
1OpenKnowledgeFP6-027253OpenKnowledge ManualDavid Dupplaw1, Paolo Besana2, Dave Robertson2

1 IAM Group, S
hool of Ele
troni
s and Computer S
ien
e, University ofSouthampton, Southampton, SO17 1BJ, UK.
2 Informati
s, University of Edinburgh, Edinburgh, EH8 9LE, UK.

Report Version: �nalReport Preparation Date: 24th January 2008Classi�
ation: deliverable 9.2Contra
t Start Date: 1.1.2006 Duration: 36 monthsProje
t Co-ordinator: University of Edinburgh (David Robertson)Partners: IIIA(CSIC) Bar
elonaVrije Universiteit AmsterdamUniversity of EdinburghKMI, Open UniversityUniversity of SouthamptonUniversity of Trento

2

Contents
1 Introdu
tion 52 The OpenKnowledge System in a Nutshell 73 Writing OpenKnowledge Intera
tions in LCC 113.1 A Basi
 Example . 113.2 LCC Syntax . 143.2.1 Variables, Constants, Terms, IDs and Roles 143.2.2 Messages . 153.2.3 Constraints . 153.2.4 Comments . 163.2.5 Sequen
e and Choi
e . 173.3 Design Patterns . 174 How the OpenKnowledge Kernel Operates 214.1 The Subs
ribe-Bootstrap-Run Cy
le 214.1.1 Subs
ription to an Intera
tion Model 214.1.2 Bootstrapping an Intera
tion 224.1.3 Running an Intera
tion 224.2 Mapping Constraints to Methods 244.2.1 Adaptors . 254.3 A

ess to Peer State . 265 Programming for the OpenKnowledge Kernel 295.1 Introdu
tion . 295.2 Creating Intera
tion Models . 295.2.1 Publishing Intera
tion Models 355.3 Creating Components . 385.3.1 Programming New Components 385.3.2 Creating Component JAR Files 395.3.3 Loading in Lo
al Components 405.3.4 Publishing Components 405.3.5 Providing Alternate User Interfa
es 413

4 CONTENTS

Chapter 1Introdu
tionThe purpose of this manual is to introdu
e you to programming for the Open-Knowledge kernel. There are several ways in whi
h you might be interested inOpenKnowledge programming:
• You are not a programmer but you want to know what it would take towrite programs for OpenKnowledge. Your best option is to read Chapter 2and qui
kly skim through the remainder of the manual.
• You want to des
ribe intera
tions in OpenKnowledge but you are notinterested in writing spe
ialised
omponents to do new things as part ofthose intera
tions. Read up to the end of Chapter 3 and skim the rest.
• You are intending to take a good look at the open sour
e
ode for theOpenKnowledge system and want an introdu
tion to the main operationalme
hanism before you
ome to grips with the
ode. Read up to the endof Chapter 4.
• You want to write your own
omponents to �re o� appli
ations within anintera
tion so you need to know how those are
onne
ted before looking atexamples on www.openk.org. Read the whole manual, perhaps skimmingover Chapter 4.Mu
h of the dis
ussion in this manual relates to the OpenKnowledge intera
-tion modelling language (LCC). Several interpreters for LCC have been writtenin di�erent languages (Prolog, Lisp, Java) but the OpenKnowledge kernel (whi
hyou
an download from www.openk.org) is the �rst attempt to produ
e a kernelsystem that
ombines LCC with peer to peer query routing, ontology mat
hingand visualisation. It has been released as Java open sour
e, so you
an developyour own system based on it or
ontribute to our version.Many of the ideas
ontained in this manual are
overed in the (basi
 and ad-van
ed) video tutorials available from the tutorial area of the www.openk.org).You may �nd those helpful as an alternative presentation of the same
on
epts.5

6 CHAPTER 1. INTRODUCTIONThis manual will
hange as our work on the OpenKnowledge proje
t pro-
eeds. If you have suggestions for improvements to this manual then please mailthem to Dave Dupplaw (dpd�e
s.soton.a
.uk).

Chapter 2The OpenKnowledge Systemin a NutshellSuppose you want to get something
omplex done using
omponents (su
h asWeb servi
es) that are available on the Internet. You
ould write your ownWeb servi
e, that
alls out to those other
omponents, and host that on yourown system but that will only work for you alone. What if you think othersmight bene�t from
oordinating in a similar way, or if you want to avoid alwayshaving your system perform the
oordination? That's where OpenKnowledge
omes in. It provides you with a
ompa
t language for des
ribing
oordinationand, if you wish to do so, a means of sharing
oordination with others.The �world view� taken by OpenKnowledge is illustrated in the pi
ture be-low, where the di�erent
oloured arrows represent people (or automated sys-tems) parti
ipating in di�erent intera
tions. Ea
h intera
tion is
oordinated bya model of the intera
tion, dis
ussed later. An individual gains knowledge ofhow to intera
t with other individuals through intera
ting with those who he orshe already knows. For example, in the illustration in Figure 2.1 the individualon the left might initially know about only two other individuals (the two inter-a
ting via the light green arrows) but those two individuals know about otherintera
tions (in dark blue and in lime green) so
an
ommuni
ate them to theindividual on the left.Intera
tion models are
an be shared and used in many di�erent ways but thestandard way to use them is by downloading the OpenKnowledge kernel systemfrom www.openk.org. The kernel is a
ompa
t program that automati
ally�nds intera
tion models that you might want to use; allows you to subs
ribe tointera
tions that interest you; and interprets the intera
tion models in whi
hyou a
tually be
ome involved. In the illustration of Figure 2.2, the red dots are
opies of the kernel system (loaded from the supplier) being run on individualpeers.Although our intera
tion models are portable and
ould be used by di�erentsystems, there is a so
ial advantage in having many peers running the same7

8 CHAPTER 2. THE OPENKNOWLEDGE SYSTEM IN A NUTSHELL

Figure 2.1: People share knowledge through shared intera
tions

Figure 2.2: Intera
tions are �inje
ted� into per groups from servi
e areas, likewww.openk.org

9

Figure 2.3: Intera
tions are shared by routing through the peer network.OpenKnowledge kernel. The so
ial advantage
omes from query routing, whi
hworks roughly as illustrated in Figure 2.3. Suppose that the peer at bottomright of the pi
ture wants to undertake an intera
tion but does not have anappropriate intera
tion model. That peer would des
ribe the sort of intera
tionhe or she is seeking, using a sequen
e of keywords (in a similar way to the way yousear
h for Web pages in traditional Web browsers). This query then is routedthrough the peer network until mat
hing intera
tion models are found (in ourpi
ture the intera
tion model in bla
k mat
hes the query) and are relayed ba
kto the peer. When the peer re
eives the intera
tion model it re
eives not onlythe intera
tion but, through it, may also a

ess other peers in the network withwhi
h it may not previously have intera
ted. In this way, sharing intera
tionmodels extends and reinfor
es so
ial networks.If you want simply to use intera
tion models then you do not need to under-stand any te
hni
al detail of the underlying system be
ause using an intera
tionmodel is analogous to using a program - if the intera
tion model is well
raftedthen it will be easy for an appropriate group of people to use without themknowing how it is built. You may, however, want to write your own intera
tionmodels or adapt those you �nd on the network. This is the topi
 of the next
hapter.

10 CHAPTER 2. THE OPENKNOWLEDGE SYSTEM IN A NUTSHELL

Chapter 3Writing OpenKnowledgeIntera
tions in LCCThe language used in OpenKnowledge is the Lightweight Coordination Cal
ulus(LCC). This
hapter explains how to write intera
tion models in LCC, whi
h you
an then use and share with others. There is more to
onstru
ting intera
tionmodels than just the spe
i�
ation of the intera
tion itself; there is also the issueof
onne
ting intera
tions to servi
es and other
omputational
omponents. Weget to this in Chapter 5 but our task in the
urrent se
tion is to introdu
e yousimply to writing intera
tions. We begin with a basi
 example (Se
tion 3.1)then des
ribe LCC syntax in detail (Se
tion 3.2); then des
ribe some essentialdesign patterns (Se
tion 3.3).3.1 A Basi
 ExampleThe diagram in Figure 3.1 shows an intera
tion between three peers: p1, p2 and
p3. Ea
h peer knows di�erent things:
• p1 knows that queries asking about p(Y)
an be sent to p2 and that queriesasking about q(Z)
an be sent to p3. We write this as query_from(p(Y), p2)and query_from(q(Z), p3).
• p2 knows that p(a) is true. We write this as know(p2, p(a)).
• p3 knows that q(b) is true. We write this as know(p3, q(b)).The intera
tion we require is depi
ted by the numbered messages in thediagram:
• p1 sends a message ask(p(Y)) to p2.
• p2 sends a message ask(p(a)) to p1.11

12CHAPTER 3. WRITING OPENKNOWLEDGE INTERACTIONS IN LCC

Figure 3.1: Basi
 intera
tion example
• p1 sends a message ask(q(Z)) to p3.
• p3 sends a message ask(q(b)) to p1.Let us �rst de�ne an intera
tion model that does exa
tly the message passingde�ned above. There are two roles that agents take in this model: the role ofa requester (whi
h asks for information) and the role of an informer (whi
hsupplies information). We de�ne a LCC
lause for ea
h role as shown below.For the requester (p1) we have simply given the sequen
e of four messages
orresponding to those above. Then we have de�ned a
lause for the role ofinformer that de�nes the behaviour expe
ted of p2 and p3.a(requester, A) ::

ask(X1) ⇒ a(informer, p2)← query_from(X1, p2) then
tell(X1) ⇐ a(informer, p2) then
ask(X2) ⇒ a(informer, p3)← query_from(X2, p3) then
tell(X2) ⇐ a(informer, p3)a(informer, B) ::
ask(X) ⇐ a(requester, B) then
tell(X) ⇒ a(requester, B)← know(X)

(3.1)
The LCC de�nition above
overs the example but suppose we want a moregeneral type of requester that takes a list, L, of the form [q(Query, Peer), . . .],where Query is the query we want to make and Peer is an identi�er for thepeer to whi
h we want to send the query. We want the requester to sendan ask(Query) message to the appropriate Peer for ea
h query and re
eive a

tell(Query) reply ea
h time. A standard way to do this is by giving L as aparameter to the requester role (so it be
omes requester(L)) and making the

3.1. A BASIC EXAMPLE 13

Figure 3.2: Event sequen
es for the examplede�nition of this role re
ursive, taking the �rst element of L and then applyingthe same de�nition to the remainder of the list, Lr, as shown below.
a(requester(L), A) ::

(ask(Query) ⇒ a(informer, Peer)← L = [q(Query, Peer)|Lr] then
tell(Query) ⇐ a(informer, Peer) then
a(requester(Lr), A))
or
null← L = []

a(informer, B) ::
ask(X) ⇐ a(requester(), B) then
tell(X) ⇒ a(requester(), B)← know(X) (3.2)If we were to run the intera
tion model shown above, starting with the roleof requester for the list of queries [q(ask(p(X)), p2), q(ask(q(Y)), p3)], then weget the message sequen
es shown in Figure 3.2. On the left is the sequen
efor a(requester([q(ask(p(X)), p2), q(ask(q(Y)), p3)]), p1). On the right are thesequen
es for a(informer, p2) and a(informer, p3) whi
h are the roles under-taken by p2 and p3 in response to p1. The dashed lines indi
ate syn
hronisationvia message passing between peers.In our earlier example (de�nition 1 above) we made some of the messagepassing events
ontingent on
onstraints. For example sending the message

ask(X1) ⇒ a(informer, p2)was
ontingent on satisfying the
onstraint query_from(X1, p2).These
onstraints are satis�ed by
onne
ting them to methods for
omputingthe
onstraint. Although some basi
 methods (su
h as for basi
 forms of visual-isation) are pre-supplied by OpenKnowledge we expe
t that most methods willbe spe
i�
 to appli
ation domains and so will need to be written or re-used byintera
tion model developers. To make it possible to share these methods, we al-low appropriately pa
kaged methods to be shared, so that peers
an a

umulate

14CHAPTER 3. WRITING OPENKNOWLEDGE INTERACTIONS IN LCC
Clause := Role :: Def

Role := a(Type, Id)
Def := Role |Message | Def then Def | Def or Def

Message := M ⇒ Role |M ⇒ Role← C |M ⇐ Role | C ←M ⇐ Role
C := Constant | P (Term, . . .) | ¬C | C ∧ C | C ∨ C

Type := Term
Id := Constant | V ariable
M := Term

Term := Constant | V ariable | P (Term, . . .)
Constant := lower case character sequence or number
V ariable := upper case character sequence or numberFigure 3.3: LCC syntaxrepositories of methods that they �nd useful. We
all these OpenKnowledgeComponents (OKCs). A more detailed des
ription of OKCs appears in Se
-tion 4.3 and Chapter 5.3.2 LCC SyntaxEa
h LCC intera
tion model is de�ned by a set of
lauses where ea
h
lause hasthe syntax shown in Figure 3.3. Ea
h
lause is a self
ontained de�nition of arole, with message passing being the only means of transferring information be-tween roles. Message passing is also the only means of syn
hronisation betweenroles.In the se
tions whi
h follow we explain what ea
h element of LCC syntaxmeans from a programming point of view.3.2.1 Variables, Constants, Terms, IDs and RolesVariables must start with an upper
ase letter. The s
ope of a variable is lo
alto a
lause (in other words, if you use the same variable name in di�erent
lausesthen these names refer to di�erent variables). When it is unne
essary to give aspe
i�
 name for a variable (be
ause it is not used elsewhere in a
lause) you
an use an unders
ore (_) for the variable name. Constants must start witha lower
ase letter. Numbers also are
onstants. Terms are tree-stru
tured -that is, they are either a
onstant or are of the form F (A1, . . . , An) where F isa non-numeri
al
onstant and ea
h Ai is a term. IDs are unique identi�ers forpeers whi
h must be non-numeri
al
onstants. Roles are terms that des
ribethe type of role played by a peer in a given intera
tion.

3.2. LCC SYNTAX 153.2.2 MessagesThere are two types of messages:In
oming messages : are of the form Term ⇐ a(Role, ID), where Term isthe
ontent of the message. When using ASCII, the symbol ⇐ is writtenusing <=.Outgoing messages : are of the form Term ⇒ a(Role, ID), where Term isthe
ontent of the message. When using ASCII, the symbol ⇒ is writtenusing =>.Constraints
an be atta
hed to both in
oming and outgoing messages (seebelow).3.2.3 ConstraintsConstraints asso
iate message passing events with
onditions established by thepeer.
Message← constraint(Arg1, ...ArgN) (3.3)Constraints also may be asso
iated with the spe
ial null event whi
h repre-sents an event that is not asso
iated with a spe
i�
 message. This frequentlyis used in re
ursive role de�nition where terminating the role depends on aparameter to the role, rather than a spe
i�
 message passing event.When using ASCII the
onstraint operator (←) should be written using <-.Visual ConstraintsA
onstraint
an have a mapping made available to it using the visual(,) op-erator. The visual operator maps a
onstraint to a visual term. Visual termsprovide an abstra
t representation for a parti
ular type of user intera
tion.visual(
onstraint(Arg1, ...ArgN), visualT erm(vArg1, ...vArgN)) (3.4)The OpenKnowledge kernel has a number of built-in visual term implemen-tations, listed below:

msg(M〈, T 〉) Display a message M to the user, with the optional title T .
text(〈T, 〉M) Display a large amount of text in M to the user, with the optionaltitle T .
input(〈Q, 〉V) Ask the user to input some value into V , providing optional ques-tion text in Q.

16CHAPTER 3. WRITING OPENKNOWLEDGE INTERACTIONS IN LCCList OperationsList operations are a
ommon basis of the re
ursion te
hniques available whenwriting LCC. List operations make use of the bar | operation that delineatesthe head (H , �rst element) of a list from the rest of the list (T , the tail); thatis, L = [H |T].In the
ase that H has some value, you
an append this value to the headof the list using the following
onstraint:
. . .← L = [H |T] (3.5)For example, if before the operation H
ontained the value 5, and the list, L,
ontained [6, 7, 8], after the operation the list would
ontain the values [5, 6, 7, 8].In the
ase that H is not set, the following LCC will extra
t into H the valueof the head of the list.
. . .← L = [H |T] (3.6)Noti
e that T is itself a list, so that the head of T will be the se
ond elementin the list. This allows for re
ursion on T . If the list is empty, and no valuefor H
an be determined, the
onstraint will fail. For example, if before theoperation H was unset and the list, L,
ontained [6, 7, 8], after the operation Hwould have the value 6 and the T would have the value [7, 8].To test whether a list is empty, use the following LCC:

. . .← L = [] (3.7)This
onstraint will fail if L is not empty.Logi
al OperatorsConstraints
an be
onne
ted by the logi
al operators and and or:
• C1 and C2 su

eeds if both
onstraints C1 and C2 su

eed, with C1 beingattempted �rst.
• C1 and C2 su

eeds if one of the
onstraints C1 and C2 su

eeds, with C1being attempted �rst.3.2.4 CommentsTo
omment your LCC you
an use the C-like
omments // . . . or /∗ . . .∗/. Thedouble-slash
omment form will make the interpreter ignore the rest of the line.The slash-star
omment form will ignore everything until the next star-slash.The following are valid
omments:

3.3. DESIGN PATTERNS 17// A va l i d s i n g l e l i n e
omment// Another s i n g l e l i n e
omment/∗ A va l i dmult i−l i n e
omment
∗/ Listing 3.1: Valid
omment forms in LCC3.2.5 Sequen
e and Choi
eThe basi
 operations used in LCC to determine the sequen
e of messages in a
lause are sequen
e and
hoi
e, as de�ned below (where E1 and E2 are sequen
eexpressions or message passing events):Sequen
e : is written as E1 then E2. This sequen
e is
ompleted if both E1or E2 is
ompleted, with E1 being
ompleted �rst.Choi
e : is written as E1 or E2. This sequen
e is
ompleted if either E1 or E2is
ompleted, with E1 being attempted �rst. E2 will only be attempted if

E1 fails. If E1 su

eeds then E2 will not be attempted.3.3 Design PatternsPerhaps the easiest way to understand LCC programming is through designpatterns. These are standard ways of stru
turing
lauses that are used to obtainspe
i�
 forms of intera
tion. The broad idea is similar to design patterns in moretraditional languages but the good news for LCC is that you only need to knowa small number of patterns, whi
h you then
ombine to make more
omplexprograms. The four key patterns are given below.Pattern 1: Intera
tionThe simplest thing we
an do with LCC is to spe
ify a message being sent fromone peer to another. To do this we de
ide the role (r1) being taken by thesender; then write M ⇒ a(r2, Y)← C to des
ribe the message, M , being sentout to the re
ipient, Y , whi
h is expe
ted to re
eive it in role r2. The
onstraint
C1 is used to determine whether this message
an be sent by the sender, and itoften is used also to determine values for any variables that appear in M . In thespe
i�
ation of the re
ipient's role we write C2 ← M ⇐ a(r2, X) to des
ribethe message, M , being re
eived, with C2 giving a
onstraint that should holdas a
onsequen
e of re
eiving it.

18CHAPTER 3. WRITING OPENKNOWLEDGE INTERACTIONS IN LCC
a(r1, X) ::

. . .
M ⇒ a(r2, Y)← C1
. . .

a(r2, Y) ::
. . .
C2←M ⇐ a(r2, X)
. . .

(3.8)
An example of using this pattern is an intera
tion that sends a message, M ,to a re
ipient, Y , where the
hoi
e on M is made by the
onstraint message(M)and the
hoi
e of re
ipient is made by the
onstraint recipient(Y). A

eptan
eof the message by the re
ipient is determined by the
onstraint accept(M).

a(sender, X) ::
M ⇒ a(recipient, Y)← message(M) and recipient(Y)

a(recipient, Y) ::
accept(M)←M ⇐ a(sender, X)

(3.9)Pattern 2: Sequen
eUsually we want to put an ordering on the sequen
e of events that
an o

uras part of a role. To do this we use the "then" operator to say that the earlierevent, E1,
omes before the later event, E2.
a(r, X) ::

. . .
E1 then
E2
. . .

(3.10)An example that uses this pattern twi
e is when the re
ipient of the mes-sage returns a message to the sender, where response(M1, M2) is a
onstraintdetermining the re
ipient's response message, M2, from the sender's message,
M1.

a(sender, X) ::
M1 ⇒ a(recipient, Y)← message(M1)andrecipient(Y) then
accept(M2)←M2 ⇐ a(recipient, Y)

a(recipient, Y) ::
accept(M1)←M1 ⇐ a(sender, X) then
M2 ⇒ a(sender, X)← response(M1, M2)

(3.11)

3.3. DESIGN PATTERNS 19Pattern 3: Choi
eWe may want a peer taking some role, r, in an intera
tion to make a
hoi
eabout the
ourse of its intera
tion with other peers. This is done by writing
E1← C1orE2← C2 to say that the intera
tion des
ribed by E1 should be doneunder the
onditions stipulated by
onstraint C1 or the intera
tion des
ribedby E2 should be done under the
onditions stipulated by
onstraint C2. The
hoi
e we are making here is a
ommitted
hoi
e, meaning that if C1 is satis�edthen the alternative
hoi
e (E2← C2) will not be attempted.

a(r, X) ::
E1← C1
or
E2← C2
. . .

(3.12)An example of this pattern is when a buyer wants to send a message to aseller a

epting some Offer (re
eived earlier in the de�nition of the buyer role)if it is a

eptable or otherwise it sends a message to the seller reje
ting that
Offer if it is una

eptable.

a(buyer, X) ::
. . .
accept(Offer) ⇒ a(seller, Y)← acceptable(Offer)
or
reject(Offer) ⇒ a(seller, Y)← unacceptable(Offer)

(3.13)Sin
e LCCmakes
ommitted
hoi
es, we know in this example that if acceptable(Offer)is satis�ed then the se
ond option (in whi
h the peer attempts to satisfy unacceptable(Offer))will not be attempted, so if testing una

eptability is not important then wemight shorten this example to:
a(buyer, X) ::

. . .
accept(Offer) ⇒ a(seller, Y)← acceptable(Offer)
or
reject(Offer) ⇒ a(seller, Y)

(3.14)
Pattern 4: Re
ursionOften we want an intera
tion to be
ontrolled by some data stru
ture, for ex-ample we might want to have a similar sub-intera
tion for ea
h of the elements

20CHAPTER 3. WRITING OPENKNOWLEDGE INTERACTIONS IN LCCin a list (as in the basi
 example above). The pattern below des
ribes this. Inthe pattern r(A) is a role, r, with the data stru
ture as its argument, A. Some-where within the de�nition of the of the role appears a
onstraint, R(A, Ar),that redu
es A to some "smaller" stru
ture, Ar. Then the role re
urses as r(Ar).Normally there also is an alternative
hoi
e for when the data stru
ture doesnot redu
e any further but meets some test, P (A), that it is has rea
hed someterminating state.
a(r(A), X) ::

(. . . R(A, Ar) . . .
a(r(Ar), X))
or
(. . . P (A) . . .)

(3.15)One example of using this pattern is an intera
tion that sends as a messageea
h element, M , from a list [M1, ...] to peer p2 in role r2.
a(r(A), X) ::

(M ⇒ a(r2, p2)← A = [M |Ar] then
a(r(Ar), X))
or
(null← A = [])

(3.16)A se
ond example is an intera
tion that sends N messages to peer p2, ea
hwith the same
ontent, M . Here, N and M are parameters to the role, r.
a(r(N, M), X) ::

(M ⇒ a(r2, p2)← N > 0 and N1 is N − 1 then
a(r(N1, M), X))
or
(null← N =< 0)

(3.17)Many examples of LCC in use for spe
ifying intera
tions
an be found atwww.openk.org, either as example intera
tion models, in the models area, or as
ase studies, in the publi
ations area.

Chapter 4How the OpenKnowledgeKernel OperatesThis
hapter explains how the OpenKnowledge works, from the point of view ofits main fun
tional elements: the subs
ribe-bootstrap-run
y
le through whi
hintera
tions are deployed (Se
tion 4.1); the mapping between
onstraints andmethods through whi
h intera
tion models are
onne
ted to appli
ation
ompo-nents (Se
tion 4.2); and the ways in whi
h it is possible to a

ess peer internalstate (Se
tion 4.3).4.1 The Subs
ribe-Bootstrap-Run Cy
leIntera
tions in OpenKnowldge take pla
e via a
y
le of subs
ription (when peerssay they want to take part in intera
tions); bootstrapping (to initiate a fullysubs
ribed intera
tion) and running (to perform the bootstrapped intera
tion).Ea
h of these is des
ribed below with the aid of four pi
tures (labelled A, B, C,D) in Figures 4.1, ref�g:Bootstrap-of-intera
tion and 4.4. Taking these pi
turestogether gives a pi
ture of the whole
y
le.4.1.1 Subs
ription to an Intera
tion ModelThe pro
ess of subs
ription is depi
ted in pi
ture A of Figure 4.1. When a peerneeds to perform a task it asks the Dis
overy Servi
e for a list of Intera
tionModels mat
hing the des
ription of the task (steps 1, 2 and 3 in pi
ture A).Then, for ea
h re
eived Intera
tion Model, the peer
ompares the methods inits OKCs with the
onstraints in the entry role it is interested in (step 4 inpi
ture A). If the peer �nds an Intera
tion Model whose
onstraints (in the rolethe peer needs to perform) are
overed by the methods in its OKCs, then thepeer
an subs
ribe to that Intera
tion Model in the Dis
overy Servi
e (step 5 inpi
ture A). The subs
ription is handled by a subs
ription negotiator and
an beinterpreted as an intention to parti
ipate in the intera
tion. The subs
ription,21

22 CHAPTER 4. HOW THE OPENKNOWLEDGE KERNEL OPERATES

Figure 4.1: Ex
hange of messages between peers and dis
overy servi
e for sub-s
riptionthrough a subs
ription adaptor, binds the Intera
tion Model to a set of methodsin the OKCs in peer. A subs
ription
an endure for only a single intera
tion runor for many, possibly unlimited, intera
tion runs: a buyer will likely subs
ribeto run a pur
hase intera
tion on
e, while a vendor may want to keep selling itsprodu
ts or servi
es.4.1.2 Bootstrapping an Intera
tionThe pro
ess of bootstrapping is depi
ted in pi
tures B and C of Figure 4.2.When all the roles in the Intera
tion Model have subs
riptions, the Dis
overyServi
e sele
ts a random peer as a
oordinator (steps 1 and 2 of pi
ture B). The
oordinator then bootstraps and runs the intera
tion. The bootstrap involves�rst asking the peers who they want to intera
t with, among all the peers thathave subs
ribed to the various roles (steps 3, 4 and 5 of pi
ture B), then
reatinga team of mutually
ompatible peers (step 6 of pi
ture B) and �nally - if possible- asking the sele
ted group of peers to
ommit to the intera
tion (pi
ture C).For a peer,
ommitting to an intera
tion, implies the
reation of an Intera
tionRunContext,that re
eives the Subs
riptionAdaptor from the Subs
riptionNegotiator asin Figure 4.3.4.1.3 Running an Intera
tionThe pro
ess of bootstrapping is depi
ted in pi
ture D of Figure 4.4. This partof the
y
le is handled by the
oordinator and the Intera
tionRunContextof the involved peers. The
oordinator peer runs the intera
tion lo
ally: themessages are ex
hanged between lo
al proxies of the peers. However, whenthe
oordinator en
ounters a
onstraint in a role
lause, it sends the messagesolveConstraintMessage to the Intera
tionRunContext in the peer perform-ing the role (step 1 in pi
ture D). The message
ontains the
onstraint to besolved. The Intera
tionRunContext asks the Subs
riptionAdaptor the
or-responding method - found during the
omparison at subs
ription time (step 2

4.1. THE SUBSCRIBE-BOOTSTRAP-RUN CYCLE 23

Figure 4.2: Bootstrap of intera
tion: ex
hange of messages for the sele
tion ofpeers and
ommitment

�adaptors

«interface»InteractionRunContext

ConstraintAdaptorS
ubscriptionAdaptor�adaptors:ConstraintAdaptor
InteractionRunContextImpl�subscriptionAdaptor:SubscriptionAdaptor�OKCFacadeInstances:OKCFacade+handleMessage(msg:Message)SubscriptionNegotiatorImpl�interactionModelID:int�Role:int�description:int�adaptor:SubscriptionAdaptor�subscriptionAdaptor�adaptor

Figure 4.3: UML
lass diagram of Subs
ription/ContextRun

24 CHAPTER 4. HOW THE OPENKNOWLEDGE KERNEL OPERATES

Figure 4.4: Intera
tion Run: ex
hange of messages between
oordinator andpeersof pi
ture D). The OKCs are instantiated lazily: if the OKC that
ontains themethod
orresponding to the
onstraint has not been instantiated yet within the
ontext of the intera
tion, the
lass is instantiated, and stored in the
ontext. Ifthe instan
e exists in the
ontext, the
orresponding method is
alled dynami-
ally. The method will use the adaptor to a

ess the elements of the arguments.The peer then sends ba
k the message SolveConstraintResponseMessage tothe
oordinator with the updated values of variables and the boolean resultobtained from satisfying the
onstraint (step 3 of pi
ture D).4.2 Mapping Constraints to MethodsThe mat
her (des
ribed in detail in OpenKnowledge Deliverable 3.6), allowsthe OKCs and the Intera
tion Models to be de
oupled. The peer
ompares the
onstraints in the roles in whi
h it is interested with the methods in its OKCsand
reates a set of adaptors that maps the
onstraint in the roles to similarmethods. In order to mat
h
onstraints and methods they both need to besemanti
ally annotated.Semanti
 Mark-up of MethodsThe ex
hanged messages
an
ontain
omplex stru
tures. The stru
tures
anbe trees or lists. The stru
ture of the arguments is de�ned in the semanti
annotation of the method, written using Java 5 annotations:�MethodSemanti
(language=tag,args={�produ
t(brand, name,
ost(
urren
y, value))�,�buyer(name, surname, address(street, post
ode,
ity))�})publi
 bool registerPur
hase(Argument P, Argument B) {...}

4.2. MAPPING CONSTRAINTS TO METHODS 25The
ode inside the method
an a

ess the elements in the stru
ture by path(similarily to XPath):System.out.println(P.getValue("/produ
t[0℄/
ost[0℄/value[0℄�)+� � +P.getValue("/produ
t[0℄/
ost[0℄/
urren
y[0℄�))The nodes in the path are
oupled with an index, be
ause there might be morethan one node of the same ontologi
al type at the same depth. For example,a parameter that
ontains a relationship
an be a expressed as tree with twoidenti
al
hildren:�MethodSemanti
(language=tag,args={'friends(person,person)'})publi
 boolean add(Argument F){...System.out.println(F.getValue(�friends[0℄/person[0℄�) + � knows �+F.getValue(�friends[0℄/person[1℄�));...}The elements of the stru
ture are rea
hed independently of how they are keptin the ex
hanged messages: the adaptor between the
onstraint and the methodmaps the elements in the arguments of the
onstraint to the elements in thearguments of the method.ListsWe have two possibilities: one is to only allow a

ess to the lists through LCCoperators and re
ursion, the other is to use the indexes of the root elements:�MethodSemanti
 (..., args={"[move(from,to,vehi
le)℄"})represents an argument that
ontains a list. To a

ess the elements in the list,the index of the root
hanges.publi
 boolean do(Arg A){System.out.println(A.getValue("/move[2℄/from[0℄");}4.2.1 AdaptorsFor example, the
onstraint in the following snippet of a proto
ol:register(P,B) <- bought(P,B) <= a(buyer, ID)

26 CHAPTER 4. HOW THE OPENKNOWLEDGE KERNEL OPERATES

Figure 4.5: Adaptor between register(...)
onstraint andregisterPur
hase(...) methodwhere the
onstraint is de�ned as:register(produ
e(make,name,
ost,
urren
y),pur
haser(surname, address,
ity, post
ode))will be mapped to the method in the OKC seen in the previous se
tion with theadaptor in Figure 4.5.Allowing the
ode inside the method to a

ess the elements without knowinghow they are a
tually stru
tured in the message, de
oupling de fa
to the proto
olfrom the
omponents.4.3 A

ess to Peer StateSome intera
tion
onstraints are fun
tional : they expe
t that the method in the
omponent, given a set of input arguments, will always unify the non instan-tiated arguments with the same values, or will su

eed or fail, independentlyof whether the peer that has downloaded and exe
uted the
omponent. Forexample, the
onstraint sort(List,SortedList) for sorting a list of elementsshould always unify SortedList with the ordered version of List, even thoughdi�erent peers may have OKCs that implement di�erent algorithms for sortingit. Other
omponents work as a bridge between the intera
tion model and thepeer lo
al knowledge, and will unify non instantiated variables with values thatdepend on the peer in whi
h the OKC is running. For example, a
onstraintpri
e(Produ
t, Pri
e) expe
ts that the
orresponding method in the OKCuni�es the variable Pri
e with the pri
e assigned to Produ
t by the peer, pos-sibly a

essing the database lo
al to the peer: di�erent peers may have di�erentpri
es for the same produ
t. Moreover, the same peer
an be involved in manyintera
tions simultaneously, and the peer lo
al knowledge (or state) is
hanged

4.3. ACCESS TO PEER STATE 27by one intera
tion and read in another. For example, a peer selling produ
tswill have the total amount of available produ
ts redu
ed after ea
h su

essfulselling intera
tion.OKCs are given the referen
es, at instantiation time, of the obje
ts theyneed to use through the setParameter(..) and getParameter(...) meth-ods. The
lass implementing the OKCFa
ade interfa
e is annotated (via Java 5.0annotations) with the semanti
 des
riptions of the peer's methods it needs touse. When a peer downloads an OKC, the methods required by it are mat
hedagainst the methods exposed by the peer: if the mat
hing is good enough (theremight be OKCs not
ompatible with a parti
ular implementation of a peer),then the result of
omparison is an adaptor, similar to those between OKCmethods and
onstraints, that allow the OKC methods to a

ess the elementsin the peer's methods using its internal terminology.The peer's ontology is
onsidered as lo
al knowledge. The a
tual implemen-tation of the ontology handler is up to the peer developers, but the OKCs -if they need it -
an a

ess it through the same pro
edure of
alling a set ofexposed methods.

28 CHAPTER 4. HOW THE OPENKNOWLEDGE KERNEL OPERATES

Chapter 5Programming for theOpenKnowledge Kernel5.1 Introdu
tionThis
hapter is intended for programmers who intend to
reate intera
tion mod-els as well as
reating
omponents whi
h implement roles in these models. Tomake the dis
ussion self-
ontained we re
ap some material from earlier
haptersbut, if you are
oming to OpenKnowledge for the �rst time, we re
ommend youat least skim through those ba
kground
hapters before reading this one.Let us assume you are sitting in front of a
omputer and you run the Open-Knowledge software; this will
reate what is known as a peer on the Open-Knowledge network. In most
ases, you
an
onsider your
omputer to be asingle peer on the network and for now we shall assume this. Your peer storesbits of
ode that allow it to do interesting things when it is
onta
ted. Thesebits of
ode are
alled OKCs (whi
h stands for OpenKnowledge Components).To start with, this is all you should need to know, so we will start in se
tion5.2 by des
ribing how to
reate intera
tion models in the default language forOpenKnowledge intera
tion models: LCC.5.2 Creating Intera
tion ModelsChapter 3 des
ribes the LCC language. Here we use it to begin a basi
 program-ming example that bridges intera
tion models to OpenKnowledge
omponents(from Chapter 4). We will examine a simple form of intera
tion that most of uswould be familiar with: greeting someone.During the intera
tion that o

urs when you greet someone, you would �rstsay �Hello� and then you might expe
t a reply �Good Morning� ba
k. In thissimple intera
tion you would be the initial `greeter' while the person you aregreeting might be des
ribed as a `responder'. So let us write that intera
tion in29

30CHAPTER 5. PROGRAMMING FORTHE OPENKNOWLEDGE KERNELsequen
e:
• Greeter: Say �Hello�
• Responder: Say �Good Morning�We
an be a little more rigorous in our des
ription, as the responder willonly reply �Good Morning� after they hear the initial greeting. So let us writethis as a sequen
e:
• Greeter: Say �Hello�
• Responder: Hears �Hello�
• Responder: Say �Good Morning�
• Greeter: Hears �Good Morning�Now that the intera
tion has been fully des
ribed, it is
lear whi
h of thepeople in the intera
tion are doing what and, very importantly, when they do it.The person assuming the `greeter' role says �Hello� and hears the reply �GoodMorning�. The person assuming the `responder' role hears �Hello� so replies�Good Morning�.Let's write out the sequen
e of a
tions for Johnny, who is going to be takingthe `greeter' role in our intera
tion:

greeter : JohnnySay Hello to BobHear Responder Bob say Good MorningBob is going to be the responder, so let's write out his a
tions, whi
h arepretty mu
h the exa
t opposite:
responder : BobHear Greeter Johnny say HelloRespond to Greeter Johnny with Good MorningIn LCC, the a
t of intera
ting is represented by the idea of sending andre
eiving messages. In our simple example, saying hello is the equivalent ofsending the message hello to the responder. In the example above Bob is takingthe responder role, so we would write the �rst intera
tion like this in LCC:

hello ⇒ a(responder, Bob) (5.1)You
an read this as `Message hello is sent to responder Bob'.In this parti
ular intera
tion, where Bob is playing responder, he will beexpe
ting to hear hello from a greeter
alled Johnny, so we write this like so:
hello ⇐ a(greeter, Johnny) (5.2)

5.2. CREATING INTERACTION MODELS 31You
an read this as 'Message hello is re
eived from greeter Johnny'.Note: You
an type ⇒ as => and ⇐ as <=.So, if we were to extend this to the full intera
tion and allow any people toplay it (not just Johnny and Bob), we would end up with this LCC intera
tionmodel: a(greeter, P erson1) ::
hello ⇒ a(responder, P erson2) then
goodMorning ⇐ a(responder, P erson2)a(responder, P erson2) ::
hello ⇐ a(greeter, P erson1) then
goodMorning ⇒ a(greeter, P erson1)

(5.3)
Noti
e that we de�ne the roles of greeter and responder above the sequen
eof intera
tions that they should perform. The start of a role is de�ned using thenotation: a(role, name) :: Also noti
e that the sequen
e of events is de�nedusing the then operator.LCC has the
on
ept of variables, or pla
eholders, into whi
h values
anbe pla
ed and then passed in the messages. Let's extend our simple intera
tionmodel so that our greeter �rst asks the name of our responder, then greets them.To a
hieve this, the responder must send their name through a message to thegreeter in a variable. For example, if N = Bob, 'Hello N ' will expand to 'HelloBob'.The intera
tion is now something like:
• Greeter: What's your name?
• Responder: My name is N

• Greeter: Hello N

• Responder: Good MorningThe intera
tion model expands be
ause ea
h role now des
ribes an intera
-tion that will determine the responder's name. The �rst two lines of ea
h roledes
ribe the intera
tion to ask for the responder's name.

32CHAPTER 5. PROGRAMMING FORTHE OPENKNOWLEDGE KERNELa(greeter, P erson1) ::
askName ⇒ a(responder, P erson2) then
name(N) ⇐ a(responder, P erson2) then
hello(N) ⇒ a(responder, P erson2) then
goodMorning ⇐ a(responder, P erson2)a(responder, P erson2) ::
askName ⇐ a(greeter, P erson1) then
name(N) ⇒ a(greeter, P erson1)← getMyName(N) then
hello(N) ⇐ a(greeter, P erson1) then
goodMorning ⇒ a(greeter, P erson1)

(5.4)
The LCC above introdu
es two new aspe
ts. The �rst is the idea of variablesand showing how they
an be passed through messages (N in our message

hello(N)). However, during the a
tual intera
tion, you do not want to say �Hello
N �, you want to say �Hello Bob�. This means that N has to be assigned to thevalue `Bob'. This is a
hieved by the last part of the line ← getMyName(N).We
all this thing a
onstraint be
ause we
an only send the message name(N)if we have a value for N (Bob or whatever).Let's look at that line in more detail.

name(N) ⇒ a(greeter, P erson1)← getMyName(N) (5.5)This
an be read: `Send name(N) to greeter Person1 only if I
an getMyName(N)'.We will dis
uss more about how getMyName(N) a
tually works later, but fornow, assume it sets the value of N to be the responder's name. In a bit, we willalso dis
over what happens if the responder has amnesia and
annot remembertheir name!Let's expand the example a little further and introdu
e the idea of alternateoptions. For example, as a greeter we may only wish to ask someone their nameif we don't already know it. So �rst we should ensure we only ask for their nameif we do not know who they are. You will hopefully have noti
ed that this is a
onstraint on the askName message on the �rst line of the greeter role: `askname to responder only if I do not re
ognise them'.
askName ⇒ a(repsonder, P erson2)← doNotRe
ognise(Person2)(5.6)In the
ase that doNotRe
ognise(Person2) is true, the message askingfor their name will be sent. What happens if the
onstraint is false and we dore
ognise that person? We want to simply say hello. So, to summarise, we asktheir name if we don't re
ognise them (then we say hello) or we just say hello.

5.2. CREATING INTERACTION MODELS 33The or operator allows us to say that dire
tly in LCC. Let's see the wholegreeter role with the alternative options:a(greeter, P erson1) ::
(

askName ⇒ a(responder, P erson2) then
name(N) ⇐ a(responder, P erson2) then
hello(N) ⇒ a(responder, P erson2)

)
or

hello ⇒ a(responder, P erson2)
then
goodMorning ⇐ a(responder, P erson2)

(5.7)
Noti
e the use of parentheses for grouping together the operations on eitherside of the or operator. The indentation is merely to make it
lear whi
hstatements are in the bran
hes of the or operator; LCC is agnosti
 to white-spa
e.It is important when using the or operator with
onstraints to understandthe idea of ba
k-tra
king. If a
onstraint fails (su
h as doNotReconise returningfalse) the intera
tion will `ba
k-tra
k'. This just means that it retra
es its stepsuntil it gets to an alternate option (spe
i�ed by the or) and exe
utes the otheroption. Of
ourse, there are
ertain points in the intera
tion model that
annotbe re-tra
ed. For example, if the model sends a message and then a subsequent
onstraint fails, the intera
tion
annot ba
k-tra
k past the message operation;the pragmati
 reason being that the message is now on the network and
annotbe retra
ted. If this happens, or there are no alternate options available, theintera
tion will fail and will be shut-down.Now we will have a look at the other role in this intera
tion:a(responder, P erson2) ::

(
askName ⇐ a(greeter, P erson1) then
name(N) ⇒ a(greeter, P erson1)← getMyName(N) then
hello(N) ⇐ a(greeter, P erson1)

)
or

hello ⇐ a(greeter, P erson1))
then
goodMorning ⇒ a(greeter, P erson1) (5.8)Again, this role mirrors the other role fairly
losely. This role will startby waiting for the askName message to arrive; in the
ase that it doesn't thealternative bran
h of the or will be exe
uted, where the hello message is

34CHAPTER 5. PROGRAMMING FORTHE OPENKNOWLEDGE KERNELexpe
ted. If some other message arrives, the intera
tion will
ontinue to waitfor one or other of these messages.So, our �nal intera
tion for two a
tors greeting ea
h other is shown below.a(greeter, P erson1) ::
(askName ⇒ a(responder, P erson2) then
name(N) ⇐ a(responder, P erson2) then
hello(N) ⇒ a(responder, P erson2)
or
hello ⇒ a(responder, P erson2)) then
goodMorning ⇐ a(responder, P erson2)a(responder, P erson2) ::
(askName ⇐ a(greeter, P erson1) then
name(N) ⇒ a(greeter, P erson1)← getMyName(N) then
hello(N) ⇐ a(greeter, P erson1))
or
hello ⇐ a(greeter, P erson1) then
goodMorning ⇒ a(greeter, P erson1)

(5.9)
For details of how to implement the OpenKnowledge
omponents that willprovide the fun
tionality of the getMyName(N)
onstraint, see se
tion 5.3.1.Alternatively, this
onstraint
ould be satis�ed visually, using
onstraint visu-alisation, des
ribed in se
tion 5.2.LCC VisualisationDuring the intera
tions between peers, it will sometimes be ne
essary to getsome user input. Earlier in this
hapter we introdu
ed and de�ned in LCC asimple intera
tion that des
ribed how two a
tors would greet ea
h other (seeModel 26). One of these a
tors has the
onstraint getMyName(N) whi
hretrieves into the variable N the name of the a
tor. This
ould be a
hievedthrough user input, allowing the user at the peer to type in their name. Inthis se
tion will be show how this
an be a
hieved using visualisation beforedis
ussing a little more generally about the visualisations that are providedwith the OpenKnowledge
ore software.Let's return to the simple intera
tion where two a
tors greet ea
h other. The`greeter' �rst asks the `responder' their name, and replies with a personalisedgreeting.The responder role
ontains this line within the model (for the full modelsee Model 26).

name(N) ⇒ a(greeter, P erson1)← getMyName(N) then (5.10)

5.2. CREATING INTERACTION MODELS 35The
onstraint getMyName(N) returns the name of the responder in N .We
ould retrieve this name by asking the user to type in their name. To do thiswe
ould implement an OpenKnowledge Component that performs some userintera
tion. However, this is not re
ommended, as your OKC may be used onany number of di�erent types of peers on the OpenKnowledge network and youhave no idea the best way to present that intera
tion; inputting words on a PCis quite di�erent to using a mobile phone. So, an extension to the basi
 LCCprovides a simple means for suggesting user intera
tions within an intera
tionmodel very simply by adding one line the model.For our example model, the visualisation line would look like this:visual(getMyName(N),qask(N)) (5.11)The two parameters to the visual(,) operator de�ne a mapping from the
onstraint to a `visual term' that des
ribes what type of user intera
tion isrequired. The example here shows that getMyName(N) is mapped to thevisual term qask(N). qask() is a visual term that des
ribes asking the user aquestion. The qask() visual term has been implemented su
h that it
an alsoa

ept the question text. For example, this line maybe re-written:visual(getMyName(N),qask(�Please enter your name�, N)) (5.12)The advantage of providing visualisations in this way is that a peer mayimplement the qask() visual term in whi
h ever way it sees �t. It looks likeFigure 5.2 for a standard Windows PC, but may be implemented in a di�erentway on a mobile devi
e, or may be disallowed on a ra
k-mounted server ma
hinethat has no s
reen.5.2.1 Publishing Intera
tion ModelsYou
an publish intera
tion models from the tool provided by the standard userinterfa
e. To get to the tool sele
t �Publish IM� from the Tools menu.Figure 5.2.1 shows the dialog box for publishing intera
tion models. Thisdialog box allows you to enter a new intera
tion model, or you
an load one fromyour lo
al dis
 using the �Load Intera
tion Model From File� button. Figure5.2.1 shows the sele
tion of an intera
tion model from the dis
. Use the dropdown box to
hange the type of intera
tion model you wish to sear
h for (thedefault is LCC).On
e the intera
tion model that you wish to publish has been
ompletelyde�ned, you
an
he
k the syntax using the �Che
k Syntax� button on the rightof the window shown in Figure 5.2.1. Then, enter a set of keywords for des
rib-ing the intera
tion model in the box at the bottom. Bear in mind that thesekeywords will be mat
hed against when a user sear
hes the OpenKnowledge

36CHAPTER 5. PROGRAMMING FORTHE OPENKNOWLEDGE KERNEL

Figure 5.1: Built-in visualisation invo
ation to ask a user's name

Figure 5.2: The `Publish Intera
tion Model' dialog box

5.2. CREATING INTERACTION MODELS 37

Figure 5.3: Sele
ting an intera
tion model to publish

Figure 5.4: Giving des
riptive tags to the intera
tion model

38CHAPTER 5. PROGRAMMING FORTHE OPENKNOWLEDGE KERNELnetwork, so
hoose keywords that would be expe
ted to return an intera
tionmodel like the one you are publishing.Press the `Publish Intera
tion Model' button to send the model to the dis-
overy servi
e. If the publishing su

eeds a message will pop up (see Figure5.2.1).5.3 Creating ComponentsOpenKnowledge Components (OKCs) provide implementations of servi
es forthe OpenKnowledge network. The intera
tion models des
ribe how these pie
esof
ode
an be used together to provide an appli
ation. The intera
tion modelsspe
ify what fun
tionalities the servi
es must implement.The fun
tionality that an OpenKnowledge
omponent must implement isspe
i�ed in the intera
tion model in the form of
onstraints. Let us take a lookat the example below:a(sto
kist, ID) ::
checkItem(X) ⇐ a(_, ID)← validItem(X)
itemStockCount(X, N) ⇒ a(_, ID)← inStock(X, N)

(5.13)This simple example shows one role in a sto
k
he
k operation. Other rolesintera
t with this role by sending it the checkItem(X) message, where X is theitem to
he
k. If the item exists and the item is in sto
k, the model returns thenumber of items in sto
k in the message itemStockCount(X, N).The se
tions below use this example to des
ribe how to build
ode to providethe fun
tionality for these
omponents (se
tion 5.3.1), how to
reate
omponentJAR �les (se
tion 5.3.2), and how to publish your
omponents on the networkso that others may use their implementations (se
tion 5.3.4)5.3.1 Programming New ComponentsWe introdu
ed the simple sto
k
he
k intera
tion model in Model 30. Thissimple example requires two spe
i�ed fun
tions to be provided, and they arede�ned in the
onstraint des
ription: validItem(X) and inStock(X, N).The
onstraint simply de�ne what fun
tion needs to take pla
e at this pointin the intera
tion; it does not provide any parti
ular implementation of thisfun
tion. OpenKnowledge
omponents provide this implementation and theremay be many implementations for any parti
ular intera
tion model.For the Java version of OpenKnowledge, implementations of
onstraints areprovided in the form Java
ode wrapped into a Java Ar
hive (JAR) �le. These�les are shared on the network and
ontain the
ode to run when a
onstraintneeds to be satis�ed by the model.Preparing the
ode to do this has been made as simple a task as possible.

5.3. CREATING COMPONENTS 39Components must implement a spe
i�
 (empty) interfa
e that is de�ned aspart of the OpenKnowledge
ore software. However, they do not need to im-plement any spe
i�
 methods other than those required for the
onstraint satis-fa
tion. In Java, what this means is that the
lass you write to provide the imple-mentation for the
onstraints must implement the interfa
e org.openk.
ore.OKC.OKCFa
ade.This interfa
e a
tually de�nes some methods, so to make programming of
om-ponents as easy as possible, an implementation of these has been provided inthe
lass org.openk.
ore.OKC.impl.OKCFa
adeImpl. You should extend this
lass to
reate your OpenKnowledge
omponent.Code Listing 5.1 gives the skeleton for an OpenKnowledge Component.pa
kage myok
 ;import org . openk .
ore .OKC. OKCFa
adeImpl ;publi

lass MyOKC extends OKCFa
adeImpl{} Listing 5.1: Skeleton Class for OpenKnowledge ComponentsYou
an see that there is nothing more to
reating an OpenKnowledge Com-ponent than to extend OKCFa
adeImpl.To make it even easier, the intera
tion model de�nes the method signaturethat you must implement. Be
ause the library works by using re�e
tion on youOpenKnowledge Component
lasses, you just need to implement the
onstraintsas methods.Your methods for the
onstraints should return boolean values; this rep-resents whether the
onstraint was satis�ed or not. You methods
an throwex
eptions and this will be
onsidered as a
onstraint failure by the system.Listing 5.2 shows an example of a full implementation of the sto
k
he
kerOpenKnowledge
omponent.The arguments that are passed to your
onstraint methods mat
h those thatare de�ned in the intera
tion model. You
an use Argument.getValue() andArgument.setValue() to
hange the intera
tion's state.5.3.2 Creating Component JAR FilesIn OpenKnowledge,
omponents
an be shared a
ross the network, so that otherusers
an download your
omponent and run it on their ma
hine; that is, they
an assume a
ertain role in an intera
tion by using your
ode for that role.The
omponents are shared using a Java Ar
hive, whi
h is similar to a zip �le.The easiest way to
reate these
omponents is by using the tool built into thedefault user interfa
e.First you need to publish the intera
tion model for whi
h you have a
om-ponent. On
e published, sear
h for it on the network. If it is already publishedon the network, then you
an simply sear
h for it.

40CHAPTER 5. PROGRAMMING FORTHE OPENKNOWLEDGE KERNELExpand the role-list for the intera
tion model in the results table, and
li
kon the role for whi
h you have a
omponent. The button �Create New OKCFor Role� be
omes available. When you
li
k this button a window will appearthat will let you
reate the
omponent JAR.5.3.3 Loading in Lo
al ComponentsIf you have
reated some OpenKnowledge
omponents in JAR �les that youhave stored lo
ally on a dis
, you
an load these into the lo
al state of yourpeer. To do this, use a

ess the File menu and sele
t �Import OKC�. You willbe presented with a dialog box from whi
h you
an sele
t the OKC JAR �le.Note that restoring OKCs from dis
 into the state of your lo
al peer will notsubs
ribe your peer to any role; to do this, read se
tion 5.3.4. b The
omponentyou have loaded will appear under the �Lo
al Components� under `My Peer'.5.3.4 Publishing ComponentsPublishing
omponents is very easy from the user interfa
e. On
e a
omponenthas been loaded into the lo
al state of your peer (see se
tion 5.3.3) you
an sele
tthat
omponent from `My Peer' (it will be listed under `Lo
al Components').On
e sele
ted
li
k the `Share Component' button; this will send a
opy of the
omponent to the network where it
an be retrieved by other parties and usedby them.Programming a New VisualisationVisualisations are small user interfa
e modules that are used to satisfy
on-straints in an intera
tion model. They are entirely distin
t from the user inter-fa
e, but the user interfa
e is responsible for providing a means for displayingthem on the s
reen (see se
tion 5.3.5 on providing alternate user interfa
es).Se
tion 5.2 des
ribed how visualisations are in
orporated into intera
tionmodels. They utilise the visual(,) operation. The LCC below shows as exampleof the visualisation introdu
ed earlier.visual(getMyName(N),qask(�Please enter your name�, N)) (5.14)The �rst part of the visualisation de�nition is the intera
tion model
on-straint (getMyName(N)), and the se
ond part is the visual term(qask(�Please enter your name� , N)).The visual term does not spe
ify how the visualisation will be realised, it onlyprovides a hook for providing implementations. This means that a peer mayhave many implementations for a parti
ular visual term, while also allowingdi�erent devi
es to have di�erent implementations. For example, an imageviewer on a mobile phone will be di�erent to that on a desktop PC. There are a

5.3. CREATING COMPONENTS 41number of visual term implementations built-in to the kernel; see Se
tion 3.2.3for a list.5.3.5 Providing Alternate User Interfa
esThe OpenKnowledge kernel has been spe
i�
ally developed to be easy to extend.All of the
omponents that interfa
e to the kernel have an appli
ation program-mers' interfa
e (API) de�ned for them. The user interfa
e is no ex
eption tothis, meaning that you
an
reate new appli
ations that use the OpenKnowl-edge network, but look distin
t from the default user interfa
e that has beensupplied.As an example, Figure 5.3.5 shows the user interfa
e that has been developedfor
oordination of emergen
y servi
es in one of the OpenKnowledge demonstra-tion systems. In this appli
ation ea
h emergen
y servi
e vehi
le (ambulan
e,�re engine, et
.) is a peer on the OpenKnowledge network. They
ommuni
atethrough the network to
oordinate themselves to aid in an emergen
y. For thiss
enario, the default OpenKnowledge user interfa
e is too limited. The appli
a-tion is spe
i�
 and requires a spe
i�
 user interfa
e that provides a map of theemergen
y area showing where the individual emergen
y vehi
les are.

42CHAPTER 5. PROGRAMMING FORTHE OPENKNOWLEDGE KERNEL

Figure 5.5: Su

essfully published intera
tion model

Figure 5.6: Emergen
y Response User Interfa
e

5.3. CREATING COMPONENTS 43
pa
kage myok
 ;import org . openk .
ore .OKC. OKCFa
adeImpl ;publi

lass Sto
kChe
kerOKC extends OKCFa
adeImpl{ /∗∗

∗ So lve the va l i d I t em (X)
on s t r a i n t
∗ Su

eeds i f X i s a v a l i d item number
∗
∗ �param X The item i d e n t i f i e r
∗ �return TRUE i f X i s a v a l i d i d e n t i f i e r ,
∗ FALSE otherw i s e
∗/publi
 boolean va l idI tem (Argument X){ St r ing itemID = X. getValue () ;i f (Sto
kChe
ker . va l id I tem (itemID))return true ;return fa l se ;}/∗∗
∗ So lve the inSto
k (X)
on s t r a i n t . Returns
∗ the number o f i tems o f X in s to
k in N.
∗
∗ �param X The item i d e n t i f i e r
∗ �param N The number o f i tems in s to
k
∗ �return Always re turns TRUE
∗/publi
 boolean inSto
k (Argument X, Argument N){ St r ing itemID = X. getValue () ;N. setValue (Sto
kChe
ker .
he
kSto
k (itemID)) ;return true ;}} Listing 5.2: Sto
k Che
ker OpenKnowledge Component

