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Protool Based Analysis for Distributed Knowledge SharingPaolo Besana, Phil Graham, David Lambert, Nardine Osman, David RobertsonInformatis,University of Edinburgh,UKAbstratFormal veri�ation and analysis has made few inroads into knowledge sharing beause, at the levelof shared knowledge, the omputation used to perform sharing normally is too omplex, unpreditableand/or obsure to allow pratial methods to be developed. Reently, however, omputational methodshave been developed that apply diretly for knowledge sharing some of the methods that have tradi-tionally been used in formal veri�ation. The area to whih these methods is applied, however, is verydi�erent in nature to those of traditional formal veri�ation. This leads us to apply formal analytialmethods in novel ways. We desribe four of these.When veri�ation methods are applied to distributed systems the fous of analysis normally is on generisystem properties (suh as liveness or deadlok). When we are dealing with low-level omponents, suh asbasi ommuniation protools, then these generi properties are (arguably) the only properties of immediateonern. When we takle knowledge sharing in distributed systems then the range of possible propertiesto analyse is riher, and the methods of analysis are more varied. This paper desribes four ategories ofanalysis within a single framework for distributed knowledge sharing. Our framework uses the LightweightCoordination Calulus (LCC) to speify the knowledge sharing interation. LCC is an exeutable spei�a-tion language and is being used in distributed knowledge sharing appliations (most notably as part of theOpenKnowledge projet, www.openk.org).The paper is strutured as follows. First, in Setion 1 we desribe a top-level framework for omputationusing LCC. Then, in setions 2 to 5 we identify four properties of knowledge sharing in this framework andfor eah show a form of analysis appropriate to it. All of the properties we onsider are, in the general ase,impossible to guarantee in a distributed system so the aim of analysis is not to onlusively guarantee ourproperties but to make it more likely that are preserved when we engineer systems.1 A Model of Computation for Peer to Peer Knowledge SharingThe model of omputation that we use as the basis for our framework is that employed by the OpenKnowledgeprojet, using the Lightweight Coordination Calulus (LCC). This is desribed in detail in [9℄ but we repeatthe relevant part of that desription in this setion and onnet it to the framework summary (in De�nition 1)that we use as a reurrent pattern when we get to the analytial methods of Setions 2 to 5.We assume that distributed knowledge sharing is performed by some olletion of omputational pro-esses (e.g Web servies, peers in a peer-to-peer network, or agents in a multi-agent system). We refer tosuh proesses as peers, not beause peer-to-peer infrastruture essential to us but beause this emphasisesthe isolated and autonomous nature of the proesses. Eah peer may interat, privately, with its loalenvironment. When a peer wishes to interat with other peers then this is ahieved through an expliitmodel of interation (de�ned in LCC, see below) that onstrains the sequene of message passing betweenpeers. To partiipate in an interation model a peer must adopt one or more roles in that model - henepeers beome involved in interations by subsribing to roles de�ned for that interation. In [9℄ we show theorrespondenes between this model of interation and those of other ommonly used oordination systems.1



In all ases there is a orrespondene at the level of spei�ation - so LCC an be used to speify many of theforms of interation found in those systems. In addition, however, we have produed a mehanism allowingdiret deployment of LCC, so it an be used as an exeutable spei�ation language.De�nition 1 In a peer to peer knowledge sharing system a peer is a omputational proess, P , with a loalenvironment, EP . When in an interation with other peers, a peer adopts some role, R, that onforms to anexpliit model of the interation, M(P,R). This is depited in the diagram below
P M(P,R)

P1

Pn

EP

EP1

EPnwhere:
P = process name
RP = role of P
M(P,R) = interaction model for RP

EP = environment of P
RP = {RP , . . .}
MP = {M(P,R), . . .}
P(M(P,R)) = {Pi, . . .} such that Pi participates in M(P,R)Figure 1 de�nes the syntax of LCC. An interation model in LCC is a set of lauses, eah of whih de�neshow a role in the interation must be performed. Roles are desribed by the type of role and an identi�erfor the individual peer undertaking that role. The de�nition of performane of a role is onstruted usingombinations of the sequene operator (`then') or hoie operator (`or') to onnet messages and hanges ofrole. Messages are either outgoing to another peer in a given role (`⇒') or inoming from another peer in agiven role (`⇐'). Message input/output or hange of role an be governed by a onstraint de�ned using thenormal logial operators for onjuntion, disjuntion and negation. Notie that there is no ommitment tothe system of logi through whih onstraints are solved - so di�erent peers might operate di�erent onstraintsolvers (inluding human intervention).In [9℄ a full formal desription of a omputation method using LCC is desribed. For our urrent purposes,however, it is su�ient to repeat only the transition rules used by eah peer to advane the state of its rolein the interation. This is done by seleting the appropriate lause, Sp, for that role and we now explainhow to advane the state assoiated with this role to the new version of that lause, S ′p, given an inputmessage set, Mi, and produing a new message set, Mn, whih ontains those messages from Mi that havenot been proessed plus additional messages added by the state transition. Sine we shall need a sequene oftransitions to the lause for Sp we use Ci to denote the start of that sequene and Cj the end. The rewriterules of Figure 2 are applied to give the transition sequene of expression 1.2



Model := {Clause, . . .}
Clause := Role :: Def

Role := a(Type, Id)
Def := Role |Message | Def then Def | Def or Def

Message := M ⇒ Role |M ⇒ Role← C |M ⇐ Role | C ←M ⇐ Role
C := Constant | P (Term, . . .) | ¬C | C ∧ C | C ∨ C

Type := Term
Id := Constant | V ariable
M := Term

Term := Constant | V ariable | P (Term, . . .)
Constant := lower case character sequence or number
V ariable := upper case character sequence or numberFigure 1: LCC syntax

Ci
Mi,S,Mn
−−−−−−→ Cj ↔ ∃R,D.(Ci = a(R, p) :: D) ∧













Ci
Ri,Mi,Mi+1,S,Oi
−−−−−−−−−−−→ Ci+1 ∧

Ci+1
Ri,Mi+1,Mi+2,S,Oi+1

−−−−−−−−−−−−−−→ Ci+2 ∧
. . .

Cj−1
Ri,Mj−1,Mj ,S,Oj

−−−−−−−−−−−−→ Cj













∧

Mn = Mj ∪Oj

(1)
2 Ensuring that Interations are AvailableUsing LCC we make interation models expliit, so M(P,R) in De�nition 1 an be ommuniated betweenpeers. There are, however, potentially a huge number of interations in whih a peer might wish to beengaged, and this makes it a major issue for a peer to know exatly what sort of interation to attemptwith its peers. There are two losely related aspets to this problem: the disovery of appropriate modelsof interation and the hoie of appropriate peers with whih to engage in interations that have beendisovered.Property 1 Interation availability: If a role, R, is in the set of roles, RP , that a peer, P , wishes toundertake then at some future time an interation model, M(P,R), should exist in the set of models, MP ,known to P and that model should be apable of being initiated by P on role R and then satis�ed via per-to-peerinteration.

R ∈ RP → ⋄(∃M(P,R).M(P,R) ∈MP ∧ (i(M(P,R)) → ⋄a(M(P,R))))
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R :: B
Ri,Mi,Mo,S,O
−−−−−−−−−→ A :: E if B

R,Mi,Mo,S,O
−−−−−−−−−→ E

A1 or A2
Ri,Mi,Mo,S,O
−−−−−−−−−→ E if ¬closed(A2) ∧

A1
Ri,Mi,Mo,S,O
−−−−−−−−−→ E

A1 or A2
Ri,Mi,Mo,S,O
−−−−−−−−−→ E if ¬closed(A1) ∧

A2
Ri,Mi,Mo,S,O
−−−−−−−−−→ E

A1 then A2
Ri,Mi,Mo,S,O
−−−−−−−−−→ E then A2 if A1

Ri,Mi,Mo,S,O
−−−−−−−−−→ E

A1 then A2
Ri,Mi,Mo,S,O
−−−−−−−−−→ A1 then E if closed(A1) ∧

A2
Ri,Mi,Mo,S,O
−−−−−−−−−→ E

C ← M ⇐ A
Ri,Mi,Mi−{m(Ri,M ⇐ A)},S,∅
−−−−−−−−−−−−−−−−−−−−−→ c(M ⇐ A) if m(Ri,M ⇐ A) ∈Mi ∧

satisfy(C)

M ⇒ A ← C
Ri,Mi,Mo,S,{m(Ri,M ⇒ A)}
−−−−−−−−−−−−−−−−−−−→ c(M ⇒ A) if satisfied(S, C)

null ← C
Ri,Mi,Mo,S,∅
−−−−−−−−−→ c(null) if satisfied(S, C)

a(R, I) ← C
Ri,Mi,Mo,S,∅
−−−−−−−−−→ a(R, I) :: B if clause(S, a(R, I) :: B) ∧

satisfied(S, C)An interation model term is deided to be losed as follows:
closed(c(X))
closed(A then B) ← closed(A) ∧ closed(B)
closed(X :: D) ← closed(D)

(2)
satisfied(S, C) is true if onstraint C is satis�able given the peer's urrent state of knowledge.
clause(S, X) is true if lause X appears in the interation model S, as de�ned in Figure 1.Figure 2: Rewrite rules for expansion of an interation model lause

P M(P,R)EP

MP

P1

Pn

EP1

EPnIn general, there is no guarantee that a peer will disover the right interation model beause this involves,in the worst ase, searhing the entire peer network whih is not losed or synhronised. There is also nogeneral guarantee that an interation model, one initiated will result in a suessful outome for the peer4



Figure 3: Rewrite rules governing mathmaking for an LCC protoolThese rewrite rules onstitute an extension to those desribed in Figure 2. A rewrite rule
α

Mi,Mo,P,O,C,C′

−−−−−−−−−−→ βholds if α an be rewritten to β where: Mi are the available messages before rewriting; Mo are the messagesavailable after the rewrite; P is the protool; O is the message produed by the rewrite (if any); C is setof ollaborators before the rewrite; and C′ (if present) is the�possibly extended�set of ollaborators afterthe rewrite. C is a set of pairs of role and servie name, e.g. col(black -hole-finder , ucsd -sdsc)}. The samerewrite rules hold regardless of the implementation of the mathmaking funtion recruit . This enables us toapply other l tools, suh as model-hekers and the interpreter itself, without alteration while allowingus to hange recruit , and means lients an use their own hoie of mathmaker and mathmaking sheme.
A :: B

Mi,Mo,P,C,O
−−−−−−−−−−→ A :: E if B

Mi,Mo,P,C,O
−−−−−−−−−−→ E

A1 or A2

Mi,Mo,P,C,O
−−−−−−−−−−→ E if ¬closed(A2) ∧ A1

Mi,Mo,P,C,O
−−−−−−−−−−→ E

A1 or A2

Mi,Mo,P,C,O
−−−−−−−−−−→ E if ¬closed(A1) ∧ A2

Mi,Mo,P,C,O
−−−−−−−−−−→ E

A1 then A2

Mi,Mo,P,C,O
−−−−−−−−−−→ E then A2 if A1

Mi,Mo,P,C,O
−−−−−−−−−−→ E

A1 then A2

Mi,Mo,P,C,O
−−−−−−−−−−→ A1 then E if closed(A1) ∧ A2

Mi,Mo,P,C′,O
−−−−−−−−−−−→ E

∧collaborators(A1) = C′

C ←M ⇐ A
Mi,Mi\{M ⇐ A},P,C,∅
−−−−−−−−−−−−−−−−−→ c(M ⇐ A)C if (M ⇐ A) ∈ Mi ∧ satisfied(C)

M ⇒ A← C
Mi,Mi,P,C,C′,{M ⇒ A}
−−−−−−−−−−−−−−−−−→ c(M ⇒ A)C′ if satisfied(C)∧

C′ = recruit(P, C, role(A))

null ← C
Mi,Mi,P,C,∅
−−−−−−−−−→ c(null)C if satisfied(C)

a(R, I)← C
Mi,Mo,P,C,∅
−−−−−−−−−−→ a(R, I) :: B if clause(P, C, a(R, I) :: B)

∧satisfied(C)

collaborators(c(Term)C) = C
collaborators(A1 then A2) = collaborators(A1) ∪ collaborators(A2)
collaborators(A :: B) = collaborators(A) ∪ collaborators(B)beause the other peers that engage in the interation may not behave reliably, even if they did so on earlieroasions. For these reasons, attention has foused on statistially based methods of mathmaking, so thatprevious knowledge of suesses and failures in interating an be used to inform hoies of peers to reruitfor interation models.In order to simulate the proess of mathmaking for an LCC interation model (M(P,R) in Property 1)we extend the rewrite rules of Figure 2 to inlude a mathmaking funtion recruit . This funtion takes asinput a set of potential ollaborators appropriate to the urrent role in the interation model. The rulesgoverning exeution of a protool are in �gure 3.In Setion 2.2 we disuss the issue of seleting agents. Many di�erent methods an be used for this.We have hosen a probabilisti method, based on the inidene alulus [2℄. This is a truth-funtionalprobabilisti alulus in whih the probabilities of omposite formulae are omputed from intersetions andunions of the sets of worlds for whih the atomi formulae hold true, rather than from the numerial valuesof the probabilities of their omponents. The probabilities are then derived from these inidenes. Cruially,in general P (φ ∧ ψ) 6= P (φ) · P (ψ). This �delity is not possible in normal probabilisti logis, whereprobabilities of omposite formulae are derived only from the probabilities of their omponent formulae. Inthe inidene alulus, we return to the underlying sets of inidenes, giving us more aurate values for5



ompound probabilities.
i(⊤) = worlds i(⊥) = {}
i(α ∧ β) = i(α) ∩ i(β) i(α ∨ β) = i(α) ∪ i(β)
i(¬α) = i(⊤)\i(α) i(α→ β) = i(¬α ∨ β) = (worlds\i(α)) ∪ i(β)

P (φ) =
|i(φ)|
|i(⊤)|

P (φ|ψ) =
|i(φ∧ψ)|
|i(ψ)|The inidene alulus is not frequently applied, sine one requires exat inident reords to use it.Fortunately, that's exatly what the mathmaker has on hand.2.1 The MathmakerFirst, we will explain the overall proess of exeuting an l protool, and the mathmaker's plae in it. Alient has a task or goal it wishes to ahieve: using either a pre-agreed look-up mehanism, or by reasoningabout the protools available, the lient will selet a protool, with possibly more than one being suitable.This done, it an begin interpreting the protool, dispathing messages to other agents as the protool direts.When the protool requires a message to be sent to an agent that is not yet identi�ed, the sender queries amathmaker to disover servies apable of �lling the role. These new agents we term `ollaborators'. Themathmaker selets the servie that maximises the probability of a suessful outome given the urrentprotool type and role instantiations. The protool is then updated to re�et the agent's seletion, and theterm col(Role,Agent), instantiated to the requested role and newly hosen agent, is stored in the protool'sommon knowledge where it is visible to the partiipants and the mathmaker.The suess of a protool and the partiular team of ollaborators is deided by the lient: on ompletionor failure of a protool, the lient informs the mathmaker whether the outome was satisfatory to the lient.Eah ompleted brokering session is reorded as an inident, represented by an integer. Our propositionsare ground prediate alulus expressions. Eah proposition has an assoiated list of worlds (inidents) forwhih it is true. Initially, the inident database is empty, and the broker selets servies at random. As moredata is olleted, a threshold is reahed, at whih point the mathmaker begins to use the probabilities.2.2 Seleting AgentsWe explain the seletion of agents using a senario from astrophysis. In our senario, an astronomer isusing the Grid to examine a blak hole. Having obtained the l protool in �gure 4, she instantiatesthe File variable to the �le she wants to work with, and runs the protool. The protool is sent �rst to a

black -hole-finder servie. This servie, in turn, requires an astronomy-database to provide the �le. If a blakhole is found the black -hole-finder servie will pass the data to a visualisation servie. Finally, the lientwill reeive a visualisation or noti�ation of failure. Where is the inter-servie variation? Consider that theastronomial data �le is very large, and thus network bandwidth between sites will be a ruial fator indetermining user satisfation. Thus, some pairs of database and omputation entre will outperform otherpairs, even though the individuals in eah pairing might be equally apable. Indeed, the `best' database andompute entre may have a dreadful ombined sore beause their network interonnetion is weak.If we imagine how the mathmaker's inidene database would look after several exeutions of thiswork�ow (most likely by di�erent lients), we might see something like this:
6



i(protocol(blak-hole-searh), [1, 2, . . . , 25])
i(outcome(good), [1, 2, 3, 4, 6, 10, 11, 12, 16, 22, 23, 24])
i(col(astronomy-database, greenwich), [18, 19, 20, 21, 22, 23, 24, 25])
i(col(astronomy-database, herschel), [10, 11, 12, 13, 14, 15, 16, 17])
i(col(astronomy-database, keck), [1, 2, 3, 4, 5, 6, 7, 8, 9])
i(col(black-hole-finder , barcelona-sc), [8, 9, 16, 17, 24, 25])
i(col(black-hole-finder , ucsd-sdsc), [1, 2, 3, 4, 10, 11, 12, 13, 18, 19, 20])
i(col(black-hole-finder , uk-hpcx), [5, 6, 7, 14, 15, 21, 22, 23])
i(col(visualiser , ncsa), [1, 2, . . . , 25])Eah i(proposition, incidents) reords the inidents (that is, protool interations or exeutions) in whihthe proposition is true. We an see that the blak-hole-searh protool has been invoked 25 times,and that it has been suessful in those inidents where outcome(good) is true. Further, by intersetingvarious inidenes, we an ompute the suess of di�erent teams of agents, and obtain preditions for futurebehaviour. Let us examine the performane of the Barelona superomputer:

i(col(black -hole-finder , barcelona-sc) ∧ outcome(good)) = {16}

P (outcome(good)|col(black -hole-finder , barcelona-sc)) =
|{16}|

|{8,9,16,17,24,25}|This performane is substantially worse than that of the other superomputers on this task not beause
barcelona-sc is a worse superomputer than ucsd -sdsc or uk -hpcx , but beause its network onnetions tothe databases required for this task present a bottlenek, reduing lient satisfation.From this database, the mathmaker an then determine, for a requester, whih servies are most likelyto lead to a suessful outome, given the urrent protool and servies already seleted. That is, themathmaker tries to optimise

argmaxsP (outcome(good)|P , col(r, s) ∪ C)Where P is the protool, C is the urrent set of ollaborators, r is the role requiring a new servieseletion, and s is the servie we are to selet.We have developed two algorithms for hoosing servies, although others are possible. The �rst, alledreruit-joint, �lls all the vaanies in a protool at the outset. It works by omputing the joint distributionfor all possible permutations of servies in their respetive roles, seleting the grouping with the largestprobability of a good outome.The seond approah, reruit-inremental, is to selet only one servie at a time, as required by theexeuting protool. The various servies already engaged in the protool, on needing to send a message toan as-yet-unidenti�ed servie, will ask the mathmaker to �nd an servie to ful�l the role at hand. reruit-inremental omputes the probability of a suessful outome for eah servie available for role R given
C (C being the ollaborators hosen so far), and selets the most suessful servie. To illustrate reruit-inremental, imagine the work�ow senario. At �rst, the astronomer must ask the mathmaker to �ll the
black -hole-finder role. The BHF servie's �rst ation is to request the data �le from an astronomy database.It therefore returns the protool to the mathmaker, whih selets the astronomy-database most likely toprodue suess, given that the black -hole-finder is already instantiated to BHF .Both algorithms support the pre-seletion of servies for partiular roles. An example of this might bea lient booking a holiday: if it were aumulating frequent �ier miles with a partiular airline, it ouldspeify that airline be used, and the mathmaker would work around this hoie, seleting the best agentsgiven that the airline is �xed. This mehanism also allows us to diret the mathmaker's searh: seleting apartiular servie an suggest that the lient wants similar servies, from the same soial pool, for the otherroles, e.g. in a peer-to-peer searh, by seleting an servie you suspet will be helpful in a partiular enquiry,the broker an �nd further servies that are losely `soially' related to that �rst one.7



Figure 4: LCC dialogue framework for astronomy work�ow senario
a(astronomer(File),Astronomer ) ::

search(F ile) ⇒ a(black -hole-finder ,BHF ) then
„

success ⇐ a(black -hole-finder ,BHF ) then
receive-visualisation(Thing ,V )← visualising(Thing) ⇐ a(visualiser , V )

«

or

failed ⇐ a(black -hole-finder ,BHF )

a(black -hole-finder ,BHF ) ::
search(F ile) ⇐ a(astronomer(F ile), Astronomer) then
grid-ftp-get(File) ⇒ a(astronomy-database ,AD) then
0

B

B

@

grid-ftp-sent(File) ⇐ a(astronomy-database ,AD) then
success ⇒ a(astronomer, Astronomer)

← black -hole-present(File,Black -hole) then
visualise(Black -hole,Astronomer) ⇒ a(visualiser ,V )

1

C

C

A

or

failed ⇒ a(astronomer(F ile), Astronomer)

a(astronomy-database ,AD) ::
grid-ftp-get(File) ⇐ a(black -hole-finder ,BHF )
grid-ftp-sent(File) ⇒ a(black -hole-finder ,BHF )← grid-ftp-completed(File,AD)

a(visualiser , V ) ::
visualise(Thing,Client) ⇐ a(_, Requester) then
visualising(Thing) ⇒ a(_, Client)← serve-visualisation(Thing ,Client)Note that l is being used only to oordinate the interation: where appropriate, individual agents may use domain-spei�protools, suh as Grid ftp, to perform the heavy lifting or invoke spei� servies outside of the l formalism and ommu-niation hannel.We an see from �gure 6(a) that using this tehnique an substantially improve performane over randomseletion of agents whih an individual meet the requirements. Whih algorithm should one hoose? Inprotools where most roles are eventually �lled, reruit-joint will outperform reruit-inremental,sine it is not limited by the possibly suboptimal deisions made earlier. reruit-joint is also preferablewhen one wishes to avoid multiple alls to the mathmaker, either beause of privay onerns, or for reasonsof ommuniation e�ieny. However, in protools whih rarely have all their roles instantiated, reruit-joint an end up unfairly penalising those servies whih have not atually partiipated in the protoolsthey are alloated to. reruit-inremental is therefore more suitable in protools where many roles goun�lled: total work on the broker would be redued, and the results would probably be at least as good asfor brokering all servies.2.3 Seleting RolesSo far, we have onsidered the ase where the protool is de�ned, and we simply need to selet agents to�ll the roles. What if the roles themselves are unde�ned, if the protool is inompletely spei�ed? What ifwe allowed agents to begin exeuting inomplete protools? If the mathmaker ould elaborate protools atrun time, seleting the elaboration based on prior experiene? We will show one way to do this using theinidene alulus, in a very similar fashion to how we seleted agents.Roles onsist of an ordering of messages, together with onstraints, and moves to other roles. It mightbe the ase that just hanging the ordering might make a large di�erene. For instane, if one is arrangingto travel to a onert, it is preferable to obtain event tikets �rst, then organise transport. In our example,8



Figure 5: AlgorithmsReruit-Joint(protocol , database)1 roles ← roles-required(protocol )2 collaborations ← all-ollaborations(protocol , database, roles)3 for c ∈ collaborations4 do quality [c]← probability-good-outome(protocol , database, c)5 return argmax(collaborations , quality)Reruit-Inremental(protocol , database, role)1 for r ∈ ative-roles(protocol )2 do collaborators [r]← ollaborator-for-role(protocol , r)3 candidates ← apable-agents(database , role)4 for c ∈ candidates5 do collaborators [role]← c6 quality [a]← probability-good-outome(database , collaborators)7 return argmax(candidates , quality)Embellish-Inremental(protocol , database , role)1 for r ∈ role-definitions(protocol )2 do role-definition [r]← definition-for-role(protocol , r)3 candidates ← available-role-definitions(protocol ,database ,role) role)4 for c ∈ candidates5 do role-definition [role]← c6 quality [c]← probability-good-outome(database , role-definitions)7 return argmax(role-definitions , quality)argmax as used here does not always selet the highest value. To improve the exploration of options, thoseentries that have low numbers of data points (i.e. have not often been seleted previously) are preferentiallyhosen, and in other ases a random seletion is sometimes made.we take to problem of booking a trip involving a �ight and hotel room. The l protool is shown in�gure 7. If we suppose that it is a preferable ourse of ation to book the �ight then the hotel room, sinehotel room osts are more �exible that �ight ones, we an expet a better outome using flight -then-hotelrather than hotel -then-flight . Figure 6() shows the improvement in a simulation. The algorithm usedis embellish-inremental, shown in �gure 5. embellish-inremental works similarly to reruit-inremental, adding role de�nitions to the protool as those roles are required at run-time. We have notprovided equivalent to reruit-joint, sine this an in�ate protools with many roles that will remainunused.
9



Figure 6: Simulation results
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Figure 7: Booking a holiday with LCC
a(traveller , Traveller) ::

book-holiday(Src, Dst, Start, End , Money) ⇒ a(travel-agent, Agent)
← travel-details(Src, Dst, Start, End , Money) then

„

booking(Start, End , Cost) ⇐ a(travel-agent, Agent) then
matchmaking(good) ⇒ a(matchmaker, matchmaker)

«

or
„

failure ⇐ a(travel-agent , Agent) then
matchmaking(bad) ⇒ a(matchmaker, matchmaker)

«Note that the travel -agent role is not spei�ed in the lient's protool! We leave it to the mathmaker to�nd one. The mathmaker, let us say, has the following role de�nitions available to it:
role(flight-then-hotel) ≡ a(travel-agent, Agent) ::

book-holiday(Src, Dst, Start, End , Money) ⇐ a(client, Client) then
book-flight(Src, Dst, Start, End , Money) ⇒ a(airline, Airline) then
„

no-flights ⇐ a(airline, Airline) then
failure ⇒ a(client, Client)

«

or
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flight-booking(Flight-Cost) ⇐ a(airline, Airline) then
flight-available(Src, Dst, Start , End , Money) ⇐ a(airline , Airline) then
book-hotel(Location, Start, End , Money) ⇒ a(hotel, Hotel)
← is(Money-Left, Money −Flight-Cost) then

0

@

hotel-booking(Hotel-Cost) ⇐ a(hotel , Hotel) then
booking(Total-Cost) ⇒ a(client, Client)
← is(Total-Cost, Flight-Cost + Hotel-Cost)

1

A or
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flight-booking(Flight-Cost) ⇐ a(airline, Airline) then
flight-available(Src, Dst, Start , End , Money) ⇐ a(airline , Airline) then
book-hotel(Location, Start, End , Money) ⇒ a(hotel, Hotel)
← is(Money-Left, Money −Flight-Cost) then
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hotel-booking(Hotel-Cost) ⇐ a(hotel , Hotel) then
booking(Total-Cost) ⇒ a(client, Client)
← is(Total-Cost, Flight-Cost + Hotel-Cost)
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a(hotel, Hotel) ::
book-hotel(Location, Start, End , Money) ⇐ a(Role, Agent) then
room-available(Location, Start , End , Money, Cost) ⇒ a(Role, Agent)

← room-available(Location, Start, End , Money, Cost) or
no-vacancy ⇒ a(Role, Agent)

a(airline, Airline) ::
book-flight(Src, Dst, Start, End , Money) ⇐ a(Role, Agent) then
flight-available(Src, Dst, Start, End , Money) ⇒ a(Role, Agent)

← flight-available(Src, Dst, Start, End , Money) or
no-flights ⇒ a(Role, Agent)

a(matchmaker, matchmaker) ::
record-matchmaking-outcome(Outcome)

← matchmaking(Outcome) ⇐ a(Role, Agent)
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servie providers. Further, we must ask how many servie types will be provided. Again, in eah domain, wemight have a simple, monolithi interfae, or an interfae with suh �ne granularity that few engineers everfully understand or exploit it. The answers to these will impat the nature of our mathmaking infrastruture.While our tehnique handles large numbers of inidenes, it does not sale for very large numbers ofservies or roles. For any protool with a set of roles R, and with eah role having |providers(ri)| providers,the number of ways of hoosing a team is ∏

ri∈R |providers(ri)|, or O(mn). No mathmaking system ouldpossibly hope to disover all the various permutations of servies in a rih environment, although mahinelearning tehniques might be helpful in direting the searh for groupings of servies. How muh of an issuethis atually beomes in any partiular domain will be heavily in�uened by the outomes to the issuesdisussed above.3 Knowledge Consisteny Between Peer and Interation ModelA peer in an open knowledge sharing system may need to partiipate in an interation that it has notexperiened hitherto, or it may need to resume an interation in whih it had partiipated some time ago.The deployment mehanisms used for knowledge sharing in the OpenKnowledge projet allow a formalspei�ation of the urrent state of a given interation (new or ontinuing) to be ommuniated to a peerso, in the terminology used in De�nition 1, the peer has an expiit representation of M(P,R). It does notneessarily know, however, whether its partiipation in the interation oordinated viaM(P,R) will maintainonsisteny between its loal knowledge and that of the interation model. The property we would ideallypreserve is desribed as Property 2 below.Property 2 If proposition X1 is in the knowledge set of P and proposition X2 is in the knowledge set ofinteration model M(P,R) at any time then X1 and X2 should be onsistent.
X1 ∈ K(P ) ∧ (X2 ∈ K(M(P,R)) ∨ ⋄(X2 ∈ K(M(P,R)))) → σ(X1, X2)

P M(P,R)

P1

Pn

EP

EP1

EPn

K(P) K(M(P,R))

Property 2 annot be guaranteed in general beause, in general, we are not guaranteed to be able toenumerate all the elements of K(P ) or K(M(P,R)). Furthermore, we require onsisteny not only for theurrent state of the interation but for all its future states. This guarantee into the future annot be madeon a spei� peer beause the future interation state may be determined by other peers of whih it has noknowledge.Given that we annot solve the general problem, one established method of dealing with it is by speifyingthe main loal onstraints the aeptability of a partiular role by a peer (a subset of K(P ) and proving that12



these are not violated by anything that urrently an be temporally inferred from the interation model.Although muh of a peer's knowledge is private, there are situations in pratie when peers make expliit aportion of their knowledge in the form of onstraints on the interations they will allow with other peers.For example, a peer might desribe permissions (onstraints on whih peers it will interat with and when);obligations (onstraints assumed on peers with whih it interats); or trust poliies (onstraints on the degreeto whih it is prepared to rely on other peers). Various formal languages have been developed for expressingthis sort of knowledge (for instane asl [5℄, rdl [4℄, and Rei [6℄). In [7℄ we show in detail how to ombinethis sort of deonti spei�ation with LCC and demonstrate how this an establish a measure of trust ininteration models. For ompatness, we do not repeat this result here but give instead the framework used,whih is based on a from of model heking.3.1 The Veri�ation ProessThe model heker is built on top of xsb tabled prolog. This means that alls to given prediates will beahed, along with their answers, in a table. This olletion of tabled alls paired with their answers isonsulted every time a new all is issued. Here is how this works. When a all is made, the following asesare tested:1. If the new all mathes a tabled one:The set of answers assoiated with this tabled all are retrieved and the new all is resolved againstthese answers.2. f the new all does not �nd a math against the tabled alls:The new all is entered into the table and is resolved against the Prolog program lauses. For eahanswer derived during this proess, the following ases are tested:(a) if the answer is not already in the table:The new answer is inserted into the table entry assoiated with this all.(b) if the answer already exists in the table:The evaluation simply fails and baktraks to generate more answers.Notie that the alls are resolved against unique answers instead of repeated program lauses. This proessterminates when the all mathes a �nites number of de�ned Prolog program lauses and eah of these resultin a �nite number of answers.In our ase, the main question the model heker tries to answer is whether a given temporal propertyis satis�ed in a given (interation's) state-spae. The model heker starts by verifying that the temporalproperty is satis�ed at the initial state of the state-spae. For this, the satisfies prediate, whih spei�esthe µ-alulus proof rules (Figure 8) in Prolog, is alled. The prediate is a tabled prediate. This meansthat every time a all is made to this prediate when a state needs to be veri�ed against a given temporalproperty, the �rst thing to do is to searh the table for answers. Only if this is a new all � a all witha new ombination of a state and a temporal property � it will be resolved against the satisfies Prologprediates. In pratie, this implies that the model heker will always terminate with an answer in a �nitestate-graph1.1Note that while the state-graph is �nite, the state-spae may be in�nite. This happens when one state in the state-graphhas a transition that onnets it to a previous state, resulting in an in�nite state-spae to be generated from in�nite opies of�nite states. 13



satisfies(E, tt) ← true

satisfies(E,φ1 ∨ φ2) ← satisfies(E,φ1) ∨ satisfies(E,φ2)

satisfies(E,φ1 ∧ φ2) ← satisfies(E,φ1) ∧ satisfies(E,φ2)

satisfies(E, 〈A〉φ) ← ∃F. ((E
A
−→ F ) ∧ satisfies(F, φ))

satisfies(E, [A]φ) ← ∀F. ((E
A
−→ F ) → satisfies(F, φ))

satisfies(E,µZ.φ) ← satisfies(E,φ)

satisfies(E, νZ.φ) ← dual(φ, φ′) ∧ ¬satisfies(E, φ′)The rules imply that a state E always satis�es tt (true), and never ff (false). E satis�es φ1 ∨ φ2 if it satis�es ei-ther φ1 or φ2, and it satis�es φ1 ∧ φ2 if it satis�es both φ1 and φ2. [A]φ is satis�ed if for all transitions A thatstate E an take to F , then F satis�es φ. 〈A〉φ is satis�ed if state E an make at least one transition A to state
F , suh that F satis�es φ. Prolog, by nature, omputes the least �xed point solution. Hene, µZ.φ is satis�ed ifstate E satis�es the property φ. The greatest �xed point, however, is the dual of the least �xed point. There-fore, the greatest �xed point formula is satis�ed if the least �xed point of the negated formula fails to be satis�ed.Figure 8: The µ-alulus proof rulesIf the prediate is not satis�ed at the initial state, a transition is then made to the next state(s) inthe state-spae. The transition is omputed by alling the transition prediate, whih spei�es the ltransition rules (Figure 9). The property is then veri�ed against the new state(s), as the µ-alulus proofrules indiate. The model heker should also make sure that eah transition made does not break the agents'spei�ed deonti onstraints.3.2 The Model Cheking FrameworkThe framework of our model heker is presented in Figure 10. The model heker itself is built on twomodules based on the temporal language's proof rules as well as the proess alulus' transition rules, whihthe proof rules require. Note that in our implementation, the temporal language used is the µ-alulus andthe proess alulus in the lightweight oordination alulus (l).The model heker is built on top of the xsb tabled Prolog system. The xsb Prolog engine is alled toverify that a ertain temporal property is satis�ed in a given state-spae. Veri�ation is arried on based onthe µ-alulus proof rules, spei�ed in Prolog via the satisfies prediate. This requires knowledge of thetemporal property to be veri�ed and the interation's state-spae it is veri�ed upon. During the veri�ationproess, a table ontaining ahed results of previous alls is onsulted. As mentioned in the setion above,veri�ation might require a transition to be made from one state in the state-spae to another. In suh aase, the xsb Prolog engine omputes the transition based on the l transition rules, spei�ed in Prologvia the transition prediate. This requires knowledge of the state-spae as well as the deonti onstraints,to make sure transitions do not break these onstraints.4 Knowledge Consisteny Between Interating PeersIn Setion 3 we disussed the issue of onsisteny between peer ans interation model. We now turn to theissue of onsisteny between peers. This is a di�ult pratial problem, even with our expliit interationmodels, beause the vast majority of knowledge loal to a peer (K(Pi)) at any time is private to that peer.14



M ⇐ A
in(M)
−−−−→ nil

B
a
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(A← C)
#(X)
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B
a
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M ⇒ A
out(M)
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sat(C) ∧ (a 6= #/_)

null
#
−→ nil

A
a
−→ E

A par B
a
−→ E par B

B
a
−→ E

A
a
−→ E

A ::= B
B

a
−→ E

A par B
a
−→ A par E

A
a
−→ E

A or B
a
−→ E

A
a
−→ E B

a
−→ F

A par B
τ
−→ E par F

B
a
−→ E

A or B
a
−→ E

A
a
−→ nil

A then B
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A
a
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A then B
a
−→ E then B

E 6= nilFor the agent to perform a transition step, the transition rules above are applied exhaustively. The rules state that M ⇐ A anperform a transition in(M) to the empty proess nil by retrieving the inoming message M . M ⇒ A an perform a transition
out(M) to nil by sending the message M . null an perform the transition # to nil (# represents internal omputations).
A ← C an perform a transition to E if C is satis�ed and A an perform a transition to E. A, with de�nition A :: B, anperform a transition to E if B an perform a transition to E. AorB an perform a transition to E if either A or B an performa transition to E. AparB an perform a transition either to E par B if A an perform a transition to E, or to Apar E if Ban perform a transition to E. Apar B an also perform the transition τ to E par F if both A and B an perform transitionsto E and F , respetively. Finally, A thenB an perform a transition to B if A an perform a transition to the empty proess
nil; otherwise, it an perform a transition to E thenB if A an perform a transition to E.Note that all in(M), out(M), and # transitions should be heked to make sure theydo not break any deonti rules (i.e. the transitions satisfy the deonti onstraints).Figure 9: The l transition rulesWe an make use of whatever guarantees are possible pairwise between peers and interation models (seeSetion 3) to attak part of this problem but that addresses only knowledge that is expliitly shared duringthe interation. Fortunately, for many (perhaps the majority) interations the issue of onsisteny is not asbroad as that stated in Property 3 below, sine we require onsisteny only as far as loal knowledge relatedto the interation is onerned.Property 3 If proposition X1 is in the knowledge set of P and proposition X2 is the knowledge set of proess
Pi then X1 and X2 should be onsistent.

X1 ∈ K(P ) ∧ Pi ∈ P(M(P,R)) ∧ X2 ∈ K(Pi) → σ(X1, X2)
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Figure 10: The system's arhiteture
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One of the things that makes onsisteny di�ult to ahieve between peers is that the ontent of messagesexhanged during interations is often bound by impliit onstraints. In partiular, the ontext of theinteration in�uenes heavily the ontent of the messages. There are di�erent levels of ontext:
• the spei� topi of the interation: for example if the interation is about the purhase of a amera,then most of the messages will be about this spei� subjet
• the geographial/eonomial/historial ontext: a talk about a digital amera in 1990 was ratherunusual, while it is more ommon now. A talk about the weather is more ommon in the UK ratherthan in south Spain, and it will re�et di�erent issues (wind, old, rain or sun and drought)Moreover, interations follow paths onstrained by the interation model (M(P,R)). For instane if the buyerhas aepted an o�er, it is then supposed to pay (by, say, giving redit ard details), or if the buyer hasasked about the prie, the vendor is supposed to say a prie.The work presented in [8℄ aims at extrating, and then using the information embedded in the interationsbetween agents. The knowledge of this information an be exploited to predit the ontent of a message,given the urrent state of the interation. The predition of the message ontent an be used to selet the16



most likely mappings for terms de�ned in other ontologies. The agent will still need to apply some ontologymapping tehnique to selet the best mapping term from the suggestions, but the searh spae is greatlyredued by the use of the information extrated from the unfolded dialogue. The suggestions an also helpto redue the ambiguities that a mapping proess, unaware of the ontext of use of terms, may not be ableto solve.In the remainder of this setion we present an evaluation framework for the system disussed above.Setion 4.1 presents the work to be evaluated. Setion 4.2 desribes how the evaluation is performed,starting from an overview of the implementation hosen for the system, and then detailing the methodologyused for testing.4.1 Learning and prediting the possible message ontents4.1.1 Bakground assumptionsAs desribed in [10℄, agent interations an follow a mentalisti approah - where every agent needs to modelthe other agents intentions and beliefs in order to plan the onversations - or a soial approah, where thefous is on the rules and onventions that the agents need to follow. In the soial approah, the agentsusually follow some sort of interation model, that desribe the moves given the urrent state. The movesare usually the messages that an be sent or that an be expeted, often onstrained by some spei� rules.A message is usually a tuple, whose elements onvey the ontent of the single ommuniation at:
mi = 〈e1, ..., en〉The element ei in the message refers to some oneptual entity, represented with some symbol si belongingto the agent that introdues the term. If all agents share the same ontology, all the symbols are understoodby all the agents. If this is not the ase, then the agents have to use an �orale� to map the symbols to theorret entities.Let's suppose that an agent, with ontology La, reeives a message mk (. . . , wi, . . .) when in a spei�state of an interation, and that wi /∈ La is the foreign term. The task of �nding what entity or onept,represented in the agent's ontology by the term tm, was enoded in wi by the transmitter is performed bysome �orale�, whose atual implementation and method is not relevant for the work. Not all the omparisonsbetween wi and terms tj ∈ La are useful: the aim of the work evaluated here is to speify a method forhoosing the smallest set Λ ⊆ La of terms to ompare with wi, given a probability of �nding the mathingterm tm ∈ La. We assume that tm exists and that there is a single best math.Let p (tj) be the probability that the entity represented by tj ∈ La was used in wi inside mk. The oralewill �nd tm if tm ∈ Λ, event that has a probability:

p (tm ∈ Λ) =
∑

tj∈Γ

p (tj) (3)As shown in �gure 11, if all terms are equiprobable, then p (tm ∈ Λ) will be proportional to |Λ|. For example,if |La| = 1000, then p (tj) = 0.001. Setting |Λ| = 800 yields p (tm ∈ Γ) = 0.8, and there is no strategy forhoosing the elements to add to Λ.Instead, if the probability is distributed unevenly, and we keep the most likely terms disarding theothers, we an obtain a higher probability for smaller Λ. For example, suppose that p (tj) is distributedapproximately aording to Zipf's law (an empirial law mainly used in language proessing that states thatthe frequeny of a word in orpora is inversely proportional to its rank):
p (k; s;N) = 1/ks

P

N
n=1

1/ns 17
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Figure 11: Zipf's law distribution vs uniform distributionwhere k is the rank of the term, s is a parameter (whih we set to 1 to simplify the example), and N is thenumber of terms in the voabulary. For |La| = 1000, then p (tm ∈ Λ) = 0.70 for |Λ| = 110 and maybe moreremarkably p (tm ∈ Λ) = 0.5 for |Λ| = 25.Therefore, given a probability distribution for the terms, it is possible to trade o� a derement in theprobability of �nding the mathing term tm in Λ with an important redution of omparisons made by theorale.The issue dealt by this paper is to verify that the theoretial probability p (tm ∈ Λ) is reahed onsistentlyby the model desribed in [8℄, that means that repeating the interation over and over, the orret entity fora slot Wi in a message is ontained in Λ with the frequeny spei�ed by the theoretial probability.4.1.2 Basi model desriptionIn [8℄, the suggested solution is a model of the interation in whih the frequenies of the properties of theentities used to instantiate eah variable Wi in di�erent runs of the same protool are stored and updated.In general, the possible values for a slot Wi in a message are modelled by M assertions, eah keepingtrak of the frequeny with whih the mathing entity for the slot has been part of a set Ψ in the enountereddialogues:
Aj

.
= Freq (slot_value ∈ Ψ) (4)Assertions an simply be about the frequeny of entities in a slot, disregarding the values of other slots inthe protool run: 18



A
〈Ni,a〉R
j

.
= freq (slot_value ∈ {eq}) = pjMore preise assertions an be about the frequeny of an entity given the values of previous slots:

A
〈Ni,a〉R
j

.
= freq (slot_value ∈ {eq} | slotR = ek) = pjAssertions an also be about ontologial relations between the entities in the slot and other entities. Thepossible relations depend on the expressivity of the ontology: if it is a simple list of allowed terms, it willnot possible to verify any relation; if it is a taxonomy, subsumption an be found; for a riher ontology, moreomplex relations suh as domain or range an be found. Assertions about ontologial relations are obtainedgenerating hypotheses about di�erent relations and keeping the ount of the proved ones.The hypotheses an be about an ontologial relation between the entity in the slot and an entity ek inthe agent's ontology:

A
〈Ni,a〉R
j

.
= Pr (slot_value ∈ {X |rel (X, ek)}) = pjThe assertions an also regard the relation with another slot in the protool:

A
〈Ni,a〉R
j

.
= Pr (slot_value ∈ {X | rel (X, previous_slot_value)}) = pjThe assertions an be generated using di�erent strategies, and assign probabilities to overlapping setsthat an be either singletons or larger. The aim of this system is to selet the most likely entities for a slotin order to reah a given probability of �nding the mapping, and therefore we need to assign to the termsthe probabilities omputed with the assertions.This requires two steps. First, probabilities given to sets are uniformly distributed among the members:aording to the priniple of indi�erene, the probability of mutually exlusive elements in a set should beevenly distributed. Then, the probability of an entity ti is omputed by summing all its probabilities, anddividing it by the sum of all the probabilities about the slot:

p (ti) =
P

A
〈N,A〉R
j (〈N,A〉R∈{ti})

P

A
〈N,A〉R
k

(5)The probabilities of all the terms are sorted by probability, and Λ will be reated adding terms until theumulative probability exeeds the spei�ed threshold.4.2 TestingIn order to test and evaluate the feasibility and the reliability of the model, I developed a framework thatan run di�erent dialogues, analysing the message ontent in order to reate models for the interations, andthen applying them to predit the ontent of messages in similar interations.4.2.1 Interation FrameworkAs the fous of the problem is on agents' interations, and partiularly onventional interations, the theframework is built around a model of interation derived from the onepts of soial rules. The agentsinvolved in dialogues use the Lightweight Coordination Calulus (LCC).The Lightweight Coordination Calulus (LCC) is an exeutable spei�ation language adapted to peer-to-peer work�ow and has been used in appliations suh as business proess enatment [3℄ and e-sieneservie integration [1℄.LCC is based on proess alulus: protools are delarative sripts written in Prolog and irulated withmessages. Agents exeute the protools they reeive by applying rewrite rules to expand the state and �ndthe next move. 19



Role rb lausea(ra(O), I) ::=
m1(X)⇒ a(rb,O) ←κ1(X)then
m2(Y ) ⇐ a(rb,O).Role rb lausea(rb, O) ::=
m1(X)⇐ a(ra(_), I)then
m2(Y )⇒ a(ra(_), I) ←κ2(X, Y ).Figure 12: Simple LCC protool

Figure 13: Agent arhitetureIt uses roles for agents and onstraints on message sending to enfore the soial norms. A role behaviouris de�ned by a lause, and the basi behaviours are to send (⇒) or to reeive (⇐) a message. More omplexbehaviour are expressed using onnetives: then reates sequenes, or reates hoies. Common knowledgean be stored in the protool.Figure 12 shows a simple protool, where the message m1(X) is sent to the agent that plays role rb, aftersatisfying the onstraint κ1(X), and then the agent impersonating role rb replies with the message m2(Y ),after satisfying the onstraint κ2(X,Y ).Agents in the framework are omposed by layers, as shown in �gure 13. The lower level is the transmissionlayer, that manages the transmission and reeption of the messages over the network. The ommuniationlayer wraps the LCC engine and proesses the reeived messages, together with the protool sent alongwith them. As we have seen before, protools require onstraints to be satis�ed as preonditions to messagesending or postonditions to message reeption: the onstraints, suh as κ1(X) and κ2(X,Y ) in the example,are solved alling the reasoning layer that wraps all the agent spei� skills and knowledge. Interations20



take plae in an open environment, where agent may not share the same ontology. Therefore the reasoningand the ommuniation layers are onneted through a mapping layer. Terms reeived in the messages anbe used in onstraints (for example, in the protool in �gure 12, in the onstraint κ2(X,Y ) the ontent of Xwas de�ned by another agent), and the mapping layer tries to �nd the equivalent (or the losest) terms in theagent's ontology, and translate the onstraints transparently for the reasoning layer. The agent's ontologylayer provides to these two layers the methods to reason over the agent ontology.The preditor layer analyses the ontent of the reeived messages, of the satis�ed onstraints, and of therole alls, reating a model of the interation that uses in suggesting the possible ontent of the reeivedmessages in similar interations.4.2.2 Approah to TestingThe aim of testing, as stated before, is to verify how often the preditor suggests a set of terms thatontains the orret mapping, and how large are these sets, with the theoretial ideal being as desribedin setion 4.1.1: if the orret terms appear in the set Λ less often than the probability sum in expression3 predits, then the probability distribution reated by the model is impreise, or the distribution of themodelled phenomenon varies with time. If the suggestion sets are too large, then the omputed probabilitydistribution is too uniform, and either it was not possible to extrat any meaningful relation between termsin the dialogue, or there are none.The testing ould be made through real interation senarios, using real ontologies and real work�owsfor the dialogues. However, this would over only part of the testing spae, without having the possibilityof varying parameters to verify the e�ets.A more e�etive approah for testing is having a set of protools that over di�erent types of abstratrelations between the messages, re�eting di�erent real ases, a set of ontologies generated aording tosome parameters, and algorithms for generating hoies aording di�erent probability distributions. Anargument supporting this approah is that agents do not understand the meaning of the onversations: theyan only ount frequenies and �gure out relations between terms in the messages, and therefore havingwords (meaningful for us, but just strings for the agents) does not really hange the testing.For example, a simple protool as the one desribed in the example (�gure 12) an be about an agenttelling x to a seond agent, that replies with y, related to x. The term x is hosen from the �rst agent'sontology aording to some partiular preferene, as we will see in the next setion. This is a ratherrealisti abstration: vendor reeives more requests about some produts than about others. The term y isontologially related to the term x′ equivalent to x in the seond agent's ontology. It an be a superlass, asublass, an instane, a sibling or a property.The agents, running this simple protool many times should learn the probability distributions of theterms in x and y and predit, with inreasing preision the set of terms that ould appear in them. Obviously,the seond agent has the most di�ult task, being able to predit only the prior probability of x, while the�rst agent should do better, knowing x, in prediting what ould be y.4.2.3 Protools for TestingWe have reated a number of protools, that re�et di�erent patterns in dialogues and in relations betweenthe ontent of messages. Most of the protool are based on the simple tell/reply model seen for the dialogue in�gure 12. More omplex protools inlude the possibility of onstraint failure, and therefore the possibilitythat di�erent messages are sent (and reeived) in a partiular state of the interation. Other omplexprotools exploit the reursion available in LCC. 21



The onstraints in the protool, like κ1 and κ2 in the example, simulate real world onstraints. Someof these onstraints, like κ1 in the example, simulate onstraints used to express a preferene in real worldprotool, like what produt to buy from a vendor. In the real world, preferenes re�et the preferenes ofa number of users, and normally have skewed distributions: some elements are more requested than others.During the testing proess, the interation is repeated over and over between two agents: agents are givenprobability distributions for the onstraints. At every run of the protool the onstraint will be satis�edwith a di�erent element - aording to its spei� distribution.A preferene distribution δ is a list L of terms taken from the agent's ontology, in some arbitrary ordertogether with a probability distribution D used to generate a number between 0 and the size of the list.The number is used as index to extrat a term from the list. For example, the probability distribution anbe the Gaussian one. In this ase, the variane parameter spei�es how spread the distribution must be: avery narrow urve means that only a few terms will be hosen, making the ontent of the message easilypreditable, while a wider urve means that many terms an be hosen, inreasing the unertainty about thepossible ontent of the message.Other onstraints, like κ2 in the example, simulate real world onstraints that searh elements relatedto the ones given as input: by onvention, when asked a question an agent replies with something relatedto the question, possibly aording to its preferenes. The onstraint �rst �nds all the elements that satisfythe spei� relation for the protool, and then an element an be hosen using some probability distributionto simulate a preferene.4.2.4 OntologiesThe terms used in eah protool are obtained either by preferene distribution over an ontology, or bysearhing related terms in the ontology. The ontologies are generated as graphs, omposed by a main tree,that orrespond to the lass taxonomy plus the instanes, and links between the lass and instanes nodesthat represent the properties. The taxonomy tree an be generated with di�erent depths and di�erentaverage number of hildren per node. The max (or average) number of properties an be set. Playing withthese parameters is possible to emulate �at lists, without hierarhy, �at ontologies, with light hierarhy, ormore hierarhial strutures. See �gure 14 for an example of generated taxonomy.The goal of the experiments is to verify how well the agents an predit the ontent of the messages:therefore there is no spei� need to have di�erent ontologies: experiments an be run with the agentssharing the same ontologies. However, it is possible to apply a set of transformations to an ontology,obtaining automatially two di�erent ontologies and the mappings between the two. The mappings are usedinstead of the mapping orale, as I am not interested in verifying the quality of a mapping proess.Using di�erent ontologies means that some of the relations between the terms in the messages will notexist for both agents, making the predition more di�ult and less reliable.4.2.5 Experiment runnerThe experiments onsist in running repeatedly the protools (as desribed above) the onstraints of whihare satis�ed using probability distributions to simulate a large population of agents.The experiments are run through a framework that parses XML �les desribing the experiments, instanti-ates the omponent needed to perform the interations, and starts the dialogues as many times as requested.The experiment bath XML �le desribes a set of experiment to run. It �rst lists the agents involved in thedi�erent experiments, and then, for eah experiment, it de�nes the values for some agents parameters (sothat the same agents an show di�erent behaviours in di�erent experiments), spei�es if the internal state of22



_a

_aa _ab ...

_aa_aa ... _ab_aa _ab_ab ...

_ab_ab_aa _ab_ab_ab ...Figure 14: A generated ontologythe agents must be reset before starting the experiment, and de�nes what protool must be run and for howmany time, de�ning also the protool parameters. Through the agent parameters it is possible to speifywhih predition strategies should be used (see setion 4.1.2), allowing a omparison between them.It is also possible to reate new experiments without the need to speify all the parameters: an experimentan derive from another one. Only the di�erent parameters need to be spei�ed.The �le in �gure 15 desribe two experiments using the protool in �gure 12. The only di�erene betweenthe two experiment, both involving 50 repetitions of the interation, is in the variane of the Gaussiandistribution: the �rst urve is narrower than the seond.The results of running this bath of experiments is shown in �gures 16 and 17. The tables shows, for eahof the two agents involved, the features of the suggested set Λ after 20, 40 and 50 iterations of the protool.The sore represent how often the suggested set Λ ontained the orret term.The learnt model, for the agent interpreting role ra in the dialogue and using the ontology in �gure 14, isshown in �gure 1. As seen before, an assertion is generated and maintained by a spei� strategy and stateshow many times the ontent of the slot in a message was in the set de�ned in the assertion.5 Ensuring Knowledge Consisteny Between Peer and Environ-mentPerhaps the most di�ult pratial issue of all, from an analytial point of view, in distributed knowledgesharing is that of ensuring onsisteny between the knowledge available to an interating peer and theknowledge available in its environment. This is beause a peer's environment is likely to inlude some partof the physial world, thus analytial methods that apply here must laim relevane to that world in all itsomplexity.Property 4 If proposition X1 is in the knowledge set of peer P and proposition X2 is the knowledge set ofits environment, EP , then X1 and X2 should be onsistent.23



<bath><desription>use of protool 1</desription><involved_agent id="tagent1"/><involved_agent id="tagent2"/><experiment id="1"><desription>Learn the distribution of a variable (with sigma=15)</desription><reset agent="tagent1"/><reset agent="tagent2"/><agent_param agent="tagent1" setion="general" param="feedbak_results" value="true"/><agent_param agent="tagent1" setion="randprefs" param="totell" value="{'file':'t1pa', 'sigma':15}"/><institution name="prot1" repeat="50" dumpevery="20"><start role="r1a" agent="tagent1"><param>tagent2</param></start></institution></experiment><experiment id="2" derived_from="1"><desription>Learn the distribution of a variable (with sigma=5)</desription><reset agent="tagent1"/><reset agent="tagent2"/><agent_param agent="tagent1" setion="randprefs" param="totell" value="{'sigma':5}"/></experiment></bath> Figure 15: XML �le desribing an experiment
X1 ∈ K(P ) ∧ X2 ∈ K(EP ) → σ(X1, X2)

P M(P,R)

P1

Pn

EP

EP1

EPn

K(P)K(EP)

Although there is no possibility of verifying that, in general, knowledge is onsistent aross environmentsfor interating peers, we an investigate whether spei� forms of interation maintain spei� forms ofonsisteny for spei� types of environment. By narrowing our fous in this way we an take advantage ofspei� forms of environmental simulation. As an example of this we have hosen Unreal Tournament.Unreal Tournament is a multi-agent gaming environment where multiple players ompete in a 3D worldin order to ahieve ertain goals. These goals are de�ned by the type of game being played, where game-24



Results for agent impersonating ra20 40 50average size 13.2 14.5 14.8std dev 4 3.1 2.83max, min size [17,0℄ [17,0℄ [17,0℄sore .55 .68 .68Results for agent impersonating rb20 40 50average size 33 44.6 48.5std dev 15.4 15.9 16.3max, min size [53,0℄ [60,0℄ [65,0℄sore .25 .38 .48Figure 16: Results of running the experiment with σ = 15Results for agent impersonating ra20 40 50average size 12.8 14.5 15std dev 3.3 2.89 2.77max, min size [15,0℄ [17,0℄ [17,0℄sore .60 .62 .62Results for agent impersonating rb20 40 50average size 32 46.4 50.7std dev 13.8 17.8 18.1max, min size [49,0℄ [68,0℄ [69,0℄sore .25 .35 .44Figure 17: Results of running the experiment with σ = 5types inlude o-operative team games, suh as Capture the Flag. Typially games in Unreal Tournamentare ombative but this need not be the ase, and the most interesting aspet of the environment for ourpurposes is that it allows omplex simulated physial environments and omplex autonomous players to beonstruted. It also provides a sophistiated graphis engine that allows us to form opinions on the humanrealism of the simulations being run. To ahieve this sort of sophistiation it is a omplex software pakagebut (via the open soure GameBots protool) it permits any language with TCP/IP apabilities to sendmessages to the Unreal Tournament game to ontrol the ations of a player. Using this, we have builta mehanism for ommuniating between Unreal Tournament games and an LCC interpreter, so UnrealTournament supplys the (simulated) soure of K(EP ) in analysing Property 4.The system was built around the idea that all the bots should be multiple running Java threads withidential baseline funtional abilities within the Java itself. In order to use these funtional abilities eah botwould have aess to a partiular LCC protool. At every time-step (eah time a message was reeived fromGameBots , roughly 4-5 times a seond) the bot would then pass all its personal game information to a LCCinterpreter (written in Prolog) along with its LCC strategy. The return from this would be a deision aboutwhat the bot would then do. Changes in the bot's behaviour ould then be attributable to a ombination of25



Assertion OriginP(set(["'_ab_ai'"℄)|None)=3 termfilterP(set(["'_ab_aj'"℄)|None)=4 termfilterP(set(['root'℄)|None)=1 termfilterP(('getSuperlasses', <r2a,satisfied,totell_1,0>)|None)=50 relationfilterP(set(["'_ab'"℄)|None)=9 termfilterP(('subClassOf', '_ab')|None)=40 ontoanalysisP(set(["'_ab_ae'"℄)|None)=1 termfilterP(set(["'_ab_ag'"℄)|None)=2 termfilterP(set(["'_ab_ad'"℄)|None)=11 termfilterP(set(["'_ab_ab'"℄)|None)=7 termfilterP(set(["'_ab_ah'"℄)|None)=7 termfilterP(('subClassOf', 'root')|None)=9 ontoanalysisP(set(["'_ab_af'"℄)|None)=3 termfilterP(set(["'_ab_a'"℄)|None)=2 termfilterTable 1: Model learnt by tagent1 for reply(X)hanges in the game-state and the rules in its LCC strategy.As an example of this method in use we summarise below an analysis performed with the simulator whenrunning a variation of the popular Team Death Math game-type (in whih one team of gamebots attemptsto kill as many of the other team as possible). This was used primarily as a testing senario for alibratingthe bots' �ring apaities to that of the in-built bots but revealed some interesting results when the LCCstrategies were also ran with it. It also allowed for more empirial evidene to be gathered for some strategiesas the games were muh shorter and multiple trials ould be run. In all the trials in this setion the botswere played against in-built enemy bots set on very high levels of skill (in terms of their shooting , pathingand various other autonomous abilities). The enemy bots were also set shoot at anything on an opposingteam whih strayed into their vision. The game stopped when one team got to 60 kills, this team were thusthe winning team. Several trials were run using di�erent strategies. Eah trial was run 10 times. All trialsin this setion were ran on the same (Gael) environment map.The results are summarised in the hart of Figures 5 and 5. Eight di�erent trials are summarised in termsof the number of kills made by the LCC oordinated team and the enemy team Figure 5 and the number ofwins obtained by the LCC oordinated team and the enemy team Figure 5. Note that the average numberof wins is not diretly proportional to the average number of kills in any trial. The onditions for eah trialare given below.Trial 1 : The �rst experiment was a baseline setup. This was done by playing one in-built bot againstone bot running the following LCC strategy, whih requires the bot simply to run around randomly,making no attempt to follow or approah its enemy:
a(random,R) :: null← movementAttempt(random_play)Trial 2 : This trial is similar to Trial 1 exept that three LCC bots running the strategy from Trial 1 wereplayed against the single enemy bot. This was to try to determine the e�et that more team members26



Figure 18: Number of kills for eah trial (LCC bots in blue, enemy bots in blak)had on performane. Having more team members does not drastially help performane of the botswithout more sophistiated oordination.Trial 3 : In this trial one bot running the following strategy was played against one in-built bot, where
visibleP layer(L) is true if a player is visible to the bot at loation L and movementAttempt(L) istrue if the bot attempts to move to loation L.

a(follower,R) ::
null← visibleP layer(L) ∧ movementAttempt(L) or
null← movementAttempt(random_play)The e�et of this strategy is that a bot will attempt to follow an enemy if it is in its line of sight. Thebot performed slightly better than the single bot using strategy 2.1 but the result was not a signi�antimprovement. The problem was that the bot kept doing one of two things: either its enemy movedquikly out of its line of sight (so it resumed random play) or it sees an enemy on another physiallevel and in moving towards it the bot itself is fored to go out of line of sight (so it again resumesrandom play).Trial 4 : Repeats Trial 3 but with three LCC bots against a single enemy bot. The level of kills is notdrastially altered but the bots win more games beause the enemy bot's dodging and avoidane27



Figure 19: Number of wins for eah trial (LCC bots in blue, enemy bots in blak)behaviour is harder to exeute when there are multiple enemies all �ring at one. Although thisstrategy has no expliit group oordination, there slight group onvergene towards the enemy beauseof the small size of the level.Trial 5 : Repeats Trial 3 using three LCC bots against three enemy bots. Given suh a simple strategy thisresult is quite impressive as the bots only lose one less game than when they were playing against onlyone enemy. More enemy players means more targets to shoot at and less time spent playing entirelyrandomly.Trial 6 : In this trial three bots running the following oordination strategy were played against one enemybot:
a(team_hunter, T ) ::

sawAPlayer(L) ⇒ a(team_hunter, T 1)← visibleP layer(L) ∧ movementAttempt(L) or
movementAttempt(L)← sawAPlayer(L) ⇐ a(team_hunter,OT ) or
null← movementAttempt(random_play)The strategy says that if a bot sees an enemy then they should move towards the enemy and also sendout a message to all other bots. Upon reeiving this message these bots will then move towards the28



loation where the enemy was last seen (otherwise moving randomly). This allows a basi, ommunalsense of enemy loation to be ahieved. Despite this, the bots did not do signi�antly better than theprevious strategy. This was beause the bots took the shortest paths to a sighted enemy, and thosepaths often involved moving through areas whih took the bot away from the enemy �rst and thismeant that the bots viewpoint fous would be on the path and not the enemy. If the bot is visible tothe enemy on a large setion of this path then it will not be trying to defend itself and is thereforevulnerable.Trial 7 : In this trial three bots running the following strategy was played against one in-built bot, where
strafeAttempt(L) is true if the bot attempts to move towards loation L while shooting in thatdiretion.
a(team_hunter, T ) ::

sawAPlayer(L) ⇒ a(team_hunter, T 1)← visibleP layer(L) ∧ strafeAttempt(L,L) or
strafeAttempt(L,L)← sawAPlayer(L) ⇐ a(team_hunter,OT ) or
null← movementAttempt(random_play)This strategy is similar to that for Trial 6 but stra�ng is used instead of simple movement ommands.Stra�ng involves looking at a spei�ed target, in our ase the enemy. This addresses the problem �awin oordination in Trial 6. The result is signi�antly better and, although not hugely di�erent, theaverage kill ounts are swung far enough in the LCC bots' diretion that they win every math.Trial 8 : In this trial three bots running the strategy of Trial 7 were played against three enemy bots. Thepurpose of this test was to determine how well the strategy saled up when more enemies were addedto the opposing team. The result was that the bots do as well against three enemies as they do againstone.6 ConlusionIn this paper we have desribed four properties of major onern to those building systems for distributedknowledge sharing (whih inludes all open, large sale semanti web, grid and multi-agent systems). We haveshown how the LCC language an be used as a unifying framework in whih to analyse these properties and,for eah property, we have shown how traditional forms of simulation and veri�ation an be re-interpretedto gain insights into them. In all ases, generi veri�ation of the general property is impossible so theanalytial methods apply to spei� forms of engineering intended only to inrease the likelyhood that aproperty is preserved. Suh engineering methods are the stok in trade of modern knowledge engineers. Byproviding a ommon language and abstrat omputation model for interations between knowledge sharingpeers we are able to desend into the detail neessary to gain useful knowledge from analysis while retaininga single, abstrat system view.Referenes[1℄ A Barker and B Mann. Agent-based sienti� work�ow omposition. In Astronomial Data AnalysisSoftware and Systems XV, volume 351, pages 485�488, 2006.29



[2℄ Alan Bundy. Inidene alulus: A mehanism for probabilisti reasoning. Journal of AutomatedReasoning, 1(3):263�284, 1985.[3℄ Li Guo, D Robertson, and Y Chen-Burger. A novel approah for enating the distributed businesswork�ows using bpel4ws on the multi-agent platform. In IEEE Conferene on E-Business Engineering,pages 657�664, 2005.[4℄ R. J. Hayton, J. M. Baon, and K. Moody. Aess ontrol in an open distributed environment. InSymposium on Seurity and Privay, pages 3�14, Oakland, CA, 1998. IEEE Computer Soiety Press.[5℄ Sushil Jajodia, Pierangela Samarati, and V. S. Subrahmanian. A logial language for expressing au-thorizations. In Proeedings of the 1997 IEEE Symposium on Seurity and Privay (SP '97), page 31,Washington, DC, USA, 1997. IEEE Computer Soiety.[6℄ Lalana Kagal, Tim Finin, and Anupam Joshi. A poliy language for a pervasive omputing environment.In IEEE 4th International Workshop on Poliies for Distributed Systems and Networks. IEEE ComputerSoiety, June 2003.[7℄ N. Osman and D. Robertson. Dynami veri�ation of trust in distributed open systems. In Proeedingsof the Twentieth International Joint Conferene on Arti�ial Intelligene, Hyderabad, India, 2007.[8℄ D Robertson P Besana. Probabilisti dialogue models for dynami ontology mapping. In Proeedings ofthe Seond ISWC Workshop on Unertainty Reasoning for the Semanti Web, volume 2. CEUR-WS.org,2006.[9℄ D. Robertson, C. Walton, P. Barker, A. Besana, Y. Chen-Burger, F. Hassan, D. Lambert, G. Li,J. MGinnis, N. Osman, A. Bundy, F. MNeill, F. van Harmelen, C. Sierra, and F. Giunhiglia. Modelsof interation as a grounding for peer to peer knowledge sharing. In E Chang, T. Dillon, R. Meersman,and K Syara, editors, Advanes in Web Semantis, vol 1. Springer-Verlag, LNCS-IFIP, 2007 (to appear).[10℄ M P. Singh. Agent ommuniation languages: Rethinking the priniples. Computer, 31(12):40�47, 1998.Comparing mental vs soial ageny.

30


