
OpenKnowledge

FP6-027253

Initial Test Rigs

Paolo Besana, Phil Graham, David Lambert,
Nardine Osman, and David Robertson

School of Informatics, University of Edinburgh, UK

Report Version: final
Report Preparation Date:
Classification: deliverable D7.1
Contract Start Date: 1.1.2006 Duration: 36 months
Project Co-ordinator: University of Edinburgh (David Robertson)

Partners: IIIA(CSIC) Barcelona
Vrije Universiteit Amsterdam
University of Edinburgh
KMI, Open University
University of Southampton
University of Trento

Proto
ol Based Analysis for Distributed Knowledge SharingPaolo Besana, Phil Graham, David Lambert, Nardine Osman, David RobertsonInformati
s,University of Edinburgh,UKAbstra
tFormal veri�
ation and analysis has made few inroads into knowledge sharing be
ause, at the levelof shared knowledge, the
omputation used to perform sharing normally is too
omplex, unpredi
tableand/or obs
ure to allow pra
ti
al methods to be developed. Re
ently, however,
omputational methodshave been developed that apply dire
tly for knowledge sharing some of the methods that have tradi-tionally been used in formal veri�
ation. The area to whi
h these methods is applied, however, is verydi�erent in nature to those of traditional formal veri�
ation. This leads us to apply formal analyti
almethods in novel ways. We des
ribe four of these.When veri�
ation methods are applied to distributed systems the fo
us of analysis normally is on generi
system properties (su
h as liveness or deadlo
k). When we are dealing with low-level
omponents, su
h asbasi

ommuni
ation proto
ols, then these generi
 properties are (arguably) the only properties of immediate
on
ern. When we ta
kle knowledge sharing in distributed systems then the range of possible propertiesto analyse is ri
her, and the methods of analysis are more varied. This paper des
ribes four
ategories ofanalysis within a single framework for distributed knowledge sharing. Our framework uses the LightweightCoordination Cal
ulus (LCC) to spe
ify the knowledge sharing intera
tion. LCC is an exe
utable spe
i�
a-tion language and is being used in distributed knowledge sharing appli
ations (most notably as part of theOpenKnowledge proje
t, www.openk.org).The paper is stru
tured as follows. First, in Se
tion 1 we des
ribe a top-level framework for
omputationusing LCC. Then, in se
tions 2 to 5 we identify four properties of knowledge sharing in this framework andfor ea
h show a form of analysis appropriate to it. All of the properties we
onsider are, in the general
ase,impossible to guarantee in a distributed system so the aim of analysis is not to
on
lusively guarantee ourproperties but to make it more likely that are preserved when we engineer systems.1 A Model of Computation for Peer to Peer Knowledge SharingThe model of
omputation that we use as the basis for our framework is that employed by the OpenKnowledgeproje
t, using the Lightweight Coordination Cal
ulus (LCC). This is des
ribed in detail in [9℄ but we repeatthe relevant part of that des
ription in this se
tion and
onne
t it to the framework summary (in De�nition 1)that we use as a re
urrent pattern when we get to the analyti
al methods of Se
tions 2 to 5.We assume that distributed knowledge sharing is performed by some
olle
tion of
omputational pro-
esses (e.g Web servi
es, peers in a peer-to-peer network, or agents in a multi-agent system). We refer tosu
h pro
esses as peers, not be
ause peer-to-peer infrastru
ture essential to us but be
ause this emphasisesthe isolated and autonomous nature of the pro
esses. Ea
h peer may intera
t, privately, with its lo
alenvironment. When a peer wishes to intera
t with other peers then this is a
hieved through an expli
itmodel of intera
tion (de�ned in LCC, see below) that
onstrains the sequen
e of message passing betweenpeers. To parti
ipate in an intera
tion model a peer must adopt one or more roles in that model - hen
epeers be
ome involved in intera
tions by subs
ribing to roles de�ned for that intera
tion. In [9℄ we show the
orresponden
es between this model of intera
tion and those of other
ommonly used
oordination systems.1

In all
ases there is a
orresponden
e at the level of spe
i�
ation - so LCC
an be used to spe
ify many of theforms of intera
tion found in those systems. In addition, however, we have produ
ed a me
hanism allowingdire
t deployment of LCC, so it
an be used as an exe
utable spe
i�
ation language.De�nition 1 In a peer to peer knowledge sharing system a peer is a
omputational pro
ess, P , with a lo
alenvironment, EP . When in an intera
tion with other peers, a peer adopts some role, R, that
onforms to anexpli
it model of the intera
tion, M(P,R). This is depi
ted in the diagram below
P M(P,R)

P1

Pn

EP

EP1

EPnwhere:
P = process name
RP = role of P
M(P,R) = interaction model for RP

EP = environment of P
RP = {RP , . . .}
MP = {M(P,R), . . .}
P(M(P,R)) = {Pi, . . .} such that Pi participates in M(P,R)Figure 1 de�nes the syntax of LCC. An intera
tion model in LCC is a set of
lauses, ea
h of whi
h de�neshow a role in the intera
tion must be performed. Roles are des
ribed by the type of role and an identi�erfor the individual peer undertaking that role. The de�nition of performan
e of a role is
onstru
ted using
ombinations of the sequen
e operator (`then') or
hoi
e operator (`or') to
onne
t messages and
hanges ofrole. Messages are either outgoing to another peer in a given role (`⇒') or in
oming from another peer in agiven role (`⇐'). Message input/output or
hange of role
an be governed by a
onstraint de�ned using thenormal logi
al operators for
onjun
tion, disjun
tion and negation. Noti
e that there is no
ommitment tothe system of logi
 through whi
h
onstraints are solved - so di�erent peers might operate di�erent
onstraintsolvers (in
luding human intervention).In [9℄ a full formal des
ription of a
omputation method using LCC is des
ribed. For our
urrent purposes,however, it is su�
ient to repeat only the transition rules used by ea
h peer to advan
e the state of its rolein the intera
tion. This is done by sele
ting the appropriate
lause, Sp, for that role and we now explainhow to advan
e the state asso
iated with this role to the new version of that
lause, S ′p, given an inputmessage set, Mi, and produ
ing a new message set, Mn, whi
h
ontains those messages from Mi that havenot been pro
essed plus additional messages added by the state transition. Sin
e we shall need a sequen
e oftransitions to the
lause for Sp we use Ci to denote the start of that sequen
e and Cj the end. The rewriterules of Figure 2 are applied to give the transition sequen
e of expression 1.2

Model := {Clause, . . .}
Clause := Role :: Def

Role := a(Type, Id)
Def := Role |Message | Def then Def | Def or Def

Message := M ⇒ Role |M ⇒ Role← C |M ⇐ Role | C ←M ⇐ Role
C := Constant | P (Term, . . .) | ¬C | C ∧ C | C ∨ C

Type := Term
Id := Constant | V ariable
M := Term

Term := Constant | V ariable | P (Term, . . .)
Constant := lower case character sequence or number
V ariable := upper case character sequence or numberFigure 1: LCC syntax

Ci
Mi,S,Mn
−−−−−−→ Cj ↔ ∃R,D.(Ci = a(R, p) :: D) ∧













Ci
Ri,Mi,Mi+1,S,Oi
−−−−−−−−−−−→ Ci+1 ∧

Ci+1
Ri,Mi+1,Mi+2,S,Oi+1

−−−−−−−−−−−−−−→ Ci+2 ∧
. . .

Cj−1
Ri,Mj−1,Mj ,S,Oj

−−−−−−−−−−−−→ Cj













∧

Mn = Mj ∪Oj

(1)
2 Ensuring that Intera
tions are AvailableUsing LCC we make intera
tion models expli
it, so M(P,R) in De�nition 1
an be
ommuni
ated betweenpeers. There are, however, potentially a huge number of intera
tions in whi
h a peer might wish to beengaged, and this makes it a major issue for a peer to know exa
tly what sort of intera
tion to attemptwith its peers. There are two
losely related aspe
ts to this problem: the dis
overy of appropriate modelsof intera
tion and the
hoi
e of appropriate peers with whi
h to engage in intera
tions that have beendis
overed.Property 1 Intera
tion availability: If a role, R, is in the set of roles, RP , that a peer, P , wishes toundertake then at some future time an intera
tion model, M(P,R), should exist in the set of models, MP ,known to P and that model should be
apable of being initiated by P on role R and then satis�ed via per-to-peerintera
tion.

R ∈ RP → ⋄(∃M(P,R).M(P,R) ∈MP ∧ (i(M(P,R)) → ⋄a(M(P,R))))

3

R :: B
Ri,Mi,Mo,S,O
−−−−−−−−−→ A :: E if B

R,Mi,Mo,S,O
−−−−−−−−−→ E

A1 or A2
Ri,Mi,Mo,S,O
−−−−−−−−−→ E if ¬closed(A2) ∧

A1
Ri,Mi,Mo,S,O
−−−−−−−−−→ E

A1 or A2
Ri,Mi,Mo,S,O
−−−−−−−−−→ E if ¬closed(A1) ∧

A2
Ri,Mi,Mo,S,O
−−−−−−−−−→ E

A1 then A2
Ri,Mi,Mo,S,O
−−−−−−−−−→ E then A2 if A1

Ri,Mi,Mo,S,O
−−−−−−−−−→ E

A1 then A2
Ri,Mi,Mo,S,O
−−−−−−−−−→ A1 then E if closed(A1) ∧

A2
Ri,Mi,Mo,S,O
−−−−−−−−−→ E

C ← M ⇐ A
Ri,Mi,Mi−{m(Ri,M ⇐ A)},S,∅
−−−−−−−−−−−−−−−−−−−−−→ c(M ⇐ A) if m(Ri,M ⇐ A) ∈Mi ∧

satisfy(C)

M ⇒ A ← C
Ri,Mi,Mo,S,{m(Ri,M ⇒ A)}
−−−−−−−−−−−−−−−−−−−→ c(M ⇒ A) if satisfied(S, C)

null ← C
Ri,Mi,Mo,S,∅
−−−−−−−−−→ c(null) if satisfied(S, C)

a(R, I) ← C
Ri,Mi,Mo,S,∅
−−−−−−−−−→ a(R, I) :: B if clause(S, a(R, I) :: B) ∧

satisfied(S, C)An intera
tion model term is de
ided to be
losed as follows:
closed(c(X))
closed(A then B) ← closed(A) ∧ closed(B)
closed(X :: D) ← closed(D)

(2)
satisfied(S, C) is true if
onstraint C is satis�able given the peer's
urrent state of knowledge.
clause(S, X) is true if
lause X appears in the intera
tion model S, as de�ned in Figure 1.Figure 2: Rewrite rules for expansion of an intera
tion model
lause

P M(P,R)EP

MP

P1

Pn

EP1

EPnIn general, there is no guarantee that a peer will dis
over the right intera
tion model be
ause this involves,in the worst
ase, sear
hing the entire peer network whi
h is not
losed or syn
hronised. There is also nogeneral guarantee that an intera
tion model, on
e initiated will result in a su

essful out
ome for the peer4

Figure 3: Rewrite rules governing mat
hmaking for an LCC proto
olThese rewrite rules
onstitute an extension to those des
ribed in Figure 2. A rewrite rule
α

Mi,Mo,P,O,C,C′

−−−−−−−−−−→ βholds if α
an be rewritten to β where: Mi are the available messages before rewriting; Mo are the messagesavailable after the rewrite; P is the proto
ol; O is the message produ
ed by the rewrite (if any); C is setof
ollaborators before the rewrite; and C′ (if present) is the�possibly extended�set of
ollaborators afterthe rewrite. C is a set of pairs of role and servi
e name, e.g. col(black -hole-finder , ucsd -sdsc)}. The samerewrite rules hold regardless of the implementation of the mat
hmaking fun
tion recruit . This enables us toapply other l

 tools, su
h as model-
he
kers and the interpreter itself, without alteration while allowingus to
hange recruit , and means
lients
an use their own
hoi
e of mat
hmaker and mat
hmaking s
heme.
A :: B

Mi,Mo,P,C,O
−−−−−−−−−−→ A :: E if B

Mi,Mo,P,C,O
−−−−−−−−−−→ E

A1 or A2

Mi,Mo,P,C,O
−−−−−−−−−−→ E if ¬closed(A2) ∧ A1

Mi,Mo,P,C,O
−−−−−−−−−−→ E

A1 or A2

Mi,Mo,P,C,O
−−−−−−−−−−→ E if ¬closed(A1) ∧ A2

Mi,Mo,P,C,O
−−−−−−−−−−→ E

A1 then A2

Mi,Mo,P,C,O
−−−−−−−−−−→ E then A2 if A1

Mi,Mo,P,C,O
−−−−−−−−−−→ E

A1 then A2

Mi,Mo,P,C,O
−−−−−−−−−−→ A1 then E if closed(A1) ∧ A2

Mi,Mo,P,C′,O
−−−−−−−−−−−→ E

∧collaborators(A1) = C′

C ←M ⇐ A
Mi,Mi\{M ⇐ A},P,C,∅
−−−−−−−−−−−−−−−−−→ c(M ⇐ A)C if (M ⇐ A) ∈ Mi ∧ satisfied(C)

M ⇒ A← C
Mi,Mi,P,C,C′,{M ⇒ A}
−−−−−−−−−−−−−−−−−→ c(M ⇒ A)C′ if satisfied(C)∧

C′ = recruit(P, C, role(A))

null ← C
Mi,Mi,P,C,∅
−−−−−−−−−→ c(null)C if satisfied(C)

a(R, I)← C
Mi,Mo,P,C,∅
−−−−−−−−−−→ a(R, I) :: B if clause(P, C, a(R, I) :: B)

∧satisfied(C)

collaborators(c(Term)C) = C
collaborators(A1 then A2) = collaborators(A1) ∪ collaborators(A2)
collaborators(A :: B) = collaborators(A) ∪ collaborators(B)be
ause the other peers that engage in the intera
tion may not behave reliably, even if they did so on earliero

asions. For these reasons, attention has fo
used on statisti
ally based methods of mat
hmaking, so thatprevious knowledge of su

esses and failures in intera
ting
an be used to inform
hoi
es of peers to re
ruitfor intera
tion models.In order to simulate the pro
ess of mat
hmaking for an LCC intera
tion model (M(P,R) in Property 1)we extend the rewrite rules of Figure 2 to in
lude a mat
hmaking fun
tion recruit . This fun
tion takes asinput a set of potential
ollaborators appropriate to the
urrent role in the intera
tion model. The rulesgoverning exe
ution of a proto
ol are in �gure 3.In Se
tion 2.2 we dis
uss the issue of sele
ting agents. Many di�erent methods
an be used for this.We have
hosen a probabilisti
 method, based on the in
iden
e
al
ulus [2℄. This is a truth-fun
tionalprobabilisti

al
ulus in whi
h the probabilities of
omposite formulae are
omputed from interse
tions andunions of the sets of worlds for whi
h the atomi
 formulae hold true, rather than from the numeri
al valuesof the probabilities of their
omponents. The probabilities are then derived from these in
iden
es. Cru
ially,in general P (φ ∧ ψ) 6= P (φ) · P (ψ). This �delity is not possible in normal probabilisti
 logi
s, whereprobabilities of
omposite formulae are derived only from the probabilities of their
omponent formulae. Inthe in
iden
e
al
ulus, we return to the underlying sets of in
iden
es, giving us more a

urate values for5

ompound probabilities.
i(⊤) = worlds i(⊥) = {}
i(α ∧ β) = i(α) ∩ i(β) i(α ∨ β) = i(α) ∪ i(β)
i(¬α) = i(⊤)\i(α) i(α→ β) = i(¬α ∨ β) = (worlds\i(α)) ∪ i(β)

P (φ) =
|i(φ)|
|i(⊤)|

P (φ|ψ) =
|i(φ∧ψ)|
|i(ψ)|The in
iden
e
al
ulus is not frequently applied, sin
e one requires exa
t in
ident re
ords to use it.Fortunately, that's exa
tly what the mat
hmaker has on hand.2.1 The Mat
hmakerFirst, we will explain the overall pro
ess of exe
uting an l

 proto
ol, and the mat
hmaker's pla
e in it. A
lient has a task or goal it wishes to a
hieve: using either a pre-agreed look-up me
hanism, or by reasoningabout the proto
ols available, the
lient will sele
t a proto
ol, with possibly more than one being suitable.This done, it
an begin interpreting the proto
ol, dispat
hing messages to other agents as the proto
ol dire
ts.When the proto
ol requires a message to be sent to an agent that is not yet identi�ed, the sender queries amat
hmaker to dis
over servi
es
apable of �lling the role. These new agents we term `
ollaborators'. Themat
hmaker sele
ts the servi
e that maximises the probability of a su

essful out
ome given the
urrentproto
ol type and role instantiations. The proto
ol is then updated to re�e
t the agent's sele
tion, and theterm col(Role,Agent), instantiated to the requested role and newly
hosen agent, is stored in the proto
ol's
ommon knowledge where it is visible to the parti
ipants and the mat
hmaker.The su

ess of a proto
ol and the parti
ular team of
ollaborators is de
ided by the
lient: on
ompletionor failure of a proto
ol, the
lient informs the mat
hmaker whether the out
ome was satisfa
tory to the
lient.Ea
h
ompleted brokering session is re
orded as an in
ident, represented by an integer. Our propositionsare ground predi
ate
al
ulus expressions. Ea
h proposition has an asso
iated list of worlds (in
idents) forwhi
h it is true. Initially, the in
ident database is empty, and the broker sele
ts servi
es at random. As moredata is
olle
ted, a threshold is rea
hed, at whi
h point the mat
hmaker begins to use the probabilities.2.2 Sele
ting AgentsWe explain the sele
tion of agents using a s
enario from astrophysi
s. In our s
enario, an astronomer isusing the Grid to examine a bla
k hole. Having obtained the l

 proto
ol in �gure 4, she instantiatesthe File variable to the �le she wants to work with, and runs the proto
ol. The proto
ol is sent �rst to a

black -hole-finder servi
e. This servi
e, in turn, requires an astronomy-database to provide the �le. If a bla
khole is found the black -hole-finder servi
e will pass the data to a visualisation servi
e. Finally, the
lientwill re
eive a visualisation or noti�
ation of failure. Where is the inter-servi
e variation? Consider that theastronomi
al data �le is very large, and thus network bandwidth between sites will be a
ru
ial fa
tor indetermining user satisfa
tion. Thus, some pairs of database and
omputation
entre will outperform otherpairs, even though the individuals in ea
h pairing might be equally
apable. Indeed, the `best' database and
ompute
entre may have a dreadful
ombined s
ore be
ause their network inter
onne
tion is weak.If we imagine how the mat
hmaker's in
iden
e database would look after several exe
utions of thiswork�ow (most likely by di�erent
lients), we might see something like this:
6

i(protocol(bla
k-hole-sear
h), [1, 2, . . . , 25])
i(outcome(good), [1, 2, 3, 4, 6, 10, 11, 12, 16, 22, 23, 24])
i(col(astronomy-database, greenwich), [18, 19, 20, 21, 22, 23, 24, 25])
i(col(astronomy-database, herschel), [10, 11, 12, 13, 14, 15, 16, 17])
i(col(astronomy-database, keck), [1, 2, 3, 4, 5, 6, 7, 8, 9])
i(col(black-hole-finder , barcelona-sc), [8, 9, 16, 17, 24, 25])
i(col(black-hole-finder , ucsd-sdsc), [1, 2, 3, 4, 10, 11, 12, 13, 18, 19, 20])
i(col(black-hole-finder , uk-hpcx), [5, 6, 7, 14, 15, 21, 22, 23])
i(col(visualiser , ncsa), [1, 2, . . . , 25])Ea
h i(proposition, incidents) re
ords the in
idents (that is, proto
ol intera
tions or exe
utions) in whi
hthe proposition is true. We
an see that the bla
k-hole-sear
h proto
ol has been invoked 25 times,and that it has been su

essful in those in
idents where outcome(good) is true. Further, by interse
tingvarious in
iden
es, we
an
ompute the su

ess of di�erent teams of agents, and obtain predi
tions for futurebehaviour. Let us examine the performan
e of the Bar
elona super
omputer:

i(col(black -hole-finder , barcelona-sc) ∧ outcome(good)) = {16}

P (outcome(good)|col(black -hole-finder , barcelona-sc)) =
|{16}|

|{8,9,16,17,24,25}|This performan
e is substantially worse than that of the other super
omputers on this task not be
ause
barcelona-sc is a worse super
omputer than ucsd -sdsc or uk -hpcx , but be
ause its network
onne
tions tothe databases required for this task present a bottlene
k, redu
ing
lient satisfa
tion.From this database, the mat
hmaker
an then determine, for a requester, whi
h servi
es are most likelyto lead to a su

essful out
ome, given the
urrent proto
ol and servi
es already sele
ted. That is, themat
hmaker tries to optimise

argmaxsP (outcome(good)|P , col(r, s) ∪ C)Where P is the proto
ol, C is the
urrent set of
ollaborators, r is the role requiring a new servi
esele
tion, and s is the servi
e we are to sele
t.We have developed two algorithms for
hoosing servi
es, although others are possible. The �rst,
alledre
ruit-joint, �lls all the va
an
ies in a proto
ol at the outset. It works by
omputing the joint distributionfor all possible permutations of servi
es in their respe
tive roles, sele
ting the grouping with the largestprobability of a good out
ome.The se
ond approa
h, re
ruit-in
remental, is to sele
t only one servi
e at a time, as required by theexe
uting proto
ol. The various servi
es already engaged in the proto
ol, on needing to send a message toan as-yet-unidenti�ed servi
e, will ask the mat
hmaker to �nd an servi
e to ful�l the role at hand. re
ruit-in
remental
omputes the probability of a su

essful out
ome for ea
h servi
e available for role R given
C (C being the
ollaborators
hosen so far), and sele
ts the most su

essful servi
e. To illustrate re
ruit-in
remental, imagine the work�ow s
enario. At �rst, the astronomer must ask the mat
hmaker to �ll the
black -hole-finder role. The BHF servi
e's �rst a
tion is to request the data �le from an astronomy database.It therefore returns the proto
ol to the mat
hmaker, whi
h sele
ts the astronomy-database most likely toprodu
e su

ess, given that the black -hole-finder is already instantiated to BHF .Both algorithms support the pre-sele
tion of servi
es for parti
ular roles. An example of this might bea
lient booking a holiday: if it were a

umulating frequent �ier miles with a parti
ular airline, it
ouldspe
ify that airline be used, and the mat
hmaker would work around this
hoi
e, sele
ting the best agentsgiven that the airline is �xed. This me
hanism also allows us to dire
t the mat
hmaker's sear
h: sele
ting aparti
ular servi
e
an suggest that the
lient wants similar servi
es, from the same so
ial pool, for the otherroles, e.g. in a peer-to-peer sear
h, by sele
ting an servi
e you suspe
t will be helpful in a parti
ular enquiry,the broker
an �nd further servi
es that are
losely `so
ially' related to that �rst one.7

Figure 4: LCC dialogue framework for astronomy work�ow s
enario
a(astronomer(File),Astronomer) ::

search(F ile) ⇒ a(black -hole-finder ,BHF) then
„

success ⇐ a(black -hole-finder ,BHF) then
receive-visualisation(Thing ,V)← visualising(Thing) ⇐ a(visualiser , V)

«

or

failed ⇐ a(black -hole-finder ,BHF)

a(black -hole-finder ,BHF) ::
search(F ile) ⇐ a(astronomer(F ile), Astronomer) then
grid-ftp-get(File) ⇒ a(astronomy-database ,AD) then
0

B

B

@

grid-ftp-sent(File) ⇐ a(astronomy-database ,AD) then
success ⇒ a(astronomer, Astronomer)

← black -hole-present(File,Black -hole) then
visualise(Black -hole,Astronomer) ⇒ a(visualiser ,V)

1

C

C

A

or

failed ⇒ a(astronomer(F ile), Astronomer)

a(astronomy-database ,AD) ::
grid-ftp-get(File) ⇐ a(black -hole-finder ,BHF)
grid-ftp-sent(File) ⇒ a(black -hole-finder ,BHF)← grid-ftp-completed(File,AD)

a(visualiser , V) ::
visualise(Thing,Client) ⇐ a(_, Requester) then
visualising(Thing) ⇒ a(_, Client)← serve-visualisation(Thing ,Client)Note that l

 is being used only to
oordinate the intera
tion: where appropriate, individual agents may use domain-spe
i�
proto
ols, su
h as Grid ftp, to perform the heavy lifting or invoke spe
i�
 servi
es outside of the l

 formalism and
ommu-ni
ation
hannel.We
an see from �gure 6(a) that using this te
hnique
an substantially improve performan
e over randomsele
tion of agents whi
h
an individual meet the requirements. Whi
h algorithm should one
hoose? Inproto
ols where most roles are eventually �lled, re
ruit-joint will outperform re
ruit-in
remental,sin
e it is not limited by the possibly suboptimal de
isions made earlier. re
ruit-joint is also preferablewhen one wishes to avoid multiple
alls to the mat
hmaker, either be
ause of priva
y
on
erns, or for reasonsof
ommuni
ation e�
ien
y. However, in proto
ols whi
h rarely have all their roles instantiated, re
ruit-joint
an end up unfairly penalising those servi
es whi
h have not a
tually parti
ipated in the proto
olsthey are allo
ated to. re
ruit-in
remental is therefore more suitable in proto
ols where many roles goun�lled: total work on the broker would be redu
ed, and the results would probably be at least as good asfor brokering all servi
es.2.3 Sele
ting RolesSo far, we have
onsidered the
ase where the proto
ol is de�ned, and we simply need to sele
t agents to�ll the roles. What if the roles themselves are unde�ned, if the proto
ol is in
ompletely spe
i�ed? What ifwe allowed agents to begin exe
uting in
omplete proto
ols? If the mat
hmaker
ould elaborate proto
ols atrun time, sele
ting the elaboration based on prior experien
e? We will show one way to do this using thein
iden
e
al
ulus, in a very similar fashion to how we sele
ted agents.Roles
onsist of an ordering of messages, together with
onstraints, and moves to other roles. It mightbe the
ase that just
hanging the ordering might make a large di�eren
e. For instan
e, if one is arrangingto travel to a
on
ert, it is preferable to obtain event ti
kets �rst, then organise transport. In our example,8

Figure 5: AlgorithmsRe
ruit-Joint(protocol , database)1 roles ← roles-required(protocol)2 collaborations ← all-
ollaborations(protocol , database, roles)3 for c ∈ collaborations4 do quality [c]← probability-good-out
ome(protocol , database, c)5 return argmax(collaborations , quality)Re
ruit-In
remental(protocol , database, role)1 for r ∈ a
tive-roles(protocol)2 do collaborators [r]←
ollaborator-for-role(protocol , r)3 candidates ←
apable-agents(database , role)4 for c ∈ candidates5 do collaborators [role]← c6 quality [a]← probability-good-out
ome(database , collaborators)7 return argmax(candidates , quality)Embellish-In
remental(protocol , database , role)1 for r ∈ role-definitions(protocol)2 do role-definition [r]← definition-for-role(protocol , r)3 candidates ← available-role-definitions(protocol ,database ,role) role)4 for c ∈ candidates5 do role-definition [role]← c6 quality [c]← probability-good-out
ome(database , role-definitions)7 return argmax(role-definitions , quality)argmax as used here does not always sele
t the highest value. To improve the exploration of options, thoseentries that have low numbers of data points (i.e. have not often been sele
ted previously) are preferentially
hosen, and in other
ases a random sele
tion is sometimes made.we take to problem of booking a trip involving a �ight and hotel room. The l

 proto
ol is shown in�gure 7. If we suppose that it is a preferable
ourse of a
tion to book the �ight then the hotel room, sin
ehotel room
osts are more �exible that �ight ones, we
an expe
t a better out
ome using flight -then-hotelrather than hotel -then-flight . Figure 6(
) shows the improvement in a simulation. The algorithm usedis embellish-in
remental, shown in �gure 5. embellish-in
remental works similarly to re
ruit-in
remental, adding role de�nitions to the proto
ol as those roles are required at run-time. We have notprovided equivalent to re
ruit-joint, sin
e this
an in�ate proto
ols with many roles that will remainunused.
9

Figure 6: Simulation results
 0

 1
 2

 3
 4

 5 0

 50

 100

 150

 200

 0

 50

 100

 150

 200

Successful outcomes

Recruit-Joint
Random

File size

Invocations

Successful outcomes

 0

 20

 40

 60

 80

 100

 0 50 100 150 200 250 300

P
er

ce
nt

ag
e

su
cc

es
sf

ul

Invocations

Recruit-Joint
Recruit-Incremental

Random(a) (b)
 300

 350
 400

 450
 500 0

 50

 100

 150

 200

 0

 50

 100

 150

 200

Successful outcomes

Embellish-Incremental
Random

Money available

Invocations

Successful outcomes

 0

 2

 4

 6

 8

 10

 12

 0 5000 10000 15000 20000 25000 30000 35000

 5

 10

 15

 20

 25

 30

 0

 2

 4

 6

 8

 10

 12

Milliseconds

Intersection

Set cardinality

Sets

Milliseconds

(
) (d)In (a), we see the improvement in task a
hievement using agent sele
tion obtained using re
ruit-jointversus random sele
tion. Using the same s
enario, but �xing the �le size at 5 Gigabytes, (b) shows therelative performan
e of re
ruit-joint, re
ruit-in
remental, and random sele
tion. We
an see similargains for sele
tion of roles in (
), using the travel agent s
enario. Performan
e of the underlying set
al
ulusinterse
tion operation is shown in (d).2.4 Dis
ussionPerforman
e seems quite reasonable for very large sets. The
ore operation of this te
hnique is set inter-se
tion, sin
e for every
ollaboration or set of role de�nitions, the interse
tion of their in
iden
es must be
omputed. By using a heap-sort like interse
tion algorithm, this
an be done in order O(n log n). Figure6(d) shows that we
an qui
kly
al
ulate interse
tions over large sets for reasonable numbers of sizable sets.We note here two signi�
ant problems that seem to be ines
apable issues intrinsi
 to the problem: trusting
lients to evaluate proto
ol performan
e honestly and in a
onventional manner; and the problems of lo
atingmutually
ooperative servi
es in a large agent e
ology. Sin
e individual
lient servi
es are responsible for theassigning of su

ess metri
s to mat
hmakings, there is s
ope for servi
es with unusual
riteria or mali
iousintent to
orrupt the database. The se
ond question, largely unasked, is about the likely demographi
s ofservi
e provision. For some types of servi
e, like sear
h, we have already seen that a very small number ofproviders. For other tasks, a few hundred exist: think of airlines. For some, though, we may millions of10

Figure 7: Booking a holiday with LCC
a(traveller , Traveller) ::

book-holiday(Src, Dst, Start, End , Money) ⇒ a(travel-agent, Agent)
← travel-details(Src, Dst, Start, End , Money) then

„

booking(Start, End , Cost) ⇐ a(travel-agent, Agent) then
matchmaking(good) ⇒ a(matchmaker, matchmaker)

«

or
„

failure ⇐ a(travel-agent , Agent) then
matchmaking(bad) ⇒ a(matchmaker, matchmaker)

«Note that the travel -agent role is not spe
i�ed in the
lient's proto
ol! We leave it to the mat
hmaker to�nd one. The mat
hmaker, let us say, has the following role de�nitions available to it:
role(flight-then-hotel) ≡ a(travel-agent, Agent) ::

book-holiday(Src, Dst, Start, End , Money) ⇐ a(client, Client) then
book-flight(Src, Dst, Start, End , Money) ⇒ a(airline, Airline) then
„

no-flights ⇐ a(airline, Airline) then
failure ⇒ a(client, Client)

«

or
0

B

B

B

B

B

B

B

B

B

B

B

@

flight-booking(Flight-Cost) ⇐ a(airline, Airline) then
flight-available(Src, Dst, Start , End , Money) ⇐ a(airline , Airline) then
book-hotel(Location, Start, End , Money) ⇒ a(hotel, Hotel)
← is(Money-Left, Money −Flight-Cost) then

0

@

hotel-booking(Hotel-Cost) ⇐ a(hotel , Hotel) then
booking(Total-Cost) ⇒ a(client, Client)
← is(Total-Cost, Flight-Cost + Hotel-Cost)

1

A or

„

no-vacancy ⇐ a(hotel, Hotel) then
failure ⇒ a(client, Client)

«

1

C

C

C

C

C

C

C

C

C

C

C

A

role(flight-then-hotel) ≡ a(travel-agent, Agent) ::
book-holiday(Src, Dst, Start, End , Money) ⇐ a(client, Client) then
book-flight(Src, Dst, Start, End , Money) ⇒ a(airline, Airline) then
„

no-flights ⇐ a(airline, Airline) then
failure ⇒ a(client, Client)

«

or
0

B

B

B

B

B

B

B

B

B

B

B

@

flight-booking(Flight-Cost) ⇐ a(airline, Airline) then
flight-available(Src, Dst, Start , End , Money) ⇐ a(airline , Airline) then
book-hotel(Location, Start, End , Money) ⇒ a(hotel, Hotel)
← is(Money-Left, Money −Flight-Cost) then

0

@

hotel-booking(Hotel-Cost) ⇐ a(hotel , Hotel) then
booking(Total-Cost) ⇒ a(client, Client)
← is(Total-Cost, Flight-Cost + Hotel-Cost)

1

A or

„

no-vacancy ⇐ a(hotel, Hotel) then
failure ⇒ a(client, Client)

«

1

C

C

C

C

C

C

C

C

C

C

C

A

a(hotel, Hotel) ::
book-hotel(Location, Start, End , Money) ⇐ a(Role, Agent) then
room-available(Location, Start , End , Money, Cost) ⇒ a(Role, Agent)

← room-available(Location, Start, End , Money, Cost) or
no-vacancy ⇒ a(Role, Agent)

a(airline, Airline) ::
book-flight(Src, Dst, Start, End , Money) ⇐ a(Role, Agent) then
flight-available(Src, Dst, Start, End , Money) ⇒ a(Role, Agent)

← flight-available(Src, Dst, Start, End , Money) or
no-flights ⇒ a(Role, Agent)

a(matchmaker, matchmaker) ::
record-matchmaking-outcome(Outcome)

← matchmaking(Outcome) ⇐ a(Role, Agent)

11

servi
e providers. Further, we must ask how many servi
e types will be provided. Again, in ea
h domain, wemight have a simple, monolithi
 interfa
e, or an interfa
e with su
h �ne granularity that few engineers everfully understand or exploit it. The answers to these will impa
t the nature of our mat
hmaking infrastru
ture.While our te
hnique handles large numbers of in
iden
es, it does not s
ale for very large numbers ofservi
es or roles. For any proto
ol with a set of roles R, and with ea
h role having |providers(ri)| providers,the number of ways of
hoosing a team is ∏

ri∈R |providers(ri)|, or O(mn). No mat
hmaking system
ouldpossibly hope to dis
over all the various permutations of servi
es in a ri
h environment, although ma
hinelearning te
hniques might be helpful in dire
ting the sear
h for groupings of servi
es. How mu
h of an issuethis a
tually be
omes in any parti
ular domain will be heavily in�uen
ed by the out
omes to the issuesdis
ussed above.3 Knowledge Consisten
y Between Peer and Intera
tion ModelA peer in an open knowledge sharing system may need to parti
ipate in an intera
tion that it has notexperien
ed hitherto, or it may need to resume an intera
tion in whi
h it had parti
ipated some time ago.The deployment me
hanisms used for knowledge sharing in the OpenKnowledge proje
t allow a formalspe
i�
ation of the
urrent state of a given intera
tion (new or
ontinuing) to be
ommuni
ated to a peerso, in the terminology used in De�nition 1, the peer has an expi
it representation of M(P,R). It does notne
essarily know, however, whether its parti
ipation in the intera
tion
oordinated viaM(P,R) will maintain
onsisten
y between its lo
al knowledge and that of the intera
tion model. The property we would ideallypreserve is des
ribed as Property 2 below.Property 2 If proposition X1 is in the knowledge set of P and proposition X2 is in the knowledge set ofintera
tion model M(P,R) at any time then X1 and X2 should be
onsistent.
X1 ∈ K(P) ∧ (X2 ∈ K(M(P,R)) ∨ ⋄(X2 ∈ K(M(P,R)))) → σ(X1, X2)

P M(P,R)

P1

Pn

EP

EP1

EPn

K(P) K(M(P,R))

Property 2
annot be guaranteed in general be
ause, in general, we are not guaranteed to be able toenumerate all the elements of K(P) or K(M(P,R)). Furthermore, we require
onsisten
y not only for the
urrent state of the intera
tion but for all its future states. This guarantee into the future
annot be madeon a spe
i�
 peer be
ause the future intera
tion state may be determined by other peers of whi
h it has noknowledge.Given that we
annot solve the general problem, one established method of dealing with it is by spe
ifyingthe main lo
al
onstraints the a

eptability of a parti
ular role by a peer (a subset of K(P) and proving that12

these are not violated by anything that
urrently
an be temporally inferred from the intera
tion model.Although mu
h of a peer's knowledge is private, there are situations in pra
ti
e when peers make expli
it aportion of their knowledge in the form of
onstraints on the intera
tions they will allow with other peers.For example, a peer might des
ribe permissions (
onstraints on whi
h peers it will intera
t with and when);obligations (
onstraints assumed on peers with whi
h it intera
ts); or trust poli
ies (
onstraints on the degreeto whi
h it is prepared to rely on other peers). Various formal languages have been developed for expressingthis sort of knowledge (for instan
e asl [5℄, rdl [4℄, and Rei [6℄). In [7℄ we show in detail how to
ombinethis sort of deonti
 spe
i�
ation with LCC and demonstrate how this
an establish a measure of trust inintera
tion models. For
ompa
tness, we do not repeat this result here but give instead the framework used,whi
h is based on a from of model
he
king.3.1 The Veri�
ation Pro
essThe model
he
ker is built on top of xsb tabled prolog. This means that
alls to given predi
ates will be
a
hed, along with their answers, in a table. This
olle
tion of tabled
alls paired with their answers is
onsulted every time a new
all is issued. Here is how this works. When a
all is made, the following
asesare tested:1. If the new
all mat
hes a tabled one:The set of answers asso
iated with this tabled
all are retrieved and the new
all is resolved againstthese answers.2. f the new
all does not �nd a mat
h against the tabled
alls:The new
all is entered into the table and is resolved against the Prolog program
lauses. For ea
hanswer derived during this pro
ess, the following
ases are tested:(a) if the answer is not already in the table:The new answer is inserted into the table entry asso
iated with this
all.(b) if the answer already exists in the table:The evaluation simply fails and ba
ktra
ks to generate more answers.Noti
e that the
alls are resolved against unique answers instead of repeated program
lauses. This pro
essterminates when the
all mat
hes a �nites number of de�ned Prolog program
lauses and ea
h of these resultin a �nite number of answers.In our
ase, the main question the model
he
ker tries to answer is whether a given temporal propertyis satis�ed in a given (intera
tion's) state-spa
e. The model
he
ker starts by verifying that the temporalproperty is satis�ed at the initial state of the state-spa
e. For this, the satisfies predi
ate, whi
h spe
i�esthe µ-
al
ulus proof rules (Figure 8) in Prolog, is
alled. The predi
ate is a tabled predi
ate. This meansthat every time a
all is made to this predi
ate when a state needs to be veri�ed against a given temporalproperty, the �rst thing to do is to sear
h the table for answers. Only if this is a new
all � a
all witha new
ombination of a state and a temporal property � it will be resolved against the satisfies Prologpredi
ates. In pra
ti
e, this implies that the model
he
ker will always terminate with an answer in a �nitestate-graph1.1Note that while the state-graph is �nite, the state-spa
e may be in�nite. This happens when one state in the state-graphhas a transition that
onne
ts it to a previous state, resulting in an in�nite state-spa
e to be generated from in�nite
opies of�nite states. 13

satisfies(E, tt) ← true

satisfies(E,φ1 ∨ φ2) ← satisfies(E,φ1) ∨ satisfies(E,φ2)

satisfies(E,φ1 ∧ φ2) ← satisfies(E,φ1) ∧ satisfies(E,φ2)

satisfies(E, 〈A〉φ) ← ∃F. ((E
A
−→ F) ∧ satisfies(F, φ))

satisfies(E, [A]φ) ← ∀F. ((E
A
−→ F) → satisfies(F, φ))

satisfies(E,µZ.φ) ← satisfies(E,φ)

satisfies(E, νZ.φ) ← dual(φ, φ′) ∧ ¬satisfies(E, φ′)The rules imply that a state E always satis�es tt (true), and never ff (false). E satis�es φ1 ∨ φ2 if it satis�es ei-ther φ1 or φ2, and it satis�es φ1 ∧ φ2 if it satis�es both φ1 and φ2. [A]φ is satis�ed if for all transitions A thatstate E
an take to F , then F satis�es φ. 〈A〉φ is satis�ed if state E
an make at least one transition A to state
F , su
h that F satis�es φ. Prolog, by nature,
omputes the least �xed point solution. Hen
e, µZ.φ is satis�ed ifstate E satis�es the property φ. The greatest �xed point, however, is the dual of the least �xed point. There-fore, the greatest �xed point formula is satis�ed if the least �xed point of the negated formula fails to be satis�ed.Figure 8: The µ-
al
ulus proof rulesIf the predi
ate is not satis�ed at the initial state, a transition is then made to the next state(s) inthe state-spa
e. The transition is
omputed by
alling the transition predi
ate, whi
h spe
i�es the l

transition rules (Figure 9). The property is then veri�ed against the new state(s), as the µ-
al
ulus proofrules indi
ate. The model
he
ker should also make sure that ea
h transition made does not break the agents'spe
i�ed deonti

onstraints.3.2 The Model Che
king FrameworkThe framework of our model
he
ker is presented in Figure 10. The model
he
ker itself is built on twomodules based on the temporal language's proof rules as well as the pro
ess
al
ulus' transition rules, whi
hthe proof rules require. Note that in our implementation, the temporal language used is the µ-
al
ulus andthe pro
ess
al
ulus in the lightweight
oordination
al
ulus (l

).The model
he
ker is built on top of the xsb tabled Prolog system. The xsb Prolog engine is
alled toverify that a
ertain temporal property is satis�ed in a given state-spa
e. Veri�
ation is
arried on based onthe µ-
al
ulus proof rules, spe
i�ed in Prolog via the satisfies predi
ate. This requires knowledge of thetemporal property to be veri�ed and the intera
tion's state-spa
e it is veri�ed upon. During the veri�
ationpro
ess, a table
ontaining
a
hed results of previous
alls is
onsulted. As mentioned in the se
tion above,veri�
ation might require a transition to be made from one state in the state-spa
e to another. In su
h a
ase, the xsb Prolog engine
omputes the transition based on the l

 transition rules, spe
i�ed in Prologvia the transition predi
ate. This requires knowledge of the state-spa
e as well as the deonti

onstraints,to make sure transitions do not break these
onstraints.4 Knowledge Consisten
y Between Intera
ting PeersIn Se
tion 3 we dis
ussed the issue of
onsisten
y between peer ans intera
tion model. We now turn to theissue of
onsisten
y between peers. This is a di�
ult pra
ti
al problem, even with our expli
it intera
tionmodels, be
ause the vast majority of knowledge lo
al to a peer (K(Pi)) at any time is private to that peer.14

M ⇐ A
in(M)
−−−−→ nil

B
a
−→ E

(A← C)
#(X)
−−−−→ A

sat(C) ∧X in C

B
a
−→ E

M ⇒ A
out(M)
−−−−−→ nil

A
a
−→ E

(A← C)
a
−→ E

sat(C) ∧ (a 6= #/_)

null
#
−→ nil

A
a
−→ E

A par B
a
−→ E par B

B
a
−→ E

A
a
−→ E

A ::= B
B

a
−→ E

A par B
a
−→ A par E

A
a
−→ E

A or B
a
−→ E

A
a
−→ E B

a
−→ F

A par B
τ
−→ E par F

B
a
−→ E

A or B
a
−→ E

A
a
−→ nil

A then B
a
−→ B

A
a
−→ E

A then B
a
−→ E then B

E 6= nilFor the agent to perform a transition step, the transition rules above are applied exhaustively. The rules state that M ⇐ A
anperform a transition in(M) to the empty pro
ess nil by retrieving the in
oming message M . M ⇒ A
an perform a transition
out(M) to nil by sending the message M . null
an perform the transition # to nil (# represents internal
omputations).
A ← C
an perform a transition to E if C is satis�ed and A
an perform a transition to E. A, with de�nition A :: B,
anperform a transition to E if B
an perform a transition to E. AorB
an perform a transition to E if either A or B
an performa transition to E. AparB
an perform a transition either to E par B if A
an perform a transition to E, or to Apar E if B
an perform a transition to E. Apar B
an also perform the transition τ to E par F if both A and B
an perform transitionsto E and F , respe
tively. Finally, A thenB
an perform a transition to B if A
an perform a transition to the empty pro
ess
nil; otherwise, it
an perform a transition to E thenB if A
an perform a transition to E.Note that all in(M), out(M), and # transitions should be
he
ked to make sure theydo not break any deonti
 rules (i.e. the transitions satisfy the deonti

onstraints).Figure 9: The l

 transition rulesWe
an make use of whatever guarantees are possible pairwise between peers and intera
tion models (seeSe
tion 3) to atta
k part of this problem but that addresses only knowledge that is expli
itly shared duringthe intera
tion. Fortunately, for many (perhaps the majority) intera
tions the issue of
onsisten
y is not asbroad as that stated in Property 3 below, sin
e we require
onsisten
y only as far as lo
al knowledge relatedto the intera
tion is
on
erned.Property 3 If proposition X1 is in the knowledge set of P and proposition X2 is the knowledge set of pro
ess
Pi then X1 and X2 should be
onsistent.

X1 ∈ K(P) ∧ Pi ∈ P(M(P,R)) ∧ X2 ∈ K(Pi) → σ(X1, X2)

15

Prolog engine Table

Temporal proof rules LCC transition rules

Model checker

XSB Prolog

Temporal property Interaction state space Deontic constraints

Figure 10: The system's ar
hite
ture
P M(P,R)

P1

Pn

EP

EP1

EPn

K(P) K(P1)

One of the things that makes
onsisten
y di�
ult to a
hieve between peers is that the
ontent of messagesex
hanged during intera
tions is often bound by impli
it
onstraints. In parti
ular, the
ontext of theintera
tion in�uen
es heavily the
ontent of the messages. There are di�erent levels of
ontext:
• the spe
i�
 topi
 of the intera
tion: for example if the intera
tion is about the pur
hase of a
amera,then most of the messages will be about this spe
i�
 subje
t
• the geographi
al/e
onomi
al/histori
al
ontext: a talk about a digital
amera in 1990 was ratherunusual, while it is more
ommon now. A talk about the weather is more
ommon in the UK ratherthan in south Spain, and it will re�e
t di�erent issues (wind,
old, rain or sun and drought)Moreover, intera
tions follow paths
onstrained by the intera
tion model (M(P,R)). For instan
e if the buyerhas a

epted an o�er, it is then supposed to pay (by, say, giving
redit
ard details), or if the buyer hasasked about the pri
e, the vendor is supposed to say a pri
e.The work presented in [8℄ aims at extra
ting, and then using the information embedded in the intera
tionsbetween agents. The knowledge of this information
an be exploited to predi
t the
ontent of a message,given the
urrent state of the intera
tion. The predi
tion of the message
ontent
an be used to sele
t the16

most likely mappings for terms de�ned in other ontologies. The agent will still need to apply some ontologymapping te
hnique to sele
t the best mapping term from the suggestions, but the sear
h spa
e is greatlyredu
ed by the use of the information extra
ted from the unfolded dialogue. The suggestions
an also helpto redu
e the ambiguities that a mapping pro
ess, unaware of the
ontext of use of terms, may not be ableto solve.In the remainder of this se
tion we present an evaluation framework for the system dis
ussed above.Se
tion 4.1 presents the work to be evaluated. Se
tion 4.2 des
ribes how the evaluation is performed,starting from an overview of the implementation
hosen for the system, and then detailing the methodologyused for testing.4.1 Learning and predi
ting the possible message
ontents4.1.1 Ba
kground assumptionsAs des
ribed in [10℄, agent intera
tions
an follow a mentalisti
 approa
h - where every agent needs to modelthe other agents intentions and beliefs in order to plan the
onversations - or a so
ial approa
h, where thefo
us is on the rules and
onventions that the agents need to follow. In the so
ial approa
h, the agentsusually follow some sort of intera
tion model, that des
ribe the moves given the
urrent state. The movesare usually the messages that
an be sent or that
an be expe
ted, often
onstrained by some spe
i�
 rules.A message is usually a tuple, whose elements
onvey the
ontent of the single
ommuni
ation a
t:
mi = 〈e1, ..., en〉The element ei in the message refers to some
on
eptual entity, represented with some symbol si belongingto the agent that introdu
es the term. If all agents share the same ontology, all the symbols are understoodby all the agents. If this is not the
ase, then the agents have to use an �ora
le� to map the symbols to the
orre
t entities.Let's suppose that an agent, with ontology La, re
eives a message mk (. . . , wi, . . .) when in a spe
i�
state of an intera
tion, and that wi /∈ La is the foreign term. The task of �nding what entity or
on
ept,represented in the agent's ontology by the term tm, was en
oded in wi by the transmitter is performed bysome �ora
le�, whose a
tual implementation and method is not relevant for the work. Not all the
omparisonsbetween wi and terms tj ∈ La are useful: the aim of the work evaluated here is to spe
ify a method for
hoosing the smallest set Λ ⊆ La of terms to
ompare with wi, given a probability of �nding the mat
hingterm tm ∈ La. We assume that tm exists and that there is a single best mat
h.Let p (tj) be the probability that the entity represented by tj ∈ La was used in wi inside mk. The ora
lewill �nd tm if tm ∈ Λ, event that has a probability:

p (tm ∈ Λ) =
∑

tj∈Γ

p (tj) (3)As shown in �gure 11, if all terms are equiprobable, then p (tm ∈ Λ) will be proportional to |Λ|. For example,if |La| = 1000, then p (tj) = 0.001. Setting |Λ| = 800 yields p (tm ∈ Γ) = 0.8, and there is no strategy for
hoosing the elements to add to Λ.Instead, if the probability is distributed unevenly, and we keep the most likely terms dis
arding theothers, we
an obtain a higher probability for smaller Λ. For example, suppose that p (tj) is distributedapproximately a

ording to Zipf's law (an empiri
al law mainly used in language pro
essing that states thatthe frequen
y of a word in
orpora is inversely proportional to its rank):
p (k; s;N) = 1/ks

P

N
n=1

1/ns 17

0 5 10 15 20 25 30
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Rank position

Zipf’s distribution vs Uniform distribution

Zipf’s law distribution

Uniform distribution

After 25 terms, the cumulative probability is 2.5%

After 25 terms, the probability is higher than 50%

Figure 11: Zipf's law distribution vs uniform distributionwhere k is the rank of the term, s is a parameter (whi
h we set to 1 to simplify the example), and N is thenumber of terms in the vo
abulary. For |La| = 1000, then p (tm ∈ Λ) = 0.70 for |Λ| = 110 and maybe moreremarkably p (tm ∈ Λ) = 0.5 for |Λ| = 25.Therefore, given a probability distribution for the terms, it is possible to trade o� a de
rement in theprobability of �nding the mat
hing term tm in Λ with an important redu
tion of
omparisons made by theora
le.The issue dealt by this paper is to verify that the theoreti
al probability p (tm ∈ Λ) is rea
hed
onsistentlyby the model des
ribed in [8℄, that means that repeating the intera
tion over and over, the
orre
t entity fora slot Wi in a message is
ontained in Λ with the frequen
y spe
i�ed by the theoreti
al probability.4.1.2 Basi
 model des
riptionIn [8℄, the suggested solution is a model of the intera
tion in whi
h the frequen
ies of the properties of theentities used to instantiate ea
h variable Wi in di�erent runs of the same proto
ol are stored and updated.In general, the possible values for a slot Wi in a message are modelled by M assertions, ea
h keepingtra
k of the frequen
y with whi
h the mat
hing entity for the slot has been part of a set Ψ in the en
ountereddialogues:
Aj

.
= Freq (slot_value ∈ Ψ) (4)Assertions
an simply be about the frequen
y of entities in a slot, disregarding the values of other slots inthe proto
ol run: 18

A
〈Ni,a〉R
j

.
= freq (slot_value ∈ {eq}) = pjMore pre
ise assertions
an be about the frequen
y of an entity given the values of previous slots:

A
〈Ni,a〉R
j

.
= freq (slot_value ∈ {eq} | slotR = ek) = pjAssertions
an also be about ontologi
al relations between the entities in the slot and other entities. Thepossible relations depend on the expressivity of the ontology: if it is a simple list of allowed terms, it willnot possible to verify any relation; if it is a taxonomy, subsumption
an be found; for a ri
her ontology, more
omplex relations su
h as domain or range
an be found. Assertions about ontologi
al relations are obtainedgenerating hypotheses about di�erent relations and keeping the
ount of the proved ones.The hypotheses
an be about an ontologi
al relation between the entity in the slot and an entity ek inthe agent's ontology:

A
〈Ni,a〉R
j

.
= Pr (slot_value ∈ {X |rel (X, ek)}) = pjThe assertions
an also regard the relation with another slot in the proto
ol:

A
〈Ni,a〉R
j

.
= Pr (slot_value ∈ {X | rel (X, previous_slot_value)}) = pjThe assertions
an be generated using di�erent strategies, and assign probabilities to overlapping setsthat
an be either singletons or larger. The aim of this system is to sele
t the most likely entities for a slotin order to rea
h a given probability of �nding the mapping, and therefore we need to assign to the termsthe probabilities
omputed with the assertions.This requires two steps. First, probabilities given to sets are uniformly distributed among the members:a

ording to the prin
iple of indi�eren
e, the probability of mutually ex
lusive elements in a set should beevenly distributed. Then, the probability of an entity ti is
omputed by summing all its probabilities, anddividing it by the sum of all the probabilities about the slot:

p (ti) =
P

A
〈N,A〉R
j (〈N,A〉R∈{ti})

P

A
〈N,A〉R
k

(5)The probabilities of all the terms are sorted by probability, and Λ will be
reated adding terms until the
umulative probability ex
eeds the spe
i�ed threshold.4.2 TestingIn order to test and evaluate the feasibility and the reliability of the model, I developed a framework that
an run di�erent dialogues, analysing the message
ontent in order to
reate models for the intera
tions, andthen applying them to predi
t the
ontent of messages in similar intera
tions.4.2.1 Intera
tion FrameworkAs the fo
us of the problem is on agents' intera
tions, and parti
ularly
onventional intera
tions, the theframework is built around a model of intera
tion derived from the
on
epts of so
ial rules. The agentsinvolved in dialogues use the Lightweight Coordination Cal
ulus (LCC).The Lightweight Coordination Cal
ulus (LCC) is an exe
utable spe
i�
ation language adapted to peer-to-peer work�ow and has been used in appli
ations su
h as business pro
ess ena
tment [3℄ and e-s
ien
eservi
e integration [1℄.LCC is based on pro
ess
al
ulus: proto
ols are de
larative s
ripts written in Prolog and
ir
ulated withmessages. Agents exe
ute the proto
ols they re
eive by applying rewrite rules to expand the state and �ndthe next move. 19

Role rb
lausea(ra(O), I) ::=
m1(X)⇒ a(rb,O) ←κ1(X)then
m2(Y) ⇐ a(rb,O).Role rb
lausea(rb, O) ::=
m1(X)⇐ a(ra(_), I)then
m2(Y)⇒ a(ra(_), I) ←κ2(X, Y).Figure 12: Simple LCC proto
ol

Figure 13: Agent ar
hite
tureIt uses roles for agents and
onstraints on message sending to enfor
e the so
ial norms. A role behaviouris de�ned by a
lause, and the basi
 behaviours are to send (⇒) or to re
eive (⇐) a message. More
omplexbehaviour are expressed using
onne
tives: then
reates sequen
es, or
reates
hoi
es. Common knowledge
an be stored in the proto
ol.Figure 12 shows a simple proto
ol, where the message m1(X) is sent to the agent that plays role rb, aftersatisfying the
onstraint κ1(X), and then the agent impersonating role rb replies with the message m2(Y),after satisfying the
onstraint κ2(X,Y).Agents in the framework are
omposed by layers, as shown in �gure 13. The lower level is the transmissionlayer, that manages the transmission and re
eption of the messages over the network. The
ommuni
ationlayer wraps the LCC engine and pro
esses the re
eived messages, together with the proto
ol sent alongwith them. As we have seen before, proto
ols require
onstraints to be satis�ed as pre
onditions to messagesending or post
onditions to message re
eption: the
onstraints, su
h as κ1(X) and κ2(X,Y) in the example,are solved
alling the reasoning layer that wraps all the agent spe
i�
 skills and knowledge. Intera
tions20

take pla
e in an open environment, where agent may not share the same ontology. Therefore the reasoningand the
ommuni
ation layers are
onne
ted through a mapping layer. Terms re
eived in the messages
anbe used in
onstraints (for example, in the proto
ol in �gure 12, in the
onstraint κ2(X,Y) the
ontent of Xwas de�ned by another agent), and the mapping layer tries to �nd the equivalent (or the
losest) terms in theagent's ontology, and translate the
onstraints transparently for the reasoning layer. The agent's ontologylayer provides to these two layers the methods to reason over the agent ontology.The predi
tor layer analyses the
ontent of the re
eived messages, of the satis�ed
onstraints, and of therole
alls,
reating a model of the intera
tion that uses in suggesting the possible
ontent of the re
eivedmessages in similar intera
tions.4.2.2 Approa
h to TestingThe aim of testing, as stated before, is to verify how often the predi
tor suggests a set of terms that
ontains the
orre
t mapping, and how large are these sets, with the theoreti
al ideal being as des
ribedin se
tion 4.1.1: if the
orre
t terms appear in the set Λ less often than the probability sum in expression3 predi
ts, then the probability distribution
reated by the model is impre
ise, or the distribution of themodelled phenomenon varies with time. If the suggestion sets are too large, then the
omputed probabilitydistribution is too uniform, and either it was not possible to extra
t any meaningful relation between termsin the dialogue, or there are none.The testing
ould be made through real intera
tion s
enarios, using real ontologies and real work�owsfor the dialogues. However, this would
over only part of the testing spa
e, without having the possibilityof varying parameters to verify the e�e
ts.A more e�e
tive approa
h for testing is having a set of proto
ols that
over di�erent types of abstra
trelations between the messages, re�e
ting di�erent real
ases, a set of ontologies generated a

ording tosome parameters, and algorithms for generating
hoi
es a

ording di�erent probability distributions. Anargument supporting this approa
h is that agents do not understand the meaning of the
onversations: they
an only
ount frequen
ies and �gure out relations between terms in the messages, and therefore havingwords (meaningful for us, but just strings for the agents) does not really
hange the testing.For example, a simple proto
ol as the one des
ribed in the example (�gure 12)
an be about an agenttelling x to a se
ond agent, that replies with y, related to x. The term x is
hosen from the �rst agent'sontology a

ording to some parti
ular preferen
e, as we will see in the next se
tion. This is a ratherrealisti
 abstra
tion: vendor re
eives more requests about some produ
ts than about others. The term y isontologi
ally related to the term x′ equivalent to x in the se
ond agent's ontology. It
an be a super
lass, asub
lass, an instan
e, a sibling or a property.The agents, running this simple proto
ol many times should learn the probability distributions of theterms in x and y and predi
t, with in
reasing pre
ision the set of terms that
ould appear in them. Obviously,the se
ond agent has the most di�
ult task, being able to predi
t only the prior probability of x, while the�rst agent should do better, knowing x, in predi
ting what
ould be y.4.2.3 Proto
ols for TestingWe have
reated a number of proto
ols, that re�e
t di�erent patterns in dialogues and in relations betweenthe
ontent of messages. Most of the proto
ol are based on the simple tell/reply model seen for the dialogue in�gure 12. More
omplex proto
ols in
lude the possibility of
onstraint failure, and therefore the possibilitythat di�erent messages are sent (and re
eived) in a parti
ular state of the intera
tion. Other
omplexproto
ols exploit the re
ursion available in LCC. 21

The
onstraints in the proto
ol, like κ1 and κ2 in the example, simulate real world
onstraints. Someof these
onstraints, like κ1 in the example, simulate
onstraints used to express a preferen
e in real worldproto
ol, like what produ
t to buy from a vendor. In the real world, preferen
es re�e
t the preferen
es ofa number of users, and normally have skewed distributions: some elements are more requested than others.During the testing pro
ess, the intera
tion is repeated over and over between two agents: agents are givenprobability distributions for the
onstraints. At every run of the proto
ol the
onstraint will be satis�edwith a di�erent element - a

ording to its spe
i�
 distribution.A preferen
e distribution δ is a list L of terms taken from the agent's ontology, in some arbitrary ordertogether with a probability distribution D used to generate a number between 0 and the size of the list.The number is used as index to extra
t a term from the list. For example, the probability distribution
anbe the Gaussian one. In this
ase, the varian
e parameter spe
i�es how spread the distribution must be: avery narrow
urve means that only a few terms will be
hosen, making the
ontent of the message easilypredi
table, while a wider
urve means that many terms
an be
hosen, in
reasing the un
ertainty about thepossible
ontent of the message.Other
onstraints, like κ2 in the example, simulate real world
onstraints that sear
h elements relatedto the ones given as input: by
onvention, when asked a question an agent replies with something relatedto the question, possibly a

ording to its preferen
es. The
onstraint �rst �nds all the elements that satisfythe spe
i�
 relation for the proto
ol, and then an element
an be
hosen using some probability distributionto simulate a preferen
e.4.2.4 OntologiesThe terms used in ea
h proto
ol are obtained either by preferen
e distribution over an ontology, or bysear
hing related terms in the ontology. The ontologies are generated as graphs,
omposed by a main tree,that
orrespond to the
lass taxonomy plus the instan
es, and links between the
lass and instan
es nodesthat represent the properties. The taxonomy tree
an be generated with di�erent depths and di�erentaverage number of
hildren per node. The max (or average) number of properties
an be set. Playing withthese parameters is possible to emulate �at lists, without hierar
hy, �at ontologies, with light hierar
hy, ormore hierar
hi
al stru
tures. See �gure 14 for an example of generated taxonomy.The goal of the experiments is to verify how well the agents
an predi
t the
ontent of the messages:therefore there is no spe
i�
 need to have di�erent ontologies: experiments
an be run with the agentssharing the same ontologies. However, it is possible to apply a set of transformations to an ontology,obtaining automati
ally two di�erent ontologies and the mappings between the two. The mappings are usedinstead of the mapping ora
le, as I am not interested in verifying the quality of a mapping pro
ess.Using di�erent ontologies means that some of the relations between the terms in the messages will notexist for both agents, making the predi
tion more di�
ult and less reliable.4.2.5 Experiment runnerThe experiments
onsist in running repeatedly the proto
ols (as des
ribed above) the
onstraints of whi
hare satis�ed using probability distributions to simulate a large population of agents.The experiments are run through a framework that parses XML �les des
ribing the experiments, instanti-ates the
omponent needed to perform the intera
tions, and starts the dialogues as many times as requested.The experiment bat
h XML �le des
ribes a set of experiment to run. It �rst lists the agents involved in thedi�erent experiments, and then, for ea
h experiment, it de�nes the values for some agents parameters (sothat the same agents
an show di�erent behaviours in di�erent experiments), spe
i�es if the internal state of22

_a

_aa _ab ...

_aa_aa ... _ab_aa _ab_ab ...

_ab_ab_aa _ab_ab_ab ...Figure 14: A generated ontologythe agents must be reset before starting the experiment, and de�nes what proto
ol must be run and for howmany time, de�ning also the proto
ol parameters. Through the agent parameters it is possible to spe
ifywhi
h predi
tion strategies should be used (see se
tion 4.1.2), allowing a
omparison between them.It is also possible to
reate new experiments without the need to spe
ify all the parameters: an experiment
an derive from another one. Only the di�erent parameters need to be spe
i�ed.The �le in �gure 15 des
ribe two experiments using the proto
ol in �gure 12. The only di�eren
e betweenthe two experiment, both involving 50 repetitions of the intera
tion, is in the varian
e of the Gaussiandistribution: the �rst
urve is narrower than the se
ond.The results of running this bat
h of experiments is shown in �gures 16 and 17. The tables shows, for ea
hof the two agents involved, the features of the suggested set Λ after 20, 40 and 50 iterations of the proto
ol.The s
ore represent how often the suggested set Λ
ontained the
orre
t term.The learnt model, for the agent interpreting role ra in the dialogue and using the ontology in �gure 14, isshown in �gure 1. As seen before, an assertion is generated and maintained by a spe
i�
 strategy and stateshow many times the
ontent of the slot in a message was in the set de�ned in the assertion.5 Ensuring Knowledge Consisten
y Between Peer and Environ-mentPerhaps the most di�
ult pra
ti
al issue of all, from an analyti
al point of view, in distributed knowledgesharing is that of ensuring
onsisten
y between the knowledge available to an intera
ting peer and theknowledge available in its environment. This is be
ause a peer's environment is likely to in
lude some partof the physi
al world, thus analyti
al methods that apply here must
laim relevan
e to that world in all its
omplexity.Property 4 If proposition X1 is in the knowledge set of peer P and proposition X2 is the knowledge set ofits environment, EP , then X1 and X2 should be
onsistent.23

<bat
h><des
ription>use of proto
ol 1</des
ription><involved_agent id="tagent1"/><involved_agent id="tagent2"/><experiment id="1"><des
ription>Learn the distribution of a variable (with sigma=15)</des
ription><reset agent="tagent1"/><reset agent="tagent2"/><agent_param agent="tagent1" se
tion="general" param="feedba
k_results" value="true"/><agent_param agent="tagent1" se
tion="randprefs" param="totell" value="{'file':'t1pa', 'sigma':15}"/><institution name="prot1" repeat="50" dumpevery="20"><start role="r1a" agent="tagent1"><param>tagent2</param></start></institution></experiment><experiment id="2" derived_from="1"><des
ription>Learn the distribution of a variable (with sigma=5)</des
ription><reset agent="tagent1"/><reset agent="tagent2"/><agent_param agent="tagent1" se
tion="randprefs" param="totell" value="{'sigma':5}"/></experiment></bat
h> Figure 15: XML �le des
ribing an experiment
X1 ∈ K(P) ∧ X2 ∈ K(EP) → σ(X1, X2)

P M(P,R)

P1

Pn

EP

EP1

EPn

K(P)K(EP)

Although there is no possibility of verifying that, in general, knowledge is
onsistent a
ross environmentsfor intera
ting peers, we
an investigate whether spe
i�
 forms of intera
tion maintain spe
i�
 forms of
onsisten
y for spe
i�
 types of environment. By narrowing our fo
us in this way we
an take advantage ofspe
i�
 forms of environmental simulation. As an example of this we have
hosen Unreal Tournament.Unreal Tournament is a multi-agent gaming environment where multiple players
ompete in a 3D worldin order to a
hieve
ertain goals. These goals are de�ned by the type of game being played, where game-24

Results for agent impersonating ra20 40 50average size 13.2 14.5 14.8std dev 4 3.1 2.83max, min size [17,0℄ [17,0℄ [17,0℄s
ore .55 .68 .68Results for agent impersonating rb20 40 50average size 33 44.6 48.5std dev 15.4 15.9 16.3max, min size [53,0℄ [60,0℄ [65,0℄s
ore .25 .38 .48Figure 16: Results of running the experiment with σ = 15Results for agent impersonating ra20 40 50average size 12.8 14.5 15std dev 3.3 2.89 2.77max, min size [15,0℄ [17,0℄ [17,0℄s
ore .60 .62 .62Results for agent impersonating rb20 40 50average size 32 46.4 50.7std dev 13.8 17.8 18.1max, min size [49,0℄ [68,0℄ [69,0℄s
ore .25 .35 .44Figure 17: Results of running the experiment with σ = 5types in
lude
o-operative team games, su
h as Capture the Flag. Typi
ally games in Unreal Tournamentare
ombative but this need not be the
ase, and the most interesting aspe
t of the environment for ourpurposes is that it allows
omplex simulated physi
al environments and
omplex autonomous players to be
onstru
ted. It also provides a sophisti
ated graphi
s engine that allows us to form opinions on the humanrealism of the simulations being run. To a
hieve this sort of sophisti
ation it is a
omplex software pa
kagebut (via the open sour
e GameBots proto
ol) it permits any language with TCP/IP
apabilities to sendmessages to the Unreal Tournament game to
ontrol the a
tions of a player. Using this, we have builta me
hanism for
ommuni
ating between Unreal Tournament games and an LCC interpreter, so UnrealTournament supplys the (simulated) sour
e of K(EP) in analysing Property 4.The system was built around the idea that all the bots should be multiple running Java threads withidenti
al baseline fun
tional abilities within the Java itself. In order to use these fun
tional abilities ea
h botwould have a

ess to a parti
ular LCC proto
ol. At every time-step (ea
h time a message was re
eived fromGameBots , roughly 4-5 times a se
ond) the bot would then pass all its personal game information to a LCCinterpreter (written in Prolog) along with its LCC strategy. The return from this would be a de
ision aboutwhat the bot would then do. Changes in the bot's behaviour
ould then be attributable to a
ombination of25

Assertion OriginP(set(["'_ab_ai'"℄)|None)=3 termfilterP(set(["'_ab_aj'"℄)|None)=4 termfilterP(set(['root'℄)|None)=1 termfilterP(('getSuper
lasses', <r2a,satisfied,totell_1,0>)|None)=50 relationfilterP(set(["'_ab'"℄)|None)=9 termfilterP(('subClassOf', '_ab')|None)=40 ontoanalysisP(set(["'_ab_ae'"℄)|None)=1 termfilterP(set(["'_ab_ag'"℄)|None)=2 termfilterP(set(["'_ab_ad'"℄)|None)=11 termfilterP(set(["'_ab_ab'"℄)|None)=7 termfilterP(set(["'_ab_ah'"℄)|None)=7 termfilterP(('subClassOf', 'root')|None)=9 ontoanalysisP(set(["'_ab_af'"℄)|None)=3 termfilterP(set(["'_ab_a
'"℄)|None)=2 termfilterTable 1: Model learnt by tagent1 for reply(X)
hanges in the game-state and the rules in its LCC strategy.As an example of this method in use we summarise below an analysis performed with the simulator whenrunning a variation of the popular Team Death Mat
h game-type (in whi
h one team of gamebots attemptsto kill as many of the other team as possible). This was used primarily as a testing s
enario for
alibratingthe bots' �ring
apa
ities to that of the in-built bots but revealed some interesting results when the LCCstrategies were also ran with it. It also allowed for more empiri
al eviden
e to be gathered for some strategiesas the games were mu
h shorter and multiple trials
ould be run. In all the trials in this se
tion the botswere played against in-built enemy bots set on very high levels of skill (in terms of their shooting , pathingand various other autonomous abilities). The enemy bots were also set shoot at anything on an opposingteam whi
h strayed into their vision. The game stopped when one team got to 60 kills, this team were thusthe winning team. Several trials were run using di�erent strategies. Ea
h trial was run 10 times. All trialsin this se
tion were ran on the same (Gael) environment map.The results are summarised in the
hart of Figures 5 and 5. Eight di�erent trials are summarised in termsof the number of kills made by the LCC
oordinated team and the enemy team Figure 5 and the number ofwins obtained by the LCC
oordinated team and the enemy team Figure 5. Note that the average numberof wins is not dire
tly proportional to the average number of kills in any trial. The
onditions for ea
h trialare given below.Trial 1 : The �rst experiment was a baseline setup. This was done by playing one in-built bot againstone bot running the following LCC strategy, whi
h requires the bot simply to run around randomly,making no attempt to follow or approa
h its enemy:
a(random,R) :: null← movementAttempt(random_play)Trial 2 : This trial is similar to Trial 1 ex
ept that three LCC bots running the strategy from Trial 1 wereplayed against the single enemy bot. This was to try to determine the e�e
t that more team members26

Figure 18: Number of kills for ea
h trial (LCC bots in blue, enemy bots in bla
k)had on performan
e. Having more team members does not drasti
ally help performan
e of the botswithout more sophisti
ated
oordination.Trial 3 : In this trial one bot running the following strategy was played against one in-built bot, where
visibleP layer(L) is true if a player is visible to the bot at lo
ation L and movementAttempt(L) istrue if the bot attempts to move to lo
ation L.

a(follower,R) ::
null← visibleP layer(L) ∧ movementAttempt(L) or
null← movementAttempt(random_play)The e�e
t of this strategy is that a bot will attempt to follow an enemy if it is in its line of sight. Thebot performed slightly better than the single bot using strategy 2.1 but the result was not a signi�
antimprovement. The problem was that the bot kept doing one of two things: either its enemy movedqui
kly out of its line of sight (so it resumed random play) or it sees an enemy on another physi
allevel and in moving towards it the bot itself is for
ed to go out of line of sight (so it again resumesrandom play).Trial 4 : Repeats Trial 3 but with three LCC bots against a single enemy bot. The level of kills is notdrasti
ally altered but the bots win more games be
ause the enemy bot's dodging and avoidan
e27

Figure 19: Number of wins for ea
h trial (LCC bots in blue, enemy bots in bla
k)behaviour is harder to exe
ute when there are multiple enemies all �ring at on
e. Although thisstrategy has no expli
it group
oordination, there slight group
onvergen
e towards the enemy be
auseof the small size of the level.Trial 5 : Repeats Trial 3 using three LCC bots against three enemy bots. Given su
h a simple strategy thisresult is quite impressive as the bots only lose one less game than when they were playing against onlyone enemy. More enemy players means more targets to shoot at and less time spent playing entirelyrandomly.Trial 6 : In this trial three bots running the following
oordination strategy were played against one enemybot:
a(team_hunter, T) ::

sawAPlayer(L) ⇒ a(team_hunter, T 1)← visibleP layer(L) ∧ movementAttempt(L) or
movementAttempt(L)← sawAPlayer(L) ⇐ a(team_hunter,OT) or
null← movementAttempt(random_play)The strategy says that if a bot sees an enemy then they should move towards the enemy and also sendout a message to all other bots. Upon re
eiving this message these bots will then move towards the28

lo
ation where the enemy was last seen (otherwise moving randomly). This allows a basi
,
ommunalsense of enemy lo
ation to be a
hieved. Despite this, the bots did not do signi�
antly better than theprevious strategy. This was be
ause the bots took the shortest paths to a sighted enemy, and thosepaths often involved moving through areas whi
h took the bot away from the enemy �rst and thismeant that the bots viewpoint fo
us would be on the path and not the enemy. If the bot is visible tothe enemy on a large se
tion of this path then it will not be trying to defend itself and is thereforevulnerable.Trial 7 : In this trial three bots running the following strategy was played against one in-built bot, where
strafeAttempt(L) is true if the bot attempts to move towards lo
ation L while shooting in thatdire
tion.
a(team_hunter, T) ::

sawAPlayer(L) ⇒ a(team_hunter, T 1)← visibleP layer(L) ∧ strafeAttempt(L,L) or
strafeAttempt(L,L)← sawAPlayer(L) ⇐ a(team_hunter,OT) or
null← movementAttempt(random_play)This strategy is similar to that for Trial 6 but stra�ng is used instead of simple movement
ommands.Stra�ng involves looking at a spe
i�ed target, in our
ase the enemy. This addresses the problem �awin
oordination in Trial 6. The result is signi�
antly better and, although not hugely di�erent, theaverage kill
ounts are swung far enough in the LCC bots' dire
tion that they win every mat
h.Trial 8 : In this trial three bots running the strategy of Trial 7 were played against three enemy bots. Thepurpose of this test was to determine how well the strategy s
aled up when more enemies were addedto the opposing team. The result was that the bots do as well against three enemies as they do againstone.6 Con
lusionIn this paper we have des
ribed four properties of major
on
ern to those building systems for distributedknowledge sharing (whi
h in
ludes all open, large s
ale semanti
 web, grid and multi-agent systems). We haveshown how the LCC language
an be used as a unifying framework in whi
h to analyse these properties and,for ea
h property, we have shown how traditional forms of simulation and veri�
ation
an be re-interpretedto gain insights into them. In all
ases, generi
 veri�
ation of the general property is impossible so theanalyti
al methods apply to spe
i�
 forms of engineering intended only to in
rease the likelyhood that aproperty is preserved. Su
h engineering methods are the sto
k in trade of modern knowledge engineers. Byproviding a
ommon language and abstra
t
omputation model for intera
tions between knowledge sharingpeers we are able to des
end into the detail ne
essary to gain useful knowledge from analysis while retaininga single, abstra
t system view.Referen
es[1℄ A Barker and B Mann. Agent-based s
ienti�
 work�ow
omposition. In Astronomi
al Data AnalysisSoftware and Systems XV, volume 351, pages 485�488, 2006.29

[2℄ Alan Bundy. In
iden
e
al
ulus: A me
hanism for probabilisti
 reasoning. Journal of AutomatedReasoning, 1(3):263�284, 1985.[3℄ Li Guo, D Robertson, and Y Chen-Burger. A novel approa
h for ena
ting the distributed businesswork�ows using bpel4ws on the multi-agent platform. In IEEE Conferen
e on E-Business Engineering,pages 657�664, 2005.[4℄ R. J. Hayton, J. M. Ba
on, and K. Moody. A

ess
ontrol in an open distributed environment. InSymposium on Se
urity and Priva
y, pages 3�14, Oakland, CA, 1998. IEEE Computer So
iety Press.[5℄ Sushil Jajodia, Pierangela Samarati, and V. S. Subrahmanian. A logi
al language for expressing au-thorizations. In Pro
eedings of the 1997 IEEE Symposium on Se
urity and Priva
y (SP '97), page 31,Washington, DC, USA, 1997. IEEE Computer So
iety.[6℄ Lalana Kagal, Tim Finin, and Anupam Joshi. A poli
y language for a pervasive
omputing environment.In IEEE 4th International Workshop on Poli
ies for Distributed Systems and Networks. IEEE ComputerSo
iety, June 2003.[7℄ N. Osman and D. Robertson. Dynami
 veri�
ation of trust in distributed open systems. In Pro
eedingsof the Twentieth International Joint Conferen
e on Arti�
ial Intelligen
e, Hyderabad, India, 2007.[8℄ D Robertson P Besana. Probabilisti
 dialogue models for dynami
 ontology mapping. In Pro
eedings ofthe Se
ond ISWC Workshop on Un
ertainty Reasoning for the Semanti
 Web, volume 2. CEUR-WS.org,2006.[9℄ D. Robertson, C. Walton, P. Barker, A. Besana, Y. Chen-Burger, F. Hassan, D. Lambert, G. Li,J. M
Ginnis, N. Osman, A. Bundy, F. M
Neill, F. van Harmelen, C. Sierra, and F. Giun
higlia. Modelsof intera
tion as a grounding for peer to peer knowledge sharing. In E Chang, T. Dillon, R. Meersman,and K Sy
ara, editors, Advan
es in Web Semanti
s, vol 1. Springer-Verlag, LNCS-IFIP, 2007 (to appear).[10℄ M P. Singh. Agent
ommuni
ation languages: Rethinking the prin
iples. Computer, 31(12):40�47, 1998.Comparing mental vs so
ial agen
y.

30

