
OpenKnowledge

FP6-027253

Bioinformatics Scenarios

Dietlind Gerloff1, Xueping Quan1, Chris Walton1,
David Robertson1, Marco Schorlemmer2, Joaquin Abian2,

Carles Sierra2, and Lorenzo Bernacchioni2

1 School of Informatics, University of Edinburgh, UK
2 Artificial Intelligence Research Institute, IIIA-CSIC, Spain

Report Version: final
Report Preparation Date:
Classification: deliverable D6.1
Contract Start Date: 1.1.2006 Duration: 36 months
Project Co-ordinator: University of Edinburgh (David Robertson)

Partners: IIIA(CSIC) Barcelona
Vrije Universiteit Amsterdam
University of Edinburgh
KMI, Open University
University of Southampton
University of Trento



OPENKNOWLEDGE DELIVERABLE D6.1 
 
 

Bioinformatics Scenarios Suitable for Peer-To-Peer Implementation 
and Experimentation with the OpenKnowledge System 

 
Dietlind L. Gerloff, Xueping Quan, Chris Walton, David Robertson 

University of Edinburgh 
and 

Marco Schorlemmer, Joaquín Abián, Carles Sierra, Lorenzo Bernacchioni 

CSIC, Spanish National Research Council 

 
 

Abstract: We have identified two problem areas within protein 
bioinformatics that provide opportunities for (a) experimenting with the 
OpenKnowledge (OK) peer-to-peer architecture in the context of active 
bioinformatics research areas; (b) initially targetting small, manageable 
components of larger OK network separately for implementation; and 
(c) producing original research results: protein structure prediction and 
proteomics. Two specific research problems have been found to 
constitute suitable scenarios. They are described here with respect to 
their interest to the biologist community and specific problem areas as 
well as implementation issues. The first scenario has already been 
implemented using current technology (MagentA) and yielded 
publishable results. 

 
 
 
1 Introduction 
 
Bioinformatics research is one of the two testbed domains that were selected for the 
OpenKnowledge (OK) project. To investigate the impact on scientific discovery of enabling 
peer-to-peer interactions via the OK system in the future, scenarios are to be constructed by 
experts in a part of this domain. These will be used to set up case studies and to demonstrate a 
method of applying the OK approach and technologies.  
 
Proteins are the “molecular machines” of all living organisms. One of the most basic questions 
of biology is to understand what proteins do and what influences their functionality. Intensive 
efforts both in laboratory and computational biological research over the past decades have led 
to a variety of on-line resources that can be consulted for relevant information. Currently these 
resources consist primarily of three types: web implementations of analysis/prediction software, 
downloadable software, and (centralised) databases. The information of interest to researchers 
as they are aiming to characterise the functionality of one, or many, proteins is very varied. For 
example, knowledge of the specific three-dimensional structure a protein adopts is can be 
advantageous, as can knowledge of the amount of this protein found in the various tissues of 
an organism (e.g. human liver, or brain), or even the amount of other proteins that are known to 
be functionally linked. Accordingly bioinformatics research in the areas of protein structure 
prediction and facilitation of proteomics research (see Sections 2 and 3 for background 
information) is highly relevant to the cause, and new developments are highly visible.  
 
This document aims to describe the two first two research problems we plan to implement 
using the new OK system. The first scenario is a well-defined, small task in which protein 
structure models generated by different programs are being checked for “consistency” amongst 
them; the models are available pre-computed in web-accessible databases. This type of 



scenario is representative of a very common activity of bioinformatics researchers, consistency-
checking between several web resources without necessarily involving the authors of these 
resources (knowingly) as peers in the network. A peer-to-peer implementation using MagentA 
[6] has already been carried out and this scenario is described by means of a paper accepted 
by the “International Workshop on Distributed, High Performance, and Grid Computing in 
Computational Biology (GCCB) 2006” for presentation in January 2007 (Section 2). The second 
scenario is more complex, both with respect to its architecture and the biological problem it 
seeks to tackle. Some experience gained from implementing the first scenario can be taken 
forward since consistency-checking can be viewed to be a sub-scenario here, too. Additionally, 
the benefits of distributed data sharing in proteomics are to be explored through this scenario 
and, once implemented as an OK system, this is likely to produce progress in proteomic 
analysis that can currently not be achieved by traditional (not peer-to-peer) means. The close 
collaboration between Dr. Joaquín Abián, the director of one of the well-established laboratory 
proteomics facilities in Spain, and the OK project should provide a vital link to the potential user 
community in this research area, for case studies. An overview description of the problem and 
thoughts towards its implementation are provided in Section 3. 
 
 
2 Scenario I : Protein Structure Prediction 
 
Extracted from GCCB-Paper 16 (accepted for publication and presentation), with minor 
adaptation: 
 
Peer-to-Peer Experimentation in Protein Structure Prediction: an Architecture, 
Experiment and Initial Results (Xueping Quan1, Chris Walton2, Dietlind L. Gerloff1, Joanna L. 
Sharman1, and Dave Robertson2 - 1Institute of Structural and Molecular Biology, University of 
Edinburgh, UK; 2School of Informatics, University of Edinburgh, UK)  
 
Abstract. Peer-to-peer approaches offer some direct solutions to modularity and scaling 
properties in large scale distributed systems but their role in supporting precise experimental 
analysis in bioinformatics has not been explored closely in practical settings. We describe a 
method by which precision in experimental process can be maintained within a peerto-peer 
architecture and show how this can support experiments. As an example we show how our 
system is used to analyse real data of relevance to the structural bioinformatics community. 
Comparative models of yeast protein structures from three individual resources were analysed 
for consistency between them. We created a new resource containing only model fragments 
supported by agreement between the methods. Resources of this kind provide small sets of 
likely accurate predictions for non-expert users and are of interest in applied bioinformatics 
research.  
 
 
2.1 Introduction  
 
Peer-to-Peer Experimentation In Section 2.3 we describe novel results obtained for a specific 
experiment that concerns consistency in protein structure prediction. When read by itself, 
Section 2.3 is a novel piece of analysis with a result of interest to part of the bioinformatics 
community. The broader novelty of this paper, however, is the way in which this result is 
obtained and in particular the peer-to-peer architecture used to obtain it. A peer-to-peer 
architecture is one in which computation is distributed across processors and in which none of 
the processors has an overarching coordinating role - hence coordination for a given task must 
be achieved via communication between processors. Section 2.1.1 gives our perspective on 
scientific experimentation as a peer-to-peer activity. Section 2.1.2 summarises the way in which 
we tackle the crucial issue of maintaining the integrity of experiments in a peer-to-peer setting. 
With this general approach in place, we then describe (in Section 2.2) its use to implement the 
specific experiment of Section 2.3. Section 2.4 concludes by summarising the broader system 
of which this is the first part.  
 



2.1.1 Scientists as Peers in a Web Community  
 
When conducting experimental studies (or amassing information to support experimental 
studies) from Internet sources, each scientist (or group) may adopt a variety of roles as 
information providers, consumers or modifiers. Often these roles are narrowly specific, as for 
example the role one adopts when canvassing trusted sources for information about specific 
proteins and applying assessment metrics to these that are appropriate to a particular style of 
experimentation. In science, the roles we adopt and the specific ways in which we discharge 
the obligations of those roles are fundamental to establishing peer groups of “like minded” 
scientists in pursuit of related goals by compatible means.  
 
The need to be precise about such obligations is strongly felt in traditional science - hence the 
use of rigid conventions for description of experimental method and monitoring of its execution 
via laboratory notebooks, enabling experiments to be monitored, replicated and re-used. 
Analogous structure is beginning to emerge in Internet based science. For example the 
structure of Web service composition in Taverna [1] provides a record of the associations 
between services when using these to manipulate scientific data. Like Taverna, we describe 
interactions as process models. Unlike Taverna, our process models are part of a system for 
peer-to-peer communication in which process models describing complementary roles in 
experimentation are shared between peers as a means of communicating and coordinating 
experiments.  
 
 
2.1.2 Scientific Coordination as Peer-to-Peer Communication  
 
Traditionally, peer-to-peer systems have not focused on the issue of maintaining the integrity of 
complex, flexible processes that span groups of interacting peers. Engineering solutions have 
polarised into those which are highly centralised (coordinating interactions through a server) 
versus those which rely entirely on the sophistication (and coordinated engineering) of peers to 
obtain reliable processes through emergent behaviours. It is, however, possible to have a 
distributed, de-centralised, interaction guided by a shared, mobile model of interaction. To 
support this we have developed a specification language, based on a process calculus, that 
can describe interactions between peers and (since the language is executable in the tradition 
of declarative programming) can be deployed to control interactions. The language is called the 
Lightweight Coordination Calculus (LCC) in recognition of our aim to produce the most easily 
applied formal language for this engineering task.  
 
Space limitations prohibit detailed discussion of LCC, its semantics or of the mechanisms used 
to deploy it. For these, the reader is referred to [2]. In this paper we explain enough of LCC to 
take us through the bioinformatics experiment that we detail in subsequent sections. Our 
experiment relies on the collation of predicted structures for yeast proteins across a number of 
peers and comparison of the collated data across the peers to produce a tentative assessment 
of the predictions. The data is filtered based on these comparisons leaving behind only 
predictions deemed to be reliable on these grounds. Figure 1 defines a LCC specification for 
our example. Notice that it is specific about the message sequencing and essential constraints 
on this type of interaction but it leaves flexible the choice and number of peers supplying data 
and the forms of data lookup and filtering - so the LCC specification is a model of a class of 
interactions, and we can ground it in specific peers and constraints at deployment time (as we 
show in Section 2). 
 
An interaction model (or, for scientists, an experimental protocol) in LCC is a set of clauses, 
each of which defines how a role in the interaction must be performed.  Roles are described by 
the type of role and an identifier for the individual peer undertaking that role.  The definition of 
performance of a role is constructed using combinations of the sequence operator ('then') or 
choice operator ('or') to connect messages and changes of role. Messages are either outgoing 
to another peer in a given role ('⇒') or incoming from another peer in a given role ('⇐').  
Message input/output or change of role can be governed by a constraint defined using the 



normal logical operators for conjunction, disjunction and negation.  Notice that there is no 
commitment to the system of logic through which constraints are solved - on the contrary we 
expect different peers to operate different constraint solvers. 
 
 

 

Figure 1. Example peer-to-peer architecture in LCC. 
 
 
2.2 Experiment Implementation 
 
The LCC specification, presented in the previous section, defines how the various peers will 
interact during the experimental process to provide the desired outcome. This specification 
describes how the experiment will be performed without directly identifying the peers that will 
be involved. To perform the actual experiment, it is necessary to supply a set of peers that 
match this specification, and thereby enable us to instantiate the LCC protocol. In this section, 
we describe how the actual experiment was performed, and outline the computational services 
that we constructed to accomplish this task. 
 
From a computational point of view, our experiment is essentially a service composition task. 
That is, we will construct our experiment by identifying a collection of independent services, 
and then compose these services together dynamically to enact our experiment. In doing so, 
we adhere to the popular Service Oriented Architecture (SOA) paradigm, which is commonly 
used in Grid computing. We use our MagentA tool to perform this dynamic service composition 
as it was designed specifically for this purpose, as part of the OpenKnowledge project. 
MagentA is effectively an interpreter for LCC specifications, where the peers are defined by 
Web Services. We have previously demonstrated the use of MagentA to compose services in 
the astronomy domain [3, 4]. Nonetheless, there are a number of important differences 
between the experiment that we perform here, and our previous astronomy experiments. Three 
of the key differences are summarised below: 
 
1. Previously, we were using web services that had already been constructed for the AstroGrid 

project.  In this case, while the necessary data is freely available on the web, there are no 
web services constructed to access this data. In other words, the data is accessible using 



HyperText Markup Language (HTML) pages intended for humans, but there are no Web 
Services Description Language (WSDL) interfaces and procedures to make this data 
available to computation entities, e.g. peers. Therefore, it was necessary to construct our 
own services to query and retrieve the data through form posting and screen-scraping 
techniques.  

2. The astronomy data was all obtained from the same source and was uniform, i.e. all data 
was the same format and quality. Here, we are attempting to reconcile data from three 
independent sources. Each of these sources has derived their data using different methods, 
and have classified their data in different ways. To overcome these issues, it was necessary 
to build our services so that they can cope with missing and incomplete data, and can 
present the data in a uniform way. It was also necessary to design our services so that they 
could place quality thresholds on the data, and exclude results which did not meet these 
thresholds.  

3. The final difference concerns the control of the underlying services and data. In the 
astronomy scenario, we were closely associated with the individuals who constructed the 
services and gathered the data. This meant that we could ask questions about the quality 
and distribution of the data, and obtain advice on using the services effectively. This time, 
we have no such close link to the data providers, and we are simply using the data that they 
have made publicly available. As a result, meta-information such as the quality and 
coverage of the data sets had to be derived experimentally.  

 
A diagram that illustrates the main components and services in our experiment is given in 
Figure 2. At the left of this diagram are the three data providers for our experiment, namely: 
SWISS, SAM, and ModBase. These providers all make their databases available through a 
standard web page (i.e. HTML) interface. We note that the there is an extra pre-filtering step 
required for the ModBase database, and we do not operate on the ModBase dataset directly. 
This step is described later in this document.  
 
 

 
Figure 2. Experiment Architecture 

 
 
To enable the various data sources to be used in our experiment, we have constructed a web 
service companion for each of the providers: a SWISS service, a SAM service, and a ModBase 
service. These companion services enable us to access the data through a standard web 
service (i.e. WSDL) interface. These services also provide the same abstract interface to the 
data sources, so that we can query them in exactly the same way. This interface corresponds 
to lookup(I, D) in Figure 1.  
 
There are two additional services that we have constructed for our experiment. These services 
are illustrated on the right of Figure 2. The first of these is the MaxSub service, which provides 



a web service wrapper and WSDL interface for the MaxSub application. This application is 
used to perform comparisons between sequences. However, it was previously only available as 
a stand-alone application and could not be run over the web. The second service that we have 
constructed is the CYSP (Comparison of Yeast 3D Structure Predictions) service. This service 
is the core of our experimental process. It is responsible for querying the three data providers, 
invoking MaxSub to perform comparisons, and storing the results in our CYSP database. We 
provide our own database so that the experimental results can be reused without the need for 
recalculation, and for future experiment validation purposes. Our CYSP service effectively acts 
as a filter over the three data sources, and the interface to this service corresponds to filter(Sd, 
S) in Figure 1.  
 
Our experiment is enacted by MagentA, which is at the centre of Figure 2. As previously noted, 
MagentA is essentially an interpreter for LCC. This interpreter executes LCC specifications 
directly. An LCC specification is defined in terms of peers, and in our scenario we have five 
peers: one for each of the web services. During execution, the various peers interact, and the 
services that they represent are dynamically composed. The details of how LCC protocols are 
actually executed in MagentA is beyond the scope of this paper. However, further details on the 
MagentA system can be found in [3,5,6]. We have constructed the five key services for our 
experiment, namely the SWISS service, the SAM service, the ModBase service, the MaxSub 
service, and the CYSP service. These services provide us with a uniform way to access the 
data sources, and to perform computation over the data. We have also used the MagentA tools 
to compose these services, based around the LCC protocol that we previously presented. The 
results of the experiment are detailed in the remainder of this paper. 
 
 
2.3 Example experiment: Consistency-checking in Protein Structure Prediction  
 
Knowledge of a protein molecules three-dimensional structure is vital for understanding its 
function, targeting it for drug design, etc. The two prevalent techniques for determining the 3-D 
coordinates of all protein atoms with high precision are X-ray crystallography and nuclear 
magnetic resonance spectroscopy (NMR). However, compared with the ease with which the 
amino acid sequences of proteins (their “1-D structures”) are deduced through the sequencing 
of genomes and cDNA, the effort and cost required for determining a protein 3-D structure 
remains tremendously high. Accordingly, a number of computational biology research groups 
specialise in producing structural models for proteins based on their amino acid sequences 
alone. Where they are accurate, predicted protein structures can provide valuable clues for 
biological research relating to these proteins.  
 
Thanks to regular rounds of independent assessment using newly emerging atomic protein 
structures as “blind” tests at the so-called CASP [7] and CAFASP [8] experiments, protein 
structure prediction techniques have improved noticeably during the past decade. This is 
particularly true for template-directed protein structure prediction, in which the knowledge of a 
previously determined protein 3-D structure is used to generate a model for a different protein. 
If evolutionary relatedness between the two proteins can be established based on sequence 
similarity between a protein of interest and another protein whose 3-D structure is already 
known, then a model can be generated through comparative modelling. The known structure 
serves as a modelling template in this approach. The target protein sequence (i.e. the protein 
of interest) is aligned optimally onto the structural scaffold presented by the coordinate 
structure of this template. This typically includes the atoms making up the protein backbone, 
and the directionality of the side-chains (see [9] for an overview). Comparative modelling is 
generally considered “safe” to apply when the similarity between the sequences of target and 
template is sufficient to establish their alignment confidently over the whole length of the two 
proteins, or at least over relevant portions. However, the confidence in each individual 
prediction is not easily estimated at the time of the prediction. As a consequence, a substantial 
proportion of the models submitted for CASP/CAFASP comparative modelling targets are 
wrong and the degree of accuracy of their atomic coordinates varies substantially [7, 10].  
 



In practice, biologist users of the model databases providing access to the structure predictions 
are often interested in a single target protein. Such users often apply a “consistency-checking” 
strategy to assess whether or not to trust the predicted coordinate structures for their protein of 
interest by comparing the models proposed by different groups/databases to each other. 
Where the models agree, over the whole or a part of the protein molecule, they are deemed an 
approximately correct representation of the actual 3-D molecular structure of the target protein.  
 
 
2.3.1 3-D Structural Models for Yeast Proteins  
 
As an implemented example in which a consistency-checking experiment is undertaken we 
have investigated the consistency between pre-computed comparative models for the proteins 
encoded by the genome of the budding yeast Saccharomyces cerevisiae. The yeast genome 
sequence has been known since 1996 [11] and it is currently predicted to encode 6604 
proteins. For 330 of these proteins (or fragments of them) 3-D structures for have been 
determined through X-ray crystallography or NMR to date. For this experiment we selected 
three public-domain repositories offering access to pre-computed coordinate models for yeast 
proteins generated by different automated methods: SWISS-MODEL [12], MODELLER 
(ModBase) [13], and SAM-T02/Undertaker [14]. We systematically retrieved and compared the 
models for all yeast proteins with to-date undetermined structures and extracted a sub-set of 
protein models that were “validated” by agreement between all three methods.  
 
 
2.3.2 Data Sources  
 
The systematic open-reading frame (ORF) names of all predicted protein-encoding genes in 
the yeast genome, commonly referred to as YIDs, were extracted from the Saccharomyces 
Genome Database (SGD) [15]. The 6604 ORFs listed in SGD on 7 June 2006 were used to 
query the three model databases.  
SWISS : The SWISS-MODEL Repository [16] is a database of annotated protein structure 
models generated by the SWISS-MODEL [12] comparative modelling pipeline. SWISS draws 
the target sequences for its entries from UNIPROT (the successor of SWISS-PROT/TrEMBL). 
Yeast proteins are also annotated with their YIDs. Only models for proteins of unsolved 
structures are accessible. If the structure of a protein was already determined experimentally 
(through X-ray crystallography or NMR) SWISS links directly to this structure in the PDB [17].  
ModBase : This database [18] contains comparative models generated by the program 
ModPipe (an integration of PSI-BLAST [19] and MODELLER [13] based on protein sequences 
extracted from SWISS-PROT/TrEMBL. ModBase typically contains a large number of models 
for the same target protein that can be considered redundant and imposes only minimal quality 
standards. In order to streamline the procedure for this experiment and only work with models 
that have chances of being correct we downloaded all ModBase entries for yeast proteins and 
eliminated redundancy and extremely low quality models from the set locally (see below). Note 
that, by contrast to SWISS, ModBase also contains models for proteins with crystallographically 
or spectroscopically determined structures (re-modelled onto themselves as templates and/or 
closely homologous proteins).  
SAM : The Karplus group at UC Santa Cruz provides WWW-access to provisional models for 
all predicted yeast proteins using their combination of local-structure, hidden Markov model 
(HMM)-based fold recognition and ab initio prediction [14]. The methodology underlying fold 
recognition is similar to that of the comparative modelling in that a template of known structure 
is used. However, besides various technical differences, the application range targeted by fold 
recognition methods differs from that of the programs used by SWISS and ModBase in that the 
former specialize in predicting structures where target-template sequence similarity is too 
remote to detect by standard methods. Accordingly, this data source offers protein structure 
predictions for all ORFs of yeast (including some not listed as genes by the SGD database) 
and a confidence estimate for the corresponding target-template matches together with a 
collection of provisional (i.e. Unrefined), often fragmented, coordinate models for each. 
 



2.3.3 Processing/Pre-Filtering of data sets 
 
As described above the amount of data pertaining to each YID, and its organization, differs 
quite dramatically between the three data sources. To ensure that the structural comparisons 
between the models could be run efficiently for the set of all available yeast models, we 
undertook a minimum of local processing and pre-filtering of the entries after retrieving them 
from the three databases. Note that most of this would be unnecessary in the more common 
situation where a biologist user is interested in comparing only the entries pertaining to a 
smaller set of YIDs, usually even only a single protein. (In this case, a simple cross-check of 
the confidence value (which is often expressed as an E-value) associated with the model 
and/or a search for the best model available could be incorporated in the interaction and a 
larger number of pair-wise comparisons would be undertaken to extract the protein model 
region that is supported by the different modelling methods.) 
 
ModBase: Our MagentA interface to ModBase retrieved 3448 files with model coordinates 
when queried with the list of YIDs. These files typically include more than one 3-D model for the 
same protein sequence (see above). We pre-filtered the ModBase set of models in two steps, 
one selecting only high-quality comparative models, and a second to eliminate redundancy. 
Our selection criteria for “high-quality” models were: percentage sequence identity between 
target and template > 20 %; model score > 0.7; E-value < 1E-06. The relevant values were 
directly accessible within the ``REMARK'' part of each 3-D coordinate file. Eliminating 
redundancy is important in cases where individual proteins are represented by multiple ``high-
quality'' models in ModBase. As shown schematically in Figure 3, the sequence regions 
covered by the different models often overlap. This can occur because different template 
structures were chosen (correctly, or incorrectly) each giving rise to one modelled region. To 
allow efficient comparison of the complete set of yeast models, we made a choice as to which 
one model was retained if such a redundant set was encountered. This was based on 
clustering of the model protein sequences extracted from the 3-D coordinate files for each YID 
using the program BLASTclust which is part of the BLAST suite 
(http://www.ncbi.nlm.nih.gov/BLAST/download.shtml). Of multiple models with > 
90% pair-wise sequence identity over at least 90% (of the length of the shorter model in each 
comparison), only the model covering the largest sequence region was retained (Model 1 in the 
example in Figure 3). 
 
 

 
Figure 3. Schematic showing multiple redundant models for one protein. The red 
line represents the full-length sequence for this protein (running from the N-
terminus to the C-terminus of the molecule). Blue lines represent different models 
(1, 2, 3, 4, and 5) covering different, overlapping and non-overlapping, regions. 

 
 
By contrast to such instances of redundancy, other proteins may be represented by several 
models without substantial overlap. Protein structures are generally easier to determine 
experimentally if they only encompass a small number of structural domains. Accordingly, 
multi-domain protein sequences are often covered using different template structures for each 
domain, thus giving rise to several meaningful models. These models may not overlap at all 
(Figure4A), or partly (less than 90%) overlap with each other (Figure 4B). Multiple models of 
this kind were retained in our filtered ModBase model set, which contained 2546 models for 
2280 yeast proteins. 



 
 

 
Figure 4. Schematic showing multiple non-redundant models for one multi-domain 
protein. The red lines represent the full-length sequence for two multi-domain 
proteins. Blue lines represent models covering different regions of these 
sequences. 

 
 
SWISS: The majority of yeast proteins that can be found in the SWISS database only have one 
associated 3-D model. By contrast to ModBase multiple entries in SWISS can be considered 
non-redundant, i.e. relate to multi-domain proteins. Moreover, stringent quality standards are 
imposed by the authors of the database. Our MagentA interface to SWISS queried the 
“Advanced Search” WWW-interface to the database 
(swissmodel.expasy.org/repository/smr.php?job=3) with the complete list of YIDs 
and retrieved 769 3-D models for 717 proteins when queried. In the case of multi-domain 
proteins, all available 3-D models were extracted. An additional 330 returns were 
crystallographically or spectroscopically determined structures extracted from the PDB 
database; these were disregarded in the structural comparisons. 
 
SAM: Our MagentA interface to the SAM database of yeast models 
(www.soe.ucsc.edu/research/compbio/yeast-protein-
predictions/lookup.html) returned sets of 3-D models for all 6604 YIDs. The models 
delivered in each set are based on different templates and ordered according to SAM-T02s 
confidence in the underlying target-template match. Unfortunately this organization is not suited 
for extracting multiple non-redundant models from the set easily in the case of multi-domain 
models. For the purpose of this experiment we chose to select the top model from each set, 
which will usually also select the model covering the largest region of the sequence. In addition 
we imposed a maximum E-value cut-off of 1E-03 for the target-template match. This resulted in 
2211 SAM models being considered in the structural comparisons described below. 
 
 
2.3.4 Consistency Checking 
  
Pair-wise comparisons between the retained 3-D models from the three data sources relating 
to the same YID were carried out with the program MaxSub [20]. MaxSub performs sequence-
dependent pair-wise comparisons between different 3-D structures (predicted models or known 
structures) of the same proteins, aiming to find the largest substructure over which the two 
structures superimpose well upon each other. It only considers the base (Ca) atoms of the 
protein side-chain and also ignores the details of the other backbone atoms. As a metric of the 
similarity of the two structures that are being compared, MaxSub computes a single score 
(referred to as Mscore below) ranging from 0 for a completely unmatched pair, to 1 for a perfect 
match. Since the values for Mscore are asymmetrical, i.e. dependent on which of the two 
proteins is considered to be the reference protein, we carried out the pair-wise comparisons in 
forward and reverse order. The distance threshold parameter was set as 3.5 Å throughout the 
analysis. For proteins whose 3-D structures were previously determined in the laboratory, there 



is no interest in a comparison between the X-ray/NMR structure and the 3-D models contained 
in ModBase and SAM, since the known structures may have been used as the modelling 
template. (This is different for newly determined structures which will be useful for evaluating 
the accuracy of the models, as is discussed below.) Pair-wise model comparisons were 
performed for all YIDs represented by at least one retained model in each of the three sets. In 
total 4556 pair-wise comparisons of the remaining yeast 3-D models returned non-zero results. 
 
Based on the pair-wise comparisons we extracted three-way “MaxSub-supported 
substructures”, i.e. the maximum overlap between all pair-wise matched regions for the same 
protein sequence. In the derivation of these substructures (illustrated schematically in Figure 5) 
we chose to ignore the gaps of up to 35 consecutive amino acids that were found sometimes 
within the regions matched in the MaxSub comparisons between two 3-D models. Such gaps 
were caused either by strong local deviation between the two models or missing residues in 
one of the models. MaxSub-supported substructures encompassing fragments of less than 45 
amino acids in length were discarded to keep the number of structurally uninteresting matches 
(for example over only a single a-helix) as small as possible. 
 

 
Figure 5. Schematic illustrating the derivation of three-way MaxSub-supported 
substructures. Two examples are shown, a single-domain protein (A) and a multi-
domain protein (B). Red lines represent full-length protein sequences. Blue lines 
represent the pair-wise matched regions between 3-D models for these proteins. 
Green lines represent the resulting MaxSub-supported substructures. 

 
 
2.3.5 Results  
 
The detailed results of this experiment are publicly accessible via our WWW database CYSP 
(Comparison of yeast 3-D structure predictions, linked from www.openk.org). The records 
currently relate to the yeast proteins for which at least one model was retained in each of our 
sets of SWISS, ModBase, and SAM models after pre-filtering. Information is given regarding 
their associated 3-D model coordinates as they can be obtained from the three repositories, 
which regions match pair-wise between 3-D models of the same protein by different methods 
according to MaxSub comparison, and the Mscores attained by the matches. For proteins 
where three-way agreement between the methods was found, 3-D coordinates are also 
provided for the model fragment spanning their Max-Sub supported substructures. To the non-



computational biologist looking to find an approximate 3-D structural representation of his/her 
yeast protein of interest, the model fragments in this new, filtered, resource are likely to be the 
most relevant. While there is of course no guarantee (since there always is a chance that all 
three methods could have erred in the same way) they would be deemed “likely correct by 
consensus”. This philosophy is applied widely in other areas of protein structure prediction as 
well, for example in secondary structure prediction, and its viability is generally supported by 
independently derived experimental structural information [21–23]. Attributing greater 
confidence to consensus predictions is certainly considered appropriate where the methods 
consulted are different as this was the case here.  
 
A previous similar study by the Baker group at Washington University St. Louis compared fold 
predictions for yeast proteins between different fold prediction methods [24]. By contrast to our 
comparisons Dolinsky et al. did not carry out model superpositions but designed their SPrCY 
database (agave.wustl.edu/yeast/) for consistency checking at the template 
structure/fold level. Given the lower structural accuracy in general that is attained by models 
based on fold prediction methods (which aim primarily to identify fold resemblance to known 
structures in cases where no sequence similarity is detectable, and where producing a detailed 
model is often too difficult a problem to tackle) this is certainly justified, although it makes it 
impossible to directly compare our results with theirs.  
 
We obtained 578 MaxSub-supported substructures for 545 yeast protein sequences with non-
identical YIDs in this experiment. Fragments of 3-D models are most informative to the users if 
they span entire structural domains, or at least 3-D structurally separable parts. While some 
few domains are known to include less than 45 amino acids, and domain lengths spread 
widely, short fragments should be considered more at risk of being structurally uninformative 
than long fragments. As the length distribution of MaxSub-supported substructures shows 
(Figure 6) we would retain 136 (23%) of the corresponding model fragments even if a minimum 
length of 90 amino acids were imposed, rather than the 45 amino acid cut-off we chose. Thus it 
seems likely that the majority of the model fragments in CYSP would be useful for investigating 
the local structure of the yeast proteins they represent. This notion was confirmed through 
visual inspection of the models and is illustrated by the three examples presented in more 
detail below.  
 

 
Figure 6. Length distribution of MaxSub-supported substructures. 

 
 SWISS ModBase SAM 

SWISS 769 (717) 649 (594) 585 (559) 

ModBase  2546 (2280) 620 (594) 

SAM   2211 (2211) 

Table 1. Number of pair-wise matched regions between models from the three 
data sources (ignoring gaps). The numbers of represented yeast proteins is given 
in parentheses. The total number of models and proteins in each set that were 
considered is apparent in the diagonal. Note that comparisons were only 
performed for YIDs represented by at least one retained model in each filtered set. 



 
 
The number of models yielding pair-wise matches is shown in Table 1. The number of matched 
models between SWISS and SAM is very similar to the number of three-way MaxSub-
supported substructures. At first glance this coincidence may appear to reflect that only one of 
the SWISS-SAM matched regions is not also supported by ModBase. However, this is not 
necessarily true as multidomain proteins can give rise to different numbers of pair-wise 
matched regions depending on which methods are compared (as is illustrated in Figure 5B). 
Indeed inspection of the results reveals that the relation between the pair-wise and three-way 
supported regions is not straightforward. Comparing the numbers of represented yeast proteins 
should be more informative and we note that the 545 proteins represented by the three-way 
MaxSub-supported substructure set in CYSP make up make up 91.8% of those represented in 
SWISS-ModBase; 97.5% of those in SWISS-SAM; and 91.8% of those in ModBase-SAM. 
While these numbers do not differ dramatically for different method-pairs, the proportion is 
higher for SWISS-SAM is than for the others. If one assumed that all three-way supported 
substructures are correct, but that there are likely to be more correct predictions in the set than 
the ones supported by all three methods, this could be explained by SAM being a slightly 
weaker predictor than the other two in this experiment. If this were the case it could be useful to 
look at the SWISS-ModBase set for additional (possibly) correct models. Alternatively, if one 
assumed that the three-way supported predictions are the only ones that are correct then this 
difference would indicate that SAM is the most useful method for preventing false models 
(which would make most sense if ModBase and SWISS were very similar methods). Neither of 
these assumptions can be expected to be entirely accurate (no known method guarantees that 
three-way supported predictions are actually correct) and forthcoming laboratory-determined 
protein structures will only provide an evaluation of a small number of the predictions in the 
near future. Moreover it would not be appropriate to derive more than very cautious 
conclusions based on this survey data. However, given the fact that the models provided by the 
SAM data source are deemed to be at “unrefined” stage, it is plausible that the first possibility is 
closer to the truth than the second. Our implementation makes it straightforward to perform a 
repeat experiment at a later stage of SAM-model refinement and/or to consult additional data 
sources in the future. 
 
To illustrate the results accessible at CYSP we have selected three examples: YPL132W, 
YBR024W, and YLR132C. The 3-D models of YPL132W in SWISS, ModBase, and SAM were 
all generated based on the same template structure, 1SO9A. By contrast, different template 
structures were used by the each of the three model sources to model YBR024W and 
YLR131C (Table 2). 
 

 

Template (E-value) 
YID Protein Name 

SWISS ModBase SAM 
YPL132W COX11_YEAST 1SO9A (4.5E-75) 1SO9A (3E-53) 1SO9A (4.0E-22) 

YBR024W SCO2_YEAST 2B7JB(7.9E-76) 1ON4A(4E-20) 1WP0A (2.8E-27) 

YLR131C ACE2_YEAST 1NCS (4.2E-17) 1UN6B (2E-15) 2GLIA (4.7E-27) 

Table 2. Three examples of proteins included in CYSP, specified by their YIDs and SWISS-PROT 
identifiers, with the template structures used and the E-values the three data sources attributed to 
their structure predictions. 

 
 
Pair-wise comparisons between 3-D models of YPL131W generated by SWISS, ModBase and 
SAM indicate that, with exception of some missing residues, the models are in perfect 
agreement throughout (Table 3 and Figure 9). By contrast, the three data sources only agree 
on the core regions of the structures predicted for YBR024W (the blue regions), and disagree 
otherwise (the green and red regions). Finally the three data sources disagree almost entirely 



on YLR131C, except over a short a-helical region (the blue regions). In this example the 
MaxSub-supported substructure would not be considered informative. Since it is shorter than 
45 amino it was discarded and is not included in the results accessible through CYSP. 
 
 

 
Figure 7. Backbone representations of the MaxSub results for three proteins: 
YPL135W, YBR024WC, and YLR131C. For each pair-wise comparison between 
the structures of Model 1 and Model 2 (in the order MaxSub read these models), 
substructures in blue are the regions in Model 1 that superimpose well onto Model 
2, while the other parts of the models are shown in green (Model 1) and red 
(Model 2). 

 

 



YID Model 1 Model 2 Missing 
Residues Pair-wise matched regions MScore 

MaxSub -
supported 
region 

SWISS SAM 2 GLU138-GLU170 ALA172-
GLY219 GLU221-PHE253 0.982 

ModBase SAM 2 VAL135-GLU170, ALA172-
GLY219, GLU221-ALA255 0.979 YPL132W 

SWISS ModBase 0 GLU138-PHE253 0.995 

GLU138-
PHE253 

SWISS SAM 44 

ALA120-ALA120, GLY122-
PHE125, LEU127-LYS143, 
SER145-TYR148, SER152-
HIS153, GLU160-GLU160, 
LEU162-ARG164, THR166-
LYS175, HIS177-ILE178, ILE180-
ASP203, ILE208-SER230, 
TYR250-GLY263, TYR266-
ARG276, GLN278-ILE279. 

0.660 

ModBase SAM 26 

PRO124-PHE125, LEU127-
LYS143, SER145-TYR148, 
SER152-CYS154, GLU160-
GLU160, LEU162-ARG164, 
THR166-ASP173, ILE180-
ASP203, HIS205-HIS205, 
TYR250-GLY263. 

0.459 

YBR024W 

SWISS ModBase 22 

PRO124-LYS141, LYS143-
HIS153, PRO155-PRO155, 
GLU160-SER170, GLN181-
PHE204, PRO206-PRO206, 
PHE248-PRO254, GLY256-
LEU262, ARG264-ARG264. 

0.400 

PRO124-
GLY263 

SWISS SAM 0 

PRO587-ILE591, VAL595-
VAL595, PRO599-ASP600, 
LEU602-PHE614, ARG617-
GLN629 

0.555 

ModBase SAM 25 
LEU606-LEU606, CYS610-
ASN611, PHE614-PHE614, 
ASN619-PHE637 

0.000 
YLR131C 

SWISS ModBase 10 LEU598-LEU598, CYS610-
ARG616, TYR618-GLN629 0.000 

(PRO606-
GLN629) 

Table 3. This table lists information extracted from the pair-wise structural comparison results by 
MaxSub. The missing residue column reports how many residues in Model 1 are not found in Model 2. 
Reported as well-matched regions are all strictly continuous sequence fragments over which Model 1 
coincided well with Model 2 after 3-D structural sequence-dependent superposition. 
 
 
Some validation of this experiment will become possible in the future as additional structures of 
yeast proteins are determined in the laboratory. These newly emerging structures will allow an 
assessment of the accuracy of our models at least in a few cases. It will be interesting to verify, 
at least qualitatively, the assumption that the approach we applied extracted more accurate 
substructures than the models that were less well supported. To this end we are keeping track 
of new yeast protein structures in the PDB, and the accuracy of the corresponding models in 
CYSP, on www.openk.org. 
 
 
2.4 Conclusions and Future Work  
 
In the experiment of Section 2.3 we grounded the experimental protocol of Figure 1 in a 



specific set of services, using the MagentA system as an interpreter for the protocol. It was 
necessary to route all the data and analysis services through MagentA (in the way described in 
Figure 2) because none of the original services was equipped to interpret the protocol. We 
therefore incurred a small one-off cost in enabling (via WSDL and HTML) the original services 
to communicate with MagentA. Having done this, however, we are able to use MagentA as a 
proxy for the original services for any LCC protocol, so that experimenters with different ideas 
about how best to coordinate these (and other suitably enabled) services can implement those 
by altering only the protocol. Notice also that the LCC protocol is separable from the 
mechanisms used to interpret it, and is shareable between peers during an interaction, so we 
can choose whether we want a single MagentA proxy for a group of services or a separate 
proxy for each service (giving a more or less finely grained peer-to-peer structure). Since 
MagentA is capable of interpreting any LCC protocol, we can in future add to the repertoire of 
protocols and thus extend the capabilities of the peer-to-peer system. For example, it is 
straightforward to write a LCC protocol for sharing filtered data between peers. It is also 
straightforward to write a LCC protocol that allows queries about specific types of protein 
structure to be routed between peers, thus allowing networks of peers to collate, filter and 
propagate results. The aim of this, ultimately, is to provide a peer network that, through sharing, 
can produce more confident predictions faster by sharing the analyses performed earlier by 
others. Opportunities for applying similar consistency-checking, and data sharing, strategies 
are found in many areas of bioinformatics. The single experiment in this paper shows the 
immediate benefit of this on a small scale for a specific form of analysis but to make this 
effective for large peer groups, where trust and provenance are (among other issues) important 
to the coherence of peer groups. This, although outside the scope of the current paper, is one 
of the central themes of the OpenKnowledge project (www.openk.org).  
 
 
3 Scenario II: Peer-validated protein identification in proteomics research 
 
3.1. Biological Background 
 
Proteomics studies the quantitative changes occurring in a proteome (which is the protein 
equivalent of a genome) and its application for disease diagnostics and therapy and for drug 
development. We shall focus here on the initial step of protein analysis, called expression 
proteomics. During this step proteins are extracted from the cells and tissues, are separated 
either by two dimensional gel electrophoresis (2DE) or liquid chromatography (LC) techniques, 
and further digested, identified and sequenced by mass spectrometry (MS) methods. These 
techniques take advantage of the current knowledge of the genome from humans and other 
species, which is available in public databases and can be accessed through data-mining 
software that relates MS spectrometric information with database sequences. Protein sequence 
data held in databases, however, is mostly produced from the direct translation of gene 
sequences. But protein activity is determined by maturation events that include so called pre- 
and post-translational modifications of their structure. The importance of these modifications is 
so high that gene and protein expression in eukaryotes show no correlation in many cases.  
 
Currently, however, technology allows the high throughput sequencing of proteomes using 
techniques such as multidimensional liquid chromatography coupled with tandem mass 
spectrometry (MDLC-MS/MS), which not only offer information on the proteins present in the 
proteome but also on their sequence (that can differ from the one in the translated databases), 
and type and position of their modifications. Unfortunately, MDLC-MS/MS proteomic analysis is 
currently an impossible task for humans to achieve. It produces a huge amount of spectra, 
each yielding several peptide or peptide tags candidates that can belong to the same or 
different proteins. Each step produces an identification score whose final evaluation (of 
hundreds of spectra) is performed manually or by taking high probability data.  
 
The speed of production of this type of information is increasing very fast as a good number of 
proteomic laboratories being involved in the characterization of proteomes, protein complexes 
and networks using these strategies. In the first instance sequence tags are compared to 



sequence information in centralised databases storing predicted protein and “expressed 
sequence tags” (EST) information. This is generally helpful when exactly, or nearly-exactly, 
identical protein sequences are found to be part of previously identified proteins.   However, 
many factors complicate these searches, for instance unknown degrees of post-translational 
modification. In addition, success of peptide and protein identification depends on database 
and file quality, database errors in sequence annotations, post-translational modifications, 
protein mixtures, etc. 
 
Currently, sequencing information from other laboratories, especially those archives that do not 
produce clear identifications with the tools available to the source laboratory at a given 
moment, is rarely accessible to other groups involved in similar tasks and most of it will never 
be reflected in protein database annotation. The most probable scenario is that this information 
is eventually trashed. This information, however, could be of high importance for other groups 
analysing the sequence/function of this or other homologous proteins. Modification information 
and sequence tags generated in one laboratory could be used by other laboratories, to 
evaluate the confidence of experimental (or predicted) sequences derived from their work (in 
the same or other species). Trying to get as much good quality precision and recall of hits in 
public databases and the data from other laboratories as possible would be of great benefit 
because such hits could increase the confidence in the identification of the proteins of the 
analysed sample. 
 
 
3.2 Peer-to-Peer Proteomics 
 
We envision, therefore, a scenario in which various proteomic laboratories join a peer-to-peer 
network into which they feed the sequencing information generated locally at their respective 
labs so that other proteomic laboratories of the network can look for sequencing information in 
those files that proteomics laboratories deemed “useless”, because they did not yield the 
information they required for their own particular proteomic analysis. This is particularly so with 
the mass spectra themselves, as no mass spectrum database is currently available, and 
spectra whose sequences do not give hits in a database search are trashed. The Open 
Proteomics Database (bioinformatics.icmb.utexas.edu/OPD) attempts to favour the open 
sharing of mass spectra, but it still relies on centralised repositories [25].  
 
Figure 8 defines an interaction model for our envisioned scenario. It follows initially a similar 
kind of protocol as that for the consistency checking in yeast protein structure prediction shown 
in Figure 1. In this scenario a protein identifier searches several search engines it is aware of 
for hits with a significant score. The particularity in this scenario is that, for the validation, the 
validator checks the sequences it considers of low score with additional data of several peer 
proteomic labs it knows, and which have put their experimental data files with MS and 
sequence tags available to other peers for cross-checking.  
 
 
3.3 Semantic Heterogeneity 
 
The level of semantic heterogeneity in peer-to-peer information sharing in expression 
proteomics is currently not at the level of sequence tags or mass spectra. However, there are a 
high number of proteomics technologies, each of which has developed several approaches and 
analytical conditions. Although proteomics facilities in Spain, for instance, are using up to seven 
different types of mass spectrometers producing their own file formats and using different 
procedures for raw data management, standard procedures for mass spectra interchange have 
already been proposed, such as mzXML [26] or HUP-ML[27]. Semantic heterogeneity arises at 
the annotation level of mass spectra and sequence tags.  
 



 
 

Figure 8. LCC interaction model for peer-validated protein identification. 
 
 
Annotation information ranges from the identification of the organism, cell, organelle or body 
fluid from which the analysed sample was extracted, to the name of the identified 
peptide/protein of a mass spectrum or sequence tag. Although most of this annotation will 
usually not yield semantic mismatches between proteomics laboratories, it may nevertheless 
be the case that such semantic mismatches need to be addressed. This is particularly the case 
with protein names, due to the variability of terms used for identical sequences. For example, 
the protein lymphocyte associated receptor of death has several synonyms including LARD, 
Apo3, DR3, TRAMP, wsl, and TnfRSF12. Researchers often use different names to refer to the 
same protein across sub-domains. Semantic matching techniques will need to dynamically 
resort to external sources, such as scientific publications in which protein equivalences have 
been identified, in order to overcome this sort of semantic mismatches. They will also need to 
be capable of disambiguating homonyms, i.e., two or more protein names spelled alike but 
different in meaning [28].  
 
Interestingly, in protein identification matching of sequence annotation may be approximate and 
partial and still be valuable for the task: a sequence tag taken from a human tissue, for 
instance, matching that of a protein coming form the sample of a rat’s kidney still may provide 
high confidence measure to the identification task as both organism are mammals. 
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