
OpenKnowledge

FP6-027253

OpenKnowledge Visualiser Sub-Components

David Dupplaw1, Sindhu Joseph2, Paolo Besana3, Madalina Croitoru1,
Srinandan Dasmahapatra1, Bo Hu1, Paul Lewis1, Antonis Loizou1, Liang

Xiao1

1 IAM Group, School of Electronics and Computer Science, University of
Southampton, Southampton, SO17 1BJ, UK.

2 Artificial Intelligence Research Institute, CSIC (Spanish Scientific Research
Council), Campus Universitat Autonoma de Barcelona, 08193 Bellaterra,

Catalonia, Spain.
3 Centre for Intelligent Systems and their Applications, University of

Edinburgh, Edinburgh, EH8 9LE, UK.

Report Version: final
Report Preparation Date: December 2007
Classification: deliverable 5.4
Contract Start Date: 1.1.2006 Duration: 36 months
Project Co-ordinator: University of Edinburgh (David Robertson)
Partners: IIIA(CSIC) Barcelona

Vrije Universiteit Amsterdam
University of Edinburgh
KMI, Open University
University of Southampton
University of Trento

1

OpenKnowledge Visualiser Components: Visual

Diagnostic and Visual Authoring Tools

David Dupplaw Sindhu Joseph Paolo Besana
Madalina Croitoru Srinandan Dasmahapatra Bo Hu

Paul Lewis Antonis Loizou Liang Xiao

January 2, 2008

Abstract

OpenKnowledge is based on the creation of interaction models that run
across a distributed peer to peer network. Although the learning curve
to creating interaction models has been minimised through the use of a
simple process language, it is clear that a graphical representation of an
instance of an execution of an interaction model would be very useful in
diagnosing logical errors in the interaction model. In this deliverable we
explain the diagnostic visualiser tool that provides a means for receiving
information about the execution of an interaction model. We also describe
our work on the development of visual composition tools for the creation
of interaction models in LCC. In particular we describe an algorithm that
provides a conversion from Electronic Institutions (EIs) to Lightweight
Coordination Calculus (LCC) allowing the utilisation of existing graphical
composition tools for EIs.

1 Introduction and Motivation

In computer programming, there are two types of programming error. The
first is syntactic errors that usually cause the language compiler to throw an
error when compilation is attempted. These can be caught early when the cost
of correction is minimal. In OpenKnowledge, the language used to develop
interaction models is LCC [2]. The parser we have developed for LCC is able
to detect syntactic errors and provide some assistance in identifying the errors.
This tool is included as part of the standard OpenKnowledge user interface.

The second type of programming error, the logical error, is often known
coloquially as a bug. Computer programmers have debuggers that help with
the correction of these errors. Debuggers are able to hook into the program
execution and catch points at which the execution fails. This process is made
easier because the execution is contained within one machine. Logical errors in
interaction models can be costly because they change the state of the network
and can be more difficult to track down. Executions of interaction models may

2

fail due to problems or restrictions on other peers of which the author of the
interaction model has no control. This can make it difficult to detect whether
failure was due to logical errors or some other factors.

In the following sections we will introduce the tools that are in development
to aid the diagnostics of interaction models. We will also introduce our work
in creating visual composers that allow interaction models to be programmed
graphically.

2 Local Execution Framework

During the creation of the OpenKnowledge kernel, the developers of the kernel
required a means for testing and executing the correctness of the code which
executes interaction models. Having to create networks when the code-base was
so immature meant that debugging the kernel code was difficult.

To deal with these problems, a framework was created that allows the exe-
cution of interaction models on a single computer, without the need to access
the OpenKnowledge network. It simulates the interaction by creating many
peers within the one single machine - enough to fulfil all the roles within the
interaction model. It then invokes the execution of the interaction model using
a coordinator of which the local framework has control. The main advantage of
the framework is that it still utilises the kernel’s adapter, interpreter and coor-
dinator modules, thereby providing a realistic simulation of the actual execution
of the model.

This framework is a very useful tool for the author of interaction models.
Placing an interaction model onto the network which has never been run can
be a worrying experience for an author - how do they know if they got it right?
By executing the ineteraction model locally, the author can ensure that the
logic is correct for the various possibilities of the interaction model. With some
development, the framework could provide automatic hooks into constraints in
the model allowing the author to test different paths in the model by forcing
constraints to succeed or fail.

3 Execution Visualisation Framework

Visualisation of the execution of an interaction model can be a useful tool for
the identification of failure points in the interaction. Peers which have not
responded, or have responded in an unexpected way, can be identified much
more easily.

As the coordinator peer has control over the execution of the interaction
model, it is able to know the state of the interaction at every point. It knows
which peers have failed to satisfy constraints, which messages have been sent
and which branches in the interaction model have been taken. This data is very
useful for interaction model authors who are testing their models.

3

To retrieve this information and present it to a user, the kernel has a diag-
nostic module that connects a peer with a coordinator peer. That coordinator
peer will execute interaction models and will inform connected peers, that wish
to be informed of the diagnostic information, when messages are sent and re-
ceived and when constraints are solved. This follows the standard event-listener
design pattern but in a distributed manner.

The diagnostic module comprises of a set of messages and a component
that is able to handle those messages. The state of the diagnostics for many
simultaneous interactions can be handled such that a visualisation can access
the information for a specific interaction run and create a display. This fits the
standard model-view-controller (MVC) design pattern, where the coordinator is
the controller, the model is stored in the diagnostic module and the visualisation
of the diagnostics is the view.

There are two means by which a peer can register itself with the coordinator
to receive the diagnostic information. The first is where a peer registers itself
with a coordinator to receive diagnostic information for an interaction that is
already running. The second is to register itself during the bootstrap process.
The latter registration method is necessary for peers that wish to examine the
real-time execution of the interaction model, whereas the former is useful for
diagnosing interactions that have, for example, been running longer than ex-
pected. Note that to receive information about a running interaction, the peer
must be aware of the peer identifier of the coordinator peer and must also be
aware of the identifier of the interaction run on that coordinator.

The coordinator may have policies that might disallow a peer from being
sent diagnostic information. These policies may be based on peer configuration,
physical limitations of the peer or from values retrieved through the trust and
reputation service. An example restriction might be that only peers that are
playing within an interaction may receive the diagnostics.

The registration with the coordinator may include information that informs
the coordinator that the peer only wishes to receive certain types of events that
occur within the interaction. For example, a peer may only be interested in
events where the satisfaction of constraints time-out. The types of events that
have been identified so far are as follows:

• Message Sending: Fired when an agent in the interaction sends a mes-
sage.

• Message Reception: Fired when an agent in the interaction receives a
message. Note that the agent may not handle this message or be exepcting
the message.

• Message Consumption: Fired when an agent in the interaction con-
sumes a message.

• Constraint Satisfaction Request: Fired when an agent requires a con-
straint to be solved.

• Constraint Satisfied: Fired when a constraint is satisfied.

4

• Constraint Failure: Fired when a constraint fails to be satisfied.

• Constraint Message Sent: Fired when the coordinator sends a message
to a peer to satisfy a constraint.

• Constraint Message Received: Fired when the coordinator receives a
message from a peer that has been satsifying a constraint.

• Coordinator Select-Peers Request: Fired when the coordinator asks
a peer to select a compatible list of peers to play with.

• Coordinator Select-Peers Response: Fired when the coordaintor re-
ceives a select-peers response from a potential peer in the interaction.

• Committment Request Sent: Fired when the coordinator asks a peer
to commit to the interaction

• Committment Request Received: Fired when the coordinator re-
ceived a committment request from a peer.

The diagnostic module is not limited to those interaction events above, so
a peer must also perform filtering of incoming events and this can be achieved
by registering the interaction events with event handlers. The communication
layer handles message events by invoking specific handlers for those events. The
handler for the diagnostic messages (the diagnostic module) will be responsible
for redirecting the specific interaction event to an interaction event handler.
Again, this can be provided by the standard event listener design pattern.

Note that the above list of interaction events are fired within the coordinator,
such that the coordinator can inform listening peers. However, the firing of
such an event within the coordaintor does not necessarily result in a diagnostic
message being sent. The reason is that some events occur before peers may
have joined the interaction. In cases like this the event will be logged in the
coordinator. This diagnostic log may be delivered to a peer when it is able to
receive diagnostic information. For example, the select-peers request/response
events will not be sent to a peer because peers cannot register for diagnostic
information before the committment to play the interaction is made.

3.1 Getting Diagnostics for a Running Interaction

A peer that wishes to be informed of the diagnostic information for an inter-
action that is already running, must register itself as a listener with the coor-
dinator peer. This comprises a request and response message to and from the
coordinator.

The coordinator will receive requests for listener registrations and will ac-
cept those that fit within its policy rules. Those peers will receive successful
registration responses, while others will receive failure responses such that they
understand that they will not be receiving diagnostic information.

Once the diagnostic link has been made, the coordinator will send messages
to the listener peer when events, for which the peer has registered, are fired.

5

The coordinator will not expect response messages - the messages are delivered
with no guarantee of receipt. This minimises network overhead.

The coordinator may be configured such that it will log all events for the
duration of an interaction. This will allow joining peers to receive a complete
history of the interaction, up to its current state, without having to listen from
the start. However, it is important that logging is user configurable, as this will
incur a processing overhead that may be unacceptable.

3.2 Getting Diagnostics From Interaction Initialisation

During bootstrapping of an interaction, after a mutually compatible group of
peers has been chosen, all peers that will play in the interaction are contacted
to commit to play the interaction. This commitment can provide a means for
a peer to flag that it also wants to receive diagnostic information. Clearly, this
disallows peers outside of the interaction from receiving the information from
the start, however, it is expected that the peers that will want to receive the
“live” diagnostic information will be a members of the interaction.

When the coordinator receives a commitment request with the additional
request for diagnostics, it will register the peer in its diagnostic listeners list
for the interaction run that is being committed to. Thereafter, the coordinator
will send messages to the listener peer when events, for which the peer has
registered, occur.

3.3 Coordinator Support

For the diagnostic module to be informed of the necessary events that occur in
the interaction model, the coordinator and its interpreter need to be augmented
with some extra features.

These features are:

• Interaction Run Identifiers: The coordinator must be able to uniquely
identify each interaction model run that it is handling, such that incom-
ing registration requests can be directed to the correct interpreter. It also
allows the peer receiving the diagnostics to be able to correctly handle the
incoming messages if multiple interaction instances are sending diagnostic
data to it. The unique identifier can be created based on the coordaintor’s
peer ID and a unique number which the coordaintor generates for a run.
This will ensure the global uniqueness of the interaction run identifier.

• Interpreter Events: So that the coordinator is able to inform registered
peers of events that occur in the interaction model, the interpreter must
be abnle to produce interaction events and inform the coordinator. The
best method of doing this is to apply the event listener design pattern to
the communication.

• Coordinator Events: Some diagnostic events are generated by the co-
ordatinor meaning the coordinator code needs to be extended to fire the

6

events. Such events include the reception of a constraint message.

• Further Message Types: On receiving an event from the interpreter,
the coordinator needs to determine the appropriate peers that need to
be informed (based on their event filters) and send a message to them
informing them of the event. The message will be a single message, but
must be capable of delivering different event types. The type of event that
occured in interpretation is encoded in the message. The possible event
types were described in section 3.

4 Diagnostic Visualisation

The use of the event listener pattern for diagnostic information means that the
visualisation of the diagnostic information can be provided by any means. The
API provided by the listener means that any object that implements the API
can provide a visualisation.

To demonstrate the use of the diagnostic visualiser, a sequence diagram
component has been provided for the user interface. This is a listener for some
diagnostic events - namely the message sending and receiving between agents
in the interaction model.

The visualisation is based on a generic graphical class that we have developed
that is able to draw standard sequence diagrams.

Figure 1: An interaction model and its diagrammatic representation

At the time of writing the visualisation is still under development, so Figure
1 shows an example of the expected interaction visualisation for an interaction
model. Along the top of the diagram the participants that are interacting in
the interaction model are shown. The vertical line from them represents their
timeline. Message operations are drawn between the participants in solid lines
when they are consumed at the receiver. The type of the message is shown
along the message line.

It is possible to toggle the display of the the coordinator as an agent in the
interaction (in a different colour to differentiate it from the agents defined in the

7

interaction model). The messages to and from the coordinator (for constraint
satisfaction requests and responses) are drawn in red.

5 Interaction Model Visual Composition from
Electronic Institutions

An aspiration of OpenKnowledge is to allow users who have very little knowledge
of the underlying technology to use the system effectively. To that end, it is
important that some tools are developed that allow users to create interaction
models without the need to learn and program LCC and Java.

As part of their work on Electronic Institutions (EIs), IIIA-CSIC at the
Universitat Autonma de Barcelona have created graphical interface tools for
their creation. The Electronic Institutions Development Environment (EIDE)
is a set of tools aimed at supporting the engineering of intelligent distributed
applications as electronic institutions. The EIDE is composed of:

• Islander A graphical tool that supports the specification of the rules and
protocols in an electronic institution.

• SIMDEI/OMS Simulation tool to animate and analyse specifications cre-
ated with Islander prior to the deployment stage.

• Agent builder Agent development tool.

• AMELI Software platform to run electronic institutions. Once an elec-
tronic institution is specified with Islander is ready to be run by AMELI
without any programming.

As EIs constitute a super-set of the basic LCC functionality, non-complex
EIs may be converted into LCC. The use of the existing user interface for EIs
provides a lead-in for current users of Islander to use the OpenKnowledge plat-
form, as well as leveraging the work put into creating the Islander graphical
interface. In the following sections we describe the functionality of EIs before
describing how these may be converted into LCC.

5.1 Electronic Institutions

Loosely speaking, Electronic Institutions (EIs) are computational realizations of
traditional institutions; that is, coordination artifacts that establish an environ-
ment where agents interact according to stated conventions, and in such a way
that interactions within the (electronic) institution would count as interactions
in the actual world.

According to the basic definition of an electronic institution [1], an EI is com-
posed of three components: a dialogical framework that establishes the social
structure, the ontology, and a communication language to be used by partic-
ipating agents (playing either institutional staff or non-institutional external

8

roles); a performative structure defining the activities (also named scenes) along
with their relationships; and a set of norms defining the consequences of agents’
actions.

5.1.1 Scene protocols

A scene is, in broad terms, a conversation protocol played by a group of agents.
More precisely, a scene defines a generic pattern of conversation protocol be-
tween roles. Any agent participating in a scene has to play one of its roles. It
is generic in the sense that it can be repeatedly played by different groups of
agents. In the same sense that the same theater scene can be performed by
different actors incarnating the same scene characters.

A scene protocol is specified by a finite state directed graph where the
nodes represent the different states of the conversation and the directed arcs
connecting the nodes are labeled with the actions that make the scene state
evolve. These are: illocution schemes and timeouts. The graph has a sin-
gle initial state (non-reachable once left) and a set of final states representing
the different endings of the conversation. There is no arc connecting a final
state to some other state. The next image is an example of a scene protocol.

5.1.2 Illocutions

An illocution schema is part of the transition definition. It defines the condi-
tions necessary for an illocution to produce a state change, and the transition’s
resulting side actions.

Illocutions schemas are defined as IS = ι((ags, Rs), (agr, Rr), ϕ). Where ags

and Rs are the sending agent identifier and role, agr, Rr are the receiving agent’s
identifier and role, ι is the illocutionary particle and ϕ is the propositional

9

content being sent. Illocutions may contain variables which give the engineer
greater specification power.

By illocution we refer to those illocution schemas whose variables have been
grounded. To say it in another way, an illocution is an illocution schema
whose definition is composed exclusively by constants. Grounding is the process
through which an illocution schema becomes an illocution by substituting the
variables by their actual values.

Variables can be used for illocution schema specification. They can appear
as bound or free. A free variable vf is grounded by matching it with any value
of its type. Then, the value ‘cn+1’ used to match vf is added as a new binding
bi = (vf , cn+1) to σ in the execution environment. A variable is specified as
free when prefixed with ‘?’. On the other hand, when a schema with a variable
vb, specified as bound, is matched against an actual illocution, it can only be
substituted by the value ‘cn’. Where ‘cn’ is vb’s last binding bl = (vb, cn) ∈ σ.
A variable is specified as bound when prefixed with ‘!’. In other words, if the
value being matched against ‘!vb’ is different from ‘cn’, the illocution uttered is
unacceptable.

Most parts of an illocution schema can be specified with variables: agent ids,
agent roles, and propositional content. Constraints, and actions labeling arcs
can also use variables although only as bound.

5.2 Converting EIs to LCC

The Electronic institution is a state based model as it keeps track of the state of
the conversation at any instant of time and defines a conversation as a movement
between states. LCC on the other hand views a conversation from each of the
agent roles point of view. The state of the conversation is implicit in LCC and
is represented by the sequence and parallel operators. Thus a translation from
EI to LCC is essentially a translation from the state based view to a role based
view. That is equivalent to translating an EI scene to a collection of scene
projections corresponding to each of the roles in the scene1.

The translation generates one LCC clause for each role state combination.
Inside the clause the LCC code refers to what an agent of the given role can
do in a given state. The conversation thread can be recovered by the “then”
operator which works as a transition from one state to the next for the given
role. Inside each clause the algorithm checks for the possible transitions out of
that state and each of such transitions is translated connecting them with an
“or” clause. If the transition’s end state is a final state then the clause ends
otherwise the translation is called again.

1For each agent variable and role in a scene specification, we can obtain its scene projection.
Sr1 = (R,DF,w0,Wf , (WAr)r∈R, (WEr)r∈R, θr1 , λ,min,Max) is the projection of scene
S = (R,DF,w0,Wf , (WAr)r∈R, (WEr)r∈R, θ, λ,min,Max) for agent role r1. Where θr1 =
{(wi, wj) ∈ W × W |λ(wi, wj) = ι((, Rs), (, Rr),) and ((Rs = r1) or (Rr = r1))}. The
intuition behind a scene projection is that when you project a scene through a role, you
end up with a ‘sub-scene’ where the agent role is present in all the illocution schemes. The
projected scene may be an unconnected graph.

10

The main algorithm extracts the set of transitions of an EI scene. Then for
each of those transitions it invokes an extractLCC method once for the sender
and then for the receiver agent roles of the transition, the results of which are
appended to the LCC clause for the sender role and the receiver role respectively.
If there is not yet a role, it first invokes a createRole method and then appends
the clause as above.

ExtractLCC translates a given EI transition to an LCC Clause. The output
contains an LCC clause for the illocution defined by the transition. One of the
parameter to this method is the role information. The generated LCC clause
varies depending on whether it is invoked with a sender or a receiver role.

The transformation algorithm works on the following assumptions:

• Each transition must be labeled with only one illocution.

• Each agent variable must only be used for agents of one and only one role.

• There is only one entry and exit state for all agent roles.

Previous to executing the transformation algorithm on a scene, its specifi-
cation needs to be transformed to a scene that has the said properties. The
first property is attained by getting the transitions with more than one illocu-
tion schema and generate one transition for each illocution schema. All of the
generated transitions will have the same start and end state, and each will have
one of the illocution schemas of the original transition. The second property
is attained by renaming those agent variables that are used for agents of more
than one role. The renaming is done by appending the role ID to the variable
name, generating as many different agent variables as agent roles it represented.
The third property is introduced by permitting only such scenes at the input
level.

5.2.1 Use of LCC operators

In order to define a message passing protocol, LCC has three operators; “then”
, “par”, and “or”. The operators define sequence, parallelism, and choice re-
spectively. Since EI scenes are played sequentially (only one agent speaks at a
time), the transformation will not generate the “par” operator. The use of the
other two operators is explained below.

An EI scene is sequential, every agent can only be in one state at a time.
This means that the transitions from a state should be represented as possi-
bilities with only one of them realizable at a time. If there are more than one
possible transitions from an EI state, then the corresponding LCC code uses
“or” operator to connect the clauses generated out of those transitions. Note
that the “or” operator is used only if at least one role appears as sender or re-
ceiver in more than one transition. Also it should be noted that the LCC code
parts connected with an “or” operator are mutually exclusive, if one happens
the others cannot.

The “then” operator is used to indicate sequence in the protocol. As EI
scenes are sequential, moving from one state to the next is realized through the

11

Control Flow

Message Exchange

orthen par

(send)

=>

(receive)

<=

Figure 2: LCC operators

“then” operator in the translation. It acts as a connective to link a transition
to its target state. The LCC operators are shown in figure 2.

5.2.2 Illocution schema translation

The method ExtractLCC translates the illocution schema to the appropriate
LCC clause. ExtractLCC first checks if the caller is a receiver role. If yes, it
simply generates the schema “msg ⇐ sender” where sender is elaborated with
sender role, sender variable and the variables available in the illocution schema.

ExtractLCC if called with the sender role, checks for the constraints in ex-
ecuting the illocution prior to generating the schema “msg ⇒ receiver”. Con-
straint checking is done by extracting the constraints and evaluating them. Some
of the values that will always need to be checked are the bound variables (see
5.2.3).

5.2.3 Variables

A major difference between EI scene and the corresponding LCC protocol is that
an EI scene has a global state where it can keep track of the state of the scene
variables as the scene execution progresses. Where as the corresponding LCC
variables have local scope restricted to a clause. Thus it becomes necessary to
ensure references to the same variables and values across LCC clauses by other
mechanisms. Here it is realized through variable passing. The variables are
picked up as and when encountered in an illocution and passed as parameters of
agent roles to the next clause. This way the scope of the variables is extended
to the boundaries of a scene.

5.2.4 Constraints actions← message← constraints

The constraints contain the operations to extract data from the scene and other
arithmetic and logic operations. The actions contain operations to update vari-

12

ables of the scene, in addition to those operations that can be used in the
constraints.

Below we specify the algorithm details. We have used certain procedure
names which are self explanatory but are not defined. It is straightforward to
define those small functions and so we have not included them in the document.

Algorithm 1 EI2LCC(scene)
1: lcc← NIL
2: for transition ∈ getTransition(scene) do
3: for roles ∈ getRoles(lcc) & states ∈ getStates(lcc) do
4: if equals(roles, senderRole) & equals(states, source) then
5: lcc〈senderRole,source〉 ← or + extractLCC(transition, “sender”) + then +

addTargetClause(target.variables)
6: senderFound← 1
7: end if
8: if equals(roles, receiverRole) & equals(states, source) then
9: lcc〈receiverRole,source〉 ← or + extractLCC(transition, “receiver”) + then +

addTargetClause(target.variables)
10: receiverFound← 1
11: end if
12: end for
13: if !senderFound then
14: lcc〈senderRole,source〉 ← newRoleClause(clause, lccrole, source)
15: lcc〈senderRole,source〉 ← extractLCC(transition, “sender”) + then +

addTargetClause(target.variables)
16: end if
17: if !receiverFound then
18: lcc〈receiverRole,source〉 ← newRoleClause(clause, lccrole, source)
19: lcc〈receiverRole,source〉 ← extractLCC(transition, “receiver”) + then +

addTargetClause(target.variables)
20: end if
21: lcc〈senderRole,target〉 ← newRoleClause(clause, lccrole, target)
22: lcc〈receiverRole,target〉 ← newRoleClause(clause, lccrole, target)
23: end for
24: return lcc

Algorithm 2 extractLcc(trans, role)
lccsend ← NIL

2: if role = “sender” then
lccsend ← lccsend + actionsToLcc(trans.actions)

4: lccsend ← lccsend + messageToLcc(trans.message, trans.source.variables)
lccsend ← lccsend + constraintsToLcc(trans.constraints)

6: end if
lccrec ← NIL

8: lcc← lccsend

if role = “receiver” then
10: lccrec ← messageToLcc(trans.message)

lcc← lccrec

12: end if
return lcc

6 Conclusions and Future Work

In this deliverable we have described the use of a diagnostic visualiser for the
debugging of interaction models and their executions. We have described the
module that each kernel must possess if it wishes to display this information. We

13

Algorithm 3 extractVar(trans)
target.var ← source.var

2: for var ∈ trans ∧ isFreeInTrans(var, trans) do
target.var ← target.var + addToLcc(var)

4: end for
for var ∈ trans ∧ isBoundInIllocution(var, trans) do

6: target.var ← target.var + checkBindingInLcc(var)
end for

8: return target.var

have described the process by which peers subscribe to receive process execution
information from the controlling coordinator before receiving updates as and
when the interaction proceeds.

We have also described early work on the creation of visual composition
tools that allow the graphical creation of interaction models. In particular, we
have described how the existing user interface components that are available
for electronics institutions can be utilised for the creation of LCC protocols by
a translation algorithm that can process the output of the Islander graphical
schema.

We plan to provide a user interface module, such as Islander, for composing
protocols as part of the standard distribution package. Ideally, this user interface
module should be able to both allow creation of protocols as well as visualisation
of the execution of the protocols that the diagnostic module is able to provide.
That way, the user is provided with a consistent suite of tools that lead them
from the creation process of an interaction, through the debugging process, to
the actual execution of a protocol on the OpenKnowledge network.

References

[1] J. Ll. Arcos, M. Esteva, P. Noriega, J. A. Rodr̀ıguez-Aguilar, and C. Sierra.,
Engineering open environments with electronic institutions, Engineering Ap-
plications of Artificial Intelligence, vol. 18.

[2] David Robertson, Multi-agent coordination as distributed logic program-
ming., ICLP, 2004, pp. 416–430.

14

