
OpenKnowledge

FP6-027253

Plug-in component supporting trust1

Juan Pane1, Carles Sierra2, Adrián Perreau de Pinninck2, Pavel Shvaiko1

1 University of Trento
{pane;pavel}@dit.unitn.it

2 IIIA(CSIC) Barcelona
{adrianp;sierra}@iiia.csic.es

Report Version: final
Report Preparation Date: 21/12/07
Classification: deliverable 4.8
Contract Start Date: 1.1.2006 Duration: 36 months
Project Co-ordinator: University of Edinburgh (David Robertson)

Partners: IIIA(CSIC) Barcelona
Vrije Universiteit Amsterdam
University of Edinburgh
KMI, Open University
University of Southampton
University of Trento

1The originally planned title of this deliverable as from the project proposal was ”Trust
and reputation evaluation plug-in”. However, this new title better reflects the current
contents of the deliverable and needs of the project, and therefore, is used here.

1

Abstract

This document provides a brief documentation of the Trust com-
ponent within the OpenKnowledge (OK) project. In particular, it
discusses: (i) the Trust algorithms, (ii) the Trust component archi-
tecture, (iii) the graphical user interface, and (iv) a concrete case
study scenario.

1 Introduction

This deliverable describes the plug-in implementation of the trust compo-
nent described in Deliverable 4.5 [1]. The deliverable is divided in two major
sections. Section 2 explains the decisions taken when implementing the algo-
rithms in Deliverable 4.5. The currently implemented version is a stand-alone
one. This section also explains what visual interfaces have been implemented
to interact with the plug-in. Section 3 explains the working of the algorithms
in a concrete negotiation scenario.

2 Implementation

2.1 Trust model implementation

The following web site http://www.few.vu.nl/OK/wiki/ provides the Open-
Knowledge (OK) client installation guidelines, while the source code is avail-
able at the project revision (subversion) control system - SVN: http://

fountain.ecs.soton.ac.uk/ok/repos/modules/trust/trunk2.
The Trust model has been implemented as a separate module from the

Open Knowledge Kernel [2]. This decision was taken considering that the
computation of Trust values requires a fair amount of computational re-
sources, so leaving the kernel as lightweight as possible. Only those peers
that require the sophisticated computation of trust because, for example,
they are running sensitive interaction models (IM) [3] like buying and selling
goods, or they run on mobile devices, can choose to use the trust module as
a service.

The interface of the trust module is:

public interface ITrust {
//Trust interface

public double getTrust(String peerID, Commitment commit);
}

2Authorization required, contact David Dupplaw (dpd@ecs.soton.ac.uk) for an account
set up.

2

where the first argument peerID of the getTrust function is the identity
of the peer of which we want to assess the trust about a particular yet
to be signed commitment3 commit. The commitment commit is a 4-tuple
(β, α, 〈im, r,m, ϕ, cm〉, t) where 〈im, r,m, ϕ, cm〉 is the context. This means
that β commits to α to play role r in interaction model im and, as part
of playing the role r, to send a particular message m instantiated as ϕ, in
a manner determined by the set of constraints cm, the commitment being
made at time t, see [1] for details.

Each peer α has a local history Mα of interactions with other peers βs.
Each entry µ in Mα is a 4-tuple 〈C, ϕ′′, g, d〉, where C is the previously defined
commitment, ϕ′′ is the observation of what actually was done by β, g is in
0,1 and can denote correct ”1” or failed ”0” execution of the im, and d is
α’s rating, this is, how happy the user was with the actual observation of the
commitment.

Trust is calculated on demand following Algorithm 1 in this section (im-
ported from Deliverable 4.5 [1] for the purpose of completeness of the deliv-
erable). The main steps in the algorithm are:

1. (lines 1 to 6) build the Focus set, this is, the set of all terms ϕ′ from the
local Ontology O that are similar enough (over a defined threshold ν)
to the current commitment ϕ. Where the similarity function is defined
as:

Sim(ϕ, ϕ′) =

{
1 if ϕ = ϕ′

e−κ1l · eκ2h−e−κ2h

eκ2h+e−κ2h otherwise
(1)

where l is the length (i.e; number of hops) of the shortest path between
the concepts, h is the depth of the deepest concept subsuming both
concepts, and κ1 and κ2 are parameters balancing the contribution of
the shortest path length and the depth, respectively [4].

2. (lines 7 to 9) calculate the decay distribution D. Where D is the default
probability distribution when there are no relevant experiences.

3. (lines 10 to 13) calculate Hβ, which is the set of commitments that the
peer β has successfully fulfilled, according to the user rating d of the
observation ϕ′′.

4. (lines 14 to 21) measure the ability of β of doing ϕ, considering the set
Hβ of what he has successfully done in the past.

3We follow Deliverable 4.5 in that a commitment is any ontological expression that can
be observable. Not all ontological expressions are observable. In that sense, a concept
(element in the vocabulary, e.g. Cow) in the ontology can not be the subject of a com-
mitment, but a contract or a proposition whose truth can be verified can be (e.g. a cow
is a mammal).

3

Algorithm 1 function Trust(α, β, 〈im, r,m, ϕ, cm〉)
Require: O {the peer finite local ontology}
Require: κ1, κ2 : Real [Default 1.0] {parameters of the similarity function}
Require: η : [0, 1] [Default 0.8] {min. sem. similarity in the computation}
Require: ν : [0, 1] [Default 0.95] {decay parameter}
Require: ζ : [0, 1] [Default 0.7] {minimum satisfaction}
Require: ω : [0, 1] [Default 0.1] {minimum overall similarity}
Require: λ : [0, 1] [Default 0.1] {minimum update relevance}
Require: nex : N [Default 6] {number of experiences to be highly confident}
Require: Prefer : Terms(O)×{ϕ} → [0, 1] [Default Prefer(x, y) = if x = y then 1 else 0]

{a prob. dist. for preference of terms over ϕ represented as a vector}
Require: Mα ⊆ M {α’s log of experiences sorted by time}
Ensure: Trust(α, β, 〈IM, r,m, ϕ, cm〉) ∈ [0, 1]
1: Focus ← ∅
2: for all ϕ′ in Terms(O) do
3: if Simτ (ϕ′, ϕ, κ1, κ2) ≥ η then
4: Focus ← Focus ∪ {ϕ′}
5: end if
6: end for{we assume finiteness of Terms(O)}
7: for all ϕ′ in Focus do
8: D(ϕ′ | ϕ) ← 1/size(Focus)
9: end for

10: Hβ = ∅
11: for all µ = 〈PC,ϕ′′, 1, d〉in Mα

and 〈Commit(β, , 〈im, r,m, ϕ′, c′〉, t)〉 ∈ PC with d ≥ ζ do
12: Hβ = c′ ∪Hβ

13: end for
14: Match ← 1
15: for all φ ∈ cm do
16: MAX ← 0
17: for all φ′ ∈ Hβ do
18: MAX ← max{MAX,Sim(φ, φ′)}
19: end for
20: Match ← MAX ·Match
21: end for
22: t ← 0; P t = D
23: for all µ = 〈PC,ϕ′′, 1, d〉 in Mα

and 〈Commit(β, , 〈im, r,m, ϕc, cm〉, t)〉 ∈ PC do
24: if Sim(ϕc, ϕ) ≥ ω then
25: for all ϕ′ in Focus do
26: S ← (1− | Sim(ϕ′′, ϕc)− Sim(ϕ′, ϕ) |) · Sim(ϕc, ϕ)
27: if S ≥ λ then
28: Q(ϕ′ | ϕ) ← Match·(P t(ϕ′|ϕ)+1/(nex ·|Q|)·S ·(1−P t(ϕ′|ϕ))) {Constraints

to satisfy}
29: end if
30: end for
31: P t+1 ← (1− ν)D + ν ·MRE(P t, Q) {MRE is the Min. relative entropy from P t

satisfying Q}
32: end if
33: t ← t + 1
34: end for
35: T ← 0
36: for all ϕ′ in Focus do
37: T ← T + Prefer(ϕ′, ϕ) ∗ P t−1(ϕ′ | ϕ)
38: end for
39: return T

4

5. (lines 22 to 34) update the probability distribution P , considering the
entries in the local history Mα that are similar enough (over a given
threshold ω), to the current commitment.

6. (lines 35 to 39) calculate the final trust value considering the proba-
bility of the terms in the set Focus.

2.1.1 Packages in the Trust Module

The implementation of the trust module is divided in 3 main packages:

Figure 1: Class diagram for Ontology package.

1. org.openk.trust.module.ontology: This package interfaces with the
local representation of the ontology in the peer. Figure 2.1.1 shows the
class diagram of this package. The interfaces that should be imple-
mented are:

• IOntology: which is required to obtain all the similar terms
needed by Algorithm 1 and defined by the getSimilarterms()

function in the interface;

• ISimilarity: defines the similarity functions also needed by Al-
gorithm 1. imSim() computes the similarity between interac-
tion models, roleSim() computes the similarity between roles,
termSim() computes the similarity between terms that a peer can
commit to, and overallSim() defines an aggregation function of
all the other similarity functions, in order to obtain a unique over-
all similarity score, for more details see Deliverable 4.5 [1].

2. org.openk.trust.module.history: This package interfaces with the
local representation of history Mα of the peer. Each peer is free to

5

implement its local history as preferred, and then implement the inter-
faces in this package to interact with the so defined local representa-
tion. Figure 2 shows the class diagram of this package; the classes in
this package are:

Figure 2: Class diagram for History package.

• IHistory: is the bridge between the local implementation of the
history of the peer and the Trust module, it should at least provide
functionalities for inserting (addEntry()) and retrieving entries
(getConstraintsForPeer()) from Mα.

• ITerm: represents the capabilities or constraints that one peer can
commit to, and therefore, can later be observed. The getID()

function obtains the identifier of the Term.

• Commitment: is the commitment C defined in Section 2.1. This is,
beta commits to alpha to fulfill some action defined in context

in time t.

• Context: is the context a particular peer commits to fulfill as
defined in Section 2.1. This means that a peer commits to an-
other peer to play role in interaction model im and, as part
of playing the role, to send a particular message instantiated as
messageinstance, in a manner determined by the set of constraints,
see [1] for details.

3. org.openk.trust.module.statistical: This package defines the sta-
tistical functions that are the base of the Trust calculation. Figure 2

6

Figure 3: Class diagram for package Statistical package.

shows the class diagram of this package. The interfaces in this package
are:

Figure 4: Ontology of a local peer.

• IProDistribution: represents the probability distribution P that
changes during time. It manages the conditional probabilities de-
fined in Deliverable 4.5 [1] and the decay D, see Algorithm 1.
The defined functions are: iniDistribution() that initializes
the probability and decay distribution, getProbabilityValue()
returns the probability for a given term, setProbabilityValue()
sets a new probability for a given term, and getDecayValue()

returns the decay value for a given term in the probability distri-
bution.

7

• IEntropy: defines the update function mre() (minimum relative
entropy) for the probability distribution P t used in Algorithm 1.

2.2 Visual interfaces

The implementation of the Trust module includes a Graphical User Interface
(GUI) to show the capabilities and the different components of the mod-
ule. The source code of the Visual interface is located at org.openk.trust.visual

within the SVN project. The GUI is composed of several tabs, which intend
to show the parameters, behaviour and results. The tabs are:

1. Ontology: shows a graphical representation of the local ontology of
the current peer (Figure 4). It defines possible terms that can be used
in the interaction models (IM).

2. Parameters: shows the parameters and the default values of the Trust
module, which can be customized in order to change its behaviour
(Figure 5). The configuration parameters are:

Figure 5: Parameters of the Trust Module.

• ν: minimum semantic similarity required between a term of the
ontology and the commitment under analysis to consider the term
to be a part of the Focus.

• v: (decay rate) sets how slow, 1 − v, P goes back to the default
probability distribution D. This is, if no observation happens
during a unit interval of time, the new probability distribution is

8

calculated as: P t+1 = (1 − v) ·D + v · P t, see Deliverable 4.5 [1]
for details.

• minimum user satisfaction required to consider that an entry in
the history, for a given peer β, was good enough, and therefore
should be considered in order to assess the capabilities of β. The
peer will be considered capable of fulfilling those contracts close
enough to commitments in the past with a degree of satisfaction
over the value of this parameter.

• minimum overall similarity between commitments in the history
Mα, and the current commitment, to consider that one commit-
ment in Mα is meaningful enough to affect the assessment of P .

• Nex: number of experiences with a peer β about a certain com-
mitment ϕ, necessary to fully consider the influence of a new ex-
perience to assess P .

• λ: minimum update relevance, i.e; minimal semantic similarity be-
tween the current commitment, the expected and observed terms
in one entry of the history, and one term in the focus, to consider
that the considered term in the focus should change the probabil-
ity distribution.

Figure 6: A contract to be tested.

3. Contract: shows the commitment ϕ that a peer β has signed, or is
about to sign, and for which assessment we can use the Trust module.
This tab (Figure 6) also lets the user define the observation of the

9

Figure 7: History of the observed contracts for the current peer.

commitment ϕ′. Once the user defines ϕ′, the tuple 〈ϕ, ϕ′〉 can be
stored in the history Mα of the observed commitments for β.

4. History: shows a subset of attributes of each entry in the history Mα,
mainly the index or number of entry, the current peer α, the commit-
ting peer β, the committed term ϕ, the observed term ϕ′, the user
satisfaction d, and the similarity between the committed and observed
terms.

Figure 8: Evolution in time of the probability distribution.

5. Probability Distribution (P): shows a chart of the Probability of the
terms in the Focus (Figure 8). The terms are arranged considering
their similarity value with respect to ϕ. At each time step P changes
considering the commitment and observation of the corresponding entry
in Mα. The time line represents the evolution of P , by changing its
value on the sliding bar, it is possible to observe the corresponding P
for a particular moment in time.

10

Figure 9: Evolution in time of the trust for the current commitment.

6. Trust Evolution: shows a chart with the evolution of the Trust, for
the given ϕ (written in the contract tab) in time (Figure 9). The time
evolution is defined by the entries in Mα as before. The last point in
the chart represents the current Trust value for the given ϕ.

3 A negotiation scenario

This section illustrates the monitoring of the trust plug-in in a concrete
buying/selling scenario. The lifecycle of an interaction is described from the
point of view of a particular peer, named peer1.

1. peer1’s user decides if he/she wishes to play the role of a buyer in a
buying-selling interaction. He/she therefore inputs the following query
into the discovery service (DS):

Buying selling interaction

2. The DS returns a list of potentially suitable IMs, ranked according to
various criteria such as (for details see Deliverable 4.5 [1]):

• How well the query of the user matches the keyword description
of the IM.

• Some evaluation of how popular the IM is.

• How many peers are already subscribed to the IM.

This process would naturally return a ranked list of IMs to peer1. Let
us assume that the top ranked IM is the one shown in Figure 10.

11

a(buyer,B) ::
ask(C,Ma, Mo, Y) ⇒ a(seller, S) ←

need(C : car,Ma : make, Mo : model, Y : year) then
price(C, Ma, Mo, Y, P) ⇐ a(seller, S) then
commit(B, S, ccIM, payer, pay, price = P)

← buy(C, Ma,Mo, Y, P) ⇒ a(seller, S) ← afford(C,P : Price)
owns(C, Ma, Mo, Y) ← sold(C, P) ⇐ a(seller, S)

a(seller, S) ::
ask(C,Ma, Mo, Y) ⇐ a(buyer,B) then
price(C, Ma, Mo, Y, P) ⇒ a(buyer,B) ← instock(C, Ma, Mo, Y, P)
buy(C, Ma,Mo, Y, P) ⇐ a(buyer,B) then
commit(S, B, crrIM, sndr, snd, car = C; make = Ma;mod = Mo; yr = Y)

← sold(C, P) ⇒ a(buyer,B)

Figure 10: Buying-selling IM.

3. Given a concrete need that materialises into a desired contract ϕ that
peer1 would like to see signed with a seller. It looks for potential
partners to play the selling role in the interaction model and then ranks
them according to their relative trust with respect to the desired ϕ. Let
us call the selected one, peer2.

4. peer1 runs the interaction model with peer2 to try and reach ϕ. If the
agreement is feasible the contract is signed and a commitment is made
to run another interaction model later on, in this example: execute, in
order to execute the contract.

5. peer1 and peer2 run the execute interaction model and then the actual
ϕ′ is observed.

The trust algorithm is used in step 3 to select the best potential seller. We
illustrate the previous behaviour on a scenario where the orders, oi, consist
of: oi = (yi, qi, di), where: yi is the type of item ordered (pens, pencils,
markers, highlighters), qi is the quality of the item (a number in [1..5]), and
di is the number of days to delivery the product (a number in [1..7]). Finally,
Figure 4 shows graphical representation of the peer ontology.

4 Conclusions and future work

This document has explained the implementation details and the application
in a concrete scenario of the trust plug-in developed within the OpenKnowl-
edge project. The current implementation is stand-alone in order to facilitate
its validation. We developed a graphical user interface to facilitate the tuning
of the trust parameters by the user of the plug-in as well as to help in the
monitoring of the component execution. The requirements of the algorithms

12

are easy to be satisfied by the kernel (including historical data and parameter
values). Thus, the integration with the kernel is among the next steps. Also,
the use of the Trust plug-in in the two major case studies is currently being
studied.

Two reputation models are currently being studied as well: a centralized
and totally distributed. The distributed model is based in the current Trust
model, where gossip can occur in order to learn the behaviour of a particular
peer we never had interacted with before. The centralized model just keeps
track of user behaviour and can be consulted when needed. The results of
this use will be reported in subsequent deliverables.

References

[1] Giunchiglia, F., Sierra, C., McNeil, F., Osman, N., Siebes, R.: Open-
Knowledge Deliverable 4.5: Good Enough Answer Algorithms. http://

www.cisa.informatics.ed.ac.uk/OK/Deliverables/D4.5.pdf (2006)

[2] Perreau de Pinninck, A., Dupplaw, D., Kotoulas, S., Siebes, R.: The
openknowledge kernel. International Journal of Applied Mathematics
and Computer Sciences (IJAMCS) 4 (2007) 162–167

[3] Joseph, S., de Pinninck, A.P., Robertson, D., Sierra, C., Walton,
C.: OpenKnowledge Deliverable 1.1: Interaction Model Language Def-
inition. http://www.cisa.informatics.ed.ac.uk/OK/Deliverables/

D1.1.pdf (2006)

[4] Li, Y., Bandar, Z.A., McLean, D.: An approach for measuring seman-
tic similarity between words using multiple information sources. IEEE
Transactions on Knowledge and Data Engineering 15 (2003) 871 – 882

13

