OpenKnowledge
FP6-027253

Interaction Models for eResponse

.. 1 . .1 . .ol a1
Maurizio Marchese ', Lorenzino Vaccari', Gaia Trecarichi', Pavel Shvaiko',
Juan Panel, Nardine Osman?® and Fiona McNeill®

! DISI, University of Trento
? University of Edinburgh

Report Version: final
Report Preparation Date: January 10", 2008
Classification: Deliverable 6.7
Contract Start Date: 1.1.2006 Duration: 36 months
Project Co-ordinator: University of Edinburgh (David Robertson)
Partners: IITA(CSIC) Barcelona

Vrije Universiteit Amsterdam

University of Edinburgh

KMI, Open University

University of Southampton

University of Trento

INTRODUCTION TO THE DELIVERABLE

In this deliverable we report on the work carried out towards the definition and the development of appropriate
interaction models for the eResponse testbed for the OpenKnowledge system. In particular, we adopted, as a
real-life scenario, the flooding event in the province of Trento. The main goal of the present work, is to show
how an approach based on interaction models, in combination with an appropriate infrastructure, could be used
to manage both the sharing of relevant geographical information and the coordination activities between the
different actors involved in eResponse events.

More specifically, the report focuses on:

= a P2P formalization of the eResponse scenario based on the emergency organizational model - as used in
Trentino, Italy;

= the usage of the Lightweight Coordination Calculus (LCC) to express P2P style interactions and to provide
an open framework for coalition formation and Web service composition;

= the provision of a eResponse simulation environment in which to evaluate how suitable interaction models
are in coordinating peers in real time;

= the evaluation of the proposed approach to support typical emergency response tasks, requiring both data
sharing coordination and peers structured and dynamic coordination.

= an application of the approximate structure preserving semantic matching algorithm, developed in WP3 of
the OpenKnowledge project, within the eResponse domain.

The rest of the deliverable is organized as the collection of two papers - and related annexes - that describe the
approach, the related work and discuss the results so far achieved. Both papers have been submitted to 5th Intl-
Conference on Information Systems for Crisis Response and Management - http://www.iscram.org/ to be held in
Washington, DC, USA, May 4-7, 2008.

In the first paper - titled “Interaction models to support peer coordination in crisis management”- we present
the OpenKnowledge approach based on interaction models distributed through a peer to peer infrastructure and
we show how it can be applied in the context of crisis management to support coalition formation and process
coordination in open environments. We first focus on a short description of the specific use case that we are
using to ground our approach, i.e. the evacuation plan management during a flooding event. We then, present
the developed eResponse environment by describing its main components, namely, the eResponse simulator and
the peer network: along with the description of the system’s components (simulator, peers, services and
interaction models) we present some interaction models detailed examples. Next, we briefly present a
preliminary prototype of the overall system and we assess the simulation of initial emergency response
coordination activities. In the final sections, we discuss related and future work. The paper is complemented - in
this document - by two appendixes, which present and analyse the technical details of the developed interaction
models: (i) for the eResponse simulator (Appendix 1) and (ii) for the selected use case, i.e .the evacuation plan
(appendix 2).

In the second paper - titled “An Application of Approximate Ontology Matching in eResponse” - we focus on
a data sharing coordination among geoservices. The issue here is on how to interpreter structure and terms in
interaction models in order to support peers goal coordination. In the proposed approach, we achieve this by
dynamically matching terms in the interaction models. This can happen both at design time (i.e., when
synthesising different interactions models) and at execution time (i.e., when running them to perform specific
tasks). To this end, we use the approximate structure preserving semantic matching algorithm developed in WP3
of the OpenKnowledge project, in order to reduce the semantic heterogeneity problem as required by the
scenario. Preliminary evaluation of the approach used is presented together with relevant related work.

http://www.iscram.org/

Interaction models to support peer coordination in
crisis management

Maurizio Marchese Lorenzino Vaccari
University of Trento University of Trento
maurizio.marchese@unitn.it vaccari@disi.unitn.it
Gaia Trecarichi Nardine Osman
University of Trento University of Edinburgh
gtrecari@disi.unitn.it N.Osman@sms.ed.ac.uk
Fiona McNeill

University of Edinburgh
f.j.mcneill@ed.ac.uk

ABSTRACT

All phases of emergency management activities - that we will reference hereafter as eResponse activities -
depend on data from a variety of sources and involve a range of different organizations and teams at various
administrative levels with their own systems and services. The existence of numerous and different actors,
policies, procedures, data standards and systems, results in coordination problems with respect to data analysis,
information delivery and resources management. In this paper we present a novel approach based on interaction
models distributed through a peer to peer infrastructure and we show how it can be applied in the context of
crisis management to support coalition formation and process coordination in open environments. In particular,
a prototype eResponse simulation system — built on a P2P infrastructure — has been developed to share and
execute interaction models describing common coordination tasks in emergency response domain. Preliminary
evaluation of the proposed framework demonstrates its capability to support such eResponse tasks.

Keywords

Interaction Modeling, P2P Networks, Process Coordination, Knowledge Sharing, Crisis Management,
Emergencies Simulation.

INTRODUCTION

At 23:00 on November 4th, 1966, the river Adige, the main river of the Trentino region in Italy, broke its banks
at different sites and flooded the majority of the territory of the Trentino main town, Trento. Moreover a
considerable amount of oil, from housing heating systems and fuel depositories and petrol stations, mixed with
the mud waters of the river. The majority of the Trento population as well as surrounding areas had been
affected. Today, in 2006, the flooding of the Adige river is still the most probable emergency event in the
Trentino region. In such situation, knowledge of the state of the emergency is vital. For example: (i) knowledge
of the viability structures affected by the flooding event; (ii) knowledge of all public buildings that are contained
in the flooding area are critical sites and potential risk factors since they might contain a high number of
persons; (iii) knowledge about the service infrastructures - such as the electricity network, the waterworks
network, the pipeline network, the telecommunication network - is of uttermost relevance during emergency
events. The primary goal of the municipality emergency plan is to evacuate the population (ca. 110.000 persons)
effectively and rapidly from the critical area.

Flood response provides an example of an important and potentially devastating type of emergency in which
there can be enormous impact on people, property and infrastructure. Such an emergency includes a range of
potential uses for geo-informatics services, links to large scale sensor grids, potential for linking to automated or
semi-automated response systems, and the needs for coordinating processes with many organizations, and
agencies. Timely decisions and properly executed processes can make an enormous impact on the final
outcome.

The scenario above aims at showing some of the key elements needed in eResponse situations. In particular
emergency management activities are developed and implemented through the essential analysis of information
and the coordination of the involved peers (both institutional, like emergency personnel, army, volunteers, etc as
well as common people involved in the crisis). The existence of numerous and different actors, policies,
processes, data standards and systems, results in coordination problems with respect to data analysis,
information delivery and resources management, all critical elements of emergency response management.

In our current research, we want to explore the flexibility and adaptability of an interaction-driven mechanism

for knowledge sharing that relies on a distributed - Peer to Peer - infrastructure. At the core of the approach is a
specific view of the semantics of both service and agent coordination (as proposed in Robertson at al, 2007),
where peers share explicit knowledge of the “interactions” in which they are engaged and these models of
interaction are used operationally as the anchor for describing the semantics of the interaction. Instead of
requiring a universal semantics across peers, the approach require only that semantics is consistent (separately)
for each instance of an interaction. This is analogous to the use in human affairs of contracts, which are devices
for standardising and sharing just those aspects of semantics necessary for the integrity of specific interactions.
In this paper, we apply the above approach in the context of crisis management. The nature of the eResponse
domain is such that process-aware systems are beneficial to prevent chaotic and uncontrolled conditions.
Nevertheless, taking into account adaptability is fundamental to handle unexpected situations (i.e. sudden road
blockage, fast and unpredicted events, etc.) which most likely happen in emergency situations. While the
general vision of interaction protocols accounts for the “structured coordination” requirement of the problem,
the adoption of models specifically designed to explicit interactions in a P2P fashion and passed through an
underling open infrastructure accounts for the support to flexibility and dynamicity.

The main contributions of the paper are:

= the usage of a protocol language that, expressing P2P style interactions and relying on a distributed
infrastructure, provides a mechanism for coalition formation and Web service composition (Robertson at al,
2006; Robertson at al, 2007);

= the provision of a simulation environment in which to evaluate how suitable interaction models are in
coordinating peers in real time;

= the evaluation of the proposed approach to support typical emergency response tasks, requiring both
structured and dynamic coordination.

In what follows, we first focus on a short description of the specific use case that we are using to ground our
approach, i.e. the evacuation plan management during a flooding event. We then, present the eResponse system
by describing its main components, namely, the eResponse simulator and the peer network: along with the
description of the system’s components (simulator, peers, services and interaction models) we present some
interaction models detailed examples. Next, we briefly present a preliminary prototype of the overall system and
we assess the simulation of initial emergency response coordination activities. In the final sections, we discuss
related and future work.

FLOODING EVACUATION USE CASE

For the analysis and simulation of the flooding crisis emergency, we have grounded our work on the actual
emergency plan in the Trentino region (Provincia Autonoma di Trento, 2005; Municipality of Trento, 2002). We
have focused on the evacuation of the people from the probable flooding areas to the refuge centers, outside
these areas. This specific use case assumes that the institutional emergency peers have been alerted to be
prepared to face a possible flooding of the river Adige in the next six hours. In the emergency room, the
emergency coordinator is present together with the coordinators of the main different agencies involved in the
evacuation plan. Namely, in our case: the firefighters coordinator, the police officers coordinator, the medical
personnel coordinator. All other involved institutional peers are in the concerned area and they include:

= Fire fighters (~50): supervision of evacuation plan at meeting points and at refuge centers;
= Police officers (~22): control of road gates;

= Medical staff (~88): supervision of people health conditions;

= Bus/Ambulance Drivers (~44).

A number of “system” peers are also present in the scenario: they represent a possible set of digital services that
support the evacuation plan, among others: - The emergency coordination data service: it is based on the
emergency database and it maintains the current status of the enacted emergency plan, - SDI Services for map
information: they mainly provide gazetteer services, map services, download (feature) services as in (Vaccari,
Ivanyukovich and Marchese, 2005); - The weather forecast service; - The sensor network: it provides the water
level of the river; - The route service: it provides routing information including updates on blocked roads.

Figure 1 shows a schematic view of the involved peers together with the flow of the main interactions (arrows)
during the evacuation plan in the selected eResponse coordination activity.

Emergency
Coordinator

dinate coordinator peers: Firefighters, Police offic
al staff, Bus Drivers

-y peers: Firefighters, Police officers, Medical staff, Bus Drivers -

Figure 1: Schematic view of involved peers and main interactions in the evacuation plan

The emergency coordinator evaluates the information collected by the peers and the system services, and
propagates its plans to the subordinate coordinators, that are responsible to act the plan by distributing
plans/sub-plans to each organization or group involved in the crisis management. In our use case, the
evacuation plan is enacted by the emergency coordinator, by (i) propagating the alarm to the bus drivers and
assign them the appropriate destination; (ii) propagating the alarm to the subordinate coordinators; (iii) sending
the evacuation alarm and information to the citizens; (iv) continuingly monitoring the crisis information from all
available sources (e.g. sensors, institutional peers, volunteers, citizens) and taking appropriate actions.

Each subordinate peer propagates the directives to its group peers. As an example the firefighters coordinator
peer assigns to each firefighter (supplied with a vehicle) its destination point (e.g. meeting point, refuge center,
etc). Each emergency peer can execute some specific tasks, related to its location and to the tasks assigned by its
coordinator.

For example, the firefighter, after receiving the assignment of its destination point, has to reach it. It can use its
own knowledge, or some digital services provided by a system peer like e.g. a route service. Once the firefighter
arrives to the final destination it can perform its planned tasks, like manage census information, evaluate
criticality of the meeting point, handle the evacuation plan etc.

THE E-RESPONSE SYSTEM

The eResponse system we are developing is used: (1) to model the behaviour of each peer involved in an e-
response activity, (2) to execute predefined interaction models within a P2P infrastructure and (3) to visualize
and analyze a simulated coordination task through a Graphical User Interface (GUI). It is composed of two
major components: the eResponse simulator and the peer network. Figure 2 sketches the overall architecture of
the system. Examples of peer types have been discussed in the previous section (i.e. Figure 1). In the next two
subsections, we will focus on the eResponse simulator and the peer network, respectively.
The eResponse Simulator
The simulator is composed of three peers: the controller, the flood sub-simulator, and the visualiser (see Figure
2). The controller is the core of the simulator: it drives the simulation cycles. The controller has one main goal:
to keep track of the current state of the world. In order to achieve that, the controller needs to know what
changes are happening to the world and update its state accordingly. Of course, after updating its state, it should
inform the relevant peers of these changes as well. The goal of the flood simulator is to simulate the flood. It is
composed of a set of predefined equations that define how the flood evolves with time. The goal of the
visualiser is to simply visualise what is happening in the flood area. Simulation is then divided into cycles,
which are driven by the controller. The steps of one simulation cycle are:
1. The controller shares the initial topology of the world with others simulator peers: the flood sub-simulator
and the visualiser

Controller Visualiser

Peer network

Figure 2: The eResponse system’s architecture

The controller receives information about the changes that happened to the world:
a. Itreceives the flood changes from flood sub-simulator
b. It receives other changes from the peers in the peer network that caused these changes (and verifies
their validity)
2. The controller sends information about the changes that happened in the world:
c. It sends a list of all the changes to the simulator’s visualiser
d. It sends changes that occurred in a peer’s vicinity to each peer in the peer network
3. The controller updates the time step, and repeats by going back to step 1

The flow of the interactions between the controller and other peers is also depicted in Figure 2. Each black
arrow represents a different interaction model, which also represents the flow of information between peers. For
example, the flood interaction model “flood IM” is used to allow the flood sub-simulator to communicate with
the controller, sending it flood changes at each time step.

Note that the controller (or the simulator in general) does not interfere or help coordinate peer’s actions in the
peer network. It is simply used to simulate the real world. For instance, peers cannot ask the simulator questions
about the world, such as where the location of something is or what the flood level at a given point is.
Nevertheless, in the real world, peers (whether humans or sensors) are able to sense certain things in their
vicinity. Therefore, in our simulation, this information will be provided by the controller. At every time step, the
controller sends sensory info for each connected peer through the “connect” interaction model. Also, the real
world usually prevents humans (or even sensors) from performing certain unrealistic actions. For example, one
person may try to drive a car in a flooded road, but will fail even if he insisted. Usually, the rules of Physics of
the real world prevent such unrealistic actions. Again, in our simulation, the controller will verify whether
certain actions are legal or not before they are performed, and if a certain action is illegal, the peer is informed
of the reason of failure. This is done through the “coordinate action” interaction model (see Figure 2). Note that
any peer that either needs to perform an action (such a police man closing a road) or needs to receive sensory
info about its vicinity (such as a sensor) needs to be connected to the simulator. We call these peers physical
peers. They are represented as black faces in the peer network of Figure 2. Of course, not all peers need to
connect to the controller. Just like in real life, non physical peers, such as a web service that provides
information about the weather, does not need to communicate with the controller but with other peers in the peer
network (such as a sensor, a human user, ect.). Non physical peers are represented as white faces in the peer
network of Figure 2.

The Peer network

In this section we first describe the Lightweight Coordination Calculus (LCC), that is, the communication
language employed to implement the interactions among peers acting in our Peer-to-Peer (P2P) network. After
briefly introducing it, we then report a selected coordination problem taken from the scenario depicted in the
previous section, and explain in some details the interaction models which can be derived to describe it. Finally,
we show a preliminary prototype which has been implemented to execute and analyze the evolution of the
interactions within a peer-network.

Introduction to LCC

LCC is a protocol language used to describe interactions among distributed processes, e.g., agents, web services
(Robertson, 2004-1; Robertson, 2004-2). LCC was designed specifically for expressing P2P style interactions
within multi-agent systems, i.e., without any central control; henceforth, it is well suited for modeling
coordination of software components running in an open environment. Its main characteristics are the flexibility,
the modularity and the neutrality to the distributed communication infrastructure.

Interactions in LCC are expressed as the message passing behaviours associated with roles. The most basic
behaviours are to send or receive messages, where sending a message may be conditional on satisfying a
constraint (precondition) and receiving a message may imply constraints (postcondition) on the agent accepting
it. As an example, a basic LCC interaction is shown in Figure 3 where double and single arrows indicate
respectively message passing and constraints to satisfy:

a(rl, Al):
ask(X) = a(r2, A2) «—need (X)then
update(X) « return(X) < a(r2, A2)
a(r2,A2):
ask(X) < a(rl, Al)
return(X) = a(rl, Al) « get(X)

Figure 3: Basic LCC interaction

According to the interaction shown in Figure 3, the agent A1 playing the role r1 verifies if it needs the info X
(precondition need(X)); if yes, Al asks for X to the agent A2 playing the role r2 by sending the message ask(X).
A2 receives the message ask(X) from Al and then get the info X (precondition get(X)) before sending back a
reply to Al through the message return(X). After having received the message return(X), Al updates its
knowledge (postcondition update(X)).

The constraints embedded into the protocol express its semantic and could be written as first-order logic
predicates (i.e., in Prolog) as well as methods in an object-oriented language (i.e., in Java). Furthermore, these
constraints could hide simple functionalities (i.e., provided by web services) as well as very complex Al
algorithm. This is the characteristic of modularity previously mentioned that allow to separate the protocol from
the agent or service engineering.

While performing the protocol, peers can therefore exchange messages, satisfy constraints before (after)
messages are sent (received) and jump from one role to another so that a flexible interaction mechanism is
enabled still following a structured policy, this being absolutely necessary for team-execution of coordinated
tasks.

Flooding evacuation use case and selected examples of Interaction Models

We designed and implemented a sub-scenario where different participating actors, having different roles,
coordinate each other and rely on existing service components. This scenario is currently running on a Prolog
based LCC parser engine and on a local P2P network. It constitutes a simulated scenario where peers are either
emergency peers, that is, agents acting on behalf of human emergency personnel, or system peers, that is, digital
services providing information that are essential for coordinated task execution.

http://www.google.com/search?hl=en&client=firefox-a&channel=s&rls=org.mozilla:it:official&sa=X&oi=spell&resnum=0&ct=result&cd=1&q=characteristic+&spell=1

Firefighter Coordinator Firefighter Route Service Simulator

Assign destinations
Send directive

4‘ CPrepare to move to deslination)

Send route
[empty route] X [route]

Disconfirm destination >(" Plan next move
Check move feasibility

[unfeasible move]

[feasible move]

Performmove

[doesn't reach destination]

[reach destination]

Confirm destination

Figura 4: Activity diagram of the coordination task “Go to Destination”

Our sub-scenario - of the overall scenario flooding evacuation use case - is related to the phase where an
emergency coordinator (the firefighter coordinator in this case) sends a directive to its organizational peers
(firefighters) that have to accomplish it. The coordination problem expressed above can be described in a
verbose form as follow:

After having found out all the available firefighters, the firefighter coordinator (ffc) assigns to each of
them a specific destination; in order to find a route, the firefighter will rely on the route service
component whose aim is to provide a suitable path to the requester; the firefighter communicates each
action to the simulator which check the feasibility of the action (i.e., the action of moving could be
impossible because of road blocked); in case of blocked road the firefighter asks the route service an
alternative path (which doesn't contain the road blocked) and keep trying alternatives till either there
are free paths connecting the destination or this latter is unreachable; if the firefighter reaches the
previously assigned destination he/her will confirm it to the ffc otherwise he/her will inform the cheaf
about the negative result; the ffc will reassign a destination to the firefighter who couldn't reach the
previous place.

This description can be sketched in a graphical representation such as the activity diagram shown in Figure 4.
The diagram shows the workflow related to the coordination task “Go to Destination”. An interaction model can
be derived either from the narrative description above or from the activity diagram; it is expressed in a compact,
formal language (in our case, in LCC).

As example of the implementation and usage of the interaction model language, Figures 5, 6 and 7 show some
excerpts of LCC code related to the firefighter coordinator, firefighter and route service roles respectively. It is
worth to notice here that the LCC code presented in this paper is part of the code needed to run the interaction.
The whole code is more lengthy since it entails also the role of the simulator peer and its interactions with the
network peers. However, for our purposes here - to indicate how to model the possible interactions among the
network peers — we restrict our description to these excerpts

http://www.google.it/search?hl=it&client=firefox-a&channel=s&rls=org.mozilla:it:official&sa=X&oi=spell&resnum=0&ct=result&cd=1&q=unreachable&spell=1

i. Fire-fighter coordinator

The firefighter coordinator, FFC, initiates the coordination task by entering the role
firefighter_coordinator. According to this role a list of available firefighters, FFL, must be retrieved in
order to send an alert message to each of them. The role involves a recursion over the list FFL so that a
destination meeting point (MP) can be assigned and an alert message can be sent to each firefighter
FFL_H, in FFL. After having sent the messages to all the firefighters, the FFC assumes the role
firefighter_coordinator3. Here the FFC receives a confirmation (or disconfirmation) of reached (not
reached) destination MP from a given firefighter Id (in Figure 5 ‘action_performer2’ and ‘replanner’
are roles assumed by the firefighter role) and the role recurses. If a disconfirmation is received, the
FFC assigns to the firefighter Id a new destination — NewMP - which is then embedded in the alert
message sent back.

a(firefighter _coordinator(FFL),FFC)::
alert(MP) = a(firefighter, FFL_H) « FFL=[FFL_H |FFL_T] and
assign(MP,FFL_H)

then
then a(firefighter_coordinator(FFL_T7),FFC)
null « FFL=]]
a(firefighter _coordinator3,FFC).
a(firefighter _coordinator3,FFC)::
confirm(ld, MP) <« a(action_performer2(_,_,_,_),Id) or
disconfirm(ld,MP) < a(replanner(_,_,_),ld) then then

alert(NewMP) = a(firefighter,1d) « assign_newDest(MP,NewMP, Id)
a(firefighter _coordinator3,FFC).

Figure 5: LCC fragment for the firefighter coordinator role

ii. Fire-fighters

Each firefighter, FF, receives from the firefighter coordinator, FFC, an alert message stating that the
destination MP has to be reached. Once the message is received, the firefighter, FF, assumes the role of
route_finder. If the firefighter, FF, is not yet at the location Dest that must be reached, a vehicle will be
needed together with the name of a digital service able to provide a route. A message for requesting a
route between two locations (Pos and Dest) is then sent to the route service RS. Once the firefighter FF
receives the requested path together with its sub-paths through a message sent by the route service RS,
he/her stores the path in its local memory and assumes the role action_performer in order to
communicate the move action to the simulator which in turn will check its feasibility (more details in
the activity diagram in figure 4).

i1i. Route Service

The route service, RS, after having received a route request from a route finder 1d, selects a path from

node From to node To, split the path in sub-paths and sends them back to the route finder Id. The route

service role then recurses to be able to accept other requests. The route service can receive two types of

messages from a route finder:

e A message asking for a path from A to B (a vehicle is also specified);

e A message asking for a path from A to B (a vehicle is also specified) not including certain sub-
paths (i.e., the blocked subpaths).

a(firefighter ,FF)::
alert(MP) < a(firefighter_coordinator(_),FFC) then

a(route_finder(MP),FF).

a(route _ finder(Dest),1d)::
request_route(Pos,Dest,Vehicle,BanSubPaths) = a(route_service,RS) then

or
<« at(Pos) and not(Pos = Dest) and blocked_roads(BanSubPaths) and
set_vehicle(Vehicle) and get_route_servicel DRS)
then

request_route(Pos,Dest,Vehicle) = a(route_service,RS) then

<« at(Pos) and not(Pos= Dest) and set_vehicle(Vehicle) and get_route_serviceDRS)

route(From, To, Path, SubPaths) < a(route_service,RS) then

a(action_performer(move(From,To,Path,Vehicle),FFC),ld) «— decompose(Path,SubPaths,Vehicle)

Figure 6: LCC fragment for the firefighter role

a(route _service,RS)::
request_route(From,To,Vehicle) <« a(route_finder(_,),Id) then

route(From,To, Path,SubPaths) = a(route_finder(_,),1d) or

< get _route(From,To,Vehicle,Path)and get subpaths(Vehicle, Path, SubPaths)
request_route(From,To,Vehicle,BanSubPaths) <« a(route_finder(_,_),Id) then

then

route(From,To,Path,SubPaths) = a(route_finder(_,_),1d)

<« get _route(From,To,Vehicle,BanSubPaths,Path) and get subpaths(Vehicle, Path,SubPaths)

a(route _service,RS).

Figure 7: LCC fragment for the route service role

Preliminary Prototype

We developed an initial prototype in which the coordination activities between the network peers can be
executed, visualised and analysed to evaluate the effectiveness of the LCC protocol. In our first prototype, the
ongoing simulation and the resulting movements of the emergency peers are visualized through a GUI (see
Figure 8). The GUI is a draft version of the control panel used by the emergency coordinators. Through the
emergency GUI, users can visualize the map of the emergency situation.

£ Emergency Response Visualiser

File Actions Information Help
Peer and Coordination Messages

(Dec. 12 2007 - Tirme: 11.45) To firefighter 1: rmove to meeting point 3

(Dec. 12 2007 - Time: 11.56) Fram firefighter 5; arrived at refuge center 4
(Dec. 12 2007 - Tirme: 12.04) To firefighter 7 collect people at meeting point B
(Dec. 12 2007 - Time: 12.11) Fram firefighter 3; meeting point & closed

T e
[Overview | LoadedFile | {] wieather

. Eﬂ-merl | |Current Conditions
uowaE in Trento, taly at 5:55 PM

s 8°C

Feels Like
7°C

Legend

Rain

'I' Water

Partig
s Road
7|/ E

+ Refuge center
Point of Interest
|: i i i' Evacuation Area
Satellite Image

¥ oreakpoint

7 | The
i Weather
(] o Channel

weather.com

Link controls to all tabbed maps

MEWS BROADCASTING

Map Contols H
:| - Meeting paint 4 closed
Show Legend | - Refuge center & full
Scale: | - Road gate 6 closed
— i)
L LA || - Evacuation area 3 free
|| - Helycopter at mesting point 8
Time Step :| - Ambulance at refuge center 4
! : | - Bus 5 at meeting poiht 5

["] Follow Live Time

Figure 8: The emergency GUI

The map shows static geographic datasets (topographic map, probable flooding areas, escape roads, meeting

points, refuge centers, sensor network) as well dynamic datasets (the figure shows the position of the firefighters

involved in the simulation). Moreover, through the GUI, the emergency coordinators can perform actions (enact

the emergency plan, recall digital services, change the map legend, search for other GIS datasets, send

statements to the emergency peers, etc) as well as ask information about the emergency situation (i.e., evacuated

people, list of the emergency peers, blocked roads, situation of the meeting points and of the refuge centers, etc).

The main components of the GUI are:

= The main menu in the upper part of the GUI

= The peer and coordination messages frame: it shows the messages exchanged between the coordination peer
and the emergency peers (different for each peer)

= The weather forecast frame: useful to analyze the current weather conditions

= The news frame: it shows the general information about the emergency situation (identical for all the peers)

= The map frame: it shows, together with a real map of Trento and some static interesting points
(coordination center, the meeting points, the refuge points, etc.), the movement of the peers during a
simulated coordination task.

We have run several simulations involving the peers types and the interactions described previously. In the one

visualize in Figure 8, we have set 4 emergency peers (1 firefighter coordinator and 3 firefighters), 1 digital

service (the route service) and the simulator peer; the coordination task was to follow a directive sent by the

firefighter coordinator to its personnel. The directive consisted in moving to a given destination. We set 3

different destinations (meeting points) for each firefighter and initially fixed some specific roads as blocked.

First, all the firefighters were at the same location, that is, the coordination center. By running the simulation we

obtained three different behaviours for the three firefighters:

1. one firefighter reached the assigned destination without any problem;

2. one firefighter reached the destination after having tried more than one alternative path;

3. the third firefighter couldn’t reach the assigned destination and, as a result, was redirected to a second
location.

Figure 8 shows a snapshot of the evolution of the simulated “Go To Destination” process. With this preliminary
experiments we give an initial qualitative evaluation of the suitability of the protocol language to handle
processes involving both agents and digital services. The modelling of interactions in the LCC language allows
to structure the coordination task still maintaining some adaptability, this latter being intended as the capability
to entail situations which are not known a priori (i.e., the blockage state of the road can change over time).

RELATED WORK

In the present work, we show how an interaction oriented approach might be adopted to handle the coordination
problems arising when multiple agencies need to collaborate on emergency response management. Our
approach envisages a twofold perspective: one is related to the provision of a controlled but chaotic environment
in which to study the effectiveness of interaction models in coordinating agents in real time. Here the emphasis
is on a Multi-Agent simulation as a testbed for investigating, along with the validity of interaction models, the
impact of a P2P infrastructure in emergency response. The idea to apply multi-agent models for such purposes is
not new since a number of complex Multi-Agent Systems (MAS) simulators are under development (Murakami,
Minami, Kawasoe and Ishida, 2002; Kanno, Morimoto and Furuta, 2006; Massaguer, Balasubramanian,
Mehrotra and Venkatasubramanian, 2006; Robocup-Rescue, 2005).

The second perspective, the one distinctive to our work, is concerned with the peculiarity of an agent protocol
language (LCC in our case) specifically designed for expressing interactions in a P2P fashion, which we use to
provide a mechanism for knowledge coalition formation and Web service composition, following the approach
in (Li and Robertson, 2005; Robertson et al, 2007; Walton, 2005). Here the emphasis is on MAS techniques for
inter-operability and coordination tasks employed in P2P architecture. The combination of the two perspectives
has the potential to handle the dynamic and distributed aspects of emergency situations: in such scenarios, a P2P
architecture is always preferred over a centralised client/server one since it allows the involvement of an large
numbers of participants interacting in a distributed and decentralised manner. We describe collaboration
between these participants through the specification of a message passing behaviour for each service involved.

Related research works are either specifically devised for the emergency management area or focused more on
the architectural aspect. In particular CASCOM' , WORKPAD?, EGERIS®, EUROPCOM* , POMPEI’,
POPEYE® , WIN’ are few such projects. For example, in the CASCOM project (Context-Aware Business
Application Service Coordination in Mobile Computing Environments) an intelligent agent-based peer-to-peer
(IP2P) environment is under development (Helin, Klusch, Lopes, Fernandez, Schumacher, Schuldt, Bergenti
and Kinnunen, 2005). Here, the service coordination mechanism relies on Semantic Web technologies, such as
OWL-S and WSMO, rather than an explicit lightweight protocols. Also the WORKPAD project, aims at
designing and developing an innovative software infrastructure (software, models, services, etc.) for supporting
collaborative work of human operators in emergency/disaster scenarios (Mecella, Catarci, Angelaccio, Buttazzi,
Krek , Dustdar and Vetere, 2006). A set of front-end peer-to-peer communities providing services to human
workers, mainly by adaptively enacting processes on mobile ad-hoc networks, is part of the system developed
(de Leoni De Rosa and Mecella, 2006). Each community is lead by a super-peer, the only peer managing
workflow composition and coordination in an adaptive manner. In this case, a mechanism based on our
approach would allow each peer to execute, and eventually modify, the workflow, thanks to the sharing of the
multi-agent protocol. The work in (Li et al, 2005) also represents an effort in this direction: in this case the
approach has been applied directly to business modelling. The method has proved to be promising also in the
field of e-Science (Walton and Barker, 2004).

CONCLUSIONS

The purpose of this paper is to show how an approach based on interaction models sharing through a P2P
network can be applied successfully to process coordination problems in the context of emergency response
management.

Currently, our eResponse system is running on a Prolog based LCC engine. The current system is basic in the

' http://www.ist-cascom.org

? http://www.workpad-project.eu/description.htm
* http://www.egeris.org

* http://www.ist-europcom.org

* http://www.pompei-eu.com

® http://www.ist-popeye.org

" http://www.win-eu.org

http://www.workpad-project.eu/description.htm
http://www.ist-europcom.org/

sense that it simply provides means to execute LCC interaction models. However, to run an interaction model,
the peer should know which interaction model it wants to execute and with which peers it will be interacting.
This and more, is under development in the European project OpenKnowledge®: the project provide a unifying
framework based on interaction models that are mobile among peers.. The developing OpenKnowledge platform
(Siebes at al, 2007) provides means for us to move to a more dynamic system: peers will be able to use
discovery services to search for appropriate interaction models, look for suitable peers, and make use of some
other important functionalities, such computing trust, verifying interaction models, etc..

But how does this help our (flood) emergency scenario? Let us consider the interaction model of previous
section. A more dynamic version of this scenario would be to have a firefighter coordinator asking firefighters
to perform certain actions. However, instead of specifying how the firefighter will get the path between two
nodes, we may keep this a general constraint to be solved by the peer. At runtime, the peer may then succeed to
satisfy the constraint either by consulting its own knowledge base or by using some interaction model to
communicate with others in order to achieve its goal. It could then use some discovery service of the
OpenKnowledge system to search for suitable interaction models and peers. One solution could be to ask a route
service, another solution could be to consult peers in that vicinity.

For emergency scenarios, this ultra dynamic P2P approach is crucial since it implies that even if parts of the
system fails, for some reason or another, peers will still be able to find other methods for achieving their critical
goals.

ACKNOWLEDGMENTS

This work has been supported by the OpenKnowledge project (FP6-027253).

The scenario and flooding use case is based on extensive interviews with involved local authorities and analysis
of current local emergency plans. We want to thank here the availability of ing. Mario Perghem Gelmi, Marco
Bommassar, dott. Federico Bortolotti and ing. Mirko Gasperotti, geom. Cinelli and dott. Michele Zanolli.

We want to thank David Dupplaw for the development of the emergency GUI. We acknowledge Fausto
Giunchiglia and Dave Robertson for comments and advice on the eResponse system architecture.

REFERENCES

1. Autonomous Province of Trento. “Provincial and municipal emergency protection guidelines. Linee guida
per le attivita di previsione, prevenzione, protezione ¢ la pianificazione di protezione civile provinciale e
comunale”, 2005.

2. de Leoni M., De Rosa F., Mecella M.. “MOBIDIS: A Pervasive Architecture for Emergency Management”.
Proceedings of the 15th IEEE International Workshops on Enabling Technologies: Infrastructure for
Collaborative Enterprises, pp. 107-112, 2006.

3. Helin, H.; Klusch, M.; Lopes, A.; Fernandez, A.; Schumacher, M.; Schuldt, H.; Bergenti, F.; Kinnunen, A.:
Context-aware Business Application Service Co-ordination in Mobile Computing Environments. In:
AAMASOS5 workshop on Ambient Intelligence - Agents for Ubiquitous Computing, 2005.

4. Kanno T., Morimoto Y., Furuta K.. “A distributed multi-agent simulation system for the assessment of
disaster management systems”, International Journal of Risk Assessment and Management 2006 - Vol. 6,
No.4/5/6 pp. 528 - 544

5. Li G., Robertson D., and Chen-Burger J.. “A novel approach for enacting distributed business workflow on
a peer-to-peer platform”. In Proceedings of the IEEE Conference on E-Business Engineering, Beijing,
2005.

6. Massaguer D., Balasubramanian V., Mehrotra S., Venkatasubramanian N.. “Multi-Agent Simulation of
Disaster Response”, ATDM Workshop in AAMAS 2006.

7. Mecella M., Catarci T., Angelaccio M., Buttazzi B., Krek A., Dustdar S., and Vetere G.. “Workpad: an
adaptive peer-to-peer software infrastructure for supporting collaborative work of human operators in
emergency/disaster scenarios”. In Proceedings of the 2006 International Symposium on Collaborative
Technologies and Systems. IEEE Computer Society, 2006.

8. Municipality of Trento. “Civilian emergency plan for the municipality of Trento. Piano di Protezione Civile
Comunale contro il Rischio Idrogeologico di Inondazione del Fiume Adige”, 2002.

9. Murakami, Y.; Minami, K.; Kawasoe, T.; Ishida, T. “Multi-agent simulation for crisis management”,
Knowledge Media Networking, 2002

8 OpenKnowledge Project: www.openk.org/

http://www.openk.org/

10.

11.

12.

13.

14.
15.

16.

17.

18.

Robertson D. “A lightweight coordination calculus for agent systems”. In Declarative Agent Languages and
Technologies, pages 183-197, 2004-1.

Robertson D. “A lightweight method for coordination of agent oriented web services”. In Proceedings of
AAAI Spring Symposium on Semantic Web Services, California, USA, 2004-2.

Robertson D., Giunchiglia F., van Harmelen F., Marchese M., Sabou M., Schorlemmer M., Shadbolt N.,
Siebes R., Sierra C., Walton C., Dasmahapatra S., Dupplaw D., Lewis P., Yatskevich M., Kotoulas S. ,
Perreau de Pinninck A., and Loizou A., “Open Knowledge Semantic Webs Through Peer-to-Peer
Interaction”, http://www.cisa.informatics.ed.ac.uk/OK/manifesto.pdf, 2006.

Robertson D., Walton C., Barker A., Besana P., Chen-Burger Y., Hassan F., Lambert D., Li G., McGinnis
J., Osman N., Bundy A., McNeil F. van Harmelen F., Sierra C., and Giunchiglia F.. “Models of interaction
as a grounding for peer to peer knowledge sharing”. Advances in Web Semantics, Vol. 1, 2007.

Robocup-Rescue Simulation Project. http://www.rescuesystem.org/robocuprescue/, 2005

Siebes R., Dupplaw D., Kotoulas S., Perreau de Pinninck A., van Harmelen F., Robertson D., “The
OpenKnowledge System: An Interaction-Centered Approach to Knowledge Sharing”, R. Meersman and Z.
Tari et al. (Eds.): OTM 2007, Part I, LNCS 4803, pp. 381-390, 2007, Springer-Verlag Berlin Heidelberg
2007

Vaccari L., Ivanyukovich A. and Marchese M., "A Web Service Approach to Geographical data distribution
among public administrations" in 5th IFIP Conference on e-Commerce, e-Business, and e-Government
13E'2005, Poznan, Poland, October 26-28, 2005

Walton C. and Barker A.. “An agent-based e-science experiment builder”. In Proceedings of the Ist
International Workshop on Semantic Intelligent Middleware for the Web and the Grid, Valencia, Spain,
Aug 2004.

Walton C., “Typed Protocols for Peer-to-Peer Service Composition”. Proceedings of the 2nd International
Workshop on Peer to Peer Knowledge Management (P2PKM 2005), San-Diego, USA, July 2005.

http://www.cisa.informatics.ed.ac.uk/OK/manifesto.pdf
http://www.rescuesystem.org/robocuprescue/
http://homepages.inf.ed.ac.uk/cdw/papers/p2pkm05/typedmap.pdf

APPENDIX 1

In what follows, we present the technical details of the simulation cycles and the interaction models used by the
simulator peers.

Flood.lcc

This interaction model is used to let the flood sub-simulator inform the controller of the flood changes, which
should occur once every simulation cycle. This is depicted as step 1.(a) in the simulation cycle. The interaction
model is specified as follows:

a(flood_simulator,FS) ::=
get_topology(URI) <-- initial_topology_source(URI) <= a(controller,C) then
a(flood_simulator2(C),FS).

a(flood_simulator2(C),FS) ::=
flood_info(Changes) => a(controller2,C) <-- flood_changes(Changes) then
ok <= a(controller3(_,_,_),C) then
a(flood_simulator2(C),FS).

a(controller,C) ::=
initial_topology source(URl) => a(flood_simulator,FS) <--
get_initial_topology(URI) and flood_simulator(FS) then
a(controller2,C) <-- time(Time).

a(controller2,C) ::=
update_Tflood_changes(Changes) <--
flood_info(Changes) <= a(flood_simulator2(),FS) then
a(controller3(FS,Time,Time2),C) <-- time(Time) then
a(controller2,C).

a(controller3(ld,Time,Time2),C) ::=
ok => a(flood_simulator2(),1d) <-- current_timestep(Time2) and Time2>Time
or
a(controller3(ld,Time,Time2),C) <-- sleep(0.1).

The interaction model is initiated by the controller, which plays the role ‘controller’. When the simulation
starts, the controller should coordinate the topology of the world with the flood sub-simulator by sending it the
topology’s URI. It then takes the role ‘controller2’ to receive the flood changes sent out by the flood sub-
simulator at every time-step. However, the controller should ensure that changes are received only once every
time-step. Therefore, after receiving the flood changes, the controller takes the role ‘controller3’, which loops
finitely often, until the controller enters a new time-step. At that point, it sends an ‘ok’ message to the flood
simulator, signaling that further flood changes may now be sent. It then goes back to role ‘controller2’ to receive
any further flood changes from the flood simulator.

Note that the flood sub-simulator, playing the role ‘flood simulator’, works in parallel with the controller. After
receiving the topology of the world, it takes the role ‘flood_simulator2’. In this role, the flood sub-simulator
computes the flood changes and sends this information back to the controller. It then waits for an ‘ok’ message
from the controller before it repeats this all over again.

Coordinate_Action.lcc

This interaction model is used to let the connected physical peers inform the controller of the physical actions
they are performing. As mentioned earlier, peers should inform the controller of all their physical actions since
these would result in changes in the physical world. Furthermore, it is the controller that would confirm whether
an action is currently possible or not. This is depicted as step 1.(b) of the simulation cycle. The interaction
model is specified as follows:

a(action_performer(Action,Result),ld) ::=
a(action_performer2(C,SubActions,Result), 1d)
<-- controller(C) and breakdown(Action,SubActions).

a(action_performer2(C,SubActions,FResult),ld) ::
(action(Action) => a(action_coordinator,C)

<-- SubActions=[Action|Tail] then

result(Result) <= a(action_coordinator2(_,_),C) then

(null <-- member(Result,[illegal_action(), indecipherable()]) and
FResult=fail

or

a(action_performer2(C,Tail ,FResult), Id)

<-- member(Result,[ok]) and performed_action(Action)))

or

null <-- SubActions=[] and FResult=success.

a(action_coordinator,C) ::=

action(Action) <= a(action_performer2(_,_,_),l1d) then
a(action_coordinator2(Action, 1d),C) then
a(action_coordinator,C).

a(action_coordinator2(Action, 1d),C) ::=
result(Result) => a(action_performer2(_,_,),l1d)
<-- update_action_results(ld,Action,Result)

or

a(action_coordinator2(Action, 1d),C) <-- sleep(0.1).

The above interaction model is initiated by any physical peer that needs to coordinate the actions it needs to
perform with the controller. The physical peer will be playing the LCC role ‘action_performer’. It initiates this
interaction model knowing that ‘Action’ needs to be performed and expecting some ‘Result’ to be returned. It
then obtains the Id of the controller it will be communicating with, it breaks down the action into atomic sub-
actions, and then takes the role ‘action_performer2’ to coordinate its sub-actions with the controller C.

Note that the physical peer may coordinate one atomic action at a time. Atomic actions are of three categories:
pick, drop, and move. Complex actions will have to be broken into atomic sub-actions before they are
coordinated with the controller. For example, the action of having Peerl transport object O from Nodel to
Node2 is broken down into the following sub-actions:

= Peerl moving to Nodel

= Peerl picking object O
= Peerl moving to Node2
= Peerl dropping object O

Also note that move actions may themselves be complex actions that should be broken down into further atomic
sub-actions. The only atomic move actions are the actions that allow peers to move between two nodes which
are at most 500m away from each other. We assume a peer may move at most S00m per time-step. This allows
the controller to keep the motion of peers realistic. For example, you do not want a peer jumping thousands of
kilometers while another jumps a few meters.

After taking the role ‘action_performer2’, the physical peer now performs a recursion over the set of sub-actions
it needs to perform. For each sub-action, it sends a message to the controller informing it of the action it would
like to perform. It then receives a reply from the controller. If the reply is an ‘ok’ message, then it proceeds.
However, the reply could also be ‘illegal action()’ or ‘indecipherable()’ messages. If such messages are
received, then this implies that either the action is not permitted, or the action is not understood by the
controller. In either case, the peer cannot perform that action and it quits the coordination of all remaining sub-
actions. The result returned in that case is ‘fail’. A ‘success’ result is returned only if all sub-actions have been
completed successfully.

The controller, playing the role ‘action coordinator’, works in parallel with the ‘action performer’. After
receiving an action, it takes the role ‘action coordinator2’, which computes the result of performing such an
action and informs the ‘action_performer’ whether the action may be carried out or not. Due to synchronization

issues, there are strict restrictions by the controller on when actions may be performed. For example, one sub-
action may be performed in one time-step. If the controller tries to mark more than one action per one physical
peer in one time-step, then the constraint “‘update action results(_, ,)’ will fail, forcing the controller to wait
for 0.1 seconds, before it tries again.

Visualiser.lcc

This interaction model is used to let the controller inform the visualiser of all the changes that have occurred in
the world at every time-step. This is depicted as step 2.(a) in the simulation cycle. The interaction model is
specified as follows:

a(get_visual_changes,V) ::=
get_topology(URI) and start_gui <--
initial_topology source(URl) <= a(sending_visual_info,) then
a(get_visual_changes2,V).

a(get_visual_changes2,V) ::=
update(Time,AllChanges) <--
vis_info(Time,AllChanges) <= a(sending_visual_info2(),_) then
a(get_visual_changes2,V).

a(sending_visual_info,C) ::=
initial_topology_source(URl) => a(get_visual_changes,V)
<-- get_initial_topology(URI) and visualiser_id(V) then
a(sending_visual_info2(V),C).

a(sending_visual_info2(V),C) ::=
vis_info(Time,AllChanges) => a(get_visual_changes2,V)
<-- get_visual_changes(AllIChanges) and time(Time)
or
a(sending_visual_info2(V),C) <-- sleep(0.1).

The interaction model is initiated by the controller, which plays the role ‘sending visual info’. When the
simulation starts, the controller should coordinate the topology of the world with the visualiser by sending it the
topology’s URI. It then takes the role ‘sending visual info2’ to recursively send out the changes that occurred
in the world at every time-step. If the controller tries to obtain the changes twice for the same time-step, then the
constraint ‘get_visual_changes(Al IChanges)’ will fail, forcing the controller to wait for 0.1 seconds,
before it tries again. This ensures changes are sent out only once every time-step.

Note that the visualiser, playing the role ‘get visual changes’, works in parallel with the controller. After
receiving the topology of the world, the visualiser starts its GUI. It then takes the role ‘get visual changes2’,
where it receives the changes from the controller at every time-step and updates its history accordingly.

Connect.lcc

This interaction model is used to let physical peers connect to the simulator. When connected, they can then
receive sensory information about changes in their vicinity, once every time-step. This is depicted as step 2.(b)
of the simulation cycle. The interaction model is specified as follows:

The interaction model is initiated by the physical peer that wishes to connect to the controller. The peer plays
the role ‘connecting peer’. If the peer is interested in connecting to the controller, it would obtain its current
peer type (such as firefighter, water sensor, etc.), its location, and the controller’s Id. It then sends an ‘exists’
message to the controller informing it of its peer type and location. After that, it receives a ‘connected’ message
from the controller confirming its connection, along with the time-step at which the peer has joined. The peer
then plays the role ‘connected peer’, in which it continuously receives sensory information from the controller
about objects in its vicinity. Note that at any point, the peer is allowed to exit the simulation by simply sending
the ‘exit’ message to the controller. If this happens, then this would break the recursive cycle through which
sensory info is received.

Note that the controller, playing the role ‘registrar’, works in parallel with the physical peer. After receiving an
‘exists’ message, it adds the peer to the map and sends back a ‘connected’ message to confirm the connection. It

then plays the role ‘registrar2’, in which it continuously listens for ‘exit’ messages. If an ‘exit’ message is
received, then the peer is removed from the map. Otherwise, it plays the role ‘registrar3’ for sending sensory
information to the peer about objects in its vicinity. If the controller tries to obtain this sensory information
twice for the same time-step, then the constraint ‘send update info(Id,Peers,Flood,Danger,Time)’ will fail,
forcing the controller to wait for 0.1 seconds, before it tries again. This ensures that sensory information is sent
out only once every time-step.

a(connecting_peer,Id) ::=
exists(ld,PeerType,Location) => a(registrar,C)
<-- connect(true, PeerType, Location) and controller(C) then
learn(time(TS)) <-- connected(TS) <= a(registrar,C) then
a(connected_peer(C), I1d).

a(connected_peer(C),I1d) ::=
exit(ld) => a(registrar2(),C) <-- connect(false,_,)
or
(update_info(Info) <-- sensory_info(Info) <= a(registrar3(),C) then
a(connected_peer(C),1d)).

a(registrar,C) ::=
add_peer_to_sim(ld,PeerType,Location,Time) <--
exists(ld,PeerType,Location) <= a(connecting_peer,ld) then
connected(Time) => a(connecting_peer,ld) then
a(registrar2(1d),C).

a(registrar2(1d),C) ::=
remove_peer_from_sim(ld) <-- exit(ld) <= a(connected_peer(),1d)
or
(a(registrar3(ld),C) then
a(registrar2(1d),C)).

a(registrar3(ld),C) ::=
sensory_info([1d,Peers,Flood,Danger,Time]) => a(connected_peer()),1d)
<-- send_update_info(ld,Peers,Flood,Danger,Time)
or
a(registrar3(1d),C) <-- sleep(0.1).

APPENDIX 2

In what follows, we present the technical details of the interaction models used by the simulator peers in the
selected use case, i.e .the evacuation plan. The roles, the supported activities, related messages and the related
constrains are detailed in the comments within the code.

StartFE.lcc

This interaction model is used describes how the evacuation plan starts: (1) an emergency coordinator alerts its
personnel to go to a specific destination; (2) each personnel member has to find the route to reach the destination
and eventually notify the coordinator in case of failure. It has been tested:

// The firefighter coordinator retrieves a list of available firefighters, FFL, in
// order to send an alert message to each of them.

a(firefighter_coordinator,FFC) ::=
a(firefighter_coordinator(FFL),FFC) <-- obtainFFList(FFL)
or
null.

// The role involves a recursion over the list FFL so that a destination meeting

// point (MP) can be assigned and an alert message can be sent to each firefighter
// FFL_H, in FFL. After having sent the messages to all the firefighters, the FFC
// assumes the role firefighter_coordinator3.

a(firefighter_coordinator(FFL),FFC)::=
(C alert(MP) => a(firefighter,FFL_H) <-- FFL=[FFL_H]FFL_T] and assign_mp(MP,FFL_H)
then
a(firefighter_coordinator(FFL_T),FFC))
or
(null <-- FFL=[])) then
a(firefighter_coordinator3,FFC).

// In this role the FFC receives a confirmation (or disconfirmation) of reached

// (not reached) destination MP from a given firefighter Id ("action_performer2*®
// and “replanner® are roles assumed by the firefighter role) and the role

// recurses. If a disconfirmation is received, the FFC assigns to the firefighter
// Id a new destination - NewMP - which is then embedded in the alert message sent
// back.

a(firefighter_coordinator3,FFC)::=
C (confirm(1ld,MP) <= a(action_performer2(_,_,_,_),ld)) then
a(firefighter_coordinator3,FFC))
or
(disconfirm(1d,MP) <= a(replanner(_,_,_),1d) then
(alert(NewMP) => a(firefighter,ld) <-- assign_newDest(MP,NewMP,1d)) then
a(firefighter_coordinator3,FFC)).

// The firefighter, FF, receives from the firefighter coordinator, FFC, an alert
// message stating that the destination MP has to be reached. Once the message is
// received, the firefighter, FF, assumes the role of route_finder.

a(firefighter,FF)::=
(alert(MP) <= a(firefighter_coordinator(),FFC)
or
alert(MP) <= a(firefighter_coordinator3,FFC)) then
a(route_finder(MP,FFC),FF) .

// 1f the firefighter, FF, is not yet at the location Dest that must be reached, a
// vehicle will be needed together with the name of a digital service able to

// provide a route. A message for requesting a route between two locations (Pos and
// Dest) is then sent to the route service RS. Once the firefighter FF receives the
// requested path together with its sub-paths through a message sent by the route
// service RS, he/her stores the path (together with the subpaths) in its local

// memory and assumes the role action_performer in order to communicate the move
// action to the simulator which //in turn will check its feasibility

a(route_finder(Dest,FFC),I1d) ::=
(request_route(Pos,Dest,Vehicle) => a(route_service,RS)
<-- at(Pos) and not(Pos=Dest) and set_vehicle(Vehicle) and
get_route_servicelD(RS)) then
(route(From,To,Path,SubPaths) <= a(route_service,RS) then
a(action_performer(move(From,To,Path,Vehicle),FFC), Id)
<--store(Path,SubPaths,Vehicle)).

// This role is entered by the firefighter when the simulator sends an

// illegal_action as a result. It is similar to the previous role except for the
// fact that

// - a list of banned subpaths - BanSubPaths - is sent to the route service

// - a disconfirmation is sent to the coordinator if no free paths leads to the
// destination.

// Note: in the future this role will be embedded in the "route_finder" role.

a(replanner(S,0OldDetails,FFC),Id) ::=
(request_route(Location,To,V,BanSubPaths) => a(route_service,RS)
<-- at(Location) and get_final_location(OldDetails,To) and
get_vehicle(OldDetails,V) and get_BanSubPaths(BanSubPaths) and
get_route_servicelD(RS)) then
(route(From,To,Path,NewDetails) <= a(route_service,RS) then
(a(action_performer(move(From,To,Path,V),FFC), 1d)
<-- Path = [H]|T] and store(Path,NewDetails,V))
or
((disconfirm(ld,To) => a(firefighter_coordinator3,FFC) <-- Path=[]) then
a(firefighter,1d))).

// The route service, RS, after having received a route request from a route finder
// (or replanner) 1d, selects a path from node From to node To, split the path in
// sub-paths and sends them back to the route finder Id. The route service role

// then recurses to be able to accept other requests. The route service can receive
// two types of messages from a route finder:

// - A message asking for a path from A to B (a vehicle is also specified);

// - A message asking for a path from A to B (a vehicle is also specified) not

// including certain sub-paths (i.e., the blocked subpaths).

a(route_service,RS)::=
(request_route(From,To,Vehicle) <= a(route_finder(_,_),1d) then
(route(From,To,Path,SubPaths) => a(route_finder(_,), 1d)
<-- get_route(From,To,Vehicle,Path) and get_subpaths(Vehicle,Path,SubPaths))
then a(route_service,RS))
or
(request_route(From,To,Vehicle,BanSubPaths) <= a(replanner(_,_,_),ld) then
(route(From,To,Path,SubPaths) => a(replanner(_,_,),ld)
<-- get_route(From,To,Vehicle,BanSubPaths,Path) and
get_subpaths(Vehicle,Path,SubPaths))
then a(route_service,RS)).

// The following code is needed when a peer send an action to the simulator®s

// controller. Note that this is an adaptation of the interaction model

// Coordinate_Action.lcc”. In the future there won’t be the need for this

// adaptation and the “Coordinate_Action.lcc” should remain unmodified and valid
// for every protocol containing interactions with the simulator.

a(action_performer(Action,FFC),Id) ::=
a(action_performer2(S,Details,Details,FFC), Id)
<-- simulator(S) and breakdown(Action,Details).

a(action_performer2(S,OldDetails,Details,FFC),Id) ::=
(Action => a(action_coordinator,S) <-- Details=[Action|Tail] then
Result <= a(action_coordinator,S) then
(a(replanner(S,0OldDetails,FFC), Id)
<-- member(Result,[illegal_action(), indecipherable()]) and
update_BanSubPath(Action)
or
a(action_performer2(S,0ldDetails,Tail,FFC), Id)
<-- member(Result, [ok,pick,drop]) and performed_action(Action)))
or

or
(action_completed => a(action_coordinator,S) <-- Details=[] then
(confirm(ld,To) => a(Ffirefighter_coordinator3,FFC)
<-- get_final_location(OldDetails,To) and update_position(To))).

a(action_coordinator,S) ::=
(action_completed <= a(action_performer2(_,_,_,_),1d))
or
(update_action_results(ld,Action,Result)
<-- Action <= a(action_performer2(_,_,_,),ld) then
Result => a(action_performer2(_,_,_,_),ld) then
a(action_coordinator,S)).

Reconnaissance.lcc

This interaction model describes the phase during which an emergency peer (firefighter) needs to close a
meeting point due to the increasing level of water measured at that meeting point and its neighbourhood. It has
not been tested yet. The interaction model is specified as follows:

// The fFirefighter first measures the water level (WL_local) at the meeting point
// (MP) and then ask its coordinator to give details on the water level at the

// closest areas (WL_adj_nodes). Based on this info, a parameter (Criticality) is
// computed in order to decide if it is the case to close the meeting point or not.
// ITf the MP is closed a message is sent to the coordinator.

a(firefighter,FF)::=
update&request_WL_info(MP, WL_local) => a(firefighter_coordinator,FFC)

<-- at(MP) and measure_local _WL(MP, WL_local) and get_coordinator_ID(FFC) then

emergency WL_info(MP, WL_adj nodes) <= a(firefighter_coordinator,FFC) then
null <- compute(WL_local, WL_adj_nodes, Criticality) then
(a(perfom(close(MP)),FF) <- greater(Criticality,MaxCriticality) then
update_on_MP_state(closed) => a(firefighter_coordinator,FFC))
or
a(firefighter,FF).

// The firefighter coordinator receives a message from the firefighter to update

// info on water level at meeting point MP and to send info on water levels at its
// adjacent points. The coordinator can also receives an

// update_on_MP_state(closed)” message from the firefighter.

a(firefighter_coordinator,FFC)::=
((update&request_WL_info(MP, WL_local) <= a(firefighter,FF) then
emergency WL_info(MP, WL_adj_nodes) => a(firefighter,FF)
<-- update_WL_info(MP,WL_local) and gather_WL_adj_area(MP, WL_adj_ nodes))
or
update_on_MP_state(closed) <= a(firefighter,FF)) then
a(firefighter_coordinator,FFC).

Census.lcc
This interaction model is used when an emergency peer registers info on people present at a certain location into
a database. It has not been tested yet. The interaction model is specified as follows:

// The emergency peer enters this role to obtain the info (Name Type, Location, //
// etc.) related to a person and to send a relative message to the dbcurator (the
// peer who actually will store the info into the DB). A success (failure) message
// is received if things went well (wrong)

a(censuscurator, 1D1)::=

update(Name, Type,Location,GPS, Status,Notes) => a(dbcurator, 1D2)
<-- obtain(List, Name,Type,Location,GPS,Status,Notes) then
success(ld) <= a(dbcurator, 1D2)
or
(failure(Msg) <= a(dbcurator, 1D2) then
null <- proceed(Msg))

// The peer who stores info into a DB enters this role.

a(dbcurator, 1D2)::=
update(Name, Type,Location,GPS,Status,Notes) <= a(censuscurator, 1D1) then
success(ld) => a(censuscurator, ID1)
<-- updateDb(Name,Type,Location,GPS,Status,Notes, 1d)
or
failure(Msg) => a(censuscurator, 1D1) <- lastError(Msg)

Bushandling.lcc

This interaction model is used when an emergency peer (firefighter) in need to evacuate people present at a
meeting point, requests a certain number of buses and, while they arrive, sends them to specific destinations. It
has not been tested yet. The interaction model is specified as follows:

// After having counted the number of people at the meeting point (MP) and

// evaluated the criticality (danger level at that MP) the firefighter request a
// certain number of bus (No_bus) the firefighter will then receive from its

// coordinator the quantity of buses (NB) that will arrive and a list of refuge
// centers (DCL) where the buses can go after people are loaded.

a(firefighter(MP) ,FF)::=
request_bus(MP,No_bus) => a(firefighter_coordinator,FFC)
<-- count(People) and get(Criticality) and bus_needed(People,Criticality,No_bus)
and get_coordinator_ID(FFC) then
confirm_bus_arrival(NB,DCL) <= a(firefighter_coordinator,FFC) then
a(wait_for_bus(NB,DCL),FF) <-- set_destination(DCL) then
a(firefighter(MP) ,FF).

// The coordinator receives the request of buses, decides how many buses will send
// (No_bus) and assigns to each of them a destination. Then, he/she will send a
// confirmation message to the bus requester

a(firefighter_coordinator,FFC)::=
request_bus(MP,Quantity) <= a(firefighter(),FF) then
confirm_bus_arrival(No_bus,Destinations) => a(firefighter(),FF)
<-- check_for_bus(Quantity,No_bus) and assign(No_bus,Destinations).

// The bus requester enter this role after having received a confirmation of bus
// arrival from the coordinator. He/She expects buses arriving in a quantity of
// No_expected and has a list of destinations where to send each of them.

// Once a certain number (No_Bus) of buses arrives at the location (MP), a list
// (ABL) containing details for each bus is given. The list could merely be a list
// of bus identifiers. The firefighter will assign to the arrived buses a certain
// number of destinations (Next_DCL) taken from the list DCL and will start the

// buses (give a directive to the bus drivers). He will then, wait for the other
// remaining buses.

a(wait_for_bus(No_expected,DCL) ,FF)::=
(a(start_bus(ABL,Next_DCL),FF)
<-- DCL = [DCL_H] DCL_T] and bus_at_location(MP, No_Bus, ABL) and
assign_dest(No_Bus,DCL,Next_DCL,Rest_DCL) then
a(wait_for_bus(No_expected - No_Bus,Rest DCL),FF))
or
null <- empty(DCL).

// This role is needed when the Ffirefighter has to start the bus. To each bus is
// assigned a destination (ABL is equal to DCL in lenght) and once the driver of
// each bus is i1dentified, a directive to him/her is sent

a(start_bus(ABL,DCL),FF)::=
(drive_to(DCL_H) => a(bus_driver,BD)
<-- ABL=[ABL_H]ABL_T] and DCL=[DCL_H|DCL_T] and driver_of(ABL_H,BD) then
a(start_bus(ABL_T,DCL_T),FF))
or
null <- empty(ABL).

// The bus driver, once the directive is received, get the route and move towards
// the destination. (here the bus_driver could jump to a "route_finder" role as
// defined in the interaction model 'startFE.lcc')

a(bus_driver,BD)::=
drive_to(Destination) <= a(start_bus(_,_),FF) then
a(perfom(move(Location, Destination, Path, bus)), BD)
<-- at(Location) and get_route(Location,Destination,Path).

An Application of Approximate Ontology Matching
In eResponse

Maurizio Marchese Lorenzino Vaccari
University of Trento University of Trento
maurizio.marchese@unitn.it vaccari@disi.unitn.it
Pavel Shvaiko Juan Pane
University of Trento University of Trento
pavel@disi.unitn.it pane@disi.unitn.it

ABSTRACT

Ontology matching is a key problem in many metadata intensive application domains, including emergency
response, data integration, peer-to-peer information sharing, web service composition, and query answering on
the web. In this paper we present an emergency response scenario based on the organizational model as used in
Trentino, Italy. We provide a formalization of this scenario with the help of lightweight coordination calculus.
Then, we discuss an automatic approximate structure preserving matching algorithm which we applied within
the emergency response scenario. The evaluation results, though preliminary, are encouraging.

Keywords

Peer-to-peer networks, web services, semantic heterogeneity, ontology matching, knowledge sharing in crisis
management, interaction modeling.

INTRODUCTION

The need to harness the potential of electronic networks in emergency situations is widely recognized as a
relevant research priority. In times of crisis - be it a natural disaster, terrorist attack or infrastructure failure -
mobile personnel need to work together in time-critical and dangerous situations. Real-time access to
information and knowledge will help save lives. Crises are complex situations, with large numbers and varieties
of mobile personnel - medical and rescue teams, police, fire fighters and other security personnel - appearing
on the spot at short notice. These different teams come from different organizations, and generally have
incomplete or even contradictory knowledge of the crisis situation’. The quoted text provides some examples of
the key elements needed in emergency response situations. In particular, emergency management activities —
that in the following we will reference as emergency response (eResponse) activities — are developed and
implemented through the essential analysis of information and the coordination of the involved peers, including
emergency personnel, army, volunteers, etc. Disaster data and events can be acquired, modelled, fused and
displayed in state-of-the-art Spatial Data Infrastructures (SDIs) using distributed data sources, the majority of
which are spatial. Moreover, emergency monitoring and management activities normally involve a range of
different organizations and teams at various administrative levels with their own systems and services. The
application of numerous and different actors, policies, procedures, data standards and systems, results in
coordination problems with respect to data analysis, information delivery and resource management, all critical
elements of emergency response management.

Current technologies and information systems can provide parts of the solution with ad-hoc and mostly
centralized systems. In particular, institutional agencies (e.g., municipal, regional) have started to adopt
distributed SDIs (Groot and McLaughlin, 2000, Nebert, 2004, Bernard et al., 2005). While Geographical
Information Systems (GIS) are self-contained systems in which data and software applications are used mainly
internally, the goal of SDI is to support the interoperability among different kinds of institutions, users and
roles. However, SDIs are pervaded by interoperability problems, including: (i) geo-data interoperability,
specifically, geographical datasets have particular properties (e.g., maps as implicit interfaces) to be tackled,
which are different from other types of data (Parent et al., 2006) and (ii) geo-service interoperability issues, such
as geo-service discovery, integration and composition.

In this paper we propose to use a peer-to-peer (P2P) infrastructure for the eResponse domain. At the core of our
approach is a specific view on semantics of both web service and agent coordination as proposed in (Robertson

’EU “Emergency Response Grid” programme’ http://cordis.europa.eu/ist/grids/emergencey_response_grid.htm: 2%

http://cordis.europa.eu/ist/grids/emergencey_response_grid.htm

et al., 2007). Peers share explicit knowledge of the “interactions” in which they are engaged and these models of
interaction are used operationally as the anchor for describing the semantics of the interaction. Instead of
requiring a universal semantics across peers we require only that semantics is consistent (separately) for each
instance of an interaction. These models of interactions are developed locally by peers. However, they must be
shared and interpreted by peers in order to support interaction coordination. In our approach, we achieve this by
dynamically matching terms in the interaction models. This can happen both at design time (i.e., when
synthesising different interactions models) and at execution time (i.e., when running them to perform specific
tasks).

The main contributions of the paper include: (i) a P2P formalization of the eResponse scenario based on the
emergency organizational model as used in Trentino, Italy, (ii) an application of the approximate semantic
matching algorithm, originally proposed in (Giunchiglia et al., 2007b), within the eResponse domain.

The structure of the rest of the paper is as follows. We introduce our emergency response scenario and its
formalization in Section 2 and Section 3, respectively. In Section 4 we present the use of an approximate
structure preserving semantic matching algorithm in order to reduce the semantic heterogeneity problem as
required by the scenario. Preliminary evaluation of the approach used is provided in Section 5. The related work
is discussed in Section 6. Finally, the major findings of the paper are summarized in Section 7.

SCENARIO

We have analyzed the organizational model of the distributed GIS Agency infrastructure of Trentino, Italy. The
framework of the distributed system is represented by a number of specialized GIS agencies: civilian protection,
urban planning, forestry, viability, etc. Each GIS agency is responsible for a subset of the geographic
information for the local region. To support interoperability among the different GIS agencies the regional
information infrastructure is shifting from a traditional GIS system to a SDI.
We focus on the details and roles of the GIS Agency (GA). The GIS Agency is responsible to provide
geographic datasets and services to external service requestors. The main generic actors in the current
organization model of the GA Agency in Trentino, together with a short description of their main roles, are the
following:
= GA_SR: (GIS Agency Service Requestor). Main role: ask for service (maps, datasets, analysis, etc.).
= GA_SP: (GIS Agency Service Provider). Main role: interface from external actors and internal GA
actors. Service aggregation (design time / run time).
= GA_MAP: (GIS Agency Map Provider). Main role: building geographical maps from a number of
available sources of geo-data (GeoDBs).
= GA_MEP: (GIS Agency Metadata Provider). Main role: GIS metadata provider (formalized description,
search, matching, etc.) from a number of available sources of geo-data (GeoDBs).

Figure 1 shows a simplified organizational model of the GIS Agency together with the main interactions
(arrows).

A
A

GIS Agency Service

Pl Provider (GA SP) [®
A
GIS Agency Map GIS Agency Metadata
Provider (GA_MAP) Provider (GA_MEP)
4 A

GISDBs

Figure 1. The Trentino GIS Agency organizational model.

Within the general Trentino SDI management scenario, we focus on the most commonly used specific use case,

i.e., Map Request Service. Let us discus one particular — but the most typical — request that can be made by the

service requestor agent (GA_SR in Figure 1): a digital map request. A service requestor — both in an emergency

or normal situation — needs to visualize a map of a region with geo-referenced information selected by a user.

Therefore, the searched map is a composition of different geographic layers offered by one of the service

provider agents (GA_SP in Figure 1).

A simplified interaction for the generic Map Request Service is illustrated in Figure 2. It uses a standard OGC

(Open Geospatial Consortium) WMS (Web Map Service)'” request and models a subset of the role interactions

from an external requestor to the service provider for the request of a map service:

= The requestor assumes the GA_ SR role and it asks to the service provider (GA_SP) the list and the
characteristics of the services (Capabi I 1ties) provided by the service provider.

= The service provider provides its capabilities, in particular: the list of available services
(Avai lableServices), the list of geographic datasets managed by the server (AvailablelLayers),
the file format of the return services (Format), and the geographic limits of the available services
(XMin_ME, YMin_ME, XMax_ME , YMax_ME).

= Then, the GA_SR asks for the map service using the information received from the previous step. The
RequestMap message contains the URL of the requested map (MapFi le), the version of the service
(Version), the requested geographic layers (Layers), the dimension of the map (Width, Heigth),
the graphic format of the map (Format), the spatial coverage of the map (XMin_BB, YMin_BB,
Xmax_BB, YMax_BB).

= The service provider provides the map (Map) requested by the requestor.

= Finally, the service requestor asks for the graphic legend that describes the previous map and the service
provider sends the legend (Legend) to the service requestor.

Sen‘\/ice Serv{\ce
Requestor Provider
I I
! RequestCapabilities (MapFile,Version) |
|

I
returnCapabilities (AvailableServices, Availablelayers,Format,XMin ME,YMin ME,XMax ME,YMax ME))
X
I

N T T T T T T T T T T T T T T T e e e e e e e e S S S T S e e e e e e
I I
RequestMap (MapFile,Version, Layers,Width,Height,Format,XMin BB, YMin BB,XMax BB, YMax BB)
returnMap (Ma;
e retumMs pMap) L]
| |
| RequestLegend (MapFile,Version, Layers) !
« - __________________ returnlegend(Legend) _ _ ___________________________

Figure 2. Sequence diagram for the map request service.

INTERACTION MODELS

In this section, we first describe the Lightweight Coordination Calculus (LCC), that is, the communication
language employed to implement the interactions among peers acting in our emergency network. We then focus
on the selected composition problem depicted in the previous section and provide its formalization with LCC.
LCC is a protocol language used to describe interactions among distributed processes, e.g., agents, web services.
LCC was designed specifically for expressing P2P style interactions within multi-agent systems, i.e., without
any central control; henceforth, it is well suited for modeling coordination of software components running in an
open environment. Its main characteristics are the flexibility, the modularity and the neutrality to the distributed
communication infrastructure (Robertson, 2004).

Interactions in LCC are expressed as the message passing behaviors associated with roles. The most basic
behaviors are to send or receive messages, where sending a message may be conditional on satisfying a
constraint (pre-condition) and receiving a message may imply constraints (post-condition) on the agent
accepting it. A basic LCC interaction is shown in Figure 3.

10 Open Geospatial Consortium web site http://www.opengeospatial.org

a(r, Al)::
ask(X) = a(r2, A2) «<—need(X)then

update(X) « return(X) <= a(r2, A2)
a(r2,A2):

ask(X) < a(rl, Al)

return(X) = a(rl, Al) « get(X)

Figure 3. LCC fragment; double arrows indicate message passing; single arrows indicate constraint satisfaction.

In Figure 3, the agent Al playing the role r1 verifies if it needs the info X (pre-condition need(X)); if yes,
A1 asks for X to the agent A2 playing the role r2 by sending the message ask(X). A2 receives the message,
ask(X) from Al and then obtain the info X (pre-condition get(X)) before sending back a reply to Al
through the message return(X). After having received the message return(X), Al updates its knowledge
(post-condition update (X)).

The constraints embedded into the protocol express its semantics and could be written as first-order logic
predicates (e.g., in Prolog) as well as methods in an object-oriented language (e.g., in Java). The characteristic
of modularity allows separating the protocol from the agent engineering. While performing the protocol, peers
can therefore exchange messages, satisfy constraints before (after) messages are sent (received) and jump from
one role to another so that a flexible interaction mechanism is enabled still following a structured policy, which
is absolutely necessary for team-execution of coordinated tasks.

Figure 4 and Figure 5 show respectively the LCC code related to GA_SR and to GA_SP roles used in Figure 2.

GIS agency service requestor (see Figure 4). The GIS agency service requestor R initiates the coordination
task by entering the GA_SR role. According to this role the agent R assumes the role ga_sr and asks for
the capabilities of the services provider. It uses the service address (MapFi le) and the software version of
the client request (Version). After that, the service requestor waits until the service provider returns the
list of its capabilities. In our case it waits for the list of the available services (Avai lableServices),
the list of the available layers (Avai lablelLayers), the format of the returned file (Format), and the
geographic coverage (map extent) of the available services (XMin_ME, YMin_ME, Xmax_ ME,
YMax_ME). In the second step the agent R asks to the service provider for a map. It selects some of the
available geographic layers (selectlLayers(AvailablelLayers,Layers)), defines the map
dimension (needMap(Width,Height)) and selects an area from the available geographic extension
(selectBoundingBox(XMin_ME, YMin_ME, XMax_ ME, YMax_ ME, XMin_BB, YMin_BB,
XMax_BB, YMax_BB)). The third operation is the request of the map legend for the selected layers.

GIS agency service provider (see Figure 5). The GIS agency service provider P assumes the role ga_sp
and waits for one of the following requests: requestCapabilities, requestMap and
requestLegend. In the former case, after receiving the request from the service requestor, it builds its
capabilities (getCapabilities(MapFile, Version, AvailableServices,
AvailablelLayers, Format, Xmin_ME, YMin_ME, Xmax_Me, YMax_ME)) and passes them
to the requestor. In the second request the service provider builds a digital map (getMap constraint) and
passes it to the service requestor. In the third case the service provider agent provides a legend for a
collection of requested layers.

In the following section we will use the getMap constraint (highlighted in a box in Figure 5 to facilitate the
presentation) as the motivating example to the structure preserving semantic matching approach.

http://www.google.com/search?hl=en&client=firefox-a&channel=s&rls=org.mozilla:it:official&sa=X&oi=spell&resnum=0&ct=result&cd=1&q=characteristic+&spell=1

a(ga_sr,R)::

requestCapabilities(MapFile,Version) = a(ga _sp,P)
< needCapabilities(MapFile,Version) then

returnCapabilities(AvailableServices, AvailableLayers, Format,

XMin _ME,YMin _ME, XMax _ME,YMax _ME)

< a(ga_sp,P)then
requestMap(MapFile,Version,Layers,Width,Height,Format,

XMin _BB,YMin BB,XMax BB,YMax BB)= a(ga_sp,P)
<« selectLayers(AvailableLayers, Layers) A needMap(Width, Height
selectBoundingBox(XMin_ME,YMin_ME,XMax_ME,YMax_ME,
XMin_BB,YMin_BB,XMax_BB,YMax_BB)

returnMap(Map) <= a(ga _sp,P)then
requestLegend(MapFile,Version,Layers) = a(ga _sp,P) « needLegend then
returnLegend (Legend) < a(ga _sp,P)

Figure 4. LCC fragment for the GIS agency service requestor role.

a(ga_sp,P)::

requestCap abilities(MapFile,Version) < a(ga _sr,R)then
returnCapabilities (AvailableServices, AvailableL ayers, Format,
XMin_ME,YM in_ME,XMax_ME,YMax_M E
=a(ga_sr,R)
<« getCapabilities(MapFile,Version, AvailableServices, AvailableL ayers,
Format, XMin_ME,YM in_ME,XMax_ME,YMax_ME)
requestMap (MapFile,V ersion,Layers,Width, Height,For mat,
XMin_BB,YMin_BB,X max _BB,YMax_ BB)
< a(ga_sr,R)then
returnMap (Map) = a(ga _sr,R)
<« getMap(Map File, Version,Layers, Width, Height, For mat,
XMin_BB,YM in_BB,XMax_BB,YMax_BB, Map)

requestLegend(MapFil e,Version, Layers) < a(ga _sr,R)then
returnLegend (Legend) = a(ga _sr,R)

or

or

<« getLegend (MapFile,Version, Layers, Legend)

Figure 5. LCC fragment for the GIS agency service provider role.

APPROXIMATE STRUCTURE PRESERVING SEMANTIC MATCHING

An ontology typically provides a vocabulary that describes a domain of interest and a specification of the
meaning of terms used in the vocabulary. Depending on the precision of this specification, the notion of
ontology includes various data and conceptual models (Euzenat and Shvaiko, 2007). The term ontology is used
here in a wide sense, and, hence, encompasses sets of terms, classifications, database schemas, thesauri, etc.

Ontology matching is a plausible solution to the semantic heterogeneity problem faced by information
management systems. We view ontologies as graph-like structures (Giunchiglia and Shvaiko, 2003). We think
of matching as an operation that takes two graph-like structures, such as web service descriptions, and produces
a set of correspondences between the nodes of the graphs that correspond semantically to each other
(Giunchiglia et al., 2007a). Then, these correspondences can be used for various tasks, including data
translation, etc. Thus, matching ontologies enables the knowledge and data expressed in the matched ontologies
to interoperate.

In our scenario, since there is no a priori semantic agreement (other than the interaction model), the ontology
matching component is needed to automatically make semantic commitments between the interacting parts. It
poses additional constraints on conventional ontology matching. Specifically, we need to compute the
correspondences holding among the full graph structures and preserve certain structural properties of the graphs
under consideration. Thus, the goal here is to have a structure preserving semantic matching operation. This
operation takes two graph-like structures and produces: (i) one-to-one correspondences between semantically
related nodes of the structures preserving a set of structural properties of the graphs being matched, namely that
functions are matched to functions and variables to variables, (ii) only in the case if the graphs globally
correspond semantically to each other, e.g., graph; is 0.65 similar to graph,, according to some measure.

Let us suppose that we want to match the constraint (e.g. a web service description) - getMap(MapFile,
Version, Layers, Width, Height, Format, XMin_BB, YMin_BB, XMax_ BB, YMax BB)
(see also Figure 5) - with a similar but different one - getMap(Dimension(Width, Height),
MapFile, Edition, Layers, DataFormat, Request, Xmin, Ymin, Xmax, Ymax). As
shown in Figure 6, the first web service description requires the first argument of getMap function (MapFi le)
to be matched to the third (MapFi le) of getMap function in the second description. Version in the first web
service description must be passed to the second web service as the edition argument. Moreover, request
on the right has no corresponding term on the left.

getMap getMap
1 Dimension -
~-- MapFile width--| |
L--Version height--: i
---Layers i !
T A mapfFile ---
- Width edition --4 r2
--- Height layers --4
---Format dataFormat ---
}--Xmin_BB :
. —-Ymin BB Neq”“t -1
i--Xmax_BB\xmf” -1
L-- Ymax_BB\ Ymin --i
 Xmax -1
Ymax --i

Figure 6. Two web service descriptions (trees) and correspondences (lines) between them.

The approach
The approach outlined next follows the work in (Giunchiglia et al., 2007b). We briefly report it here for
completeness and discuss it with the help of examples from the eResponse domain.

We focus on tree-like-structures. The matching process is organized in two steps: (i) node matching and (ii) tree
matching. Node matching solves the semantic heterogeneity problem by considering only labels at nodes and
domain specific contextual information of the trees. We use here the S-Match system (Giunchiglia et al.,
2007a). Technically, two nodes nl and n2 in trees T1 and T2 match if: c@nl R c@n2 holds based on S-Match.

c@nl and c@n2 are the concepts at nodes nl and n2. R € {=, &, 3}. In particular, in semantic matching

(Giunchiglia and Shvaiko, 2003) as implemented in the S-Match system (Giunchiglia et al., 2007a) the key idea
is that the relations (e.g., =, E) between nodes are determined by (i) expressing the entities of the ontologies as
logical formulas and (ii) reducing the matching problem to a logical validity problem. Specifically, the entities
are translated into logical formulas which explicitly express the concept descriptions as encoded in the ontology
structure and in external resources, such as WordNet (Miller, 1995). This allows for a translation of the
matching problem into a logical validity problem, which can then be efficiently resolved using sound and
complete state of the art satisfiability (SAT) solvers (Giunchiglia et al., 2005). Notice that the result of this stage
is the set of correspondences holding between the nodes of the trees.

Tree matching, in turn, exploits the results of the node matching and the structure of the trees to find if these
globally match each other. For obvious reasons we are interested in approximate tree matching. Technically,
two trees T1 and T2 approximately match if there is at least one node nl; in T1 and node n2; in T2 such that: (i)
nl; approximately matches n2;, (ii) all ancestors of nl; are approximately matched to the ancestors of n;.
Notice that the horizontal order of siblings is not preserved being not a desirable property for the data translation
purposes.

The implementation

The implementation of approximate structure matching is based on (i) the theory of abstraction and (ii) the tree
edit distance. Specifically, the work in (Giunchiglia and Walsh, 1992) categorizes the various kinds of
abstraction operations, including:

— Predicate (Pd): Two or more predicates are merged, typically to the least general generalization in the
predicate type hierarchy, e.g., Height(X) + Dimension(X) — Dimension (X). We call Dimension(X) a
predicate abstraction of Height(X), namely Dimension(X) =4 Height(X). Conversely, we call Height(X) a
predicate refinement of Dimension(X), namely Height(X) Zpq Dimension(X).

— Domain (D): Two or more terms are merged, typically by moving constants to the least general
generalization in the domain type hierarchy, e.g., Xmin_BB + Xmin — Xmin. We call Xmin a domain
abstraction of Xmin_BB, namely Xmin = Xmin_BB. Conversely, we call Xmin_BB a domain refinement of
Xmin, namely Xmin_BB & Xmin.

— Propositional (P): One or more arguments are dropped, e.g., Layers (L1) — Layers. We call Layers a
propositional abstraction of Layers(L1l), namely Layers = Layers(L1l). Conversely, Layers(Ll) is a
propositional refinement of Layers, namely Layers(L1) = Layers.

Let use consider the following example: (Height(H)) and (Dimension). In this case there is no
abstraction/refinement operation that makes those first order terms equivalent. However, consequent
applications of propositional and predicate abstraction operations make the two terms equivalent: Height (X) &
Height =4 Dimension.

Then, the key idea is to use abstractions/refinements as tree edit distance operations in order to estimate the
similarity of two tree structures. Tree edit distance is the minimum number of tree edit operations, namely node
insertion, deletion, replacement, required to transform one tree to another (Valiente, 2002). We want to: (i)
minimize the editing cost, i.e., computation of the minimal cost composition of abstractions/refinements, (ii)
allow only those tree edit operations that have their abstraction theoretic counterparts. Thus, we assign the same
unit cost to all operations that have their abstraction theoretic counterparts, while operations not allowed by
definition of abstractions/refinements are assigned an infinite cost, see Table 1.

Finally, the global similarity between two trees is computed as follows:

> n;-Cost,
TreeSim=1- €S .
max(size of T1,sizeof T2)

where, S is the set of allowed tree edit operations, n; is the number of i-th operations necessary to convert one
tree into the other, Cost; is the cost of the i-th operation. For the example in Figure 6, TreeSim would be 0.58.
Then, based on a predefined threshold (e.g., 0.5) it is decided whether the trees under consideration are similar
enough, namely if TreeSim is lower than the threshold, those trees are considered as not similar, which is not the
case in our example. If the similarity score exceeds a given threshold, the correspondences connecting the nodes
of the term trees are further used for data translation.

Abstractions Operation Preconditions Cost- Costz Costg

t; Zpatsy replace(a, b) a I b; a and b correspond to predicates 1 o 1
ti Ht, replace(a, b) a Ib; a and b correspond to functions 1 o 1
t; 3t insert(a) a corresponds to predicate, function 1 o0 1
t; Cpgty replace(a, b) a £ b; a and b correspond to predicates 1 1 o0
t, ooty replace(a, b) a Cb; a and b correspond to functions 1 1 o0
t, 5oty delete(a) a corresponds to predicate, function 1 1 00

Table 1. Tree edit distance operations and their costs.

PRELIMINARY EVALUATION

The approximate structure preserving matching algorithm has been implemented in Java (Giunchiglia et al.,
2007b). As the work in (Avesani et al., 2005, Giunchiglia et al., 2007¢) indicates, it takes around one year to
build a large scale evaluation dataset. We have already started the process of building such a dataset for the
eResponse domain and extensive evaluation constitutes one of the key directions of our future work. Here, we
only report our preliminary evaluation results based on the motivating example of Figure 6 and several dozens
of similar test cases we have acquired so far. The reference results for these problems were established
manually. Then, the results computed by our solution have been compared with the reference results.

As match quality measures we have used F-measure. It varies in the [0-1] range. The version computed here is
the harmonic mean of precision (the measure of correctness) and recall (the measure of completeness), namely
that each of these was given equal importance (Euzenat and Shvaiko, 2007). While computing F-measure we
considered only if the trees match globally. Based on our previous experience in (Giunchiglia et al., 2007a) we
used here a cut-off threshold of 0.5. As a performance measure we have used time. It estimates how fast our
solution when matching trees fully automatically. All these tests have been performed on a standard laptop:
Core Duo CPU - 2Hz, with 2 GB of RAM, with the Windows Vista operating system, and with no applications
running but a single matching system.

For the example of Figure 6, 11 node-to-node correspondences, namely 7 equivalence and 4
abstraction/refinement relations, were identified by the matching algorithm. These were further aggregated into
a similarity score of 0.58, which in turn is higher than the cut-off threshold of 0.5, and, therefore, the two trees
globally match as expected. The average F-measure of the matching algorithm on the test cases we ran was 0.7,
while the average execution time was 46ms. These results look encouraging, especially for what concerns the

execution time, though further extensive large scale evaluation is needed.
RELATED WORK

We discuss the related work along two dimensions: (i) ontology matching and (ii) ontologies in crisis
management. Related to (i), many different matching solutions have been proposed so far: see (Noy, 2004,
Shvaiko and Euzenat, 2005) for recent surveys, while examples of individual approaches addressing the
matching problem can be found on www.OntologyMatching.org. These solutions take advantage of the various
properties of ontologies (e.g., labels, structures) and use techniques from different fields (e.g., statistics and data
analysis, machine learning, linguistics). These solutions share some techniques and attack similar problems, but
differ in the way they combine and exploit their results. A detailed analysis of the different techniques in
ontology matching has been given in (Euzenat and Shvaiko, 2007).

The problem of discovery of web services on the basis of their capabilities has recently received a considerable
attention. Most of the approaches to the problem of web service matching employ a single ontology approach,
i.e., the web services are assumed to be described by the concepts taken from a shared ontology, see, e.g.,
(Paolucci et al., 2002). The most similar to the solution that we used in our eResponse scenario, i.e. the one in
(Giunchiglia et al., 2007b), is the approach taken in (Aggarwal et al., 2004) and in (Oundhakar et al., 2005),
where the services are assumed to be annotated with the concepts taken from various ontologies. The matching
algorithm combines the results of atomic matchers that roughly correspond to the element level matchers
exploited as part of the S-Match algorithm (Giunchiglia et al., 2007a).

Related to (ii), relevant works can be found within the DIP'', ORCHESTRA'?, WORKPAD", SAFE', and
CASCOMP" projects. For example, in the DIP project, a GIS based on the web services modelling ontology has
been developed (Tanasescu et al., 2006). In WORKPAD, the key idea is that P2P information integration
systems do not rely on a single ontology, but use mappings, dynamically established between peers, to collect
and merge data from various sources when answering user queries in the crisis scenarios (Mecella et al., 2006).
The SAFE project aims at assisting in the management of the response to natural disasters. Specifically, the
work in (Iannella et al., 2007) reviews some of the emerging requirements for crisis information management
systems and provides an outlook of the current and future technologies that are needed to address these
requirements.

All these projects develop at design time domain ontologies for the crisis management. In turn, the matching
solution we used can support coordination of web services at run time using both predefined ontologies and the
“emerging” ontologies (being the LCC constraints) in order to search and chain web services at run time, which
is crucial for many emergency situations.

CONCLUSIONS

We have presented a typical emergency response scenario, which includes geo-data sharing through geo-
services provided by the GIS agencies and its formalization using LCC. The scenario is based on the current
organizational model as used in Trentino, Italy. We then discussed an automatic approximate structure
preserving matching algorithm used as a solution to the semantic heterogeneity problem between different
implementations of the required geo-services. We applied the matching algorithm to the eResponse web service
matching scenario. The evaluation results, though preliminary, look encouraging.

Currently, the matching solution is elementary in the sense that it provides means to match web services
available in the LCC interaction models. However, to run an interaction model, a peer should know which
interaction model it wants to execute and with which peers it will be interacting. The ultimate goal is to provide
a unifying framework based on interaction models that are mobile among peers, being a mechanism for web
service composition and enabling ad hoc peer coalition formation, as required by hastily formed networks
(Denning, 2006). In turn, future work on the approximate structure preserving semantic matching proceeds at
least in the following directions: (i) conducting an extensive evaluation, and (ii) extending the matching
approach for dealing with fully-fledged GIS ontologies.

ACKNOWLEDGMENTS

This work has been supported by the OpenKnowledge'® project (FP6-027253). We are grateful to Fausto
Giunchiglia, Mikalai Yatskevich, Fiona McNeill and Paolo Besana for many fruitful discussions on the structure

" hittp://dip.semanticweb.org/

12 http://www.eu-orchestra.org/

13 http://www.workpad-project.eu

14 http://nicta.com.au/research/projects/smart_applications_for _emergencies
15 http://www.ist-cascom.org/

16
www.openk.org/

http://www.ontologymatching.org/
http://dip.semanticweb.org/
http://www.eu-orchestra.org/
http://www.workpad-project.eu/
http://nicta.com.au/research/projects/smart_applications_for_emergencies
http://www.ist-cascom.org/
http://www.openk.org/

preserving semantic matching.

REFERENCES
Aggarwal R., Verma, K., Miller J.A., and Milnor W. Constraint driven web service composition in METEOR-S.
In Proceedings of IEEE SCC, pages 23-30, 2004.

Avesani, P., Giunchiglia F., and Yatskevich, M. A large scale taxonomy mapping evaluation. In Proceedings of
ISWC, pages 67-81, 2005.

Bernard, L., Craglia, M., Gould, M., and Kuhn W. Towards an SDI research agenda. In Proceedings of the EC-
Gl & GIS Workshop, 2005.

Denning, P. Hastily Formed Networks. Communications of the ACM, 49(4):15-20, 2006.

Euzenat J. and P. Shvaiko, P. Ontology matching. Springer, 2007.

Giunchiglia F. and Shvaiko P. Semantic matching. The Knowledge Engineering Review, 18(3):265-280, 2003.
Giunchiglia F. and Walsh T. A theory of abstraction. Artificial Intelligence, 57(2-3):323-389, 1992.
Giunchiglia, F., Yatskevich, M., and Giunchiglia, E. Efficient semantic matching. In Proceedings of ESWC,
pages 272-289, 2005.

Giunchiglia, F., M. Yatskevich, and P. Shvaiko. Semantic matching: Algorithms and implementation. Journal
on Data Semantics, IX:1-38, 2007.

Giunchiglia, F., Yatskevich, M. and McNeill, F. Structure preserving semantic matching. In Proceedings of the
ISWC+ASWC Workshop on Ontology Matching, pages 13-24, 2007.

Giunchiglia, F., Yatskevich, M., and Avesani, P. A large scale dataset for the evaluation of matching systems. In
Posters of ESWC, 2007.

Groot R. and J. McLaughlin J. Geospatial Data Infrastructure: Concepts, Cases and Good Practice. Oxford
University Press, 2000.

lannella, R., Henricksen, K., and Rinta-Koski, O. Towards a Framework for Crisis Information Management
Systems. In Proceedings of TIEMS, 2007.

Mecella, M., Angelaccio, M., Krek, A., Catarci, T., Buttarazzi, B., and Dustdar, S. WORKPAD: an Adaptive
Peer-to-Peer Software Infrastructure for Supporting Collaborative Work of Human Operators in
Emergency/Disaster Scenarios. In Proceedings of CTS, pages 173-180, 2006.

Miller A. G. WordNet: A lexical database for English. Communications of the ACM, 38(11), pages 39-41, 1995.
Nebert D.. Developing Spatial Data Infrastructures. The SDI CookBook, version 2.0. GSDI-Global Spatial Data
Infrastructure, 2004.

Noy N.. Semantic integration: A survey of ontology-based approaches. SIGMOD Record, 33(4):65-70, 2004.
Oundhakar, S., Verma, K., Sivashanugam, K., Sheth, A., and Miller J.. Discovery of web services in a multi-
ontology and federated registry environment. International Journal of Web Services Research, 2(3):1-32, 2005.
Paolucci, M. Kawamura, T., Payne, T., and Sycara K. Semantic matching of web services capabilities. In
Proceedings of ISWC, pages 333-347, 2002.

Parent, C., Spaccapietra, S. and Zimanyi, E. Conceptual modeling for traditional and spatio-temporal
applications: MADS approach. Springer, 2006.

Robertson D. A lightweight coordination calculus for agent systems. In Declarative Agent Languages and
Technologies, pages 183-197, 2004.

Robertson D., Walton C., Barker A., Besana P., Chen-Burger Y., Hassan F., Lambert D., Li G., McGinnis J.,
Osman N., Bundy A., McNeil F. van Harmelen F., Sierra C., and Giunchiglia F.. “Models of interaction as a
grounding for peer to peer knowledge sharing”. Advances in Web Semantics, Vol. 1, 2007.

Shvaiko P. and Euzenat J. A survey of schema-based matching approaches. Journal on Data Semantics,
IV:146-171, 2005.

Tanasescu, V., Gugliotta, A., Domingue, J., Davies, R., Gutiérrez-Villarias, L., Rowlatt, M., Richardson, M.,
and Stinc¢i¢, S. A Semantic Web Services GIS based Emergency Management Application. In Proceedings of
ISWC, pages 959-966, 2006.

Valiente G.. Algorithms on Trees and Graphs. Springer, 2002.

	 INTRODUCTION TO THE DELIVERABLE
	ABSTRACT
	Keywords

	INTRODUCTION
	FLOODING EVACUATION USE CASE
	THE E-RESPONSE SYSTEM
	RELATED WORK
	CONCLUSIONS
	ACKNOWLEDGMENTS
	REFERENCES
	 APPENDIX 1
	 APPENDIX 2
	ABSTRACT
	Keywords

	INTRODUCTION
	SCENARIO
	INTERACTION MODELS
	 APPROXIMATE STRUCTURE PRESERVING SEMANTIC MATCHING
	PRELIMINARY EVALUATION
	RELATED WORK
	CONCLUSIONS
	ACKNOWLEDGMENTS
	REFERENCES

