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Chapter 1

Introduction

The purpose of this manual is to introduce you to programming for the Open-
Knowledge kernel. There are several ways in which you might be interested in
OpenKnowledge programming;:

e You are not a programmer but you want to know what it would take to
write programs for OpenKnowledge. Your best option is to read Chapter 2
and quickly skim through the remainder of the manual.

e You want to describe interactions in OpenKnowledge but you are not
interested in writing specialised components to do new things as part of
those interactions. Read up to the end of Chapter 3 and skim the rest.

e You are intending to take a good look at the open source code for the
OpenKnowledge system and want an introduction to the main operational
mechanism before you come to grips with the code. Read up to the end
of Chapter 4.

e You want to write your own components to fire off applications within an
interaction so you need to know how those are connected before looking at
examples on www.openk.org. Read the whole manual, perhaps skimming
over Chapter 4.

Much of the discussion in this manual relates to the OpenKnowledge interac-
tion modelling language (LCC). Several interpreters for LCC have been written
in different languages (Prolog, Lisp, Java) but the OpenKnowledge kernel (which
you can download from www.openk.org) is the first attempt to produce a kernel
system that combines LCC with peer to peer query routing, ontology matching
and visualisation. It has been released as Java open source, so you can develop
your own system based on it or contribute to our version.

Many of the ideas contained in this manual are covered in the (basic and ad-
vanced) video tutorials available from the tutorial area of the www.openk.org).
You may find those helpful as an alternative presentation of the same concepts.
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This manual will change as our work on the OpenKnowledge project pro-
ceeds. If you have suggestions for improvements to this manual then please mail
them to Dave Dupplaw (dpd@ecs.soton.ac.uk).



Chapter 2

The OpenKnowledge System
in a Nutshell

Suppose you want to get something complex done using components (such as
Web services) that are available on the Internet. You could write your own
Web service, that calls out to those other components, and host that on your
own system but that will only work for you alone. What if you think others
might benefit from coordinating in a similar way, or if you want to avoid always
having your system perform the coordination? That’s where OpenKnowledge
comes in. It provides you with a compact language for describing coordination
and, if you wish to do so, a means of sharing coordination with others.

The “world view” taken by OpenKnowledge is illustrated in the picture be-
low, where the different coloured arrows represent people (or automated sys-
tems) participating in different interactions. Each interaction is coordinated by
a model of the interaction, discussed later. An individual gains knowledge of
how to interact with other individuals through interacting with those who he or
she already knows. For example, in the illustration in Figure 2.1 the individual
on the left might initially know about only two other individuals (the two inter-
acting via the light green arrows) but those two individuals know about other
interactions (in dark blue and in lime green) so can communicate them to the
individual on the left.

Interaction models are can be shared and used in many different ways but the
standard way to use them is by downloading the OpenKnowledge kernel system
from www.openk.org. The kernel is a compact program that automatically
finds interaction models that you might want to use; allows you to subscribe to
interactions that interest you; and interprets the interaction models in which
you actually become involved. In the illustration of Figure 2.2, the red dots are
copies of the kernel system (loaded from the supplier) being run on individual
peers.

Although our interaction models are portable and could be used by different
systems, there is a social advantage in having many peers running the same

7
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Figure 2.1: People share knowledge through shared interactions

request o
> penkKnowledge
ESRAEtr mOd_le,.---“"'" . plugin supplier

,"réquest plugin

Figure 2.2: Interactions are “injected” into per groups from service areas, like
www.openk.org



Figure 2.3: Interactions are shared by routing through the peer network.

OpenKnowledge kernel. The social advantage comes from query routing, which
works roughly as illustrated in Figure 2.3. Suppose that the peer at bottom
right of the picture wants to undertake an interaction but does not have an
appropriate interaction model. That peer would describe the sort of interaction
he or she is seeking, using a sequence of keywords (in a similar way to the way you
search for Web pages in traditional Web browsers). This query then is routed
through the peer network until matching interaction models are found (in our
picture the interaction model in black matches the query) and are relayed back
to the peer. When the peer receives the interaction model it receives not only
the interaction but, through it, may also access other peers in the network with
which it may not previously have interacted. In this way, sharing interaction
models extends and reinforces social networks.

If you want simply to use interaction models then you do not need to under-
stand any technical detail of the underlying system because using an interaction
model is analogous to using a program - if the interaction model is well crafted
then it will be easy for an appropriate group of people to use without them
knowing how it is built. You may, however, want to write your own interaction
models or adapt those you find on the network. This is the topic of the next
chapter.
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Chapter 3

Writing OpenKnowledge
Interactions in LCC

The language used in OpenKnowledge is the Lightweight Coordination Calculus
(LCC). This chapter explains how to write interaction models in LCC, which you
can then use and share with others. There is more to constructing interaction
models than just the specification of the interaction itself; there is also the issue
of connecting interactions to services and other computational components. We
get to this in Chapter 5 but our task in the current section is to introduce you
simply to writing interactions. We begin with a basic example (Section 3.1)
then describe LCC syntax in detail (Section 3.2); then describe some essential
design patterns (Section 3.3).

3.1 A Basic Example

The diagram in Figure 3.1 shows an interaction between three peers: pl, p2 and
p3. Each peer knows different things:

e pl knows that queries asking about p(Y") can be sent to p2 and that queries
asking about ¢(Z) can be sent to p3. We write this as query _ from(p(Y), p2)
and query from(q(Z),p3).

e p2 knows that p(a) is true. We write this as know(p2, p(a)).

e p3 knows that ¢(b) is true. We write this as know(p3, q(b)).

The interaction we require is depicted by the numbered messages in the
diagram:

e pl sends a message ask(p(Y)) to p2.

e p2 sends a message ask(p(a)) to pl.

11
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ask(p(¥})

query_from{p{Y}, p2)
query_ from{gid), p3)

ask{g(Z))

Figure 3.1: Basic interaction example

e pl sends a message ask(q(Z)) to p3.

e p3 sends a message ask(q(b)) to pl.

Let us first define an interaction model that does exactly the message passing
defined above. There are two roles that agents take in this model: the role of
a requester (which asks for information) and the role of an informer (which
supplies information). We define a LCC clause for each role as shown below.
For the requester (pl) we have simply given the sequence of four messages
corresponding to those above. Then we have defined a clause for the role of
informer that defines the behaviour expected of p2 and p3.

a(requester, A) ::
ask(X1) = a(informer,p2) < query_ from(X1,p2) then
tell(X1) < a(informer, p2) then
ask(X2) = a(informer, p3) « query from(X2,p3) then
tell(X2) < a(informer, p3) (3.1)

a(informer, B) ::
ask(X)
tell(X)

< a(requester, B) then
= a(requester, B) « know(X)

The LCC definition above covers the example but suppose we want a more
general type of requester that takes a list, L, of the form [¢(Query, Peer),.. ],
where Query is the query we want to make and Peer is an identifier for the
peer to which we want to send the query. We want the requester to send
an ask(Query) message to the appropriate Peer for each query and receive a
tell(Query) reply each time. A standard way to do this is by giving L as a
parameter to the requester role (so it becomes requester(L)) and making the
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‘ a(requester( [g{ask{p(X)},p2) g{ask{g(¥}},p3)1}, p1) |

[ aski@(x)) = aintomer, p2) |----| ask(@(X) <= a(requester({[ulask(p(X)) ¥2) alask(a(T)) H3}1}, B1) |
I
[ teritntar) <= atintormer, p2y |- telltptary <= atremvester({[atask(p(X)) p2) atask(a(¥)) ,p3}1}, pl) |
L
[ atreauesteri Lataskiat®)} 23111, &) |
! !
[askatz) = aintomer, p3) |----| ask(a(¥)) <= atrequester({Latask(a(1)) #3}1}, B1) |
| }
[ tetitatn) <= atinformer, p3) [-—[ bell(ath)) <= atreguestor((Laask{a(¥)) 0311, 1) |

Figure 3.2: Event sequences for the example

definition of this role recursive, taking the first element of L and then applying
the same definition to the remainder of the list, Lr, as shown below.

a(requester(L), A) ::
(ask(Query) = a(informer, Peer) «— L = [q(Query, Peer)|Lr] then
tell(Query) < a(informer, Peer) then
a(requester(Lr), A))
or

null — L = |]

a(informer, B) ::
ask(X) < a(requester(y, B) then
tell(X) = a(requester(y, B) < know(X)
(3.2)

If we were to run the interaction model shown above, starting with the role
of requester for the list of queries [g(ask(p(X)),p2), ¢(ask(q(Y)), p3)], then we
get the message sequences shown in Figure 3.2. On the left is the sequence
for a(requester([q(ask(p(X)),p2),q(ask(q(Y)),p3)]),pl). On the right are the
sequences for a(informer,p2) and a(informer, p3) which are the roles under-
taken by p2 and p3 in response to pl. The dashed lines indicate synchronisation
via message passing between peers.

In our earlier example (definition 1 above) we made some of the message
passing events contingent on constraints. For example sending the message
ask(X1) = a(informer, p2) was contingent on satisfying the constraint query _from(X1,p2).
These constraints are satisfied by connecting them to methods for computing
the constraint. Although some basic methods (such as for basic forms of visual-
isation) are pre-supplied by OpenKnowledge we expect that most methods will
be specific to application domains and so will need to be written or re-used by
interaction model developers. To make it possible to share these methods, we al-
low appropriately packaged methods to be shared, so that peers can accumulate
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Clause = Role:: Def
Role := a(Type,Id)
Def := Role| Message | Def then Def | Def or Def
Message := M = Role| M = Role — C|M < Role|C«— M < Role
C := Constant | P(Term,...)|-C|CANC|CVC
Type = Term
Id := Constant | Variable
M = Term
Term := Constant | Variable | P(Term,...)
Constant := lower case character sequence or number
Variable := upper case character sequence or number

Figure 3.3: LCC syntax

repositories of methods that they find useful. We call these OpenKnowledge
Components (OKCs). A more detailed description of OKCs appears in Sec-
tion 4.3 and Chapter 5.

3.2 LCC Syntax

Each LCC interaction model is defined by a set of clauses where each clause has
the syntax shown in Figure 3.3. Each clause is a self contained definition of a
role, with message passing being the only means of transferring information be-
tween roles. Message passing is also the only means of synchronisation between
roles.

In the sections which follow we explain what each element of LCC syntax
means from a programming point of view.

3.2.1 Variables, Constants, Terms, IDs and Roles

Variables must start with an upper case letter. The scope of a variable is local
to a clause (in other words, if you use the same variable name in different clauses
then these names refer to different variables). When it is unnecessary to give a
specific name for a variable (because it is not used elsewhere in a clause) you
can use an underscore () for the variable name. Constants must start with
a lower case letter. Numbers also are constants. Terms are tree-structured -
that is, they are either a constant or are of the form F'(Ai,..., A,) where F is
a non-numerical constant and each A; is a term. IDs are unique identifiers for
peers which must be non-numerical constants. Roles are terms that describe
the type of role played by a peer in a given interaction.
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3.2.2 Messages

There are two types of messages:

Incoming messages : are of the form Term < a(Role, ID), where Term is
the content of the message. When using ASCII, the symbol < is written
using <=.

Outgoing messages : are of the form Term = a(Role, ID), where Term is
the content of the message. When using ASCII, the symbol = is written
using =>.

Constraints can be attached to both incoming and outgoing messages (see
below).

3.2.3 Constraints

Constraints associate message passing events with conditions established by the
peer.

Message «— constraint(Argl,...ArgN) (3.3)

Constraints also may be associated with the special null event which repre-
sents an event that is not associated with a specific message. This frequently
is used in recursive role definition where terminating the role depends on a
parameter to the role, rather than a specific message passing event.

When using ASCII the constraint operator («) should be written using <-.

Visual Constraints

A constraint can have a mapping made available to it using the visual(,) op-
erator. The visual operator maps a constraint to a visual term. Visual terms
provide an abstract representation for a particular type of user interaction.

visual(constraint (Argl,...ArgN), visualTerm(vArgl,..vArgN))  (3.4)

The OpenKnowledge kernel has a number of built-in visual term implemen-
tations, listed below:

msg(M{,T)) Display a message M to the user, with the optional title 7.

text((T,)M) Display a large amount of text in M to the user, with the optional
title T'.

input({Q,)V) Ask the user to input some value into V', providing optional ques-
tion text in Q.
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List Operations

List operations are a common basis of the recursion techniques available when
writing LCC. List operations make use of the bar | operation that delineates
the head (H, first element) of a list from the rest of the list (7', the tail); that
is, L = [H|T).

In the case that H has some value, you can append this value to the head
of the list using the following constraint:

e L= [H|T] (3.5)

For example, if before the operation H contained the value 5, and the list, L,
contained [6, 7, 8], after the operation the list would contain the values [5, 6,7, 8].

In the case that H is not set, the following LCC will extract into H the value
of the head of the list.

. L= [H|T] (3.6)

Notice that T is itself a list, so that the head of T" will be the second element,
in the list. This allows for recursion on T'. If the list is empty, and no value
for H can be determined, the constraint will fail. For example, if before the
operation H was unset and the list, L, contained [6, 7, 8], after the operation H
would have the value 6 and the 7" would have the value [7, 8].

To test whether a list is empty, use the following LCC:

L= (3.7)

This constraint will fail if L is not empty.

Logical Operators

Constraints can be connected by the logical operators and and or:

e (7 and C5 succeeds if both constraints C; and C5 succeed, with C; being
attempted first.

e (4 and (5 succeeds if one of the constraints C7 and Cs succeeds, with C
being attempted first.

3.2.4 Comments

To comment your LCC you can use the C-like comments //...or /*...x/. The
double-slash comment form will make the interpreter ignore the rest of the line.
The slash-star comment form will ignore everything until the next star-slash.
The following are valid comments:
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// A wvalid single line comment
// Another single line comment

Ve
A wvalid
multi—line
comment

v/

Listing 3.1: Valid comment forms in LCC

3.2.5 Sequence and Choice

The basic operations used in LCC to determine the sequence of messages in a
clause are sequence and choice, as defined below (where F; and F; are sequence
expressions or message passing events):

Sequence : is written as F then E5. This sequence is completed if both Ej
or Fs is completed, with F; being completed first.

Choice : is written as F1 or E,. This sequence is completed if either Ey or Fo
is completed, with F; being attempted first. Es will only be attempted if
F4 fails. If Fy succeeds then E5 will not be attempted.

3.3 Design Patterns

Perhaps the easiest way to understand LCC programming is through design
patterns. These are standard ways of structuring clauses that are used to obtain
specific forms of interaction. The broad idea is similar to design patterns in more
traditional languages but the good news for LCC is that you only need to know
a small number of patterns, which you then combine to make more complex
programs. The four key patterns are given below.

Pattern 1: Interaction

The simplest thing we can do with LCC is to specify a message being sent from
one peer to another. To do this we decide the role (r1) being taken by the
sender; then write M = a(r2,Y) « C to describe the message, M, being sent
out to the recipient, Y, which is expected to receive it in role 2. The constraint
C'1 is used to determine whether this message can be sent by the sender, and it
often is used also to determine values for any variables that appear in M. In the
specification of the recipient’s role we write C2 «— M < a(r2,X) to describe
the message, M, being received, with C2 giving a constraint that should hold
as a consequence of receiving it.
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a(rl, X) =

M = a(r2,Y) < C1

a(r2,Y) =

C2—M < a(r2,X)

An example of using this pattern is an interaction that sends a message, M,
to a recipient, Y, where the choice on M is made by the constraint message(M)
and the choice of recipient is made by the constraint recipient(Y’). Acceptance
of the message by the recipient is determined by the constraint accept(M).

a(sender, X) ::
M = a(recipient,Y) «— message(M) and recipient(Y)
(3.9)
a(recipient,Y) ::
accept(M) — M < a(sender, X)

Pattern 2: Sequence

Usually we want to put an ordering on the sequence of events that can occur
as part of a role. To do this we use the "then" operator to say that the earlier
event, F'1, comes before the later event, E2.

a(r,X) =

E1l then (3.10)
E2

An example that uses this pattern twice is when the recipient of the mes-
sage returns a message to the sender, where response(M1, M2) is a constraint
determining the recipient’s response message, M2, from the sender’s message,
M1.

a(sender, X) ::
M1 = a(recipient,Y) «— message(M1)andrecipient(Y') then
accept(M2) «— M2 < a(recipient,Y)
(3.11)
a(recipient,Y) ::
accept(M1) «— M1 < a(sender, X) then
M2 = a(sender, X) « response(M1, M2)
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Pattern 3: Choice

We may want a peer taking some role, 7, in an interaction to make a choice
about the course of its interaction with other peers. This is done by writing
E1 «— ClorE2 < (C2 to say that the interaction described by E'1 should be done
under the conditions stipulated by constraint C'1 or the interaction described
by E2 should be done under the conditions stipulated by constraint C2. The
choice we are making here is a committed choice, meaning that if C'1 is satisfied
then the alternative choice (E2 « (C2) will not be attempted.

a(r,X)
Fl—C1
or (3.12)
E2 — C2

An example of this pattern is when a buyer wants to send a message to a
seller accepting some O f fer (received earlier in the definition of the buyer role)
if it is acceptable or otherwise it sends a message to the seller rejecting that
Of fer if it is unacceptable.

a(buyer, X) ::

accept(Of fer) = a(seller,Y) « acceptable(Of fer) (3.13)
or
reject(Of fer) = a(seller,Y) « unacceptable(Of fer)

Since LCC makes committed choices, we know in this example that if acceptable(Of fer)
is satisfied then the second option (in which the peer attempts to satisfy unacceptable(Of fer))
will not be attempted, so if testing unacceptability is not important then we
might shorten this example to:

a(buyer, X) ::

accept(Of fer) = a(seller,Y) «— acceptable(Of fer) (3.14)
or
reject(Of fer) = a(seller,Y)

Pattern 4: Recursion

Often we want an interaction to be controlled by some data structure, for ex-
ample we might want to have a similar sub-interaction for each of the elements
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in a list (as in the basic example above). The pattern below describes this. In
the pattern r(A) is a role, r, with the data structure as its argument, A. Some-
where within the definition of the of the role appears a constraint, R(A, Ar),
that reduces A to some "smaller" structure, Ar. Then the role recurses as r(Ar).
Normally there also is an alternative choice for when the data structure does
not reduce any further but meets some test, P(A), that it is has reached some
terminating state.

a(r(4),X) =
(... R(A,Ar) ...
a(r(Ar), X)) (3.15)

(... P(A) ..)

One example of using this pattern is an interaction that sends as a message
each element, M, from a list [M1,...] to peer p2 in role r2.

a(r(4),X) =
(M = a(r2,p2) — A = [M|Ar] then
a(r(Ar), X)) (3.16)
(null — A=1])

A second example is an interaction that sends N messages to peer p2, each
with the same content, M. Here, N and M are parameters to the role, 7.

a(r(N, M), X)
(M = a(r2,p2) < N > 0and N1is N — 1 then
a(r(N1, M), X)) (3.17)
or
(null — N =< 0)

Many examples of LCC in use for specifying interactions can be found at
www . openk.org, either as example interaction models, in the models area, or as
case studies, in the publications area.



Chapter 4

How the OpenKnowledge
Kernel Operates

This chapter explains how the OpenKnowledge works, from the point of view of
its main functional elements: the subscribe-bootstrap-run cycle through which
interactions are deployed (Section 4.1); the mapping between constraints and
methods through which interaction models are connected to application compo-
nents (Section 4.2); and the ways in which it is possible to access peer internal
state (Section 4.3).

4.1 The Subscribe-Bootstrap-Run Cycle

Interactions in OpenKnowldge take place via a cycle of subscription (when peers
say they want to take part in interactions); bootstrapping (to initiate a fully
subscribed interaction) and running (to perform the bootstrapped interaction).
Each of these is described below with the aid of four pictures (labelled A, B, C,
D) in Figures 4.1, reffig: Bootstrap-of-interaction and 4.4. Taking these pictures
together gives a picture of the whole cycle.

4.1.1 Subscription to an Interaction Model

The process of subscription is depicted in picture A of Figure 4.1. When a peer
needs to perform a task it asks the Discovery Service for a list of Interaction
Models matching the description of the task (steps 1, 2 and 3 in picture A).
Then, for each received Interaction Model, the peer compares the methods in
its OKCs with the constraints in the entry role it is interested in (step 4 in
picture A). If the peer finds an Interaction Model whose constraints (in the role
the peer needs to perform) are covered by the methods in its OKCs, then the
peer can subscribe to that Interaction Model in the Discovery Service (step 5 in
picture A). The subscription is handled by a subscription negotiator and can be
interpreted as an intention to participate in the interaction. The subscription,

21
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A) Peer P1 has a task "tag" to perform

compare({im1,...,imn},{OKCL,...}) search(tag)

' e 28archis(tag) oy]
r1={P2,P3}
Discovery |- < r={}
Service |
YAl

Q
_ Ms(tag,(IMl,.“IMZ})
: @subscribe(IMi, r2

*PLdescription
P2

O isReady(IM )

ES)

Figure 4.1: Exchange of messages between peers and discovery service for sub-
scription

through a subscription adaptor, binds the Interaction Model to a set of methods
in the OKCs in peer. A subscription can endure for only a single interaction run
or for many, possibly unlimited, interaction runs: a buyer will likely subscribe
to run a purchase interaction once, while a vendor may want to keep selling its
products or services.

4.1.2 Bootstrapping an Interaction

The process of bootstrapping is depicted in pictures B and C of Figure 4.2.
When all the roles in the Interaction Model have subscriptions, the Discovery
Service selects a random peer as a coordinator (steps 1 and 2 of picture B). The
coordinator then bootstraps and runs the interaction. The bootstrap involves
first asking the peers who they want to interact with, among all the peers that
have subscribed to the various roles (steps 3, 4 and 5 of picture B), then creating
a team of mutually compatible peers (step 6 of picture B) and finally - if possible
- asking the selected group of peers to commit to the interaction (picture C).
For a peer, committing to an interaction, implies the creation of an InteractionRunContext,

that receives the SubscriptionAdaptor from the SubscriptionNegotiator as
in Figure 4.3.

4.1.3 Running an Interaction

The process of bootstrapping is depicted in picture D of Figure 4.4. This part
of the cycle is handled by the coordinator and the InteractionRunContext
of the involved peers. The coordinator peer runs the interaction locally: the
messages are exchanged between local proxies of the peers. However, when
the coordinator encounters a constraint in a role clause, it sends the message
solveConstraintMessage to the InteractionRunContext in the peer perform-
ing the role (step 1 in picture D). The message contains the constraint to be
solved. The InteractionRunContext asks the SubscriptionAdaptor the cor-
responding method - found during the comparison at subscription time (step 2
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B) Bootstrapping - phase 1: peers selection
IF IMi is ready

Coordinator

selectRandomCoordinator()
M,

® selectPeers(lMi,{Pl,PZ,P3})
® selectedpeers(P

evaluatePeers(IMi,{P1,P2,P3}) \ec! ! createCompatibleTeam
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Figure 4.2: Bootstrap of interaction: exchange of messages for the selection of
peers and commitment
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Figure 4.3: UML class diagram of Subscription/ContextRun
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D) Interaction Run
IF enough peers have committed

solve(constrain

"St"\-al.nt\

solve(constraint)
@solveConstraint(constréint)

Run interaction locally,
between proxies of P1 and P2

constraintSolved(constraint

PZ@

./ Coordinator

Every time there is

a constraint to solve
in the roles performed
by P1 or P2

Figure 4.4: Interaction Run: exchange of messages between coordinator and
peers

of picture D). The OKCs are instantiated lazily: if the OKC that contains the
method corresponding to the constraint has not been instantiated yet within the
context of the interaction, the class is instantiated, and stored in the context. If
the instance exists in the context, the corresponding method is called dynami-
cally. The method will use the adaptor to access the elements of the arguments.
The peer then sends back the message SolveConstraintResponseMessage to
the coordinator with the updated values of variables and the boolean result
obtained from satisfying the constraint (step 3 of picture D).

4.2 Mapping Constraints to Methods

The matcher (described in detail in OpenKnowledge Deliverable 3.6), allows
the OKCs and the Interaction Models to be decoupled. The peer compares the
constraints in the roles in which it is interested with the methods in its OKCs
and creates a set of adaptors that maps the constraint in the roles to similar
methods. In order to match constraints and methods they both need to be
semantically annotated.

Semantic Mark-up of Methods

The exchanged messages can contain complex structures. The structures can
be trees or lists. The structure of the arguments is defined in the semantic
annotation of the method, written using Java 5 annotations:

@MethodSemantic(

language=tag,

args={‘‘product (brand, name, cost(currency, value))”,
‘“buyer (name, surname, address(street, postcode, city))’’}

)

public bool registerPurchase(Argument P, Argument B) {...}
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The code inside the method can access the elements in the structure by path
(similarily to XPath):

System.out.println(P.getValue("/product[0]/cost[0]/value[0]>*)+
9y << +

P.getValue("/product [0]/cost[0]/currency[0]°*))

The nodes in the path are coupled with an index, because there might be more
than one node of the same ontological type at the same depth. For example,
a parameter that contains a relationship can be a expressed as tree with two
identical children:

@MethodSemantic(

language=tag,
args={’friends(person,person)’})
public boolean add(Argument F){

System.out.println(F.getValue(‘‘friends[0] /person[0]”’) + ¢ knows ”’
+F.getValue (“friends[0] /person[1]1°”));

}

The elements of the structure are reached independently of how they are kept
in the exchanged messages: the adaptor between the constraint and the method
maps the elements in the arguments of the constraint to the elements in the
arguments of the method.

Lists

We have two possibilities: one is to only allow access to the lists through LCC
operators and recursion, the other is to use the indexes of the root elements:

@MethodSemantic (..., args={"[move(from,to,vehicle)]"})

represents an argument that contains a list. To access the elements in the list,
the index of the root changes.

public boolean do(Arg A){
System.out.println(A.getValue("/move[2]/from[0]");
}

4.2.1 Adaptors

For example, the constraint in the following snippet of a protocol:

register(P,B) <- bought(P,B) <= a(buyer, ID)
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. producQ
U "
name
— 1 cost
TT iU ISR -currency
‘ CUTENCY e
value """
buyer !
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e - -J-city
"""""" -postcode
city "
Figure 4.5: Adaptor between register(...) constraint  and

registerPurchase(...) method

where the constraint is defined as:

register(produce (make,name, cost,currency),
purchaser (surname, address, city, postcode))

will be mapped to the method in the OKC seen in the previous section with the
adaptor in Figure 4.5.

Allowing the code inside the method to access the elements without knowing
how they are actually structured in the message, decoupling de facto the protocol
from the components.

4.3 Access to Peer State

Some interaction constraints are functional: they expect that the method in the
component, given a set of input arguments, will always unify the non instan-
tiated arguments with the same values, or will succeed or fail, independently
of whether the peer that has downloaded and executed the component. For
example, the constraint sort(List,SortedList) for sorting a list of elements
should always unify SortedList with the ordered version of List, even though
different peers may have OKCs that implement different algorithms for sorting
it.

Other components work as a bridge between the interaction model and the
peer local knowledge, and will unify non instantiated variables with values that
depend on the peer in which the OKC is running. For example, a constraint
price(Product, Price) expects that the corresponding method in the OKC
unifies the variable Price with the price assigned to Product by the peer, pos-
sibly accessing the database local to the peer: different peers may have different
prices for the same product. Moreover, the same peer can be involved in many
interactions simultaneously, and the peer local knowledge (or state) is changed
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by one interaction and read in another. For example, a peer selling products
will have the total amount of available products reduced after each successful
selling interaction.

OKCs are given the references, at instantiation time, of the objects they
need to use through the setParameter(..) and getParameter(...) meth-
ods. The class implementing the 0KCFacade interface is annotated (via Java 5.0
annotations) with the semantic descriptions of the peer’s methods it needs to
use. When a peer downloads an OKC, the methods required by it are matched
against the methods exposed by the peer: if the matching is good enough (there
might be OKCs not compatible with a particular implementation of a peer),
then the result of comparison is an adaptor, similar to those between OKC
methods and constraints, that allow the OKC methods to access the elements
in the peer’s methods using its internal terminology.

The peer’s ontology is considered as local knowledge. The actual implemen-
tation of the ontology handler is up to the peer developers, but the OKCs -
if they need it - can access it through the same procedure of calling a set of
exposed methods.
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Chapter 5

Programming for the
OpenKnowledge Kernel

5.1 Introduction

This chapter is intended for programmers who intend to create interaction mod-
els as well as creating components which implement roles in these models. To
make the discussion self-contained we recap some material from earlier chapters
but, if you are coming to OpenKnowledge for the first time, we recommend you
at least skim through those background chapters before reading this one.

Let us assume you are sitting in front of a computer and you run the Open-
Knowledge software; this will create what is known as a peer on the Open-
Knowledge network. In most cases, you can consider your computer to be a
single peer on the network and for now we shall assume this. Your peer stores
bits of code that allow it to do interesting things when it is contacted. These
bits of code are called OKCs (which stands for OpenKnowledge Components).
To start with, this is all you should need to know, so we will start in section
5.2 by describing how to create interaction models in the default language for
OpenKnowledge interaction models: LCC.

5.2 Creating Interaction Models

Chapter 3 describes the LCC language. Here we use it to begin a basic program-
ming example that bridges interaction models to OpenKnowledge components
(from Chapter 4). We will examine a simple form of interaction that most of us
would be familiar with: greeting someone.

During the interaction that occurs when you greet someone, you would first
say “Hello” and then you might expect a reply “Good Morning” back. In this
simple interaction you would be the initial ‘greeter’ while the person you are
greeting might be described as a ‘responder’. So let us write that interaction in

29
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sequence:

e Greeter: Say “Hello”

e Responder: Say “Good Morning”

We can be a little more rigorous in our description, as the responder will
only reply “Good Morning” after they hear the initial greeting. So let us write
this as a sequence:

e Greeter: Say “Hello”
e Responder: Hears “Hello”
e Responder: Say “Good Morning”

e Greeter: Hears “Good Morning”

Now that the interaction has been fully described, it is clear which of the
people in the interaction are doing what and, very importantly, when they do it.
The person assuming the ‘greeter’ role says “Hello” and hears the reply “Good
Morning”. The person assuming the ‘responder’ role hears “Hello” so replies
“Good Morning”.

Let’s write out the sequence of actions for Johnny, who is going to be taking
the ‘greeter’ role in our interaction:

greeter : Johnny
Say Hello to Bob
Hear Responder Bob say Good Morning

Bob is going to be the responder, so let’s write out his actions, which are
pretty much the exact opposite:

responder : Bob
Hear Greeter Johnny say Hello
Respond to Greeter Johnny with Good Morning

In LCC, the act of interacting is represented by the idea of sending and
receiving messages. In our simple example, saying hello is the equivalent of
sending the message hello to the responder. In the example above Bob is taking
the responder role, so we would write the first interaction like this in LCC:

hello = a(responder, Bob) (5.1)

You can read this as ‘Message hello is sent to responder Bob’.
In this particular interaction, where Bob is playing responder, he will be
expecting to hear hello from a greeter called Johnny, so we write this like so:

hello < a(greeter, Johnny) (5.2)
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You can read this as 'Message hello is received from greeter Johnny'.
Note: You can type = as =>and <« as <=.

So, if we were to extend this to the full interaction and allow any people to
play it (not just Johnny and Bob), we would end up with this LCC interaction
model:

a(greeter, Personl) ::
hello = a(responder, Person2) then
goodMorning < a(responder, Person2)

a(responder, Person2) ::
hello < a(greeter, Personl) then
goodMorning = a(greeter, Personl)

Notice that we define the roles of greeter and responder above the sequence
of interactions that they should perform. The start of a role is defined using the
notation: a(role,name) :: .... Also notice that the sequence of events is defined
using the then operator.

LCC has the concept of variables, or placeholders, into which values can
be placed and then passed in the messages. Let’s extend our simple interaction
model so that our greeter first asks the name of our responder, then greets them.
To achieve this, the responder must send their name through a message to the
greeter in a variable. For example, if N = Bob, 'Hello N’ will expand to "Hello
Bob'.

The interaction is now something like:

e Greeter: What’s your name?

e Responder: My name is N

o Greeter: Hello N

Responder: Good Morning

The interaction model expands because each role now describes an interac-
tion that will determine the responder’s name. The first two lines of each role
describe the interaction to ask for the responder’s name.
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a(greeter, Personl) ::

askName = a(responder, Person2) then

name(N) < a(responder, Person2) then

hello(N) = a(responder, Person2) then

goodMorning < a(responder, Person2)

(5.4)

a(responder, Person2) ::

askName < a(greeter, Personl) then

name(N) = a(greeter, Personl) «— getMyName(N) then

hello(N) < a(greeter, Personl) then

goodMorning = a(greeter, Personl)

The LCC above introduces two new aspects. The first is the idea of variables
and showing how they can be passed through messages (N in our message
hello(N)). However, during the actual interaction, you do not want to say “Hello
N”, you want to say “Hello Bob”. This means that N has to be assigned to the
value ‘Bob’. This is achieved by the last part of the line «— getMyName(N).
We call this thing a constraint because we can only send the message name(N)
if we have a value for N (Bob or whatever).

Let’s look at that line in more detail.

name(N) = a(greeter, Personl) «— getMyName(N) (5.5)

This can be read: ‘Send name(N) to greeter Personl only if I can getMyName(N)'.
We will discuss more about how getMyName(N) actually works later, but for
now, assume it sets the value of N to be the responder’s name. In a bit, we will
also discover what happens if the responder has amnesia and cannot remember
their name!

Let’s expand the example a little further and introduce the idea of alternate
options. For example, as a greeter we may only wish to ask someone their name
if we don’t already know it. So first we should ensure we only ask for their name
if we do not know who they are. You will hopefully have noticed that this is a
constraint on the askName message on the first line of the greeter role: ‘ask
name to responder only if T do not recognise them’.

askName = a(repsonder, Person2) «— doNotRecognise(Person2)
(5.6)

In the case that doNotRecognise(Person2) is true, the message asking
for their name will be sent. What happens if the constraint is false and we do
recognise that person? We want to simply say hello. So, to summarise, we ask
their name if we don’t recognise them (then we say hello) or we just say hello.
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The or operator allows us to say that directly in LCC. Let’s see the whole
greeter role with the alternative options:

a(greeter, Personl) ::
(
askName = a(responder, Person2) then
name(N) < a(responder, Person2) then
hello(N) = a(responder, Person2)

) (5.7)

or
hello = a(responder, Person2)

then

goodMorning < a(responder, Person2)

Notice the use of parentheses for grouping together the operations on either
side of the or operator. The indentation is merely to make it clear which
statements are in the branches of the or operator; LCC is agnostic to white-
space.

It is important when using the or operator with constraints to understand
the idea of back-tracking. If a constraint fails (such as doN ot Reconise returning
false) the interaction will ‘back-track’. This just means that it retraces its steps
until it gets to an alternate option (specified by the or ) and executes the other
option. Of course, there are certain points in the interaction model that cannot
be re-traced. For example, if the model sends a message and then a subsequent
constraint fails, the interaction cannot back-track past the message operation;
the pragmatic reason being that the message is now on the network and cannot
be retracted. If this happens, or there are no alternate options available, the
interaction will fail and will be shut-down.

Now we will have a look at the other role in this interaction:

a(responder, Person2) ::
(
askName < a(greeter, Personl) then
name(N) = a(greeter, Personl) «— getMyName(N) then
hello(N) < a(greeter, Personl)
)
or
hello < a(greeter, Personl))
then
goodMorning = a(greeter, Personl)
(5.8)

Again, this role mirrors the other role fairly closely. This role will start
by waiting for the askName message to arrive; in the case that it doesn’t the
alternative branch of the or will be executed, where the hello message is
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expected. If some other message arrives, the interaction will continue to wait
for one or other of these messages.
So, our final interaction for two actors greeting each other is shown below.

a(greeter, Personl) ::
(askName = a(responder, Person2) then
name(N) < a(responder, Person2) then
hello(N) = a(responder, Person2)
or
hello = a(responder, Person2)) then
goodMorning < a(responder, Person2)

a(responder, Person2) ::
(askName < a(greeter, Personl) then
name(N) = a(greeter, Personl) «— getMyName(N) then
hello(N) < a(greeter, Personl))
or
hello < a(greeter, Personl) then
goodMorning = a(greeter, Personl)

For details of how to implement the OpenKnowledge components that will
provide the functionality of the getMyName(/N) constraint, see section 5.3.1.
Alternatively, this constraint could be satisfied visually, using constraint visu-
alisation, described in section 5.2.

LCC Visualisation

During the interactions between peers, it will sometimes be necessary to get
some user input. Earlier in this chapter we introduced and defined in LCC a
simple interaction that described how two actors would greet each other (see
Model 26). One of these actors has the constraint getMyName(N) which
retrieves into the variable N the name of the actor. This could be achieved
through user input, allowing the user at the peer to type in their name. In
this section will be show how this can be achieved using visualisation before
discussing a little more generally about the visualisations that are provided
with the OpenKnowledge core software.

Let’s return to the simple interaction where two actors greet each other. The
‘greeter’ first asks the ‘responder’ their name, and replies with a personalised
greeting.

The responder role contains this line within the model (for the full model
see Model 26).

name(N) = a(greeter, Personl) — getMyName(N) then  (5.10)
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The constraint getMyName(N) returns the name of the responder in N.
We could retrieve this name by asking the user to type in their name. To do this
we could implement an OpenKnowledge Component that performs some user
interaction. However, this is not recommended, as your OKC may be used on
any number of different types of peers on the OpenKnowledge network and you
have no idea the best way to present that interaction; inputting words on a PC
is quite different to using a mobile phone. So, an extension to the basic LCC
provides a simple means for suggesting user interactions within an interaction
model very simply by adding one line the model.

For our example model, the visualisation line would look like this:

visual(getMyName(N), gask(N)) (5.11)

The two parameters to the visual(,) operator define a mapping from the
constraint to a ‘visual term’ that describes what type of user interaction is
required. The example here shows that getMyName(N) is mapped to the
visual term qgask(NN). qask() is a visual term that describes asking the user a
question. The gask() visual term has been implemented such that it can also
accept the question text. For example, this line maybe re-written:

visual(getMyName(N), qask(“Please enter your name”, N)) (5.12)

The advantage of providing visualisations in this way is that a peer may
implement the qask() visual term in which ever way it sees fit. It looks like
Figure 5.2 for a standard Windows PC, but may be implemented in a different
way on a mobile device, or may be disallowed on a rack-mounted server machine
that has no screen.

5.2.1 Publishing Interaction Models

You can publish interaction models from the tool provided by the standard user
interface. To get to the tool select “Publish IM” from the Tools menu.

Figure 5.2.1 shows the dialog box for publishing interaction models. This
dialog box allows you to enter a new interaction model, or you can load one from
your local disc using the “Load Interaction Model From File” button. Figure
5.2.1 shows the selection of an interaction model from the disc. Use the drop
down box to change the type of interaction model you wish to search for (the
default is LCC).

Once the interaction model that you wish to publish has been completely
defined, you can check the syntax using the “Check Syntax” button on the right
of the window shown in Figure 5.2.1. Then, enter a set of keywords for describ-
ing the interaction model in the box at the bottom. Bear in mind that these
keywords will be matched against when a user searches the OpenKnowledge
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il visualisation x|

"Please enter your nhame"

OK Cancel

Figure 5.1: Built-in visualisation invocation to ask a user’s name
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Figure 5.2: The ‘Publish Interaction Model’ dialog box
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network, so choose keywords that would be expected to return an interaction
model like the one you are publishing.

Press the ‘Publish Interaction Model” button to send the model to the dis-
covery service. If the publishing succeeds a message will pop up (see Figure
5.2.1).

5.3 Creating Components

OpenKnowledge Components (OKCs) provide implementations of services for
the OpenKnowledge network. The interaction models describe how these pieces
of code can be used together to provide an application. The interaction models
specify what functionalities the services must implement.

The functionality that an OpenKnowledge component must implement is
specified in the interaction model in the form of constraints. Let us take a look
at the example below:

a(stockist, ID) ::
checkItem(X) < a(_,ID) « validltem(X) (5.13)
itemStockCount(X,N) = a(_,ID) « inStock(X,N)

This simple example shows one role in a stock check operation. Other roles
interact with this role by sending it the checklItem(X) message, where X is the
item to check. If the item exists and the item is in stock, the model returns the
number of items in stock in the message itemStockCount(X, N).

The sections below use this example to describe how to build code to provide
the functionality for these components (section 5.3.1), how to create component
JAR files (section 5.3.2), and how to publish your components on the network
so that others may use their implementations (section 5.3.4)

5.3.1 Programming New Components

We introduced the simple stock check interaction model in Model 30. This
simple example requires two specified functions to be provided, and they are
defined in the constraint description: validItem(X) and inStock(X, N).

The constraint simply define what function needs to take place at this point
in the interaction; it does not provide any particular implementation of this
function. OpenKnowledge components provide this implementation and there
may be many implementations for any particular interaction model.

For the Java version of OpenKnowledge, implementations of constraints are
provided in the form Java code wrapped into a Java Archive (JAR) file. These
files are shared on the network and contain the code to run when a constraint
needs to be satisfied by the model.

Preparing the code to do this has been made as simple a task as possible.
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Components must implement a specific (empty) interface that is defined as
part of the OpenKnowledge core software. However, they do not need to im-
plement any specific methods other than those required for the constraint satis-
faction. In Java, what this means is that the class you write to provide the imple-
mentation for the constraints must implement the interface org. openk. core.0KC.0KCFacade.
This interface actually defines some methods, so to make programming of com-
ponents as easy as possible, an implementation of these has been provided in
the class org.openk. core.0KC. impl.0KCFacadeImpl. You should extend this
class to create your OpenKnowledge component.
Code Listing 5.1 gives the skeleton for an OpenKnowledge Component.

package myokc;
import org.openk.core .OKC. OKCFacadelmpl ;

public class MyOKC extends OKCFacadelmpl

{
}

Listing 5.1: Skeleton Class for OpenKnowledge Components

You can see that there is nothing more to creating an OpenKnowledge Com-
ponent than to extend OKCFacadeImpl.

To make it even easier, the interaction model defines the method signature
that you must implement. Because the library works by using reflection on you
OpenKnowledge Component classes, you just need to implement the constraints
as methods.

Your methods for the constraints should return boolean values; this rep-
resents whether the constraint was satisfied or not. You methods can throw
exceptions and this will be considered as a constraint failure by the system.

Listing 5.2 shows an example of a full implementation of the stock checker
OpenKnowledge component.

The arguments that are passed to your constraint methods match those that
are defined in the interaction model. You can use Argument.getValue() and
Argument . setValue() to change the interaction’s state.

5.3.2 Creating Component JAR Files

In OpenKnowledge, components can be shared across the network, so that other
users can download your component and run it on their machine; that is, they
can assume a certain role in an interaction by using your code for that role.
The components are shared using a Java Archive, which is similar to a zip file.
The easiest way to create these components is by using the tool built into the
default user interface.

First you need to publish the interaction model for which you have a com-
ponent. Once published, search for it on the network. If it is already published
on the network, then you can simply search for it.
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Expand the role-list for the interaction model in the results table, and click
on the role for which you have a component. The button “Create New OKC
For Role” becomes available. When you click this button a window will appear
that will let you create the component JAR.

5.3.3 Loading in Local Components

If you have created some OpenKnowledge components in JAR files that you
have stored locally on a disc, you can load these into the local state of your
peer. To do this, use access the File menu and select “Import OKC”. You will
be presented with a dialog box from which you can select the OKC JAR file.
Note that restoring OKCs from disc into the state of your local peer will not
subscribe your peer to any role; to do this, read section 5.3.4. b The component
you have loaded will appear under the “Local Components” under ‘My Peer’.

5.3.4 Publishing Components

Publishing components is very easy from the user interface. Once a component
has been loaded into the local state of your peer (see section 5.3.3) you can select
that component from ‘My Peer’ (it will be listed under ‘Local Components’).
Once selected click the ‘Share Component’ button; this will send a copy of the
component to the network where it can be retrieved by other parties and used
by them.

Programming a New Visualisation

Visualisations are small user interface modules that are used to satisfy con-
straints in an interaction model. They are entirely distinct from the user inter-
face, but the user interface is responsible for providing a means for displaying
them on the screen (see section 5.3.5 on providing alternate user interfaces).

Section 5.2 described how visualisations are incorporated into interaction
models. They utilise the visual(, ) operation. The LCC below shows as example
of the visualisation introduced earlier.

visual(getMyName(N), qask(“Please enter your name”, N)) (5.14)

The first part of the visualisation definition is the interaction model con-
straint (getMyName(N)), and the second part is the visual term
(qask(“Please enter your name”, N)).

The visual term does not specify how the visualisation will be realised, it only
provides a hook for providing implementations. This means that a peer may
have many implementations for a particular visual term, while also allowing
different devices to have different implementations. For example, an image
viewer on a mobile phone will be different to that on a desktop PC. There are a
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number of visual term implementations built-in to the kernel; see Section 3.2.3
for a list.

5.3.5 Providing Alternate User Interfaces

The OpenKnowledge kernel has been specifically developed to be easy to extend.
All of the components that interface to the kernel have an application program-
mers’ interface (API) defined for them. The user interface is no exception to
this, meaning that you can create new applications that use the OpenKnowl-
edge network, but look distinct from the default user interface that has been
supplied.

As an example, Figure 5.3.5 shows the user interface that has been developed
for coordination of emergency services in one of the OpenKnowledge demonstra-
tion systems. In this application each emergency service vehicle (ambulance,
fire engine, etc.) is a peer on the OpenKnowledge network. They communicate
through the network to coordinate themselves to aid in an emergency. For this
scenario, the default OpenKnowledge user interface is too limited. The applica-
tion is specific and requires a specific user interface that provides a map of the
emergency area showing where the individual emergency vehicles are.
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package myokc;
import org.openk.core.OKC. OKCFacadelmpl;

public class StockCheckerOKC extends OKCFacadelmpl
{
Jxox
Solve the wvalidltem (X) constraint
Succeeds if X is a wvalid item number

@param X The item identifier
@return TRUE if X is a valid identifier
FALSE otherwise

* X X ¥ X X *

*/
public boolean validltem ( Argument X )
{
String itemID = X.getValue();
if ( StockChecker.validItem ( itemID ) )
return true;
return false;

o

* X X ¥ X X X

Solve the inStock (X) constraint. Returns
the mumber of items of X in stock in N.

@param X The item identifier

@param N The number of items in stock

@return Always returns TRUE

o/

public boolean inStock( Argument X, Argument N )

{

String itemID = X.getValue();

N.setValue( StockChecker.checkStock(
itemID ) );

return true;

Listing 5.2: Stock Checker OpenKnowledge Component



