer Science. 

Springer Berlin / Heidelberg, 2004. 

Bryans, Jeremy W, Maciej Koutny, Laurent Mazare, and Peter YA Ryan. “Opacity Generalised to 

Transition Systems.” International Journal of Information Security, 2008: 421-435. 

Bryans, Jeremy W, Maciej Koutny, Laurent Mazare, and Peter YA Ryan. “Opacity Generalised to 

Transition Systems.” International Journal of Information Security (Springer) 7, no. 6 

(2008): 421-435. 

Carl, Glenn, George Kesidis, Richard R. Brooks, and Suresh Rai. “Denial-of-Service Attack- 

Detection Techniques.” IEEE Internet Computing 10, no. 1 (2006): 82-89. 



 

140 

 

Chandola, Varun, Arindam Banerjee, and Vipin Kumar. “Anomaly detection: A survey.” ACM 

Computing Surveys 41 (2009): 15:1-15:58. 

Cheng, Alice, and Eric Friedman. “Sybilproof reputation mechanisms.” P2PECON '05: 

Proceedings of the 2005 ACM SIGCOMM workshop on Economics of peer-to-peer 

systems. Philadelphia, Pennsylvania, USA: ACM, 2005. 128--132. 

Clark, K P, M Warnier, T B Quillinan, and F M Brazier. “Secure Monitoring of Service Level 

Agreements.” Proceedings of the Second International Workshop on Organizational 

Security Aspects (OSA 2010). IEEE,, 2010. 

Cohen, Ellis. “Information Transmission in Computational Systems.” ACM SIGOPS Operating 

Systems Review 11, no. 5 (1977): 133-139. 

Corin, Ricardo, P-M Denielou, Cedric Fournet, Karthikeyan Bhargavan, and James Leifer. 

“Secure Implementations for Typed Session Abstractions.” 20th IEEE Computer Security 

Foundations Symposium, 2007. CSF'07. 2007. 170-186. 

Dasgupta, D., and N. Majumdar. “Anomaly Detection in Multidimensional Data using Negative 

Selection Algorithm.” the IEEE Conference on Evolutionary Computation. Hawaii, 2002. 

1039-1044. 

Demazeau, Y, and A Rocha Costa. “Populations and organizations in open multi-agent systems.” 

Proceedings of the I National Symposium on Parallel and Distributed AI (PDAI'96). 

Hyderabad, 1996. 

Denning, D. E. “A Lattice Model of Secure Information Flow.” Communications of the ACM 19, 

no. 5 (1976): 236-243. 

Denning, D. E. “A Lattice Model of Secure Information Flow.” Communications of the ACM 19-5 

(1976): 236-243. 

Denning, Dorothy E., and Peter J. Denning. “Certification of Programs for Secure Information 

Flow.” Communications of the ACM 20, no. 7 (1977): 504-513. 

Douceur, John R. “The Sybil Attack.” IPTPS '01: Revised Papers from the First International 

Workshop on Peer-to-Peer Systems. Springer-Verlag, 2002. 251--260. 

Dove, Rick. “On detecting and classifying aberrant behavior in unmanned autonomous systems 

under test and on mission.” Live Virtual Constructive Conference, International Test and 

Evaluation Association. 2009. 



 

141 

 

Dupplaw, David, Spyros Kotoulas, and Ronny Siebes. “The OpenKnowledge Kernel.” 

Proceedings of the XXI Intl. Conference on Computer, Information and Systems Science. 

Vienna, Austria, 2007. 

E. Rescorla, M. Ray, S. Dispensa and N. Oskov. Transport Layer Security (TLS) Renegotiation 

Indication Extension. Internet Engineering Task Force (IETF), Feb. 2010. 

El Ariss, Omar, and Dianxiang Xu. “Modeling Security Attacks with Statecharts.” the joint ACM 

SIGSOFT conference -- QoSA and ACM SIGSOFT symposium. ACM, 2011. 123--132. 

Endsuleit, Regine, and Arno Wagner. “Possible Attacks on and Countermeasures for Secure 

Multi-Agent Computation.” Proceedings of the International Conference on Security 

and Management, SAM '04,. Las Vegas,Nevada, USA, 2004. 221-227. 

Esteva, M, D de la Cruz, B Rosell, J L Arcos, J A RodrÃguez-Aguilar, and G CunÃ. “Engineering 

open multi-agent systems as electronic institutions.” AAAI Press / The MIT Press,, 2004. 

1010--1011. 

Esteva, M., D. de la Cruz, B. Rosell, J. Ll. Arcos, J. A. Rodriguez-Aguilar, and G. Cuni. “Engineering 

open multi-agent systems as electronic institutions.” 19th national conference on 

Artifical intelligence (AAAI 04). AAAI Press, 2004. 1010--1011. 

Esteva, Marc, Juan-Antonio Rodriguez-Aguilar, Carles Sierra, Pere Garcia, and Josep L Arcos. 

“On the Formal Specification of Electronic Institutions.” In Agent Mediated Electronic 

Commerce, 126-147. 2001. 

Ferraiolo, David, D Richard Kuhn, and Ramaswamy Chandramouli. Role-based Access Controls. 

Artech House Boston, 2007. 

Finin, T, A Joshi, and Anupam Joshi. “Developing Secure Agent Systems Using Delegation Based 

Trust Management.” In Security of Mobile MultiAgent Systems (SEMAS 02) held at 

Autonomous Agents and MultiAgent Systems (AAMAS}. 2002. 200--2. 

Focardi, Riccardo, Sabina Rossi, and Andrei Sabelfeld. “Bridging Language-Based and Process 

Calculi Security.” In Foundations of Software Science and Computational Structures, 

299-315. Springer, 2005. 

Foner, Leonard N. “A security architecture for multi-agent matchmaking.” In Proceedings of the 

Second International Conference on Multi-Agent Systems, pages 80-86, 1996. 

Goguen, Joseph A, and Jose Meseguer. “Security Policies and Security Models.” IEEE 

Symposium on Security and Privacy. 1982. 



 

142 

 

Gorrieri, Roberto, Fabio Martinelli, and Ilaria Matteucci. “Towards Information Flow Properties 

for Distributed Systems.” Electronic Notes in Theoretical Computer Science (Elsevier) 

236 (2009): 65-84. 

Halpern, Bowen, and Fred B Schneider. “Recognizing Safety and Liveness.” Distributed 

Computing 2, no. 3 (1987): 117-126. 

Halpern, J Y, and K R ONeill. “Secrecy in Multiagent Systems.” ACM Trans. Inf. Syst. Secur. 

(ACM) 12 (2008): 5:1--5:47. 

He, Q., K. P. Sycara, and T. W. Finin. “Personal security agent: KQML-based PKI.” the Second 

international Conference on Autonomous Agents. 1998. 

—. “Personal security agent: KQML-based PKI.” the Second international Conference on 

Autonomous Agents. 1998. 

Hedin, Daniel, and Andrei Sabelfeld. A Perspective on Information-flow Control. Proc. of the 

2011 Marktoberdorf Summer School. IOS Press, 2011. 

Hedin, Daniel, and Andrei Sabelfeld. A Perspective on Information-flow Control. the 2011 

Marktoberdorf Summer School. , IOS Press, 2011. 

Heintze, Nevin, and Jon G. Riecke. “The SLam Calculus: Programming with Secrecy and 

Integrity.” the 25th ACM SIGPLAN-SIGACT Symposium on Principles of Programming 

Languages, POPL 98. 1998. 365-377. 

Hennigan, E, C Kerschbaumer, S Brunthaler, and M Franz. Implementation Details of Dynamic 

Information Flow Security Type Systems. Technical Report 11-03, Dept of Information 

and Computer Science, University of California, Irvine, 2011. 

Hennigan, E, C Kerschbaumer, S Brunthaler, and M Franz. Tracking Information Flow for 

Dynamically Typed Programming Languages by Instruction Set Extension. Technical 

Report 11-01, Dept of Information and Computer Science, University of California 

Irvine, 2011. 

Honda, Kohei, Vasco Vasconcelos, and Nobuko Yoshida. “Secure Information Flow as Typed 

Process Behaviour.” In Programming Languages and Systems, by Gert Smolka, 180-199. 

Springer Berlin Heidelberg, 2000. 

Hu, Bo, Srinandan Dasmahapatra, Paul Lewis, David Dupplaw, and Nigel Shadbolt. “Facilitating 

Knowledge Management in Pervasive Health Care Systems.” In Networked Knowledge-

Networked Media, 285-304. Springer, 2009. 



 

143 

 

Huang, Yao-Wen, Fang Yu, Christian Hang, Chung-Hung Tsai, Der-Tsai Lee, and Sy-Yen Kuo. 

“Securing Web Application Code by Static Analysis and Runtime Protection.” the 13th 

international conference on World Wide Web. ACM, 2004. 40-52. 

Igure, V., and R. Williams. “Taxonomies of attacks and vulnerabilities in computer systems.” 

Communications Surveys & Tutorials (IEEE) 10, no. 1 (2008): 6-19. 

Jansen, Wayne, and Tom Karygiannis. “Mobile Agent Security.” National Institute of Standards 

and Technology (NIST) Special Publication 800-19. 2000. 

—. “Mobile Agent Security.” National Institute of Standards and Technology (NIST) Special 

Publication 800-19. 2000. 

—. “Mobile Agent Security.” National Institute of Standards and Technology (NIST) Special 

Publication 800-19. 2000. 

Joseph, Sindhu, Adrian P. Perreau de Pinninck, David Robertson, Carles Sierra, and Chris 

Walton. “OpenKnowledge Deliverable 1.1: Interaction Model Language Definition.” 

http://groups.inf.ed.ac.uk/OK/Deliverables/D1.1.pdf. 2006. 

Jurjens, Jan. “Using UMLsec and Goal Trees for Secure Systems Development.” The 2002 ACM 

Symposium on Applied Computing. Madrid, Spain: ACM, 2002. 1026--1030. 

Kadota, K., D. Tominaga, Y. Akiyama, and K. Takahashi. “Detecting Outlying Samples in 

Microarray Data: A critical Assessment of the Effect of Outliers on Sample 

Classification.” Chem-Bio Informatics 3 (2003): 30-45. 

Karnik, Neeran M., and Anand R. Tripathi. “Security in the Ajanta Mobile Agent System.” 

Software - Practice and Experience, 2001: 301-329. 

Khan, Abid, Qasim Arshad, Xiamu Niu, Zhang Yong, and Muhammad Waqas Anwar. “On the 

Security Properties and Attacks against Mobile Agent Graph Head Sealing (MAGHS).” 

the 3rd International Conference and Workshops on Advances in Information Security 

and Assurance (ISA 09). Seoul, Korea: Springer-Verlag, 2009. 223-228. 

Lee, Hyungjick, Jim Alves-Foss, and Scott Harrison. “The Use of Encrypted Functions for Mobile 

Agent Security.” the 37th Annual Hawaii International Conference on System Sciences 

(HICSS'04). IEEE Computer Society, 2004. 10. 

Lippmann, R. P., and K. W. Ingols. An Annotated Review of Past Papers on Attack Graphs. Linoln 

Lab, MIT, 2005. 



 

144 

 

Liu, L., E. Yu, and J. Mylopoulos. “Analyzing Security Requirements as Relationships Among 

Strategic Actors.” 2nd Symposium on Requirements Engineering for Information 

Security (SREIS 2002). 2002. 

Loulou, M, M Tounsi, A H Kacem, M Jmaiel, and M Mosbah. “A Formal Approach to prevent 

Attacks on Mobile Agent Systems.” SECUREWARE '07: Proceedings of the The 

International Conference on Emerging Security Information, Systems, and Technologies. 

Washington, DC, USA: IEEE Computer Society, 2007. 42--47. 

Majumdar, Anirban, and Clark Thomborson. “On the Use of Opaque Predicates in Mobile Agent 

Code Obfuscation.” In Intelligence and Security Informatics, 255-236. Springer Berlin / 

Heidelberg, 2005. 

Massacci, Fabio, John Mylopoulos, and Nicola Zannone. “Security Requirements Engineering: 

The SI* Modeling Language and the Secure Tropos Methodology.” Advances in 

Intelligent Information Systems 265 (2010): 147-174. 

McDermott, J. P. “Attack Net Penetration Testing.” The 2000 Workshop on New Security 

Paradigms (NSPW'00). Cork, Ireland, 2000. 15-21. 

Microsoft. Threat Risk Modeling. 2010. 

https://www.owasp.org/index.php/Threat_Risk_Modeling. 

Miller, Tim, and Peter McBurney. “Using Constraints and Process Algebra for Specification of 

First-class Agent Interaction Protocols.” In Engineering Societies in the Agents World 

VII, 245-264. Springer, 2007. 

Mitchell, Chris. Security for Mobility. Institution of Electrical Engineers, 2003. 

Mouratidis, Haralambos. “Secure Tropos: A Security-Oriented Extension of the Tropos 

methodology.” International Journal of Software Engineering and Knowledge 

Engineering (IJSEKE) (World Scientific Publishing) 17, no. 2 (2007): 285-309. 

Mouratidis, Haralambos, and Paolo Giorgini. “Enhancing Secure Tropos to Effectively Deal with 

Security Requirements in the Development of Multiagent Systems.” (Springer-Verlag) 

2009: 8--26. 

Mouratidis, Haralambos, and Paolo Giorgini. “Enhancing Secure Tropos to Effectively Deal with 

Security Requirements in the Development of Multiagent Systems.” (Springer-Verlag) 

2009: 8--26. 



 

145 

 

Mouratidis, Haralambos, and Paolo Giorgini. “Enhancing Secure Tropos to Effectively Deal with 

Security Requirements in the Development of Multiagent Systems.” (Springer-Verlag) 

2009: 8--26. 

Mouratidis, Haralambos, and Paolo Giorgini. “Enhancing Secure Tropos to Effectively Deal with 

Security Requirements in the Development of Multiagent Systems.” (Springer-Verlag) 

2009: 8--26. 

Mouratidis, Haralambos, Paolo Giorgini, and Gordon Manson. “Modelling secure multiagent 

systems.” AAMAS 03: Proceedings of the second international joint conference on 

Autonomous agents and multiagent systems. New York, NY, USA: ACM, 2003. 859--866. 

Mouratidis, Haralambos, Paolo Giorgini, and Michael Weiss. “Integrating Patterns and Agent-

Oriented Methodologies to Provide Better Solutions for the Development of Secure 

Agent Systems.” Workshop on Expressiveness of Pattern Languages 2003, at ChiliPLoP 

(2003). 2003. 

Myers, A, N Nystrom, S Zdancewic, and L Zheng. “Jif: Java Information Flow.” 1997. 

Necula, George C. Proof-Carrying Code. Design and Implementation. Springer, 2002. 

Necula, George, and Peter Lee. “Safe, Untrusted Agents Using Proof-Carrying Code.” In Mobile 

Agents and Security, by Giovanni Vigna, 61-91. Springer Berlin / Heidelberg, 1998. 

Novak, P, M Rollo, J Hodik, and T Vlcek. “Communication Security in Multi-Agent Systems.” The 

3rd Central and Eastern European Conference on Multi-agent Systems (CEEMAS 03). 

Springer-Verlag, 2003. 454-463. 

Novak, P, M Rollo, J Hodik, and T Vlcek. “Communication Security in Multi-Agent Systems.” The 

3rd Central and Eastern European Conference on Multi-agent Systems (CEEMAS'03). 

Springer-Verlag, 2003. 454-463. 

Odubiyi, J B, and Abdur R Choudhary. “Building security into an IEEE FIPA compliant multiagent 

system.” Proceedings of the 2007 IEEE Workshop on Information Assurance, IAW. West 

Point, NY, United states: IEEE Computer Society, 2007. 49-55. 

Oey, M. A. , M. Warnier, and F. M. T. Brazier. “Security in Large-Scale Open Distributed Multi-

Agent Systems.” In Autonomous Agents, by Vedran Kordic, 107-130. IN-TECH, 2010. 

Page, John P, Arkady B Zaslavsky, and Maria T Indrawan. “Extending the buddy model to secure 

variable sized multi agent communities.” Proceedings of the Second International 

Workshop on Safety and Security in Multiagent Systems. Utrecht, Netherlands, 2005. 

59-75. 



 

146 

 

Park, Haeryong, Haksoo Ju, Kilsoo Chun, Jaeil Lee, Seungho Ahn, and Bongnam Noh. “The 

Algorithm to Enhance the Security of Multi-Agent in Distributed Computing 

Environment.” ICPADS '06: Proceedings of the 12th International Conference on Parallel 

and Distributed Systems. Washington, DC, USA: IEEE Computer Society, 2006. 55--60. 

Paruchuri, Praveen, Jonathan P Pearce, Janusz Marecki, Milind Tambe, Fernando Ordonez, and 

Sarit Kraus. “Coordinating randomized policies for increasing security of agent 

systems.” Information Technology and Management (Kluwer Academic Publishers) 10 

(2009): 67--79. 

Paruchuri, Praveen, Milind Tambe, Fernando Ordonez, and Sarit Kraus. “Security in multiagent 

systems by policy randomization.” Proceedings of the fifth international joint 

conference on Autonomous agents and multiagent systems (AAMAS 06). Hakodate, 

Japan: ACM, 2006. 273--280. 

Petrie, Charles, and Christoph Bussler. “Service Agents and Virtual Enterprises: A Survey.” IEEE 

Internet Computing (IEEE Computer Society) 7 (2003): 68-78. 

Pierce, B. Types and Programming Languages. The MIT Press, 2002. 

Poslad, S, and M Calisti. “Towards improved trust and security in FIPA agent platforms.” 

Workshop on Deception, Fraud and Trust in Agent Societies. Spain, 2000. 

Poslad, Stefan, Patricia Charlton, and Monique Calisti. “Specifying Standard Security 

Mechanisms in Multi-agent Systems.” Trust, Reputation, and Security: Theories and 

Practice, AAMAS 2002 International Workshop. Bologna, Italy: Springer Berlin - 

Heidelberg, 2002. 122--127. 

Quillinan, Thomas B, Martijn Warnier, Michel A Oey, Reinier J Timmer, and Frances M Brazier. 

“Enforcing Security in the AgentScape Middleware.” Proceedings of the 1st 

International Workshop on Middleware Security (MidSec). ACM, 2008. 

Ray, M. Authentication Gap in TLS Renegotiation. http://extendedsubset.com/?p=8, 2009. 

Riordan, James, and Bruce Schneier. “Environmental Key Generation Towards Clueless Agents.” 

Mobile Agents and Security. Springer-Verlag, 1998. 15-24. 

Ristenpart, T., E. Tromer, H. Shacham, and S. Savage. “Hey, You, Get Off of My Cloud: Exploring 

Information Leakage in Third-Party Compute Clouds.” the 16th ACM Conference on 

Computer and Communications Security. ACM, 2009. 199-212. 



 

147 

 

Robertson, David. A Lightweight Coordination Calculus for Agent Systems. Vol. 3476/2005, in 

Declarative Agent Languages and Technologies II, 183--197. Springer Berlin / 

Heidelberg, 2005. 

Robertson, David, et al. “Models of Interaction as a Grounding for Peer to Peer Knowledge 

Sharing.” Advances in Web Semantics I (Springer-Verlag) 4891 (2009): 81--129. 

—. “Open Knowledge - Coordinating Knowledge Sharing through Peer-to-Peer Interaction.” 

Languages, Methodologies and Development Tools for Multi-Agent Systems. First 

InternationalWorkshop, LADS 2007. Revised Selected and Invited Papers. 2008. 1-18. 

Robles, Sergi. Trust and Security. Vol. Chapter 4, in Issues in Multi-Agent Systems: the 

AgentCities.ES Experience, by A. Moreno and Juan Pavn, 87- 115. BirkhÃ¤user Basel, 

2008. 

Rojas, Diana M., and Ahmed M. Mahdy. “Integrating Threat Modeling in Secure Agent-Oriented 

Software Development.” International Journal of Software Engineering (IJSE) 2 (2011): 

23 - 36. 

Russo, A., and A. Sabelfeld. “Dynamic vs. Static Flow-sensitive Security Analysis.” Computer 

Security Foundations Symposium (CSF), 2010 23rd IEEE. IEEE, 2010. 186-199. 

Sabelfeld, A., and A. C. Myers. “Language-based Information-flow Security.” IEEE Journal on 

Selected Areas in Communications 21, no. 1 (2003): 5-19. 

Sabelfeld, A., and A.C. Myers. “Language-Based Information-Flow Security.” IEEE Journal on 

Selected Areas in Communications 21, no. 1 (2003): 5-19. 

Sabelfeld, Andrei, and Alejandro Russo. “From Dynamic to Static and Back: Riding the Roller 

Coaster of Information-Flow Control Research.” In Perspectives of Systems Informatics, 

352-365. Springer Berlin Heidelberg, 2010. 

Sabelfeld, Andrei, and David Sands. “Dimensions and Principles of Declassification.” 18th IEEE 

Workshop Computer Security Foundations. CSFW-18. 2005. 255-269. 

Schneier, B. “Attack Trees.” Dr. Dobb's Journal of Software Tools 24 (1999): 21-29. 

Schneier, C. Ellison and B. “Ten risks of PKI: What you're not being told about Public Key 

Infrastructure.” (Computer Security Journal, ) 16(1):1-7 (2000). 

Sierra, C, et al. “Report on Bioinformatics Case Studies.” techreport, 2008. 



 

148 

 

Silei, Lei, Zhang Rui, Liu Jun, and Xiao Junmo. “A Novel Security Protocol to Protect Mobile 

Agent against Colluded Truncation Attack by Cooperation.” International Conference on 

Cyberworlds (IEEE Computer Society), 2008: 186-191. 

Sit, Emil, and Robert Morris. “Security Considerations for Peer-to-Peer Distributed Hash 

Tables.” IPTPS '01: Revised Papers from the First International Workshop on Peer-to-

Peer Systems. Springer-Verlag, 2002. 261--269. 

Smith, Geoffrey, and Dennis Volpano. “Secure Information Flow in a Multi-threaded Imperative 

Language .” 25th ACM SIGPLAN-SIGACT symposium on Principles of programming 

languages. ACM, 1998. 355-364. 

Sun, Bo, and Hua Chen. “Communication Security in MAS with XML Security Specifications.” 

Applied Mechanics and Materials, 2011: 251-254. 

Sycara, Katia, Massimo Paolucci, Martin Van Velsen, and Joseph Giampapa. “The RETSINA MAS 

Infrastructure.” Autonomous Agents and Multi-Agent Systems (Kluwer Academic 

Publishers) 7 (2003): 29--48. 

Tan, H.K., and L. Moreau. “Extending Execution Tracing for Mobile Code Security.” Second 

International Workshop on Security of Mobile MultiAgent Systems (SEMAS 2002). 

Bologna, Italy, 2002. 51–59. 

Tan, Juan J, Stefan Poslad, and Yanmin Xi. “Policy Driven Systems for Dynamic Security 

Reconfiguration.” Proceedings of the Third International Joint Conference on 

Autonomous Agents and Multiagent Systems (AAMAS). IEEE Computer Society, 2004. 

1274--1275. 

Tekbacak, Fatih, Tugkan Tuglular, and Oguz Dikenelli. “An Architecture for Verification of Access 

Control Policies with Multi Agent System Ontologies.” COMPSAC '09: Proceedings of the 

2009 33rd Annual IEEE International Computer Software and Applications Conference. 

IEEE Computer Society, 2009. 52--55. 

—. “Policies for Role based Agents in Environments with Changing Ontologies.” The 10th 

International Conference on Autonomous Agents and Multiagent Systems (AAMAS 11). 

Taipei, Taiwan, 2011. 1335-1336. 

Thirunavukkarasu, C, T Finin, and J Mayfield. “Secret Agents - A Security Architecture for the 

KQML Agent Communication Language.” Intelligent Information Agents Workshop 

(CIKM'95), 1995. 

Traynor, Patrick, Patrick McDaniel, and Thomas L Porta. Security for Telecommunications 

Networks: Future Directions and Challenges. Springer US, 2008. 



 

149 

 

van 't Noordende, G.  , F. M. T.   Brazier, and A. S. Tanenbaum. “Security in a Mobile Agent 

System.” the First IEEE Symposium on Multi-Agent Security and Survivability. 2004. 35-

45. 

Van't Noordende, Guido J, Benno J Overeinder, Reinier J Timmer, and Frances MT Brazier. 

“Constructing Secure Mobile Agent Systems using the Agent Operating System.” 

International Journal of Intelligent Information and Database Systems (IJIIDS) 3 (2009): 

363-381. 

Vazquez-Salceda, J, J A Padget, U Cortes, A Lopez-Navidad, and F Caballero. “Formalizing an 

electronic institution for the distribution of human tissues.” Artificial Intelligence in 

Medicine 27 (2003): 233-258. 

Vila, X., A. Schuster, and A. Riera. “Security for a Multi-Agent System based on JADE.” 2007. 

Vitabile, Salvatore, Vincenzo Conti, Carmelo Militello, and Filippo Sorbello. “An extended JADE-

S based framework for developing secure Multi-Agent Systems.” Computer Standards 

and Interfaces 31 (2008): 913-930. 

Volpano, Dennis M., and Geoffrey Smith. “A Type-Based Approach to Program Security.” 7th 

International Joint Conference CAAP/FASE on Theory and Practice of Software 

Development. Springer-Verlag, 1997. 607-621. 

Wagner, Gerd. “Multi-Level Security in Multiagent Systems.” In Proceedings of the First 

international Workshop on Cooperative information Agents. London, UK: Springer-

Verlag, 1997. 272--285. 

Wahbe, R., S. Lucco, and T. Anderson. “Efficient Software-Based Fault Isolation.” the Fourteenth 

ACM Symposium on Operating Systems Principles, 1993: 203-216. 

Walton, Christopher. “Multi-agent Dialogue Protocols.” the 8th International Symposium on 

Artificial Intelligence and Mathematics. 2004. 

Wang, Hongzue, Vijay Varadharajan, and Yan Zhang. “A Secure Communication Scheme for 

Multiagent Systems.” PRIMA '98: Selected papers from the First Pacific Rim 

International Workshop on Multi-Agents, Multiagent Platforms. London, UK: Springer-

Verlag, 1999. 174--185. 

Wong, Hao C, and Katia Sycara. “Adding Security and Trust to Multi-Agent Systems.” 

Proceedings of Autonomous Agents '99 Workshop on Deception, Fraud, and Trust in 

Agent Societies. 1999. 149 - 161. 



 

150 

 

Wu, R., G.J. Ahn, H. Hu, and M. Singhal. “Information Flow Control In Cloud Computing.” 6th 

International Conference on Collaborative Computing: Networking, Applications and 

Worksharing (CollaborateCom). IEEE, 2010. 1-7. 

Xiao, Liang. “An adaptive security model using agent-oriented MDA.” Information and Software 

Technology (Butterworth-Heinemann) 51 (2009): 933--955. 

Xiao, Liang, Paul Lewis, and Srinandan Dasmahapatra. “Secure Interaction Models for the 

HealthAgents System.” In Computer Safety, Reliability, and Security, 168-180. Springer, 

2008. 

Yu, Eric, and Luiz M Cysneiros. “Designing for Privacy and Other Competing Requirements.” 2nd 

Symposium on Requirements Engineering for Information Security (SREISâ€™02). 

Raleigh, North Carolina , 2002. 

Yue, Xiaowen, Xiaofeng Qiu, Yang Ji, and Chunhong Zhang. “P2P attack taxonomy and 

relationship analysis.” ICACT'09: Proceedings of the 11th international conference on 

Advanced Communication Technology. IEEE Press, 2009. 1207--1210. 

Zaslavsky, A, and M Indrawan. “A buddy model of security for mobile agent communities 

operating in pervasive scenarios.” Proc. Australasian Information Security, Data Mining 

and Web Intelligence, and Software Internationalisation. 2004. 17--25. 

Zdancewic, Steve, and Andrew C Myers. “Robust Declassification.” IEEE Computer Security 

Foundations Workshop. 2001. 15-23. 



 

151 

 

Appendix 

A) Proof of Theorem  6-1 (Progress) in page 89 (cont.):  

Case Choice: i = %�	&'	%( and i: &3	z, so %�:	&3	z,			%(:	&3	z	
By the induction hypothesis	either A1 is a final step or else some A1’ exists that A1⇝ A1’.	Similarly,	either A2 is a final step or else some A2’ exists that A2⇝A2’. If one of them is a 

final step (closed), based on the following LCC rewriting rule in Fig 2-2: 

*+&,-.�%	&'	 � ← *+&,-.�%�	∨ 	*+&,-.� � 
�A1 or A2) is a final step.  If both A1 and A2 are not final steps, based on the following 

LCC rewriting rules: 

%�	&'	%( !�,�� ,	��,
,�		�







� "																				#$	¬*+&,-.�%(� 	∧ 		%� !� ,�� ,	��,
,�		�







�" 

%�	&'	%( !�,�� ,	��,
,�		�







� "																				#$	¬*+&,-.�%�� 	∧ 		%( !� ,�� ,	��,
,�		�







�" 

We have either	�A1 or A2) ⇝A1’	or �A1 or A2) ⇝	A2’.  	
Case Par: i = %�	3�'	%( and i: &3	z, so %�:	&3	z,			%(:	&3	z	

By the induction hypothesis	either A1 is a final step or else some A1’ exists that A1⇝ A1’.	Similarly,	either A2 is a final step or else some A2’ exists that A2⇝A2’. If both A1 and A2 
are final steps (closed), based on the following LCC rewriting rule in Fig 2-2: 

*+&,-.�%	3�'	 � ← *+&,-.�%�	∧ 	*+&,-.� � 
A1 par A2 is a final step.  If A1 is a final step and A2⇝A2’, according to the following 

rewrite rule: 

%�	3�'	%( !�,�� ,	��,
,�		�








�	"1	3�'	"(							#$	%1 �#,7# ,	72,A,�1 		�







�"1 	 ∧ 	%2 �#,72,	7&,A,�2		�







�"2, 

A1 par A2 ⇝	A2’.  If A1⇝A1’	and A2 is a final step, A1 par A2 ⇝	A2’. 
If both A1 and A2 are not final steps, which means A1⇝A1’ and A2⇝A2’, based on the 

above LCC rewriting rule, A1 par A2 ⇝	A1’	par	A2’.   
 

Case If2:  i = � ← 7 ⇐ % and  i: &3	z, so 7 ⇐ % ∶ &3	z and �: *&2		z,	



 

152 

 

By the induction hypothesis	either C is a final step or else some C’ exists that C⇝C’. If C 

is a final step, in the following LCC rewriting rule in Fig 2-2: 

� ← 7 ⇐ % !� ,�� ,	���9�⇐:;,
,∅		�













� *�� ← 7 ⇐ %�												#$	�7 ⇐ %� ∈ 7� ∧ ,�0#,$>���, 
When message M is recived from A, either the evaluation of the satisfied(C) is true, so 

� ← 7 ⇐ % !� ,�� ,	���9�⇐:;,
,∅		�













� *�� ← 7 ⇐ %� or else � ← 7 ⇐ % !�,�� ,	���9�⇐:;,
,∅		�













�$�+,- (it 

returns false). In either case, L ends up in a closed state which means a final step.   

If C⇝C’, it means that C	is a compound constraint C’ that is either equal to ¬C1,  C1	∧	C2 
or C1	∨	C2, so based on one of the following rewrite rules in Fig 2-2: 

,�0#,$#-.�¬��� ← ¬,�0#,$#-.����, 
,�0#,$#-.��� ∨ �(� ← ,�0#,$#-.���� 	∨ 	,�0#,$#-.��(� , 
,�0#,$#-.��� ∧ �(� ← ,�0#,$#-.���� 	∧ 	,�0#,$#-.��(� , 

then we have i ⇝ �′ ← 7 ⇐ %	. 
Case If4:  i = ���, �� ← � and  i: &3	z, so ���, ��:	��-20	z and �: *&2		z,	

By the induction hypothesis	either C is a final step or else some C’ exists that C⇝C’. If C 

is a final step, in the following LCC rewriting rule in Fig 2-2: 

���, �� ← � !�,�� ,	��,
,∅		�







����, �� ∷  	 #$	*+�@,-�A, ���, �� ∷  � ∧ ,�0#,$#-.���, 
If ���, �� is a valid clause, in the case that the evaluation of satisfied(C) is true, so  

���, ��⇝ ���, �� ∷   or else ���, �� ← � !�,�� ,	��,
,∅		�







�$�+,- (it returns false).   

If C	is a compound constraint, progress is guaranteed as it is shown in If2. 
Cases If3, And, Or, Not, Call and Struct are similar to case If2.  

Cases Snd and Rsv are subsets of cases If1 and If2 respectively. □ 

 

A) Proof of Theorem  6-2 (Preservation) in page 90 (cont.):  

Case Choice: i = %�	&'	%( and i: &3	z	
 

 



 

153 

 

 

We know that L is well-typed, so we have	%�:	&3	τ	&'	%(:	&3	τ. According to the 

following rewrite rules: 

%1	&'	%2 �# ,7# ,	7&,A,�		�






� "																				#$	¬*+&,-.�%2� 	 ∧ 		%1 �# ,7# ,	7&,A,�		�






�" 

%1	&'	%2 �# ,7# ,	7&,A,�		�






� "																				#$	¬*+&,-.�%1� 	 ∧ 		%2 �# ,7# ,	7&,A,�		�






�" 

the transition L⇝L’ happens either by %� !� ,��,��,
,�		�







� " or when A1 is not a final step 

(¬closed(A1)), by %( !� ,��,��,
,�		�







� ". 

If ¬closed(A2), the %� !�,�� ,��,
,�		�







� " can be derived by any of the clause expansion 

rewrite rules, some of the cases are shown; others are similar: 

1) Subcase %� = ���, �� ← � 

By the induction hypothesis, we have ���, �� ← �: &3	z, A1⇝A1’ and %�′: &3	z. The 

following rewrite rule, which deals with recursion in LCC, is the only rule that expands A1:   
���, �� ← � !� ,��,��,
,∅		�







����, �� ∷   #$	*+�@,-�A, ���, �� ∷  � ∧ ,�0#,$#-.���. 
So we have  %�O = ���, �� ∷ B. Consequently, �%�	&'	%(� ⇝ 	���, �� ∷ B	&'	%( where %�	&'	%(: op τ. 

2) Subcase %� = 7 ⇒ % 

By the induction hypothesis, we have 7 ⇒ %: &3	z, A1⇝A1’ and %�′: &3	z. The rewrite 

rule that handles A1 is only 7 ⇒ %	 !�,��,	��,
,9�⇒:;�











� *�7 ⇒ %�. So we have %�O =*�7 ⇒ %�. Consequently, (%�	&'	%(� ⇝ �7 ⇒ %	&'	%(� where %�	&'	%(: op τ. 
3) Subcase %� = 7 ⇐ % 

By the induction hypothesis, we have 7 ⇐ %: &3	z, A1⇝A1’ and %�′: &3	z. The rewrite 

rule that handles A1 is only 7 ⇒ %	 !�,��,	��,
,9�⇒:;�











� *�7 ⇐ %�. So we have %�O =*�7 ⇐ %�. Consequently, �%�	&'	%(� ⇝ �7 ⇐ %	&'	%(� where %�	&'	%(: op τ. 
Other subcases are similar. 



 

154 

 

 

 

By the induction hypothesis	either A1 is a final step or else some A1’ exists that A1⇝ A1’.	Similarly,	either A2 is a final step or else some A2’ exists that A2⇝A2’. If one of them is a 

final step (closed), based on the following LCC rewriting rule in Fig 2-2: 

*+&,-.�%	&'	 � ← *+&,-.�%�	∨ 	*+&,-.� � 
�A1 or A2) is a final step.  If both A1 and A2 are not final steps, based on the following 

LCC rewriting rules: 

%1	&'	%2 �# ,7# ,	7&,A,�		�






� "																				#$	¬*+&,-.�%2� 	 ∧ 		%1 �# ,7# ,	7&,A,�		�






�" 

%1	&'	%2 �# ,7# ,	7&,A,�		�






� "																				#$	¬*+&,-.�%1� 	 ∧ 		%2 �# ,7# ,	7&,A,�		�






�" 

We have either	�A1 or A2) ⇝A1’	or �A1 or A2) ⇝	A2’.  	
 

As we showed in the discussed cases, transition of L ⇝L’	preserve	the	type.	Other	typing	rules	 are	 similar	 due	 to	 the	 fact	 that	 no	 rule	 allows	 the	 inference	 of	 any	 un-typed	 LCC	expression.			 
 


